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Bayesian analysis of neutrinos observed from supernova SN 1987A

Thomas J. Loredo
Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853

Donald Q. Lamb
Department of Astronomy & Enrico Fermi Institute, The University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637
(Received 1 August 2001; published 14 February 2002

We present a Bayesian analysis of the energies and arrival times of the neutrinos from supernova SN 1987A
detected by the Kamiokande II, IMB, and Baksan detectors, and find strong evidence for two components in
the neutrino signal: a long time scale component from thermal Kelvin-Helmholtz cooling of the nascent
neutron star, and a brief{(1 s), softer component similar to that expected from emission by accreting
material in the delayed supernova scenario. In the context of this model, we show that the data constrain the
electron antineutrino rest mass to be less than 5.7 eV with 95% probability. Our analysis takes advantage of
significant advances that have occurred in the years since the detections in both our understanding of the
supernova mechanism and our ability to analyze sparse data. This has led to significant improvement over
previous studies in two important respects. First, our comparison of the data with parametrized models of the
neutrino emission uses a consistent and straightforward Bayesian statistical methodology. This methodology
helps us distinguish the complementary tasks of parameter estimation and model assessment, and fully ac-
counts for the strong, nonlinear correlations between inferred values of neutrino emission model parameters. It
also clarifies and improves the derivation of the likelihood functibe probability for the dajaimproving on
earlier derivations in two ways: more consistent accounting for the energy-dependent efficiencies of the
detectors; and inclusion of the empirically measured detector background spectra. These improvements lead to
significant differences between our inferences and those found in earlier studies. Inclusion of detector back-
ground spectra proves crucial for proper analysis of the Baksan data and for demonstrating its consistency with
data from other detectors. Second, we compare the data with a much wider variety of neutrino emission models
than was explored previously, several of them inspired by recent numerical calculations of collapse and
explosion based on the delayed supernova mechanism. This allows us to compare predictions of both the
prompt and delayed mechanisms with the data, and ensures that our conclusions are robust. We find that
two-component models for the neutrino signal ar&00 times more probable than single-component models.
Moreover, single-component models imply a radius and binding energy for the nascent neutron star signifi-
cantly larger than those implied by even the stiffest acceptable equations of state for neutron star matter. In
contrast, the radius and binding energy implied by two-component models are in agreement with predictions.
Taking this agreement with prior expectations into account increases the odds in favor of two-component
models by more than an order of magnitude. The inferred characteristics of the neutrino emission are in
spectacular agreement with the salient features of the theory of stellar collapse and neutron star formation that
had developed over several decades in the absence of direct observational data. We compare our work with
previous work that used more conventional “frequentist” methéidsluding our own previous maximum
likelihood analysis We identify several methodological and technical weaknesses in earlier analyses, and
show how these are overcome in our Bayesian analysis.
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[. INTRODUCTION fortunately, no criteria have been presented with which one

could evaluate and compare the various studies. In addition,

The detection of neutrinos from supernova SN 1987A inthere are technical deficiencies in many of the studies, in-
the Large Magellanic Cloud by the Kamiokande (KIl)  cluding inaccurate modeling of the detection process, and
[1,2] Irvine-Michigan-Brookhaver{IMB) [3,4] and Baksan consideration of unnecessarily restricted classes of models
[5,6] detectors was a landmark event in astrophysics. Alfor the neutrino signal. A consequence of these weaknesses is
though only about two dozen of the 10?® supernova neu- that the literature analyzing the supernova neutrinos appears
trinos that passed through the Earth were detected, they princonclusive or even contradictory. Some would argue that
vide us with our first glimpse of the collapsing core of athis is an inevitable consequence of the analysis of a sparse

dying star, and hence deserve careful scrutiny. data set. We assert that it is a consequence only of weak-
There is an extensive literature analyzing these epochalesses in the analyses, and that probability theory is able to
detections, both qualitativefy’—16] and quantitatively17—  precisely and consistently quantify the information in a data

33]. These previous studies use a wide variety of methodsset, even when the data set is small. Indeed, it is in just such
and although there is some agreement among their concleases that a careful quantification of our uncertainty is most
sions, there are also important and troubling differences. Unnecessary.
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The years since the detection of the supernova neutringsreviously. Earlier studies explored either a single model or
have seen significant advances in our understanding of then unnecessarily restricted class of models, almost always
supernova mechanism and in our ability to analyze sparspresuming the prompt supernova mechanism to be true. We
data. In 1987, the prompt scenario for supernovae was faexplore a variety of single-component models designed to
vored, and almost all of the most sophisticated analyses ahimic neutrino emission from a cooling nascent neutron star
the SN 1987A neutrino data used models based on this scéhe principle detectable component in the prompt scepario
nario. But in the intervening years, more careful calculationsand a variety of two-component models that add to this cool-
have shown that the prompt mechanism probably fails tdng emission a component arising from material that is
create explosions, and that the delayed mechanism-keated upon passing through the stalled accretion shock ex-
relatively new in 1987—is more likely to be the cause of pected in delayed scenarios for supernova explosions. We
supernova explosions. Through the same decade there hfisd that all single-component models lead to unacceptably
been a parallel development in the application of likelihoodiarge inferred neutron star radii and binding energies. We
and Bayesian methods to the analysis of inhomogeneougrther show that the data unambiguously prefer two-
Poisson processes in astrophysics. These theoretical and aRdmponent models, and that such models lead to quite rea-
lytical advances motivated us to undertake a new analysis Qfponaple inferred radii and binding energies for the nascent
the supernova neutrinos that significantly improves on previpetron star. The wide variety of models we consider insures
ous analyses both in i_ts statistical methodology and in thenat our conclusions are robust.
variety of models cpnsujered. , This paper is organized as follows. We begin with a brief

Our methodological improvements stem from consistent

d straiahtf d licati f the orinciol B . view of Bayesian inference in Sec. Il. We then devote two
and straightorward application ot the principies ot Bayesian,, ;s 14 the derivation of the likelihood function. Section
inference. The likelihood function—the probability for the

data given some hypothesis for their origin—plays a key role“.l derives the probability for data from a neutrino detector,

 Bayesian frence, =0 aspects ofcur anaies bear sonff€ M PAISTENTES o o e rocucton e ofene
similarity to earlier analyses based on likelihood functions 9 g P '

that used more conventional “frequentist” techniques, suchdenv"ﬂIon appear in Appendix A. Section IV describes how

as our own earlier work32]. But there are crucial differ- we derive the lepton production rate from general models for

ences both in the form of the likelihood function we use, anulhe emission of neutrinos from the supernova and their even-

in the manner in which we use it to make inferences. tua||n|nstircac\t}o\?vewggsi?igzb%%nsvi(ziztigﬁ;st' of parametrized
Our derivation of the likelihood function reveals errors in ) y ot p

previous atemps to account o te eneray cependence 2191 e [8v= S1abed, etuisd anong Bese e pre
the efficiencies of the neutrino detectors; we show that these 9 P P y

errors significantly corrupted previous inferences. In addi_mechamsms for supernovae. We present the best fit param-

tion, our likelihood accounts for the possibility that each ﬁfggggﬁso:g aer?c():tm(—:ljrr]ci)r??il Ir?t iffﬁevga?gdfi\;]vgincor;]%?e:‘?nitthee
event could have arisen from background sources by usin reference for two-compon%nt models Tk’1e mosgt] tenable of
emp_lrlcall_y mez_:lsured detector background spectra. Previo Re single-component models is one With an exponentially
studies either ignored the detector background, or tried t : . iy
account for its effects by censoring the data. We show that ecaying n_eutrlnosphere temperature_ at a coqsta_nt rad]us,
correct treatment of the background is crucial for proper is model is also the one most extensively studied in earlier

analysis of the Baksan data, and that it noticeably affects thgnalysgs. In Sec. VI we analyze_ 'gh|s smgle—corr_\ponent
implications of the KII data. Additionally, we include the model in greater detail. We present joint credible regions for
effects of dead time in the IMB detector, which has also beer%he model parameters that display the strong _correlatlons be-
ignored in most previous analyses. Once the likelihood iJween parameters, and that reveal an inconsistency between

available, Bayesian calculations use it in a different manne he neutron star rad|u§ and binding energy _|mp||ed by this
than frequentist likelihood analyses. In particular, the Baye—mOdeI and those predicted by current equations of state for
sian methodology allows us to accurately summarize the impeutron star matter. In Sec. VIII we ana!yze the best two-
plications of the data for interesting subsets of the parameter.csornponent model in greater detail. We find the constraints

needed to model the data, in a way that fully accounts for th [nplied by the data on parameters describing both the cool-

' . . . Ing and accretion components of the emission, and we dem-
strong correlations between inferred values of neutrino emis- 9 P

sion model parameters. These correlations must be taken in%‘sfir:éebth?hfsorrfgsé::q% db?rtlvc\)'::n :ggiazlétrg n s&zrirreﬁio;eurg(_es
account in order to fully compare the implications of the dat P y P y q

with the predictions of theory. Also, Bayesian model com‘:j"[lorls of state. ".1 Sec. IX we _prowde_ a_bnef review of _theo-
retical expectations for neutrino emission during and imme-

parison implements an automatic “Ockham’s razor” that . .
takes into account model complexity when comparing rivald'i?;e:%:t;%rsz:sgzrCcr?g;pcstg;igt?gscg?ﬁ:r;rt]?isigne)(peCtat'Ons
signal models; this assures that complicated models are prgv- In the analyses presented in Sec. VI through éec IX we

ferred only when there is significant evidence in the data . S
favoring them. assume that the rest mass of the electron antineutnpo,is

Complementing these methodological improvements aré€ro. In Sec. X we treaty, as an additional parameter to be
the improved scientific insights gained by our use of a muchnferred. We find no significant evidence for a nonzero mass,
wider variety of neutrino emission models than was explorecaind we determine the upper limits implied by single-
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component and two-component signal models. applications of Bayes’s theorem, which we use freely
Throughout the text we note technical differences bethroughout the remainder of this work; Bayesian model com-
tween our work and earlier work, particularly in regard to theparison in particular has so far seen little use in physics,
form of the likelihood function and the detector model. In motivating this brief pedagogical introduction. We also
Sec. XI we elaborate on some of the weaknesses of earlidrriefly describe the computational techniques we use to
work, including our own earlier frequentist likelihood analy- implement the calculations. More complete derivations of
sis [32]. We summarize our principle conclusions in Sec.the results in this section, with simple examples and further

XIlI. references, are available in recent reviel@6—41. The
Bayesian Inference in the Physical Sciengesb site[42]
Il. STATISTICAL METHODOLOGY provides access to a variety of reviews and tutorials.
We carefully distinguish between the problems(bf es- A. Parameter estimation

timating the value of parameters in a model for the neutrino . , ,
signal, and2) assessing the adequacy of a particular param- Many readers may be familiar with the use of Bayes’s

etrized model. A major weakness of most previous analyse!€0rem o estimate parameters in a model. Given some

of the supernova signal is the failure of investigators to disProPOSition,M, specifying a model with parameters denoted
tinguish between these complementary statistical tasks, leag®!€ctively by 6, and a propositionD, specifying data rel-

ing many to use model assessment methods incorrectly gvant to the model, one calculates the posterior distribution
calculate “confidence regions” for parameters. for the parametergy(6|D,M), according to the continuous

We address both parameter estimation and model asses&rsion of Eq.(2.1),
ment problems with Bayesian methods. In Bayesian infer- 0(D|6,M)
ence, the viability of each member of a set of rival hypoth- p(6|D,M)=p(6|M) ’
eses{H;}, is assessed in the light of some observed daja,
by calculating the probability for each hypothesis, given the . : . . :
data and any background informatid,we may have re- Of the factors in this equation, the likelihood function,

garding the hypotheses and data. Following a notation introp(DI 0,.M), is probaply the most familiar. Itis the pmb?bi"ty
duced by Jeffreys[34], we write such a probability as for the data, assuming the parameters have values given by

p(H;|D,l), explicitly denoting the background information 6. We often denote the likelihood by the symbe{6); this

by the propositionl, to the right of the bar. At the very least, notation emphasizes that its dependence on the parameters is

. i . what is important in Bayes’s theorem, but that it is not by
the background information must specify the class of alteritself a probability distribution for the parameters.

native hypotheses being considered, and the relationship be=- - ) .
tween the hypotheses and the détee statistical modgl In The_ remaining terms in I_E_c{2.2) are the prior forg e_md .
ﬁl&e prior predictive probability. For the most part, in this

cases where the hypotheses of interest are labeled by tWork we adopt uniform(constank priors for all parameters
possible values of a continuous parametgrthe quantity P . AL P par :
: . o . When the data are informative, the posterior is robust to
P(6|D.1) is a probabilitydensity p(¢|D,1)dé is the prob- changes in the prior; we note those cases where the data are
ability that the true value of the parameter is in the interval” . 9 . prior, we ) . o
. . . uninformative as they arise. The prior predictive distribution,
[6,0+d0], given the data and the background information. L
p(D|M), is independent of and merely plays the role of a

We use the same symbgi . . .), for densities and prob- normalization constant whose value is given by integratin
abilities; the nature of the argument will identify which use is ) Hue IS g ) y 9 9
the product of the prior and the likelihood:

o(DM) (2.2

intended.
Bayes'’s theorem giveg(H;|D,1) in terms of other prob-
abilities, p(D|M)=J’ dop(6|M)p(D|6,M). (2.3
p(H|D,)=p(Hi|) R (2.1) Thus the essential content of E@.Z) may be summar_lzed
p(DII1) by the statement that the posterior density is proportional to

the product of the prior and the likelihood.

The probabilitiesp(H;|1) for the hypotheses in the absence  Frequently a parametrized model will have more than one
of D are called their prior probabilities, and the probabilities parameter, but we will want to focus attention on a subset of
p(H;|D,I) including the informatiorD are called their pos- the parameters. For example, at one point in this work we
terior probabilities. The quantitp(D|H;,l) is called the will want to focus on the implications of the data for the
sampling probability foD, or the likelihood forH;, and the  binding energy and radius of the neutron star formed by the
quantityp(D|1) is called the prior predictive probability for supernova, independent of the remaining parameters describ-
D, or the (globa) likelihood for the entire class of hypoth- ing the neutrino signal. The uninteresting parameters are
eses. known asnuisance parameter3he posterior distribution for

The rules of Bayesian inference lead one to use Bayesthe parameters of interest can be calculated by integrating
theorem both to estimate signal parameters and to asses®at the nuisance parameters. Explicitly, if modiélhas two
model as a whole by comparing it to rival models. But dif- parameters¢ and ¢, and we are interested only # then it
ferent types of calculations are required to implement theses a simple consequence of the sum and product rules of
two complementary tasks. In this section we describe thesprobability theory that
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Loredo [41] provides further discussion of posterior sam-
p( 9|D,M)=f d¢p(6,4|D,M). (2.4 pling and pointers to the literature.

The procedure of integrating out nuisance parameters is B. Model comparison

calledmarginalization andp(#|D,M) is called the marginal In Bayesian inference, the success of a model is assessed
posterior distribution ford. In frequentist statistics there is by comparing it to explicit alternative models. To compare
no generally acceptable way to eliminate nuisance paranrival models, we again use Bayes’ theorem. This use of
eters. The ability to marginalize parameters is thus an imporBayes’s theorem is probably less familiar to most readers,
tant advantage of the Bayesian approach. though it is analogous to use of Bayes’ theorem for param-
The Bayesian solution to the parameter estimation probeter estimation. We begin by specifying a set of competing
lem is the full distributionp(#|D,M), and not just a single models. We use the symbM; to denote a proposition as-
point in parameter space. Of course, it is often useful taserting that modei describes the data, and the symbab
summarize this distribution for textual, graphical, or tabulardenote a proposition asserting that one of the models being
display in terms of a “best-fit” value and “error bars,” indi- considered describes the data=(‘ M; or M, or ...").
cating the location and width of the posterior. PossibleThen we use Bayes’ theorem to calculate the probability for
choices of summarizing best-fit values are the posteriomodel M;, assuming that one of the models being consid-
mode (the value ofé with largest posterior densityor the  ered describes the data:
posterior mean,(6)=[d#6p(6|D,M). If the mode and
mean are very different, the posterior distribution is probably (M|D.1) = p(Mi[1) p(D[M;,I)
too complicated for its location to be adequately summarized PENVGIL, PV p(D|I)
by a single number. An allowed range for a parameter with
probability contentC is provided by acredible region R, This is very much like Eq(2.2), with M; now playing the
defined so that role of the parameter, antd now playing the role of the
model. The ternp(M;]|1) is the prior probability for model
M; . The proposition;,1) (“ M, and I") is true if and only
f dép(6|D,M)=C. (2.5 if model M is true, that is, it is equivalent to the proposition
R M; itself. Thusp(D|M;,1)=p(D|M,), the quantity calcu-
lated in Eq.(2.3). This quantity plays the uninteresting role
If Ris chosen so that the posterior density indRiis every-  of a normalization constant in parameter estimation, but it
where greater than that outside it, thris a highest poste- plays a key role in model comparison: it is the likelihood for
rior density(HPD) credible region; all of the credible regions modelM; in Eq. (2.6). Equation(2.3) reveals the likelihood
we display in this work are HPD credible regiott€redible  for 3 model to be equal to theveragelikelinood of its pa-
I’egions are not called “confidence regions" to dIStInngh rameters(averaged with respect to the prior for the param-
them from frequentist confidence regions, which are calcugters. This is in stark contrast to frequentist measures of
lated in a very different mann¢89].) model quality, which typically maximize rather than average
In this work we present as a best-fit summary the postethe likelihood for the parameters. To help distinguish the
rior mode. Since we are using flat priors, these estimates alelihood for a model's parameters from the likelihood for
identical to those a frequentist maximum likelihood analysisthe model as a whole, we use the term “likelihood function”
would produce. But Bayesian and frequentist uses of th@a function of the parametergor the former, and “model
likelihood for finding allowed regions diffefespecially  |ikelihood” or “average likelihood” (a single real numbegr
when nuisance parameters are presestt more complete  for the latter.
summariege.g., credible regionswill differ from their fre- It is sometimes more convenient to work with ratios of
quentist counterparts. To find the credible regions reported ifhodel probabilities, particularly when there is a special “de-
this work, we useposterior sampling-the use of Monte fay|t" model. The ratio of the probability for modeM; to
Carlo methods to obtain a set of samples of parameter valuggat for modelM; is called the odds in favor dfl; overM; .

from the full joint posterior. The “cloud” of such samples e denote it byO;; . Using Bayes’ theorem, we can write the
nicely summarizes the full posterior; but more importantly, 5qds as

once the samples are available, any marginal distribution can

be easily estimated by simple manipulations of the samples. p(M;|D,1) p(M;[l) p(D|M;,I) p(M;|l)

For gxample, samples from the marginal Qistribution for any Oij :p(Mj|D,I): p(MjII) p(D|Mj ,I): p(MjII) ij 1
function of the parameters can be found simply by evaluating

the function on the samples. A simple special case is when

we seek samples from the marginal distribution for a subsetvhere the first factor is the prior odds ratio, and the second
of the parameters; they can be found simply by ignoring thdactor is called theBayes factorThe Bayes factor is simply
nuisance parameter coordinates of each sample from the fute ratio of the likelihoods of the models. Note that the nor-
posterior. We obtain the samples using the rejection methorhalization constant in Eqg(2.6), p(D|l), drops out of the
[43], and for plotting smooth contours of one- and two- odds ratio. When the prior odds does not strongly favor one
dimensional marginals we fit the cloud of points to simplemodel over another, the Bayes factor can be interpreted just
parameterized functions(exponentials of polynomials as one would interpret an odds in betting; Table | summa-

(2.6
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TABLE I. Interpretation of Bayes factors. the ratio of the posterior range for the parameter to its prior
: range. This quantity will be less than one, and in this manner
In(By;) Bij Strength of evidence farl; overH;  the Ockham factor penalizes the maximum likelihood. This
Oto1l 1to3 Not worth more than a bare mention penglty typically grpwg with the number of parameters, and
L in this way model likelihoods implement a posterior prefer-
1to3 3to 20 Positive

ence for simpler models with fewer parameters, even when
the models are considered equally probableriori. In this
way Bayesian model comparison favors models that best
predict the data, not only for the best-fit parametgvhich
\ﬁfter all are known only posteriorj, but taking into account

3to5 20 to 150 Strong
>5 >150 Very strong

rizes the interpretation recommended in the extensive revie

uncertainty in the parameters.
of Bayes factors by Kass and Raftdr]. . - . .
An important aspect of Bayesian model comparison is It is worth emphasizing that these Bayesian calculations

that the calculation of model likelihoods implements an au_provide probabilities fomodels(or ratios of such probabili-

tomatic and objective posterior “Ockham’s razor,” leading ties), in cont_rastltof the fa!se a_Iarr:l probabilities prr?_wt(]jed

one to prefer simpler models unless the data provide substaR-y t;:og\l{?ntlofnad :quentlst E'gg'l_f[?a”‘;e t(vjastts, which are
tial evidence in favor of a more complicated alternative, everfr ;Omz tlr:;(?lswﬂ;tawigeabgg? \):d'lr:i!sesfur?dran?eitglmdr;feer)-(-

when the rival models are assignegualprior probabilities. ence leads to different interpretations for the probabilities
In frequentist statistics, one commonly uses ratios of maxi—h d In f tist statistics. it | i
mum likelihoods to compare models. However, more com-t €se procedures report. In frequentist statistics, 1t 1S COT
plicated models almost always have higher likelihoods thary " to consider a departure from the null hypothesis at a 5%

. : ignificance level t rely significant. In contrast, if
simpler models, so more complicated models are only aczgnicance fevel to be barely significa contrast, 1" a

cepted if the maximum likelihood ratio in their favor exceedsBayeS'an calculation gives the null hypothesis a probability

o " o
some subjectively specified critical amount, expressing a(\)f 5% (i.e., a Bayes factor of 19 against the pulhis is

o . L .~ ‘considered quite significant evidence against the (sdke
subjective priorpreference for simplicity. But Bayesian Table ). Indeed, one often finds that a Bayesian analysis of

methods compare averaged likelihoods, not maximum likeli- ata discrepant at the 5% significance level produces a Bayes
hoods, and tend to favor simpler models even when simpl b . 0 SIgNITK pro abay
actor of order unity—the Bayesian calculation is confirming

and complicated models are assigned equal prior probabili- . ; . A
ties [35,38,40,45 the conventional interpretation of this significance level by

We can better understand the distinction between Baye[—)rov'd'ng a quantity with a more straightforward and intui-

sian and frequentist model comparison and the nature of tht{év?hmtedrp retat|_o n. SfetILk.e,. Bayarn,. tﬁnd %erlg[éﬁ] fprovué;e
Bayesian posterior preference for simplicity by writing the urther discussion 0T this ISsue, with guidelines for a baye-
model likelihood as the product of the maximum parametelSlan Interpretation of significance tests. -
likelihood used in frequentist model comparison, and an ad- The integrals needed to calculate average likelihoods for

ditional Ockham factar We thus implicitly define the Ock- Esgesnfggtorf ; rt(iac o;‘ter:ocxr;glget;’:)gr:rl% tlr?etgl; Vggr]l(éc\:ﬁ gfte:?_
ham factor() , associated with the parametet®f modelM ymp PP Y PP

e _ ) : cable when comparing two nested modgls., models such
\t/)zill\jvem(l)?%hpe(ll:i)llg/lli)hg (ﬁjm?ﬁgt,iovx?:?gi maa'j ;hl\e/l)m aRXGI:Tzl;IT that the simpler model corresponds to the more complicated
ing Eq. (2.3 for the average Iikelihogdp this im I.ies one when additional parameters are set at default values

9 £g. (= 9 ' P The approximation is known as the Bayesian information

1 criterion (BIC) or the Schwarz criteriop47]. The BIC uses a
_J dop(6|M)L(6). (2.8)  Gaussian approximation for calculating average likelihoods,
L max and an “automatic” prior with a width roughly correspond-

_ ) ) _ing to the width of the individual data factors in the likeli-
Assuming, as is generally the case, that the prior variefood. The result is that the log Bayes factor can be approxi-
slowly compared to the likelihood, the integral in this equa-mated as

tion is approximately equal tp(4|M)fd@L(6), where® is

the maximum likelihood value of. If we write the integral A - N 1

of the likelihood function as the maximum likelihood value INBoy=IN[£L(6,$)/L1(6)]— 5myINN, (2.1
times a characteristic width of the likelihoodp, we find
that

QH:

where model 2 is the more complicated model, with addi-
. tional parametergp, m, is the dimension ok, andN is
Qy=p(6|M) 6. (2.9 the number of data. When the approximate results warrant
. . interest in an accurate Bayes factor, we use adaptive quadra-
We can write the value of the prior @&asp(6|/M)~1/A#, ture to calculate model likelihoodg1].

whereA @ is a characteristic width of the prigif the prior is The key ingredient in Bayesian parameter estimation and
flat over some range of sized, the approximation is exact model comparison is the likelihood function. We now turn to
Then we find that calculation of the likelihood function based on the neutrino

data. This requires us to model the production of neutrinos at

Q,~56/A06, (2.10 the supernova, their propagation to Earth, their interaction
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with terrestrial detectors, and the detection of the energetizolume since the detectors are optically thin to neutrinos.
charged lepton produced upon such interaction. The last steyhen we need the signal rate per unit volume, it is thus
of this modeling chain is the most complicated one, and thesimply given by

place where the differences between our likelihood function

and those appearing in some earlier analyses are greatest. We R(r,n,et)=
therefore treat it first. e

R(n,e,t) 3.1

v (3.0
where V denotes the detector volume. The signal rate will

Ill. MODELING NEUTRINO DETECTION depend on some parameters, which we collectively denote by

‘P. The number and type of parameters depend on the model

Our task in this section is to calculate the probability for to, yhe signal rate: later sections describe the various models
the data produced by a neutrino detector, given the charggle consider. We are seeking the dependence of the likeli-

Igpton productionl rate thrqughput the detector. Before beging j 4 onP (and, implicitly, on the choice of a parametrized
ning the calculation, we first introduce a number of nOta'signaI mode

tional conventions that will streamline the derivation. We We will often need quantities such as the background rate
also review some basic results. on inhpmogeneous POiSS‘?Br events of any direction and at any position, but with
processesPoisson processes with varying event ratest energy inde. This requires integration over the other inter-

play an important role in the derivation. We presume the\/als. For brevity, we simply collapse the argument list to

reader is familiar with the basic setup of neutrino deteCtor?ndicate the necessary integrations. For examBée)

(kseed, e”gd I?e[i48] for a detailed description of the Kamio- — [dV[dnB(r,n,e), and an unadorneB is the total back-
ande |l detector ground rate per unit time. We adopt similar conventions for

The “input” to our c_aIcuIauon is specification of the the signal rate, so thi(e,t)= fdnR(n,e,t), andR(t) is the
charged lepton production rate throughout a detector. Th|§Otal signal rate per unit time at tinte

rate has two components. F!rst, there is a background_com- Our earlier work, and that of others using likelihood func-
ponent due to particles entering the detector from cosmic ray ns attempted to calculate the likelihood by considering
interactions or radioactive decay in the surrounding rock. We[he oiata to be the inferred energies and arrival times of de-
also formally include other sources of false triggéssch as tected positrongi.e., the *best-fit” values as reported by the
noise in the detectoysn the background rate. Second, theredetector teams I.-|c;\’/vever, the actual data are not a set of

|shth?cglh );]S'C?rlil%/ n;te\r/sstm? ngmnaI ﬁo:nptt)t?etntbdtjhe rtot aStrorfime-tagged energy values, but is instead a more complicated
phys eutrines. Ve presume nere that bolh rales alf,q serjes of pulse heights in the thousands of photomulti-

O oIl e iere o mesers surounding each detetor ht lows us o it
q ibe i ’th foll 9 " 9: certainty the properties of detected positrons. Although
eﬁ'(;lne eKIIIn IM?B Oar?(\jN ggkzzz Iggiectors most efficiently de- t.his_time series i$ not publigly a\(ailab_le, a more accurate
’ ’ likelihood calculation results if we imagine it were available

tect neutrinos through capture of electron antineutrinos ol g try to calculate the probability for such a time series

protons, resulting in the production of an energetic positron, . ; ;
. . given the signal and background rates and detailed knowl-
Thus throughout this work we will refer to the charged Iep—edge of the detector.

tons produced by the astrophysical neutrino signal as posi- Accordingly, we letD denote all the available data, re-
trons, even though many of our results apply equally well to

. . orted as a time series specifying the state of the instrument
detection of energgtlc electrons. The background (_:omponeli& regular intervals separated in time B The duration of
may be due to positrons, electrons, or muons. To simplify th

discussion, we will refer to the production of a charged le e& I unimportant, so long as it is small enough that no more
ton of an 't o as an “event.” F())ne must be carefu?to diS_than one event is ever seen in an interval. We separate the
y yp ) data into two groupsdetection datad;, specifying all the

tinguish occurrence of an e\(ent from detection of an eventdata associated with detected event nunibandnondetec-
not every event that occurs is detected.

We useB(r,n,e) to denote the differential background tion data d;, specifying that no triggered event happened in
rate, so thatB(r,n,e)dVdndedt is the probability that a (me intervals indexed by. We always use to index quan-
background event will occur in an infinitesimal time interval tties associated with detected events. In particgjafgnotes
dt in a volumedV at positionr in the detector, with a direc- (he time of event. Similarly, we always usgto index quan-
tion in the solid angleln about the unit vectan, and with an tities associated with nondetections. In particular, weadtge
energy in the intervale,e+de]. We presume the back- to denote the time intervdl;,t;+ 6t] associated withd; .
ground rate is constant in time over the duration of the ob- We will presume that, given the signal and background
servations. It is not constant in space, however, becaug@tes, the probability for a detection in some intervalis
background events due to sources in the surrounding roddependent of whether an event was detected in other time
appear preferentially near the detector walls. intervals. This implies that the likelihood function is simply

We useR(n, e,t) to denote the differential signal rate: the the product of independent probabilities for the detections
rate of production of positrons in the detector per unit time,and nondetections,
energy, and steradian due to interactions with neutrinos from Ng
the supernova. Unlike the background rate, it is time- _ , T
dependent. However, it is constant throughout the detector &P |H1 p(dJP,M)}]}[ p(d‘|P’M)’ 32
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whereNy is the number of detected events amdns over all R(N,€,t)
intervals for which no event was detected. As will become exr{ - ( R(t)— TdVdndf) ot|. (3.7)
apparent, the number of nondetection intervals does not ex-

licitly appear in the analysis; only their total duration mat- . . .
!coers. &erpepwe use the syrrzlh\dlto deynote all of the modeling The pro_bablhty (densn)_) for S(r,n,e) IS _th_e product of
assumptions needed to calculate the required probabilitieg,‘ese’ divided by the differentialVdnde, giving
including specification of the signal model discussed in the
next section.

We presume that, given the rates, the probability for an

event occurring in any specified infinitesimal interval of

time, volume, direction, and energy is independent ofe can write the probability for occurrence of a single, spe-
whether or not an event occurred in some other interval. Thigific background event similarly, substitutifor R.

R(n,e,t) st

p(S(r,n,e)|P,M)= e RO (38

implies that the probability fon events occurring in anin- We now have all the ingredients we need to derive the
terval of finite size is given by the Poisson probability, form of the likelihood function. But before doing so for re-
_ alistic data, we will do so for data produced by an idealized
n" o detector that detects every positron whose energy is above
Pn=3r€ (33 some thresholde,, and that measures the locations, direc-

tions, and energies of detected events with negligible uncer-
wheren is the expected number of events in the interval,ta'nty' We will also presume there is no background rate in

found by integrating the relevant differential rate over the!his detector. This calculation will make clear the origin of
interval. the most important terms in the more accurate likelihood

Again focusing attention on a particulat interval, now function.
let S° denote the proposition asserting that no signal events

occurred in the time interval. The probability f8F is given A. ldealized likelihood
by Eg.(3.3), with n equal to the signal rate integrated over  We begin by calculating the probability for ideal nonde-
ot: tection data. This is simply the Poisson probability for seeing

no events when the expected number of events is

p(8°|73,|v|)=exp[—f dtR(t) |[~e RO (3.4
ot

H=atf dvf dnj de@(e—eth)w. (3.9

To get the approximation, we have assumed #tat much

smaller than the time scale over which the rate varies, so thadere @ (x) is the unit step function, equal to 1 when its

the integral overst is well approximated byR(t) ét, witht  argument is nonnegative, and 0 otherwise. TB{g — €;,) is

equal to any time irdt. Similar equations hold for the prob- the efficiency for detecting events of energywhich is ei-

ability for no background event; since the background rate isher 1 or O for this idealized detector. The efficiency ensures

presumed constant, there is hdependence and th# prod-  that only the detectable positron rate—that above the

uct form is exact. threshold—contributes to. With these definitions, the non-
Let us now focus attention on some specified time intergetection probability is

val, and letS(r,n,e) denote the proposition asserting that a

single signal event occurred in ti& interval under consid- —

eration, and that it had a position, direction, and energy in p(d,—|M,I)

dVdnde about the point i(,n,e). We write the probability R(n,€,t))

for this proposition as =ex;{— &f de dnj de® (e~ en)—y |-

p(S(r,n,e)|P,M)dVdnde, (3.5 (3.10

so that p(S(r,n,e)|P,M) is a probability density This To calculate the detection probability, we will presume
proposition is the conjunctiofiogical “and”) of two simpler  that the nearly ideal detection data specifies that one event
propositions:(1) one signal event occurred idVdndedt;  occurred indt; with energye;, directionn;, and positiorr;,
and(2) no other signal event occurred &t with a different  each measured with negligible uncertaints n, andésV.
position, direction, or energy. The Poisson probability for theThe probability for such a datum is simply the Poisson prob-
first of these propositions is ability that one positron is produced in a time intergalatt;
with properties in the specified ranges, multiplied by the
R(n,e,t) probability that no other positron be produced in the same
dVdndeat)exr{— —y dvdndedt|. interval but at another detectable energy, direction, or posi-
(3.6)  tion. We derived such a probability above, although with
infinitesimal range$see Eq(3.8)]. Thus we can write down
The Poisson probability for the second is the result,

R(n,e,t)
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p(d|M,1)=| stsesnsV

Vv on idealized data given by E3.12 reveals three important
differences, each associated with a new element in the like-
lihood function.

(3.19 First, the integral of the signal rate appearing in the expo-
nent (i.e., the effective ratehere has therolume-averaged

Assembling the detection and nondetection probabilitiegjetection efficiengy 7(n,€), in place of @(e—e). The
according to Eq(3.2) gives the idealized likelihood function, sharp energy threshold is replaced by a smooth threshold,
due to the fact that the detector trigger criteria are not simple
Eidea|=(5‘t5€5n5V)Ndexl{ _J dtJ dVJ dn functions of the actual event energy. There is a possible di-

T rectional dependence in this factor.
Ng R( .6 .1) Second, the product term has a weighted integral of the
i signal rate in place of the signal rate evaluated at the direc-
i=1 \ ' tion, energy, and time of the event. The weighting function,

(3.12 L;, is theevent energy and direction likelihoeethe prob-
ability for seeing the event data, presuming the positron that

The time integral in the exponent is over the entire duratiorproduced the data came from directionvith energye. This

of the data and arose from combining the integrals in Egintegral accounts for uncertainty in the inferred directions

(3.10 from all the nondetection intervals with the integrals and energies of events.

in the exponents of the detection probabilities. The exponent Finally, the event background rateB;, appears in the

is thus the total expected number of detectable positrons. Iproduct terms. This quantity is just a weighted integral of the

general, this is different from thénteger-valuefinumber of  background spectrum, the weighting function beifygn, €).

positrons actually detected. When the parameters of thg js the rate of background events resembling eveRecall
model specifyingR(n, €,t) allow its amplitude to be freely that we are ultimately interested in the functional depen-
ao_ljusted, one can show that the parameter values that_ MaYance of£(P) on P, determined by the dependence of the
mize the likelihood make the expected number of p05|tron§igna| rate orP. If, for a particular eventB; is much larger
equal the actually detected number. than the signal ratéfor any interesting choice oP), then
that event's term in the likelihood will remain nearly
B. Realistic likelihood constant—the event is effectively eliminated from consider-
Realistic data differ from the idealized data in three im-ation. But the full likelihood function does this “background
portant respects. First, the threshold for detection is not agubtraction” in a smooth way, reducing the weight of infor-
energy threshold, but is instead specified in terms of thenation from potential background events according to the
number of triggered photomultipliers. In terms of positronrelative probability that they are due to the background rather
energy, the threshold is thus “blurry,” since the number of than the signal.

photomultipliers triggered by a lepton of a particular energy We must add one further complication to the likelihood

cannot be precisely predicted. Second, the energies of d@unction. Each of the detectors has a fixed, known dead time,

tected leptons are inferred with considerable uncertainty. Fiz associated with every detected event. The likelihood func-
nally, the KIl and Baksan detectors have nonnegligible backtion corrected for dead time is found simply by subtracting
ground rates, so that triggers occasionally result even wh o(t;) + Bog] 7 for each event from the exponent in Eq.
ho energetic [epton has 'been producgd by a neutrlno. &.13). Since theB47 parts of these terms are constafits
present a de_tallefd der_lvatlon of 'ghe likelihood, account'ng.fordependent of the choice of model or parameters for the sig-

these complications, in Appendix A. Though the calculation Lo .

is somewhat lengthy, its result is easy to understand in th(ra]al)' for simplicity we drop them from the likelihood.

’ A further dead time correction is required for the IMB

light of the idealized calculation described above. The full . . . i
likelihood function can be written experiment. This experiment actually triggers on many more
' events than are reported as neutrino events. Characteristics of
these events allow them to be justifiably neglected as back-
E(P)ZGXF{—J dtReff(t)} ground eventgessentially, the experiment team eliminates
T events with a very higlB; from the reported dajaHowever,
they each have dead time associated with them, and they are
Bi+f dnj deLi(n,e)R(n,e,t;) |, numerous enough that this dead time must be taken into
account. In principle, we could subtrdd®(t) +B]r for each
(3.13 such event from the exponent in E&.13. In practice, the
times of these events are not reported, and they are numerous
where the effectivédetectablg event rate is enough that it is adequate to simply multiply the exponent by
the live time fraction,f=1-B,7, whereB,, is the rate of
. — background events that are not reported. For the IMB detec-
Re“(t)=J dnj den(n,e)R(n,€,t). 314 5B, =27 sandr=0.035 s, so that=0.9055. For the

R(N: € ,t) Comparing this likelihood function with the likelihood based
[BE It B A |
exg —ot| dV | dn

X f de®(e— fth)m .

X J de®(e— eth)R(n\’/E’t)

Ng
<1
i=1
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Kll and Baksan detectors= 1, since all events are reported. !
The likelihood function corrected for dead time is thus

K(P)zex;{ —f detReﬁ(t)}

Ng

n(e)

XH eReﬁ(ti)T{Bi-Q-J\ dnf dfﬁi(n,f)R(n,G,ti) . 4 —
=1
(3.15 2
This is the complete likelihood function based on data from
a single detector. To combine the information from different 5

detectors, we simply calculate the product&fP) for all

detectors. -
FIG. 1. Average efficiency functions(e), for the Kl detector

C. Likelihood for isotropic signals (solid curve, IMB detector(dashed curve and the Baksan detector

- L (dot-dashed curye
The complete likelihood function is somewhat more gen-

eral than what we need. As we note in the following section, . . .
the signal rate due to neutrinos from SN 1987A is essentiall)?Xpe_”merl teams need only report the one-d|m(_en5|onal
isotropic. Thus we can perform some of the volume integrafunctions,z(e) andZ;(e), rather than the more complicated
tion above, simplifying the likelihood function. We calcu- two-dimensional versions. Similarly, the analyst needs to
lated the more general likelihood above both in order to il-Perform simpler integrations for the analysis. But it is impor-
lustrate some of the complications hiding behind thetant to realize that these functions are mtrms_mally_ more com-
isotropic form we are about to find, and because it shouldlicated than they appear; the apparent simplification here
prove useful in analyzing data from future supernova neuSIMply reflects the fact that the experiment team can perform
trino observations, for which the anisotropic component ofSome of the required integrations once and for all.

the signal may not be negligible. The complete likelihood
function may also be useful for analyzing other data, such as

3 ' D. The reported data
that produced by observing solar neutrinos.

For an isotropic signal rate, We have derived the form of the likelihood function pre-
suming that the entire data set, in the form of a complicated

R(e,t) time series, is available. However, the final likelihood func-
R(n,et)= 47 (316  tion depends only on some summaries of this data. The non-

detection data are summarized in the efficiency function. The
Inserting this into Eq(3.15 allows us to write the likelihood detection data are summarized in the form of an event like-
for isotropic signals as lihood function for each detected event. For making infer-

ences about isotropic signal models the necessary summaries

(3.17) of the “raw” data are the average efficiency(e), and the
event energy likelihood functions;;(e). In addition, the
data duration,T, the equivalent water mas$/, the dead

time, 7, and live fractionf, must be specified for each detec-

Bﬁf deLi(e)R(e ty) |, tor. Finally, the event-averaged background rBtg, must be

(3.18 specified for each event.
' For our calculations, we use the reported detector efficien-

where the volume- and direction-averaged efficieflogre-  cies for (e€). In Fig. 1 we plot the average efficiencies for
after simply theaverage efficiengyis given by the KIl, IMB, and Baksan detectofg,4,6,49. It is clear that
the three detectors sample the signal quite differently. It is
— . (dV[dn perhaps worth emphasizing that we are interpreting these as
7’(6)=J VJ 27 e, 319 the volume- and direction-averaged efficiencies for the de-
tectors. This implies that, in principle, these ai& the effi-
and the volume- and direction-averaged event likelihooctiencies one should use when analyzing signal models with
function (hereafter theevent energy likelihogds given by an anisotropic componerias would arise if there were a
significant electron scattering componerBut in practice,
[le)= d_V d_nc 39 symmetries may make the differences between the direction-
(&= | z740ne). (320 averaged and direction-dependent efficiencies negligibly
small. For example, electron scattering events produced near
This is the likelihood function used in the calculations re-the side of the detector closest to the source are more likely
ported here. It is simpler than E(.15 in the sense that the to be detected than those produced near the far side, since the

c(P)zexp[ —fdetf den(e)R(e,t)

Ng
X H eRe(ti) 7,
=1
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latter will produce Cenekov photons preferentially directed TABLE II. Detector characteristics used in evaluating the like-
out of the tank(thus hitting few photomultiplies But the  lihood function.

symmetry of the shapes of detectors may result in near can
cellation of the resulting variations of the full efficiency upon Characteristic Kamiokande Il IMB Baksan
integration over the detector volunithis symmetry was bro-

) Effective H,O massM kton 2.14 6.8 0.28
ken for the IMB detector at the time of the SN 1987A obser- b et ,)1
. - ..~ Background rateRy, (eventsS-) 0.187 0 0.0345
vations, since power for a large number of photomultipliers :
had failed Dead time,r (S) 0 0.035 0
' Live fraction, f 1 0.9055 1

Note that all of the reported average efficiency functions
vanish below some energy,, that differs for each detector.

Formally, the efficiency probably never identically vanishes Id not | t for the back d
(e.g., there is a small probability that a low energy neutring>c> ©0U'd Not properly account for the background compo-
can trigger a large number of photomultipligrbut it pre- nent, and so had to exclude events suspected of being back-

L round events. As already noted, the correct likelihood
fg&i@é’ :fefﬁ:?er?]if/ czg:ggg small at the energy where th unction weights events according to the probability they

We also presume that the event energy likelihood funcOmMe from the signal component, and so more smoothly and
tions can be well-approximated by Gaussians,

(G_Gi)2
2072

TABLE lll. Detected event data used in evaluating the likeli-
hood function.

Ei(e)ZCieXL{— O(e—€p), (3.21)

ti €j g Bi
Event 6] (MeV) (MeV) (sh

wheree; is the reported “best-fit” energy for event o is _
the reported uncertainty for the energy, adis a normal- Kamiokande Il

ization constant. The® function appears for consistency 1 =00 200 2.9 1'&1072
with 7(e€); it ensures that the event Iikelihood_vanishes atg 8';8; 17355 25 ;}; 18,2
energies below the energsy, where the reporteg(e) van- 0.324 9.9 27 12102
ishes g is never closer to the peak than two standard de: 0.507 128 29 24103
viationg. The actualZ; function, resulting from detailed fit- 62 0.686 6.3 17 3.%10°2
ting of the pattern of triggered photomultipliers, is certainly 1'541 35 4 8.0 4'>§ 105
not precisely a Gaussian. But it must be approximately, 1-728 21'0 4'2 82105
Gaussian near its peak, since the leading order term in th 1'915 19.8 3'2 185105
logarithm of £; will be the second order, or Gaussian, term. ' ) ' ,
The extent of the region over which this approximation is 9.219 86 2.1 15 1073
adequate is impossible to ascertain without being provide&1 10.433 13.0 2.6 1>91072
the precise likelihoods. Since the detection teams have sunt? 12.439 8.9 1.9 1%10
marized their event energy estimates with means and stad3” 17.641 6.5 1.6 3.8x10°?
dard deviations, we have presumed the approximation to b&4° 20.257 5.4 1.2 2.9x10°*
adequate to-3 standard deviations. 15° 21.355 4.6 1.3 2.8x10°?

We note that normalization of; is simply a convention; 16 23.814 6.5 18 3.8x10°?
C; can be changed to any value without affecting inferences, IMB
so long as its value does not depend on the model paran)- — 00 38 7 0
eters,P. We choose tgapproximately normalize £; with 5 0 41'2 37 7 0
respect tce (i.e.,C;= 1/ \2). The only use we have made 3 0.650 08 5 0
of this normalization convention is in interpretation Bf in '

o . 4 1.141 39 7 0

Eq. (A24) as the rate of background events “like” evant 5 1562 36 9 0

Finally, we calculateB; for each event by integrating the 6 2'684 36 6 0
product of £i(e) and an estimate of the background rate '
spectrumB(€). The KIl and Baksan teams have provided us’ 5.010 19 5 0
with measurements d3(e) that we have used for this pur- 8 5582 22 5 0
pose; the IMB experiment has a negligible background rate Baksan
for events as energetic as the reported events, so for the IMB = 0.0 12.0 2.4 84104
eventsB;=0. _ 2 0.435 17.9 3.6 18102

In Table Il we list the total background rates in the detec-5 1.710 235 4.7 1:210°3
tors, as well as other detector characteristics required for th 7 687 176 35 18103
likelihood calculation[1-6,49,5Q. In Table Il we list the 9099 20.3 41 18102

€, oi, andB; values for each event reported in each detec-
tor. For the KIl and Baksan detectors, events are listed the®Omitted as a background event by other investigators.
have not been included in other analyses. Most earlier analyCalculated using a linear fit af; vs ¢ for earlier events.
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1 interpolated between the measured values; again, the result-
ing background uncertainty has a negligible effect on our
08 [ _ results. Note that both background spectra extend below the

energies wherej(e) =0 for each detectofc.f. Fig. 1). The

06 _ B; calculation requires knowledge &{(r,n,e) before “fil-
tering” by the detection efficiency. Thus it is best inferred by
taking data with no threshold criterion, resulting in back-
ground spectra extending below the nominal instrumental
cutoff. Finally, a rigorous calculation requires the back-
02 - - ground rate and event likelihoods as functions ,of, ande.

The available information is only a function ef We have

o | | ! | | thus been forced to approximate E&24) by

04 — —

B(e) (s™' MevV")

Bi:J deLi(e)B(e€). (3.22

This approximation ignores the position and direction infor-
mation, and thus could lead to over- or underestimation of
B;, depending on the event location and direction, and the
inhomogeneity and anisotropy of the background. Without
detailed information about the full event likelihoods and
background rate, we cannot provide a quantitative assess-
ment of the quality of this approximation. Nevertheless, it
should be far superior to simple elimination of the back-
ground events, which corresponds to the assumption of a
very high(formally infinite) B; value for the censored events.

B(e) (s™' MeV™h)

e (MeV)

(b)

FIG. 2. (a) Background spectrunB(e), for the Kll detector; ) _ )
measured values are shown as points with error bars, the interpo- In this section we describe how we model the lepton pro-
lated function is shown as a solid curvéa) As in (a), for the  duction rate that was presumed to be available in the preced-

Baksan detector. ing section. As already noted, the detectors most efficiently
detect neutrinos through capture of electron antineutrinos on

consistently “subtracts” the background component from theProtons, resulting in the production of an energetic positron.
data. Thus we explicitly model only the emission of electron an-

Calculation ofB, required use of previously unpublished f[ineutrinos by the supernova, {ind the production of positrons
information, and was based on some simplifying assump!l th(nT detecton(we later ltake into gccoqnt the presence of
tions about the background rate. Figure 2 shows the bacKl€utrinos of other species when inferring the total energy
ground rate measurements for the KIl and Baksan detectof@Mitted by the supernoyaThere are three steps in this mod-
that we used in the calculations. Figuré2shows the KII e_Ilng process. First, we model the electron antlneutrlno_emls-
empirical background rate spectrd9], which is nonzero Sion at the supernova. Next, we model the propagation of
only at low energies where the IMB efficiency is zero. Figureth's s!gnal tq Earth. Elnally, we model the interaction of thgse
2(b) shows the empirical background rate spectrum for thdeutrinos \_Nlth neutrino detectors, _Ieadlng to the production
Baksan detecto50]; it is significant even at high energies. of energetic leptons whose detection we have already mod-
Most of the structure in the Baksan background rate spec?led'
trum can be attributed to counting statistics, so the back-
ground spectrum we actually used is the smooth curve in the
figure, obtained by successively performing a three-point
smoothing on the raw data points until@ measure of the All of our signal models contain a component arising
misfit between the data and the cuitgeparabolic interpola- from the cooling of the newly formed neutron star at the
tion of the smoothed datds near its expected valugwo  center of the supernova. We refer to this part of the signal as
smoothings were usgdin fact, changing from the smooth the cooling component. In addition to the cooling compo-
curve to the raw data have a negligible effect on our resultspent, there may be a contribution to the signal from hot,
so the uncertainty in the Baksan background spectrum neeshocked accreting matter. Such a contribution arises in the
not be more carefully accounted for. No three-point smoothdelayed supernova mechanism. We describe our models for
ing of the Kll spectrum could be tolerated, so we simplythese two components in turn.

IV. POSITRON PRODUCTION RATE MODEL

A. Electron antineutrino emission model
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1. Cooling component 1+3ga aqC 8m

Motivated by the results of numerical calculations of stel- a 8 m,(mg?)? (he)®”
lar collapse[13,15,30,51-6)f we assume that the newly
formed neutron star emits electron antineutrinos from a neukere ga(~1.254) is the coupling constant for axial vector
trinosphere with a(possibly time-dependentadius R(t),  weak interactionsm, is the neutron rest mass, aog (=1.7
and that the instantaneous neutrino energy spectrum is wel 10—44 cnf) is the standard weak interaction cross section.
described by a thermal Fermi-Dirac spectrum with time-This emission rate differs from E¢4.1) primarily through
dependent temperaturél(t), and constant, nonnegative the factoraoE? arising from the size and energy dependence
(usually zerp effective “degeneracy parameter,”p,  Of the capture cross sections. We always ggt0 for the
[30,31,69. The rate of emission of electron antineutrinos accretion component.

(4.5

with energies in the infinitesimal rang&,E+dE] is then To calculate the emitted spectrum, we must multiply Eq.
N(E,t®™dE, with (4.9 by the mass of hot material emitting at any particular
time, which we write as
\ em 2 el 2 €l

whereA is a constant with the value, whereM, is the maximum mass emitting during the event,

gme anda(t®" is a dimensionless function describing the tempo-
A.=47R?>—; (4.2 ral behavior of the accretion emission, wilt®™")<1. We

(he) assume that the temperature of the emitting material is con-
stant in time, so that the electron antineutrino number spec-

R=R(0) is the observed initial neutrinosphere raditiss trum due to accretion can be written

the Fermi-Dirac function,
1 N(E,t®™ =A,MY,E*f(E,T,)a(tem). 4.7

HED = o=+ 1 “3

B. Neutrino propagation

E is the neutrino energyt®™ is the emission time; and(t) If the distance to the neutron starls the neutrino num-

=R(t)/R(0). Thequantity,g, is the spin weight of the neu- per flux per unit energy incident on detectors at the earth is
trino species in questiorg=1 for both massless and mas-

sive neutrino$74]. Here and throughout this paper, tempera-
ture is measured in energy units.

We are presuming here that neutrinos are emitted isotro-
pically. Although this is not expected to be rigorously true, The timest®™ andt®! are related by
current numerical simulations indicate the anisotropy of the
emission resulting from the collapse of a nonrotating star is tde=tem At(m, ,E)—t°f, (4.9
not likely to be larger than of order 10%. The effect of rota- dot_ ) off -
tion on the neutrino emissiofand on other features of the Wheret®=0 for the first detected event” is the (un-

®(E, 1% = N(E,tem). 4.8

47D?

collaps@ remains an open question. known) offset time betweeh®=0 and the time of arrival of
the first neutrinos incident on the Earth,, is the rest mass
2. Accretion component of the electron antineutrino, and

As accreted material flows through the stalled shock in m.\2
the delayed supernova mechanism, it is heated and produces At(m,,,E)=2.57( e_\/)
e* pairs[61-68,75,76 The accreted material is neutron-
rich (with neutron fractionY,~0.6); as a result, positron A ~onstant offset ob/c has been dropped from E64.9).
capture on neutrons produces electron antineutrinos through |\ 5.,r model the flux of neutrinos at the earth as a func-
the reactiore” +n—p+ ve. Protons produced by this reac- tion of detector time is determined by specifyifig(t), R,
tion (and those already in the flgvean capture the thermal andr (t) for the cooling component ,(t), MY, , anda(t)
electrons to produce electron neutrinos through the reactiofyy the accretion component; and, andt°". If every detec-

e +p—n+wv.. These two reactions proceed in local ther-tor had an accurate clock, we would need to specify only a
mal eqUIllbrIum. The resultlng electron antineutrino e|'T~||SS|O|”ISir']g|et0ff parameter; it would represent the time between the
rate spectrum per unit mass of emitting materialé,77—  detection of the first neutrino detected by any detector and

E

-2
Mev) 50kpc s (410

79] the unknown time of arrival of the first neutrinos reaching
. the Earth. However, accurate absolute times are available
N(E) ALY EMET 44 Only for those events detected by the IMB detector. Thus, a
Mpot 2" (E.Ta), @4 separate®" parameter must be considered for each detector.

With the exception of Abbott, DeRuia, and Walker{23],
whereM . is the mass of hot accreted material emitting theprevious investigators have included at most only one such
neutrinos, and, is a constant with the value parametef13,21,24.
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C. Charged lepton production tron antineutrinodN [22,25, or the total neutrino luminosity

Once emitted neutrinos reach the Earth, their detectiofy [20] permits straightforward inferences about the neutri-
involves two distinct processes. First, a neutrino must some?0Sphere radiuR. The parametew, or its equivalent, is as
how produce an energetic charged lepton in the detectofmportant as the remaining parameters_that describe the neu-
Second, the Céniov light produced in the detector by this tnnq detection ra_te. Unfqrtunately, this pz_arameter, or _|ts
charged lepton must be detected. We refer to these processgdivalent, was fixed at its bestfit value in some studies
as the lepton production and detection processes, resp 3,28, ther'e.by artificially constraining the allowed values
tively. We have already discussed the detection process iff (e remaining parameters.
detail in the preceding section; we thus conclude this section USing @, Eq.(4.14 can be written as

by describing charged lepton production. Often, these two M E \4

processes have not been distinguishEt-24,26—-31,3B ROAE, t9e) = 1.22x 10—5a2(_eff (_) f(E,t™
The dominant charged lepton production process is posi- kton/ | MeV

tron production resulting from the absorption of electron an- X k(E)r2(t™ Mev—! s1, (4.16

tineutrinos ) on free protons through the reaction,
L whereM ¢ is the effective water mass of the detector.
vetp—e+n. (4.11 We can calculate the capture rate for electron antineutri-

nos from an accretion component in exactly the same manner

All other processes ha\g cross sections at least an order gk we did for the neutrinos produced by cooling, starting

magnitude below thev,—p absorption cross section with the spectrum given by Ed@4.7). The resulting capture

[2,17,74, and so we neglect them, confining our analysis torate is

this single species of neutrino. The angular distribution of 6

positrons produced by proton capture is nearly isotrpfg. RO E, 19— 2.14x 10~ Mert| [ E HE.T.)

To a good approximation, we treat it as being isotropic, al- ' - M\ kton/ | MeV (ETa

lowing us to use the likelihood function for isotropic rates

described in the preceding section. The energy-dependent

cross section for Eq10.12 has been calculated by, for ex-

ample, Tubbs and Schram7]. It can be written as

X k(E)a(t®™ MeV ! s, (4.17

where u is a dimensionless parameter setting the amplitude
of the accretion emission given by

Yo)( D |7 4.1

0.6/| 50kpg (418
wherem, is the electron rest mass, ar(E) is a dimension-  1he (otal capture rate in a model with such an accretion
less function describing corrections to tB@ energy depen- component is simply the sum of the rates given in E4<L6

2
K (E), (4.12 Mo

M:M_@

a,p(E)= 1.3500(W

dence. This function is and (4.17).
0 20 02— m2] 12 Ignoring a small(angle-dependenterm due to neutron
K(E)= ( 1— _) 1- =4 , el (4.13 recoil[74,80, each captured electron antineutrino produces a
E E E positron with energy=E— Q. The positron production rate

. _ . per unit energy is thus the capture rate evaluatet-at
where Q(=1.29 MeV) is the neutron-proton mass deficit;

note that we have ignored small terms due to neutron recoil,
and Coulomb and radiative correctiofét,80!. R(e,t9Y) = R e+ Q, 19, (4.19
If there areN, free protons in a detector, then its total
cross section i, . Using Eq.(4.8) for the incident neu-  This is the function needed to evaluate the likelihood func-
trino flux, and considering first the cooling component emis-tion using the formula developed in the preceding section.
sion given by Eq(4.1), the capture rate per unit energy is
V. NEUTRINO EMISSION MODELS

A E \*
REAE, ¢ = 1-350-0447_52Np(mec2)2(m_02) We have considered fourteen different models for electron
€ antineutrino emission from the supernova. These fall into
X f(E, T(t*™)k(E)r2(tem). (4.14  three groups. First are seven single-component cooling mod-

els inspired by numerical collapse calculations studying the
To parametrize the amplitude we introduce the quantity, prompt supernova mechanisil]. These models have ei-
ther constant or monotonically decreasing neutrinosphere
_ R D |\7* temperature, constant or monotonically decreasing neutrino-
= {okm| Sokpg VO (419 sphere radius, and il trino d
p phere radius, and a possibly nonzero neutrino degeneracy
parameter,,. Next are five models inspired by collapse
Other investigators have parametrized the amplitude in &alculations that produce delayed supernovae by means of
more complicated way. The choice af rather than the en- shocks that are revived by neutrino heatjbd]. These mod-
ergy flux F [18,21,24,29 the total emitted number of elec- els include both a cooling component and a component due
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to material accreting through the stalled supernova shock. r(t)=1. (5.6)
Finally, we consider twoad hoc models with a distinctly
different structure that could be implied by the data: tem-Again, 7 is the luminosity time constant. As with the previ-
peratures and fluxes that first increase and then decreasmus two models, this model has the smallest number of pa-
These models have from three to six parameters describingmeters that can fully characterize the data. However, this
the neutrino emission, in addition to the required detectomodel allows us to test the hypothesis that the characteristic
offset times. energy of the emitted neutrinos varied in time. This model
We emphasize that our models are phenomenological, arekhibits the most basic characteristics of those numerical cal-
are not meant to reproduce in detail the behavior of anyulations of the cooling of the neutron star that show
particular numerical calculation. Given the sparseness of themoothly decaying neutrinosphere temperatures and a neutri-
data, excessive detail in the models seems unwarranted. Newesphere radius that falls to withi 10% of its asymptotic
ertheless, our analysis demonstrates that the data are capab#ue within about 0.5 §52].
of distinguishing among the models we have studied, some (d) Exponential cooling and dilutionOur next model
of which are considerably more structured than those studiedombines exponential dilution and exponential temperature
previously. decay:

A. Cooling models T(t)=Toexp —t/4rr), (5.7

(a) Constant temperaturelhe simplest model we con- r(t)=exp —t/27,). (5.9
sider is emission from a constant temperature, constant ra-
dius neutrinosphere over a timg,, after which emission This model, with four parameters, allows us to test whether
ceases: the data provide evidence for evolution of both the charac-
teristic energy of the neutrinos and the radius of the neutri-
(5.1) nosphert_e. _ _
(e) Displaced power-law coolingFor the exponential

cooling model, the cooling time scale; T/T=4r, is con-
r(t)y=1. (5.2 stant in time. As a next level of complexity, we consider a

o i . model with constant radius for which the cooling time scale
This is the simplest model that can fully characterize thgncreases linearly in time, that is, we set

data. It has a single energy scale that is determined by the

energy distribution of the events, a single time scale that is

determined by their temporal extent, and an amplitude, ——=4r 1+4—
[ i T YT

that is determined by the number of events seen.

(b) Exponential dilutionNext we consider a model with Here y is the time scale on which the coolimgte changes,

constant neutr_mosphere tempgrature, but exponentially deiﬁ units of the initial cooling time scale. The temperature
creasing neutrinosphere radius:

remains roughly constant for a timey4, and then decreases

Ty for O<t<tpyst
T(t)= .
0 otherwise;

. (5.9

_ like a power law afterward. Such a model is capable of quali-

T(t)=To, (5.3 . o ; .
tatively describing the results of several cooling calculations,

r(t)=exp(—t/27). (5.4) including both those that show neutrino emission with a tem-

perature that decays monotonically from early tinigg],
Here 7 is the luminosity time constant. As with the constant@nd those that show a roughly constant temperature for times
temperature model, this model has the smallest number ¢f 10 s, followed by a monotonic decrease. Also, such a
parameters that can fully characterize the data. However, th@OWing time scale might better account for the three late
model allows us to test the hypothesis that the flux of the2vents detected by KIl. Solving foF(t), the functions de-
emitted neutrinos decreased in time. Moreover, the flux profining this model are
duced by this model bears some similarity to that of some
collapse calculations in which the color temperature of the T()=T,
emitted neutrinos stays roughly constant over time scales
~10 s, with the flux decreasing due to dilution as the opac-
ity in the layers below the neutrinosphere gradually shifts r(t)y=1. (5.11
from being absorption dominated to being scattering domi-
nated[30,31,75,78,8]L In this casey(t) is more correctly This is the “displaced power-law” cooling model of Blud-
interpreted as a dilution factor than an actually decreasingnan and Schindei22]. It has one more parameter than the
physical radius; this is why we term this model “exponential €xponential cooling modely. As y— o, this model becomes

t N\
1+ —) , (5.10
4yt

dilution.” simple exponential cooling. We exclude valuesydéss than
(c) Exponential coolingThe next model we consider is an 1/3 as unphysical, because they imply an infinite number of
exponential cooling model described by the equations, emitted neutrinos.
(f) Nonzero degeneracy parametdtonte Carlo calcula-
T(t)=Toexp —t/47), (5.5 tions of neutrino radiation transport in the cooling neutron

063002-14



BAYESIAN ANALYSIS OF NEUTRINOS OBSERVED. .. PHYSICAL REVIEW 5 063002

star [30,69 indicate that the emitted neutrino spectrum isquickly thereafter, thus implementing a smooth truncation of

nonthermal and well modeled by a Fermi-Dirac distributionthe accretion. We add to this accretion flux a variety of cool-

with positive neutrino “degeneracy parameter;,. Thus ing fluxes, as follows.

we consider an additional model, the exponential cooling (h) Exponential cooling and truncated accretiofe will

model described by Eq¢5.5) and(5.6), but with »,, allowed  find the exponential cooling model to be the most interesting

to vary. This fourth parameter allows us to test whether thersingle-component model, so our first accretion model has a

is evidence in the data for a nonthermal neutrino spectrumcooling flux with an exponentially decreasing temperature,
(g) Delayed exponential coolingzinally, we consider T¢(t), at constant radius,

emission at a constant temperature for a tiyg, followed

by exponential decay, with a constant neutrinosphere radius To(t)=Teoexp( —t/4r,), (5.15
throughout:
ro(t)y=1. 5.1
. Tmax  fOr  t<tgyn ot) .19
t)=
® Tmax exd — (t—tgu/dr] for t>tg,: This model is thus a “bridge” between the single component

(5.12  models and models with accretion.
(i—k) Displaced power-law dilution/cooling and truncated
r(t)=1. (5.13  accretion.A more accurate model for the cooling behavior
observed in numerical calculations of the delayed scenario is
This model has only one more parameter than the exponet displaced power law, with the temperature or dilution fac-
tial cooling model, the duratiorty,,, of the constant tem- tor roughly constant for a time scale of order 10 s, and then

perature period. It has a “plateau” period that might accounti@/ling. Accordingly, we model the cooling component with
for enhanced emission at early times without requiring an;he following temperature and radius factor time depen-

accretion component. ences:
i i i Tc,O
B. Models with accretion and cooling components T.(t)= . (5.1
The above models were inspired by calculations studying (1+t/7c)

the prompt supernova mechanism, which produce neutrino-

sphere temperatures and neutrino luminosities that decrease

monotonically in time. In contrast, in the delayed scenario ro(t)y= .
neutrino emission arises both from the cooling core, and (1+t/7)"
from material that is heated as it passes through the stalled

shock that will eventually produce the supernova explosionWe consider three such models. For modegl, (ve setn

To see if there is significant evidence in the data for such=1 andm=0. For model {), we setn=0 andm=1. For
behavior, we considered five models that combine a coolingnodel (k) we setn=1 andm=1. These models let us ex-
flux modeled with one of the behaviors described aboveplore to what extent the cooling component in two-
with an accretion flux described by one of two alternativecomponent models can be explained by decreasing tempera-
models. ture or increasing dilution.

(5.18

1. Models with truncated accretion 2. Power-law accretion

For four of our two-component models, we model the (I) Exponential cooling and power-law accretioim. some
accretion flux as that from accreted matter with constant temrecent calculations, the accretion rate decays smoothly, and is
perature,T,, with the amount of emitting matter propor- roughly proportional td~* during the first several tenths of
tional to a second after collapg@2]. To model emission from these

calculations, we add to an exponential cooling flux like that
t )10 in model(c) an accretion flux with temperatuiie, and tem-
exg - ™ poral behavior given by
a()=———"—. (5.14)
1+ —

1
0.5 - -
a(t) (1+t/7a)5. (5.19

The denominator is meant to mimic the properties of the

accretion signal observed in numerical calculations of thélhus the mass of emitting material is roughly constant over a
delayed scenario, in which accretion is roughly constant for @ime scaler,, after which it decreases like a power law with
few tenths of a second, and then decreasestliReuntil the  index — 8. We fix & at 1.5. This shallow value gives temporal
supernova shock is revived and the accretion ceases. Thehavior roughly consistent with the* behavior observed
form of the exponential factor is chosen to be nearly constarat early times in calculations, but avoids the logarithmic in-
for times less thanr,, and then drop exponentially very tegral divergence associated with a ptiré power law.
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C. Other models TABLE IV. Properties of best-fit single component cooling
(m) Thermal rise and fallAll of the models described models.
above have temperatures and fluxes that never rise. Our fing},angity Kll—IMB—Baksan KI—IMB
two models are single-component models that depart from
this pattern. The first has a linear temperature rise, followed Constant temperature
by exponential cooling, with the neutrinosphere radius con< 320 243
. Ty (MeV) 3.30 3.51
stant throughout: toure; (S) 10. 435 10. 435
2.4xX10° 2.5X10"
()= Totltise  for  t<tyse, Nor (K1) 16.6 + 5.6° 13.6+ 5.62
Toexd — (t—tyo)/47] for t>tg; Nger (IMB) 4.3 4.1
(5.20 Nget (Baksan) 1.8+ 1.0% -
R(km) 32.0 24.3
r(t)=1. (5.21) EL(10° erg) 4.30 3.19
Exponential dilution
(n) Thermal rise and fall with contractioifhe second has « 6.69 5.63
the same thermal evolution as the first, and a neutrinosphefe (MeV) 3.43 3.61
radius that contracts linearly during the period of rising tem-7 (S) 1.75 161
perature, and remains constant thereafter: L L 166
Nger (KIT) 151+ 5.6 13.0+ 5.6
N IMB 4.0 4.0
T(t):{Tot/t”SG for  t<trise, Nt EBakgan) 1.6+ 1.0° -
Toexd —(t—tyso/47] for t>tice; R (km) 66.9 56.3
(5.22  Ep(10° erg) 3.68 2.93
Exponential coolin
r(t): l+a(1_t/tnse) fOI’ t<tl’i561 (5 23) a p 4.02 g 3.42
1 for >t : To (MeV) 3.81 3.98
T (S) 4.37 3.97
In these models, the neutrino number flux can rise an(]’ﬁ =10 _ =10
sharply peak at some timet, . with a temperatures T, Nde‘ Emllé}) 16'94+05'6 14'4;95'6
and fall slowly afterward, potentially accounting for the large Nj:: (Baksan) 1.8+ 1.02 _
number of low energy events seen within the first second ok (km) 40.2 34.2
the KII burst without requiring an accretion component.  E, (10°® erg) 5.02 3.96
Displaced power-law cooling
VI. BEST-FIT PARAMETER VALUES AND MODEL a 4.72 4.05
COMPARISON To (MeV) 4.02 4.17
) ) , ) 7 (S) 1.30 1.24
In this section we briefly summarize some of the results of, 0.34° 0.34P
our analysis of the models just described. We present best-fit 7.8 4.5
parameter values for all the models. We identify the expoNge: (KlI) 18.2+5.62 15.9+5.6%
nential cooling model as the most successful singleNget (IMB) 3.8 3.7
component model, and the displaced power-law cooling pludlaet (Baksan) 19-1.0° -
truncated accretion model as the most successful ton (10 erg) %’22 Aéoéss
component model; we consider these models further in the® 9 i i
following two sections. We also discuss the consistency of Thermal rise and fall with contraction
the Baksan data with the KIl and IMB data, and the effect of_‘F (Mew) i-gi iig
proper treatment of background on our inferences. tﬂze (s) 132 130
7 (s) 5.49 4.82
A. Best-fit parameter values a 154 13.3
We list the best-fit values for the parameters of our singl Lot Em%()‘?é) 2’63 g'gg
component cooling models in Table IV. Also listed are thetzg (Baksan)(s) 0.74 T
values of the neutron star binding energy implied by the best 55 1.4
fit parameters, calculated according to Nger (KII) 16.9+5.6% 14.4+5.62
Nget (IMB) 4.2 4.0
Ep D \2(= ([T(t)\* Nget (Baksan) 1.8-1.02 -
=3.39% 1O4a2(—c> J dt( —) ra(t). R(km) 24.4 22.0
10 erg S0kpg Jo | MeV E,(10°° erg) 28.3 19.6

(6.9

aExpected numbers of signal and background events are listed sepa-
This expression assumes three flav@iz speciesof neutri-  rately.
nos and antineutrinos, with each carrying away an equal paPBest-fit values are the lowest values permitted in the fit.
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of the binding energy; numerical calculations show this to benave best-fit parameters that make them equivalent to the
a reasonable approximati¢h3,15,30,51-54 The tabulated exponential cooling model. That is, all additional parameters
values ofE, andR= 10«(D/50kpc) km were calculated as- have best-fit values of zero. These models are the exponen-
suming D=50kpc, a value consistent with recent measuredtial decay model with neutrino degeneracy parametgr,
ments of the distance to SN 1987A based on observations ¢fie delayed exponential decay modétqgs. (5.12 and
its circumstellar ring 83,84. (5.13]; and the linear temperature rise, exponential tempera-
In Table 1V, four cooling models are not listed becauseture decay mod€lEgs.(5.20 and (5.21)]. Also, the best-fit
they have best-fit parameter values that make them identicahlues of the detector offset times for models with neutrino
to one of the listed models. The model combining exponenfluxes and temperatures that never increase are necessarily
tial cooling and exponential dilution has a best-fit temperazero, and are not listed in Table IV.
ture time scale ofr=o; this corresponds to the pure expo-  We present the best-fit values for the parameters of our
nential dilution model. The remaining unlisted models alltwo-component models in Table V.

TABLE V. Properties of best-fit two-component cooling plus accretion models.

Quantity Kll-IMB—Baksan Kll-IMB Quantity Kll-IMB—Baksan Kll-IMB
Exponential cooling and truncated accretion r 138 32
@ 171 1.48 Nget (KIT) 15.4+5.6° 13.1+5.62
Teo (MeV) 4.56 4.83 N, (IMB) 434 4.9
7o(S) 515 4.39 Nge, (Baksan) 1.61.02 -
T.o (MeV) 2.02 1.96 R(km) 575 479
;a(s) _0'07 ‘51 _0(')756 E, (10 erg)® 3.26(0.40 2.61(0.35
L 577 101 Displaced power-law dilution/cooling and truncated accretion
Nger (KII) 15.8+5.62 13.4+5.62 @ 1.99 1.76
Nget (IMB) 45 43 Teo (MeV) 4.47 4.72
Nget (Baksan) 1.#1.0° - 74(S) 20.1 16.9
R(km) 17.1 14.8 T.o (MeV) 2.00 1.94
Ey(10°° erg)® 2.84(0.63 2.31(0.59 74(8) 0.74 0.76
. A A M =0.5 =0.5
Displaced power-law cooling and truncated accretion r 399 81
«@ 1.80 1.58 Nger (KII) 15.6+5.62 13.2+5.62
Teo (MeV) 4.64 4.89 Ny, (IMB) 45 e
7e(S) 4.7 12.5 Nge, (Baksan) 1.71.02 -
Tao (MeV) 2.00 1.94 R(km) 19.9 176
;a(s) —067 ;‘ _0(-)7: E,(10°% erg)® 2.77(0.61 2.27(0.51
L 624 118 . . . .
Ny, (KIl) 15.94 5.6 13.65.6° i Exponential cooling and dzls:,ap;aced power-law aczcgeltlon
Nge (IMB) 45 4.3 Teo (MeV) 4.10 4.32
gz‘ek‘m()Baksa”) 1.1;.4_81(.)0 - () 5.43 4.74
E, (105 erg)® 3.08(0.61) 2.53(0.51) I:(‘;)(Mev) ()2"(;1; 0?622
Displaced power-law dilution and truncated accretion 1% =05 =05
@ 5.75 4.79 L 384 32
Teo (MeV) 3.73 3.94 Nget (K1) 16.5+5.62 14.2+5.62
7<(S) 1.31 1.20 Nger (IMB) 4.1 3.9
Tao (MeV) 1.88 1.82 Nget (Baksan) 1.81.02 -
7a(S) 0.73 0.76 R(km) 23.3 20.1
u =05 =05 Ep(10° erg)® 3.27(0.44 2.64(0.40

8Expected numbers of signal and background events are listed separately.

®Total E, is given, with part due to accretion in parentheses.

Minimum value allowed in fit.
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The radii listed are those associated with the cooling compofrequentist likelihood ratio significance test. For conve-
nent, so thatR=10«a(D/50 kpo km, as in Table IV. The nience, the likelihood values have been scaled to the value
binding energies are the sum of the binding energy assocfound for the exponential cooling model. Note that the BIC
ated with the cooling componefdiven by Eq.(6.1)] and the  penalizes models according to the number of their param-
energy of the neutrinos emitted by the accretion componenkters, so that théapproximatg Bayes factor can favor a
calculated according to complicated model only if its maximum likelihood is larger

than that of a simpler competitor. Likelihoods for calcula-
=4.14x10? P 2Fd LAY
— A0 Bokpd Jo @Y\ Mev

tions with and without the Baksan data have been scaled
a(t). separately; these two classes of calculations cannot be com-
6.2) pared with each other because they use different sets of data.
All of the models have scaled likelihoods of order unity or

The E, contribution is also listed separately, in parenthesesgre€ater, with the exception of the constant temperature and
Equation(6.2) assumes that equal energy is emitted in elecfadius model, whose scaled maximum likelihood-i20™>. =~
tron neutrinos and electron antineutrinos, and that negligibl&Urther, models with phases of constant or increasing lumi-
energy is emitted in neutrinos of other flavors since thermaosity all have best-fit parameters, indicating that the dura-
production ofx and r particles in the accreted matter is tion of any such phase is shors1 s. Thus there is strong
suppressed due to the large masses of these leptons. Tis4idence in the data for a neutrino luminosity that monotoni-
suppression is not complete, so the actual accretion enerdi@lly decreases throughout most of the burst, and the con-
may be slightly higher thak, . Stant temperature and radius model can be rejected.

Since the neutrino flux and temperature never increase for 1N€ simplest of the remaining single-component cooling

any of the two-component models, the best-it offset timedn0dels are the exponential dilution model and the exponen-
are necessarily zero, and are not listed in Table V. tial cooling at constant radius model, each of which describe

In Table V, we have set= 0.5 for all accretion models. the neutrino emission with three parameters. The likelihood
As we will demonstrate in Sec. VI, the likelihood function ©Of the dilution model is slightly larger than that of the cool-
for the two-component models varies rather weakly with "9 model. Also, the model combining cooling and dilution
and has a very broad maximum at valueswosignificantly ~ a@s & best-fit cooling time scaig=cc, indicating a prefer-
larger than one. The maximum likelihood values are signifi-nce for dilution over cooling. However, this preference is
cantly larger than expected theoretically, and imply anWweak; the maximum likelihood for the dilution model is only

amount of accreted material that would lead to formation oft-77 times higher than that for the cooling model. Thus al-
a black hole on the time scale tf, which is clearly incom- though the data indicate a neutrino flux that decreases sig-
patible with the detection of neutrinos at later times. We thudlificantly over time scales-10 s, they cannot conclusively

setu=0.5 for these models, this being a characteristic valudlistinguish dilution from cooling as the cause for the flux
in numerical calculations. This value is not excluded by thed€crease in a single-component model. \We consider the ex-
broad likelihood function; in essence, we are using prior in-;Ponential cooling model to be the more viable of these mod-

formation to fix a parameter not usefully constrained by thef!S because the characteristic radius and luminosity time
data. scale associated with the dilution model are much more dif-
Two sets of best-fit parameters are presented in each tap/Bcult to rgcqncile with the_oretical expectations than are the
values resulting from a joint analysis of all three data setscharacteristics of the cooling model.
and values resulting from a joint analysis of only the Kl and ' "€ remaining two cooling modelslisplaced power-law
IMB data. The latter are included for comparison with pre-c00ling, and thermal rise and fall with contractiohave
vious studies that did not include the Baksan data, and tg*@ximum likelihoods larger than that of the exponential
give an indication of the consistency of the Baksan data wittf°0ling model. However, they are both more complicated
the KIl and IMB data; we comment further on this later in than this model, requiring four or more parameteénsaddi-
this section. Since we find all the data to be consistent, all ofion o the three offset timg¢go describe the neutrino emis-
our discussion of parameter values and model choice will b&ion: The BIC penalty for additional parametgeee Eq.
based on results from the KII-IMB-Baksan analysis, excepf2-10] corresponds to a factor of 1/5.4 per extra parameter
where noted. for the KlI-IMB-Baksan fits, and 1/4.9 per extra parameter
We defer comparison of the parameter values with theofor the KII-IMB fits. The approximate Bayes factors for the

retical expectations until after the best models are identified© more complicated models are thus approximately unity
and further studied. or less. In addition, more careful accounting of our prior

information about properties of the neutron star formed by
the supernova would likely decrease the Bayes factors for the
complicated models even further. This can be seen as fol-
Tables IV and V also list the value of the maximized lows.
likelihood function for each model. The actual value of the The likelihood for each model is the prior-weighted aver-
maximum likelihood is not directly meaningful; however, age of the likelihood function for its parameters. The expo-
when models are nested, the ratio of the maximum likeli-nential cooling model has best-fit parameter values that im-
hoods of competing models can be used to evaluate the BIfly binding energies and radii significantly in excess of those
approximation to the Bayes factor, and it can be used for &xpected for a neutron star, even presuming the stiffest ac-

Ea

10 erg

B. Model comparison
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ceptable equation of state and substantial expansion due terent cooling behavior, and because displaced power-law
the high temperature and lepton fraction of the nascent newooling more closely resembles the cooling behavior exhib-
tron star.(We assess this discrepancy more fully in the fol-ited in recent supernova calculations.

lowing section). Its model likelihood will therefore be small, A common, approximate frequentist significance test also
since the prior probability in the vicinity of the maximum indicates a significant preference for two-component models.
likelihood peak will be negligible. But the best-fit radii and Twice the logarithm of the ratio of the maximum likelihoods
binding energies for the two remaining cooling models areof two nested models has an asymptqlfcdistribution, with
significantly larger still. We thus expect their model likeli-  equal to the difference in the number of parameters of the
hoods to be smaller even than that for the exponential coolmodels being fit to the date86]. For example, the model
ing model, both because their prior probabilities are spreagombining displaced power-law cooling and truncated accre-
out over more dimensions, and because the prior in the Vijon has two more fitted parameters than the exponential
cinity of the mode for each model will be smaller than that iNcooling model, and a likelihood 624 times greater. The
the vicinity of the subspace of each model corresponding tQpance of seeing an improvement this large or larger by

exponential cooling. Essentially, the exponential coolingchance if the exponential cooling model is the true model is

model is the model among those single-component mOdelésymptotically given by the tail area beyond 2log(624)

with large maximum likelihoods that has the most reasonable_ 12.87 in thex? distribution. This probability isQ=1.6

implications.for the parameterg of the nasgent negtron sta§.< 103, This probability is approximate, in that it is based on
WeAﬁxglotrﬁe'targgrfﬂ;hnorﬁ%%glé Iﬂatcs mgingnsﬁﬁgﬁ&o ds &0 asymptotic distribution. Also, it ignores the size of the
arameter space searched and the extent to which the in-

over 100 times greater than that for the exponential COOI”? erred parameter values agree or disagree with expectations.

mggﬂe:i'k;?ﬁo;vgcgc&g%?Qﬁgf:erSOd:ng\rljfgvﬂioT;gh?;[ d'{}iﬁ'_'Nevertheless, it indicates significant evidence for an accre-
b P 9 tion component, even from a frequentist perspective.

cated accretion model. We have used adaptive quadrature Note that, in contrast to the single-component models, the

methods to calculate the Bayes factor in favor of this mOOIeIaccretion models show a definite preference for a decrease in

over the single-component exponential cooling model; w . . .
9 P P 9 ’ etemperature of the cooling component over an increase in

frlr?(;j d;%'l'lkﬁg i(r\ll\éilit:atlésf[sxt?gnate\?i.ge:locret%? at\\g(;g;rgt?g:(e:gk dilution. For example, the truncated accretion model with
s ; 9 . displaced power-law cooling has a maximum likelihood over
ponent. This calculation used flat priors for the model params;

eters over fairly broad rangd85]. One might additionally 5 times larger than that for the model with displaced power

consider the effect of our prior knowledge of the nascen{jaw dilution. Without more complete study of the parameter

neutron star's possible size and binding eneray on the Ba ependence of the likelihodde., rigorous calculation of the
P 9 9y Y€ odel likelihood it is not clear how strong this preference
factor. All of the two-component models that have a coolin

. . ) Yis. We comment further on the characteristics of these mod-
component with decreasing temperature have best-fit paraniq in sec. IX

eters implying neutron star radii and binding energies much
closer to expected values than any single-component cooling
model. Accounting for this should more strongly favor the
two-component models. This is borne out by calculations. As noted above, Tables IV and V present results both
We inserted a lognormal prior factor chosen to qualitativelyfrom joint analysis of the KlI-IMB-Baksan data, and from
account for our expectations of the radius and binding energjoint analysis of only the Kll and IMB data. Nearly all pre-
of the neutron star. Th@og) mean radius was set to 11 km, vious analyses have ignored the Baksan data. When these
and the(log) mean binding energy t0>810°® erg; the(log) data were first reported, there was a discrepancy between the
standard deviations were chosen corresponding to4d  time of the pulse observed at Baksan and that reported by
variation in radius and-63% variation in binding energy, IMB, the Baksan data having been detected approximately
reflecting uncertainties in equations of state of neutron star80 s after the pulse observed by IMB] (the KII detector
of mass~1.4M, (see the discussion of Fig. 5 in the follow- has an absolute time uncertainty ©fL min and thus could
ing section. This prior increases the Bayes factor favoring not settle the issyeBut within a month of the supernova, the
the two-component model t& 2500. We conclude that there Baksan group discovered a subtle, cumulative error in their
is compelling evidence in the data for an accretion compo<lock, rendering their absolute time scale uncertain eve4
nent in the neutrino flux. to +2 s, and eliminating the discrepanf§]. Nevertheless,
The two-component model with the highest maximumthe Baksan data has been largely ignored, perhaps because
likelihood is the displaced power law cooling and truncatedno methodology existed that could consistently account for
accretion model. We analyze it in greater detail in Sec. Vlll.the relatively large background rate in the Baksan detector.
Its likelihood is not significantly greater than that of the An exception is the work of Piran and Sperd@0O]. But
model combining exponential cooling and truncated accrethough they find exponential cooling models for which the
tion. The latter model acts as a “bridge” between our bestKll, IMB, and Baksan data are consistent, they had to pre-
cooling model and the models with accretion componentssume all Baksan events were signal events, leading to accept-
But we focus instead on the accretion model with displacedble models with unnecessarily large neutrino fluxes.
power-law cooling, not only because its likelihood is larger, Our analysis easily accounts for strong, energy-dependent
but also because it offers us the opportunity to explore difbackgrounds, and demonstrates that the Baksan data are fully

C. Consistency with Baksan data
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consistent with the KIl and IMB data. This is partly apparentno. 12 from the neutrino signal. This time scale is roughly 5
in the tables, where the deviations between KlI-IMB-Baksartimes more likely than the 12.44 s time scale that would
estimates and KlI-IMB estimates appear relatively small. Agnclude this event. This is because there is a reasonable prob-
will become apparent in the following sections, these deviaability that event no. 12 is a background event. Previous
tions are indeed small compared to the uncertainties in thanalyses that ignored the background spectrum would assign
parameter values. More formally, we can quantitatively asOur best-fit constant temperature modetolikelihood.

sess the consistency simply by setting the offset time for the Finally, we note that our results are insensitive to the re-
Baksan detector to be largeegative or positive so that the ~moval of events 13-16 from the Kil data because the likeli-
data are considered to be entirely due to background, arf@Pd function finds it overwhelmingly likely that these

comparing the likelihood of such a case to the likelihood€Vents are ba_ckground events. For example, the be;sfo‘ifc
; 'I]he exponential cooling model inferred from an analysis of

the supernova signal. The likelihood associated with the h the Kl and IMB data ignoring these late events is less than

0 i i * this i -
pothesis that the Baksan data are entirely background wiﬁa/r%strg ?"rséstth:#egggfgur:ge'i??:]uc?:g?o;hem’ this is the pa
just be the likelihood listed in the KlI-IMB column in the y ’

bl ltinlied b f ising f he Bak Table VI gives the probability that each KIl and Baksan
tables, mu t'p_ ied by a constar_lts actor arising trom the Bak-gent is a background event for the best-fit exponential cool-
san data. This factor is 610 >, and once introduced al-

X ing model and for the best-fit displaced power-law cooling
lows comparison across columns of the table. For example,| s truncated accretion model. These are obtained simply by

for the exponential cooling model a model attributing thedividing B, by the sum o, and the predicted signal rate for
Baksan data entirely to background has a maximum likelioyants Jike event

hood 1.5<10 ° smaller than the likelihood of a model at-
tributing part of the Baksan data to the supernova signal.
These results leave little room for doubt about the presence f deLi(€)R(e,t;). (6.3
of a supernova neutrino signal in the Baksan data consistent

with that detected by the KIl and IMB experiments. L . .
This is just the ratio of the background part of eveéist

contribution to the likelihood to its total contribution. The

formal (model-dependeitprobability that each event is a
Proper treatment of background spectra plays a key role

in settling the issue of the consistency of the Baksan data tag| E vi. Background probabilities for Kil and Baksan events

with the other supernova neutrino data. The Kl detector alSgyr the best-fit Exponential cooling model and the best-fit displaced
has a significant background rate. To assess the effect thgwer-law cooling and truncated accretion model.

our inclusion of the Kll background rate has on our results
we performed the following calculation, designed to mimic Event Cooling Accretion
how other investigators dealt with the KIl background. We :
analyzed the Kl and IMB data jointly, but we set all KII Kamiokande Ii

D. Effect of background

event background rate®;, equal to zero. Duplicating the 1 5.8<10°° 2.4x10°°
efforts of others who attempted to account for background by 6.3<10°° 1.9x10°°
introducing an artificial energy threshold and censoring theé 0.16 41072
data, we also made the Kl detection efficiency vanish for4 5.4< 1072 1.7x10°%
energies below 7.5 MeV, and we omitted event 6 and event§ 7.6x10°3 3.2x10°3
13-16 from the KIll data. Analysis of the exponential cooling 6 0.25 0.15
model then gives the following best-fit values=4.31,T, 7 1.2x10°3 1.5x10°3
=3.66 MeV, andr=4.50 s, implying a binding energy of 8 5.7x10°4 1.0x10°3
E,=5.1x10°% erg and a neutrinosphere radius of 43.1 km.9 9.9x10°° 1.9 104
Comparing these results to the KlI-IMB results in Table 1V 10 0.33 0.49
reveals little change im or Ty, but a more substantial 11 0.11 0.12
change(over 15% in 7. This is because there is a non- 12 0.54 0.60
negligible probability that KIl events 10—12 are due to back-13 0.92 0.89
ground. It is not likely thatall of these events are back- 14 0.97 0.94
ground events, but it is likely that at least one of them is a;g 0.97 0.93
background event. The analysis incorporating backgroungg 0.99 0.94

information accounts for this, and thus prefers a shorter neu-
trino signal. The small change in the inferred temperature i®aksan

also easily understood. That found with background is somet 2.1xX10°2 4.9x10°3
what higher because the Kll background spectrum peaks at 3.6x10°? 1.9x10°?
low energy, which relaxes the constraint imposed on thes 7.4x10°? 0.12
model neutrino spectrum by the low-energy Kll events. 4 0.30 0.35
It is interesting to note that the best-fit duration for thes 0.55 0.52

constant temperature model is 10.43 s, thus excluding event
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FIG. 3. One-dimensional marginal distributions for parameters of the exponential cooling model.

background event requires integration over the model parantions of statg21,22. Our best-fit parameter values imply a
eters; the tabulated values are thus merely indicative. Mostadius and binding energy significantly greater than those
striking is how the brief, low temperature component of thefound by previous investigators, indicating an even more se-
accretion model and the resulting higher temperature for théious discrepancy. It is therefore important to determine, not
cooling component reduces the background probabilities fopnly the best-fit parameter values, but the entire region in
Kll events 1-6 and Baksan events 1-3 to roughly half th%arameter space allowed by the data.
values implied by the exponential cooling model. The exponential cooling model has three physical param-
eters,a, Ty, and 7. Additionally, there is an unknown offset
VII. THE EXPONENTIAL COOLING MODEL time, t°, for each detector. In an analysis of the KlI-IMB-

S . Baksan data, there are thus six parameters. We summarize
We now explore more fully the implications of the data in ye 1|, six-dimensional joint posterior by presenting mar-

':he qonttehxt 0|f| the ;xponent]!al ;:Jolmg moiiel. F'frf:]’_ we dde- inal credible regions for various interesting subsets of the
ermine the allowed ranges for the parameters of this mo egarameters. Here and elsewhere we use “68%" and “05%"

Then We examine the implications of this model for the "t6 denote the probability content of credible regions formally
dius and binding energy of the neutron star presumably cre- . ) I
. including 68.3% and 95.4% of the posterior probability; our

ated by the stellar collapse. Then we graphically demonstrate ; .
how the best-fit model accounts for the data. We defer mos(f"’1ICUIatIOnS are based on Monte Carlo sampling and are ac-
discussion of the comparison of these inferences with theorgj‘ura‘_te to~1%. , ) i o
to Sec. IX. A frequentist assessment of the goodness-of-fit of Figure 3 shows the one-dimensional marginal distribu-
the best-fit model appears in Appendix B. tions for each of the six parameters. Each of the six curves
shown in the figure summarizes the implications of the data
for one of the parameters without regard to the values of the
other parameters. In particular, one should not quote credible

A few previous investigators noted that their best-fit val-regions from these marginal distributions jointly, since cor-
ues for the radius and binding energy of the neutron starelations between inferred values of the parameters are ig-
were somewhat higher than those predicted by current equaored in these plots.

A. Credible regions
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FIG. 5. Joint marginal distribution for the logarithm of the ob-
served radiusR, and the logarithm of the binding enerdy,, of
the nascent neutron star, based on the exponential cooling model.
1L o v o vy B Contours indicate the boundaries of 6&8ashed and 95%(solid)
credible regions.R,,s,Ep) curves for neutron star models based on
(®) a representative set of equations of state appear as solid and dotted
: curves.

Figures 3a)—3(c) show marginal distributions for the
three cooling model parameters, Ty, and 7, with dashed
lines indicating the value of the marginal distribution bound-
ing 68% and 95% credible regions. The modes and 95%
credible regions for these marginal distributions are as fol-
1 lows: logiox=0.64"325, T,=3.58"3% MeV, r
=5.29"34> s. Here and elsewhere we plot distributions as a
function of log e rather than ot itself. The distribution as
a function ofa is broad and very skew; working in terms of
log; o simplifies the appearance of the posterior, particularly

ot L b b b Iy 1 later when we show joint credible regions. Note that the
! 2 3 4 5 6 modes of the marginal distributions are at somewhat differ-
To (MeV) ent locations than is the mode of the joint distribution. This is

simply a consequence of the integration involved in the mar-
ginal distribution: there is a greater volume of parameter
() space with high probability at the mode of the marginal than
at the joint mode, due to asymmetry in the full distribution.
The changes in location are small compared to the sizes of
the credible regions, however.

Figure 3d) shows the marginal distributions for the three
offset times, with the location of the endpoint of a 95% cred-
- ible region for each offset time noted by a dot. The lower
boundary of these credible regions is at zero for all three
offset times. The credible regions are as follow§

l =0.09380 s, toM.=0.00"1 s, 3" =0.00"3% s,

The most interesting parameters are the three parameters,
a, Ty, and 7, describing the cooling model. Figure 4 shows
three two-dimensional marginal distributions that reveal how
0 5 10 15 strongly the inferred values of these parameters are corre-

T (s) lated. The dots show the coordinates of 500 samples from the
marginal distributions to illustrate our use of posterior sam-
pling to find the marginals; the contours show 683asheg
and 95%(solid) joint credible regions. The inferred values of

FIG. 4. Two-dimensional marginal distributions for the param- @ and Ty are particularly strongly correlatehote that the
eters of the exponential cooling model. Contours indicate thevertical coordinate is logarithmic, so thatand T, exhibit a
boundaries of 68%dashedl and 95% (solid) credible regions. Semilogarithmic rather than a linear correlagionhis is be-
Points indicated the coordinates of 500 samples from the distribucause the expected number of neutrinos increases strongly
tions. and nonlinearly withT: the incident number grows with the
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standard thermal dependenceTg, but theE2 dependence might be larger than expected from nonrotating models. In-
of the capture cross section and the energy dependence of tdged, Cooket al. [90] find that rotation can increase the
detection efficiency make the detectable number grow mor€duatorial radius of a cold neutron star #y0%. However,

quickly thaan’). To keep the expected number, which is alsothey find that the effect is strong only for angular velocities
proportional toa?, near the observed number,must there- very near the breakup velocity. Further, we would have to be

. . observing the neutron star along its spin axis to see the full
fore decrease strongly withiy, as shown in the plot. 9 9 P

. o . . enhancement.
Each choice ofx, T, and7 implies a radius and binding 1,5 " even allowing for the high temperature and lepton

energy for the nascent neutron star. The joint probability disfraction of the nascent neutron star and the effects of rota-
tribution for the model parameters thus implies a joint distri—tion, there is a significant discrepancy between the inferred
bution forRandE, . Figure 5 shows the 68% and 95% joint neutron star radius and the predictions of current equations
credible regions of the marginal posterior for g8 and  of state, especially for realistic equations of state which
logsoEp, - Also shown areEy, vs R curves for a representative  would require~50% expansion just to reach the boundary
set of equations of state from the compendium of “classic”of the 95% credible region.

neutron star models compiled by Arnett and BowgBg]

[dashed curves labeled £, BJV, and P&ensoj following B. Quality of fit

Arnett and Bowerkand state-of-the art models calculated by

lem (?IAEan(?I_k;]arlplandg, anc(ij Rlavenlisiﬁ] (SOI;td (:turve(zjsr:a- q the predictions of the best-fit exponential cooling model
ele R. The classic models span the softest and har e%ompare with the observed data. The figure shows contours

models that have been seriously considered in the past; th —
two APR curves are believed to bound the truth. For theséﬁ the detectable event ratg(e)R{e,t) for the three detec-

models, the observed radiu® was calculated from the ors. Integrals of this rate give the expected number of events

proper radiuR, according toR=R.(1— 2GMg/R.c?)~ 12 in the region of integration. The plotted contours bound re-
p — At G'p '

gions that include 68%dashed curveand 95%(solid curve

whereM is the gravitational mass of the neutron star. ThereOf the total number of detected events predicted by the best-

is a significant discrepancy between the data and all but thﬁt model. Also shown are the energies and times of the de-
stiffest (and currently disfavorgdequations of state. tected events. The “ridge” at low energies in the Kl plot in

A r_1umber of effects might_work in the di_rection to reduce_Fig. 6(a) is due to the detector background, as is the ragged
the discrepancy. One must first keep in mind that the Neutrig . ~ture in the Baksan plot in Fig(® (cf. Fig. 2. The

g_ost_phtte:ce radtlr?éthedquan]flg we actuatlly m{éns Irt] gelgeral striking contrast among the shapes of the KIl, IMB, and Bak-
IStinct from the radius ot the nascent neutron star. HOWeVely,, ¢qntoyrs jllustrates how differently the efficiency func-
the Kelvin-Helmholtz cooling calculations of Burrows and

. : =" 7 tions of the three detectors filter the neutrino signal. Roughl
Lattimer [13] show that the neutrinosphere falls to within g any

10% of the radi f1h thirD 5 dth two-thirds of the events lie within the 68% contours for all
h o ofthe radius %.t e ?]eutron Etar Wl't 100‘/ S, an tl atf three detectors and all of the events except for Kll event 11
the neutron star radius changes by only 0as it cools aftgfy yithin the 95% contours, indicating broad compatibility
this time, even though significant neutrino emission contin

‘of the model with the data.
ues .forN 10 s. The work of Gydmundsso_n and BU(.;I{] A two-dimensional generalization of the Kolmogorov-
elucidates this somewhat curious behavior. In their study ok iroy test a frequentist test of goodness-of-fit, can be
the effects of lepton fraction on neutron star structure, the)ﬁsed to atter,npt to quantify the graphical compa;ison we
found that neutron stars with masses of orderMlz3or

. 0 . : present in Fig. 6; several earlier investigations employed
greater shrink by less than 30% as their lepton fracpn g ,cp, tests. We present the results of such tests in Appendix B
decreases fronY,=0.45. There is significant rearrangement

. “~along with a critique of them. Such tests are rather weak.
of mass, but in a manner that keeps the overall radiugyey verify the adequacy of the exponential cooling model,
roughly constant. This behavior is a consequence of the fag; ihey fail to display the level of improvement offered by
that the leptons in the neutron star are relativistic, while thgnis model over the constant temperature model, or by accre-
nuclei are nonrelativistic and by themselves exhibit a Veryion models over this model, to the degree it is displayed by

stiff equation of state. The loss of leptons from the star stiff-an explicit model comparisofBayesian or frequentistising
ens the dense regions of the star where nuclear effects domje Jikelihood function.

nate the equation of state, but softens those regions where grom 4 purely statistical point of view, the exponential

Coulomb effects are importafite., the inner crugt Thus as .40ling model appears adequate to account for the data when
Y| decreases, the core expands and the crust shrinks. Thg,ved in isolation from reasonable alternative models.

overall result is that high mass neutron stariich have o pever, its implications for the parameters of the nascent
large cores expand asy; decreases, but low mass neutron neytron star conflict strongly with prior expectations, and
stars shrink. By coincidence, for masses neaML3he two  5rque against acceptance of this model.
effects nearly cancel, and the radius of the star suffers little
change as the lepton fraction decreases. Thus the relatively VIIl. DISPLACED POWER-LAW COOLING AND
large lepton fraction of the nascent neutron star cannot ac- ' TRUNCATED ACCRETION MODEL
count for its large inferred radius.

Another effect that might reduce the discrepancy is rota- As noted in Sec. VI, models with an accretion component
tion. If the star is born as a fast rotator, its observed radiusiot only have much larger maximum likelihoods than single-

Figure 6 provides an informal, graphical display of how
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FIG. 6. Contour plots of predicted detection rates in each detector for the best-fit exponential cooling model. Contours enclose 68%
(dashed curveand 95%(solid curve of the total predicted number of detectable neutrinos. Points indicate the inferred energies and arrival
times of the detected events.

component models, but they also lead to inferred neutron stdia, T. 5, 7.), three describing the accretion component
parameters much closer to those expected based on theorét:, T,,7,), and three detector offset times. The sparsity of
ical and observational knowledge of neutron stars. Thusthe data, combined with the complicated structure of the
these models have much higher probabilities than singleemitted rate and spectrum, result in a posterior distribution
component models. Here we explore more fully the implica-that is significantly more complicated than the unimodal pos-
tions of the data for the best accretion model: that combiningerior found for the exponential cooling model. This is illus-
displaced power-law cooling with truncated accretibere-  trated in Fig. 7, which presents simple summaries of our
after referred to simply as the cooling plus accretion mpdel inferences for the three accretion parameters.
As we did with the exponential cooling model, we first  Figure 7a) shows the profile likelihood for the accreted
present credible regions for model parameters, and then dignass parametey;. The profile likelihood,L,(x), is found
cuss how well the best-fit model accounts for the data. Compy calculating, for each, the maximum value of the likeli-
parison of our inferences with theoretical expectations aphood (maximized over all the remaining paramejer§he
pears in the following section. plotted value has been normalized so that it gives directly the
maximum likelihood ratio between a model with specified
and the exponential cooling model. A profile likelihood can
The cooling plus accretion model has nine parametergprovide an approximate marginal distribution. In particular,
three describing the displaced power-law cooling componerfor posteriors that are multidimensional Gaussianih ar-

A. Credible regions
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Figure 1b) displays the T,,7,) dependence of the pos-
terior for theu=0.5 model. For each value off{,r,), we
maximized the posterior with respect to theand T, o cool-
ing parameters. The cooling time scalg was fixed at its
best-fit value of 14.7 s for this calculation because maximi-
zation with respect to this parameter proved problematical
away from the peaksextreme values were preferjedhe
most probabler; values in the vicinity of the peaks are near
this best-fit value. This figure clearly reveals the complicated
structure of the posterior. Three local modes are apparent.
One is at very small values of, corresponding to accretion
components that account only for the first event in each de-
tector. Another is near,=0.1 s, giving a duration just suf-

7 ficient to include the second KIll event. The global mode at
(a) T,=2.00 MeV andr,=0.74 s has a peak density about 20

times greater than that af~0.1 s and thus contains most

' of the posterior probability; the 0.74 s duration includes the
first six KIl events. The posterior density falls very steeply
with increasing temperature, setting a firm upper limitign
_ of ~2.5 MeV for the most probable values of(>0.2 s).
It falls less steeply with decreasing temperature, Byt
<1.5 MeV is strongly excluded. There is an additional very
small mode, not shown, at,~12 s, due to the late, soft K|
events, nos. 10-12.

The complicated structure of the posterior has prevented
us from calculating rigorous marginal credible regions for
3 the parameters of this model using the rejection method de-
. scribed earlier. In the remainder of this section, we present
3 inferences conditioned op=0.5 and on the resulting best-
fit values of T, and 7, listed in Table V. More rigorous
() calculations(for example, using Markov chains instead of

the rejection method; see Ré¢#1]) should result in some-

FIG. 7. Summaries of the posterior distribution for parameterswhat broader credible regions than those we will show here,
describing the accretion component of the displaced power-lavas a result of averaging over other values of the accretion
cooling and truncated accretion modgl. The profile likelihood for parameters. But sinc€, and r, are fairly well determined
the dimensionless accretion mags, (b) The posterior fofT, and  for the global mode, and since their best-fit values do not
7a, for u=0.5 and7.=14.7 s, maximized with respect @ and  change greatly withu, we do not believe more rigorous
Teo- credible regions would be substantially larger than those dis-

played here.
bitrary amounts of correlationnormalized profile posteriors Figure 8 displays marginal distributions for the three pa-
are identical to the corresponding marginal distributionsrameters of the cooling component and for the three offset
More generally, the approximation can range from excellentimes, conditioned on the best-fit accretion temperature and
to very poor, depending on how strongly the characteristidime scale foru=0.5. It is instructive to compare these in-
scale of variation of the posterior varies with the parametersierences with those displayed in Fig. 3, based on the expo-
While we have not quantified how accurately these profilenential cooling model. The inferred value afwhen an ac-
posteriors approximate the corresponding marginals, our ineretion component is present is substantially smaller, because
vestigations of the behavior of the likelihood as a function ofa significant number of the earliest, softest events is attrib-
the maximized parameters indicate that these curves adied to the accretion component. The temperature of the
equately display the regions of parameter space where mosboling component is significantly higher than that in a
of the posterior probability lies. single-component model because the constraint placed on the

Figure Ta) shows that the likelihood varies rather weakly temperature by those early, soft events has been relaxed. In-
with w, with values over the entire range we searched, fronferences for the cooling time scale must be more cautiously
n=0.1tou=3, having profile likelihoods that vary by less compared, since the cooling components of these models
than a factor of §roughly the range of variation across two have different temporal behavior. In particular, for the expo-
standard deviations of a Gaussian distributioks already nential cooling model; was theluminosity time scale, so
noted, we focus attention on models wijth=0.5 as being that 47 is the temperature time scale. In the two-component
representative of those found in supernova calculations basedodel studied herer, is the temperature time scale. Its in-
on the delayed scenario. The point on the curve corresponderred value is somewhat smaller than #r the exponential
ing to this model is indicated by a dot. cooling model, but the rate of cooling is significantly less in

1000

'{p(l-‘)

7o (s)

T T
Ll
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FIG. 8. One-dimensional marginal distributions for parameters of the cooling component of the best accretion model.

this model(with its displaced power-law cooling compongnt component model are easily compatible with the values pre-
than in the exponential cooling model. The time scales arelicted by all viable equations of state.

thus comparable. Finally, the offset times are better con-

strained in the accretion mode!, in order.to keep 'the early B. Quality of fit

events of all three detectors coincident with the brief accre- ) ) ) )
tion component. The modes and 95% credible regions for F|gure_ 11 graphically |IIustrat¢s how the best-fit accretion
these marginals are as follows: lgg=0.31+0.41, T, m0(_JIeI(W|th n=0.5) compares with the observed data. Com-
=4.231%8 MeV, 7,=14.58° s 1971=0.00"02 s, 1o parison with Fig. 6(for the exponential cooling modete-

1.07

—0.00" 080 g tgﬁkzo 00" 10l g veals how this model can so substantially increase the prob-
. tea=0. .

Figure 9 displays two-dimensional marginal distributions@Pility for the data. The brief, low temperature accretion
for the cooling component parametéegjain, conditional on Component accounts for the early, soft KIl events, nos. 2—6.
the parameters for the accretion Compomeﬁnese illustrate This relaxes the constraint these events placed on the tem-
the correlations between the inferred values of the paramPerature of the cooling component, allowing it to be higher.
eters, which show the same qualitative behavior as that disthe higher temperature cooling component better accounts
played in Fig. 4 for the exponential cooling model. for the remaining early Kl eventgthat have significantly

Figure 10 shows the implications of this model for the higher energies than events 2-&nd also better accounts for
radius and binding energy of the nascent neutron star. Thedke energetic events seen in IMB and Baksan. Results of a
results are conditional on the bestTijf andt, for «=0.5, s0  two-dimensional Kolmogorov-SmirnoUKS) test further
by assumption there is an accretion contribution to the binddemonstrating the adequacy of the best-fit model appear in
ing energy given by Eq(6.2); this contribution iSE,=6.1  Appendix B.

X 10°2 erg. Added to this is an uncertain contribution due to

the cooling component; the figure shows the joint distribu- IX. COMPARISON WITH THEORY

tion for logarithms of the total binding energl,,, and the

observed radiusR=10a(D/50kpc) km. Also shown are the Here we review the basic predictions of supernova theory
same representatiVig, vs R curves shown in Fig. 5. Clearly, for the characteristics of the neutrino emission, and then
the radius and binding energy implied by this two- compare these with the characteristics inferred above.
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FIG. 10. Joint marginal distribution for the logarithm of the
observed radiugy, and the logarithm of the binding enerds, , of
the nascent neutron star, based on the displaced power-law cooling
and truncated accretion model, with accretion parameters fixed at
their best-fit values. Contours indicate the boundaries of 68%
(dashedl and 95%(solid) credible regions. Ry,s,Ep) curves for
neutron star models based on a representative set of equations of
state appear as solid and dotted curves.

A. Core collapse and bounce

Several reviews describe the collapse of a massive
(=10M) star, such as the progenitor of SN 1987A, and the
subsequent birth of a neutron sfdi3,15,30,51-54,91-95
Here we summarize the basic features of the supernova event
and the resulting neutrino signal, following closely the de-
scriptions of Woosley and Weavgbs1] and of Arnett, Bah-
call, Kirshner, and Woosle}95].

Once the massive progenitor of the supernova begins fus-
ing oxygen, its neutrino luminosity exceeds its photon lumi-
nosity. Neutrinos thus play a dominant role in the evolution
of the star well before the drama of stellar collapse begins,
though the neutrino luminosity is far below the limit of de-
tectability.

Nuclear burning proceeds in the progenitor core until an
iron core is produced with madd .~1.26V 5, radiusR,
~ few X 10°km, central densitp.~10"% cm 3, and cen-
tral temperaturel ;.~1 MeV. The pressure in the iron core
is dominated by the degeneracy pressure of relativistic elec-
trons (we~10 MeV), so the core resembles a degenerate
dwarf star with an equation of state with effective adiabatic
index, I'=(dIn P/dln p)s, near that of an ideal, relativistic
electron gas, and therefore only slightly above the critical
valueI'=4/3 at which gravitational collapse will occur.

Since iron is at the peak of the nuclear binding energy
curve, at this point the progenitor has exhausted its supply of
thermonuclear fuel. The core contracts and heats, causing
photodissociation of the iron nuclei through the reactypn
+5%Fe—13a+4n. This reaction is endothermic, requiring
~124 MeV per dissociation, which depletes the kinetic en-

FIG. 9. Two-dimensional marginal distributions for the param- ergy of the electrons, reducing their pressure support of the
eters of the cooling component of the best accretion model. Constar. Additionally, electron captures on nuclei in the core oc-

tours indicate the boundaries of 6§#%ashed and 95%(solid) cred-

cur through reactions of the form,

ible regions. Points indicate the coordinates of 500 samples from

the distributions.

e +(Z,A)—(Z-1A)tv,. 9.9
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FIG. 11. Contour plots of predicted detection rates in each detector for the best-fit accretion model. Contours endldast@&gPturve
and 95%(solid curve of the total predicted number of detectable neutrinos. Points indicate the inferred energies and arrival times of the
detected events.

Initially, the neutrinos produced by these reactions leave thequared 96]. The mean free path for elastic scattering of a
core, carrying away most of the kinetic energy of the cap-neutrino of energyE consequently becomes much smaller
tured electrons, and further reducing the electron pressurdan the radius of the cof@7]. Initially, the neutrino diffu-
support. sion time scaleR?/cl, (wherel, is the neutrino mean free
Through the combined effect of these two processes, thpath), is shorter than the dynamical time scale, and the neu-
effective adiabatic index in the core falls beldw=4/3 and  trinos leave the collapsing core, carrying away entropy. But
dynamical collapse ensues. The inned.8M, of the core  once the density exceeds3x 10 gcm 3, the diffusion
remains partially pressure support@e., the in-fall velocity  time scale exceeds the dynamical time scale, and the neutri-
remains subsonjand collapses homologously with velocity nos are trapped in the collapsing material. Thus soon after
proportional to radius. Outside the inner core, the in-fall ve-collapse begins, the lepton fraction of the core is frozen at
locity is supersonic, and is approximately the free fall veloc-Y,~0.35, and the collapse proceeds adiabatically. The de-

ity. generate electrons and electron neutrinos in the core store the
The neutrinos produced by electron capture have energiegavitational energy of the collapse.
typical of the electrons that produced theB,<10 MeV. On the dynamical time scale of a few milliseconds, the

Their wavelengths X,~20 fm) are thus long compared density reaches,~10" gcm 3, at which point degenerate,

with nuclear sizes, so they scatter coherently from nucleinonrelativistic nucleons become the dominant source of pres-
with a cross section proportional to the number of nucleonsure in the inner core. The resultant stiffening of the equation
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of state abruptly halts the collapse of the inner core. Pressuigcattered to energies for which the scattering mean free path
waves propagating outward coalesce into a she€k2M is of order the size of the core{5 MeV). As a result of this
beyond the edge of the inner core. The shock begins movintteleptonization” phase, the outer coretigated leading to
outward and dissociating the outer core material, so that thghermal production of neutrinos of all flavors in the outer
post-shock material consists mostly of neutrons and protongore through electron-positron annihilation. For a few tenths
In this environment of free nucleons, the electron capturef a second after shock breakout, production of electron neu-
rate rises and the neutrino cross section decreases, causifgos in the optically thin region just behind the shock domi-
electron neutrinos to pile up behind the shock. nates that of other species. But soon the neutrino emitting
Several milliseconds later, the shock reaches a density gkgion becomes optically thick and pairs of all flavors of
p~10" g cm 2, where the optical depth outward is of order neutrinos are produced in roughly equal numbers.
unity, and the electron neutrinos behind the shock are re- These thermal pairs cool the core, which has now reached
leased in a dynamical time scale of a few milliseconds. Thists final radius~10km. The integrated energy of these ther-
is the first significant neutrino signal produced during col-mal neutrinos is very nearly equal to the full binding energy
lapse. The electron neutrinos released during this “breakoutof the collapsed corEg~ 10> erg.
phase have a spectrum like that of the degenerate electrons To summarize, in the prompt explosion picture, the neu-
that produced thenmy(,~40 MeV). A small number of ther-  trino signal is expected to consist of two principle phases.
mally produced pairs of electron neutrinos and antineutrinogirst, there is a brief, intense burst of electron neutrinos from
and other neutrino flavors are also emitted. shock breakout, with a degenerate spectrum of high energy.
As the shock propagates through the outer core, it weakthough intense, this burst is so brief that very little of the
ens due to neutrino emission and photodisintegration opinding energy and lepton number of the collapsed core is
heavy nuclei. The temperature of the shocked material is sgarried away by it. Following this burst is a much weaker
high that destruction of iron down to free nucleons occursgignal of thermally produced neutrinos of all flavors with
releasing an energ¥ynoe~ 1.5< 10° erg for each 0.M of  |ower energies, but lasting for a much longer timel0 s.
matter that is photodisintegrated. The shock cannot endurghe separate time scales for shock breakou® s) and
such losses for long, and will die unless it quickly reaches<elvin-Helmholtz cooling &2 s) may be discernible in the
the edge of the outer core, where the density is low and th@eutrino signal. The integrated energy of the later, thermal
heat capacity is high. Here the shock temperature falls, besignal equals the binding energy of the neutron star, and the
coming less effective in producing neutrinos and too low tojntegrated number of neutrinos in this phase of emission ex-
disintegrate iron. ceeds the number of leptons originally contained in the col-
In order for the shock to survive the energy losses due t(Papsing core by an order of magnitude_ The signal in water
photodissociation of the outer core, the total mass of the corgerakov detectors, whose cross sections for interaction with

must be smal[67,76,98—104 Thus an iron core as large as ,, (and neutrinos of other flavorare an order of magnitude
2M almost certainly cannot produce a supernova by a hyr =

. ower than those for absorption of,, is expected to be
drodynamical bounce, but cores smaller tharl.39M inated by th I (;) —. ¢ P
might. Even in this case, however, a successful explosion igomma ed by thermally produceds.
problematical and depends on the equation of state used and

details of the hydrodynamic and neutrino transport codes C. Delayed explosion

employed. Thus Hillebrandit al.[101,108 get a strong ex- If the prompt explosion fails, as all recent numerical
plosion for an 8.81, star, Wilsonet al.[67] get a weak one, simulations find, the deposition behind the shock of a smalll
and Burrows and Lattimgi103] get none at all. While Hill-  amount of energy by neutrinos streaming out of the core may

ebrand{ 99] obtains a marginal hydrodynamic explosion for produce a delayed explosi¢g9—67,70—-73
a 1My star, Wilsonetal, Burrows and Lattimer, and  Following the failure of the shock, a nearly stationary
Bruenn, do not[67,103,103 and while Baronetal. “neutrinosphere” develops at about 40 km, where the den-
[106,107, using a “softer” nuclear equation of state than sjty p~ 10" gcm 2 and the neutrino emission temperature
hitherto accepted, obtain prompt explosions foMi2and T ~5 MeV. The stalled shock lies at100—300 km, well
15M, stars, Wilsoret al. [67], using a more standard equa- beyond the neutrinosphere, where the post-shock tempera-
tion of state, do not. ture (~1.5 MeV) and density <108 gcm 3) are much
smaller. Capture of a small fractions6%) of the ~10°
erg s ! neutrino luminosity by neutrons and protons and,
later, by scattering off electron-positron pairs behind the
If a prompt explosion occurs, the shock moves outwardshock heats the matter, and eventually revives the shock.
rapidly upon reaching the edge of the outer core, ejecting théfter ~0.1IM» or more of matter has accreted onto the core
mantle and envelope of the star. Electron neutrinos graduallgver a period of~1 s, the outward motion of the shock
diffuse out of the inner core on a diffusion time scal@s. resumes, ejecting the mantle and envelope of the star. During
Electron captures at first replenish them, and through thishis accretion phase, the hot material behind the shock copi-
diffusion process the lepton fraction of the core begins toously emits electron neutrinos and antineutrinos; the produc-
decrease. These electron neutrinos are created with energiggen of neutrinos of other flavors is suppressed because they
of the order of the Fermi energy of the captured electrongan be produced only in neutral current interactions. The
(~40 MeV), but do not leave the core until they have down-amount of material finally accreted is uncertain, but may be

B. Prompt explosion
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as much as OM g in order to leave behind a neutron star  Surprisingly, then, these relatively sparse data are able to
with a mass near the typical observed value oMA discern between models with and without an accretion com-
To summarize, in the delayed explosion picture, the neuponent, due to broad spectral and temporal features in the
trino signal is expected to consist of three principal compo-data. However, the data have proved too sparse to discern
nents. Two of these, the emission of electron neutrinos asome interesting details about the spectral evolution of the
breakout, and the diffusion of neutrinos out of the inner coreneutrino signal. Detailed studies of the transport of neutrinos
which heats the outer core and produces neutrinothrough the core during the deleptonization and cooling
antineutrino pairs of all flavors, are identical to those of thePhases show that the emitted spectrum is significantly non-
prompt explosion picture. In addition, there is a third com-thermal[30,69. The strong energy dependence of neutrino
ponent, lasting~1 s, during which the flow of accreting scattering cross sections é_‘z)_leads to a spectrum tha_t_is
matter through the stalled shock-atL00—200 km produces Well modeled by a Fermi-Dirac spectrum with positive
electron neutrino-antineutrino pairs, possibly with a luminos-cnémical potential., (or effective degeneracy parameter,

ity L,~10° ergs * and temperatur&@,~3 to 5 MeV. nV:_,u/T), with 5,~2 to 4. But the data are too sparse to
a a provide a significant measure of these transport effects: when

the n, parameter is added to the exponential cooling model,
its best-fit value is zero, and its 95% credible region extends
The inferred values for the neutrino cooling time scaleto »,~5. Similar conclusions were reported earlier by Hill-
and characteristic cooling temperatures, both for singleebrandtet al. [108]. In addition, there is some ambiguity
component cooling models and for the cooling component ofimong the calculations regarding the evolution of the spec-
models including an accretion component, are in remarkabl&um of the cooling component. Calculations that treat the
agreement with those expected in the above scenario, whidkeutrino transport in a limited way by considering only a
had developed in the absence of direct observationsUminosity temperature”for the neutrinos necessarily find a
[13,15,30,51-54,94 The v, energy, 3.15,~15 MeV, is geutrlno temperature that' dgcreases in time as the Iuml'no.sny
i - ecreasef52]. More sophisticated calculations seem to indi-
typical of that expected for the neutral current diffusionef  cate that the neutrino temperature stays roughly constant
out of the hot outer core. The cooling time scate4 sisof gyer~10 s(perhaps even rising slightly during the first few
the order of the expected time scale for deleptonization of theenths of a seconf94]), with the luminosity decreasing as
inner core. the opacity just below the neutrinosphere becomes more and
However, for single-component models, the inferred val-more scattering-dominated, leading to dilution of the neu-
ues ofR, E,, and the total number of, are all well above trino spectrum[30,31,75,78,8]L In our study of single-
theoretical expectations. This is most clearly displayed byomponent models, the data were not able to discern be-
the (R,E,) credible regions for the exponential cooling tWeen cooling and dilution, although a slight preference for
model plotted in Fig. 5. All other single-component cooling dilution appeared. In our study of models including an accre-
models we explored had best-fiR(E,) values even more tion component, the initial temperature was larger than that

excessive than those found with the exponential coolin n single-c_omponent models, with the Tesu“ that models with
model decreasing temperature for the cooling component are pre-

When an accretion component is added to the signal ncI rred over models with pure dilution. This preference is not
only does the fit substantially improve, but the inferred val- ecisively strong, however.

ues forR, E,, and the number of thermally emitte?q are
all in agreement with theoretical expectations. Figure 10 dis-
plays the agreement between inferred and expeRtaadE,, The calculations of the preceding sections all presume
values. The implied number o_fe from the cooling compo- that the electron antineutrino rest mass, , is zero. We
nent (~3x10°') is comparable to that expected from  derived the likelihood function allowing for nonzens, , s

diffusing out of the inner core and heating the outer core by is iraightforward to test this assumption. For several of the
neutral current scattering and absorption. Approximately Syodels we considered, the likelihood is maximized with
X 10°" additional v, are emitted by the accreted material. mr; =0, indicating no evidence for a nonzero rest mass in the

. . . e
The inferred time scale of the accretion componenty,pernova neutrino data. This is true for the exponential

(~0.74 9 is in agreement with the time scales0.5-1 s cooling model that was the focus of Sec. VII. For others, the
observed in numerical calculation59-67,70-78 The |ielihood is maximized for small values afi, (a few eV,
best-fit temperature of the accretion component is 2 MeV, e

and there is a sharp upper limit 8f2.5 MeV. The tempera- but the likelihood is increased only slightly above it!{e
tures observed in current numerical calculations are 1 to 30 value, indicating no significant evidence for a nonzero
MeV higher, but are highly uncertain. Finally, the data prefermass. This is true for the cooling plus accretion model that
large values for the amount of accreted materiallM).  Was the focus of Sec. VIII; Table VII provides the best-fit
However, this preference is not of great statistical signifi-Parameters for this model found using the Kll-IMB-Baksan
cance, and models witl0.1-0.8M , of accreted material all data. Thel/ L, entry gives the ratio of the maximum likeli-
make the data substantially more probable than singlebood to that found withm, =0. These results are represen-
component models. tative of models with nonzero best—ﬁt;e: best-fit masses of

D. Comparison with neutrinos from SN 1987A

X. INFERRING THE ELECTRON ANTINEUTRINO MASS
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TABLE VII. Properties of best-fit two-component model with nential cooling model andh;,, =5.7 eV for the cooling plus
nonzero neutrino mass. . AT :
accretion model. These upper limits for, are substantially

Quantity KlI-IMB-Baksan better than the laboratory limits that were available at the
time of the supernova neutrino detectigaad comparable to
Displaced power-law cooling current limit. Formally, a complete summary of the impli-
and truncated accretion cations of the data fom, would additionally marginalize
over the choice of signal model, essentially producing a
a 1.78 weighted average of the individual marginals shown in the
Teo (MeVv) 4.65 figure (this is called Bayesian model averagifitD9,11Q).
7o(S) 14.7 But the cooling plus accretion model is so much more prob-
Tao (MeV) 2.04 able than single-component models that model averaging
Ta (9) 0.56 would essentially reproduce the solid curve, which we thus
o =05 consider to summarize our results itmge.
m,, (eV) 3.02 Note that the marginal posterior based on the exponential
torr (Ki)(ms) 0.07 cooling model peaks at positive, , even though the joint
torr (IMB)(ms) 0.04 posterior based on that model peaksrgt=_0. Also, for the
tof (Baksan)(ms) 0.13 . . e
I, 23 coollr_wg pIu; accretion Todel., the ratio of the peak_ of the
Nqo, (K1 1571562 marginal to its value amve=0 is greater than the likelihood
Nge; (IMB) 45 _ra_tio o_f 2._3 Iis_ted in TabIe_VII. Th_ese differences between the
Ny, (Baksan) 17102 joint distributions ar_ld their m_arglnals are furthgr examples of
R (km) 178 the phenomen.on discussed in Sec. ke the d|scu§3|on of
E,(10% erg)® 3.04(0.56 Fig. 3. There is somewhat more allowed volume in the pa-

rameter space for slightly positive values m[;e, and the

®Expected numbers of signal and background events are listed sep@tegration yielding the marginal fam, accounts for this,
e

rately.

bTotal Ey is given, with part due to accretion in parentheses.

increasing the marginal density fmr;e in that region. Such
effects are common, and provide an illustration of the differ-

a few eV; best-fit detector offset times0.1 s; negligible E?bcliigﬁ;ween using profile likelihoods and true marginal dis-

changes in other parameters; and insignificant improvemen
in the maximum likelihood.

Presuming that there is nevertheless a small nonzero rest
mass, we can calculate marginal posterior distributions for
m,,, for any model of interest to obtain constraints on the We have reached substantially different conclusions than
mass. Figure 12 shows such marginal distributions for thérevious studies of the supernova neutrinos. One of the ma-
exponential cooling modeldashed cunjeand the cooling jor improvements of this work is our more thorough explo-
plus accretion modesolid curve; hereu, T,, andr, were  ration of the space of alternative signal models, and thus it
fixed as in Sec. VII\. The dots indicate the upper bounds of may not seem surprising that we might discover a signal
95% credible regions and are mt, =8.9 eV for the expo- component missed by others. However, this alone does not

¢ account for the differences between our results and those of
others. For example, the exponential cooling model has been
studied by several investigators, yet the best-fit radius we
i find is 70% larger than that found by Spergslal. [21]
. based on a likelihood analysis, and our best-fit binding en-
ergy is over 40% larger than that found both by these inves-
_ tigators and by Bludman and Schindég], who also used a
- likelihood function.
. Previous analyses of the neutrino data are extremely di-
verse, using a wide variety of statistics and methods. A de-
] tailed comparison of all these methods with the present
1 analysis would be lengthy. We here choose instead to empha-
size two points of departure between our analysis and earlier
15 ones that appear to us to offer the most important lessons for
m, (eV) analysis of data like the SN 1987A neutrino data.

FIG. 12. Marginal distributions for the electron antineutrino rest
massm, , using the exponential cooling mod@lashedl and the
cooling plus accretion mode(solid). Dots indicate the upper
bounds of 95% credible regions.

Xl. COMPARISON WITH METHODOLOGIES
OF PREVIOUS STUDIES

3 T T T T T T T T T T T T

p(m,|DM) (ev7)

A. The form of the likelihood

It is clear that there are important differences between our
likelihood function and those used by others, since our best-
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fit parameter valuegequivalent to maximum likelihood esti-  sincen; must have been larger thaw, for the event to have

mates are significantly different from those found earlier. peen detected, this extra conditional probability is equal to
Comparing our I|keI|'hood function, E.C(S'ls)’ with those L&nity. The inclusion of any factor in the detection likeli-
used by other investigators, several differences are apparent, . ic thus incorrect

Most obvious, perhaps, is the presence of the background It is worth noting that straightforward application of the

;eg?utt?ﬁé :Ir:g\:vs g: ;(:1 dzonrtre;:gk '?gg;%orrgtés"gf :jn;?:gtg rrules of probability theory led us to the correct likelihood in
gy-aep 9 5 ‘more-or-less automated way, once we set out to calculate

\;\rlz ?;\ﬁfcl)rre%?gﬁr;‘m?ﬁé'g:é (;r:/é’a?gwémerrtglr];osﬁg?etgrt?;pe probability for the data from first principles, and not
P 9 : erely write it down based on our intuition. The derivation

gﬁgfﬁﬁ (;:o(t)ige:grﬁée?sciituss;mrﬂfi?:glr{t ToemK!lraegdto”\tﬂhBe ﬂ?‘tcae’ is Bayesian in that we freely assigned probability distribu-
9 ’ g P ns to the energiesand directions and position®f de-

=
ST Ji]
tainties in mfgrred parameter values. Thus these terms do n?(fcted events, despite the fact that these quantities cannot be
explain the differences between our results and those of Otrlc'onsidered to be “random variables.”
ers. :
Another difference is the presence of terms to correct for R o
dead time. But for the most part, these terms affect only the  B. Distinguishing parameter estimation from model

overall amplitude of the effective signal in IMBlecreasing assessment
it by roughly 10%, and thus also do not account for the  As noted in Sec. Il, frequentist and Bayesian statistics
significant differences. both divide questions about parametrized models into two

The remaining difference is the absence of a factor oftjasses. First is the class estimationquestions that assess
7(€) from inside each event integral in the likelihood func- the implications of assuming the truth of a particular model,
tion. That is, all previous studies replaced the integral in th,sually by estimating values or allowed ranges for the model

product term of Eq(3.18 with a term proportional to parameters. Second is the classnuddel assessmenues-
tions that assess the viability of a model. We have outlined
f den(e)Li(€)R(et;). (11.)  Bayesian methods for treating these questions in Sec. Il. A
clear discussion of the application of frequentist methods for

estimation and model assessment to problems in the physical
We have verified that inclusion of such an additional, incor-sciences is available in the text by Eadieal. [86].
rect 7 factor indeed results in best-fit exponential cooling  Freduentist procedures used for estimation are fundamen-
parameter estimates very close to those found in earlier stud@!ly different from those used for model assessment. Unfor-
ies. This factor reduces the low energy contribution to thdunately, nearly every previously published statistical analy-
integral, so that somewhat larger temperatures are needed ¥ Of these data has incorrectly used model assessment

make the likelihoods of the events reasonably large. The exRrocedures to address estimation problems. In particular, a
pected number of detectable neutrinos varies very strongl)umper of studies used goodness-ot®OP procedures to

with T [more strongly tharT®, due to theE? dependence of pecify “confidence” regions, based either on statistics of the
the capture cross section and the strong energy dependerfegMmogorov-Smimov(KS) type [7,21,24, a likelihood sta-

— . . tistic [20], or an ad hoc %?” type statistic [26]. In these
of 7(e)], so the valge of thg ampht_ude paramege(i.e., of studies, the boundary of fﬁe c)gIquIated “confidence region”
the neutron star radiisound in the fit is strongly affected by a5 determined by finding parameters for which the signifi-
the presence or absence of thefactor, as is the binding cance level of a GOF test is equal to the desired confidence
energy, which scales like*T*, level (i.e., significance levels were confused with confidence

The detection probability is already built into tifg func-  |evely. Such misapplication of GOF procedures to parameter
tion; insertion of an additionak(e) factor represents an at- estimation problems is commonplace in astrophysics; we
tempt to take into account a selection already accounted fdrave been guilty of it ourselves in the past. Loredo and
in £;(€). This is perhaps most easily seen by considering aVasserman discuss the problem in detail in the context of the
simple situation in which detection occurs only if the numberanalysis of gamma ray burst daftsee Appendix A of Ref.
of photomultiplier(PMT) “hits” exceeds a threshold value, [111]). Using a simple example based on inferring the mean
Ny, and the detection data for evenis simply the number of a Gaussian distribution, they show that use gf?aGOF
of photomultipliers hith;. Suppose also that the probability test to determine “confidence” regions in the manner of ear-
for n hits is a Poisson distribution with a mean that is anlier studies not only fails to reproduce the familias-//N”
increasing function of the event energy. The detection effi68.3% confidence region, but produces an erroneous region
ciency is the probability for hitting more thany,, PMTs,  whose average size is larger than the correct region, with an
given the event energy. It would be calculated by summingerror thatgrowsas the amount of data increases.
Poisson probabilities fon>ny,. The event likelihood for It is interesting to speculate about why such a basic mis-
eventi is the Poisson probability for seeing exaatlyhits. It ~ take is so frequently made. One reason is that, for the famil-
is not the product of this probability and the efficiency; this iar case of Gaussian statistics, the same function—the
product has no meaningful interpretation. We could multiplystatistic—is used both to define the statistic used in a GOF
it by the product of detectiorgiventhatn, PMTs were hit test(the minimum value of¢?), and the interval-valued sta-
(since the Poisson factor already takes that into ac¢goBot  tistic used for a confidence regidthe parameter range for
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which x? is within some critical valueA 2, of its minimum  scale component due to Kelvin-Helmholtz cooling of the na-
value). This may have motivated those investigators who atscent neutron star, and a brief( s), softer component due
tempted to use the KS GOF statistic to define confidencéo emission from material accreting through a stalled super-
regions, although we know of no statistical literature sug-nova shock, as expected in the delayed scenario for super-
gesting that this statistic is useful for estimation problemshova explosions. Such models make the data significantly
More fundamentally, the confusion may arise because ther@ore probable than single-component cooling models moti-
are several qualitatively different probabilities in frequentistvated by the prompt scenario for supernova explosions. In
statistics. Covering probabilities for confidence regions, typetddition, the radius and binding energy of the nascent neu-
| error probabilities, type 11 error probabilities—all of these N star implied by single-component models deviate sig-

are quantities that spd,1] that scientists can use to assessn'f'camly from the values predicted by current neutron star

the reasonableness of hypotheses. But none of them apgodels, whereas those implied by models with an accretion

probabilitiesfor hypothesesso it is easy for nonexperts to component are in complete agreement with the predictions.

confuse which is most closely related to the question they arAS a resqlt, two-component model§ are hundreds to thou-

. . o ands of times more probable than single-component models.
asking. .Th's confg_5|_on IS exacerpgted by the f_act that_al he neutrino data thus provide the first direct observational
frequentlgt probabilities must condition on a particular poiNt, idence in favor of the delayed scenario over the prompt
hypothesis, even those that refer to an entire class of hypot

F bl deularly f fid . ’cenario. Furthermore, the inferred characteristics of the sig-
eses. For some problengsarticularly for confidence region nal are in spectacular agreement with the salient features of

ihe theory of gravitational collapse and neutron star struc-

of the particular hypothesis used. B.Ut this IS sgldom true Mure, particularly when correlations between parameters are
real problems, so that one hypothesis must inevitably be Ch%lly taken into account in the comparison of theory with

sen to represent a class of hypothelges., approximate con- observation. In addition to studying the implications of the

fidence regions are fpund using calculations conditioning OMheutrino data for the formation of the nascent neutron star,
the best-fit hypothesjs we have also used the data to find model-dependent upper

This confusion cannot arse n the Bayesian approach"mits on the rest mass of the electron antineutrino that are
One always calculates probabilities for hypotheses, so ther

. S X . . 8ompetitive with laboratory limits.
is never ambiguity over what kind of hypothesis a probabil- The detection of neutrinos from supernova SN 1987A ini-
ity is associated with: one must explicitly state it in order

1o start th lculati it K th tiated a new era in astrophysics, the era of extrasolar neutrino
even fo start the calculation. It one Seexs a measure o 0\gstronomy. Years later, the supernova neutrinos detected by
p_Iau5|bIe it is for a parameter to I'e. I SOME TegIon, ON€q Kamiokande-Il, IMB, and Baksan detectors are still of-
simply calculates the probability that it is in that regiga- ’ §

: timation If instead shes t i fering us important lessons, not only about the physics of
rameter estimationf instead one WISNES 10 assess an en Iresupernovae and neutrinos, but also about the potential of
model, one calculates the probability for that model as

i . ; ayesian methods for improving the analysis of complicated
whole (model comparison The formalism forces one to dis- Y : P g Y P
S . astrophysical data.
tinguish between these options.
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p(d;,S° B°P,M)
APPENDIX A: DERIVATION OF THE LIKELIHOOD

FUNCTION =p(d;|S°,B°,M)p(S°P,M)p(BP,M).

A4
We present here a derivation of the full likelihood func- (A4)
tion for the supernova neutrino data, §.13 in the main  Here we have droppe® from the right of the bar in the first

text. The calculation is sjtraightforward and the result is eas¥robability, since it is irrelevant td; once we specify that no

to understand, as explained in Sec. Ill. However, we makeyents have occurred. Also, we factored the joint probability
some effort here to go through itin de_ta|l, both_to reveal ¢ (S°,B°) as the product of their independent probabilities

several errors that were made in previous studies, and @, get the last two factors. The first factor—the probability

demonstrate how straightforward the calculation of such:or reporting no detection if neither a signal nor a back-

likelihoods is from a Bayesian perspective. Loredo andyroynd event occurs—is simply equal to 1. The second and
Wassermari112] used similar methods to derive likelihood ihird factors are simply given by the Poisson probability for

functions for Bayesian analyses of gamma-ray burst data. event, given the expected number dn (c.f. equation
As with the derivation of the idealized likelihood in Sec. (3.4)). Thus

[, we first consider the probability for nondetections. To do

this, we will use a standard “trick” from probability theory p(E SO, BYP,M) =g [BFROIA (A5)
that frequently arises in Bayesian calculations. When we e ’

cannot directly calculat@(A|C), we introduce an exhaus-  To calculate the second term in E@3), we extend the

tive, exclusive set of auxiliary proposition§3;} (one and  conversation, resolvings® into a continuum ofS(r,n, €)
only one of theB; must be trug such that we can calculate propositions. This gives

p(A|B;,C). Then we can find the the desired probability B
from p(d;,S*,B°|P,M)

P(AIC)=3 p(A,Bi|C)=2 p(A[B;.C)p(Bi[C), =Jd€J de dnp(d; ,S(r.n,€),8°P,M)
(A1)

=f def dvf dnp(d;|S(r,n,€),3°,M)
provided we can calculate or specifyB;|C). If the B; form
a continuum, the sum becomes an integral. This trick is X p(S(r,e,n)|P,M)p(B°P,M). (AB)
sometimes referred to as “extending the conversation.”

To apply this trick to calculat@(EﬂP,M), we begin by  The firstfactor in the integrand is the probability that a signal
noting that there are many situations that can result in £vent occurring at a specified position, with a specified en-
nondetection. If neither a signal nor background event oc€rdy and direction, will lead to a nondetection. We presume
curs, no detection will be reported. But even if one or morethat the experiment team can calculate this probability by
signal or background event occurs, it is possible no everfietailed modeling of the detect@perhaps including results
will be reported, because of the instrument threshold. If wePf calibration measurementst is simply the probability that
let S™ denote the proposition that signal events occurred the specified event will produce triggers that do not satisfy
in the time interval under consideration, aid denote the the detection criterion. We write this probability as
proposition thain background events occurred, then we can — 1 0
write the nondetection probability as p(dj[S*(r.n,€), B PM)=1=17(r.n,e), (A7)

© o where 7(r,n,e) is the detection efficiency for events with

p(EJ|P,M)= 2 2 p(aj SMBUPM).  (A2) the specifi_ed po_si'gion, energy, and direction; we call this the

m=0 n=0 full detection efficiency.
The second factor in the integrand of E@\6) is the

Each term will involve poisson probabilities fon signal  probability density for detecting the specified signal event,
events, proportional toRést)™, and n background events, and no other, inst;. It is simply given by the Poisson dis-
proportional to Bat)". Since thedt intervals are smal(in  tribution:
the sense thaRdst<1l andBét<1), we can neglect possi-
bilities involving more than one event occurring #t. This

R(n, G,tj)
leaves three possibilities. \% €

p(S(r,n,e)|P,M)= —R(t)at, (A8)
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The third factor in the integrand of EQGA6) is the prob- _ p(gij):e—[Bm(tp]m[l_,_ SHUR(t))+B)
ability for no background events that we needed for the first
term in the nondetection probability, equal to ex{gst). We — Ot(Re(t)) + Be) ] (A15)

thus have all the factors needed to calculate (B&). Since ' _ .
only the full efficiency factor depends an we can pull the ~Since we will need the product of many such probabilities,

signal rate through the volume integral, writing its logarithm is easier to work with. Taking advantage of the
fact thatRét<1 andBést<1, and using logy(1+ x)~x for
p(d;,S%,B%P,M) small x, we find

:&e—[B+R(tj)]5tf dnJ deR(n,e,t]-)[l—;(n,e)] logyd p(dj| P,M) ]~ — 6t(Re(tj) + Ber).  (A16)
The product of all the nondetection probabilities will thus be
R(t;) St — &f dn an exponential with sums of the effective rates over all non-
! detection intervals. This sum is just the integral of the effec-
tive rates over the nondetection intervals, so the product of
] (A9) nondetection probabilities can be written

— e [BHRUIA

X J deR(n,e,t]-);(n,e)

Here we have introduced thelume-averagedetection ef- I1 p(aj|7>,M)=exp{ —BeﬁTnd—f dtReq(t) |,
ficiency defined according to ] Thd
(Al17)
— dv . . o
n(n,e)zf v (r,n,e). (A10) whereanddt denotes integration of thiglisjoint) intervals of

time without detections.

Now we turn to the detection probabilities. A reported
event can be either a signal or a background event, so we
have

We can write Eq.(A9) more succinctly by introducing an
effective (detectablg signal rate,

Reﬁ(t)EJ dnf den(n,e)R(n,e,t). (A11) p(d;| P,M)=p(d;,St,B°P,M)+p(d;,S°,BYP,M).
(A18)

Using this, Eq.(A9) becomes As with the nondetection probability, we ignore possibilities

— w1 10 _[B+R(t)] 8t that are higher than first order ift.
p(d;,SB°P.M)=e TEOR(t)) — Rer(t)) 1. We can calculate the first term by introducigr,n, €)
(A12) and applying the product rule, just as we did in E46). The

The last probability we need in order to calculate the noneSUIt 1S

detection probability—the last term in EGA3)—is very R(N, et
o ; . AN
similar to the one we have just calculated. We can get ifp(d, ,51,30|73,M):5tf def dvf dnsi(r,n,e)—————
simply by switching the roles of background and signal, tak- v
ing into account the fact that the background rate may de- x exp{—[R(t;) + B]4t}. (A19)
pend on position and direction. This gives '
_ Here we have defined thiadividual event likelihood func-
p(d;,S%BYP,M)=e BRI 5t(B—B.g), tion according to
(A13)
) o Li(r,n,e)=p(d;|S(r,n,e),M). (A20)
where the effective background rate is given by
This is just the probability for observing the detection data,
_ presuming the location, direction, and energy of the lepton
Beﬁ_J deJ dVJ dny(r,n,e)B(r,ne).  (Ald) producing the data have the specified values. It is the likeli-
o hood function we would use to infer the properties of a par-
We cannot usey(n,€) here becausB(r,n,e) is a function of  ticular detected event. Detailed knowledge of the detector
position in the detectofe.g., due to radioactivity in the rock should allow experimenters to calculate this function for
surrounding the detectorWe have presumed here that the each detected eventby fitting the PMT data Since
full efficiency for detecting a background event with speci- £;(r,n,€) is a probability ford;, it need not be normalized
fied position, direction, and energy is the same as that fowhen integrated over(n,e). However,£; can be multiplied
detecting a signal event with the same properties. That is, wey any constant without affecting our inferendasince the
are assuming that the detector does not distinguish baclconstant will drop out in Bayes's theor¢nand it is conve-

ground and signal events by some other property. nient to adopt the convention that the reported individual
Assembling all of the ingredients, we can now write downlikelihood functions include a constant that makes them nor-
the full nondetection probability: malized when integrated over,(,€).
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The second term in E¢GA18) can be calculated in exactly TABLE VIIl. Two-dimensional Kolmogorov-Smirnov test re-
the same way, switching the roles of the signal and backsults for the best-fit constant temperature model, the best-fit expo-
ground rates. Combining this term with EGA19) gives us  nential cooling model and the best-fit displaced power-law cooling

the detection probability, and truncated accretion model.
Quantity Kl IMB Baksan Joint
p(di|P,M)= &ef[R(tiHB]atJ' dfj dvf dnZ;(r,n,e) Constant temperature
Dops 0.38 0.45 0.52 -
R(n,e,t;) -2 -2 -2 -3
( - [ +B(rne) . (A21) P(>Dg,9  3.2¢X10 6.9x10 8.4x10 8.7x10
Exponential cooling
Dobs 0.31 0.28 0.38 -
We can take advantage of the homogeneity of the signal rate(>p_, ) 0.12 0.53 0.37 0.27

to replace the signal-dependent integral with
Displaced power-law cooling

and truncated accretion

f de f dnz(n.eR(Net), (A22)  Daws 0.27 0.23 037 -
P(>Dgp) 0.25 0.77 0.39 0.52

where the volume-averaged event likelihood function is

given by £i(n,e)=[dVL;(r,n,e)/V. We retain the simple B N

likelihood notation for this and other averaged likelihoods, ~ £(7)=(807@Xp —BegT— | dt | de
because this is in fact the likelihood for the direction and

energy: xf dnz(n,e)R(N,€,t)

Ei(n,E)Ep(di|8(n,6),M)

Ny
x]1
=1

Bi+jdej dnZi(n,e)R(n,€,t;)
=J dvp(d;,r|S(n,e),M)
(A26)

=f dVvp(r[M)Li(r,n,e). (A23)  Here we have combined the exponentials in the detection
factors appearing in EqA25) with the exponents in the
) _ ) - ) nondetection probabilities to give an integral over émtire
Taking the prior density for the event position to be uniform qyration of the data. In doing so, we have neglected the
throughout the tank revealg(n,e) to be the volume- (jfference between the full and effective rates in tiele-
averaged event likelihood, as claimed. _ tection intervals; but this difference is very small provided
To further simplify the appearance of our equations, Wethat st<T, and one can easily demonstrate that it has a neg-
introduce the event-averaged background fateaccording |igible effect on inferences.
to One last simplification can be made. Since scaling by a
parameter-independent factor does not affect our inferences,
we can drop thedt)N factor and theéB4T exponent from the
BiEf def dvf dnZi(r,n,e)B(r,n,e).  (A24)  likelihood. This leads to Eq3.13, the full likelihood used
in the main text.

With our convention of normalizing;, this can be inter-

preted as the rate of background events “like” event number
i in the sense of having positions, directions, and energies
consistent with the data for that event. These definitions let In Table VIII we present the results of two-dimensional

APPENDIX B: TWO-DIMENSIONAL KOLMOGOROV-
SMIRNOV TESTS

us write the detection probability as Kolmogorov-Smirnov(KS) goodness-of-fit tests applied to
the constant temperature/radius model, the exponential cool-
p(di|P,M) = stexp{—[R(t;)+ B] st} ing model, and the model combining displaced power-law
I ’ I

cooling and truncated accretion, each with parameters fixed
at their best-fit values. We used the version of the test de-
Bi+J def dnZi(n,e)R(n,e,t;) |. vised by Fasano and FrancescHihl3]. This test compares
the fraction of the expected rate in four quadrants about the
(A25) point (t; ,¢;) associated with each event with the fraction of
the number of detected events in that quadrant. The largest
Combining the detection and nondetection probabilitiedifference between the observed and expected values is the
gives us the full likelihood function, KS statistic,D. The model is rejected iD is too large, the

X
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typical critical value being that associated with a 5% falseculations. Finally, the reliance of the test on the cumulative
rejection rate. This test ignores the uncertainty ifor each  distribution of events, rather than the differential distribution,
event, and the quoted significance values are approximaigan make it insensitive to local structure present in the model
(they are based on an approximate expression for the distrie.g., it can accept a model even if there are data in regions
bution for D). We performed the test separately for eachof zero probability.

detector(using the best-fit parameters from a joiny,fiand On a more subjective level, our extensive experience with
then combined the test results using standard methods to finghplication of this test to these data has led us to be skeptical
the significance associated with the joint[86]. These re-  of jts value. We have found it to be quite insensitive, accept-
sults indicate moderate incompatibility of the data with theing models that seem clearly unacceptable on other grounds
constant temperature model, and compatibility with the Othefeither to the trained eye or based on tests with likelihood

models. functiong. Some evidence of this behavior is obvious here:

Baye_5|an inference does not |nc.lude SUCh. a thing as Ahe pest-fit cooling and accretion models have comparable
alternative-free goodness-of-fit test; we provide these test\§ lues of P(>D,,), despite the fact that the latter model
for those readers who find them useful. KS tests have severaf. obs> b

limitations that must be kept in mind when interpreting theirmakes the data over 600 times more probgble than the
results. First, the one-dimensional and two-dimensional kSCrMer- Finally, we note that some earlier studies attempted
tests are sensitive only to the shape of a distribution, not it§ @SSess joint fits by applying a single KS test to a fictitious
amplitude. The test may be straightforwardly extended toSUM” detector whose expected rate is the sum of the rates
include the amplitude, but the resulting test then become8f the considered detectorg, and whose data are the collected
insensitive to the shape of the distribution for the supernovélata of the detectof21]. This procedure corrupts the test, as
neutrino data because Poisson fluctuations in the number #fignores information about which events to associate with
events detected, rather than the positions of the events in thhich expected rate. We have found that some models that
time-energy plane, domina2 Second, the two-dimensional are accepted with a KS test based on such a “sum” detector
test lacks the distribution-free property that makes the onesan be rejected by a combination of tests applied to the in-
dimensional test attractive. In fact, there are different generdividual detectors, and vice versa. This is because no de-
alizations of the test to two dimensions, each with differenttected event represents a sample of the summed detector
sensitivity to the parent distributidri13,114. Thus, the test rates, leading to erroneous results when the test is performed
should ideally be calibrated with extensive Monte Carlo cal-with the “sum” detector.
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