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Bayesian analysis of neutrinos observed from supernova SN 1987A
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We present a Bayesian analysis of the energies and arrival times of the neutrinos from supernova SN 1987A
detected by the Kamiokande II, IMB, and Baksan detectors, and find strong evidence for two components in
the neutrino signal: a long time scale component from thermal Kelvin-Helmholtz cooling of the nascent
neutron star, and a brief (;1 s), softer component similar to that expected from emission by accreting
material in the delayed supernova scenario. In the context of this model, we show that the data constrain the
electron antineutrino rest mass to be less than 5.7 eV with 95% probability. Our analysis takes advantage of
significant advances that have occurred in the years since the detections in both our understanding of the
supernova mechanism and our ability to analyze sparse data. This has led to significant improvement over
previous studies in two important respects. First, our comparison of the data with parametrized models of the
neutrino emission uses a consistent and straightforward Bayesian statistical methodology. This methodology
helps us distinguish the complementary tasks of parameter estimation and model assessment, and fully ac-
counts for the strong, nonlinear correlations between inferred values of neutrino emission model parameters. It
also clarifies and improves the derivation of the likelihood function~the probability for the data!, improving on
earlier derivations in two ways: more consistent accounting for the energy-dependent efficiencies of the
detectors; and inclusion of the empirically measured detector background spectra. These improvements lead to
significant differences between our inferences and those found in earlier studies. Inclusion of detector back-
ground spectra proves crucial for proper analysis of the Baksan data and for demonstrating its consistency with
data from other detectors. Second, we compare the data with a much wider variety of neutrino emission models
than was explored previously, several of them inspired by recent numerical calculations of collapse and
explosion based on the delayed supernova mechanism. This allows us to compare predictions of both the
prompt and delayed mechanisms with the data, and ensures that our conclusions are robust. We find that
two-component models for the neutrino signal are;100 times more probable than single-component models.
Moreover, single-component models imply a radius and binding energy for the nascent neutron star signifi-
cantly larger than those implied by even the stiffest acceptable equations of state for neutron star matter. In
contrast, the radius and binding energy implied by two-component models are in agreement with predictions.
Taking this agreement with prior expectations into account increases the odds in favor of two-component
models by more than an order of magnitude. The inferred characteristics of the neutrino emission are in
spectacular agreement with the salient features of the theory of stellar collapse and neutron star formation that
had developed over several decades in the absence of direct observational data. We compare our work with
previous work that used more conventional ‘‘frequentist’’ methods~including our own previous maximum
likelihood analysis!. We identify several methodological and technical weaknesses in earlier analyses, and
show how these are overcome in our Bayesian analysis.

DOI: 10.1103/PhysRevD.65.063002 PACS number~s!: 97.60.Bw, 02.50.Tt, 95.75.2z, 95.85.Ry
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I. INTRODUCTION

The detection of neutrinos from supernova SN 1987A
the Large Magellanic Cloud by the Kamiokande II~KII !
@1,2# Irvine-Michigan-Brookhaven~IMB ! @3,4# and Baksan
@5,6# detectors was a landmark event in astrophysics.
though only about two dozen of the;1028 supernova neu-
trinos that passed through the Earth were detected, they
vide us with our first glimpse of the collapsing core of
dying star, and hence deserve careful scrutiny.

There is an extensive literature analyzing these epo
detections, both qualitatively@7–16# and quantitatively@17–
33#. These previous studies use a wide variety of metho
and although there is some agreement among their con
sions, there are also important and troubling differences.
0556-2821/2002/65~6!/063002~39!/$20.00 65 0630
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fortunately, no criteria have been presented with which o
could evaluate and compare the various studies. In addit
there are technical deficiencies in many of the studies,
cluding inaccurate modeling of the detection process,
consideration of unnecessarily restricted classes of mo
for the neutrino signal. A consequence of these weakness
that the literature analyzing the supernova neutrinos app
inconclusive or even contradictory. Some would argue t
this is an inevitable consequence of the analysis of a sp
data set. We assert that it is a consequence only of we
nesses in the analyses, and that probability theory is abl
precisely and consistently quantify the information in a d
set, even when the data set is small. Indeed, it is in just s
cases that a careful quantification of our uncertainty is m
necessary.
©2002 The American Physical Society02-1
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The years since the detection of the supernova neutr
have seen significant advances in our understanding of
supernova mechanism and in our ability to analyze spa
data. In 1987, the prompt scenario for supernovae was
vored, and almost all of the most sophisticated analyse
the SN 1987A neutrino data used models based on this
nario. But in the intervening years, more careful calculatio
have shown that the prompt mechanism probably fails
create explosions, and that the delayed mechanis
relatively new in 1987—is more likely to be the cause
supernova explosions. Through the same decade there
been a parallel development in the application of likeliho
and Bayesian methods to the analysis of inhomogene
Poisson processes in astrophysics. These theoretical and
lytical advances motivated us to undertake a new analys
the supernova neutrinos that significantly improves on pre
ous analyses both in its statistical methodology and in
variety of models considered.

Our methodological improvements stem from consist
and straightforward application of the principles of Bayes
inference. The likelihood function—the probability for th
data given some hypothesis for their origin—plays a key r
in Bayesian inference, so aspects of our analysis bear s
similarity to earlier analyses based on likelihood functio
that used more conventional ‘‘frequentist’’ techniques, su
as our own earlier work@32#. But there are crucial differ-
ences both in the form of the likelihood function we use, a
in the manner in which we use it to make inferences.

Our derivation of the likelihood function reveals errors
previous attempts to account for the energy dependenc
the efficiencies of the neutrino detectors; we show that th
errors significantly corrupted previous inferences. In ad
tion, our likelihood accounts for the possibility that ea
event could have arisen from background sources by u
empirically measured detector background spectra. Prev
studies either ignored the detector background, or tried
account for its effects by censoring the data. We show
correct treatment of the background is crucial for prop
analysis of the Baksan data, and that it noticeably affects
implications of the KII data. Additionally, we include th
effects of dead time in the IMB detector, which has also be
ignored in most previous analyses. Once the likelihood
available, Bayesian calculations use it in a different man
than frequentist likelihood analyses. In particular, the Ba
sian methodology allows us to accurately summarize the
plications of the data for interesting subsets of the parame
needed to model the data, in a way that fully accounts for
strong correlations between inferred values of neutrino em
sion model parameters. These correlations must be taken
account in order to fully compare the implications of the d
with the predictions of theory. Also, Bayesian model co
parison implements an automatic ‘‘Ockham’s razor’’ th
takes into account model complexity when comparing ri
signal models; this assures that complicated models are
ferred only when there is significant evidence in the d
favoring them.

Complementing these methodological improvements
the improved scientific insights gained by our use of a mu
wider variety of neutrino emission models than was explo
06300
os
he
se
a-
of
e-
s
o
—
f
has

us
na-
of
i-
e

t
n

e
me
s
h

d

of
se
i-

g
us
to
at
r
e

n
is
r
-
-
rs
e
s-
to

a
-
t
l
re-
a

re
h
d

previously. Earlier studies explored either a single mode
an unnecessarily restricted class of models, almost alw
presuming the prompt supernova mechanism to be true.
explore a variety of single-component models designed
mimic neutrino emission from a cooling nascent neutron s
~the principle detectable component in the prompt scenar!,
and a variety of two-component models that add to this co
ing emission a component arising from material that
heated upon passing through the stalled accretion shock
pected in delayed scenarios for supernova explosions.
find that all single-component models lead to unaccepta
large inferred neutron star radii and binding energies.
further show that the data unambiguously prefer tw
component models, and that such models lead to quite
sonable inferred radii and binding energies for the nasc
neutron star. The wide variety of models we consider insu
that our conclusions are robust.

This paper is organized as follows. We begin with a br
review of Bayesian inference in Sec. II. We then devote t
sections to the derivation of the likelihood function. Secti
III derives the probability for data from a neutrino detecto
given some parametrized form for the production rate of
ergetic charged leptons in the detector; some details of
derivation appear in Appendix A. Section IV describes ho
we derive the lepton production rate from general models
the emission of neutrinos from the supernova and their ev
tual interaction with earthbound detectors.

In Sec. V we describe the wide variety of parametriz
models we have analyzed. Included among these are
nomenological models based on both the prompt and dela
mechanisms for supernovae. We present the best fit pa
eter values for each model in Sec. VI, and we compare
models to one another in light of the data, finding a defin
preference for two-component models. The most tenable
the single-component models is one with an exponenti
decaying neutrinosphere temperature at a constant ra
this model is also the one most extensively studied in ear
analyses. In Sec. VII we analyze this single-compon
model in greater detail. We present joint credible regions
the model parameters that display the strong correlations
tween parameters, and that reveal an inconsistency betw
the neutron star radius and binding energy implied by t
model and those predicted by current equations of state
neutron star matter. In Sec. VIII we analyze the best tw
component model in greater detail. We find the constra
implied by the data on parameters describing both the c
ing and accretion components of the emission, and we d
onstrate the consistency between the neutron star prope
implied by this model and those predicted by current eq
tions of state. In Sec. IX we provide a brief review of the
retical expectations for neutrino emission during and imm
diately after stellar collapse, and compare these expectat
with the observed characteristics of the emission.

In the analyses presented in Sec. VI through Sec. IX,
assume that the rest mass of the electron antineutrino,mn̄e

, is

zero. In Sec. X we treatmn̄e
as an additional parameter to b

inferred. We find no significant evidence for a nonzero ma
and we determine the upper limits implied by singl
2-2
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BAYESIAN ANALYSIS OF NEUTRINOS OBSERVED . . . PHYSICAL REVIEW D65 063002
component and two-component signal models.
Throughout the text we note technical differences

tween our work and earlier work, particularly in regard to t
form of the likelihood function and the detector model.
Sec. XI we elaborate on some of the weaknesses of ea
work, including our own earlier frequentist likelihood anal
sis @32#. We summarize our principle conclusions in Se
XII.

II. STATISTICAL METHODOLOGY

We carefully distinguish between the problems of~1! es-
timating the value of parameters in a model for the neutr
signal, and~2! assessing the adequacy of a particular para
etrized model. A major weakness of most previous analy
of the supernova signal is the failure of investigators to d
tinguish between these complementary statistical tasks, l
ing many to use model assessment methods incorrectl
calculate ‘‘confidence regions’’ for parameters.

We address both parameter estimation and model as
ment problems with Bayesian methods. In Bayesian in
ence, the viability of each member of a set of rival hypo
eses,$Hi%, is assessed in the light of some observed dataD,
by calculating the probability for each hypothesis, given
data and any background information,I, we may have re-
garding the hypotheses and data. Following a notation in
duced by Jeffreys@34#, we write such a probability as
p(Hi uD,I ), explicitly denoting the background informatio
by the proposition,I, to the right of the bar. At the very leas
the background information must specify the class of al
native hypotheses being considered, and the relationship
tween the hypotheses and the data~the statistical model!. In
cases where the hypotheses of interest are labeled by
possible values of a continuous parameter,u, the quantity
p(uuD,I ) is a probabilitydensity: p(uuD,I )du is the prob-
ability that the true value of the parameter is in the inter
@u,u1du#, given the data and the background informatio
We use the same symbol,p( . . . ), for densities and prob
abilities; the nature of the argument will identify which use
intended.

Bayes’s theorem givesp(Hi uD,I ) in terms of other prob-
abilities,

p~Hi uD,I !5p~Hi uI !
p~DuHi ,I !

p~DuI !
. ~2.1!

The probabilitiesp(Hi uI ) for the hypotheses in the absen
of D are called their prior probabilities, and the probabiliti
p(Hi uD,I ) including the informationD are called their pos-
terior probabilities. The quantityp(DuHi ,I ) is called the
sampling probability forD, or the likelihood forHi , and the
quantityp(DuI ) is called the prior predictive probability fo
D, or the ~global! likelihood for the entire class of hypoth
eses.

The rules of Bayesian inference lead one to use Bay
theorem both to estimate signal parameters and to ass
model as a whole by comparing it to rival models. But d
ferent types of calculations are required to implement th
two complementary tasks. In this section we describe th
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applications of Bayes’s theorem, which we use free
throughout the remainder of this work; Bayesian model co
parison in particular has so far seen little use in phys
motivating this brief pedagogical introduction. We als
briefly describe the computational techniques we use
implement the calculations. More complete derivations
the results in this section, with simple examples and furt
references, are available in recent reviews@35–41#. The
Bayesian Inference in the Physical Sciencesweb site @42#
provides access to a variety of reviews and tutorials.

A. Parameter estimation

Many readers may be familiar with the use of Baye
theorem to estimate parameters in a model. Given so
proposition,M, specifying a model with parameters denot
collectively byu, and a proposition,D, specifying data rel-
evant to the model, one calculates the posterior distribu
for the parameters,p(uuD,M ), according to the continuou
version of Eq.~2.1!,

p~uuD,M !5p~uuM !
p~Duu,M !

p~DuM !
. ~2.2!

Of the factors in this equation, the likelihood functio
p(Duu,M ), is probably the most familiar. It is the probabilit
for the data, assuming the parameters have values given
u. We often denote the likelihood by the symbolL(u); this
notation emphasizes that its dependence on the paramet
what is important in Bayes’s theorem, but that it is not
itself a probability distribution for the parameters.

The remaining terms in Eq.~2.2! are the prior foru and
the prior predictive probability. For the most part, in th
work we adopt uniform~constant! priors for all parameters
When the data are informative, the posterior is robust
changes in the prior; we note those cases where the dat
uninformative as they arise. The prior predictive distributio
p(DuM ), is independent ofu and merely plays the role of a
normalization constant whose value is given by integrat
the product of the prior and the likelihood:

p~DuM !5E dup~uuM !p~Duu,M !. ~2.3!

Thus the essential content of Eq.~2.2! may be summarized
by the statement that the posterior density is proportiona
the product of the prior and the likelihood.

Frequently a parametrized model will have more than o
parameter, but we will want to focus attention on a subse
the parameters. For example, at one point in this work
will want to focus on the implications of the data for th
binding energy and radius of the neutron star formed by
supernova, independent of the remaining parameters des
ing the neutrino signal. The uninteresting parameters
known asnuisance parameters. The posterior distribution for
the parameters of interest can be calculated by integra
out the nuisance parameters. Explicitly, if modelM has two
parameters,u andf, and we are interested only inu, then it
is a simple consequence of the sum and product rules
probability theory that
2-3
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THOMAS J. LOREDO AND DONALD Q. LAMB PHYSICAL REVIEW D65 063002
p~uuD,M !5E dfp~u,fuD,M !. ~2.4!

The procedure of integrating out nuisance parameter
calledmarginalization, andp(uuD,M ) is called the margina
posterior distribution foru. In frequentist statistics there i
no generally acceptable way to eliminate nuisance par
eters. The ability to marginalize parameters is thus an imp
tant advantage of the Bayesian approach.

The Bayesian solution to the parameter estimation pr
lem is the full distribution,p(uuD,M ), and not just a single
point in parameter space. Of course, it is often useful
summarize this distribution for textual, graphical, or tabu
display in terms of a ‘‘best-fit’’ value and ‘‘error bars,’’ indi
cating the location and width of the posterior. Possi
choices of summarizing best-fit values are the poste
mode ~the value ofu with largest posterior density! or the
posterior mean,̂ u&5*duup(uuD,M ). If the mode and
mean are very different, the posterior distribution is proba
too complicated for its location to be adequately summari
by a single number. An allowed range for a parameter w
probability contentC is provided by acredible region, R,
defined so that

E
R
dup~uuD,M !5C. ~2.5!

If R is chosen so that the posterior density insideR is every-
where greater than that outside it, thenR is a highest poste
rior density~HPD! credible region; all of the credible region
we display in this work are HPD credible regions.~Credible
regions are not called ‘‘confidence regions’’ to distingui
them from frequentist confidence regions, which are cal
lated in a very different manner@39#.!

In this work we present as a best-fit summary the po
rior mode. Since we are using flat priors, these estimates
identical to those a frequentist maximum likelihood analy
would produce. But Bayesian and frequentist uses of
likelihood for finding allowed regions differ~especially
when nuisance parameters are present!, so more complete
summaries~e.g., credible regions! will differ from their fre-
quentist counterparts. To find the credible regions reporte
this work, we useposterior sampling—the use of Monte
Carlo methods to obtain a set of samples of parameter va
from the full joint posterior. The ‘‘cloud’’ of such sample
nicely summarizes the full posterior; but more important
once the samples are available, any marginal distribution
be easily estimated by simple manipulations of the samp
For example, samples from the marginal distribution for a
function of the parameters can be found simply by evalua
the function on the samples. A simple special case is w
we seek samples from the marginal distribution for a sub
of the parameters; they can be found simply by ignoring
nuisance parameter coordinates of each sample from the
posterior. We obtain the samples using the rejection met
@43#, and for plotting smooth contours of one- and tw
dimensional marginals we fit the cloud of points to simp
parameterized functions~exponentials of polynomials!.
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Loredo @41# provides further discussion of posterior sam
pling and pointers to the literature.

B. Model comparison

In Bayesian inference, the success of a model is asse
by comparing it to explicit alternative models. To compa
rival models, we again use Bayes’ theorem. This use
Bayes’s theorem is probably less familiar to most reade
though it is analogous to use of Bayes’ theorem for para
eter estimation. We begin by specifying a set of compet
models. We use the symbolMi to denote a proposition as
serting that modeli describes the data, and the symbolI to
denote a proposition asserting that one of the models b
considered describes the data (I 5 ‘ ‘ M1 or M2 or . . . ’’!.
Then we use Bayes’ theorem to calculate the probability
model Mi , assuming that one of the models being cons
ered describes the data:

p~Mi uD,I !5p~Mi uI !
p~DuMi ,I !

p~DuI !
. ~2.6!

This is very much like Eq.~2.2!, with Mi now playing the
role of the parameter, andI now playing the role of the
model. The termp(Mi uI ) is the prior probability for model
Mi . The proposition (Mi ,I ) ~‘‘ Mi and I’’ ! is true if and only
if model Mi is true, that is, it is equivalent to the propositio
Mi itself. Thus p(DuMi ,I )5p(DuMi), the quantity calcu-
lated in Eq.~2.3!. This quantity plays the uninteresting ro
of a normalization constant in parameter estimation, bu
plays a key role in model comparison: it is the likelihood f
modelMi in Eq. ~2.6!. Equation~2.3! reveals the likelihood
for a model to be equal to theaveragelikelihood of its pa-
rameters~averaged with respect to the prior for the para
eters!. This is in stark contrast to frequentist measures
model quality, which typically maximize rather than avera
the likelihood for the parameters. To help distinguish t
likelihood for a model’s parameters from the likelihood f
the model as a whole, we use the term ‘‘likelihood functio
~a function of the parameters! for the former, and ‘‘model
likelihood’’ or ‘‘average likelihood’’ ~a single real number!
for the latter.

It is sometimes more convenient to work with ratios
model probabilities, particularly when there is a special ‘‘d
fault’’ model. The ratio of the probability for modelMi to
that for modelM j is called the odds in favor ofMi overM j .
We denote it byOi j . Using Bayes’ theorem, we can write th
odds as

Oi j 5
p~Mi uD,I !

p~M j uD,I !
5

p~Mi uI !

p~M j uI !

p~DuMi ,I !

p~DuM j ,I !
[

p~Mi uI !

p~M j uI !
Bi j ,

~2.7!

where the first factor is the prior odds ratio, and the seco
factor is called theBayes factor. The Bayes factor is simply
the ratio of the likelihoods of the models. Note that the n
malization constant in Eq.~2.6!, p(DuI ), drops out of the
odds ratio. When the prior odds does not strongly favor o
model over another, the Bayes factor can be interpreted
as one would interpret an odds in betting; Table I summ
2-4
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rizes the interpretation recommended in the extensive rev
of Bayes factors by Kass and Raftery@44#.

An important aspect of Bayesian model comparison
that the calculation of model likelihoods implements an a
tomatic and objective posterior ‘‘Ockham’s razor,’’ leadin
one to prefer simpler models unless the data provide subs
tial evidence in favor of a more complicated alternative, ev
when the rival models are assignedequalprior probabilities.
In frequentist statistics, one commonly uses ratios of ma
mum likelihoods to compare models. However, more co
plicated models almost always have higher likelihoods th
simpler models, so more complicated models are only
cepted if the maximum likelihood ratio in their favor excee
some subjectively specified critical amount, expressing
subjective prior preference for simplicity. But Bayesia
methods compare averaged likelihoods, not maximum lik
hoods, and tend to favor simpler models even when sim
and complicated models are assigned equal prior proba
ties @35,38,40,45#.

We can better understand the distinction between Ba
sian and frequentist model comparison and the nature of
Bayesian posterior preference for simplicity by writing t
model likelihood as the product of the maximum parame
likelihood used in frequentist model comparison, and an
ditional Ockham factor. We thus implicitly define the Ock-
ham factorVu associated with the parametersu of modelM
by writing p(DuM )[LmaxVu , whereLmax is the maximum
value of the likelihood function,L(u)[p(Duu,M ). Recall-
ing Eq. ~2.3! for the average likelihood, this implies

Vu5
1

Lmax
E dup~uuM !L~u!. ~2.8!

Assuming, as is generally the case, that the prior va
slowly compared to the likelihood, the integral in this equ
tion is approximately equal top( ûuM )*duL(u), whereû is
the maximum likelihood value ofu. If we write the integral
of the likelihood function as the maximum likelihood valu
times a characteristic width of the likelihood,du, we find
that

Vu'p~ ûuM !du. ~2.9!

We can write the value of the prior atû as p( ûuM )'1/Du,
whereDu is a characteristic width of the prior~if the prior is
flat over some range of sizeDu, the approximation is exact!.
Then we find that

Vu'du/Du, ~2.10!

TABLE I. Interpretation of Bayes factors.

ln(Bij) Bi j Strength of evidence forHi over H j

0 to 1 1 to 3 Not worth more than a bare mentio
1 to 3 3 to 20 Positive
3 to 5 20 to 150 Strong
.5 .150 Very strong
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the ratio of the posterior range for the parameter to its p
range. This quantity will be less than one, and in this man
the Ockham factor penalizes the maximum likelihood. T
penalty typically grows with the number of parameters, a
in this way model likelihoods implement a posterior prefe
ence for simpler models with fewer parameters, even w
the models are considered equally probablea priori. In this
way Bayesian model comparison favors models that b
predict the data, not only for the best-fit parameters~which
after all are known onlya posteriori!, but taking into account
uncertainty in the parameters.

It is worth emphasizing that these Bayesian calculatio
provide probabilities formodels~or ratios of such probabili-
ties!, in contrast to the ‘‘false alarm’’ probabilities provide
by conventional frequentist significance tests, which
probabilities fordata ~i.e., probabilities for data more ex
treme than what were observed!. This fundamental differ-
ence leads to different interpretations for the probabilit
these procedures report. In frequentist statistics, it is co
mon to consider a departure from the null hypothesis at a
significance level to be barely significant. In contrast, if
Bayesian calculation gives the null hypothesis a probabi
of 5% ~i.e., a Bayes factor of 19 against the null!, this is
considered quite significant evidence against the null~see
Table I!. Indeed, one often finds that a Bayesian analysis
data discrepant at the 5% significance level produces a B
factor of order unity—the Bayesian calculation is confirmi
the conventional interpretation of this significance level
providing a quantity with a more straightforward and intu
tive interpretation. Sellke, Bayarri, and Berger@46# provide
further discussion of this issue, with guidelines for a Bay
sian interpretation of significance tests.

The integrals needed to calculate average likelihoods
Bayes factors are often challenging. In this work, we oft
use an asymptotic approximation to the Bayes factor ap
cable when comparing two nested models~i.e., models such
that the simpler model corresponds to the more complica
one when additional parameters are set at default valu!.
The approximation is known as the Bayesian informat
criterion ~BIC! or the Schwarz criterion@47#. The BIC uses a
Gaussian approximation for calculating average likelihoo
and an ‘‘automatic’’ prior with a width roughly correspond
ing to the width of the individual data factors in the likel
hood. The result is that the log Bayes factor can be appr
mated as

ln B21' ln@L2~ û,f̂ !/L1~ û !#2
1

2
mf ln N, ~2.11!

where model 2 is the more complicated model, with ad
tional parametersf, mf is the dimension off, andN is
the number of data. When the approximate results war
interest in an accurate Bayes factor, we use adaptive qua
ture to calculate model likelihoods@41#.

The key ingredient in Bayesian parameter estimation
model comparison is the likelihood function. We now turn
calculation of the likelihood function based on the neutri
data. This requires us to model the production of neutrino
the supernova, their propagation to Earth, their interact
2-5
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with terrestrial detectors, and the detection of the energ
charged lepton produced upon such interaction. The last
of this modeling chain is the most complicated one, and
place where the differences between our likelihood funct
and those appearing in some earlier analyses are greates
therefore treat it first.

III. MODELING NEUTRINO DETECTION

Our task in this section is to calculate the probability f
the data produced by a neutrino detector, given the cha
lepton production rate throughout the detector. Before be
ning the calculation, we first introduce a number of no
tional conventions that will streamline the derivation. W
also review some basic results on inhomogeneous Poi
processes~Poisson processes with varying event rates! that
play an important role in the derivation. We presume
reader is familiar with the basic setup of neutrino detect
~see, e.g., Ref.@48# for a detailed description of the Kamio
kande II detector!.

The ‘‘input’’ to our calculation is specification of the
charged lepton production rate throughout a detector. T
rate has two components. First, there is a background c
ponent due to particles entering the detector from cosmic
interactions or radioactive decay in the surrounding rock.
also formally include other sources of false triggers~such as
noise in the detectors! in the background rate. Second, the
is the physically interesting signal component due to as
physical neutrinos. We presume here that both rates
given. In practice, the background rate is inferred from m
surements, and the signal rate is the result of modeling, a
describe in the following section.

The KII, IMB, and Baksan detectors most efficiently d
tect neutrinos through capture of electron antineutrinos
protons, resulting in the production of an energetic positr
Thus throughout this work we will refer to the charged le
tons produced by the astrophysical neutrino signal as p
trons, even though many of our results apply equally wel
detection of energetic electrons. The background compo
may be due to positrons, electrons, or muons. To simplify
discussion, we will refer to the production of a charged le
ton of any type as an ‘‘event.’’ One must be careful to d
tinguish occurrence of an event from detection of an eve
not every event that occurs is detected.

We useB(r ,n,e) to denote the differential backgroun
rate, so thatB(r ,n,e)dVdndedt is the probability that a
background event will occur in an infinitesimal time interv
dt in a volumedV at positionr in the detector, with a direc
tion in the solid angledn about the unit vectorn, and with an
energy in the interval@e,e1de#. We presume the back
ground rate is constant in time over the duration of the
servations. It is not constant in space, however, beca
background events due to sources in the surrounding
appear preferentially near the detector walls.

We useR(n,e,t) to denote the differential signal rate: th
rate of production of positrons in the detector per unit tim
energy, and steradian due to interactions with neutrinos f
the supernova. Unlike the background rate, it is tim
dependent. However, it is constant throughout the dete
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volume since the detectors are optically thin to neutrin
When we need the signal rate per unit volume, it is th
simply given by

R~r ,n,e,t !5
R~n,e,t !

V
, ~3.1!

where V denotes the detector volume. The signal rate w
depend on some parameters, which we collectively denot
P. The number and type of parameters depend on the m
for the signal rate; later sections describe the various mo
we consider. We are seeking the dependence of the lik
hood onP ~and, implicitly, on the choice of a parametrize
signal model!.

We will often need quantities such as the background r
for events of any direction and at any position, but w
energy inde. This requires integration over the other inte
vals. For brevity, we simply collapse the argument list
indicate the necessary integrations. For example,B(e)
[*dV*dnB(r ,n,e), and an unadornedB is the total back-
ground rate per unit time. We adopt similar conventions
the signal rate, so thatR(e,t)[*dnR(n,e,t), andR(t) is the
total signal rate per unit time at timet.

Our earlier work, and that of others using likelihood fun
tions, attempted to calculate the likelihood by consider
the data to be the inferred energies and arrival times of
tected positrons~i.e., the ‘‘best-fit’’ values as reported by th
detector teams!. However, the actual data are not a set
time-tagged energy values, but is instead a more complic
time series of pulse heights in the thousands of photomu
pliers surrounding each detector that allows us to infer~with
uncertainty! the properties of detected positrons. Althou
this time series is not publicly available, a more accur
likelihood calculation results if we imagine it were availab
and try to calculate the probability for such a time ser
given the signal and background rates and detailed kno
edge of the detector.

Accordingly, we letD denote all the available data, re
ported as a time series specifying the state of the instrum
at regular intervals separated in time bydt. The duration of
dt is unimportant, so long as it is small enough that no m
than one event is ever seen in an interval. We separate
data into two groups,detection data, di , specifying all the
data associated with detected event numberi; andnondetec-

tion data, d̄ j , specifying that no triggered event happened
time intervals indexed byj. We always usei to index quan-
tities associated with detected events. In particular,t i denotes
the time of eventi. Similarly, we always usej to index quan-
tities associated with nondetections. In particular, we usedt j

to denote the time interval@ t j ,t j1dt# associated withd̄ j .
We will presume that, given the signal and backgrou

rates, the probability for a detection in some intervaldt is
independent of whether an event was detected in other
intervals. This implies that the likelihood function is simp
the product of independent probabilities for the detectio
and nondetections,

L~P!5F)
i 51

Nd

p~di uP,M !G)
j

p~ d̄ j uP,M !, ~3.2!
2-6
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BAYESIAN ANALYSIS OF NEUTRINOS OBSERVED . . . PHYSICAL REVIEW D65 063002
whereNd is the number of detected events andj runs over all
intervals for which no event was detected. As will becom
apparent, the number of nondetection intervals does not
plicitly appear in the analysis; only their total duration ma
ters. Here we use the symbolM to denote all of the modeling
assumptions needed to calculate the required probabili
including specification of the signal model discussed in
next section.

We presume that, given the rates, the probability for
event occurring in any specified infinitesimal interval
time, volume, direction, and energy is independent
whether or not an event occurred in some other interval. T
implies that the probability forn events occurring in an in
terval of finite size is given by the Poisson probability,

pn5
n̄n

n!
e2n̄, ~3.3!

where n̄ is the expected number of events in the interv
found by integrating the relevant differential rate over t
interval.

Again focusing attention on a particulardt interval, now
let S 0 denote the proposition asserting that no signal eve
occurred in the time interval. The probability forS 0 is given
by Eq. ~3.3!, with n̄ equal to the signal rate integrated ov
dt:

p~S 0uP,M !5expF2E
dt

dtR~ t !G'e2R(t)dt. ~3.4!

To get the approximation, we have assumed thatdt is much
smaller than the time scale over which the rate varies, so
the integral overdt is well approximated byR(t)dt, with t
equal to any time indt. Similar equations hold for the prob
ability for no background event; since the background rat
presumed constant, there is not dependence and thedt prod-
uct form is exact.

Let us now focus attention on some specified time int
val, and letS(r ,n,e) denote the proposition asserting tha
single signal event occurred in thedt interval under consid-
eration, and that it had a position, direction, and energy
dVdnde about the point (r ,n,e). We write the probability
for this proposition as

p„S~r ,n,e!uP,M …dVdnde, ~3.5!

so that p(S(r ,n,e)uP,M ) is a probability density. This
proposition is the conjunction~logical ‘‘and’’ ! of two simpler
propositions:~1! one signal event occurred indVdndedt;
and~2! no other signal event occurred indt with a different
position, direction, or energy. The Poisson probability for t
first of these propositions is

S R~n,e,t !

V
dVdndedt DexpF2

R~n,e,t !

V
dVdndedt G .

~3.6!

The Poisson probability for the second is
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expF2S R~ t !2
R~n,e,t !

V
dVdnde D dt G . ~3.7!

The probability ~density! for S(r ,n,e) is the product of
these, divided by the differentialdVdnde, giving

p~S~r ,n,e!uP,M !5
R~n,e,t !

V
dte2R(t)dt. ~3.8!

We can write the probability for occurrence of a single, sp
cific background event similarly, substitutingB for R.

We now have all the ingredients we need to derive
form of the likelihood function. But before doing so for re
alistic data, we will do so for data produced by an idealiz
detector that detects every positron whose energy is ab
some threshold,e th , and that measures the locations, dire
tions, and energies of detected events with negligible un
tainty. We will also presume there is no background rate
this detector. This calculation will make clear the origin
the most important terms in the more accurate likeliho
function.

A. Idealized likelihood

We begin by calculating the probability for ideal nond
tection data. This is simply the Poisson probability for see
no events when the expected number of events is

n̄5dtE dVE dnE deQ~e2e th!
R~n,e,t j !

V
. ~3.9!

Here Q(x) is the unit step function, equal to 1 when i
argument is nonnegative, and 0 otherwise. ThusQ(e2e th) is
the efficiency for detecting events of energye, which is ei-
ther 1 or 0 for this idealized detector. The efficiency ensu
that only the detectable positron rate—that above th
threshold—contributes ton̄. With these definitions, the non
detection probability is

p~ d̄ j uM ,I !

5expF2dtE dVE dnE deQ~e2e th!
R~n,e,t j !

V G .
~3.10!

To calculate the detection probability, we will presum
that the nearly ideal detection data specifies that one e
occurred indt i with energye i , directionni , and positionr i ,
each measured with negligible uncertaintiesde, dn, anddV.
The probability for such a datum is simply the Poisson pro
ability that one positron is produced in a time intervaldt at t i
with properties in the specified ranges, multiplied by t
probability that no other positron be produced in the sa
interval but at another detectable energy, direction, or p
tion. We derived such a probability above, although w
infinitesimal ranges@see Eq.~3.8!#. Thus we can write down
the result,
2-7
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THOMAS J. LOREDO AND DONALD Q. LAMB PHYSICAL REVIEW D65 063002
p~di uM ,I !5S dtdedndV
R~ni ,e i ,t i !

V DexpF2dtE dVE dn

3E deQ~e2e th!
R~n,e,t i !

V G . ~3.11!

Assembling the detection and nondetection probabili
according to Eq.~3.2! gives the idealized likelihood function

Lideal5~dtdedndV!NdexpF2E
T
dtE dVE dn

3E deQ~e2e th!
R~n,e,t !

V G)
i 51

Nd R~ni ,e i ,t i !

V
.

~3.12!

The time integral in the exponent is over the entire durat
of the data and arose from combining the integrals in
~3.10! from all the nondetection intervals with the integra
in the exponents of the detection probabilities. The expon
is thus the total expected number of detectable positrons
general, this is different from the~integer-valued! number of
positrons actually detected. When the parameters of
model specifyingR(n,e,t) allow its amplitude to be freely
adjusted, one can show that the parameter values that m
mize the likelihood make the expected number of positr
equal the actually detected number.

B. Realistic likelihood

Realistic data differ from the idealized data in three i
portant respects. First, the threshold for detection is no
energy threshold, but is instead specified in terms of
number of triggered photomultipliers. In terms of positr
energy, the threshold is thus ‘‘blurry,’’ since the number
photomultipliers triggered by a lepton of a particular ener
cannot be precisely predicted. Second, the energies of
tected leptons are inferred with considerable uncertainty.
nally, the KII and Baksan detectors have nonnegligible ba
ground rates, so that triggers occasionally result even w
no energetic lepton has been produced by a neutrino.
present a detailed derivation of the likelihood, accounting
these complications, in Appendix A. Though the calculat
is somewhat lengthy, its result is easy to understand in
light of the idealized calculation described above. The f
likelihood function can be written,

L~P!5expF2E
T
dtReff~ t !G

3)
i 51

Nd FBi1E dnE deLi~n,e!R~n,e,t i !G ,
~3.13!

where the effective~detectable! event rate is

Reff~ t ![E dnE deh̄~n,e!R~n,e,t !. ~3.14!
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Comparing this likelihood function with the likelihood base
on idealized data given by Eq.~3.12! reveals three importan
differences, each associated with a new element in the l
lihood function.

First, the integral of the signal rate appearing in the ex
nent ~i.e., the effective rate! here has thevolume-averaged

detection efficiency, h̄(n,e), in place of Q(e2e th). The
sharp energy threshold is replaced by a smooth thresh
due to the fact that the detector trigger criteria are not sim
functions of the actual event energy. There is a possible
rectional dependence in this factor.

Second, the product term has a weighted integral of
signal rate in place of the signal rate evaluated at the di
tion, energy, and time of the event. The weighting functio
Li , is theevent energy and direction likelihood—the prob-
ability for seeing the event data, presuming the positron t
produced the data came from directionn with energye. This
integral accounts for uncertainty in the inferred directio
and energies of events.

Finally, the event background rate, Bi , appears in the
product terms. This quantity is just a weighted integral of t
background spectrum, the weighting function beingLi(n,e).
It is the rate of background events resembling eventi. Recall
that we are ultimately interested in the functional depe
dence ofL(P) on P, determined by the dependence of t
signal rate onP. If, for a particular event,Bi is much larger
than the signal rate~for any interesting choice ofP), then
that event’s term in the likelihood will remain nearl
constant—the event is effectively eliminated from consid
ation. But the full likelihood function does this ‘‘backgroun
subtraction’’ in a smooth way, reducing the weight of info
mation from potential background events according to
relative probability that they are due to the background rat
than the signal.

We must add one further complication to the likelihoo
function. Each of the detectors has a fixed, known dead ti
t, associated with every detected event. The likelihood fu
tion corrected for dead time is found simply by subtracti
@Reff(t i)1Beff#t for each event from the exponent in E
~3.13!. Since theBefft parts of these terms are constants~in-
dependent of the choice of model or parameters for the
nal!, for simplicity we drop them from the likelihood.

A further dead time correction is required for the IM
experiment. This experiment actually triggers on many m
events than are reported as neutrino events. Characteristi
these events allow them to be justifiably neglected as ba
ground events~essentially, the experiment team eliminat
events with a very highBi from the reported data!. However,
they each have dead time associated with them, and they
numerous enough that this dead time must be taken
account. In principle, we could subtract@R(t)1B#t for each
such event from the exponent in Eq.~3.13!. In practice, the
times of these events are not reported, and they are nume
enough that it is adequate to simply multiply the exponent
the live time fraction,f 512Bnrt, whereBnr is the rate of
background events that are not reported. For the IMB de
tor, Bnr52.7 s21 andt50.035 s, so thatf 50.9055. For the
2-8
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BAYESIAN ANALYSIS OF NEUTRINOS OBSERVED . . . PHYSICAL REVIEW D65 063002
KII and Baksan detectorsf 51, since all events are reporte
The likelihood function corrected for dead time is thus

L~P!5expF2 f E
T
dtReff~ t !G

3)
i 51

Nd

eReff(t i )tFBi1E dnE deLi~n,e!R~n,e,t i !G .
~3.15!

This is the complete likelihood function based on data fr
a single detector. To combine the information from differe
detectors, we simply calculate the product ofL(P) for all
detectors.

C. Likelihood for isotropic signals

The complete likelihood function is somewhat more ge
eral than what we need. As we note in the following secti
the signal rate due to neutrinos from SN 1987A is essenti
isotropic. Thus we can perform some of the volume integ
tion above, simplifying the likelihood function. We calcu
lated the more general likelihood above both in order to
lustrate some of the complications hiding behind t
isotropic form we are about to find, and because it sho
prove useful in analyzing data from future supernova n
trino observations, for which the anisotropic component
the signal may not be negligible. The complete likeliho
function may also be useful for analyzing other data, such
that produced by observing solar neutrinos.

For an isotropic signal rate,

R~n,e,t !5
R~e,t !

4p
. ~3.16!

Inserting this into Eq.~3.15! allows us to write the likelihood
for isotropic signals as

L~P!5expF2 f E
T
dtE deh̄~e!R~e,t !G ~3.17!

3)
i 51

Nd

eReff(t i )tFBi1E deLi~e!R~e,t i !G ,
~3.18!

where the volume- and direction-averaged efficiency~here-
after simply theaverage efficiency! is given by

h̄~e![E dV

V E dn

4p
h~r ,n,e!, ~3.19!

and the volume- and direction-averaged event likeliho
function ~hereafter theevent energy likelihood! is given by

Li~e![E dV

V E dn

4p
Li~r ,n,e!. ~3.20!

This is the likelihood function used in the calculations r
ported here. It is simpler than Eq.~3.15! in the sense that the
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experiment teams need only report the one-dimensio
functions,h̄(e) andLi(e), rather than the more complicate
two-dimensional versions. Similarly, the analyst needs
perform simpler integrations for the analysis. But it is impo
tant to realize that these functions are intrinsically more co
plicated than they appear; the apparent simplification h
simply reflects the fact that the experiment team can perfo
some of the required integrations once and for all.

D. The reported data

We have derived the form of the likelihood function pr
suming that the entire data set, in the form of a complica
time series, is available. However, the final likelihood fun
tion depends only on some summaries of this data. The n
detection data are summarized in the efficiency function. T
detection data are summarized in the form of an event li
lihood function for each detected event. For making inf
ences about isotropic signal models the necessary summ
of the ‘‘raw’’ data are the average efficiency,h̄(e), and the
event energy likelihood functions,Li(e). In addition, the
data duration,T, the equivalent water mass,M, the dead
time, t, and live fraction,f, must be specified for each dete
tor. Finally, the event-averaged background rate,Bi , must be
specified for each event.

For our calculations, we use the reported detector effici
cies for h̄(e). In Fig. 1 we plot the average efficiencies fo
the KII, IMB, and Baksan detectors@2,4,6,49#. It is clear that
the three detectors sample the signal quite differently. I
perhaps worth emphasizing that we are interpreting thes
the volume- and direction-averaged efficiencies for the
tectors. This implies that, in principle, these arenot the effi-
ciencies one should use when analyzing signal models w
an anisotropic component~as would arise if there were
significant electron scattering component!. But in practice,
symmetries may make the differences between the direct
averaged and direction-dependent efficiencies neglig
small. For example, electron scattering events produced
the side of the detector closest to the source are more li
to be detected than those produced near the far side, sinc

FIG. 1. Average efficiency functions,h̄(e), for the KII detector
~solid curve!, IMB detector~dashed curve!, and the Baksan detecto
~dot-dashed curve!.
2-9



d

ca
n

er
r

n
r.
e
in

th

nc

y
a

de

ly
el
t

m
is

de
u
ta

e
a

e

e
te
us
-
a
IM

c
t

ec
th
a

po-
ack-
od
ey
and

e-

an

5

li-

THOMAS J. LOREDO AND DONALD Q. LAMB PHYSICAL REVIEW D65 063002
latter will produce Cereˇnkov photons preferentially directe
out of the tank~thus hitting few photomultipliers!. But the
symmetry of the shapes of detectors may result in near
cellation of the resulting variations of the full efficiency upo
integration over the detector volume~this symmetry was bro-
ken for the IMB detector at the time of the SN 1987A obs
vations, since power for a large number of photomultiplie
had failed!.

Note that all of the reported average efficiency functio
vanish below some energy,e0, that differs for each detecto
Formally, the efficiency probably never identically vanish
~e.g., there is a small probability that a low energy neutr
can trigger a large number of photomultipliers!, but it pre-
sumably becomes negligibly small at the energy where
reported efficiency vanishes.

We also presume that the event energy likelihood fu
tions can be well-approximated by Gaussians,

Li~e!5CiexpF2
~e2e i !

2

2s i
2 GQ~e2e0!, ~3.21!

wheree i is the reported ‘‘best-fit’’ energy for eventi , s i is
the reported uncertainty for the energy, andCi is a normal-
ization constant. TheQ function appears for consistenc
with h̄(e); it ensures that the event likelihood vanishes
energies below the energy,e0, where the reportedh̄(e) van-
ishes (e0 is never closer to the peak than two standard
viations!. The actualLi function, resulting from detailed fit-
ting of the pattern of triggered photomultipliers, is certain
not precisely a Gaussian. But it must be approximat
Gaussian near its peak, since the leading order term in
logarithm ofLi will be the second order, or Gaussian, ter
The extent of the region over which this approximation
adequate is impossible to ascertain without being provi
the precise likelihoods. Since the detection teams have s
marized their event energy estimates with means and s
dard deviations, we have presumed the approximation to
adequate to;3 standard deviations.

We note that normalization ofLi is simply a convention;
Ci can be changed to any value without affecting inferenc
so long as its value does not depend on the model par
eters,P. We choose to~approximately! normalizeLi with
respect toe ~i.e.,Ci51/s iA2p). The only use we have mad
of this normalization convention is in interpretation ofBi in
Eq. ~A24! as the rate of background events ‘‘like’’ eventi.

Finally, we calculateBi for each event by integrating th
product of Li(e) and an estimate of the background ra
spectrumB(e). The KII and Baksan teams have provided
with measurements ofB(e) that we have used for this pur
pose; the IMB experiment has a negligible background r
for events as energetic as the reported events, so for the
eventsBi50.

In Table II we list the total background rates in the dete
tors, as well as other detector characteristics required for
likelihood calculation@1–6,49,50#. In Table III we list the
e i , s i , andBi values for each event reported in each det
tor. For the KII and Baksan detectors, events are listed
have not been included in other analyses. Most earlier an
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ses could not properly account for the background com
nent, and so had to exclude events suspected of being b
ground events. As already noted, the correct likeliho
function weights events according to the probability th
come from the signal component, and so more smoothly

TABLE II. Detector characteristics used in evaluating the lik
lihood function.

Characteristic Kamiokande II IMB Baks

Effective H2O mass,Meff (kton) 2.14 6.8 0.28
Background rate,Rbg (events s21) 0.187 0 0.034
Dead time,t (s) 0 0.035 0
Live fraction, f 1 0.9055 1

TABLE III. Detected event data used in evaluating the like
hood function.

t i e i s i Bi

Event ~s! ~MeV! ~MeV! (s21)

Kamiokande II
1 [ 0.0 20.0 2.9 1.631025

2 0.107 13.5 3.2 1.931023

3 0.303 7.5 2.0 2.931022

4 0.324 9.2 2.7 1.231022

5 0.507 12.8 2.9 2.131023

6 a 0.686 6.3 1.7 3.731022

7 1.541 35.4 8.0 4.531025

8 1.728 21.0 4.2 8.231025

9 1.915 19.8 3.2 1.531025

10 9.219 8.6 2.7 1.531022

11 10.433 13.0 2.6 1.931023

12 12.439 8.9 1.9 1.631022

13 a 17.641 6.5 1.6b 3.831022

14 a 20.257 5.4 1.4b 2.931022

15 a 21.355 4.6 1.3b 2.831022

16 a 23.814 6.5 1.6b 3.831022

IMB
1 [ 0.0 38 7 0
2 0.412 37 7 0
3 0.650 28 6 0
4 1.141 39 7 0
5 1.562 36 9 0
6 2.684 36 6 0
7 5.010 19 5 0
8 5.582 22 5 0

Baksan
1 [ 0.0 12.0 2.4 8.431024

2 0.435 17.9 3.6 1.331023

3 1.710 23.5 4.7 1.231023

4 7.687 17.6 3.5 1.331023

5 9.099 20.3 4.1 1.331023

aOmitted as a background event by other investigators.
bCalculated using a linear fit ofs i vs e i for earlier events.
2-10
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BAYESIAN ANALYSIS OF NEUTRINOS OBSERVED . . . PHYSICAL REVIEW D65 063002
consistently ‘‘subtracts’’ the background component from
data.

Calculation ofBi required use of previously unpublishe
information, and was based on some simplifying assum
tions about the background rate. Figure 2 shows the ba
ground rate measurements for the KII and Baksan detec
that we used in the calculations. Figure 2~a! shows the KII
empirical background rate spectrum@49#, which is nonzero
only at low energies where the IMB efficiency is zero. Figu
2~b! shows the empirical background rate spectrum for
Baksan detector@50#; it is significant even at high energie
Most of the structure in the Baksan background rate sp
trum can be attributed to counting statistics, so the ba
ground spectrum we actually used is the smooth curve in
figure, obtained by successively performing a three-po
smoothing on the raw data points until ax2 measure of the
misfit between the data and the curve~a parabolic interpola-
tion of the smoothed data! is near its expected value~two
smoothings were used!. In fact, changing from the smoot
curve to the raw data have a negligible effect on our resu
so the uncertainty in the Baksan background spectrum n
not be more carefully accounted for. No three-point smoo
ing of the KII spectrum could be tolerated, so we simp

FIG. 2. ~a! Background spectrum,B(e), for the KII detector;
measured values are shown as points with error bars, the inte
lated function is shown as a solid curve.~b! As in ~a!, for the
Baksan detector.
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interpolated between the measured values; again, the re
ing background uncertainty has a negligible effect on o
results. Note that both background spectra extend below
energies whereh̄(e)50 for each detector~c.f. Fig. 1!. The
Bi calculation requires knowledge ofB(r ,n,e) before ‘‘fil-
tering’’ by the detection efficiency. Thus it is best inferred b
taking data with no threshold criterion, resulting in bac
ground spectra extending below the nominal instrumen
cutoff. Finally, a rigorous calculation requires the bac
ground rate and event likelihoods as functions ofr , n, ande.
The available information is only a function ofe. We have
thus been forced to approximate Eq.~A24! by

Bi5E deLi~e!B~e!. ~3.22!

This approximation ignores the position and direction info
mation, and thus could lead to over- or underestimation
Bi , depending on the event location and direction, and
inhomogeneity and anisotropy of the background. Witho
detailed information about the full event likelihoods an
background rate, we cannot provide a quantitative ass
ment of the quality of this approximation. Nevertheless,
should be far superior to simple elimination of the bac
ground events, which corresponds to the assumption o
very high~formally infinite! Bi value for the censored event

IV. POSITRON PRODUCTION RATE MODEL

In this section we describe how we model the lepton p
duction rate that was presumed to be available in the pre
ing section. As already noted, the detectors most efficie
detect neutrinos through capture of electron antineutrinos
protons, resulting in the production of an energetic positr
Thus we explicitly model only the emission of electron a
tineutrinos by the supernova, and the production of positr
in the detector~we later take into account the presence
neutrinos of other species when inferring the total ene
emitted by the supernova!. There are three steps in this mo
eling process. First, we model the electron antineutrino em
sion at the supernova. Next, we model the propagation
this signal to Earth. Finally, we model the interaction of the
neutrinos with neutrino detectors, leading to the product
of energetic leptons whose detection we have already m
eled.

A. Electron antineutrino emission model

All of our signal models contain a component arisin
from the cooling of the newly formed neutron star at t
center of the supernova. We refer to this part of the signa
the cooling component. In addition to the cooling comp
nent, there may be a contribution to the signal from h
shocked accreting matter. Such a contribution arises in
delayed supernova mechanism. We describe our models
these two components in turn.

o-
2-11
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THOMAS J. LOREDO AND DONALD Q. LAMB PHYSICAL REVIEW D65 063002
1. Cooling component

Motivated by the results of numerical calculations of st
lar collapse@13,15,30,51–67#, we assume that the newl
formed neutron star emits electron antineutrinos from a n
trinosphere with a~possibly time-dependent! radius R(t),
and that the instantaneous neutrino energy spectrum is
described by a thermal Fermi-Dirac spectrum with tim
dependent temperature,T(t), and constant, nonnegativ
~usually zero! effective ‘‘degeneracy parameter,’’hn

@30,31,69#. The rate of emission of electron antineutrin
with energies in the infinitesimal range@E,E1dE# is then
Ṅ(E,tem)dE, with

Ṅ~E,tem!5AcE
2f „E,T~ tem!…r 2~ tem!, ~4.1!

whereAc is a constant with the value,

Ac54pR2
gpc

~hc!3 ; ~4.2!

R5R(0) is the observed initial neutrinosphere radius;f is
the Fermi-Dirac function,

f ~E,T!5
1

exp~E/T2hn!11
; ~4.3!

E is the neutrino energy;tem is the emission time; andr (t)
5R(t)/R(0). Thequantity,g, is the spin weight of the neu
trino species in question;g51 for both massless and ma
sive neutrinos@74#. Here and throughout this paper, tempe
ture is measured in energy units.

We are presuming here that neutrinos are emitted iso
pically. Although this is not expected to be rigorously tru
current numerical simulations indicate the anisotropy of
emission resulting from the collapse of a nonrotating sta
not likely to be larger than of order 10%. The effect of rot
tion on the neutrino emission~and on other features of th
collapse! remains an open question.

2. Accretion component

As accreted material flows through the stalled shock
the delayed supernova mechanism, it is heated and prod
e6 pairs @61–68,75,76#. The accreted material is neutron
rich ~with neutron fractionYn'0.6); as a result, positron
capture on neutrons produces electron antineutrinos thro
the reactione11n→p1 n̄e . Protons produced by this reac
tion ~and those already in the flow! can capture the therma
electrons to produce electron neutrinos through the reac
e21p→n1ne . These two reactions proceed in local the
mal equilibrium. The resulting electron antineutrino emiss
rate spectrum per unit mass of emitting material is@65,77–
79#

Ṅ~E!

Mhot
5AaYnE4f ~E,Ta!, ~4.4!

whereMhot is the mass of hot accreted material emitting t
neutrinos, andAa is a constant with the value
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Aa5
113gA

8

s0c

mn~mec
2!2

8p

~hc!3 . ~4.5!

Here gA('1.254) is the coupling constant for axial vect
weak interactions,mn is the neutron rest mass, ands0 ~51.7
310244 cm2) is the standard weak interaction cross secti
This emission rate differs from Eq.~4.1! primarily through
the factors0E2 arising from the size and energy dependen
of the capture cross sections. We always sethn50 for the
accretion component.

To calculate the emitted spectrum, we must multiply E
~4.4! by the mass of hot material emitting at any particu
time, which we write as

Mhot~ tem!5M0a~ tem!, ~4.6!

whereM0 is the maximum mass emitting during the eve
anda(tem) is a dimensionless function describing the temp
ral behavior of the accretion emission, witha(tem)<1. We
assume that the temperature of the emitting material is c
stant in time, so that the electron antineutrino number sp
trum due to accretion can be written

Ṅ~E,tem!5AaM0YnE4f ~E,Ta!a~ tem!. ~4.7!

B. Neutrino propagation

If the distance to the neutron star isD, the neutrino num-
ber flux per unit energy incident on detectors at the earth

F~E,tdet!5
1

4pD2Ṅ~E,tem!. ~4.8!

The times,tem and tdet, are related by

tdet5tem1Dt~mn ,E!2toff, ~4.9!

where tdet[0 for the first detected event,toff is the ~un-
known! offset time betweentdet50 and the time of arrival of
the first neutrinos incident on the Earth,mn is the rest mass
of the electron antineutrino, and

Dt~mn ,E!52.57S mn

eVD 2S E

MeVD 22 D

50kpc
s. ~4.10!

A constant offset ofD/c has been dropped from Eq.~4.9!.
In our model, the flux of neutrinos at the earth as a fun

tion of detector time is determined by specifyingTc(t), R,
andr (t) for the cooling component;Ta(t), M0Yn , anda(t)
for the accretion component; andmn andtoff. If every detec-
tor had an accurate clock, we would need to specify onl
singletoff parameter; it would represent the time between
detection of the first neutrino detected by any detector
the unknown time of arrival of the first neutrinos reachi
the Earth. However, accurate absolute times are avail
only for those events detected by the IMB detector. Thus
separatetoff parameter must be considered for each detec
With the exception of Abbott, DeRu´jula, and Walker@23#,
previous investigators have included at most only one s
parameter@13,21,24#.
2-12
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C. Charged lepton production

Once emitted neutrinos reach the Earth, their detec
involves two distinct processes. First, a neutrino must so
how produce an energetic charged lepton in the detec
Second, the Cereˇnkov light produced in the detector by th
charged lepton must be detected. We refer to these proce
as the lepton production and detection processes, res
tively. We have already discussed the detection proces
detail in the preceding section; we thus conclude this sec
by describing charged lepton production. Often, these
processes have not been distinguished@17–24,26–31,33#.

The dominant charged lepton production process is p
tron production resulting from the absorption of electron a
tineutrinos (n̄e) on free protons through the reaction,

n̄e1p→e11n. ~4.11!

All other processes have cross sections at least an ord
magnitude below the n̄e2p absorption cross sectio
@2,17,74#, and so we neglect them, confining our analysis
this single species of neutrino. The angular distribution
positrons produced by proton capture is nearly isotropic@80#.
To a good approximation, we treat it as being isotropic,
lowing us to use the likelihood function for isotropic rat
described in the preceding section. The energy-depen
cross section for Eq.~10.12! has been calculated by, for ex
ample, Tubbs and Schramm@77#. It can be written as

snp~E!51.35s0S E

mec
2D 2

k~E!, ~4.12!

whereme is the electron rest mass, andk(E) is a dimension-
less function describing corrections to theE2 energy depen-
dence. This function is

k~E!5S 12
Q

E D F12
2Q

E
1

Q22me
2

E2 G1/2

, ~4.13!

where Q(51.29 MeV) is the neutron-proton mass defic
note that we have ignored small terms due to neutron rec
and Coulomb and radiative corrections@74,80#.

If there areNp free protons in a detector, then its tot
cross section isNpsnp . Using Eq.~4.8! for the incident neu-
trino flux, and considering first the cooling component em
sion given by Eq.~4.1!, the capture rate per unit energy is

Rcap~E,tdet!51.35s0

Ac

4pD2 Np~mec
2!2S E

mec
2D 4

3 f „E,T~ tem!…k~E!r 2~ tem!. ~4.14!

To parametrize the amplitude we introduce the quantity,

a[
R

10kmS D

50kpcD
21

Ag. ~4.15!

Other investigators have parametrized the amplitude i
more complicated way. The choice ofa, rather than the en
ergy flux F @18,21,24,29#, the total emitted number of elec
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tron antineutrinosN @22,25#, or the total neutrino luminosity
L @20#, permits straightforward inferences about the neu
nosphere radiusR. The parametera, or its equivalent, is as
important as the remaining parameters that describe the
trino detection rate. Unfortunately, this parameter, or
equivalent, was fixed at its best-fit value in some stud
@23,28#, thereby artificially constraining the allowed value
of the remaining parameters.

Using a, Eq. ~4.14! can be written as

Rcap~E,tdet!51.2231025a2S Meff

ktonD S E

MeVD 4

f ~E,tem!

3k~E!r 2~ tem! MeV21 s21, ~4.16!

whereMeff is the effective water mass of the detector.
We can calculate the capture rate for electron antineu

nos from an accretion component in exactly the same man
as we did for the neutrinos produced by cooling, start
with the spectrum given by Eq.~4.7!. The resulting capture
rate is

Rcap~E,tdet!52.1431024mS Meff

ktonD S E

MeVD 6

f ~E,Ta!

3k~E!a~ tem! MeV21 s21, ~4.17!

wherem is a dimensionless parameter setting the amplitu
of the accretion emission given by

m5S M0

M (
D S Yn

0.6D S D

50kpcD
22

. ~4.18!

The total capture rate in a model with such an accret
component is simply the sum of the rates given in Eqs.~4.16!
and ~4.17!.

Ignoring a small~angle-dependent! term due to neutron
recoil @74,80#, each captured electron antineutrino produce
positron with energye5E2Q. The positron production rate
per unit energy is thus the capture rate evaluated atE5e
1Q,

R~e,tdet!5Rcap~e1Q,tdet!. ~4.19!

This is the function needed to evaluate the likelihood fun
tion using the formula developed in the preceding sectio

V. NEUTRINO EMISSION MODELS

We have considered fourteen different models for elect
antineutrino emission from the supernova. These fall i
three groups. First are seven single-component cooling m
els inspired by numerical collapse calculations studying
prompt supernova mechanism@51#. These models have ei
ther constant or monotonically decreasing neutrinosph
temperature, constant or monotonically decreasing neutr
sphere radius, and a possibly nonzero neutrino degene
parameter,hn . Next are five models inspired by collaps
calculations that produce delayed supernovae by mean
shocks that are revived by neutrino heating@51#. These mod-
els include both a cooling component and a component
2-13
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THOMAS J. LOREDO AND DONALD Q. LAMB PHYSICAL REVIEW D65 063002
to material accreting through the stalled supernova sho
Finally, we consider twoad hoc models with a distinctly
different structure that could be implied by the data: te
peratures and fluxes that first increase and then decre
These models have from three to six parameters descri
the neutrino emission, in addition to the required detec
offset times.

We emphasize that our models are phenomenological,
are not meant to reproduce in detail the behavior of a
particular numerical calculation. Given the sparseness of
data, excessive detail in the models seems unwarranted.
ertheless, our analysis demonstrates that the data are ca
of distinguishing among the models we have studied, so
of which are considerably more structured than those stu
previously.

A. Cooling models

(a) Constant temperature.The simplest model we con
sider is emission from a constant temperature, constan
dius neutrinosphere over a timetburst, after which emission
ceases:

T~ t !5H T0 for 0,t,tburst,

0 otherwise;
~5.1!

r ~ t !51. ~5.2!

This is the simplest model that can fully characterize
data. It has a single energy scale that is determined by
energy distribution of the events, a single time scale tha
determined by their temporal extent, and an amplitude,a,
that is determined by the number of events seen.

(b) Exponential dilution.Next we consider a model with
constant neutrinosphere temperature, but exponentially
creasing neutrinosphere radius:

T~ t !5T0, ~5.3!

r ~ t !5exp~2t/2t!. ~5.4!

Heret is the luminosity time constant. As with the consta
temperature model, this model has the smallest numbe
parameters that can fully characterize the data. However,
model allows us to test the hypothesis that the flux of
emitted neutrinos decreased in time. Moreover, the flux p
duced by this model bears some similarity to that of so
collapse calculations in which the color temperature of
emitted neutrinos stays roughly constant over time sc
;10 s, with the flux decreasing due to dilution as the op
ity in the layers below the neutrinosphere gradually sh
from being absorption dominated to being scattering do
nated@30,31,75,78,81#. In this case,r (t) is more correctly
interpreted as a dilution factor than an actually decreas
physical radius; this is why we term this model ‘‘exponent
dilution.’’

(c) Exponential cooling.The next model we consider is a
exponential cooling model described by the equations,

T~ t !5T0exp~2t/4t!, ~5.5!
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r ~ t !51. ~5.6!

Again, t is the luminosity time constant. As with the prev
ous two models, this model has the smallest number of
rameters that can fully characterize the data. However,
model allows us to test the hypothesis that the character
energy of the emitted neutrinos varied in time. This mod
exhibits the most basic characteristics of those numerical
culations of the cooling of the neutron star that sho
smoothly decaying neutrinosphere temperatures and a ne
nosphere radius that falls to within'10% of its asymptotic
value within about 0.5 s@52#.

(d) Exponential cooling and dilution.Our next model
combines exponential dilution and exponential temperat
decay:

T~ t !5T0 exp~2t/4tT!, ~5.7!

r ~ t !5exp~2t/2t r !. ~5.8!

This model, with four parameters, allows us to test whet
the data provide evidence for evolution of both the char
teristic energy of the neutrinos and the radius of the neu
nosphere.

(e) Displaced power-law cooling.For the exponential
cooling model, the cooling time scale,2T/Ṫ54t, is con-
stant in time. As a next level of complexity, we consider
model with constant radius for which the cooling time sca
increases linearly in time, that is, we set

2
T

Ṫ
54tS 11

t

4gt D . ~5.9!

Hereg is the time scale on which the coolingrate changes,
in units of the initial cooling time scalet. The temperature
remains roughly constant for a time 4gt, and then decrease
like a power law afterward. Such a model is capable of qu
tatively describing the results of several cooling calculatio
including both those that show neutrino emission with a te
perature that decays monotonically from early times@52#,
and those that show a roughly constant temperature for ti
;10 s, followed by a monotonic decrease. Also, such
growing time scale might better account for the three l
events detected by KII. Solving forT(t), the functions de-
fining this model are

T~ t !5T0S 11
t

4gt D 2g

, ~5.10!

r ~ t !51. ~5.11!

This is the ‘‘displaced power-law’’ cooling model of Blud
man and Schinder@22#. It has one more parameter than th
exponential cooling model,g. As g→`, this model becomes
simple exponential cooling. We exclude values ofg less than
1/3 as unphysical, because they imply an infinite numbe
emitted neutrinos.

(f) Nonzero degeneracy parameter.Monte Carlo calcula-
tions of neutrino radiation transport in the cooling neutr
2-14
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star @30,69# indicate that the emitted neutrino spectrum
nonthermal and well modeled by a Fermi-Dirac distributi
with positive neutrino ‘‘degeneracy parameter,’’hn . Thus
we consider an additional model, the exponential cool
model described by Eqs.~5.5! and~5.6!, but withhn allowed
to vary. This fourth parameter allows us to test whether th
is evidence in the data for a nonthermal neutrino spectru

(g) Delayed exponential cooling.Finally, we consider
emission at a constant temperature for a timetdur, followed
by exponential decay, with a constant neutrinosphere ra
throughout:

T~ t !5H Tmax for t,tdur,

Tmax exp@2~ t2tdur!/4t# for t.tdur;
~5.12!

r ~ t !51. ~5.13!

This model has only one more parameter than the expo
tial cooling model, the duration,tdur, of the constant tem-
perature period. It has a ‘‘plateau’’ period that might accou
for enhanced emission at early times without requiring
accretion component.

B. Models with accretion and cooling components

The above models were inspired by calculations study
the prompt supernova mechanism, which produce neutr
sphere temperatures and neutrino luminosities that decr
monotonically in time. In contrast, in the delayed scena
neutrino emission arises both from the cooling core, a
from material that is heated as it passes through the sta
shock that will eventually produce the supernova explosi
To see if there is significant evidence in the data for su
behavior, we considered five models that combine a coo
flux modeled with one of the behaviors described abo
with an accretion flux described by one of two alternat
models.

1. Models with truncated accretion

For four of our two-component models, we model t
accretion flux as that from accreted matter with constant t
perature,Ta , with the amount of emitting matter propo
tional to

a~ t !5

expF2S t

ta
D 10G

11
t

0.5s

. ~5.14!

The denominator is meant to mimic the properties of
accretion signal observed in numerical calculations of
delayed scenario, in which accretion is roughly constant fo
few tenths of a second, and then decreases liket21 until the
supernova shock is revived and the accretion ceases.
form of the exponential factor is chosen to be nearly cons
for times less thanta , and then drop exponentially ver
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quickly thereafter, thus implementing a smooth truncation
the accretion. We add to this accretion flux a variety of co
ing fluxes, as follows.

(h) Exponential cooling and truncated accretion.We will
find the exponential cooling model to be the most interest
single-component model, so our first accretion model ha
cooling flux with an exponentially decreasing temperatu
Tc(t), at constant radius,

Tc~ t !5Tc,0 exp~2t/4tc!, ~5.15!

r c~ t !51. ~5.16!

This model is thus a ‘‘bridge’’ between the single compone
models and models with accretion.

(i–k) Displaced power-law dilution/cooling and truncate
accretion.A more accurate model for the cooling behavi
observed in numerical calculations of the delayed scenar
a displaced power law, with the temperature or dilution fa
tor roughly constant for a time scale of order 10 s, and th
falling. Accordingly, we model the cooling component wi
the following temperature and radius factor time depe
dences:

Tc~ t !5
Tc,0

~11t/tc!
n

, ~5.17!

r c~ t !5
1

~11t/tc!
m

. ~5.18!

We consider three such models. For model (i ), we setn
51 andm50. For model (j ), we setn50 andm51. For
model ~k! we setn51 andm51. These models let us ex
plore to what extent the cooling component in tw
component models can be explained by decreasing temp
ture or increasing dilution.

2. Power-law accretion

(l) Exponential cooling and power-law accretion.In some
recent calculations, the accretion rate decays smoothly, an
roughly proportional tot21 during the first several tenths o
a second after collapse@82#. To model emission from thes
calculations, we add to an exponential cooling flux like th
in model~c! an accretion flux with temperatureTa and tem-
poral behavior given by

a~ t !5
1

~11t/ta!d
. ~5.19!

Thus the mass of emitting material is roughly constant ove
time scaleta , after which it decreases like a power law wi
index2d. We fix d at 1.5. This shallow value gives tempor
behavior roughly consistent with thet21 behavior observed
at early times in calculations, but avoids the logarithmic
tegral divergence associated with a puret21 power law.
2-15
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C. Other models

(m) Thermal rise and fall.All of the models described
above have temperatures and fluxes that never rise. Our
two models are single-component models that depart f
this pattern. The first has a linear temperature rise, follow
by exponential cooling, with the neutrinosphere radius c
stant throughout:

T~ t !5H T0t/t rise for t,t rise,

T0 exp@2~ t2t rise!/4t# for t.t rise;
~5.20!

r ~ t !51. ~5.21!

(n) Thermal rise and fall with contraction.The second has
the same thermal evolution as the first, and a neutrinosp
radius that contracts linearly during the period of rising te
perature, and remains constant thereafter:

T~ t !5H T0t/t rise for t,t rise,

T0 exp@2~ t2t rise!/4t# for t.t rise;
~5.22!

r ~ t !5H 11a~12t/t rise! for t,t rise,

1 for t.t rise.
~5.23!

In these models, the neutrino number flux can rise a
sharply peak at some time&t rise with a temperature&T0,
and fall slowly afterward, potentially accounting for the lar
number of low energy events seen within the first second
the KII burst without requiring an accretion component.

VI. BEST-FIT PARAMETER VALUES AND MODEL
COMPARISON

In this section we briefly summarize some of the results
our analysis of the models just described. We present be
parameter values for all the models. We identify the ex
nential cooling model as the most successful sing
component model, and the displaced power-law cooling p
truncated accretion model as the most successful t
component model; we consider these models further in
following two sections. We also discuss the consistency
the Baksan data with the KII and IMB data, and the effect
proper treatment of background on our inferences.

A. Best-fit parameter values

We list the best-fit values for the parameters of our sin
component cooling models in Table IV. Also listed are t
values of the neutron star binding energy implied by the b
fit parameters, calculated according to

Eb

1053 erg
53.3931024a2S D

50kpcD
2E

0

`

dtS T~ t !

MeVD 4

r 2~ t !.

~6.1!

This expression assumes three flavors~six species! of neutri-
nos and antineutrinos, with each carrying away an equal
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TABLE IV. Properties of best-fit single component coolin
models.

Quantity KII–IMB–Baksan KII–IMB

Constant temperature
a 3.20 2.43
T0 (MeV) 3.30 3.51
tburst (s) 10.43 10.43
L 2.431025 2.531025

Ndet (KII) 16.6 1 5.6 a 13.61 5.6 a

Ndet (IMB) 4.3 4.1
Ndet (Baksan) 1.81 1.0 a –
R(km) 32.0 24.3
Eb(1053 erg) 4.30 3.19

Exponential dilution
a 6.69 5.63
T0 (MeV) 3.43 3.61
t (s) 1.75 1.61
L 1.77 1.66
Ndet (KII) 15.1 1 5.6 a 13.01 5.6 a

Ndet (IMB) 4.0 4.0
Ndet (Baksan) 1.61 1.0 a –
R (km) 66.9 56.3
Eb(1053 erg) 3.68 2.93

Exponential cooling
a 4.02 3.42
T0 (MeV) 3.81 3.98
t (s) 4.37 3.97
L [1.0 [1.0
Ndet (KII) 16.9 1 5.6 a 14.41 5.6 a

Ndet (IMB) 4.0 3.9
Ndet (Baksan) 1.81 1.0 a –
R (km) 40.2 34.2
Eb (1053 erg) 5.02 3.96

Displaced power-law cooling
a 4.72 4.05
T0 (MeV) 4.02 4.17
t (s) 1.30 1.24
g 0.34b 0.34b

L 7.8 4.5
Ndet (KII) 18.215.6a 15.915.6a

Ndet (IMB) 3.8 3.7
Ndet (Baksan) 1.911.0a –
R ~km! 47.2 40.5
Eb(1053 erg) 10.2 8.33

Thermal rise and fall with contraction
a 2.44 2.20
T0 (MeV) 4.01 4.16
t rise (s) 1.32 1.30
t (s) 5.49 4.82
a 15.4 13.3
toff (KII)(s) 0.71 0.70
toff (IMB)(s) 1.09 1.06
toff (Baksan)(s) 0.74 –
L 5.5 1.4
Ndet (KII) 16.915.6a 14.415.6a

Ndet (IMB) 4.2 4.0
Ndet (Baksan) 1.811.0a –
R(km) 24.4 22.0
Eb(1053 erg) 28.3 19.6

aExpected numbers of signal and background events are listed s
rately.
bBest-fit values are the lowest values permitted in the fit.
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of the binding energy; numerical calculations show this to
a reasonable approximation@13,15,30,51–54#. The tabulated
values ofEb andR510a(D/50kpc) km were calculated as
sumingD550kpc, a value consistent with recent measu
ments of the distance to SN 1987A based on observation
its circumstellar ring@83,84#.

In Table IV, four cooling models are not listed becau
they have best-fit parameter values that make them iden
to one of the listed models. The model combining expon
tial cooling and exponential dilution has a best-fit tempe
ture time scale oftT5`; this corresponds to the pure exp
nential dilution model. The remaining unlisted models
Quantity KII–IMB–Baksan KII–IMB
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have best-fit parameters that make them equivalent to
exponential cooling model. That is, all additional paramet
have best-fit values of zero. These models are the expo
tial decay model with neutrino degeneracy parameter,hn ;
the delayed exponential decay model@Eqs. ~5.12! and
~5.13!#; and the linear temperature rise, exponential tempe
ture decay model@Eqs. ~5.20! and ~5.21!#. Also, the best-fit
values of the detector offset times for models with neutr
fluxes and temperatures that never increase are neces
zero, and are not listed in Table IV.

We present the best-fit values for the parameters of
two-component models in Table V.
TABLE V. Properties of best-fit two-component cooling plus accretion models.
Quantity KII–IMB–Baksan KII–IMB
Exponential cooling and truncated accretion
a 1.71 1.48
Tc,0 (MeV) 4.56 4.83
tc(s) 5.15 4.39
Ta,0 (MeV) 2.02 1.96
ta(s) 0.74 0.76
m [0.5 [0.5
L 577 101
Ndet (KII) 15.815.6a 13.415.6a

Ndet (IMB) 4.5 4.3
Ndet (Baksan) 1.711.0a –
R(km) 17.1 14.8
Eb(1053 erg) b 2.84 ~0.63! 2.31 ~0.54!

Displaced power-law cooling and truncated accretion
a 1.80 1.58
Tc,0 (MeV) 4.64 4.89
tc(s) 14.7 12.5
Ta,0 (MeV) 2.00 1.94
ta(s) 0.74 0.76
m [0.5 [0.5
L 624 118
Ndet (KII) 15.915.6a 13.615.6a

Ndet (IMB) 4.5 4.3
Ndet (Baksan) 1.711.0a –
R(km) 18.0 15.8
Eb(1053 erg) b 3.08 ~0.61! 2.53 ~0.51!

Displaced power-law dilution and truncated accretion
a 5.75 4.79
Tc,0 (MeV) 3.73 3.94
tc(s) 1.31 1.20
Ta,0 (MeV) 1.88 1.82
ta(s) 0.73 0.76
m [0.5 [0.5
L 138 32

Ndet (KII) 15.415.6a 13.115.6a

Ndet (IMB) 4.34 4.2
Ndet (Baksan) 1.611.0a –
R(km) 57.5 47.9
Eb(1053 erg) b 3.26 ~0.40! 2.61 ~0.35!

Displaced power-law dilution/cooling and truncated accretion
a 1.99 1.76
Tc,0 (MeV) 4.47 4.72
tc(s) 20.1 16.9
Ta,0 (MeV) 2.00 1.94
ta(s) 0.74 0.76
m [0.5 [0.5
L 399 81
Ndet (KII) 15.615.6a 13.215.6a

Ndet (IMB) 4.5 4.3
Ndet (Baksan) 1.711.0a –
R(km) 19.9 17.6
Eb(1053 erg) b 2.77 ~0.61! 2.27 ~0.51!

Exponential cooling and displaced power-law accretion
a 2.33 2.01
Tc,0 (MeV) 4.10 4.32
tc(s) 5.43 4.74
Ta,0 (MeV) 2.45 2.40
ta(s) 0.05c 0.05c

m [0.5 [0.5
L 384 32
Ndet (KII) 16.515.6a 14.215.6a

Ndet (IMB) 4.1 3.9
Ndet (Baksan) 1.811.0a –
R(km) 23.3 20.1
Eb(1053 erg) b 3.27 ~0.44! 2.64 ~0.40!
aExpected numbers of signal and background events are listed separately.
bTotal Eb is given, with part due to accretion in parentheses.
cMinimum value allowed in fit.
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The radii listed are those associated with the cooling com
nent, so thatR510a(D/50 kpc! km, as in Table IV. The
binding energies are the sum of the binding energy ass
ated with the cooling component@given by Eq.~6.1!# and the
energy of the neutrinos emitted by the accretion compon
calculated according to

Ea

1053 erg
54.1431022mS D

50 kpcD
2E

0

`

dtS T~ t !

MeVD 6

a~ t !.

~6.2!

The Ea contribution is also listed separately, in parenthes
Equation~6.2! assumes that equal energy is emitted in el
tron neutrinos and electron antineutrinos, and that neglig
energy is emitted in neutrinos of other flavors since therm
production of m and t particles in the accreted matter
suppressed due to the large masses of these leptons.
suppression is not complete, so the actual accretion en
may be slightly higher thanEa .

Since the neutrino flux and temperature never increase
any of the two-component models, the best-fit offset tim
are necessarily zero, and are not listed in Table V.

In Table V, we have setm50.5 for all accretion models
As we will demonstrate in Sec. VIII, the likelihood functio
for the two-component models varies rather weakly withm,
and has a very broad maximum at values ofm significantly
larger than one. The maximum likelihood values are sign
cantly larger than expected theoretically, and imply
amount of accreted material that would lead to formation
a black hole on the time scale ofta , which is clearly incom-
patible with the detection of neutrinos at later times. We th
setm50.5 for these models, this being a characteristic va
in numerical calculations. This value is not excluded by
broad likelihood function; in essence, we are using prior
formation to fix a parameter not usefully constrained by
data.

Two sets of best-fit parameters are presented in each t
values resulting from a joint analysis of all three data se
and values resulting from a joint analysis of only the KII a
IMB data. The latter are included for comparison with pr
vious studies that did not include the Baksan data, and
give an indication of the consistency of the Baksan data w
the KII and IMB data; we comment further on this later
this section. Since we find all the data to be consistent, a
our discussion of parameter values and model choice wil
based on results from the KII-IMB-Baksan analysis, exc
where noted.

We defer comparison of the parameter values with th
retical expectations until after the best models are identi
and further studied.

B. Model comparison

Tables IV and V also list the value of the maximize
likelihood function for each model. The actual value of t
maximum likelihood is not directly meaningful; howeve
when models are nested, the ratio of the maximum lik
hoods of competing models can be used to evaluate the
approximation to the Bayes factor, and it can be used fo
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frequentist likelihood ratio significance test. For conv
nience, the likelihood values have been scaled to the va
found for the exponential cooling model. Note that the B
penalizes models according to the number of their para
eters, so that the~approximate! Bayes factor can favor a
complicated model only if its maximum likelihood is large
than that of a simpler competitor. Likelihoods for calcul
tions with and without the Baksan data have been sca
separately; these two classes of calculations cannot be c
pared with each other because they use different sets of d

All of the models have scaled likelihoods of order unity
greater, with the exception of the constant temperature
radius model, whose scaled maximum likelihood is;1025.
Further, models with phases of constant or increasing lu
nosity all have best-fit parameters, indicating that the du
tion of any such phase is short,&1 s. Thus there is strong
evidence in the data for a neutrino luminosity that monoto
cally decreases throughout most of the burst, and the c
stant temperature and radius model can be rejected.

The simplest of the remaining single-component cool
models are the exponential dilution model and the expon
tial cooling at constant radius model, each of which descr
the neutrino emission with three parameters. The likeliho
of the dilution model is slightly larger than that of the coo
ing model. Also, the model combining cooling and dilutio
has a best-fit cooling time scaletT5`, indicating a prefer-
ence for dilution over cooling. However, this preference
weak; the maximum likelihood for the dilution model is on
1.77 times higher than that for the cooling model. Thus
though the data indicate a neutrino flux that decreases
nificantly over time scales;10 s, they cannot conclusivel
distinguish dilution from cooling as the cause for the fl
decrease in a single-component model. We consider the
ponential cooling model to be the more viable of these m
els because the characteristic radius and luminosity t
scale associated with the dilution model are much more
ficult to reconcile with theoretical expectations than are
characteristics of the cooling model.

The remaining two cooling models~displaced power-law
cooling, and thermal rise and fall with contraction! have
maximum likelihoods larger than that of the exponent
cooling model. However, they are both more complica
than this model, requiring four or more parameters~in addi-
tion to the three offset times! to describe the neutrino emis
sion. The BIC penalty for additional parameters@see Eq.
~2.11!# corresponds to a factor of 1/5.4 per extra parame
for the KII-IMB-Baksan fits, and 1/4.9 per extra parame
for the KII-IMB fits. The approximate Bayes factors for th
two more complicated models are thus approximately un
or less. In addition, more careful accounting of our pr
information about properties of the neutron star formed
the supernova would likely decrease the Bayes factors for
complicated models even further. This can be seen as
lows.

The likelihood for each model is the prior-weighted ave
age of the likelihood function for its parameters. The exp
nential cooling model has best-fit parameter values that
ply binding energies and radii significantly in excess of tho
expected for a neutron star, even presuming the stiffest
2-18
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ceptable equation of state and substantial expansion du
the high temperature and lepton fraction of the nascent n
tron star.~We assess this discrepancy more fully in the f
lowing section.! Its model likelihood will therefore be small
since the prior probability in the vicinity of the maximum
likelihood peak will be negligible. But the best-fit radii an
binding energies for the two remaining cooling models
significantly larger still. We thus expect their model like
hoods to be smaller even than that for the exponential c
ing model, both because their prior probabilities are spr
out over more dimensions, and because the prior in the
cinity of the mode for each model will be smaller than that
the vicinity of the subspace of each model corresponding
exponential cooling. Essentially, the exponential cool
model is the model among those single-component mo
with large maximum likelihoods that has the most reasona
implications for the parameters of the nascent neutron s
We explore it more thoroughly in the following section.

All of the accretion models have maximum likelihood
over 100 times greater than that for the exponential coo
model. The two-component model with the highest ma
mum likelihood is the displaced power-law cooling and tru
cated accretion model. We have used adaptive quadra
methods to calculate the Bayes factor in favor of this mo
over the single-component exponential cooling model;
find B'125 ~with m fixed at 0.5 for the two-componen
model!. This indicates strong evidence for an accretion co
ponent. This calculation used flat priors for the model para
eters over fairly broad ranges@85#. One might additionally
consider the effect of our prior knowledge of the nasc
neutron star’s possible size and binding energy on the Ba
factor. All of the two-component models that have a cooli
component with decreasing temperature have best-fit pa
eters implying neutron star radii and binding energies m
closer to expected values than any single-component coo
model. Accounting for this should more strongly favor t
two-component models. This is borne out by calculatio
We inserted a lognormal prior factor chosen to qualitativ
account for our expectations of the radius and binding ene
of the neutron star. The~log! mean radius was set to 11 km
and the~log! mean binding energy to 331053 erg; the~log!
standard deviations were chosen corresponding to a64%
variation in radius and663% variation in binding energy
reflecting uncertainties in equations of state of neutron s
of mass'1.4M ( ~see the discussion of Fig. 5 in the follow
ing section!. This prior increases the Bayes factor favori
the two-component model to'2500. We conclude that ther
is compelling evidence in the data for an accretion com
nent in the neutrino flux.

The two-component model with the highest maximu
likelihood is the displaced power law cooling and trunca
accretion model. We analyze it in greater detail in Sec. V
Its likelihood is not significantly greater than that of th
model combining exponential cooling and truncated acc
tion. The latter model acts as a ‘‘bridge’’ between our b
cooling model and the models with accretion compone
But we focus instead on the accretion model with displa
power-law cooling, not only because its likelihood is larg
but also because it offers us the opportunity to explore
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ferent cooling behavior, and because displaced power-
cooling more closely resembles the cooling behavior exh
ited in recent supernova calculations.

A common, approximate frequentist significance test a
indicates a significant preference for two-component mod
Twice the logarithm of the ratio of the maximum likelihood
of two nested models has an asymptoticxn

2 distribution, with
n equal to the difference in the number of parameters of
models being fit to the data@86#. For example, the mode
combining displaced power-law cooling and truncated acc
tion has two more fitted parameters than the exponen
cooling model, and a likelihood 624 times greater. T
chance of seeing an improvement this large or larger
chance if the exponential cooling model is the true mode
asymptotically given by the tail area beyond 2log(62
512.87 in thex2

2 distribution. This probability isQ51.6
31023. This probability is approximate, in that it is based o
an asymptotic distribution. Also, it ignores the size of t
parameter space searched and the extent to which the
ferred parameter values agree or disagree with expectat
Nevertheless, it indicates significant evidence for an acc
tion component, even from a frequentist perspective.

Note that, in contrast to the single-component models,
accretion models show a definite preference for a decreas
temperature of the cooling component over an increase
dilution. For example, the truncated accretion model w
displaced power-law cooling has a maximum likelihood ov
5 times larger than that for the model with displaced pow
law dilution. Without more complete study of the parame
dependence of the likelihood~i.e., rigorous calculation of the
model likelihood! it is not clear how strong this preferenc
is. We comment further on the characteristics of these m
els in Sec. IX.

C. Consistency with Baksan data

As noted above, Tables IV and V present results b
from joint analysis of the KII-IMB-Baksan data, and from
joint analysis of only the KII and IMB data. Nearly all pre
vious analyses have ignored the Baksan data. When t
data were first reported, there was a discrepancy between
time of the pulse observed at Baksan and that reported
IMB, the Baksan data having been detected approxima
30 s after the pulse observed by IMB@5# ~the KII detector
has an absolute time uncertainty of61 min and thus could
not settle the issue!. But within a month of the supernova, th
Baksan group discovered a subtle, cumulative error in th
clock, rendering their absolute time scale uncertain over254
to 12 s, and eliminating the discrepancy@6#. Nevertheless,
the Baksan data has been largely ignored, perhaps bec
no methodology existed that could consistently account
the relatively large background rate in the Baksan detec
An exception is the work of Piran and Spergel@29#. But
though they find exponential cooling models for which t
KII, IMB, and Baksan data are consistent, they had to p
sume all Baksan events were signal events, leading to acc
able models with unnecessarily large neutrino fluxes.

Our analysis easily accounts for strong, energy-depend
backgrounds, and demonstrates that the Baksan data are
2-19
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consistent with the KII and IMB data. This is partly appare
in the tables, where the deviations between KII-IMB-Baks
estimates and KII-IMB estimates appear relatively small.
will become apparent in the following sections, these dev
tions are indeed small compared to the uncertainties in
parameter values. More formally, we can quantitatively
sess the consistency simply by setting the offset time for
Baksan detector to be large~negative or positive!, so that the
data are considered to be entirely due to background,
comparing the likelihood of such a case to the likeliho
when the Baksan events are allowed to be coincident w
the supernova signal. The likelihood associated with the
pothesis that the Baksan data are entirely background
just be the likelihood listed in the KII-IMB column in the
tables, multiplied by a constant factor arising from the Ba
san data. This factor is 1.531025, and once introduced al
lows comparison across columns of the table. For exam
for the exponential cooling model a model attributing t
Baksan data entirely to background has a maximum lik
hood 1.531025 smaller than the likelihood of a model a
tributing part of the Baksan data to the supernova sig
These results leave little room for doubt about the prese
of a supernova neutrino signal in the Baksan data consis
with that detected by the KII and IMB experiments.

D. Effect of background

Proper treatment of background spectra plays a key
in settling the issue of the consistency of the Baksan d
with the other supernova neutrino data. The KII detector a
has a significant background rate. To assess the effect
our inclusion of the KII background rate has on our resu
we performed the following calculation, designed to mim
how other investigators dealt with the KII background. W
analyzed the KII and IMB data jointly, but we set all K
event background rates,Bi , equal to zero. Duplicating the
efforts of others who attempted to account for background
introducing an artificial energy threshold and censoring
data, we also made the KII detection efficiency vanish
energies below 7.5 MeV, and we omitted event 6 and eve
13–16 from the KII data. Analysis of the exponential cooli
model then gives the following best-fit values:a54.31, T0
53.66 MeV, andt54.50 s, implying a binding energy o
Eb55.131053 erg and a neutrinosphere radius of 43.1 k
Comparing these results to the KII-IMB results in Table
reveals little change ina or T0, but a more substantia
change~over 15%! in t. This is because there is a no
negligible probability that KII events 10–12 are due to bac
ground. It is not likely thatall of these events are back
ground events, but it is likely that at least one of them i
background event. The analysis incorporating backgro
information accounts for this, and thus prefers a shorter n
trino signal. The small change in the inferred temperatur
also easily understood. That found with background is so
what higher because the KII background spectrum peak
low energy, which relaxes the constraint imposed on
model neutrino spectrum by the low-energy KII events.

It is interesting to note that the best-fit duration for t
constant temperature model is 10.43 s, thus excluding e
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no. 12 from the neutrino signal. This time scale is roughly
times more likely than the 12.44 s time scale that wou
include this event. This is because there is a reasonable p
ability that event no. 12 is a background event. Previo
analyses that ignored the background spectrum would as
our best-fit constant temperature modelzero likelihood.

Finally, we note that our results are insensitive to the
moval of events 13–16 from the KII data because the like
hood function finds it overwhelmingly likely that thes
events are background events. For example, the best-fitt for
the exponential cooling model inferred from an analysis
the KII and IMB data ignoring these late events is less th
4% smaller than that found including them; this is the p
rameter most affected by their inclusion.

Table VI gives the probability that each KII and Baksa
event is a background event for the best-fit exponential co
ing model and for the best-fit displaced power-law cooli
plus truncated accretion model. These are obtained simpl
dividing Bi by the sum ofBi and the predicted signal rate fo
events like eventi,

E deLi~e!R~e,t i !. ~6.3!

This is just the ratio of the background part of eventi ’s
contribution to the likelihood to its total contribution. Th
formal ~model-dependent! probability that each event is

TABLE VI. Background probabilities for KII and Baksan even
for the best-fit Exponential cooling model and the best-fit displa
power-law cooling and truncated accretion model.

Event Cooling Accretion

Kamiokande II
1 5.831025 2.431025

2 6.331023 1.931023

3 0.16 4.731022

4 5.431022 1.731022

5 7.631023 3.231023

6 0.25 0.15
7 1.231023 1.531023

8 5.731024 1.031023

9 9.931025 1.931024

10 0.33 0.49
11 0.11 0.12
12 0.54 0.60
13 0.92 0.89
14 0.97 0.94
15 0.97 0.93
16 0.99 0.94

Baksan
1 2.131022 4.931023

2 3.631022 1.931022

3 7.431022 0.12
4 0.30 0.35
5 0.55 0.52
2-20
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FIG. 3. One-dimensional marginal distributions for parameters of the exponential cooling model.
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background event requires integration over the model par
eters; the tabulated values are thus merely indicative. M
striking is how the brief, low temperature component of t
accretion model and the resulting higher temperature for
cooling component reduces the background probabilities
KII events 1–6 and Baksan events 1–3 to roughly half
values implied by the exponential cooling model.

VII. THE EXPONENTIAL COOLING MODEL

We now explore more fully the implications of the data
the context of the exponential cooling model. First, we d
termine the allowed ranges for the parameters of this mo
Then we examine the implications of this model for the
dius and binding energy of the neutron star presumably
ated by the stellar collapse. Then we graphically demonst
how the best-fit model accounts for the data. We defer m
discussion of the comparison of these inferences with the
to Sec. IX. A frequentist assessment of the goodness-of-fi
the best-fit model appears in Appendix B.

A. Credible regions

A few previous investigators noted that their best-fit v
ues for the radius and binding energy of the neutron
were somewhat higher than those predicted by current e
06300
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tions of state@21,22#. Our best-fit parameter values imply
radius and binding energy significantly greater than th
found by previous investigators, indicating an even more
rious discrepancy. It is therefore important to determine,
only the best-fit parameter values, but the entire region
parameter space allowed by the data.

The exponential cooling model has three physical para
eters,a, T0, andt. Additionally, there is an unknown offse
time, toff, for each detector. In an analysis of the KII-IMB
Baksan data, there are thus six parameters. We summ
the full, six-dimensional joint posterior by presenting ma
ginal credible regions for various interesting subsets of
parameters. Here and elsewhere we use ‘‘68%’’ and ‘‘95
to denote the probability content of credible regions forma
including 68.3% and 95.4% of the posterior probability; o
calculations are based on Monte Carlo sampling and are
curate to'1%.

Figure 3 shows the one-dimensional marginal distrib
tions for each of the six parameters. Each of the six cur
shown in the figure summarizes the implications of the d
for one of the parameters without regard to the values of
other parameters. In particular, one should not quote cred
regions from these marginal distributions jointly, since c
relations between inferred values of the parameters are
nored in these plots.
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FIG. 4. Two-dimensional marginal distributions for the para
eters of the exponential cooling model. Contours indicate
boundaries of 68%~dashed! and 95% ~solid! credible regions.
Points indicated the coordinates of 500 samples from the distr
tions.
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Figures 3~a!–3~c! show marginal distributions for the
three cooling model parameters,a, T0, andt, with dashed
lines indicating the value of the marginal distribution boun
ing 68% and 95% credible regions. The modes and 9
credible regions for these marginal distributions are as
lows: log10a50.6420.32

10.26, T053.5820.70
10.99 MeV, t

55.2922.38
13.45 s. Here and elsewhere we plot distributions a

function of log10a rather than ofa itself. The distribution as
a function ofa is broad and very skew; working in terms o
log10a simplifies the appearance of the posterior, particula
later when we show joint credible regions. Note that t
modes of the marginal distributions are at somewhat diff
ent locations than is the mode of the joint distribution. This
simply a consequence of the integration involved in the m
ginal distribution: there is a greater volume of parame
space with high probability at the mode of the marginal th
at the joint mode, due to asymmetry in the full distributio
The changes in location are small compared to the size
the credible regions, however.

Figure 3~d! shows the marginal distributions for the thre
offset times, with the location of the endpoint of a 95% cre
ible region for each offset time noted by a dot. The low
boundary of these credible regions is at zero for all th
offset times. The credible regions are as follows:tKII

off

50.0920.09
11.10 s, t IMB

off 50.0011.01 s, tBak
off 50.0013.28 s.

The most interesting parameters are the three parame
a, T0, andt, describing the cooling model. Figure 4 show
three two-dimensional marginal distributions that reveal h
strongly the inferred values of these parameters are co
lated. The dots show the coordinates of 500 samples from
marginal distributions to illustrate our use of posterior sa
pling to find the marginals; the contours show 68%~dashed!
and 95%~solid! joint credible regions. The inferred values o
a and T0 are particularly strongly correlated~note that the
vertical coordinate is logarithmic, so thata andT0 exhibit a
semilogarithmic rather than a linear correlation!. This is be-
cause the expected number of neutrinos increases stro
and nonlinearly withT0: the incident number grows with th

-
e

u-

FIG. 5. Joint marginal distribution for the logarithm of the o
served radius,R, and the logarithm of the binding energy,Eb , of
the nascent neutron star, based on the exponential cooling m
Contours indicate the boundaries of 68%~dashed! and 95%~solid!
credible regions. (Robs,Eb) curves for neutron star models based
a representative set of equations of state appear as solid and d
curves.
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standard thermal dependence ofT0
3, but theE2 dependence

of the capture cross section and the energy dependence o
detection efficiency make the detectable number grow m
quickly thanT0

5. To keep the expected number, which is a
proportional toa2, near the observed number,a must there-
fore decrease strongly withT0, as shown in the plot.

Each choice ofa, T0, andt implies a radius and binding
energy for the nascent neutron star. The joint probability d
tribution for the model parameters thus implies a joint dis
bution forR andEb . Figure 5 shows the 68% and 95% joi
credible regions of the marginal posterior for log10R and
log10Eb . Also shown areEb vs R curves for a representativ
set of equations of state from the compendium of ‘‘class
neutron star models compiled by Arnett and Bowers@87#
@dashed curves labeled P(L), BJV, and PS~tensor! following
Arnett and Bowers# and state-of-the art models calculated
Akmal, Pandharipande, and Ravenhall@88# ~solid curves la-
beled APR!. The classic models span the softest and hard
models that have been seriously considered in the past
two APR curves are believed to bound the truth. For th
models, the observed radiusR was calculated from the
proper radiusRp according toR5Rp(122GMG /Rpc2)21/2,
whereMG is the gravitational mass of the neutron star. Th
is a significant discrepancy between the data and all but
stiffest ~and currently disfavored! equations of state.

A number of effects might work in the direction to redu
the discrepancy. One must first keep in mind that the neu
nosphere radius~the quantity we actually infer! is in general
distinct from the radius of the nascent neutron star. Howe
the Kelvin-Helmholtz cooling calculations of Burrows an
Lattimer @13# show that the neutrinosphere falls to with
10% of the radius of the neutron star within'0.5 s, and that
the neutron star radius changes by only 10% as it cools a
this time, even though significant neutrino emission con
ues for;10 s. The work of Gudmundsson and Buchler@89#
elucidates this somewhat curious behavior. In their study
the effects of lepton fraction on neutron star structure, th
found that neutron stars with masses of order 1.3M ( or
greater shrink by less than 30% as their lepton fractionYl
decreases fromYl50.45. There is significant rearrangeme
of mass, but in a manner that keeps the overall rad
roughly constant. This behavior is a consequence of the
that the leptons in the neutron star are relativistic, while
nuclei are nonrelativistic and by themselves exhibit a v
stiff equation of state. The loss of leptons from the star st
ens the dense regions of the star where nuclear effects d
nate the equation of state, but softens those regions w
Coulomb effects are important~i.e., the inner crust!. Thus as
Yl decreases, the core expands and the crust shrinks.
overall result is that high mass neutron stars~which have
large cores! expand asYl decreases, but low mass neutr
stars shrink. By coincidence, for masses near 1.3M ( the two
effects nearly cancel, and the radius of the star suffers l
change as the lepton fraction decreases. Thus the relat
large lepton fraction of the nascent neutron star cannot
count for its large inferred radius.

Another effect that might reduce the discrepancy is ro
tion. If the star is born as a fast rotator, its observed rad
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might be larger than expected from nonrotating models.
deed, Cooket al. @90# find that rotation can increase th
equatorial radius of a cold neutron star by'40%. However,
they find that the effect is strong only for angular velociti
very near the breakup velocity. Further, we would have to
observing the neutron star along its spin axis to see the
enhancement.

Thus, even allowing for the high temperature and lep
fraction of the nascent neutron star and the effects of ro
tion, there is a significant discrepancy between the infer
neutron star radius and the predictions of current equat
of state, especially for realistic equations of state wh
would require;50% expansion just to reach the bounda
of the 95% credible region.

B. Quality of fit

Figure 6 provides an informal, graphical display of ho
the predictions of the best-fit exponential cooling mod
compare with the observed data. The figure shows conto
of the detectable event rate,h̄(e)R(e,t) for the three detec-
tors. Integrals of this rate give the expected number of eve
in the region of integration. The plotted contours bound
gions that include 68%~dashed curve! and 95%~solid curve!
of the total number of detected events predicted by the b
fit model. Also shown are the energies and times of the
tected events. The ‘‘ridge’’ at low energies in the KII plot i
Fig. 6~a! is due to the detector background, as is the rag
structure in the Baksan plot in Fig. 6~c! ~cf. Fig. 2!. The
striking contrast among the shapes of the KII, IMB, and Ba
san contours illustrates how differently the efficiency fun
tions of the three detectors filter the neutrino signal. Roug
two-thirds of the events lie within the 68% contours for a
three detectors and all of the events except for KII event
lie within the 95% contours, indicating broad compatibili
of the model with the data.

A two-dimensional generalization of the Kolmogoro
Smirnov test, a frequentist test of goodness-of-fit, can
used to attempt to quantify the graphical comparison
present in Fig. 6; several earlier investigations employ
such tests. We present the results of such tests in Append
along with a critique of them. Such tests are rather we
They verify the adequacy of the exponential cooling mod
but they fail to display the level of improvement offered b
this model over the constant temperature model, or by ac
tion models over this model, to the degree it is displayed
an explicit model comparison~Bayesian or frequentist! using
the likelihood function.

From a purely statistical point of view, the exponent
cooling model appears adequate to account for the data w
viewed in isolation from reasonable alternative mode
However, its implications for the parameters of the nasc
neutron star conflict strongly with prior expectations, a
argue against acceptance of this model.

VIII. DISPLACED POWER-LAW COOLING AND
TRUNCATED ACCRETION MODEL

As noted in Sec. VI, models with an accretion compon
not only have much larger maximum likelihoods than sing
2-23
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FIG. 6. Contour plots of predicted detection rates in each detector for the best-fit exponential cooling model. Contours encl
~dashed curve! and 95%~solid curve! of the total predicted number of detectable neutrinos. Points indicate the inferred energies and
times of the detected events.
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component models, but they also lead to inferred neutron
parameters much closer to those expected based on the
ical and observational knowledge of neutron stars. Th
these models have much higher probabilities than sin
component models. Here we explore more fully the implic
tions of the data for the best accretion model: that combin
displaced power-law cooling with truncated accretion~here-
after referred to simply as the cooling plus accretion mod!.
As we did with the exponential cooling model, we fir
present credible regions for model parameters, and then
cuss how well the best-fit model accounts for the data. Co
parison of our inferences with theoretical expectations
pears in the following section.

A. Credible regions

The cooling plus accretion model has nine paramet
three describing the displaced power-law cooling compon
06300
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nt

(a,Tc,0 ,tc), three describing the accretion compone
(m,Ta ,ta), and three detector offset times. The sparsity
the data, combined with the complicated structure of
emitted rate and spectrum, result in a posterior distribut
that is significantly more complicated than the unimodal p
terior found for the exponential cooling model. This is illu
trated in Fig. 7, which presents simple summaries of
inferences for the three accretion parameters.

Figure 7~a! shows the profile likelihood for the accrete
mass parameter,m. The profile likelihood,Lp(m), is found
by calculating, for eachm, the maximum value of the likeli-
hood ~maximized over all the remaining parameters!. The
plotted value has been normalized so that it gives directly
maximum likelihood ratio between a model with specifiedm
and the exponential cooling model. A profile likelihood ca
provide an approximate marginal distribution. In particul
for posteriors that are multidimensional Gaussians~with ar-
2-24
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bitrary amounts of correlation!, normalized profile posteriors
are identical to the corresponding marginal distributio
More generally, the approximation can range from excell
to very poor, depending on how strongly the characteri
scale of variation of the posterior varies with the paramet
While we have not quantified how accurately these pro
posteriors approximate the corresponding marginals, our
vestigations of the behavior of the likelihood as a function
the maximized parameters indicate that these curves
equately display the regions of parameter space where m
of the posterior probability lies.

Figure 7~a! shows that the likelihood varies rather weak
with m, with values over the entire range we searched, fr
m50.1 tom53, having profile likelihoods that vary by les
than a factor of 8~roughly the range of variation across tw
standard deviations of a Gaussian distribution!. As already
noted, we focus attention on models withm50.5 as being
representative of those found in supernova calculations b
on the delayed scenario. The point on the curve correspo
ing to this model is indicated by a dot.

FIG. 7. Summaries of the posterior distribution for paramet
describing the accretion component of the displaced power-
cooling and truncated accretion model.~a! The profile likelihood for
the dimensionless accretion mass,m. ~b! The posterior forTa and
ta , for m50.5 andtc514.7 s, maximized with respect toa and
Tc,0 .
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Figure 7~b! displays the (Ta ,ta) dependence of the pos
terior for them50.5 model. For each value of (Ta ,ta), we
maximized the posterior with respect to thea andTc,0 cool-
ing parameters. The cooling time scaletc was fixed at its
best-fit value of 14.7 s for this calculation because maxim
zation with respect to this parameter proved problemat
away from the peaks~extreme values were preferred!; the
most probabletc values in the vicinity of the peaks are ne
this best-fit value. This figure clearly reveals the complica
structure of the posterior. Three local modes are appar
One is at very small values ofta corresponding to accretion
components that account only for the first event in each
tector. Another is nearta50.1 s, giving a duration just suf
ficient to include the second KII event. The global mode
Ta52.00 MeV andta50.74 s has a peak density about 2
times greater than that atta'0.1 s and thus contains mos
of the posterior probability; the 0.74 s duration includes t
first six KII events. The posterior density falls very steep
with increasing temperature, setting a firm upper limit onTa
of '2.5 MeV for the most probable values ofta(.0.2 s).
It falls less steeply with decreasing temperature, butTa
,1.5 MeV is strongly excluded. There is an additional ve
small mode, not shown, atta'12 s, due to the late, soft KI
events, nos. 10–12.

The complicated structure of the posterior has preven
us from calculating rigorous marginal credible regions
the parameters of this model using the rejection method
scribed earlier. In the remainder of this section, we pres
inferences conditioned onm50.5 and on the resulting bes
fit values of Ta and ta , listed in Table V. More rigorous
calculations~for example, using Markov chains instead
the rejection method; see Ref.@41#! should result in some-
what broader credible regions than those we will show he
as a result of averaging over other values of the accre
parameters. But sinceTa and ta are fairly well determined
for the global mode, and since their best-fit values do
change greatly withm, we do not believe more rigorou
credible regions would be substantially larger than those
played here.

Figure 8 displays marginal distributions for the three p
rameters of the cooling component and for the three of
times, conditioned on the best-fit accretion temperature
time scale form50.5. It is instructive to compare these in
ferences with those displayed in Fig. 3, based on the ex
nential cooling model. The inferred value ofa when an ac-
cretion component is present is substantially smaller, beca
a significant number of the earliest, softest events is att
uted to the accretion component. The temperature of
cooling component is significantly higher than that in
single-component model because the constraint placed on
temperature by those early, soft events has been relaxed
ferences for the cooling time scale must be more cautiou
compared, since the cooling components of these mo
have different temporal behavior. In particular, for the exp
nential cooling model,t was theluminosity time scale, so
that 4t is the temperature time scale. In the two-compon
model studied here,tc is the temperature time scale. Its in
ferred value is somewhat smaller than 4t for the exponential
cooling model, but the rate of cooling is significantly less

s
w
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FIG. 8. One-dimensional marginal distributions for parameters of the cooling component of the best accretion model.
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this model~with its displaced power-law cooling componen!
than in the exponential cooling model. The time scales
thus comparable. Finally, the offset times are better c
strained in the accretion model, in order to keep the ea
events of all three detectors coincident with the brief acc
tion component. The modes and 95% credible regions
these marginals are as follows: log10a50.3160.41, Tc,0

54.2321.07
11.58 MeV, tc514.526.7

118.5 s, tKII
off 50.0010.23 s, t IMB

off

50.0010.80 s, tBak
off 50.0011.01 s.

Figure 9 displays two-dimensional marginal distributio
for the cooling component parameters~again, conditional on
the parameters for the accretion component!. These illustrate
the correlations between the inferred values of the par
eters, which show the same qualitative behavior as that
played in Fig. 4 for the exponential cooling model.

Figure 10 shows the implications of this model for t
radius and binding energy of the nascent neutron star. Th
results are conditional on the best-fitTa andta for m50.5, so
by assumption there is an accretion contribution to the bi
ing energy given by Eq.~6.2!; this contribution isEa56.1
31052 erg. Added to this is an uncertain contribution due
the cooling component; the figure shows the joint distrib
tion for logarithms of the total binding energy,Eb , and the
observed radius,R510a(D/50kpc) km. Also shown are the
same representativeEb vs R curves shown in Fig. 5. Clearly
the radius and binding energy implied by this tw
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component model are easily compatible with the values p
dicted by all viable equations of state.

B. Quality of fit

Figure 11 graphically illustrates how the best-fit accreti
model~with m50.5) compares with the observed data. Co
parison with Fig. 6~for the exponential cooling model! re-
veals how this model can so substantially increase the p
ability for the data. The brief, low temperature accreti
component accounts for the early, soft KII events, nos. 2
This relaxes the constraint these events placed on the
perature of the cooling component, allowing it to be high
The higher temperature cooling component better acco
for the remaining early KII events~that have significantly
higher energies than events 2-6!, and also better accounts fo
the energetic events seen in IMB and Baksan. Results
two-dimensional Kolmogorov-Smirnov~KS! test further
demonstrating the adequacy of the best-fit model appea
Appendix B.

IX. COMPARISON WITH THEORY

Here we review the basic predictions of supernova the
for the characteristics of the neutrino emission, and th
compare these with the characteristics inferred above.
2-26
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FIG. 9. Two-dimensional marginal distributions for the para
eters of the cooling component of the best accretion model. C
tours indicate the boundaries of 68%~dashed! and 95%~solid! cred-
ible regions. Points indicate the coordinates of 500 samples f
the distributions.
06300
A. Core collapse and bounce

Several reviews describe the collapse of a massi
(*10M () star, such as the progenitor of SN 1987A, and
subsequent birth of a neutron star@13,15,30,51–54,91–95#.
Here we summarize the basic features of the supernova e
and the resulting neutrino signal, following closely the d
scriptions of Woosley and Weaver@51# and of Arnett, Bah-
call, Kirshner, and Woosley@95#.

Once the massive progenitor of the supernova begins
ing oxygen, its neutrino luminosity exceeds its photon lum
nosity. Neutrinos thus play a dominant role in the evoluti
of the star well before the drama of stellar collapse beg
though the neutrino luminosity is far below the limit of de
tectability.

Nuclear burning proceeds in the progenitor core until
iron core is produced with massMc;1.26M ( , radiusRc
; few 3103km, central densityrc;1010g cm23, and cen-
tral temperatureTc;1 MeV. The pressure in the iron cor
is dominated by the degeneracy pressure of relativistic e
trons (me;10 MeV), so the core resembles a degener
dwarf star with an equation of state with effective adiaba
index, G5(] ln P/] ln r)s, near that of an ideal, relativistic
electron gas, and therefore only slightly above the criti
valueG54/3 at which gravitational collapse will occur.

Since iron is at the peak of the nuclear binding ene
curve, at this point the progenitor has exhausted its suppl
thermonuclear fuel. The core contracts and heats, cau
photodissociation of the iron nuclei through the reactiong
156Fe→13a14n. This reaction is endothermic, requirin
'124 MeV per dissociation, which depletes the kinetic e
ergy of the electrons, reducing their pressure support of
star. Additionally, electron captures on nuclei in the core
cur through reactions of the form,

e21~Z,A!→~Z21,A!1ne . ~9.1!

-
n-

m

FIG. 10. Joint marginal distribution for the logarithm of th
observed radius,R, and the logarithm of the binding energy,Eb , of
the nascent neutron star, based on the displaced power-law co
and truncated accretion model, with accretion parameters fixe
their best-fit values. Contours indicate the boundaries of 6
~dashed! and 95%~solid! credible regions. (Robs,Eb) curves for
neutron star models based on a representative set of equatio
state appear as solid and dotted curves.
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FIG. 11. Contour plots of predicted detection rates in each detector for the best-fit accretion model. Contours enclose 68%~dashed curve!
and 95%~solid curve! of the total predicted number of detectable neutrinos. Points indicate the inferred energies and arrival time
detected events.
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Initially, the neutrinos produced by these reactions leave
core, carrying away most of the kinetic energy of the ca
tured electrons, and further reducing the electron pres
support.

Through the combined effect of these two processes,
effective adiabatic index in the core falls belowG54/3 and
dynamical collapse ensues. The inner'0.8M ( of the core
remains partially pressure supported~i.e., the in-fall velocity
remains subsonic! and collapses homologously with veloci
proportional to radius. Outside the inner core, the in-fall v
locity is supersonic, and is approximately the free fall velo
ity.

The neutrinos produced by electron capture have ener
typical of the electrons that produced them,En&10 MeV.
Their wavelengths (ln;20 fm) are thus long compare
with nuclear sizes, so they scatter coherently from nuc
with a cross section proportional to the number of nucle
06300
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squared@96#. The mean free path for elastic scattering o
neutrino of energyE consequently becomes much smal
than the radius of the core@97#. Initially, the neutrino diffu-
sion time scale,R2/cln ~where l n is the neutrino mean free
path!, is shorter than the dynamical time scale, and the n
trinos leave the collapsing core, carrying away entropy. B
once the density exceeds'331011 g cm23, the diffusion
time scale exceeds the dynamical time scale, and the ne
nos are trapped in the collapsing material. Thus soon a
collapse begins, the lepton fraction of the core is frozen
Yl'0.35, and the collapse proceeds adiabatically. The
generate electrons and electron neutrinos in the core stor
gravitational energy of the collapse.

On the dynamical time scale of a few milliseconds, t
density reachesrc;1014 g cm23, at which point degenerate
nonrelativistic nucleons become the dominant source of p
sure in the inner core. The resultant stiffening of the equat
2-28
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of state abruptly halts the collapse of the inner core. Pres
waves propagating outward coalesce into a shock'0.2M (

beyond the edge of the inner core. The shock begins mo
outward and dissociating the outer core material, so that
post-shock material consists mostly of neutrons and prot
In this environment of free nucleons, the electron capt
rate rises and the neutrino cross section decreases, ca
electron neutrinos to pile up behind the shock.

Several milliseconds later, the shock reaches a densit
r;1011 g cm23, where the optical depth outward is of ord
unity, and the electron neutrinos behind the shock are
leased in a dynamical time scale of a few milliseconds. T
is the first significant neutrino signal produced during c
lapse. The electron neutrinos released during this ‘‘breako
phase have a spectrum like that of the degenerate elec
that produced them (mn'40 MeV). A small number of ther-
mally produced pairs of electron neutrinos and antineutri
and other neutrino flavors are also emitted.

As the shock propagates through the outer core, it we
ens due to neutrino emission and photodisintegration
heavy nuclei. The temperature of the shocked material is
high that destruction of iron down to free nucleons occu
releasing an energyEphoto;1.531051 erg for each 0.1M ( of
matter that is photodisintegrated. The shock cannot end
such losses for long, and will die unless it quickly reach
the edge of the outer core, where the density is low and
heat capacity is high. Here the shock temperature falls,
coming less effective in producing neutrinos and too low
disintegrate iron.

In order for the shock to survive the energy losses due
photodissociation of the outer core, the total mass of the c
must be small@67,76,98–104#. Thus an iron core as large a
2M ( almost certainly cannot produce a supernova by a
drodynamical bounce, but cores smaller than'1.35M (

might. Even in this case, however, a successful explosio
problematical and depends on the equation of state used
details of the hydrodynamic and neutrino transport co
employed. Thus Hillebrandtet al. @101,108# get a strong ex-
plosion for an 8.8M ( star, Wilsonet al. @67# get a weak one,
and Burrows and Lattimer@103# get none at all. While Hill-
ebrandt@99# obtains a marginal hydrodynamic explosion f
a 10M ( star, Wilson et al., Burrows and Lattimer, and
Bruenn, do not @67,103,105#; and while Baron et al.
@106,107#, using a ‘‘softer’’ nuclear equation of state tha
hitherto accepted, obtain prompt explosions for 12M ( and
15M ( stars, Wilsonet al. @67#, using a more standard equ
tion of state, do not.

B. Prompt explosion

If a prompt explosion occurs, the shock moves outw
rapidly upon reaching the edge of the outer core, ejecting
mantle and envelope of the star. Electron neutrinos gradu
diffuse out of the inner core on a diffusion time scale;2s.
Electron captures at first replenish them, and through
diffusion process the lepton fraction of the core begins
decrease. These electron neutrinos are created with ene
of the order of the Fermi energy of the captured electr
~;40 MeV!, but do not leave the core until they have dow
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scattered to energies for which the scattering mean free
is of order the size of the core (;5 MeV). As a result of this
‘‘deleptonization’’ phase, the outer core isheated, leading to
thermal production of neutrinos of all flavors in the out
core through electron-positron annihilation. For a few ten
of a second after shock breakout, production of electron n
trinos in the optically thin region just behind the shock dom
nates that of other species. But soon the neutrino emit
region becomes optically thick and pairs of all flavors
neutrinos are produced in roughly equal numbers.

These thermal pairs cool the core, which has now reac
its final radius'10km. The integrated energy of these the
mal neutrinos is very nearly equal to the full binding ener
of the collapsed core,EB;1053 erg.

To summarize, in the prompt explosion picture, the ne
trino signal is expected to consist of two principle phas
First, there is a brief, intense burst of electron neutrinos fr
shock breakout, with a degenerate spectrum of high ene
Though intense, this burst is so brief that very little of t
binding energy and lepton number of the collapsed core
carried away by it. Following this burst is a much weak
signal of thermally produced neutrinos of all flavors wi
lower energies, but lasting for a much longer time,;10 s.
The separate time scales for shock breakout (;0.2 s) and
Kelvin-Helmholtz cooling ('2 s) may be discernible in the
neutrino signal. The integrated energy of the later, therm
signal equals the binding energy of the neutron star, and
integrated number of neutrinos in this phase of emission
ceeds the number of leptons originally contained in the c
lapsing core by an order of magnitude. The signal in wa
Cerěnkov detectors, whose cross sections for interaction w
ne ~and neutrinos of other flavors! are an order of magnitude
lower than those for absorption ofn̄e , is expected to be
dominated by thermally producedn̄e’s.

C. Delayed explosion

If the prompt explosion fails, as all recent numeric
simulations find, the deposition behind the shock of a sm
amount of energy by neutrinos streaming out of the core m
produce a delayed explosion@59–67,70–73#.

Following the failure of the shock, a nearly stationa
‘‘neutrinosphere’’ develops at about 40 km, where the de
sity r;1011 g cm23 and the neutrino emission temperatu
Tn;5 MeV. The stalled shock lies at;1002300 km, well
beyond the neutrinosphere, where the post-shock temp
ture ~;1.5 MeV! and density (;108 g cm23) are much
smaller. Capture of a small fraction (&5%) of the ;1053

erg s21 neutrino luminosity by neutrons and protons an
later, by scattering off electron-positron pairs behind t
shock heats the matter, and eventually revives the sh
After ;0.1M ( or more of matter has accreted onto the co
over a period of;1 s, the outward motion of the shoc
resumes, ejecting the mantle and envelope of the star. Du
this accretion phase, the hot material behind the shock c
ously emits electron neutrinos and antineutrinos; the prod
tion of neutrinos of other flavors is suppressed because
can be produced only in neutral current interactions. T
amount of material finally accreted is uncertain, but may
2-29
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as much as 0.5M ( in order to leave behind a neutron st
with a mass near the typical observed value of 1.4M ( .

To summarize, in the delayed explosion picture, the n
trino signal is expected to consist of three principal com
nents. Two of these, the emission of electron neutrinos
breakout, and the diffusion of neutrinos out of the inner co
which heats the outer core and produces neutri
antineutrino pairs of all flavors, are identical to those of t
prompt explosion picture. In addition, there is a third co
ponent, lasting;1 s, during which the flow of accreting
matter through the stalled shock at'100–200 km produces
electron neutrino-antineutrino pairs, possibly with a lumino
ity La;1053 erg s21 and temperatureTa'3 to 5 MeV.

D. Comparison with neutrinos from SN 1987A

The inferred values for the neutrino cooling time sca
and characteristic cooling temperatures, both for sing
component cooling models and for the cooling componen
models including an accretion component, are in remarka
agreement with those expected in the above scenario, w
had developed in the absence of direct observati

@13,15,30,51–54,94#. The n̄e energy, 3.15T0'15 MeV, is

typical of that expected for the neutral current diffusion ofn̄e

out of the hot outer core. The cooling time scalet'4 s is of
the order of the expected time scale for deleptonization of
inner core.

However, for single-component models, the inferred v

ues ofR, Eb , and the total number ofn̄e are all well above
theoretical expectations. This is most clearly displayed
the (R,Eb) credible regions for the exponential coolin
model plotted in Fig. 5. All other single-component coolin
models we explored had best-fit (R,Eb) values even more
excessive than those found with the exponential coo
model.

When an accretion component is added to the signal,
only does the fit substantially improve, but the inferred v
ues forR, Eb , and the number of thermally emittedn̄e are
all in agreement with theoretical expectations. Figure 10 d
plays the agreement between inferred and expectedR andEb

values. The implied number ofn̄e from the cooling compo-
nent ('331057) is comparable to that expected fromne
diffusing out of the inner core and heating the outer core
neutral current scattering and absorption. Approximately
31057 additionaln̄e are emitted by the accreted material.

The inferred time scale of the accretion compon
~'0.74 s! is in agreement with the time scales;0.5–1 s
observed in numerical calculations@59–67,70–73#. The
best-fit temperature of the accretion component is 2 M
and there is a sharp upper limit of'2.5 MeV. The tempera-
tures observed in current numerical calculations are 1 t
MeV higher, but are highly uncertain. Finally, the data pre
large values for the amount of accreted material (.1M ().
However, this preference is not of great statistical sign
cance, and models with~0.1–0.8)M ( of accreted material al
make the data substantially more probable than sin
component models.
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Surprisingly, then, these relatively sparse data are abl
discern between models with and without an accretion co
ponent, due to broad spectral and temporal features in
data. However, the data have proved too sparse to dis
some interesting details about the spectral evolution of
neutrino signal. Detailed studies of the transport of neutrin
through the core during the deleptonization and cool
phases show that the emitted spectrum is significantly n
thermal @30,69#. The strong energy dependence of neutri
scattering cross sections (}e22) leads to a spectrum that i
well modeled by a Fermi-Dirac spectrum with positiv
chemical potentialmn ~or effective degeneracy paramete
hn5m/T), with hn'2 to 4. But the data are too sparse
provide a significant measure of these transport effects: w
the hn parameter is added to the exponential cooling mod
its best-fit value is zero, and its 95% credible region exte
to hn'5. Similar conclusions were reported earlier by Hi
ebrandtet al. @108#. In addition, there is some ambiguit
among the calculations regarding the evolution of the sp
trum of the cooling component. Calculations that treat
neutrino transport in a limited way by considering only
‘‘luminosity temperature’’ for the neutrinos necessarily find
neutrino temperature that decreases in time as the lumino
decreases@52#. More sophisticated calculations seem to ind
cate that the neutrino temperature stays roughly cons
over;10 s~perhaps even rising slightly during the first fe
tenths of a second@94#!, with the luminosity decreasing a
the opacity just below the neutrinosphere becomes more
more scattering-dominated, leading to dilution of the ne
trino spectrum @30,31,75,78,81#. In our study of single-
component models, the data were not able to discern
tween cooling and dilution, although a slight preference
dilution appeared. In our study of models including an acc
tion component, the initial temperature was larger than t
in single-component models, with the result that models w
a decreasing temperature for the cooling component are
ferred over models with pure dilution. This preference is n
decisively strong, however.

X. INFERRING THE ELECTRON ANTINEUTRINO MASS

The calculations of the preceding sections all presu
that the electron antineutrino rest mass,mn̄e

, is zero. We

derived the likelihood function allowing for nonzeromn̄e
, so

it is straightforward to test this assumption. For several of
models we considered, the likelihood is maximized w
mn̄e

50, indicating no evidence for a nonzero rest mass in
supernova neutrino data. This is true for the exponen
cooling model that was the focus of Sec. VII. For others,
likelihood is maximized for small values ofmn̄e

~a few eV!,

but the likelihood is increased only slightly above itsmn̄e

50 value, indicating no significant evidence for a nonze
mass. This is true for the cooling plus accretion model t
was the focus of Sec. VIII; Table VII provides the best-
parameters for this model found using the KII-IMB-Baks
data. TheL/L0 entry gives the ratio of the maximum likeli
hood to that found withmn̄e

50. These results are represe

tative of models with nonzero best-fitmn̄e
: best-fit masses o
2-30
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a few eV; best-fit detector offset times;0.1 s; negligible
changes in other parameters; and insignificant improvem
in the maximum likelihood.

Presuming that there is nevertheless a small nonzero
mass, we can calculate marginal posterior distributions
mn̄e

for any model of interest to obtain constraints on t
mass. Figure 12 shows such marginal distributions for
exponential cooling model~dashed curve! and the cooling
plus accretion model~solid curve; herem, Ta , andta were
fixed as in Sec. VIII!. The dots indicate the upper bounds
95% credible regions and are atmn̄e

58.9 eV for the expo-

TABLE VII. Properties of best-fit two-component model wit
nonzero neutrino mass.

Quantity KII-IMB-Baksan

Displaced power-law cooling
and truncated accretion

a 1.78
Tc,0 (MeV) 4.65
tc(s) 14.7
Ta,0 (MeV) 2.04
ta ~s! 0.56
m [0.5
mn̄e

(eV) 3.02
toff (KII)(ms) 0.07
toff (IMB)(ms) 0.04
toff (Baksan)(ms) 0.13
L/L0 2.3
Ndet (KII) 15.715.6a

Ndet (IMB) 4.5
Ndet (Baksan) 1.711.0a

R (km) 17.8
Eb(1053 erg) b 3.04 ~0.56!

aExpected numbers of signal and background events are listed s
rately.
bTotal Eb is given, with part due to accretion in parentheses.

FIG. 12. Marginal distributions for the electron antineutrino re
massmn̄e

, using the exponential cooling model~dashed! and the
cooling plus accretion model~solid!. Dots indicate the uppe
bounds of 95% credible regions.
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nential cooling model andmn̄e
55.7 eV for the cooling plus

accretion model. These upper limits formn̄e
are substantially

better than the laboratory limits that were available at
time of the supernova neutrino detections~and comparable to
current limits!. Formally, a complete summary of the impl
cations of the data formn̄e

would additionally marginalize
over the choice of signal model, essentially producing
weighted average of the individual marginals shown in
figure ~this is called Bayesian model averaging@109,110#!.
But the cooling plus accretion model is so much more pr
able than single-component models that model averag
would essentially reproduce the solid curve, which we th
consider to summarize our results formn̄e

.
Note that the marginal posterior based on the exponen

cooling model peaks at positivemn̄e
, even though the joint

posterior based on that model peaks atmn̄e
50. Also, for the

cooling plus accretion model, the ratio of the peak of t
marginal to its value atmn̄e

50 is greater than the likelihood
ratio of 2.3 listed in Table VII. These differences between
joint distributions and their marginals are further examples
the phenomenon discussed in Sec. VII~see the discussion o
Fig. 3!. There is somewhat more allowed volume in the p
rameter space for slightly positive values ofmn̄e

, and the

integration yielding the marginal formn̄e
accounts for this,

increasing the marginal density formn̄e
in that region. Such

effects are common, and provide an illustration of the diff
ence between using profile likelihoods and true marginal d
tributions.

XI. COMPARISON WITH METHODOLOGIES
OF PREVIOUS STUDIES

We have reached substantially different conclusions t
previous studies of the supernova neutrinos. One of the
jor improvements of this work is our more thorough expl
ration of the space of alternative signal models, and thu
may not seem surprising that we might discover a sig
component missed by others. However, this alone does
account for the differences between our results and thos
others. For example, the exponential cooling model has b
studied by several investigators, yet the best-fit radius
find is 70% larger than that found by Spergelet al. @21#
based on a likelihood analysis, and our best-fit binding
ergy is over 40% larger than that found both by these inv
tigators and by Bludman and Schinder@22#, who also used a
likelihood function.

Previous analyses of the neutrino data are extremely
verse, using a wide variety of statistics and methods. A
tailed comparison of all these methods with the pres
analysis would be lengthy. We here choose instead to em
size two points of departure between our analysis and ea
ones that appear to us to offer the most important lessons
analysis of data like the SN 1987A neutrino data.

A. The form of the likelihood

It is clear that there are important differences between
likelihood function and those used by others, since our b

pa-

t
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fit parameter values~equivalent to maximum likelihood esti
mates! are significantly different from those found earlie
Comparing our likelihood function, Eq.~3.18!, with those
used by other investigators, several differences are appa
Most obvious, perhaps, is the presence of the backgro
term that allows us to correctly incorporate informati
about the energy-dependent background rates of detec
We have already noted, in Sec. VI, how important such te
are for incorporating the Baksan data. But we also noted
their effect on inferences using only the KII and IMB dat
although noticeable, is not significant compared to the un
tainties in inferred parameter values. Thus these terms do
explain the differences between our results and those of
ers.

Another difference is the presence of terms to correct
dead time. But for the most part, these terms affect only
overall amplitude of the effective signal in IMB~decreasing
it by roughly 10%!, and thus also do not account for th
significant differences.

The remaining difference is the absence of a factor
h(e) from inside each event integral in the likelihood fun
tion. That is, all previous studies replaced the integral in
product term of Eq.~3.18! with a term proportional to

E deh̄~e!Li~e!R~e,t i !. ~11.1!

We have verified that inclusion of such an additional, inc
rect h̄ factor indeed results in best-fit exponential cooli
parameter estimates very close to those found in earlier s
ies. This factor reduces the low energy contribution to
integral, so that somewhat larger temperatures are need
make the likelihoods of the events reasonably large. The
pected number of detectable neutrinos varies very stron
with T @more strongly thanT5, due to theE2 dependence o
the capture cross section and the strong energy depend
of h̄(e)#, so the value of the amplitude parametera ~i.e., of
the neutron star radius! found in the fit is strongly affected by
the presence or absence of theh̄ factor, as is the binding
energy, which scales likea2T4.

The detection probability is already built into theLi func-
tion; insertion of an additionalh̄(e) factor represents an a
tempt to take into account a selection already accounted
in Li(e). This is perhaps most easily seen by considerin
simple situation in which detection occurs only if the numb
of photomultiplier~PMT! ‘‘hits’’ exceeds a threshold value
nth , and the detection data for eventi is simply the number
of photomultipliers hit,ni . Suppose also that the probabili
for n hits is a Poisson distribution with a mean that is
increasing function of the event energy. The detection e
ciency is the probability for hitting more thannth PMTs,
given the event energy. It would be calculated by summ
Poisson probabilities forn.nth . The event likelihood for
eventi is the Poisson probability for seeing exactlyni hits. It
is not the product of this probability and the efficiency; th
product has no meaningful interpretation. We could multip
it by the product of detection,given that ni PMTs were hit
~since the Poisson factor already takes that into account!. But
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sinceni must have been larger thannth for the event to have
been detected, this extra conditional probability is equa
unity. The inclusion of anh̄ factor in the detection likeli-
hoods is thus incorrect.

It is worth noting that straightforward application of th
rules of probability theory led us to the correct likelihood
a more-or-less automated way, once we set out to calcu
the probability for the data from first principles, and n
merely write it down based on our intuition. The derivatio
is Bayesian in that we freely assigned probability distrib
tions to the energies~and directions and positions! of de-
tected events, despite the fact that these quantities cann
considered to be ‘‘random variables.’’

B. Distinguishing parameter estimation from model
assessment

As noted in Sec. II, frequentist and Bayesian statist
both divide questions about parametrized models into
classes. First is the class ofestimationquestions that asses
the implications of assuming the truth of a particular mod
usually by estimating values or allowed ranges for the mo
parameters. Second is the class ofmodel assessmentques-
tions that assess the viability of a model. We have outlin
Bayesian methods for treating these questions in Sec. I
clear discussion of the application of frequentist methods
estimation and model assessment to problems in the phy
sciences is available in the text by Eadieet al. @86#.

Frequentist procedures used for estimation are fundam
tally different from those used for model assessment. Un
tunately, nearly every previously published statistical ana
sis of these data has incorrectly used model assess
procedures to address estimation problems. In particula
number of studies used goodness-of-fit~GOF! procedures to
specify ‘‘confidence’’ regions, based either on statistics of
Kolmogorov-Smirnov~KS! type @7,21,24#, a likelihood sta-
tistic @20#, or an ad hoc ‘‘x2’’ type statistic @26#. In these
studies, the boundary of the calculated ‘‘confidence regio
was determined by finding parameters for which the sign
cance level of a GOF test is equal to the desired confide
level ~i.e., significance levels were confused with confiden
levels!. Such misapplication of GOF procedures to parame
estimation problems is commonplace in astrophysics;
have been guilty of it ourselves in the past. Loredo a
Wasserman discuss the problem in detail in the context of
analysis of gamma ray burst data~see Appendix A of Ref.
@111#!. Using a simple example based on inferring the me
of a Gaussian distribution, they show that use of ax2 GOF
test to determine ‘‘confidence’’ regions in the manner of e
lier studies not only fails to reproduce the familiar ‘‘s/AN’’
68.3% confidence region, but produces an erroneous re
whose average size is larger than the correct region, with
error thatgrowsas the amount of data increases.

It is interesting to speculate about why such a basic m
take is so frequently made. One reason is that, for the fa
iar case of Gaussian statistics, the same function—thex2

statistic—is used both to define the statistic used in a G
test~the minimum value ofx2), and the interval-valued sta
tistic used for a confidence region~the parameter range fo
2-32
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which x2 is within some critical value,Dx2, of its minimum
value!. This may have motivated those investigators who
tempted to use the KS GOF statistic to define confide
regions, although we know of no statistical literature su
gesting that this statistic is useful for estimation problem
More fundamentally, the confusion may arise because th
are several qualitatively different probabilities in frequent
statistics. Covering probabilities for confidence regions, ty
I error probabilities, type II error probabilities—all of thes
are quantities that span@0,1# that scientists can use to asse
the reasonableness of hypotheses. But none of them
probabilitiesfor hypotheses, so it is easy for nonexperts t
confuse which is most closely related to the question they
asking. This confusion is exacerbated by the fact that
frequentist probabilities must condition on a particular po
hypothesis, even those that refer to an entire class of hyp
eses. For some problems~particularly for confidence region
calculations!, the hope is that the final result is independe
of the particular hypothesis used. But this is seldom true
real problems, so that one hypothesis must inevitably be c
sen to represent a class of hypotheses~e.g., approximate con
fidence regions are found using calculations conditioning
the best-fit hypothesis!.

This confusion cannot arise in the Bayesian approa
One always calculates probabilities for hypotheses, so th
is never ambiguity over what kind of hypothesis a probab
ity is associated with: one must explicitly state it in ord
even to start the calculation. If one seeks a measure of
plausible it is for a parameter to lie in some region, o
simply calculates the probability that it is in that region~pa-
rameter estimation!. If instead one wishes to assess an en
model, one calculates the probability for that model a
whole ~model comparison!. The formalism forces one to dis
tinguish between these options.

XII. CONCLUSIONS

Using the tools of Bayesian inference, we have perform
an analysis of the neutrinos from SN 1987A that differs s
nificantly from previous analyses, both in its methodolo
and in its results.

Methodologically, the key ingredient in our analysis is t
likelihood function, and our likelihood function differs from
those used in previous studies in several important resp
It more consistently accounts for the energy-dependent
ciencies of neutrino detectors, it incorporates detailed in
mation about the background spectra of the detectors, a
accounts for dead time. Our methodology allows us to ca
fully quantify the uncertainty in our inferences in a way th
fully displays the strong correlations between inferred
rameter values. Also, we have studied a much wider var
of neutrino emission models than were studied previou
The Bayesian approach lets us use the likelihood functio
calculate probabilities for rival models that account for p
rameter uncertainty and implement an automatic penalty
model complexity. These features of our approach insure
our conclusions are robust with respect to model uncerta

Our calculations indicate that the neutrino data stron
favor signal models that have two components: a long t
06300
t-
e
-
.
re
t
e

s
re

re
ll
t
th-

t
n
o-

n

h.
re
-

w
e

e
a

d
-

ts.
fi-
r-

it
e-
t
-
ty
y.
to
-
r

at
y.
y
e

scale component due to Kelvin-Helmholtz cooling of the n
scent neutron star, and a brief (&1 s), softer component du
to emission from material accreting through a stalled sup
nova shock, as expected in the delayed scenario for su
nova explosions. Such models make the data significa
more probable than single-component cooling models m
vated by the prompt scenario for supernova explosions
addition, the radius and binding energy of the nascent n
tron star implied by single-component models deviate s
nificantly from the values predicted by current neutron s
models, whereas those implied by models with an accre
component are in complete agreement with the predictio
As a result, two-component models are hundreds to th
sands of times more probable than single-component mod
The neutrino data thus provide the first direct observatio
evidence in favor of the delayed scenario over the prom
scenario. Furthermore, the inferred characteristics of the
nal are in spectacular agreement with the salient feature
the theory of gravitational collapse and neutron star str
ture, particularly when correlations between parameters
fully taken into account in the comparison of theory wi
observation. In addition to studying the implications of t
neutrino data for the formation of the nascent neutron s
we have also used the data to find model-dependent u
limits on the rest mass of the electron antineutrino that
competitive with laboratory limits.

The detection of neutrinos from supernova SN 1987A i
tiated a new era in astrophysics, the era of extrasolar neut
astronomy. Years later, the supernova neutrinos detecte
the Kamiokande-II, IMB, and Baksan detectors are still
fering us important lessons, not only about the physics
supernovae and neutrinos, but also about the potentia
Bayesian methods for improving the analysis of complica
astrophysical data.
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APPENDIX A: DERIVATION OF THE LIKELIHOOD
FUNCTION

We present here a derivation of the full likelihood fun
tion for the supernova neutrino data, Eq.~3.13! in the main
text. The calculation is straightforward and the result is e
to understand, as explained in Sec. III. However, we m
some effort here to go through it in detail, both to reve
several errors that were made in previous studies, an
demonstrate how straightforward the calculation of su
likelihoods is from a Bayesian perspective. Loredo a
Wasserman@112# used similar methods to derive likelihoo
functions for Bayesian analyses of gamma-ray burst data

As with the derivation of the idealized likelihood in Se
III, we first consider the probability for nondetections. To
this, we will use a standard ‘‘trick’’ from probability theory
that frequently arises in Bayesian calculations. When
cannot directly calculatep(AuC), we introduce an exhaus
tive, exclusive set of auxiliary propositions,$Bi% ~one and
only one of theBi must be true!, such that we can calculat
p(AuBi ,C). Then we can find the the desired probabil
from

p~AuC!5(
i

p~A,Bi uC!5(
i

p~AuBi ,C!p~Bi uC!,

~A1!

provided we can calculate or specifyp(Bi uC). If the Bi form
a continuum, the sum becomes an integral. This trick
sometimes referred to as ‘‘extending the conversation.’’

To apply this trick to calculatep(d̄ j uP,M ), we begin by
noting that there are many situations that can result i
nondetection. If neither a signal nor background event
curs, no detection will be reported. But even if one or mo
signal or background event occurs, it is possible no ev
will be reported, because of the instrument threshold. If
let S m denote the proposition thatm signal events occurred
in the time interval under consideration, andB n denote the
proposition thatn background events occurred, then we c
write the nondetection probability as

p~ d̄ j uP,M !5 (
m50

`

(
n50

`

p~ d̄ j ,S m,B nuP,M !. ~A2!

Each term will involve poisson probabilities form signal
events, proportional to (Rdt)m, and n background events
proportional to (Bdt)n. Since thedt intervals are small~in
the sense thatRdt!1 andBdt!1), we can neglect possi
bilities involving more than one event occurring indt. This
leaves three possibilities.
06300
d
t-

-

y
e
l
to
h
d

e

s

a
-

e
nt
e

n

p~ d̄ j uP,M !'p~ d̄ j ,S 0,B 0uP,M !1p~ d̄ j ,S 1,B 0uP,M !

1p~ d̄ j ,S 0,B 1uP,M !. ~A3!

To calculate the first term, we first apply the product ru
writing

p~ d̄ j ,S 0,B 0uP,M !

5p~ d̄ j uS 0,B 0,M !p~S 0uP,M !p~B 0uP,M !.

~A4!

Here we have droppedP from the right of the bar in the firs
probability, since it is irrelevant tod̄ j once we specify that no
events have occurred. Also, we factored the joint probabi
of (S 0,B 0) as the product of their independent probabiliti
to get the last two factors. The first factor—the probabil
for reporting no detection if neither a signal nor a bac
ground event occurs—is simply equal to 1. The second
third factors are simply given by the Poisson probability f
no event, given the expected number indt ~c.f. equation
~3.4!!. Thus

p~ d̄ j ,S 0,B 0uP,M !5e2[B1R(t)]dt. ~A5!

To calculate the second term in Eq.~A3!, we extend the
conversation, resolvingS 1 into a continuum ofS(r ,n,e)
propositions. This gives

p~ d̄ j ,S 1,B 0uP,M !

5E deE dVE dnp„d̄ j ,S~r ,n,e!,B 0uP,M …

5E deE dVE dnp„d̄ j uS~r ,n,e!,B 0,M …

3p„S~r ,e,n!uP,M …p~B 0uP,M !. ~A6!

The first factor in the integrand is the probability that a sign
event occurring at a specified position, with a specified
ergy and direction, will lead to a nondetection. We presu
that the experiment team can calculate this probability
detailed modeling of the detector~perhaps including results
of calibration measurements!. It is simply the probability that
the specified event will produce triggers that do not sati
the detection criterion. We write this probability as

p„d̄ j uS 1~r ,n,e!,B 0,P,M …512h~r ,n,e!, ~A7!

where h(r ,n,e) is the detection efficiency for events wit
the specified position, energy, and direction; we call this
full detection efficiency.

The second factor in the integrand of Eq.~A6! is the
probability density for detecting the specified signal eve
and no other, indt j . It is simply given by the Poisson dis
tribution:

p„S 1~r ,n,e!uP,M …5
R~n,e,t j !

V
e2R(t j )dt. ~A8!
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The third factor in the integrand of Eq.~A6! is the prob-
ability for no background events that we needed for the fi
term in the nondetection probability, equal to exp(2Bdt). We
thus have all the factors needed to calculate Eq.~A6!. Since
only the full efficiency factor depends onr , we can pull the
signal rate through the volume integral, writing

p~ d̄ j ,S 1,B 0uP,M !

5dte2[B1R(t j )]dtE dnE deR~n,e,t j !@12h̄~n,e!#

5e2[B1R(t j )]dtFR~ t j !dt2dtE dn

3E deR~n,e,t j !h̄~n,e!G . ~A9!

Here we have introduced thevolume-averageddetection ef-
ficiency defined according to

h̄~n,e![E dV

V
h~r ,n,e!. ~A10!

We can write Eq.~A9! more succinctly by introducing an
effective ~detectable! signal rate,

Reff~ t ![E dnE deh̄~n,e!R~n,e,t !. ~A11!

Using this, Eq.~A9! becomes

p~ d̄ j ,S 1,B 0uP,M !5e2[B1R(t j )]dtdt†R~ t j !2Reff~ t j !‡.
~A12!

The last probability we need in order to calculate the n
detection probability—the last term in Eq.~A3!—is very
similar to the one we have just calculated. We can ge
simply by switching the roles of background and signal, ta
ing into account the fact that the background rate may
pend on position and direction. This gives

p~ d̄ j ,S 0,B 1uP,M !5e2[B1R(t j )]dtdt~B2Beff!,
~A13!

where the effective background rate is given by

Beff5E deE dVE dnh~r ,n,e!B~r ,n,e!. ~A14!

We cannot useh̄(n,e) here becauseB(r ,n,e) is a function of
position in the detector~e.g., due to radioactivity in the roc
surrounding the detector!. We have presumed here that th
full efficiency for detecting a background event with spe
fied position, direction, and energy is the same as that
detecting a signal event with the same properties. That is
are assuming that the detector does not distinguish b
ground and signal events by some other property.

Assembling all of the ingredients, we can now write dow
the full nondetection probability:
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p~ d̄ j uP,M !5e2[B1R(t j )]dt@11dt„R~ t j !1B…

2dt„Reff~ t j !1Beff…#. ~A15!

Since we will need the product of many such probabilitie
its logarithm is easier to work with. Taking advantage of t
fact thatRdt!1 andBdt!1, and using log10(11x)'x for
small x, we find

log10@p~ d̄ j uP,M !#'2dt„Reff~ t j !1Beff…. ~A16!

The product of all the nondetection probabilities will thus
an exponential with sums of the effective rates over all n
detection intervals. This sum is just the integral of the effe
tive rates over the nondetection intervals, so the produc
nondetection probabilities can be written

)
j

p~ d̄ j uP,M !5expF2BeffTnd2E
Tnd

dtReff~ t !G ,
~A17!

where*Tnd
dt denotes integration of the~disjoint! intervals of

time without detections.
Now we turn to the detection probabilities. A reporte

event can be either a signal or a background event, so
have

p~di uP,M !5p~di ,S 1,B 0uP,M !1p~di ,S 0,B 1uP,M !.
~A18!

As with the nondetection probability, we ignore possibiliti
that are higher than first order indt.

We can calculate the first term by introducingS(r ,n,e)
and applying the product rule, just as we did in Eq.~A6!. The
result is

p~di ,S 1,B 0uP,M !5dtE deE dVE dnLi~r ,n,e!
R~n,e,t i !

V

3exp$2@R~ t i !1B#dt%. ~A19!

Here we have defined theindividual event likelihood func-
tion according to

Li~r ,n,e![p„di uS~r ,n,e!,M …. ~A20!

This is just the probability for observing the detection da
presuming the location, direction, and energy of the lep
producing the data have the specified values. It is the lik
hood function we would use to infer the properties of a p
ticular detected event. Detailed knowledge of the detec
should allow experimenters to calculate this function
each detected event~by fitting the PMT data!. Since
Li(r ,n,e) is a probability fordi , it need not be normalized
when integrated over (r ,n,e). However,Li can be multiplied
by any constant without affecting our inferences~since the
constant will drop out in Bayes’s theorem!, and it is conve-
nient to adopt the convention that the reported individ
likelihood functions include a constant that makes them n
malized when integrated over (r ,n,e).
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The second term in Eq.~A18! can be calculated in exactl
the same way, switching the roles of the signal and ba
ground rates. Combining this term with Eq.~A19! gives us
the detection probability,

p~di uP,M !5dte2[R(t i )1B]dtE deE dVE dnLi~r ,n,e!

3FR~n,e,t i !

V
1B~r ,n,e!G . ~A21!

We can take advantage of the homogeneity of the signal
to replace the signal-dependent integral with

E deE dnLi~n,e!R~n,e,t i !, ~A22!

where the volume-averaged event likelihood function
given by Li(n,e)5*dVLi(r ,n,e)/V. We retain the simple
likelihood notation for this and other averaged likelihood
because this is in fact the likelihood for the direction a
energy:

Li~n,e![p„di uS~n,e!,M …

5E dVp„di ,r uS~n,e!,M …

5E dVp~r uM !Li~r ,n,e!. ~A23!

Taking the prior density for the event position to be unifo
throughout the tank revealsLi(n,e) to be the volume-
averaged event likelihood, as claimed.

To further simplify the appearance of our equations,
introduce the event-averaged background rate,Bi , according
to

Bi[E deE dVE dnLi~r ,n,e!B~r ,n,e!. ~A24!

With our convention of normalizingLi , this can be inter-
preted as the rate of background events ‘‘like’’ event num
i in the sense of having positions, directions, and ener
consistent with the data for that event. These definitions
us write the detection probability as

p~di uP,M !5dtexp$2@R~ t i !1B#dt%

3FBi1E deE dnLi~n,e!R~n,e,t i !G .
~A25!

Combining the detection and nondetection probabilit
gives us the full likelihood function,
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L~P!5~dt !NdexpF2BeffT2E
T
dtE de

3E dnh̄~n,e!R~n,e,t !G
3)

i 51

Nd FBi1E deE dnLi~n,e!R~n,e,t i !G .
~A26!

Here we have combined the exponentials in the detec
factors appearing in Eq.~A25! with the exponents in the
nondetection probabilities to give an integral over theentire
duration of the data. In doing so, we have neglected
difference between the full and effective rates in theN de-
tection intervals; but this difference is very small provid
thatdt!T, and one can easily demonstrate that it has a n
ligible effect on inferences.

One last simplification can be made. Since scaling b
parameter-independent factor does not affect our inferen
we can drop the (dt)N factor and theBeffT exponent from the
likelihood. This leads to Eq.~3.13!, the full likelihood used
in the main text.

APPENDIX B: TWO-DIMENSIONAL KOLMOGOROV-
SMIRNOV TESTS

In Table VIII we present the results of two-dimension
Kolmogorov-Smirnov~KS! goodness-of-fit tests applied t
the constant temperature/radius model, the exponential c
ing model, and the model combining displaced power-l
cooling and truncated accretion, each with parameters fi
at their best-fit values. We used the version of the test
vised by Fasano and Franceschini@113#. This test compares
the fraction of the expected rate in four quadrants about
point (t i ,e i) associated with each event with the fraction
the number of detected events in that quadrant. The lar
difference between the observed and expected values is
KS statistic,D. The model is rejected ifD is too large, the

TABLE VIII. Two-dimensional Kolmogorov-Smirnov test re
sults for the best-fit constant temperature model, the best-fit ex
nential cooling model and the best-fit displaced power-law cool
and truncated accretion model.

Quantity KII IMB Baksan Joint

Constant temperature
Dobs 0.38 0.45 0.52 –
P(.Dobs) 3.231022 6.931022 8.431022 8.731023

Exponential cooling
Dobs 0.31 0.28 0.38 –
P(.Dobs) 0.12 0.53 0.37 0.27

Displaced power-law cooling
and truncated accretion

Dobs 0.27 0.23 0.37 –
P(.Dobs) 0.25 0.77 0.39 0.52
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typical critical value being that associated with a 5% fa
rejection rate. This test ignores the uncertainty ine for each
event, and the quoted significance values are approxim
~they are based on an approximate expression for the d
bution for D). We performed the test separately for ea
detector~using the best-fit parameters from a joint fit!, and
then combined the test results using standard methods to
the significance associated with the joint fit@86#. These re-
sults indicate moderate incompatibility of the data with t
constant temperature model, and compatibility with the ot
models.

Bayesian inference does not include such a thing as
alternative-free goodness-of-fit test; we provide these t
for those readers who find them useful. KS tests have sev
limitations that must be kept in mind when interpreting th
results. First, the one-dimensional and two-dimensional
tests are sensitive only to the shape of a distribution, no
amplitude. The test may be straightforwardly extended
include the amplitude, but the resulting test then becom
insensitive to the shape of the distribution for the supern
neutrino data because Poisson fluctuations in the numbe
events detected, rather than the positions of the events in
time-energy plane, dominateD. Second, the two-dimensiona
test lacks the distribution-free property that makes the o
dimensional test attractive. In fact, there are different gen
alizations of the test to two dimensions, each with differe
sensitivity to the parent distribution@113,114#. Thus, the test
should ideally be calibrated with extensive Monte Carlo c
V.

I.

D

a
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culations. Finally, the reliance of the test on the cumulat
distribution of events, rather than the differential distributio
can make it insensitive to local structure present in the mo
~e.g., it can accept a model even if there are data in reg
of zero probability!.

On a more subjective level, our extensive experience w
application of this test to these data has led us to be skep
of its value. We have found it to be quite insensitive, acce
ing models that seem clearly unacceptable on other grou
~either to the trained eye or based on tests with likeliho
functions!. Some evidence of this behavior is obvious he
the best-fit cooling and accretion models have compara
values ofP(.Dobs), despite the fact that the latter mod
makes the data over 600 times more probable than
former. Finally, we note that some earlier studies attemp
to assess joint fits by applying a single KS test to a fictitio
‘‘sum’’ detector whose expected rate is the sum of the ra
of the considered detectors, and whose data are the colle
data of the detectors@21#. This procedure corrupts the test,
it ignores information about which events to associate w
which expected rate. We have found that some models
are accepted with a KS test based on such a ‘‘sum’’ dete
can be rejected by a combination of tests applied to the
dividual detectors, and vice versa. This is because no
tected event represents a sample of the summed det
rates, leading to erroneous results when the test is perfor
with the ‘‘sum’’ detector.
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