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Example of resonance saturation at one loop
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We argue that the largd; expansion of QCD can be used to treat a Lagrangian of resonances in a
perturbative way. As an illustration of this we compute thg coupling of the chiral Lagrangian by integrating
out resonance fields at one loop. Given a Lagrangian and a renormalization scheme, this is how in principle one
can answer in a concrete and unambiguous manner questions such as at what scale resonance saturation takes
place.
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Ever since the early times of vector meson domindi¢e them(i.e., an antisymmetric tensor, Yang-Mills field, hidden-
there has been constant phenomenological evidence for ttesymmetry field, etc[7,8]). As a consequence of this, it was
lowest vector and axial vector states to essentially saturateeen that ambiguities in physical observables may occur. In
hadronic observables whenever their contribution is allowedref. [6] these ambiguities were resolved by imposing short-
by quantum number conservation. In the context of chiraldistance matching onto the QCD operator product expansion
perturbation theory2,3] resonance saturation was suggestedf certain Green’s functions. As a matter of fact, it was
to generalize also to the scalar and pseudoscalar sédiprs shown later on in Ref{9] that all the above choices in the
and indeed all theD(p*)L; couplings were obtained by representation were actually field redefinitions of the particu-
means of integrating out the appropriate resonance fteldslar Lagrangian of Eq(1).

However, this integration was carried out at tinee leve] Let us take the case &f;y as an example. Integrating the
i.e., the Lagrangian was effectively treated only as classicalvector and axial-vector fields in the Lagrangi@nmat the tree

Specifically Ref[4] made the choice to represent vectorlevel leads to the low-energy chiral Lagrangian of E8).
and axial-vector particles by antisymmetric tensor fields andsee below with equations relating couplings below and
wrote down a Lagrangian witB U5 X SUS-symmetric inter- ~ above threshold, such as
actions of the forrh
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Here L,o(u) stands for theO(p*) coupling in the low-
energy Lagrangiamfter the V and A resonance fields have
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Fa _ +0 (L,i=1,....9, 3
+ﬁ<AWfﬁv>+Cd<Su‘LUM>+Cdsi(uMUM> WhereasLﬁ)(,u) is the akin coupling, but at the level of the
LIYUTFRTUFL,), () pete the fis a(p%) (3] The statement of rosonance sat-

ration is then tantamount to the equation
whereV, A, S andS; stand for the octet vector, axial-vector,
scalar and singlet scalar resonance fields, respectivelytJand L) =0, (4)
is the exponential of the Goldstone fields. Other terms ap-
pearing in the Lagrangian of Ré#] will be of no relevance ~and expresses the fact that the whole low-energy coupling
for the discussion that follows and are not considered in Eqgl-10 is directly “produced” in the process of integrating the
(2). resonance field.

As is well known the field representation is not unique The result of Eq.(4) is actually field representation de-
and, for instance, in the case of spin-one particles differenpendent and is true only in the antisymmetric tensor formu-
authors have chosen different representations to descriition, i.e., for the Lagrangian in E¢l). Other formulations

(i.e., Yang-Mills, hidden-symmetry,ejcmay have non-zero
values ofoO(,u) to balance the different contribution from
IReferencd5] did an analysis similar in spirit to that of Rd#] the direct integration of the resonance fields to finally pro-
where only thep was integrated out. duce the same value faro( 1), as it is produced by the field
2In this work we shall follow the same notation as in Rif]. redefinition connecting the different formulatiof]. Alter-
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natively, this may also be seen as a consequence of certairom the start justifies, for instance, three-levelintegration
matching conditions to QCD at short distand€é$ There-  of the resonance fields employed in Rg#,6] since this is
fore, although at the tree level(u) is always given by the precisely the leading contribution at larje . This also tells
same combination of resonance parameters regardless of thgu that it makes no sense to be more precise on the value of
formulation, it is in the antisymmetric tensor representationthe scaley at which one is doing the matching unless one
that it originates solely from the interactions of the resonancgpes to the next order in the large-expansion, as the dif-
fields in the effective Lagrangian, with the matching to QCDference between two scalgs and 1/ necessarily yields a

at short distances appearing as automatic. contribution of subleading order inN/. Consequently, Eq.
Slr.w.e the left h.a”O_' side of Ed4) In g_energll obeys a (2) is a statement at leading order in thél/expansion in
nontrivial renormalization group equation, i.e., irisdepen- which the . dependence of both sides remains, strictly

dent, while the right hand side is a constant, this equation hasspeaking ill-defined until next-to-leadirge., quantur ef-
to be supplied with the prescription of some value foRl  fects are computeliThis new point of view of resonance
which it is supposed to be valid, which we shall calf. saturation as an approximation to lanye-QCD is now be-

: £ R -0 (i=
Notice that if it happens that"(u*)=0 (i=1,...,10),for  jnq studied and successfully applied to many different prob-
a certainu* of the order of a resonance mass, then one cafyms in hadron physickL3].

use this as a boundary conditiongredictall the low-energy In this paper we shall adopt lardé: as our underlying
couplingsL;(x) of the chiral Lagrangian at scalgs<u*.  expansion and Eq(1) as our resonance Lagrangian. We
The scaleu™ can then be given the meaning of a thresholdmerely wish to illustrate the point that, as a consequence of
between_ the low-energy chiral Lagrangian and thg resonanGge |argeN, expansion, itmakessense to compute guantum
Lagrangian that would take over at higher enerdies.  corrections with a resonance Lagrangian and ask, for in-
In Refs. [4,6] it was argued that the natural choice is siance, the question of at which scalgesonance saturation
w*=My; and the couplind.;o(My) was omitted from the takes place, if it does at all. Specifically we shall consider
resonance Lagrangiafl) in accord with Eq.(4). With this /N quantum effects that give rise to a nontrivialdepen-
prescription foru* Eq. (2) leads to a prediction fdr;o(My) dence in Eq(2).
in terms of known resonance masses and decay constants. |n order to make this explicit we shall take the Lagrangian
Similar results were also obtained for all the rest of the(1) as our starting point.This we do although this Lagrang-
Li, i=1,...,9with remarkable overall agreement with the jan is probably too simple to satisfy the short-distance con-
experimental determinatiorjg,10]. straints of QCD at next-to-leading order in the lafggex-
However the former agreement, although clearly impor-pansion, even in the particular case of tHgg function
tant, is necessarily only of a qualitative nature. No attempt isyhich will be the relevant one here. Therefore, in this sense,
made at defining the underlying QCD approximation that isour analysis cannot be considered fully realistic for QCD.
being used and, as a consequence, it is not clear how iQotice that Ref[6] showed the good matching of this La-
systematically improve it. For instance the prescriptjn rangian to QCD only at leading order inNl/ and, even
=My to effect resonance saturation may indeed be naturahen, only for certain Green’s functions. Further interesting
but only as long as one is prepared not to distinguish bestudies can be found ifL4] and, in particular, if15]. It is
tween the two scaleM,=0.77 GeV andMx=1.25 GeV, obvious that determining the resonance Lagrangian that sat-
both of which in turn must be identified with something like sfies the short distance constraints at the next-to-leading or-
Ay~1 GeV>My .. At some level of accuracy, however, derin 1N, even only in all the Green’s functions studied up
one may eventually want to distinguish betwelly, and  to now, is an extremely arduous task. Therefore, here we will
M,; after allM,— My is actually larger thaMy—My, for  have to content ourselves with a much more modest goal.
instance. Furthermore, it is not clear from just a tree-level |n this paper we shall restrict ourselves to the particular
integration whether the Lagrangiah) actually saturates the case of the. ;o coupling. This we do because this coupling is
Li’'s at u=My, since the scalg first appears at one loop. defined in terms of a two-point Green’s function in QCD,
In Ref.[11] it was realized that the above scheme of resowhich makes life simpler. At the same time both vector and
nance saturation can be best understood as an approximatigRial-vector particles affedt,, which makes it a sensitive
to largeN. QCD[12], which was called lowest meson domi- probe for whetheM\, or M (or neither ongshould be the
nance. This is the approximation in which, out of tie  relevant scale driving the statement of resonance saturation,
principle) infinite set of resonances, only the lowest one isgq. (4). In other words, we want to find out if the Lagrangian

kept in each channel. We remark that this approximation cagf Eq. (1) is at least capable of reproducing the right value
be improved upon since, in principle, more resonances may

be added whose couplings and masses can be fixed by——

matching to higher terms in the operator product expansion sgyrthermore, assuming that confinement takes place atMyge
at short distances. Adopting the larlyg-expansion right  the 1N, expansion supplies a framework in which quark and meson
degrees of freedom match and no problems of double counting
arise. See the second paper in R&g].
3UnlessL(w) =0 identicallyV u, of course. We shall comment  The situation is somewhat similar to QER: only runs with

on this possibility at the end. scale after considering quantum effects.
“This is somewhat similar to the grand unification program, only ‘The advantage of having a Lagrangian is that, in principle, one
that at energies which are 15 orders of magnitude below. can go and compute quantum corrections with it.
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FIG. 1. Tree-level contribution tbl (g?),  from the Lagrangian FIG. 2. Tree-level contribution from the Lagrangian in E8),
in Eq. (1). The double line stands for thé andA propagators; the but now the dot stands for the insertionlof;.
dot for the insertion of. 7.

(2) is the matching condition that resultat the tree level

. .
for L, at some scalqu®, once quantum corrections are from demanding that the “slope” iQ?, i.e., the combination

taken into account and whether this scal®é indeed coin-

cides withM,, or not. This will entail a calculation with the

Lagrangian of Eqg.(1) and resonances running around in 1 d

loops. It is then that the larg¥: counting becpmes impor- _Z _Z{QZHLR(QZ)}QZ:Or 9

tant. Resonances are not amenable to a chiral counting like 4dQ

Goldstone bosons are and, were it not for the la\gesx-

pansion, there would be no obvious small parameter with

which to do perturbation theoRyThis is the main advantage be equal when computed both with the Lagrangian in(&x.

of the largeN, expansion for the purposes of this work: and with that in Eq(3). This is just given by the diagrams in

QCD in the limitN.— is a theory of free, noninteracting Figs. 1 and 2 .

hadrons and, consequently, interactions among them are We now move to the contribution at one loop. First, let us

modulated by increasing inverse powers Nf. In other  consider the contribution tdl, z stemming from the La-

words, there isa “small” coupling governing hadron inter- grangian in Eq(3). The result is given by the diagram de-

actions(no matter at which energyand, with it, a sense in picted in Fig. 3 plus again the direct contribution from the

which loops are smaller than the tree level. couplingL g in Fig. 2. As a renormalization scheme we shall
One of the consequences of using the laxgeexpansion  use throughout the particulardimensional modified mini-

is that now we have to enlarge the flavor symmetry in themal subtraction schem@MS) variant used i3] in which,

Lagrangian of Eq(1) from SU5XSUJ to U5XUS [17] to  e.g., L, renormalizes according to

incorporate they,.? This can easily be done by means of the

replacement

1 1
——5(log4mw+I'"(1)+1)

1p
bare__
L d-4 2
(10

10 =Lilp) =7 ——

U_)ue—i(\g/\@)(ﬂl“:w)_ (5)

To begin, let us define th#l, ; function (Q*=—qg?=0
for g space-like as

Then one obtains the well-known result
K@ 5021 [ d'x €0/ TLEGORYO)D]0). (®

2
with color-singlet currents I r(Q%)=4Lo( ) — (ﬁ—logQ—>, (11
3272\ 3 w?
— Na (1%
R(LE)=qx) 2 ZVS)qm, () -
V2 where Lo() is the renormalized coupling iMS. Since
) ) II, g is u independent this equation implies the usual renor-
whereq=u,d,s and A\, are Gell-Mann matrices in flavor . 2i-ation group equation fdr;o(u).
space.

The diagrams giving the resonance contributiohlig, at
one loop are depicted in Fig. 4. Adding all the one-loop
contributions in Fig. 4 to the tree level of Fig. 1 and to the
e N ) one-loop of Goldstones in Fig. 3 one gets the total contribu-

Q%) =(a"a"—g""a) I r(Q%). ®  tion to I & from the Lagrangianl). Equating this expres-

At low energy Green's functions in general, agx(Q?)  sion to that in Eq(11) one verifies that the Goldstone loop
in particular, should be equal in the two theories withcancels out in the matchin@s it should and one finally
Lagrangiangl) and(3). For the case of ;, that we are here obtains, forl 5o,
concerned with, it is immediately seen that the result in Eq.

In the chiral limit,m, 4 s— 0, this correlation function has
only a transverse component,

8In certain special circumstances arenset up a coherent frame- AN fiafafitind
work in which resonance loops make sense through a chiral count-
ing [16]. In general, though, this is not possible.

%Since thes, starts playing a role in our discussion bf, at FIG. 3. One-loop contribution tél, z from the Lagrangian in
O(NY) we may consider it as truly massless. We shall see at the enBlg. (3). The dotted line stands for the Goldstone bosons included in
that our result depends very little on this, however. the matrixU.
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FIG. 4. One-loop contribution tbl, ; from the Lagrangian of resonances in Eb. Double lines stand for resonance propagators. Dotted

lines stand for Goldstone propagators.
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where we have define(Bszh/(Mé—Mfll). As to the
largeN, counting, we shall considet(u) of O(1).°

SinceF{ o, G7, cj andcg are O(N,), while the resonance
masses aré(1), thetree-level contribution above ©(N,)
while the one-loop one i®(1), as itshould.

In the work of Refs[6,11] it was found that the tree-level
matching(i.e., leading at largé&\.) of the Lagrangiar(1) to

the short-distance behavior of certain Green’s functions in

QCD led to the constraintF,=f_, Fy=y2f_., Gy
=f_I\J2, Mp=2My, and My=4xf_(\/6/5)"2 Conse-

in this equation. In passing one also sees that théMigg
dependence cancels out in Ef2). It is intriguing to enter-
tain the idea that the above relations between masses and
decay constants could be a consequence of a higher symme-
try of the planar graphs of QCD.

Looking at Eq.(12), one sees clearly that knowledge of
L7fo(,u) immediately translates into a prediction fogy(u).
Using the above constraints arig=87+3.5 MeV (chiral

limit) together with the phenomenological valugf=c /3
=1024 MeV andMs=Mg =983 MeV[4]," one can now

quently these are constraints among the parameters in tfiake EQ.(12) and compare it to the expression for the run-
Lagrangian(1). These are not in principle the same thing asning of Lo [3]:

the physical mas&lefined as the pole in the propagatand
physical decay constaritlefined, e.g., through the width

but it is precisely the parameters in the Lagrangian and not

the physical ones that appear in EtR). This is why the first
term in Eqg.(12), namely,

_/'; -V (13)
MA M \
is in fact predictedto be
15 (14
327%\6

19we remark that. &) may have contributions ad(N,) stem-
ming from the integration of resonancésith a massMg, say

M
L =L(M,)— log—2, 15
10(p) =L1o(M,) 642 97 (15

wherel (M) =(—5.13+0.19)x 10 2 [18]. This compari-
son is made in Fig. 5. In this figure one can see how the
Lagrangian(l) is actually able to produce the right experi-
mental value folLo( ), but at a value fo. which is much
lower than what was expected in R¢4]. This happens at
u*~380 MeV where, as it turns out, the condition of reso-
nance saturation is fulfilled, namelyﬁ)(,u*)zo. Notice
that, as Fig. 5 shows, at the scal& the one-loop radiative
corrections are-30% of the tree level, so one is reasonably
within the perturbative regime expected for thé&ldexpan-
sion. In fact, aju~490 MeV the one-loop contribution van-
ishes altogether. On the other hand, at higher scales the one-

which are even heavier than those explicitly considered in the La- “The final result is quite insensitive to the precise values of the

grangian(1). However these contributions are down bWI:E{ and

parameters in the spin-zero sector. In fact one can changyg tred

we disregard them here. Whether this is a good approximation ocy couplings and the scalar masses by a factor of two, andythe
not will depend on the details of the Lagrangian giving rise tomass between zero and 980 MeV without any dramatic change in

LT(w) in Eq. (1).

the result.
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as a guide in the search for a more predictive resonance
model. In this context one expects that even heavier reso-
nances than those in the Lagrangidn are the ones which
give rise to the couplinglsiR(,u) upon integration. Again we
find in the framework of GUTs equations like

aSUS(MX)=aSUZ(MX)=aU1(MX), which are a good ex-
ample of this type of relations.

A particularly interesting situation for its high predictive
power is what we could call the “extreme” version of reso-
nance saturation. This is WhellliR(,u)ZO (for all i
=1,...,10) and for allx. In fact, just ad_ ;o(u) is obtained

' - ' : ' : : through a matching condition on thé& g function which is
300400 500 600 M 700 800 900 1000 an order parameter of spontaneous chiral symmetry break-
ing, so are all the othdr;(x) obtained through correspond-

FIG. 5. This figure shows the curve obtained fqg(w) in Eq. ing matching conditions on certain QCD Green’s functigns
(12) as a function ofu (in MeV) under the conditiorLfy(#)=0  which, because they are also order parameters, vanish in the
(solid curve. The dashed curve is the runninglofy( ) according  chiral limit to all orders. This implies that all th@s have a
to Eq.(15). For comparison we also show the tree level contributionfinite and smooth short-distance behavior. It is conceivable,
to Lig(w) [first line in Eq. (12)] as dot-dashed lines. All three and in our opinion theoretically very appealing, that this fi-
curves have been normalized to the central value of the tree levelite yltraviolet behavior be realized at the level of the reso-
resonance contribution. nance Lagrangian. Restricted to the former Green’s functions
g, the resonance Lagrangian would then behave almost like
renormalizable and would predict, upon integration of the
resonance fields, all the, (1) as a function of the resonance
masses and couplings. Clearly, we believe, this is the picture
which gets closest to the spirit of the work in Rg4]. A
(surely oversimplifiegl sketch of the answer folc () in
this picture could have been

loop corrections quickly grow and one finds, e.g;-&0%
reduction relative to the tree level at~800 MeV~My;
with even larger corrections the higher the scaleln other
words, at this scale must be~60% of the tree level and
clearly different from zero for Eq12) to be satisfied. There-
fore resonance saturation for the Lagrangiah with the
renormalization schem@0) does not take place at the large
values ofu, namelyu~A ,~1 GeV, where one would like
the resonance Lagrangig) to take over from the low- Lo )= 1 15 1 o Ay (16)
energy chiral Lagrangia(B). 10.A 32726/ 64m2 9.

Perhaps some discussion on the meaning%(,u )=0
is now in order. As a matter of fact, only from the knowledgewith A , a function of resonance masses and parameters and
of the value ofu* which satisfies this condition one does nOtAX~8OO MeV. We remark that the coefficient in front of
learn much. For one thmglo(,u) 0 is a renormalization the logarithm should be the same as that in @&).1* How-
scheme dependent condition @rf [in our case the scheme ever, we have shown that the resonance interactions in the
was given in Eq(10)] and therefore, strictly speaking,* Lagrangian(1) do not produce this type of answer. The rea-
can be shifted by a change in the renormalization scHéme.son why our Eq.(12) is incompatible with the running of
Even with this caveat in mind, the low value of obtained L,,(x) in Eq. (15) and the conditior. () =0V u, is be-
in Eg. (12) makes one suspect the Lagrangidn, if only  cause the resonance interactions in 8g.do not produce a
because one already knows that Ef). has several draw- finite (i.e., » independentlI, ; function. This is not unex-
backs, like e.g., the wrong short-distance behavior of certaipected as Eq(1) lacks the right short-distance properties it
Green's functions due to the lack ofrpa, coupling; justto  should havé14,15. The dynamical challenge clearly will be
mention one of thenmi14]. Clearly such a coupling plays no to incorporate all these short-distance properties in a reso-
role at tree level in the determination of thgs whereas, in  nance Lagrangian which becomes more ultraviolet conver-
principle, it will contribute at one loop. See also Relf5] for ~ gent and yields finite answers for all the above-mentioned
some other related limitations of this resonance LagrangianGreen’s functionsj, consequently predicting all tHg(w) in

In our view the scaleu* is reminiscent of, for instance, this manner.
the scaleM y of gauge coupling unification in grand unified  To conclude, we hope to have illustrated how one could
theory(GUTS) [20]. In fact, more physically meanlngful than use largeN, in the context of a resonance Lagrangian to test
the value ofu* itself are equations such as, e.b;; R(u*) in a well-defined way the idea of resonance saturation at the
=0 (foralli=1,...,10), since they lead to relations among
theL;(u) atu=u* and therefore at ajk. They can be used

BNotice how similar Eq(16) is to the running of the electroweak
angle in the context of GUTs. For instanceStJ(5):  sirféy(u)
2This is not strange; matching conditions are also scheme depen=%(55a/247r) log(Mx/w). In this case the “3/8" is also a ratio of
dent in the integration of a heavy quark in the runningegf.e), for parameters in the Lagrangian like our-‘15/(3272\/6)" in Eq.
instance 19]. (14).

056014-5



O. CATAAND S. PERIS PHYSICAL REVIEW D65 056014

quantum level. Although our resonance LagrandiBncan- the description of QCD in terms of meson degrees of free-
not be considered fully realistic, it should be clear that adom.

similar analysis to the one presented here could be performed

should a more complete resonance Lagrangian of QCD be We thank G. Ecker, M. Knecht, J. Portoles and E. de
available. In this sense the present analysis is complementaRafael for discussions and reading the manuscript. This work
to that of Ref.[15] in the quest for a resonance Lagrangianis supported by CICYT-AEN99-0766 and by TMR, EC-
capable of pushing to higher energies the range of validity o€ontract No. ERBFMRX-CT98016@EEURODA®NE).
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