
PHYSICAL REVIEW D, VOLUME 65, 056014
Example of resonance saturation at one loop

O. Catàand S. Peris
Grup de Fı´sica Teo`rica and IFAE, Universitat Auto`noma de Barcelona, 08193 Barcelona, Spain

~Received 6 November 2001; published 15 February 2002!

We argue that the large-Nc expansion of QCD can be used to treat a Lagrangian of resonances in a
perturbative way. As an illustration of this we compute theL10 coupling of the chiral Lagrangian by integrating
out resonance fields at one loop. Given a Lagrangian and a renormalization scheme, this is how in principle one
can answer in a concrete and unambiguous manner questions such as at what scale resonance saturation takes
place.
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Ever since the early times of vector meson dominance@1#
there has been constant phenomenological evidence fo
lowest vector and axial vector states to essentially satu
hadronic observables whenever their contribution is allow
by quantum number conservation. In the context of ch
perturbation theory@2,3# resonance saturation was sugges
to generalize also to the scalar and pseudoscalar sector@4#,
and indeed all theO(p4)Li couplings were obtained b
means of integrating out the appropriate resonance fie1

However, this integration was carried out at thetree level;
i.e., the Lagrangian was effectively treated only as classi

Specifically Ref.@4# made the choice to represent vect
and axial-vector particles by antisymmetric tensor fields a
wrote down a Lagrangian withSU3

L3SU3
R-symmetric inter-

actions of the form2

LR52
1

2 (
R5V,A

K ¹lRlm¹nRnm2
1

2
MR

2RmnRmnL
1

1

2
^¹mS¹mS2MS

2S2&1
1

2
^]mS1]mS12MS1

2 S1
2&

1
f p

2

4
^DmUDmU†&1

FV

2A2
^Vmn f 1

mn&1 i
GV

A2
^Vmnumun&

1
FA

2A2
^Amn f 2

mn&1cd^Sumum&1 c̃dS1^umum&

1L10
R

^U†FR
mnUFLmn&, ~1!

whereV, A, S, andS1 stand for the octet vector, axial-vecto
scalar and singlet scalar resonance fields, respectively, aU
is the exponential of the Goldstone fields. Other terms
pearing in the Lagrangian of Ref.@4# will be of no relevance
for the discussion that follows and are not considered in
~1!.

As is well known the field representation is not uniq
and, for instance, in the case of spin-one particles differ
authors have chosen different representations to desc

1Reference@5# did an analysis similar in spirit to that of Ref.@4#
where only ther was integrated out.

2In this work we shall follow the same notation as in Ref.@4#.
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them~i.e., an antisymmetric tensor, Yang-Mills field, hidde
symmetry field, etc.@7,8#!. As a consequence of this, it wa
seen that ambiguities in physical observables may occu
Ref. @6# these ambiguities were resolved by imposing sho
distance matching onto the QCD operator product expan
of certain Green’s functions. As a matter of fact, it w
shown later on in Ref.@9# that all the above choices in th
representation were actually field redefinitions of the parti
lar Lagrangian of Eq.~1!.

Let us take the case ofL10 as an example. Integrating th
vector and axial-vector fields in the Lagrangian~1! at the tree
level leads to the low-energy chiral Lagrangian of Eq.~3!
~see below! with equations relating couplings below an
above threshold, such as

L10~m!5
FA

2

4MA
2

2
FV

2

4MV
2

1L10
R~m!. ~2!

Here L10(m) stands for theO(p4) coupling in the low-
energy Lagrangianafter the V and A resonance fields hav
been integrated out, i.e.,

LxPT5
f p

2

4
^DmUDmU†&1L10̂ U†FR

mnUFLmn&

1O ~Li ,i 51, . . . ,9!, ~3!

whereasL10
R (m) is the akin coupling, but at the level of th

resonance Lagrangian~1!. The other couplingsL129 com-
plete the list atO(p4) @3#. The statement of resonance sat
ration is then tantamount to the equation

L10
R~m!50, ~4!

and expresses the fact that the whole low-energy coup
L10 is directly ‘‘produced’’ in the process of integrating th
resonance field.

The result of Eq.~4! is actually field representation de
pendent and is true only in the antisymmetric tensor form
lation, i.e., for the Lagrangian in Eq.~1!. Other formulations
~i.e., Yang-Mills, hidden-symmetry,etc.! may have non-zero
values ofL10

R (m) to balance the different contribution from
the direct integration of the resonance fields to finally p
duce the same value forL10(m), as it is produced by the field
redefinition connecting the different formulations@9#. Alter-
©2002 The American Physical Society14-1
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O. CATÀ AND S. PERIS PHYSICAL REVIEW D65 056014
natively, this may also be seen as a consequence of ce
matching conditions to QCD at short distances@6#. There-
fore, although at the tree levelL10(m) is always given by the
same combination of resonance parameters regardless o
formulation, it is in the antisymmetric tensor representat
that it originates solely from the interactions of the resona
fields in the effective Lagrangian, with the matching to QC
at short distances appearing as automatic.

Since the left hand side of Eq.~4! in general obeys a
nontrivial renormalization group equation, i.e., it ism depen-
dent, while the right hand side is a constant, this equation
to be supplied with the prescription of some value form at
which it is supposed to be valid, which we shall callm* .3

Notice that if it happens thatLi
R(m* )50 (i 51, . . .,10), for

a certainm* of the order of a resonance mass, then one
use this as a boundary condition topredictall the low-energy
couplingsLi(m) of the chiral Lagrangian at scalesm<m* .
The scalem* can then be given the meaning of a thresh
between the low-energy chiral Lagrangian and the resona
Lagrangian that would take over at higher energies.4

In Refs. @4,6# it was argued that the natural choice
m* 5MV ; and the couplingL10

R (MV) was omitted from the
resonance Lagrangian~1! in accord with Eq.~4!. With this
prescription form* Eq. ~2! leads to a prediction forL10(MV)
in terms of known resonance masses and decay const
Similar results were also obtained for all the rest of t
Li , i 51, . . . ,9 with remarkable overall agreement with th
experimental determinations@4,10#.

However the former agreement, although clearly imp
tant, is necessarily only of a qualitative nature. No attemp
made at defining the underlying QCD approximation tha
being used and, as a consequence, it is not clear how
systematically improve it. For instance the prescriptionm
5MV to effect resonance saturation may indeed be nat
but only as long as one is prepared not to distinguish
tween the two scalesMV50.77 GeV andMA51.25 GeV,
both of which in turn must be identified with something lik
Lx;1 GeV@MK,p . At some level of accuracy, howeve
one may eventually want to distinguish betweenMV and
MA ; after all MA2MV is actually larger thanMV2MK , for
instance. Furthermore, it is not clear from just a tree-le
integration whether the Lagrangian~1! actually saturates the
Li ’s at m5MV , since the scalem first appears at one loop

In Ref. @11# it was realized that the above scheme of re
nance saturation can be best understood as an approxim
to large-Nc QCD @12#, which was called lowest meson dom
nance. This is the approximation in which, out of the~in
principle! infinite set of resonances, only the lowest one
kept in each channel. We remark that this approximation
be improved upon since, in principle, more resonances m
be added whose couplings and masses can be fixed
matching to higher terms in the operator product expans
at short distances. Adopting the large-Nc expansion right

3UnlessL10
R (m)50 identically;m, of course. We shall commen

on this possibility at the end.
4This is somewhat similar to the grand unification program, o

that at energies which are 15 orders of magnitude below.
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from the start justifies, for instance, thetree-levelintegration
of the resonance fields employed in Refs.@4,6# since this is
precisely the leading contribution at largeNc .5 This also tells
you that it makes no sense to be more precise on the valu
the scalem at which one is doing the matching unless o
goes to the next order in the large-Nc expansion, as the dif-
ference between two scalesm and m8 necessarily yields a
contribution of subleading order in 1/Nc . Consequently, Eq.
~2! is a statement at leading order in the 1/Nc expansion in
which the m dependence of both sides remains, stric
speaking, ill-defined until next-to-leading~i.e., quantum! ef-
fects are computed.6 This new point of view of resonanc
saturation as an approximation to large-Nc QCD is now be-
ing studied and successfully applied to many different pr
lems in hadron physics@13#.

In this paper we shall adopt large-Nc as our underlying
expansion and Eq.~1! as our resonance Lagrangian. W
merely wish to illustrate the point that, as a consequence
the large-Nc expansion, itmakessense to compute quantum
corrections with a resonance Lagrangian and ask, for
stance, the question of at which scalem resonance saturatio
takes place, if it does at all. Specifically we shall consid
1/Nc quantum effects that give rise to a nontrivialm depen-
dence in Eq.~2!.

In order to make this explicit we shall take the Lagrangi
~1! as our starting point.7 This we do although this Lagrang
ian is probably too simple to satisfy the short-distance c
straints of QCD at next-to-leading order in the large-Nc ex-
pansion, even in the particular case of thePLR function
which will be the relevant one here. Therefore, in this sen
our analysis cannot be considered fully realistic for QC
Notice that Ref.@6# showed the good matching of this La
grangian to QCD only at leading order in 1/Nc and, even
then, only for certain Green’s functions. Further interest
studies can be found in@14# and, in particular, in@15#. It is
obvious that determining the resonance Lagrangian that
isfies the short distance constraints at the next-to-leading
der in 1/Nc , even only in all the Green’s functions studied u
to now, is an extremely arduous task. Therefore, here we
have to content ourselves with a much more modest goa

In this paper we shall restrict ourselves to the particu
case of theL10 coupling. This we do because this coupling
defined in terms of a two-point Green’s function in QCD
which makes life simpler. At the same time both vector a
axial-vector particles affectL10, which makes it a sensitive
probe for whetherMV or MA ~or neither one! should be the
relevant scale driving the statement of resonance satura
Eq. ~4!. In other words, we want to find out if the Lagrangia
of Eq. ~1! is at least capable of reproducing the right val

5Furthermore, assuming that confinement takes place at largeNc ,
the 1/Nc expansion supplies a framework in which quark and me
degrees of freedom match and no problems of double coun
arise. See the second paper in Ref.@12#.

6The situation is somewhat similar to QED:a only runs with
scale after considering quantum effects.

7The advantage of having a Lagrangian is that, in principle, o
can go and compute quantum corrections with it.
4-2
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EXAMPLE OF RESONANCE SATURATION AT ONE LOOP PHYSICAL REVIEW D65 056014
for L10 at some scalem* , once quantum corrections ar
taken into account and whether this scalem* indeed coin-
cides withMV or not. This will entail a calculation with the
Lagrangian of Eq.~1! and resonances running around
loops. It is then that the large-Nc counting becomes impor
tant. Resonances are not amenable to a chiral counting
Goldstone bosons are and, were it not for the large-Nc ex-
pansion, there would be no obvious small parameter w
which to do perturbation theory.8 This is the main advantag
of the large-Nc expansion for the purposes of this wor
QCD in the limit Nc→` is a theory of free, noninteractin
hadrons and, consequently, interactions among them
modulated by increasing inverse powers ofNc . In other
words, there isa ‘‘small’’ coupling governing hadron inter
actions~no matter at which energy! and, with it, a sense in
which loops are smaller than the tree level.

One of the consequences of using the large-Nc expansion
is that now we have to enlarge the flavor symmetry in
Lagrangian of Eq.~1! from SU3

L3SU3
R to U3

L3U3
R @17# to

incorporate theh1.9 This can easily be done by means of t
replacement

U→Ue2 i (A2/A3)(h1 /Fp). ~5!

To begin, let us define thePLR function (Q2[2q2>0
for q2 space-like! as

PLR
mn~q!dab52i E d4x eiq•x^0uT„La

m~x!Rb
n~0!†

…u0&, ~6!

with color-singlet currents

Ra
m~La

m!5q̄~x!gm
la

A2

~16g5!

2
q~x!, ~7!

where q5u,d,s and la are Gell-Mann matrices in flavo
space.

In the chiral limit,mu,d,s→0, this correlation function has
only a transverse component,

PLR
mn~Q2!5~qmqn2gmnq2!PLR~Q2!. ~8!

At low energy Green’s functions in general, andPLR(Q2)
in particular, should be equal in the two theories w
Lagrangians~1! and~3!. For the case ofL10 that we are here
concerned with, it is immediately seen that the result in

8In certain special circumstances onecanset up a coherent frame
work in which resonance loops make sense through a chiral co
ing @16#. In general, though, this is not possible.

9Since theh1 starts playing a role in our discussion ofL10 at
O(Nc

0) we may consider it as truly massless. We shall see at the
that our result depends very little on this, however.

FIG. 1. Tree-level contribution toP(q2)LR from the Lagrangian
in Eq. ~1!. The double line stands for theV andA propagators; the
dot for the insertion ofL10

R .
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~2! is the matching condition that results~at the tree level!
from demanding that the ‘‘slope’’ inQ2, i.e., the combination

2
1

4

d

dQ2
$Q2PLR~Q2!%Q250 , ~9!

be equal when computed both with the Lagrangian in Eq.~1!
and with that in Eq.~3!. This is just given by the diagrams i
Figs. 1 and 2 .

We now move to the contribution at one loop. First, let
consider the contribution toPLR stemming from the La-
grangian in Eq.~3!. The result is given by the diagram de
picted in Fig. 3 plus again the direct contribution from th
couplingL10 in Fig. 2. As a renormalization scheme we sh
use throughout the particulard-dimensional modified mini-
mal subtraction scheme~MS! variant used in@3# in which,
e.g.,L10 renormalizes according to

L10
bare5L10~m!2

1

4

md24

~4p!2 H 1

d24
2

1

2
„log 4p1G8~1!11…J .

~10!

Then one obtains the well-known result

PLR~Q2!54L10~m!2
1

32p2 S 5

3
2 log

Q2

m2D , ~11!

where L10(m) is the renormalized coupling inMS. Since
PLR is m independent this equation implies the usual ren
malization group equation forL10(m).

The diagrams giving the resonance contribution toPLR at
one loop are depicted in Fig. 4. Adding all the one-lo
contributions in Fig. 4 to the tree level of Fig. 1 and to t
one-loop of Goldstones in Fig. 3 one gets the total contri
tion to PLR from the Lagrangian~1!. Equating this expres-
sion to that in Eq.~11! one verifies that the Goldstone loo
cancels out in the matching~as it should! and one finally
obtains, forL10,

t-

nd

FIG. 2. Tree-level contribution from the Lagrangian in Eq.~3!,
but now the dot stands for the insertion ofL10.

FIG. 3. One-loop contribution toPLR from the Lagrangian in
Eq. ~3!. The dotted line stands for the Goldstone bosons include
the matrixU.
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4L10~m!5
FA

2

MA
2

2
FV

2

MV
2

2
3

2

FA
2

f p
2

1

~4p!2 S 1

2
2 log

MA
2

m2 D 1
3

2

FV
2

f p
2

1

~4p!2 S 1

2
2 log

MV
2

m2 D 2
5

~4p!2

GV
2

f p
2 S 2

17

30
2 log

MV
2

m2 D
1

3

2

1

~4p!2S 2
1

3
2 log

MA
2

m2 D 1
3

2

1

~4p!2S 2
1

3
2 log

MV
2

m2 D 2
4

3S c̃d

f p
D 2 1

~4p!2S 1

6
1 log

MS1

2

m2 D
2

10

9 S cd

f p
D 2 1

~4p!2 S 1

6
1 log

MS
2

m2 D
1

1

2

1

~4p!2S 11 log
MS

2

m2 D 2
4

9S cd

f p
D 2 1

~4p!2F1

6
1 log

MS
2

m2 12B12B22~2B313B2!log
MS

2

Mh1
2 G14L10

R ~m!, ~12!

FIG. 4. One-loop contribution toPLR from the Lagrangian of resonances in Eq.~1!. Double lines stand for resonance propagators. Do
lines stand for Goldstone propagators.
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where we have definedB5Mh1

2 /(MS
22Mh1

2 ). As to the

large-Nc counting, we shall considerL10
R (m) of O(1).10

SinceFV,A
2 , GV

2 , cd
2 and c̃d

2 areO(Nc), while the resonance
masses areO(1), thetree-level contribution above isO(Nc)
while the one-loop one isO(1), as itshould.

In the work of Refs.@6,11# it was found that the tree-leve
matching~i.e., leading at largeNc) of the Lagrangian~1! to
the short-distance behavior of certain Green’s functions
QCD led to the constraintsFA5 f p , FV5A2 f p , GV

5 f p /A2, MA5A2MV , and MV54p f p(A6/5)1/2. Conse-
quently these are constraints among the parameters in
Lagrangian~1!. These are not in principle the same thing
the physical mass~defined as the pole in the propagator! and
physical decay constant~defined, e.g., through the width!,
but it is precisely the parameters in the Lagrangian and
the physical ones that appear in Eq.~12!. This is why the first
term in Eq.~12!, namely,

FA
2

MA
2

2
FV

2

MV
2

, ~13!

is in fact predictedto be

2
15

32p2A6
~14!

10We remark thatL10
R (m) may have contributions ofO(Nc) stem-

ming from the integration of resonances~with a massMR , say!
which are even heavier than those explicitly considered in the
grangian~1!. However these contributions are down by 1/MR

2 and
we disregard them here. Whether this is a good approximatio
not will depend on the details of the Lagrangian giving rise
L10

R (m) in Eq. ~1!.
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in this equation. In passing one also sees that the logMA
dependence cancels out in Eq.~12!. It is intriguing to enter-
tain the idea that the above relations between masses
decay constants could be a consequence of a higher sym
try of the planar graphs of QCD.

Looking at Eq.~12!, one sees clearly that knowledge
L10

R (m) immediately translates into a prediction forL10(m).
Using the above constraints andf p58763.5 MeV ~chiral
limit ! together with the phenomenological valuescd

25 c̃d
2/3

51024 MeV2 andMS5MS1
5983 MeV@4#,11 one can now

take Eq.~12! and compare it to the expression for the ru
ning of L10 @3#:

L10~m!5L10~M r!2
1

64p2
log

M r

m
, ~15!

whereL10(M r)5(25.1360.19)31023 @18#. This compari-
son is made in Fig. 5. In this figure one can see how
Lagrangian~1! is actually able to produce the right exper
mental value forL10(m), but at a value form which is much
lower than what was expected in Ref.@4#. This happens at
m* ;380 MeV where, as it turns out, the condition of res
nance saturation is fulfilled, namelyL10

R (m* )50. Notice
that, as Fig. 5 shows, at the scalem* the one-loop radiative
corrections are;30% of the tree level, so one is reasonab
within the perturbative regime expected for the 1/Nc expan-
sion. In fact, atm;490 MeV the one-loop contribution van
ishes altogether. On the other hand, at higher scales the

-

or

11The final result is quite insensitive to the precise values of
parameters in the spin-zero sector. In fact one can change thecd and

c̃d couplings and the scalar masses by a factor of two, and theh1

mass between zero and 980 MeV without any dramatic chang
the result.
4-4



-

e

ge
ot

e

e

-
ta

o

ia
,
d
n

g

nce
so-

e
o-

ak-
-

the

ble,
fi-
so-
ons
like
he
e
ture

and
f

the
a-
f

it
e
so-
er-
ed

uld
est
the

pe

k

ion
e
ev

EXAMPLE OF RESONANCE SATURATION AT ONE LOOP PHYSICAL REVIEW D65 056014
loop corrections quickly grow and one finds, e.g., a;60%
reduction relative to the tree level atm;800 MeV;MV ;
with even larger corrections the higher the scalem. In other
words, at this scaleL10

R must be;60% of the tree level and
clearly different from zero for Eq.~12! to be satisfied. There
fore resonance saturation for the Lagrangian~1! with the
renormalization scheme~10! does not take place at the larg
values ofm, namelym'Lx;1 GeV, where one would like
the resonance Lagrangian~1! to take over from the low-
energy chiral Lagrangian~3!.

Perhaps some discussion on the meaning ofL10
R (m* )50

is now in order. As a matter of fact, only from the knowled
of the value ofm* which satisfies this condition one does n
learn much. For one thingL10

R (m)50 is a renormalization
scheme dependent condition onm* @in our case the schem
was given in Eq.~10!# and therefore, strictly speaking,m*
can be shifted by a change in the renormalization schem12

Even with this caveat in mind, the low value ofm* obtained
in Eq. ~12! makes one suspect the Lagrangian~1!, if only
because one already knows that Eq.~1! has several draw
backs, like e.g., the wrong short-distance behavior of cer
Green’s functions due to the lack of apra1 coupling; just to
mention one of them@14#. Clearly such a coupling plays n
role at tree level in the determination of theLi ’s whereas, in
principle, it will contribute at one loop. See also Ref.@15# for
some other related limitations of this resonance Lagrang

In our view the scalem* is reminiscent of, for instance
the scaleMX of gauge coupling unification in grand unifie
theory~GUTs! @20#. In fact, more physically meaningful tha
the value ofm* itself are equations such as, e.g.,Li

R(m* )
50 ~for all i 51, . . .,10), since they lead to relations amon
theLi(m) at m5m* and therefore at allm. They can be used

12This is not strange; matching conditions are also scheme de
dent in the integration of a heavy quark in the running ofas(m), for
instance@19#.

FIG. 5. This figure shows the curve obtained forL10(m) in Eq.
~12! as a function ofm ~in MeV! under the conditionL10

R (m)50
~solid curve!. The dashed curve is the running ofL10(m) according
to Eq.~15!. For comparison we also show the tree level contribut
to L10(m) @first line in Eq. ~12!# as dot-dashed lines. All thre
curves have been normalized to the central value of the tree l
resonance contribution.
05601
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as a guide in the search for a more predictive resona
model. In this context one expects that even heavier re
nances than those in the Lagrangian~1! are the ones which
give rise to the couplingsLi

R(m) upon integration. Again we
find in the framework of GUTs equations like

aSU3
(MX)5aSU2

(MX)5aU1
(MX), which are a good ex-

ample of this type of relations.
A particularly interesting situation for its high predictiv

power is what we could call the ‘‘extreme’’ version of res
nance saturation. This is whenLi

R(m)50 ~for all i
51, . . .,10) and for allm. In fact, just asL10(m) is obtained
through a matching condition on thePLR function which is
an order parameter of spontaneous chiral symmetry bre
ing, so are all the otherLi(m) obtained through correspond
ing matching conditions on certain QCD Green’s functionsG
which, because they are also order parameters, vanish in
chiral limit to all orders. This implies that all theG’s have a
finite and smooth short-distance behavior. It is conceiva
and in our opinion theoretically very appealing, that this
nite ultraviolet behavior be realized at the level of the re
nance Lagrangian. Restricted to the former Green’s functi
G, the resonance Lagrangian would then behave almost
renormalizable and would predict, upon integration of t
resonance fields, all theLi(m) as a function of the resonanc
masses and couplings. Clearly, we believe, this is the pic
which gets closest to the spirit of the work in Ref.@4#. A
~surely oversimplified! sketch of the answer forL10(m) in
this picture could have been

L10~m!52
1

4 S 15

32p2A6
D 2

1

64p2
log

Lx

m
, ~16!

with Lx a function of resonance masses and parameters
Lx.800 MeV. We remark that the coefficient in front o
the logarithm should be the same as that in Eq.~15!.13 How-
ever, we have shown that the resonance interactions in
Lagrangian~1! do not produce this type of answer. The re
son why our Eq.~12! is incompatible with the running o
L10(m) in Eq. ~15! and the conditionL10

R (m)50,;m, is be-
cause the resonance interactions in Eq.~1! do not produce a
finite ~i.e., m independent! PLR function. This is not unex-
pected as Eq.~1! lacks the right short-distance properties
should have@14,15#. The dynamical challenge clearly will b
to incorporate all these short-distance properties in a re
nance Lagrangian which becomes more ultraviolet conv
gent and yields finite answers for all the above-mention
Green’s functionsG, consequently predicting all theLi(m) in
this manner.

To conclude, we hope to have illustrated how one co
use large-Nc in the context of a resonance Lagrangian to t
in a well-defined way the idea of resonance saturation at

n-

13Notice how similar Eq.~16! is to the running of the electrowea
angle in the context of GUTs. For instance inSU(5): sin2uW(m)
5

3
82(55a/24p) log(MX /m). In this case the ‘‘3/8’’ is also a ratio of

parameters in the Lagrangian like our ‘‘215/(32p2A6)’’ in Eq.
~14!.
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quantum level. Although our resonance Lagrangian~1! can-
not be considered fully realistic, it should be clear tha
similar analysis to the one presented here could be perfor
should a more complete resonance Lagrangian of QCD
available. In this sense the present analysis is complemen
to that of Ref.@15# in the quest for a resonance Lagrangi
capable of pushing to higher energies the range of validity
y
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-
.

hy
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the description of QCD in terms of meson degrees of fr
dom.
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