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Complete high temperature expansions for one-loop finite temperature effects
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~Received 6 August 2001; published 15 February 2002!

We develop exact, simple closed form expressions for partition functions associated with relativistic bosons
and fermions in odd spatial dimensions. These expressions, valid at high temperature, include the effects of a
nontrivial Polyakov loop and generalize well-known high temperature expansions. The key technical point is
the proof of a set of Bessel function identities which resum low temperature expansions into high temperature
expansions. The complete expressions for these partition functions can be used to obtain one-loop finite
temperature contributions to effective potentials, and thus free energies and pressures.
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I. INTRODUCTION

The applications of finite temperature field theory are n
merous and diverse@1–3#. For many applications, a high
temperature expansion of one-loop contributions to therm
dynamic functions is necessary. A typical one-lo
contribution to a (d11)-dimensional effective potentia
from a bosonic degree of freedom and its antiparticle has
form

V5
2

bE ddk

~2p!d
ln@12e2bvk# ~1!

where the relativistic energyvk is given by Ak21M2. In
many cases, the massM is a function of other quantities
most notably the vacuum expectation values of fields. W
the total effective potential attains its minimum,V may be
identified as a contribution to the total free energy, and2V
as a contribution to the pressure. A more general cas
obtained when there is a non-trivial, but spatially unifor
Polyakov loop as well as a non-zero chemical potentialm. In
this case we have

VB~u2 ibm!5
1

bE ddk

~2p!d
ln@12e2bvk1 iu1bm#

1
1

bE ddk

~2p!d
ln@12e2bvk2 iu2bm#. ~2!

Note that the effect of a non-trivial Polyakov loop is to add
phase factor exp(6iu) to exp(2bv). We will evaluateVB for
arbitraryu. In principle, the effect ofm can be included by a
careful analytic continuationu→u2 ibm, but we do not
consider it here.

We will develop a high temperature expansion forVB(u),
valid for d odd, as well as a similar expression for the c
responding fermionic quantityVF(u). This derivation is
simple and exact, and generalizes the results of Dolan
Jackiw @4#, who gave approximate high-temperature expr
sions for VB(u50) and VF(u50) valid up to order
M4 ln(bM) in four dimensions. The work of Dolan an
Jackiw was extended by Haber and Weldon@5,6# who gave a
complete expression for the Bosonic caseVB as an infinite
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sum over hypergeometric functions. Their work included
non-zero chemical potential. Later work by Actor show
that similar high-temperature expansions could be obtai
using zeta-function techniques@7,8#. In both cases, higher
order correction terms are given by infinite series inbM .
Our expressions effectively resum these corrections int
simpler form. Analytical results for the case of a nontrivi
Polyakov loop,uÞ0, were first given in the caseM50 by
Gross, Pisarski and Yaffe and by Weiss@9–11#. Our work
generalizes their results to the caseMÞ0. The higher-order
terms in our expressions are manifestly periodic inu. This
periodicity is important in the application of these results
our recent work with Miller on models of the deconfineme
transition@12#. In this work, the eigenvalues of the Polyako
loop serve as the order parameters for deconfinement, a p
of view also emphasized recently by Pisarski@13#.

Before beginning the derivation, we give some examp
of its application. As a first example, consider a scalar bo
in the fundamental representation of anSU(N) gauge group.
The Polyakov loop is anN3N unitary matrix given in gen-
eral by

P~xW !5T expF i E
0

b

dt A0~xW ,t!G ~3!

whereT on the right-hand side indicates Euclidean time
dering. Here we assume that the Polyakov loop can be m
spatially uniform by an appropriate choice of gauge. A glob
unitary transformation then putsP into the diagonal form

Pjk5d jk exp~ iu j ! ~4!

and the free energy is

(
j

VB~u j !. ~5!

As a second example, consider the case of the ga
bosons themselves, which lie in the adjoint representatio
the gauge group. The Polyakov loop in the adjoint repres
tation is an (N221)3(N221) matrix. The partition func-
tion for theN221 particles is
©2002 The American Physical Society13-1
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s
1

2 (
j ,k51

N S 12
1

N
d jkDVB~u j2uk! ~6!

where thed jk removes a singlet contribution, and the fact
of 1/2 corrects for overcounting sinceVB has both a particle
and antiparticle contribution. The factors accounts for spin
degeneracy; in 311 dimensionss52, a consequence of th
two possible polarization states of gauge bosons.

For our third and final example, consider the evaluation
fermionic free energy, which can be reduced to the gen
bosonic problem. A typical fermionic contribution of partic
and antiparticle has the form

VF~u2 ibm!52
1

bE ddk

~2p!d
ln@11e2bvk1 iu1bm#

2
1

bE ddk

~2p!d
ln@11e2bvk2 iu2bm# ~7!

which is easily written as

VF~u!52VB~p1u!. ~8!

For fermions in the fundamental representation ofSU(N),
the free energy is

s(
j

VF~u j !52s(
j

VB~p1u j ! ~9!

where the factors again accounts for spin degeneracy.
In Sec. II, we review the derivation of low temperatu

expansions forVB(u) and VF(u). Section III derives the
Bessel function identities which convert these low tempe
ture expansions to high temperature expansions. Sectio
applies these identities to the case of three spatial dim
sions. A final section gives brief conclusions. There are t
Appendixes.

II. LOW TEMPERATURE EXPANSION IN d DIMENSIONS

A low-temperature expansion forVB(u) can be generated
for arbitrary spatial dimensiond by expanding the logarithm
and integrating term by term, first over the surface o
d-dimensional sphere, and then over a radial degree of f
dom k @7,8#. The result, given in terms of modified Bess
functions@14#, is

VB~u!5
1

bE ddk

~2p!d
ln@12e2bvk1 iu#

1
1

bE ddk

~2p!d
ln@12e2bvk2 iu# ~10!

52
Md/211/2

2d/223/2pd/211/2bd/211/2 (
n51

`
1

nd/211/2

3K (d11)/2~nbM !cos~nu! ~11!
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which is derived in detail in Appendix A. Each term in th
series represents the contribution ofn particles or antipar-
ticles, with a corresponding phase factor of exp(6inu). If the
one-loop finite temperature functional determinant is rep
sented as a functional integral over a space-time variablexm ,
the phase factors are associated with paths which wind n
trivially in the Euclidean time direction.

For fermions, we have

VF~u!5
Md/211/2

2d/223/2pd/211/2bd/211/2 (
n51

`
~21!n

nd/211/2

3K (d11)/2~nbM !cos~nu!. ~12!

In a path integral representation, the factors of (21)n are a
consequence of fermionic antiperiodic boundary conditio
We next derive a set of identities which resum these se
for d odd.

III. BESSEL FUNCTION IDENTITIES

We will derive a set of identities for sums of the form

(
n51

`
1

np
Kp~nr !cos~nf! ~13!

for p a non-negative integer. Our starting point is the ident

(
p51

`

K0~pr !cos~pf!

5
1

2 Fg1 lnS r

4p D G
1

p

2 (
l

8 F 1

Ar 21~f22p l !2
2

1

2pu l uG ~14!

which may be found in@14#; we provide a derivation in
Appendix B which provides some physical insight into
origin. The notation( l

8 is used to indicate that singula
terms, here the 1/u l u term, are omitted whenl 50.

Using the recursion formula

d

dz
Kn~z!52Kn21~z!2

n

z
Kn~z!, ~15!

it follows immediately that

d

dz (
p51

`
z

p
K1~pz!cos~pf!52z(

p51

`

K0~pz!cos~pf!.

~16!

This in turn implies that

(
p51

`
1

p
K1~pz!cos~pf!52

1

zE dz zF (
p51

`

K0~pz!cos~pf!G
1

C~f!

z
~17!
3-2
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whereC(f) is an unknown function to be determined. Int
gration yields immediately

(
p51

`
1

p
K1~pz!cos~pf!

52
1

4
zF lnS z

4p D1g2
1

2G
2

p

2z (
l

8 FAz21~f22p l !22
z2

4pu l uG1
C~f!

z
.

~18!

The functionC(f) is determined from the behavior ofKn(z)
for z→0,

Kn~z!→ 1

2
G~n!S 2

zD n

, ~19!

in combination with the standard result@14#

(
p51

`
cos~pf!

p2
5

1

4
f22

p

2
f1

p2

6
, ~20!

which is valid for 0<f,2p. The right hand side of Eq.~20!
is a rescaling of the second Bernoulli polynomial; it can
extended to all real values iff is replaced byf mod 2p on
the right hand side of the equation. This implies the lead
behavior of the sum asz→0 is given by

lim
z→0

z(
p51

`
1

p
K1~pz!cos~pf!5 (

p51

`
cos~pf!

p2

5
1

z F1

4
f22

p

2
f1

p2

6 G , ~21!

giving us finally

(
p51

`
1

p
K1~pz!cos~pf!52

1

4
zF lnS z

4p D1g2
1

2G
1

1

z F1

4
f1

2 2
p

2
f11

p2

6 G
2

p

2z (
l

8 FAz21~f22p l !2

2uf22p l u2
z2

4pu l uG ~22!

where we have introduced the notationf1 to represent
f mod 2p. When discussing fermions, we will also usef2

to similarly represent an angle chosen to lie between2p and
p. Note that the last part of this expression is automatica
periodic due to the sum overl.

Application of this technique a second time gives
05601
g

y

(
p51

`
1

p2
K2~pz!cos~pf!

5
1

16
z2F lnS z

4p D1g2
3

4G2
1

2 F1

4
f1

2 2
p

2
f11

p2

6 G
1

2

z2 F21

48
f1

4 1
p

12
f1

3 2
p2

12
f1

2 1
p4

90G
1

p

2z2 (
l

8 H 1

3
@z21~f22p l !2#3/22

1

3
uf22p l u3

2
1

2
uf22lpuz22

z4

16pu l uJ ~23!

which is needed for the cased53. We have used the stan
dard result@14#

(
p51

`
cos~pf!

p4
5

21

48
f1

4 1
p

12
f1

3 2
p2

12
f1

2 1
p4

90
. ~24!

Formulas appropriate ford55,7, . . . canalso be derived in
the same manner.

IV. HIGH-TEMPERATURE EXPANSIONS FOR dÄ3

We now can write complete expressions forVB(u) and
VF(u) in three spatial dimensions:

VB~u!52
M2

p2b2 (
n51

`
1

n2
K2~nbM !cos~nu!

52
2

p2b4 Fp4

90
2

1

48
u1

4 1
p

12
u1

3 2
p2

12
u1

2 G
1

M2

2p2b2 F1

4
u1

2 2
p

2
u11

p2

6 G
2

1

2pb4 (
l

8 H 1

3
@~bM !21~u22p l !2#3/2

2
1

3
uu22p l u32

1

2
uu22lpub2M22

~bM !4

16pu l u J
2

M4

16p2 F lnS bM

4p D1g2
3

4G . ~25!

Parts of this complete expression have been known for s
time. Foru50, the leading behavior is
3-3
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VB~u50!'22
p2

90b4
1

M2

12b2
2

M3

6pb

2
M4

16p2 F lnS bM

4p D1g2
3

4G , ~26!

an expression first derived by Dolan and Jackiw@4#. The
leading T4 behavior foruÞ0 was first derived by Gross
Pisarski and Yaffe and Weiss forSU(N) gauge bosons an
for massless fermions@9–11#.

Each of the four terms deserves comment. The first is
blackbody free energy for two degrees of freedom, and
pends only on the temperature and the angleu. The second
term, which is the leading correction due to the massM,
often appears in discussions of symmetry restoration at h
temperatures withu50. For example, suppose we are calc
lating the effective potential for a complex scalar fieldF.
The massM2 is given by the second derivative of the cla
sical potential,]2U/]F* ]F, and depends on the expectatio
value of the fieldF. If U has the formU52m2F* F
1l(F* F)2, then M252m214lF* F. For m2.0, the
U(1) symmetry is spontaneously broken at low temperatu
At high temperature, theM2/12b2 term generates a positiv
mass for theF field of orderT, restoring the symmetry. Th
third term inVB(u) is linear inT, and non-analytic inM2 for
u50. It is closely associated with then50 Matsubara mode
which is the most infrared singular contribution to a fin
temperature functional determinant. This term is respons
for non-analytic behavior in finite temperature perturbat
theory via the summation of ring diagrams. For example
a scalar theory it gives rise to thel3/2 contribution to the free
energy; in QED, the contribution ise3 @1#. Note how sub-
tractions occur in thelÞ0 parts of this term to keep thes
parts subleading. The last term is logarithmic in the dim
sionless combinationbM and independent ofu. In calcula-
tions of effective potentials, it typically combines with zer
temperature logarithms in such a way that the temperatuT
sets the scale of running coupling constants at highT.

From the basic result forVB , we can build other results
Consider a complex scalar field in the fundamental repres
tation of SU(N). The partition function in a constant back
ground Polyakov loop is given by

VFT5(
j

VB~u j !52
p2N

45b4
1

2

p2b4 (
j

F 1

48
u j

42
p

12
u j

3

1
p2

12
u j

2G1
NM2

12b2
1

M2

2p2b2 (
j

F1

4
u j

22
p

2
u j G

2
1

2pb4 (
j ,l

8 H 1

3
@~bM !21~u j22p l !2#3/2

2
1

3
uu j22p l u32

1

2
uu j22lpub2M22

~bM !4

16pu l u J
2

NM4

16p2 F lnS bM

4p D1g2
3

4G ~27!
05601
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where we assume allu ’s are chosen to lie between 0 and 2p
in accordance with the convention foru1 . A similar expres-
sion holds for bosons in the adjoint representation.

For fermions, we have similarly

VF~u!5
2

p2b4 F2
7

720
p41

1

24
p2u2

2 2
1

48
u2

4 G
1

M2

2p2b2 F 1

12
p22

1

4
u2

2 G
1

1

2pb4 (
l

8 H 1

3
@~bM !21„u2~2l 21!p…

2#3/2

2
1

3
uu2~2l 21!pu3

2
1

2
uu2~2l 21!pub2M22

~bM !4

16pu l u J
1

M4

16p2 F lnS bM

4p D1g2
3

4G ~28!

with u2 now used. For fermions in the fundamental rep
sentation ofSU(N), we may write

VFT52
7p2N

180b4
1(

j

1

12p2b4
@2p2u j

22u j
4#1

NM2

12b2

2(
j

M2

4p2b2
u j

21
1

pb4 (
j ,l

8 H 1

3
@~bM !2

1„u j2~2l 21!p…

2#3/22
1

3
uu j2~2l 21!pu3

2
1

2
uu j2~2l 21!pub2M22

~bM !4

16pu l u J
1

NM4

8p2 F lnS bM

4p D1g2
3

4G ~29!

where the anglesu j must now be chosen to lie between
2p andp.

V. CONCLUSIONS

We have found complete, simple expressions forVB(u)
and VF(u) in the high-temperature limit which generaliz
previously known expressions. Not only are the expressi
simple, their derivation is direct and relatively elementa
Our formulas reflect in a direct way periodicity inu, a prop-
erty which is lost when analytically continuing power seri
in bm to bm1 iu.

As a practical matter, it is natural to ask how accura
both the low- and high-temperature expansions are. The
temperature expansion forVB(u) is an infinite series inn;
using the first 10 terms in the series gives an accuracy be
3-4
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COMPLETE HIGH TEMPERATURE EXPANSIONS FOR . . . PHYSICAL REVIEW D65 056013
than 1 part in 103 over the entire range 0 to 2p for tempera-
tures T<0.25M . The high temperature expansion also
volves an infinite series, in the parameterl. In comparison,
the high temperature expansion is within 5% of the ex
answer for all values ofu at T50.5M when terms up tou l u
510 are included. The accuracy improves substantially aT
increases. Both expansions are more accurate when restr
to u50.

Our primary interest in these results lies in their applic
tion to the study of systems where a non-trivial Polyak
loop is expected to occur. The foremost physical exampl
QCD at finite temperature. The high-temperature form
VB(u) suggests that the Bernoulli polynomials appear na
rally in the free energy ofSU(N) gauge theories with a
non-trivial Polyakov loop, essentially as polynomials in t
Polyakov loop eigenvalues. In our recent work with Mill
@12#, we have used this observation to construct a phen
enological free energy for the quark-gluon plasma which
produces much of the thermodynamic observed in lat
simulations. One can also apply the results obtained her
the Savvidy model at finite temperature@15,16#. Savvidy
originally proposed a model of the QCD vacuum in whi
gluons moved in a constant chromomagnetic field@17#. Us-
ing low-temperature expansions, we have shown that a c
fining state, where the Polyakov loop expectation value
05601
-
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zero, minimizes the free energy. Using the Bessel funct
identities proven here, we have recently@18# developed a
high-temperature expansion for this model which shows t
a non-zero Polyakov line is favored at high temperature.

APPENDIX A: DERIVATION OF LOW TEMPERATURE
EXPANSIONS

We begin by expanding the logarithms and performing
angular integrations:

VB~u!5
1

bE ddk

~2p!d
ln@12e2bvk1 iu#

1
1

bE ddk

~2p!d
ln@12e2bvk2 iu#

52
4pd/2

G~d/2!~2p!db
E dk kd21

3 (
n51

`
1

n
e2nbvk cos~nu!. ~A1!

The standard substitutionk5M sinh(t) gives
VB~u!52
4pd/2

G~d/2!~2p!db
(
n51

`
cos~nu!

n
MdE

0

`

dt cosht sinhtd21e2nbM cosht

5
4pd/2

G~d/2!~2p!d (
n51

`
cos~nu!

n2b2
Md

d

dME
0

`

dt sinhtd21e2nbM cosht

5
4pd/2

G~d/2!~2p!d (
n51

`
cos~nu!

n2b2
Md

d

dM FG~d/2!

Ap
S 2

nbM D (d21)/2

K (d21)/2~nbM !G . ~A2!

This can in turn be reduced using standard recursion relations for modified Bessel functions:

VB~u!5
4p (d21)/2

~2p!db
Md(

n51

`
cos~nu!

n

d

dzF S 2

zD n

Kn~z!G
z5nbM ,n5(d21)/2

5
4p (d21)/2

~2p!db
Md(

n51

`
cos~nu!

n F S 2

zD nS dKn~z!

dz
2

n

z
Kn~z! D G

z5nbM ,n5(d21)/2

5
4p (d21)/2

~2p!db
Md(

n51

`
cos~nu!

n F2S 2

zD n

Kn11~z!G
z5nbM ,n5(d21)/2

52
4p (d21)/2

~2p!db
Md(

n51

`
cos~nu!

n S 2

nbM D (d21)/2

K (d11)/2~nbM !

52
Md/211/2

2d/223/2pd/211/2bd/211/2 (
n51

`
cos~nu!

nd/211/2
K (d11)/2~nbM !. ~A3!
3-5
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APPENDIX B: PROOF OF A BESSEL FUNCTION IDENTITY

In this appendix, we prove the Bessel function identity

(
m51

`

K0~mr!cos~mf!5
1

2 F lnS r

4p D1gG1
p

2 (
l

8 F 1

Ar 21~f22p l !2
2

1

2pu l uG . ~B1!

Using a standard integral representation@14#

K0~pz!5E
0

`

dt
cos~pt!

At21z2
, ~B2!

we have

(
m51

`

cos~mf!K0~mr!5 (
m51

`

cos~mf!E
0

`

dkx

cos~kxr !

Akx
21m2

5
1

2 (
m51

`

cos~mf!E dkx

1

Akx
21m2

eikxr

5
1

4p (
mÞ0

E dkxdky

1

kx
21ky

21m2
eikxr 1 imf. ~B3!

We introduce a regulating massm, which will be taken to zero at the end of the calculation, obtaining

1

4p (
mÞ0

E dkxdky

1

kx
21ky

21m21m2
eikxr 1 imf. ~B4!

We add and subtract the divergentm50 term

1

4p (
m

E dkxdky

1

kx
21ky

21m21m2
eikxr 1 imf2

1

4pE dkxdky

1

kx
21ky

21m2
eikxr

5
1

4p (
m

E dkxdkydkz

1

kx
21ky

21kz
21m2

d~kz2m!eikxr 1 ikzf2
1

4pE dkxdky

1

kx
21ky

21m2
eikxr . ~B5!

Using the Poisson summation technique in the form(md(kz2m)5(nexp(22pinkz), we obtain

1

4p (
n
E dkxdkydkz

1

kx
21ky

21kz
21m2

eikxr 1 ikz(f22pn)2
1

4pE dkxdky

1

kx
21ky

21m2
eikxr ~B6!

which reads in a compact notation

p

2 (
n
E d3k

~2p!3

4p

k21m2
eikxr 1 ikz(f22pn)2

1

4pE d2k
1

k21m2
eikxr . ~B7!

The first integral gives a sum of screened Coulomb, or Yukawa, potentials

p

2 (
n

F e2mAr 21(f22pn)2

Ar 21~f22pn!2G2
1

4pE d2k
1

k21m2
eikxr ~B8!

and both terms appear to be problematic asm→0. The first term can be made finite in this limit by subtracting the contribu
at r 5f50 for nÞ0. Using the notation(n8 to denote a summation over alln with the omission of the singular term whe
n50, we have

p

2 (
n

8 F e2mAr 21(f22pn)2

Ar 21~f22pn!2
2

e2m2punu

2punu G1Fp

2 (
n

8
e2m2punu

2punu
2

1

4pE d2k
1

k21m2
eikxr G . ~B9!

The second term in brackets can be evaluated by summing the series
056013-6
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p

2 (
n

8
e2m2punu

2punu
52

1

2
ln@12e22pm# ~B10!

and using the identity

2
1

4pE d2k
1

k21m2
eikxr52

1

2
K0~mr ! ~B11!

so we have

p

2 (
n

8 F e2mAr 21(f22pn)2

Ar 21~f22pn!2
2

e2m2punu

2punu G1F2
1

2
ln@12e22pm#2

1

2
K0~mr !G . ~B12!

In the limit m→0, the second term in brackets gives

2
1

2
ln@12e22pm#2

1

2
K0~mr !→2

1

2
ln@2pm#1

1

2
lnS mr

2 D2
1

2
c~1!5

1

2
lnS r

4p D1
1

2
g ~B13!

so we finally obtain

(
m51

`

K0~mr!cos~mf!5
p

2 (
n

8 F 1

Ar 21~f22pn!2
2

1

2punuG1
1

2
lnS r

4p D1
1

2
g. ~B14!
ys
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