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Complete high temperature expansions for one-loop finite temperature effects
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We develop exact, simple closed form expressions for partition functions associated with relativistic bosons
and fermions in odd spatial dimensions. These expressions, valid at high temperature, include the effects of a
nontrivial Polyakov loop and generalize well-known high temperature expansions. The key technical point is
the proof of a set of Bessel function identities which resum low temperature expansions into high temperature
expansions. The complete expressions for these partition functions can be used to obtain one-loop finite
temperature contributions to effective potentials, and thus free energies and pressures.
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[. INTRODUCTION sum over hypergeometric functions. Their work included a
non-zero chemical potential. Later work by Actor showed
The applications of finite temperature field theory are nuthat similar high-temperature expansions could be obtained
merous and diversgl—3]. For many applications, a high- using zeta-function techniquég,8]. In both cases, higher-
temperature expansion of one-loop contributions to thermoerder correction terms are given by infinite seriesgM.
dynamic functions is necessary. A typical one-loopOur expressions effectively resum these corrections into a
contribution to a @+ 1)-dimensional effective potential simpler form. Analytical results for the case of a nontrivial
from a bosonic degree of freedom and its antiparticle has thRolyakov loop,6+ 0, were first given in the cadd =0 by
form Gross, Pisarski and Yaffe and by Wei&-11]. Our work
generalizes their results to the cdde~ 0. The higher-order
2 d% ~ Bw terms in our expressions are manifestly periodiadinThis
V= Ef (Zw)dln[l—e ‘] oy periodicity is important in the application of these results to
our recent work with Miller on models of the deconfinement

where the relativistic energw, is given by K2+ M2. In transition[12]. In this work, the eigenvalues of the Polyakov
many cases, the mas4 is a function of other quantities loop serve as the order parameters for deconfinement, a point

most notably the vacuum expectation values of fields. Whei?f View also emphasized recently by Pisarik].

the total effective potential attains its minimu,may be Before beginning the derivation, we give some examples
identified as a contribution to the total free energy, and of its application. As a first example, consider a scalar boson
as a contribution to the pressure. A more general case {§ the fundamental representation of 8bi(N) gauge group.
obtained when there is a non-trivial, but spatially uniform, The Polyakov loop is alxN unitary matrix given in gen-

Polyakov loop as well as a non-zero chemical poteptialh ~ €ral by
this case we have

4K P(i)zTexp[i fOBdTAO(i, 7) (3)

|n[1_ e_ﬁ“’k+i‘9+ﬁl’v]

_ 1
VB(6_|:8M):EJ (27

where 7 on the right-hand side indicates Euclidean time or-
1 di% — Bor—i0— B dering. Here we assume that the Polyakov loop can be made
+ Ef (2m)¢ In[1-e 1. @ gpatially uniform by an appropriate choice of gauge. A global
unitary transformation then puiinto the diagonal form

Note that the effect of a non-trivial Polyakov loop is to add a
phase factor expfi6) to exp(— Bw). We will evaluateVy for Pjk= djk exp(i 6;) (4)
arbitrary 6. In principle, the effect ofu can be included by a
careful analytic continuatiord— 6—iBu, but we do not and the free energy is
consider it here.

We will develop a high temperature expansion Y&y( 6),
valid for d odd, as well as a similar expression for the cor- > Vil 6)). (5)
responding fermionic quantitW/(6#). This derivation is ]
simple and exact, and generalizes the results of Dolan and
Jackiw[4], who gave approximate high-temperature expres- As a second example, consider the case of the gauge
sions for Vg(6=0) and Vg(#=0) valid up to order bosons themselves, which lie in the adjoint representation of
M4In(BM) in four dimensions. The work of Dolan and the gauge group. The Polyakov loop in the adjoint represen-
Jackiw was extended by Haber and Weld616] who gave a  tation is an N?—1)x (N2—1) matrix. The partition func-
complete expression for the Bosonic ca4e as an infinite  tion for theN?—1 particles is
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1 N 1 which is derived in detail in Appendix A. Each term in the
S- E ( ,k>VB(0 0,) (6) series represents the contribution rofparticles or antipar-
2 k=1 ticles, with a corresponding phase factor of exp(6). If the
one-loop finite temperature functional determinant is repre-
sented as a functional integral over a space-time varigple
the phase factors are associated with paths which wind non-
trivially in the Euclidean time direction.

For fermions, we have

where thed;, removes a singlet contribution, and the factor
of 1/2 corrects for overcounting sin&g; has both a particle
and antiparticle contribution. The facteraccounts for spin
degeneracy; in 31 dimensions=2, a consequence of the
two possible polarization states of gauge bosons.

For our third and final example, consider the evaluation of M &/2+ 172 *(—1)"
fermionic free energy, which can be reduced to the general Ve(6) = 2 242 12 g2 17 2 T
bosonic problem. A typical fermionic contribution of particle B in

and antiparticle has the form

XKg+1y2(nBM)cogno). (12
Ve(0—iBu)=— EJ d’k In[1+e Aoxtiorbu] In a path integral representation, the factors ef1()" are a
F H BJ (2m)d consequence of fermionic antiperiodic boundary conditions.

We next derive a set of identities which resum these series

1 d% _ for d odd.
In[1+e Pox10=Br] (7)

2 d

( 77) I1l. BESSEL FUNCTION IDENTITIES

which is easily written as We will derive a set of identities for sums of the form
Ve(0)=—Vg(m+0). (8) >

S L Ky(nncosng) (13
n=1 np

For fermions in the fundamental representationSaj(N),

the free energy is L . o . .
for p a non-negative integer. Our starting point is the identity

sZ Ve(6))= sE Vg(7+ 6;) 9) -
p; Ko(pr)cog pe)

r
A
1 1
applies these identities to the case of three spatial dimen- /r2+(¢_277|)2_ 27|l|
sions. A final section gives brief conclusions. There are two
Appendixes. which may be found inf14]; we provide a derivation in
Appendix B which provides some physical insight into its
Il. LOW TEMPERATURE EXPANSION IN d DIMENSIONS origin. The notations, is used to indicate that singular
terms, here the fl{ term, are omitted wheh=0.
Using the recursion formula

where the factos again accounts for spin degeneracy.
In Sec. Il, we review the derivation of low temperature

. . . =—=|vy+In
expansions fo’Vg(#) and Vg(6). Section Il derives the 2|7
Bessel function identities which convert these low tempera-
ture expansions to high temperature expansions. Section IV m

(14)

A low-temperature expansion f&g(6) can be generated
for arbitrary spatial dimensiod by expanding the logarithm
and integrating term by term, first over the surface of a

14
d-dimensional sphere, and then over a radial degree of free- 37K = —Kma(2) = 7K (2), (15
dom k [7,8]. The result, given in terms of modified Bessel
functions[14], is it follows immediately that
Vg(6)= f o’k In[1—e Aot 4 i Zk (pZ)cos(p¢)=—Z§ Ko(p2)cogpep)
a( )_,B (2 nl—e ] dz &4 p 1 . 0 .
(16)
1 d% o . N
+ _f In[1—e~Aex—i?] (10) This in turn implies that
BJ (2m)d ) )
1 1
M2+ 172 - 2 5K1<pz)cos(p¢>=—;f dz7 2, Ko(p2cotpe)
T dzo3 qI2+U2gd2e 12 2 | izt 12
N C(¢) 17
X Kg+1y2nBM)cogno) (11 z
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whereC(¢) is an unknown function to be determined. Inte- =

gration yields immediately >, SKa(p2)cogpe)
=1 p
E Ki(pz)codpe)
p= 1 2| [ 2 3] 11 ™ 2
(z 1 =167 Mz, t Y72 22 2t
K " 4m ' 2 2|—-1 ™ m mt
I T
o 5. 2|, C@ t |zt % 12‘1)+ 90}
2z 4 Zt($p=2ml) 4|l z
T 1 1
LN D2 _ 2932 T 4 3
(19 +2222 [3[2 +(¢p—2m)?)¥*= 3| ¢~ 2l
The functionC( ¢) is determined from the behavior Kf,(z) 1 7
for z—0, — - 2~
- 2|</> 2l 7|z 16’7T|||] (23
1 2\"
KV(Z)H—F(V)(—) : (19
2 z which is needed for the cask=3. We have used the stan-
. o . dard resulf14]
in combination with the standard res{it4]
- Of{psﬁ) 1, = - cogpg) -1 - 774
—p°— =+ —, 20 L -

which is valid for O< ¢p<27r. The right hand side of Eq20)
is a rescaling of the second Bernoulli polynomial; it can beFormulas appropriate fa=5,7, ... canalso be derived in
extended to all real values & is replaced by mod 27 on  the same manner.
the right hand side of the equation. This implies the leading
behavior of the sum az—0 is given by
IV. HIGH-TEMPERATURE EXPANSIONS FOR d=3

lim zZ Kl(pz)cog(pd;)_ 2 cospe) We now can write complete expressions #g(6) and
z.0 p=1 2 Ve(0) in three spatial dimensions:
_ 11 , = w2 21
=279 3¢t 5| @D 2 » 4
Ve(0)=——— 2 K2(nBM)cogno)
giving us finally BN
2 [774 194+77'0 77202
1 = — — | — — — J— _—
Z Kl(DZ)cos(pqS)———z In( ) —5} m2pH 90 4877 1277 12

2

1 T w?
1|1 T ™ 02 —0. + _}
+3 Zdﬁ‘gd’ﬁr 6 277,8 27776
ISy VZ2+(p—2m1)? - > (1[(BM)2+(9—27TI)2]3’2
27 9 & 277,[)’4 I 3
22 1 , 1 o (BM)
—l¢—2ml|- 4 “J (22 —§|0—27T|| —5l0-2l7|pM = 16a]1]
where we have introduced the notatieh, to represent m('BM) _§} (25)
¢ mod 2. When discussing fermions, we will also uge 16772 4 4
to similarly represent an angle chosen to lie betweenand
7. Note that the last part of this expression is automatically
periodic due to the sum ovér Parts of this complete expression have been known for some

Application of this technique a second time gives time. For =0, the leading behavior is
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w? M2 M3
Vg(0=0)~—2——+ -
2(#=0) 908 1282 67RB
M’ n[AM) -3 26
62| M2 | T Y3 (26)

an expression first derived by Dolan and Jackd4y. The
leading T* behavior for #+0 was first derived by Gross,
Pisarski and Yaffe and Weiss f&U(N) gauge bosons and
for massless fermion®-11].

PHYSICAL REVIEW D65 056013

where we assume afl's are chosen to lie between 0 ané 2
in accordance with the convention fér. . A similar expres-
sion holds for bosons in the adjoint representation.

For fermions, we have similarly

Each of the four terms deserves comment. The first is the

blackbody free energy for two degrees of freedom, and de-

pends only on the temperature and the arfyl&he second
term, which is the leading correction due to the maks
often appears in discussions of symmetry restoration at hig
temperatures witl#=0. For example, suppose we are calcu-
lating the effective potential for a complex scalar fiekd
The massM? is given by the second derivative of the clas-
sical potential 9?U/d®* 9®, and depends on the expectation
value of the field®. If U has the formU=—m?®*d
+A(P* D)2, then M?=—m?+4\D*P. For m*>>0, the

U(1) symmetry is spontaneously broken at low temperature.

At high temperature, th#12/1282 term generates a positive
mass for theb field of orderT, restoring the symmetry The
third term inVg(6) is linear inT, and non-analytic itM? for
0=0. It is closely associated with thre=0 Matsubara mode,
which is the most infrared singular contribution to a finite

temperature functional determinant. This term is responsible

for non-analytic behavior in finite temperature perturbation

theory via the summation of ring diagrams. For example, in

a scalar theory it gives rise to theé’? contribution to the free
energy; in QED, the contribution ig® [1]. Note how sub-
tractions occur in thé+# 0 parts of this term to keep these

parts subleading. The last term is logarithmic in the dimen-

sionless combinatioM and independent of. In calcula-
tions of effective potentials, it typically combines with zero-
temperature logarithms in such a way that the temperdature
sets the scale of running coupling constants at Aigh

From the basic result fovg, we can build other results.

Consider a complex scalar field in the fundamental represen-

tation of SU(N). The partition function in a constant back-
ground Polyakov loop is given by

2N

_ _ 2 1 4 T 3
VFT_EJ_: Vg(6))=— 45,8 25 Z {48 0~ 129,
2 2
™ NM 2
+Ee’} 128 20287 EJ: [ ¢ }
1 1
_ A 2 o 21312
ZWB@ {3[<ﬁM> +(6;—2m)?]
1 1 (BM)*
—Zlp — 3_Z|p — 2\ 22 2
3|GJ 2| 2|9J 2l 7| B°M 167T|||]
NM4 (BM) 3
1672 I 27 4 @7

2 1 1
_ A T 292 T A
VF(G)_Wzﬂﬁt{ 720" t2a™ =" 2g”
M2 [ 1 1
=2 T p2
i ZWZ,BZ[lZW 4 0}
- 2’[3[(/3M>2+(e—<2|—1)w)2]3’2
2mnp* T 13
h 1 3
§|0 (21—1) 7|
_£|9_(2|_1) | ZMZ_M
2 ™A 167]1|
M4 | BM 3 -
+16772 n 4 +7_Z 8

with #_ now used. For fermions in the fundamental repre-
sentation ofSU(N), we may write

77N »o 4 NM?
VFT:_18034+ = Tomzgt T T
1 1
— 0 2
2477 2 07+ B4§ {3[(BM)
1
+(0;— —1)77)2]3’2—§|ej—(2|—1)w|3
1 (BM)*
— —|p — _ 2n2
510 D7l g*m 1677|I|}
NM# (BM 3
872 4 +Y_Z 29

where the angle®); must now be chosen to lie between
—qa and .

V. CONCLUSIONS

We have found complete, simple expressions\g( #)
and Vg(0) in the high-temperature limit which generalize
previously known expressions. Not only are the expressions
simple, their derivation is direct and relatively elementary.
Our formulas reflect in a direct way periodicity & a prop-
erty which is lost when analytically continuing power series
in Bu to Bu+ié.

As a practical matter, it is natural to ask how accurate
both the low- and high-temperature expansions are. The low
temperature expansion fafg(6) is an infinite series im;
using the first 10 terms in the series gives an accuracy better
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than 1 part in 18 over the entire range 0 tor2for tempera-  zero, minimizes the free energy. Using the Bessel function
tures T<0.25M. The high temperature expansion also in-identities proven here, we have recenfi8] developed a
volves an infinite series, in the parameletn comparison, high-temperature expansion for this model which shows that
the high temperature expansion is within 5% of the exact non-zero Polyakov line is favored at high temperature.
answer for all values ob at T=0.5M when terms up tdl |

=10 are included. The accuracy improves substantially as APPENDIX A: DERIVATION OF LOW TEMPERATURE
increases. Both expansions are more accurate when restricted EXPANSIONS

to 6=0.

Our primary interest in these results lies in their applica- e begin by expanding the logarithms and performing the
tion to the study of systems where a non-trivial Polyakovangular integrations:
loop is expected to occur. The foremost physical example is
QCD at finite temperature. The high-temperature form of 1
Vg(0) suggests that the Bernoulli polynomials appear natu- s(0)= Ef
rally in the free energy ofSU(N) gauge theories with a
non-trivial Polyakov loop, essentially as polynomials in the 1
Polyakov loop eigenvalues. In our recent work with Miller ,BJ
[12], we have used this observation to construct a phenom-
enological free energy for the quark-gluon plasma which re- 7972
produces much of the thermodynamic observed in lattice =— J k Kd-1
simulations. One can also apply the results obtained here to I'(d/2)(2m)B
the Savvidy model at finite temperatuf&5,16. Savvidy 4
originally proposed a model of the QCD vacuum in which = A nBoy
gluons moved in a constant chromomagnetic fidld]. Us- anl n © cogno). AD
ing low-temperature expansions, we have shown that a con-
fining state, where the Polyakov loop expectation value isThe standard substitutidk—=M sinh{) gives

)d |n[1_ efﬁwkﬂ 9]

2 )dln[l—e*’;“k*i"]
T

A d/2 *© cogné -
Vg(0)=— 2 S( ) dJ dt cosht sinht?~te~"AM cosht
F(d/Z)(ZW) n= 0
47792 os(na)

5

TT(di2)(2m)8 &

f dtsmhtd 1 —nBM cosht

47792 cognéb) d

P& g M aw

K-1)2nBM) |. (A2)

F(d/Z)( 2 )“*1)’2

T(d/2)(2m)° 7 Jr \ngM

This can in turn be reduced using standard recursion relations for modified Bessel functions:

2
z=npM,v=(d—1)/2

HECR
- - =K, (z
z dz z z=nBM,v=(d—1)/2

47@-D2  “ cognd) d

_ d
VB(a)——(Zﬂ_)dBMnZ:l — %

4012 2 cognd)

(2mg =1 N
(d-12 )
ey, B —(3) Ky1(2)
2m°s n=1 N z 2=NnBM,v=(d—1)/2

__ameR o cos{na)< 2 )(d—lﬂz

(2m% A=1N nBM K(a+1)(nBM)
M &/2+ 172 = cognd)
T pdi2-3i2_di2+ V2gdi2+112 Z NTIET K(d+1y2(NBM). 3)
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APPENDIX B: PROOF OF A BESSEL FUNCTION IDENTITY

In this appendix, we prove the Bessel function identity

§K<>s¢>1l(r+ +g 3 = - ®1)
mr)cogme)= =|In
iy o 2| M2z YT V2t (g—2a)? 2dl]]
Using a standard integral representatitd]
” OS(pt)
Z)= B2
we have
- - cogk,r) 1 & 1 .
cogme)Ko(mr)= >, cogm fdk cogm fdk—e'er
mzz 5(¢) O( ) E: S(d’) \/—w 2m7 S(¢) x\/m
1 1 N
- ikyr +ime
47 rgo jdkxdkyk§+ kZ+ m2e ' (B3
We introduce a regulating mags which will be taken to zero at the end of the calculation, obtaining
— dkdk, ———————e/kxtimé, B4
41 mzo J X yk)2(+k§+m2+,u2 (54
We add and subtract the divergent=0 term
— E fdk dk, —e“‘X’“m‘/’— if dk,dk ;e‘er
Y2+ K2+ m?+ u? 4 X yk§+k§+,ﬂ
_ 1 > f dkdk,dk,——————— 8(k,— m)e'kx kb — ! fdk dk, ;e”‘xf. (B5)
ZEE B e A RS
Using the Poisson summation technique in the fa&ps(k,—m) ==, exp(—2mink,), we obtain
1 j . . 1 1 )
— dkdk, dk,———————e/kd Tik(¢=2mn) —J dkdk,—————e'k (B6)
4 En: TR+ K+ N e A h
which reads in a compact notation
3
™ 2 f &k 4m 0T aikertiky(¢—2mn) _ if a2k 1 gk (B7)
(27)° K2+ pu? 4 K%+ u?
The first integral gives a sum of screened Coulomb, or Yukawa, potentials
T —,u\/r2+(¢—27rn)2 1 ) "
= —— d°k e’ B8
25 [P+ (¢—2mn)? 47TJ K2+ w2 (B8)

and both terms appear to be problematigias 0. The first term can be made finite in this limit by subtracting the contribution
atr=¢=0 for n#0. Using the notatiort, to denote a summation over alwith the omission of the singular term when
n=0, we have

T ) —,u\/r2+(¢—27rn)2 e—p,277|r‘l\ - , e_Mz"Tlnl 1 d2k o (Bg)
— — + | = —_— — e x|,
25 [+ (p—2mn)2  2an| 24 2mn| 4w K2+ 2

The second term in brackets can be evaluated by summing the series
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L

_ - A 2T
2 2 2am] 2In[l e ] (B10)
and using the identity
1 2 . ikyr .
—E d kk2+—M2€‘ X :_EKO(Mr) (Bll)
so we have
T e*,u\/r2+(d>72ﬂ'n)2 e*,u,27'r|n\ 1| . 1
> ) —r2+(¢—277n)2_ 2’7T|ﬂ| + ) nfl—e ]_EKO(/-”) . (B12)

In the limit «— 0, the second term in brackets gives

L1 e 2y — Sk L t2m] ol 20 = 2y = B )4 2 B13
so we finally obtain
- T, 1 1 1 (r) 1
Ko(mr)ycogsmo)= = — + =In| — |+ = . B14
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