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Rates of neutrino conversion and decay in hot and dense QED plasma
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Using a real-time formalism of equilibrium and nonequilibrium quantum-field theory, we derive the
reaction-rate formula for the neutrino-conversion<v') process and'»’ annihilation process, which take
place in a hot and dense QED plasma with backgra@amd)neutrinos out of equilibrium. Also derived is the
formula for the inverse processes to the above ones. Using the hard-thermal-loop resummation scheme, we
include the contribution from the coherent processes. The decay or production of a neutrino causes an evolu-
tion of its spatial distribution. A scheme for dealing with this evolution is presented. For the case of the
isotropic neutrino distribution, a numerical computation is carried out for the parameter region of a type-l|
supernova explosion. The differential reaction rate exhibits a characteristic peak structure, which comes from
the coherent processes. The contribution from the above processes to the decay or damping rate of a parent
neutrinov is also studied.
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[. INTRODUCTION neutrino-conversion processes have attracted much interest.
For instance, il6], the rate of neutrino conversion — vy
For the past two decades, the properties of neutrinos im a hot and dense QE@r electron-positron-photgmplasma
background media have attracted much intefsse, e.g., is computed using the above-mentioned effective perturba-
[1]). Interactions of neutrinos with a thermal backgroundtion theory. The responsible interaction is the magnetic di-
cause a change in the properties of neutrinos. The dispersigole neutrino-photon interaction, is assumed to be ther-
relation is the quantity that describes this changetzbld ~ mally distributed in the QED plasma.
and Raffelt 2] were the first who comprehensively analyzed |n this paper, we deal with a neutrino-conversion (
the dispersion relation of a neutrino in a thermal background,

. ') process and av’ annihilation process, which take
W_he”?’ among others, the dar.“p"?g rate of an electron ne lace in a hot and dense QED plasma. We also deal with
trino is computed, the rate which is related to the mean-fre

path and to the refractive index. The computation is per—nverse processes to them. The backg'ro(uuutDneutr'mos
formed by neglecting Pauli blocking effects and using thedre out of equilibrium. In Sec. I, we derive the reaction-rate

bare dispersion relation for participating electrons. The radiatprmUIa for these pracesses, on the basis of the nonequilib-

: . : : rium quantum-field theoryoutlined in Appendix A supple-
tlveltdigc&?/ r?:)v?/ TVZESIL\;I%VTI?EXI%O,[RZS iger?(?t iﬁjygﬁg]elgse mented with the effective perturbation theory of hot and
QED the thermal propagatoré of a soft phdtand a soft dense QED. Also presented is a procedure of determining

electron(positron are drastically changed from those of re- spaSLcetlrma feﬁlrl;'t'on ro(antaneiLIJItrlr:ro t(ijlimr?urtgor;i quCt'%n' i
spective bare counterparts. The salient feature is the appeép— ec. 1ll, Tor the purpose of Mustration, numerical compu

ance of the imaginary part in the spacelike-momentum relation is carried out for the differential reaction rate for the

gion, which comes from Landau damping mechanism. Th rz]';lsetof |sotrct)p|c neu(;rmbo dlstrlbutlotr)w. W((ja argtmtere_sted |n]c
dispersion relations for soft photon and electron are als € lemperaiure -an aryon-number densily regions o

: - ; -Il supernova explosiofcf. [4,7]); Me<T, w<<Mjg,.
largely changed. An effective or improved perturbation YPe e on -,
theory, called hard-thermal-logpiTL) resummation scheme As in [3,6], we neglect the effect of the ions. The contribu-

[4,5], in which the above-mentioned effects are taken intotion from the coherent processes exhibits a characteristic

account, is established just after the w2k peak structure in energy distribution of a d_ecay

Recently, in relation to the possible neutrino oscillation,N€utrino”—v’ for the neutrino-conversion process and
for the vv’ annihilation process. We then study the contribu-
tion to the damping rate of. Numerical computation is car-

*Electronic address: asida@yukawa.kyoto-u.ac.jp ried out for the case where no neutrino exists in background.
TElectronic address: niegawa@sci.osaka-cu.ac.jp Section IV is devoted to discussions. In Appendix A, we
*Electronic address: hozaki@sci.osaka-cu.ac.jp present a formalism for dealing with neutrinos in an out of

IA soft particle is the particle that carries soft momentum equilibrium system, which is used in the main text. In Ap-
Q* (|Q*=0(e\T?+ 1?)). Here —e is the electron charge and pendix B, we give the form for the self-energy-part-
T(w) denotes the temperatuehemical potential resummed photon propagator. Finally, in Appendix C, we
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compute the necessary quantities for the present study.

Il. REACTION-RATE FORMULA AND DAMPING RATE OF
A NEUTRINO

A. Neutrino-conversion process

We deal with the system that consists of a hot and dense
QED plasma and neutrinos. We assume that the QED plasma
is in thermal and chemical equilibrium, while the back- _
ground neutrinos are not. Then, the whole system is out of FIG. 1. Diagram forl'{"”. *1” (“2" ) at the vertex on the left

equilibrium. A neutrino-conversion process of our concern isSide (right sidg denotes the type of vertex in real-tinisonequi-
librium quantum field theory. The oval loop is an electron loop.

v(K)+ QED plasma- v’ (K’) + anything. (1)

We assum/e_ thav is massive, left-handed neutrinevith 5. 5 ovix in a “type-space’[4,9—11.) X stands for the
massm), v’ is massless and left-handed. The four-momenta . di f th fth . h h
K and K' are K=(Ek) with E=JkZ+m? and K’ spacetime coordinates of the center of the region, where the
— (k' .k'), respectively 'i'he QED plasma is assumed to be aﬁeacuon takes place, the definition of which is given shortly.
- ) 1 . 2 . . -~ ~(l)

rest. The total reaction rate for the procésscontributes to | he ©(G?) contribution tol'y, T'g”, reads(10,11]

the damping or “decay” ratd"y of a parent neutrina. T'y

also receives a contribution from the relative process to the - 1 ( d*Q
process1) 1“((,1): _ H(zvlv)aﬁ(Q)
’ 2k (2m)4
(=K )+ . y
v(K)+v'(—K’)+QED plasma-anything,  (2) KTHLK 7,82 (XK= Q) ysL ], @

wherer’ is an antiparticle o’ and —K'=(k’, —k’). Wyap ; ]
The region for various parameters of our interest is whereIT37°“" is the (21)element of the one-loop matrix

function 13 whose (j) element is
T,u,E k', me<My, and m<2m,. (3

HereMy(m,) is the mass otV boson(electron). We expect 4

that, in the region(3), the result is insensitive tom (<m,).

As a matter of fact, we have confirmed that, at least in the
range G=m=100 eVk? [8], no visible change is detected X y“l_g(je)(p)yﬁu (i,j=1,2). 8
in the results to be given in Sec. Ill. Thus, we set0

throughout in the sequel, so thét= (k,k). In the region(3), . . . mf) . —
we may use the effective Lagrangian, which, after FierzThe diagrammatic re_pres_entanon 'S givenin Fig. 1. In
Eqg. (8), no summation is taken overandj. In Eq. (7),

transformation, reads ) ) .
o o 8(2”1)(X;P) is the (21) element of the matrix propagator
Le=—2\2G[ (v y*L v)(ey,Le)+H.cl]. S, (X;P) of out of equilibrium»’, which is a Wigner trans-
e form of its configuration-space counterpat, (x,y):
HereL=(1-1ys)/2, G is Fermi's constant, and underlined g P Pt (x.y)
fields stand for the fields the “weak-interaction basis.”

For the QED sector, we employ the real-time formalism
of equilibrium QED[4,9] and, for the neutrino sector, we use
the nonequilibrium real-time formalism of quantum-field
theory[10]. I'q is written as[10,1]]

Hi(j\MaB(Q)=8iGZ(—)i+jf ‘ F; TSP (P-Q)

(2m)*

4
e PG (X P),

S, (x.y)= f 2

whereX=(x+y)/2. S in Eq.(8) is the (j) element of an
Ig=|U% U, |?Tq, (4)  equilibrium electron propagator matrf .

Neutrino sector

T () x-
= 2kTr[LK221(X'K)]’ ©) From now on, we restrict our concern to the systems, in
which the distributions ofantneutrinos are of quasiuniform
+o dly near equilibrium or of quasistationary. For such systems, the
= fﬁm dQOd_qu (6)  gradient approximation in the derivative expansion is sen-

sible [10]. A brief derivation ofS, (X;P) to the gradient
where U is the lepton mixing matrix and®$? is the  approximation is given in Appendix A:S, (X;P)
(21)-element of the X2 matrix self-energy pai ,(X;K) =é$,9)(xi P)+AS(V1,)(X;P) with ASS,O,) the leading term ané(yl,)
of nonequilibriumy. (Here and in the following, “” denotes  the nonleading or gradient terrAﬁgﬁ)(X; P) reads
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80x;P)=LPSD(x;P),

v AR(P)—AA(P)  —AA(P)
+2mie(p)f, (X;P)S(PHA,, (9
where
Agay(P)= W, (10
£, (X;P)=0(po)N, (X;po,p)
+6(—po)[1=N(X;|pol, —P)],  (11)
- 1 il)
A=l (12

HereN, (X;po,p) [N, (X;|pol,—p)] is the number-density

function of v’ [7’] at the space-time poin with “energy”
|po] and momentump [—p]. The nonleading term

AS(Vl,)(X;P) is given in Eq.(A2) with »" for v. In our formal-
ism outlined in Appendix ASY is O(G?) smaller thars..
This is becausé‘;(,) mcludesax f,/(X;P), which, as seen
from Eq. (34) (with v’ for v), is proportlonal toG? since so
is F,.. Then, forSY, in Eq. (7), we substitute the21)
element of the leading tené‘ﬁ’ [Eqg. (9)].

Electron sector

The electron propagator matri®,(P), whose elements
are in Eq.(8), is of the form

S:(P)=PS(P). (13
HereS,(P) is given by the right-hand sid&RHS) of Eq. (9)
provided thatf ,,(X;P) is replaced by an equilibrium distri-
bution function

fe(Po)=60(Po)Ne(Po) + 0(—Po)[ 1 —Ne+(Po) ]

1
Ne(po)=m,
1

ellpol+m)/T 1~ (14

Ne*(po) =

We decomposél{“#(Q), Eq. (8), into transverseT),
longitudinal (L), and vector—axial-vector interference4)

parts. T and L parts are proportional to the thermal self-

PHYSICAL REVIEW [B5 056007

Y 4(Q)= 4—[7> I (Q+PHAQI(Q)

—ie*P0Q,IIYN(Q)], (15)

NYA(Q) = 2ie —f (0020 S[(P-Q)

xSP(P),

where €#"P? is a fully antisymmetric pseudotensor with
€912%=1, 8® (i,j=1,2) is the {j) element ofS, in Eq.
(13), andPy(1 is the standard projection operator onto trans-
verse(longitudina) mode,

3

PIQ=- 2 79”8 -qd) (@=dq),

QB_Q“QE

P(Q)=g - P(q). (16)

I{"9(Q) in Eq. (15) is the () element of theT/L compo-
nent of the thermal self-energy part of a photon.

I1$9(Q)(S=T,L,VA) are related td4,9] the so-called
Feynman self-energy part

19(Q)=11{(Q)+ 8(qo) I1{F(Q) + (— qo) TTS)(Q)

(S=T,L,VA) (17
through
15902/ Q)=2[ 6( = o) +ng(|o)) IIMTTE(Q)
(S=T,L,VA). (189

Here ng(x)=1/(e“T—1) and “Im” means to take the
imaginary part with Feynman prescription. In Appendix C,
MY (S=T,L,VA) is computed within the approximation
m.=0, which is a good approximation for a plasma with
high temperature and/or density.<T,u. In Sec. Ill, we
discuss to what extent the approximatiog=0 is good one.

It is worth mentioning thafl&’?(Q) vanishes for vanishing
chemical potentialy=0.

O(G?) decay-rate formula

As seen from Eq(9), S, (X;K—Q) in Eq. (7) involves
f, (X;K—=Q). Let us write

f (X K=Q)=f,,(X;k=0qo,k—0q;,—0q,),

1
q= E(Q'k)k, q.=9q—q.

energy part of a photon in hot and dense QCD. Thus, we may

write

Then we defind, . through
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d4Q 90 |
J - T(XiK=Q)G(qo.q))

- [ daeda™ L e, xik—a0 k- Gl

(19

d(qg-k)
gk

with G any function ofq, andq.

Using the formulas displayed above, we obtain, after
straightforward manipulation, fodT'{"/dq, to O(G?) [see
Egs.(6) and(7)],

E+k

drf{? G211 K fd
dag —?;EWNO)WL”B(MOD]G( —do) 72 aq

N Q? E—k
X 1—f (Xk qo,(l—?'f‘% k)]
xGH(Q), (20)
where
g =ImrH oM +H o) FIG. 2. Integration regiorR=7R;UR,. The dashed line with
@ [H(QI(Q) L(QIE(Q) T(L) shows the dispersion relation for the transveisagitudina)
— HVA(Q)Hl(:VA)(Q)]y (21) mode in the hard-thermal-loop resummed photon propagator.
2 Q2|2 where K'=(k’ k"), K=(k,k), and —K’'=(k’,—k). The
H1(Q)=Q%—2k?+ — | kgo— ) procesq22) is a production process of due to the reaction
q° of v’ With_constituents of the QED plasma and the process
(23) is a vy’ production process. The reaction-rate formula
, 2 Q2 2 for these processes is written as
HL(Q)=2k 7 koo~ :
I,=|U%Ue, 7T, (24)
Hya(Q)=(do—2k) Q.
(V) /vy-
The integration regiofR in Eq.(20) is defined agsee Fig. 2 F” Tr[LKE 2(X K], (25
RZR]_URz, o dfp

Ri:|0ol<q=2k—qpo,

In a similar manner as above, we obtain, for B¢G?)

Ry:[2k—qo|<q=0qp. contribution

In the regionR; [R,], ky=k—0go=0[ky<0], and then

T (1) 2
R1 [R,] is the kinematically allowed region of the reaction & - G_ i i[ 6(—qo) +ng(|dol) Je(o—k)
(1) [(2)]. At first sight, atqy=0, Eq.(20) seems to diverge at ddo w2 e? k?
g=0. Inspection of the formulas in Appendix C tells us,
however, that this is not the case. x fqu qG(l)(Q)
B. Neutrino-production process q Q2
We now turn to the inverse processes to the procedses Xf—yr Xik— qo,( 1- ?0 + —2) k) ) 27
and(2): 2k
v'(K")+QED plasma- »(K) +anything, (220 wheref,, is as in Eq(19) andG™)(Q) is as in Eq(21). The
- diagram forT'{" is the same as Fig. 1, provided that the two
QED plasma- v(K)+ v'(—K")+anything, (23 types of vertices are interchanged-2.
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K/

FIG. 3. Diagram foi'{?). The hard-thermal-loop resummed ef-
fective photon propagator is indicated by a blob. “1,” “2,"1}" and

PHYSICAL REVIEW [B5 056007

1 (I1(Q))°
(2) =_ 7
G@(Q)=3Im P;,LHP(Q)QZ—H,(:P)(Q)

IEY(Q))?
Q-1 (Q)

IO(QIEM(Q)
Q*-11N(Q)

+H(Q)g?

—2Hya(Q) (31)

“j" on the vertexes denote the type of vertex. The oval loops are

electron loops.

C. Contributions from a set of coherent processes
According to the HTL-resummation scher&5], the in-
tegration region in Eqs(6), (20), (26), and (27) should be
divided into hard® region [|Q#|=0(\T?+ x?)] and the
soft-Q region[|Q*|=0(e\T?+ x?)].
Hard-Q region For ImII®(Q) (S=T,L,VA), expres-
sions given in Appendix C are usefoft-Q region Observ-
ing the formulas in Appendix C, we see that, g1,

Hy (QImTTE™(Q)=H1,.(Q)Im Fr/.(Q)
>Hya( QIS (Q),

where ImF1, (Q) is as in Eq.(C1) with Egs. (C14) and
(C195 in Appendix C. In the soff region, there is an addi-

(28)

tional contribution: An inverse HTL-resummed photon

propagator [cf. Eq. (B3] (*AEM(Q)[=Q?
~11"Y(Q)=Q%—F+, (Q)] is of the same order of magni-
tude asl"Y(Q) [=F+,(Q)]. Thus the diagram foF 4 as
shown in Fig. 3 yields an equally important contribution.

The characteristic scale of the hard region [#5]
JT?+ 42, and that of the soft region ie\T2+ u2. As a
matter of fact, sincee=0.30, the hard region and the soft
region are notsharply separatedTaking this fact into ac-
count, we compute the contribution from Fig.13?), with-
out using the HTL approximatiore(1). The contribution is
given by Eq.(7) with the replacemeri4,9]

H(W’“B(Q)—>— — 2 UE(O)

><<*Aij<Q>)MH}¥°”B<Q>, (29)

wherell's are as in Eq(8) and *A is as in Appendix B.
Straightforward computation yields

dfz(jz) G2 1 ) | | ‘ f g
dq 2 &2 kz[ (do) +ng(|dol) ]e(k—dp) R qq
T . do Q7
x 1_fw(X,k QO,(]- ?4‘% k)]
xGA(Q), (30)
where

The replacemen(29) and Fig. 3 tell ug11] that Eq.(30)
describes the differential rate for a set of processes, in which
real and/or virtual photqs) participate. It is to be noted that
the (rea) photons in the QED plasma are in thermal equilib-
rium. Then, the photdis) does not come out of the plasma,
so that, when the decay neutrino goes out from the plasma, it
does not accompany photsh (In this relation, se¢3].)

In a similar manner, we obtain, for the contribution from
the processe&?2) and(23),

T(2)
dr'y B
dqo

6211

2|(2

—[6(—do)+ng(|ag))]

X €(do—k) fqu qG?(Q)

— do Q7
Xf, | X;k—qp, l——+—

k). (32

The diagram for this is the same as Fig. 3, provided that the
type-1 vertex and the type-2 vertex in Fig. 3 are inter-
changed.

In the next section, we shall use the formulas displayed
above for the whol&? region.

D. Net decay rate
The net decay ratEj*'and the net production rat&* are

LX) =N, (XKL g(X;K) = [1=N,(X;K) T p(X; k)
=-T¥(X;k), (33

whereN, (X;k) is an(on mass-shelldistribution function of

v. Whenv, v', andv’ are in thermal and chemical equilib-
rium, N,,, N,,, andN;; take similar form to Eq(14). Us-

ing Eqg. (18), one can show, in this case, that the detailed
balance holdsl'{*{X;k) —T'§¥(k)=0.

E. Procedure of determining (anti)neutrino distribution
functions

Here we study the neutrino or weak-interaction sector. As
discussed above after E@12), the nonleading piece of
§,,, 87, is O(G?) smaller than the leading pie&) and
may be neglected. Higher-order correction§ﬁ5‘§), Eq.(5),
and to3{%, Eq. (25), due to weak interaction, are also
O(G?) smaller than the respective leading contributions ana-
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lyzed above, so that they can be ignored. There is, however =1’
an exception to this argument. Our formalism outlined in

g —
Appendix A accompanies, for each neutrinothe evolution B 2Mev) g e
equation forf,, which is included in the neutrino propagator oo T = 50 (MeV)
S (X;P): 4 = 350 MeV)
It (K PIL=F (X;P), (34 o e
£
F,(XP)=i[(1-f )3+, 3. (35) oot |
HereX{" is the (j) element of the self-energy-part matrix
0.005 H,

3, and is of O(G?). For computingF,(X;P), all the rel-
evant contributions should be included, among which are the
contributions analyzed abovéSee Appendix A for more de- 0.000 £ : s : )

. 20 -20 -40 -60 -80 100
tails.) do (Me¥)

We show in Appendix A that, on the mass-shgjF = p, (@)
Eqg. (34) turns out to the Boltzmann equati@A7) and its
relatives, Eqs(A8) and (A9). As a matter of fact, as far as x10°
O(G?) contributions are concerned, onfy, on the mass- o2 ' ' ' ' ' ' ' ' '
shell is relevant because of the presencé(@?) in Eq. (9). E=20MeV) e —
Equation(34) describes the spacetime evolutionfg{X; P) oz  T=50MeV)

under a given initial datd, (X2 ,X;P) at an initial timeXx° #= 30 M

=X? . Although the RHS of Eq(34) is of O(G?), its effect
cannot be ignored in general. This is because, in the proces,. °
of solving Eq. (34) for f,(X;P), integration overlarge 2

spacetime scalés involved, so that th@©(G?) effect is en- o0 b
hanced.

In conclusion, neutrino self-energy part can be ignored
everywhere but irF, in Eq. (34). In computing the reaction oosr

rates, as dealt with here, one should substitute (dre
ti)neutrino distribution functions, which are determined . . . . . . . . :
through Eq.(34) in a self-consistent manner. This applies to 2 5 100 1 20 250 300 80 400 450 500
every neutrino. 9o (MeV)

(b)
Iil. NUMERICAL COMPUTATION FIG. 4. Plots of G and ¢V vs g, at T=50 MeV,

In this section we present a result of numerical computa“‘:355(()1')\"‘”(’JI (‘Zg‘)’E:g(geV- Part (aZj C‘t’"‘:ponds tos(ge péo'
. . ~ ~ . cesse an , an corresponds to the proces an
tion of the “portion” of dI'(,) /dgy and Ty, that are inde- 23) P P

pendent of they’ distribution function. We are interested in =(0) 5 pu
the type-Il supernova environment, which is a QED plasma dr’y _ G_ i e % £ (X:k=00)G V(g k. T)
whose core temperature ~30-60 MeV and electron doe 22 k2 vV Go- %

chemical potential ige~350 MeV [4].

(i=1,2).
A. Differential reaction rates
_ Here
In general, the number-distribution function of (v'), _
N, ) (Xkg. k') (K'=K=Q), is anisotropic, and one GD(qo.k, T)=e(k—0o)[ 6(do) +ng(|do|)]
should compute Eqg20), (27), (30), and (32) substituting
N, andN,, which are to be determined self-consistently. Xf dgqG(Q) (i=1,2)
In this section, we restrict ourselves to the case of isotropic R
distribution, N, 7)(Kg, k") =N, 1) (kp). In this case, Egs.
(20), (27), (30), and (32) may be written in the form with G(Q) andG?(Q) as in Egs(21) and(31), respec-
tively. We computeG )(qq,k,T) (i=1,2) for various val-
d’féi) G211 . ues for the parametefs andk. For the chemical potential,
T —[1=1,(X;k=d0)1G D (do .k, T) unless otherwise stated, we take=350 MeV [4].
Qo w ek In Figs. 4-8, we display the results of numerical compu-

tation for different values fok and T. The solid lines repre-
(i=1,2), sent the total contributiong=G®+G®@, while the dot-
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x10?
09 .

g —
08 [r1C) I
E =10 (MeV)
07 | T = 50 (MeV)
=350 (MeV)

(MeV)s

go MeV)
(a)

x10°
05

g
[+1€) R
E =10 (MeV)

T = 50 (MeV)
1= 350 (MeV)

0.4

(MeV)®

i i i ’ i 1 . . .
10 50 100 150 200 250 300 350 400 450 500
go (MeV)

(b)
FIG. 5. Same as in Fig. 4 but f&=10 MeV.

dashed lines represe@t!). The figures {a)” display G and
W in the regiongy=<k [the region of the processék) and
(22)] and the figures (b)” display G andG®) in the region
go>k [the region of the processé®) and (23)]. Some ob-
servations are in order.

Figures 4—7 show the results for different value& ofith

PHYSICAL REVIEW [B5 056007

x10°
6.0

B = 20 (MeV) g
sor T = 50 (MeV)
= 350 (MeV)

2
é X
(a)
x10°
1.0 ;
g _
E =20 (MeV) P R /
08| T =50(MeV) /
1= 350 (MeV) /
e
>
)
2

i 1 1 1 1 1 1 1 1 1
20 50 100 150 200 250 300 350 400 450 500
do (MeV)

(b)
FIG. 6. Same as in Fig. 4 but f&&=20 MeV.

Figures 4—8 tell us that, for most regions displayed in figures
(a), an infinite number of “interference contributions” is
summed up to be negative, so thit{/dg, anddT (?/dgq
are negative.

Both in figures(a) and (b), G®(qy.k,T) exhibits peak
structure. For figuresa) [qo<k], the peak is afgy=0 or
k’=k—go=k and is more prominent for smaller incident

incident-neutrino energl, G?)/G is larger. In the region of

figures (b) [the region of the processé&8) and (23)], both

¢ andg®@ (=G-gW) are positive. In the region of fig-

ures(a) [the region of the processél) and(22)], except for

the small regiormgy~0 (or k' ~K) in the case of relatively
small k/T, G® is negative. Referring to the reaction-rate
formula[11], one can see what kind of physical processes are

involved indT"{?/dq, [Eq. (30)] anddT'?/dq, [Eq. (32)].

As a matter of fact, each of them involves a set of infinite
number of coherent processes. A few examples of them that

are involved indT"{?/dq, are

v+e—e+y+v', v+e—et+tet+te+.

stood as follows. In the hard-thermal-loop approximaficfin
Eq. 28], *A"™(Q)=1/[Q*~F,(Q)] [see Egs.(B3)
and(C1)]. Then, as is well knowp4] or as can be shown
from Eq. (B3) with Egs. (C3) and (C4), *A{}2C1(Q) in
Eqg. (B2) turns out to be of the form

* AGDILQ)=2i[ 6(F o) + Ng(|do]) 1Z1/L (@)

X 8(do— w7(Q)) (do>1).
(36)
The dispersion curvesjy= w1(q) andqy=w (q), are sche-

matically shown in Fig. 2. Use of the actudlAl’"(Q)
=1/[Q?>-11['"(Q)] results in the change ofé(q,
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FIG. 7. Same as in Fig. 4 but f&=50 MeV. FIG. 8. Same as in Fig. 4 but fof=20 MeV and E
=10 MeV.

—w7,.(0)) in Eq. (36) to the functions with finite width that  pjay the results in figureg). For the regiongy<k, promi-
are (sharply peaked atfo=wr, (q). Inspection of Fig. 2 nent reduction occurs only at,~0, at whichG® peaks.
with these observation in mind allows us to understand the arger reduction occurs for small&r
structure of figuregb).

For the purpose of seeing the effect of the chemical po-
tential u, we display in Fig. 9 the result fork(T,u)
=(10,50,0) MeV.(For the QED plasma in the early uni- For computing the contributions to the decay or damping

verse,u=0.) We see thag¥<G™), so that the peak struc- rateT'y(=T'{+T?) [cf. Eq.(6)] and to the production rate
ture is less prominent when compared to the caseuof T‘p(:’fwél)+‘f‘(p)2)) [see Eq/(26)], knowledge for the distribu-

t;sr??j i?\/li:/é ggi.oidg;nkthe regiongo>k is much larger tion functions,N,, andN;, is necessary. Furthermore, for
Above com A0=" . computing the net decay ral&*(X;k), Eq.(33), knowledge
putation is carried out neglecting the electronfor the distribution functiorN,(X;k) is necessar
massm, . Inclusion of the electron mass, causes a change AR - y
in H(FS)(Q)(S=T,L,VA) in the region|Q2|sO(m§). For Here we compute the dampmg rdtg of an incidentr on
the purpose of getting a measure to what extent the approx N0t and dense QED plasma with no background neutrinos,
mationm,=0 is good one, we perform all numerical com- Nv=Ny =N, =N:=0. Then, the proced®) is absgnt. Dis-
putations by simply cutting off the regioyQ?<m?2. This  played in Figs. 10 and 11 are the total contributibg
cutoff turns out to reduc&® (i=1,2). Dashed lines in (=TP+TP) and the partial contributionT'{Y for u
Figs. 4—9 show the result of computation. In most regions oF=350 MeV and, in respective ordelf=50 MeV and
Figs. 4-9, no substantial reduction arises. Especially, for th@0 MeV. Figures 12 and 13 show the result for0 and, in
regiongy=k, no sizable reduction arises and we do not disrespective ordelT=50 MeV and 20 MeV.

B. Decay rate
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FIG. 11. Same as in Fig. 10 but far=20 MeV.
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Cutting off the contribution from the regiofQ?|<m2  [12]. Extension of the framework to the case of massless

does not result in sizable reduction. left-handed neutrina, is straightforward. Here we briefly
The characteristic features are that for the rangk, ofr, describe somewhat simpler framework fgr, which is suf-

and u displayed in Figs. 10—13, the contribution from the ficient for the present purpose. We employ the derivative

softQ region, '@, is not very large, and Figs. 12 and 13 expansion and use the gradient approximation throughout.

tell us that, foru=0, T is almost linear irk. As a matter of

fact, T'y's in Figs. 12 and 13 are well parametrized as 1. Free propagator

~ We start with introducing a standard foifrh3,12 for non-
Ly(k, T)=cG?k! T4, equilibrim matrix propagator of a massless left-handed neu-

_ trino v :

with (c,a)=(0.60,0.04).
- d*u d*v . - R
IV. DISCUSSIONS SV(X,y)=f(2 )4J WBL(X’U)SRA(U_U)BR(Uly)y
a a

On the basis of the formalism, outlined in Appendix A, for (A1)
dealing with nonequilibrium quantum-field systems, we have S (x—y) —f,(x%,Y)
derived the reaction-rate formulas for neutrino-conversion éL(x,y)z( v )
process and its relatives, the processes which occur in the Sfx=y) Sx—y) =T (xy)

medium that consists of a hot and dense QED plasma and

background neutrinos. The formalism involves the Boltz- | SHx—y)—f,(xy) —f,(XYy)
mann equation and two related ones, which describe spaceBR(X,y)I( S(x—y) 54 (x— )),
time evolution of(antijneutrino distribution function. lllus- y y
trative computations of the differential reaction rate ~
dl 4y /dqo is made in Sec. 1l A and of the total decay rate Spa=diag(Sg, —Sa).

I'y in Sec. I B.

For relativistic particles dealt with here, the mean-freepere “™» denotes a 2<2 matrix in a “type space.” In a 4
path | is related to the decay raté throughl=1/T" [2],
which, in turn, is related to the imaginary part of the refrac-
tive index Infn]=(2lk) '=TI/2k. Computation in Sec.
[l B shows that, in the range of Figs. 10 and 11, order of

magnitude ofl'y is 10" *°~10'? MeV. Then, we see from
Eq. (4) thatl=[0.2~200]/|U¥ U,,/|> m, which is much less
than the core size of the type-1l supernova. This means th
when applying to the actual supernova;’ as well asvv’

X 4 Dirac-matrix space3, andBg are the unit matrices. The
Fourier transform oSz, reads

Sra)(P)=LPAR(P) [L=(1—1s5)/2],

hereAga)(P) is as in Eq.(10) andf,(X,y) is the inverse
igner transform of

production processes are also important and, through these f(X'P)= N (X:
processedantineutrinos are produced. Thus, one has to per- #XP)=6(Po)N,(X;Po,P)
form an analysis by the full use of the formalism in Appen- +6(—po)[1—N,(X;|pol,—p)]

dix A. The evolution of the neutrino- and antineutrino-

distribution functions should be dealt with through theith x=(x+y)/2. Here N, (N;) is the number-density

B e o e St uncion o (). Compuation of EGAD 10 e raden
9 ’ approximation yields

presented here allows one to determine hereafter of the sys-
tem. Concrete numerical analysis along this line is outside of

. d‘P . [ X+
the scope of the present paper. Sy(x,y)=f e_|p.(x_y)SV( y ; P),
(2m)* 2
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The leading tern8{? is given by Eq.(9) with » for »’ and
the nonleading tern®{" reads

APPENDIX A: NONEQUILIBRIUM NEUTRINO a0 1 R P J P
PROPAGATOR AND “HEALTHY” PERTURBATION Sy = TILAL (Uxf )5 +2(P-0xt) P25 5,
THEORY (A2)

A perturbative framework for dealing with Dirac fermions R
in a nonequilibrium quantum-field system is presented inwhereA, is as in Eq.(12) andP denotes principal part.
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2. Free and counter actions byt (X;P)L=F (X;P),
The propagator introduced above is an inverse of the ker-
nel of a free actiom,, which we now find. Applying, to F,OGP)=i[(1—f )3 +f,50)7], (A6)
S,(x,y) in Eq. (A1), we find the form ofA,, to the gradient
approximation: we attain a pinch-singularity free perturbation theory.
A= f d4X\I_f(X)iﬂL\If(y)—AC, (A3) 4. Boltzmann equation and its relative equations

After multiplying LP from the left of Eq.(A6), we take a
trace and go on the mass-shgjl= = p. Referring to Eqs(5)

- — — 1 and(25) together with their antiparticle counterparts, we ob-
V=), V(X)= W) (A4) " tain, with obvious notation,
(I, tV- VN (X;p,p) =[ 1= N=(X;p,p) IT S (X;p)
A f—d4x J—d4y W (X) N. (X;p,p)T§H (X
= X - + 1 1 B 1 .

(A7)
X (i by i) LT (X, Y)A_W(y), (A5) B
Herev=p/p and “+” [* —"] stands forv [v]. As can be
whereA _ is as in Eq(12). In Eq.(A4), the subscripts of the Seen from Eq(33), the RHS is the net production rate ofv
field denote the type of field in real-time formalisfa]. ~ @nd EQ.(A7) is nothing but the Boltzmann equation.
From Eq.(A3), we see that the action of the theory turns out ~ Similarly, multiplications of Ly° and of Ly, [=Ly

to be —L(y-p)p] to Eq. (A6) yields, in respective order,

A=A,+A'+A 1
0 ¢ aXON:(mep):iETr[L?’OFv]pO::p,p*ip' (A8)

whereA’ includes other fields than, and;L and the inter- 1
actions between fields. It is to be noted that the counteraction - . _ L -

A, appears. Y- VN (X;p,p)==* 2Tr[L’)/L Fv]pO:ip,paip . (A9)

If (initial) distributions are spatially isotropic, the RHS of

3. Self-energy part and “healthy” perturbation theory Eq. (A9) vanishes

The self-energy-part matrix of reads

APPENDIX B: SELF-ENERGY-PART RESUMMED

< . — < (loop)y- s . A
EV(X'P) 2” (X;P)=idxf(X;P)LA_, PROPAGATOR OF A PHOTON

where$ (°°P) comes from loop diagrams and the second term Elements of the self-energy-part resummed photon propa-
on the RHS comes from the counter actign. Computation gator matrix(in Landau gaugereads{4,5,9

of a 3-inserted propagator to the leading order of derivative

expansion yields *A(Q) =~ Pi#(@)* At(Q - PIAQ* AL(Q)

i i . (i,j=1,2, (BD
S,(X;P)3,(X;P)S,(X;P)=—iSgl (4xf,)L—i{(1—f,)=(Y

whereP%#(q) andP*¥(Q) are as in Eq(16) and

HOSEISAL
*AGDQ =—(*afPQ*

Here f,=f,(X;P) and “...” contains the terms with T / T ,

Sk2Q)Sr and withSS 7S, , whereS g =311+ 3150 is =*A("(Q) +2ing(|goh)Im*ALV(Q),

the retarded(advanced self-energy part{10]. Observing

SrSp= 1/[(P?+i07)(P?~i0")], we see thatSgSs pos-  *A(2/ Q)= 2i[ (+ do) +na(|do))]Im*ALT(Q),
sesses pinch singularities @§= = p in a complexpy-plane. (B2)
Then, by demandirfg

(TIL) —
2 . . ) *AF (Q)_ Z_H(T/L) . (BS)
As a matter of fact, demanding EGA6) to hold in any regiofs) Q Q)
of P will do, as far asp,=+p and po=—p are within that re-
gion(s). 1Y is computed to the one-loop order in Appendix C.
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APPENDIX C: SELF-ENERGY PART H(FS) (S=T,L,VA) 2 MZ 1 (=
= |y 2 =
Here we compute the lowest-order contribution to 2= 6( 2 quodppz
I3(Q)[S=T,L,VA], Eq. (17). We are interested in the
high-T and largex region T,u>m,, and then we ignore I —
me. The effect ofmg(# 0) is discussed in Sec. Ill. XN+ (p)+n-(p)]in L+ L. €9
Computation of I (Q)(S=T,L,VA) L,_
putation O S=T, 9= 5 |, dppin(p+n (| 7).
We decomposeﬂ(F )(Q) andl'l(F )(Q) into three parts, q Lintaie (10
Q) =FRLQ)+Fr(Q)+6Gru(Q).  (CD n
F{9 stands for the vacuum contribution afg,, stand for == f dppLn.(p)—n- (p)]ln<L+ L_ +)
the contributions that dominate in the s@ftregion, the lat- (C1y
ter contributions which are called hard thermal Id@R5].
Incidentally, IT&A(Q) has no hard thermal loop. -1 N
Straightforward computation of Eq17) [cf. Egs. (8), I3= _qf dp[n.(p)—n_(p)]in —L 3 (C12
(15), and(16)] using Eqgs(13) and (14) yields o
© © ) -Q? with
Fr(Q)=F¢ (Q)I——Q ——In , (C2
e n.(p)=1/(e®P*M/T+1),
3 50| Q" dotd L,,=0o+pd+20p (p.o=+)
F =_—mi—| —=— = c3 po=0Uotpd+20p (p,o==).
(Q=3m q{q 2¢7 do—ql €3
It is straightforward to obtain
Q? [ do, Go+ q}
=—3m2—|1--In c4 1 ,
FUQ==3m 211" 20" g Y mnQ = S i@ tiom-cel, (€13
6r@=- 20 [ 1+ 2 |1+ 2 (1,-ql|, 37 el
T 22 L g2 ImFr(Q)= 0~ Q%) mQ 3 (C14
(CH
a Q? FL(Q) 2 2190l
CUQ= 7 7@t 4l qlo)], (C) 'm( 02 )=—0<—Q>2 R (€19
and 7T
Imll=—E(F,,+F+,—F,+—F++), (C16)
e? Q? + ~ ~
neA—— £ 2 g q—qqola+2qll}-
472 o Jo—Q T
(C7) Imlp=— - dppz[n+(p)+n (P, (C17)

20Jq

In obtaining the vacuum contributidi€2), we have used the

MS schem2and , is the renormalization scale, for which

we chooseu, = \T?+ u2. Incidentally, the vacuum part of Imlgz=— ls(qo)Jqudpp[m(p)%-n,(p)]
YA vanishes. In the above equations=e*/4m, m? 2q a

=e?(T%+3u?/w?)/9 is the thermal mass of an electron, and - Q
- ae(qo)e(—Qz)fo dpp

1 ++L
ly=—=| dpn,(p)+n_ (p)]ln(ﬁ) (C8)

24Jo X[n.(p)+n_(p)], (C19
3We have adopted a convention that Dirac gamma matrices are Imle — %Iqudpp[n+(p)—n,(p)], (C19
q

4Xx 4 matrices inD-dimensional spacetime.
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T7.=7 m |90l + 0 || 0ol —al
|m|3:aé(QO)9(—Q2)M—EE(%)T W=—"— G=—7p
X[Fir—F_s—e(@)(F4_—F_)], F,o=In(ers/T+ e llaol+oaliD) () o=t )
(C20 (C21)
where Note thatII”(Q) vanishes foru=0.
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