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We show that the general Lorentz- a@d T-violating extension of quantum electrodynamics is one-loop
renormalizable. The one-loop Lorentz-violating beta functions are obtained, and the running of the coefficients
for Lorentz andCPT violation is determined. Some implications for theory and experiment are discussed.
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[. INTRODUCTION regularizatior{6,7], although we have also checked their va-
lidity in Pauli-Villars regularizatiorn8].

The standard model of particle physics is invariant under In the standard-model extension, all Lorentz- and
Lorentz andCPT transformations. However, the possibility CP T-violating effects are controlled by a set of coefficients
that nature exhibits small violations of Lorentz a@dPT  that can be regarded as originating in an underlying theory at
symmetry appears compatible with quantum field theory andhe Planck scale. For example, they might be associated with
with existing experiment$l]. A general description of the expectation values in string theof9], and specific nonzero
associated effects can be formulated at the level of quanturoefficients emerge in realistic honcommutative field theo-
field theory as a Lorentz- ardP T-violating standard-model ries[10]. Several of these coefficients in different sectors of
extensior{ 2]. The Lagrangian of this theory includes all pos- the standard-model extension are now bounded by experi-
sible operators that are observer Lorentz scalars and that amgents involving hadrongl1-14, protons and neutrorj45],
formed from standard-model fields and coupling coefficientslectrong16,17], photong 18], and muong19]. Our results
with Lorentz indices. Imposing the usual SU$U(2) in this work can be used to gain insight into the relationships
X U(1) gauge invariance and restricting attention to low-among coefficients for Lorentz an@PT violation as the
energy effects, the standard-model extension is well approxiscale ranges between low and high energies.
mated by the usual standard model together with all possible A basic tool for studying quantum physics over different
Lorentz-violating terms of mass dimension four or less thatscales is the renormalization gro[#0,21]. Here, we discuss
are constructed from standard-model fields. its relevance in the context of the Lorentz- and

Among the interesting open issues associated with Lor€ P T-violating standard-model extension. We use our calcu-
entz andCPT violation is the manner in which the low- lations of the one-loop divergences to extract the correspond-
energy theory connects to the underlying Planck-level theoryng beta functions for all the coefficients for Lorentz and
as the energy scale is increased. Some insight into this linKPT violation in the general QED extension. Solving the
has been obtained through the study of causality and stabilitgssociated set of coupled partial-differential equations for the
in Lorentz-violating quantum field theofy8]. In the present renormalized coefficients yields their running as the scale is
work, we study a different facet of this connection, involving changed. Knowledge of this running offers some insight into
the role of radiative corrections and the renormalizationthe possible relative sizes of nonzero Lorentz- and
group. CPT-violating effects.

To provide a definite focus and a tractable scope, we limit This paper is organized as follows. Section Il provides
attention here to the special case of effects from one-loogome basic information about the general Lorentz- and
divergences in the Lorentz- an@PT-violating quantum CPT-violating QED extension. Renormalizability of the
electrodynamicgQED) of a single fermion. This QED ex- theory is considered in Sec. lll. Some general issues are dis-
tension can be regarded as a specific limit of the standardsussed, following which we present the results of our one-
model extension. Even in this simplified limit, relatively loop calculation. We establish the absence of divergent cubic
little is known about loop effects. Some one-loop calcula-and quartic photon interactions, present explicit results for all
tions have been performed in the photon sef2y|, but a  divergent radiative corrections to the Lagrangian, and show
comprehensive treatment has been lacking. One goal of théat the Ward identities are preserved at this order. Section
present work is to fill this gap. Tools such as a generalizatioV begins with a discussion of the application of the
of the Furry theoreni5] are developed, and all divergent renormalization-group method in the context of Lorentz and
one-loop corrections are determined. We use these to prov@PT violation. The one-loop beta functions for all param-
one-loop renormalizability and gauge invariance of theeters in the theory are then derived. The resulting coupled
theory. The calculations are presented here in dimensionglartial-differential equations are solved for the running pa-
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rameters, and some implications for experiment are consid- TABLE I. Discrete-symmetry properties.
ered. A summary is provided in Sec. V. The Feynman rules
used in our analysis are presented in the Appendix. Through- ¢c p T CP CT PT CPT

out this work, our notation is that of Refg2,3]. Coo (k)
00 \""F/0j0k »

Cik » (Ke) jkim + S A +

Il BASICS bj.gjo.Gjko.(Kap); + + -  + - = -

The Lagrangian £ of the general Lorentz- and Po.Gjoo.Ojki:(Kap)o + - + - + = -
CPT-violating QED extension for a fermion fielgt of mass  Coj :Cjo. (Kr)ojui +t - - - - * +
m in four spacetime dimensions can be written 2k ay,8o,f; -+ + - - + -
1 1 Hjx ,do; ,djo e - + - +

= ZiuTH*D — oM th— —FrY Hoj .doo.djk - - + + - - +
L=SYTD = yMy— ZFHF,, oo [

1
- ;1(|<F)KMWF"AF’”’+ E(kAF)"EKMVAXF“”, (1) coefficients for Lorentz violation and hence change the phys-
ics. The theory(1) therefore violates particle Lorentz invari-
wherel'’=y"+T'] andM =m+ M, with ance. o o
Since the coefficients for Lorentz violation are trans-
S , L N formed by an observer Lorentz transformation, an appropri-
Pi=c®y,+d*ysy, +e'+if'ys+ 59" oy, ate boost can make at least some of them large. To avoid
issues with perturbation theory, in this work we limit calcu-
1 lations to concordant framd8]: ones in which the coeffi-
Mi=a,y*+b,ysy*+5H,,0"" (2)  cients for Lorentz violation are small compared to the fer-
mion masan or to the dimensionless chargeAny frame in
As usual, we define the covariant derivati@,=a, which the Earth moves nonrelativistically is known experi

+igA, and the electromagnetic field streng,,=d,A, mentally to be concordant, so this restriction offers no prac-
—9.A tical difficulty in applying our results. However, to maintain
7

In the fermion sector, the coefficients for Lorentz viola- 9€nerality, we make no assumptions concerning the relative
) sizes of the different coefficients for Lorentz violation.
tion area,, b,, c,,, d H,,. Of these,

1 e ’ f l v A oy
wvs S T Ohu The hierarchy of scales between the coefficients for Lor-

Mmoo uvs

Qs Dy By Ty Oy GOVEIMCPT violation. The coeffi- entz violation and the parametemsq has implications for
cientsa,, b, H,, have dimensions of mass, whits,, the structure of dominant one-loop Lorentz- and
d,., €., f,, 0\, are dimensionless. Bot},, andd,,, can

CPT-violating effects. In particular, since Lorentz aGdP T
violation can be assumed small and since we are interested in
leading-order Lorentz- an@ P T-violating effects, it suffices

for the purposes of this work to define a one-loop diagram as

k . CPT violation is governed only b , ; N
\(/thi)cﬁ#hVas dimensions of mags The coeffi)c/iek\z)((KAF)Mis one that contains exactly one closed loop and is either zeroth
i Nuy or first order in coefficients for Lorentz violation. All rel-

dimensionless, has the symmetry properties of the Rieman :
tensor. and is double trac%aleSS' ¥ prop evant one-loop diagrams are therefab¢q?) and at most

linear in the coefficients for Lorentz violation. Note that it
would be invalid to include nonlinear contributions from the
coefficients for Lorentz violation without also considering

be taken to be traceless, whil¢,, is antisymmetric and
g\ v IS @antisymmetric on its first two indices. In the photon
sector, the coefficients for Lorentz violation arkaf), ,

(kF)K)\/.LV: (kF),u.VK)\: - (kF))\K,U.VY

(Ke) ien v+ (KE) s+ (KE) e o =0, multiloop contributions at high order ig, which could be
the same order of magnitude.
(K) ., *"=0. 3 Combined with symmetry arguments, the restriction to

linear Lorentz- andCP T-violating effects enables some

The requirement that the Lagrangian be Hermitian impliesstrong predictions about which terms in the Lagrandian
that all the coefficients for Lorentz violation are real. can contribute to the renormalization of any given coeffi-

In the Lorentz-violating theoryl), two distinct types of cient. Since QED preserveS, P, and T invariance, any
Lorentz transformation are releva]. The Lagrangiaril)  Lorentz-violating terms mixing linearly under radiative cor-
is invariant under observer Lorentz transformations: rotarections must have identic&l, P, andT transformation prop-
tions and boosts of the observer inertial frame have no effeatrties. Table | lists these properties for the field operators
on the physics because both the field operators and the coefppearing in the Lagrangidn). For brevity, the correspond-
ficients for Lorentz violation transform covariantly and be-ing coefficients for Lorentz violation are listed in the table
cause each term in the Lagrangidn is an observer scalar. rather than the field operators themselves.
These coordinate transformations are distinct from rotations The table reveals terms for which tiigP,T symmetries
and boosts of a particle or localized field configurationallow mixing under renormalization group flow. Other re-
within a fixed observer inertial frame. The latter are calledstrictions also exist. Since in what follows we adopt a mass-
particle Lorentz transformations. They leave unchanged thindependent renormalization scheme, operators associated
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FIG. 1. One-loop topologies
for QED.
(@) (b) (c) {d) (e)

with dimensionless coefficients cannot receive correctionghese exceptions arise because the mass dimensionality of
from ones associated with massive coefficients. Thus, fothe coefficients involved ensures a finite result.
example,a, can receive corrections from, on symmetry As an illustration, the QED diagram in Fig(€) leads to
grounds, bute, cannot receive corrections from, on di-  the set of divergent contributions illustrated in Fig. 2. In
mensional grounds. There are also restrictions arising frorthese diagrams, dimensionless coefficients for Lorentz viola-
the rotational invariance of QED. For instance, rotationaltion are represented as filled circles while the others are rep-
symmetry preventg, and f; from mixing at this level of resented by crosses. The notation is detailed in the Appendix.
approximation, even though this would be allowed by the As usual, each additional 1PI diagram involves a one-loop
C, P, T properties of the corresponding field operators.integration. To evaluate the divergent contributions of these
All these features are confirmed by the explicit calculationsdiagrams to the effective action, a regularization scheme for
that follow. the loop integrations is needed. In this paper, we adopt di-
mensional regularization. However, we have also repeated
IIl. RENORMALIZABILITY AT ONE LOOP our calculations using Pauli-Villars regularization. It turns
out that the usual correspondence between the two schemes
In this section, we give an explicit demonstration of holds, supporting the expected scheme independence of the
renormalizability at one loop for the QED extensidn. Fol- physical results.
lowing some general considerations, we obtain a generaliza- |n dimensional regularization, the presence of particle
tion of the Furry theorem and establish the finiteness of the orentz violation has little effect on the standard evaluation
photon vertices. The divergent propagator and vertex correGf |oop integrals. Although use is sometimes made of the
tions are given along with the renormalization factors, and orentz properties of the integrand, the standard techniques

the Ward identities are shown to hold. hold because the integrands involve momentum variables
that behave covariantly under both observer and particle
A. Setup transformations, as usual. Moreover, the linearity of Lorentz

be violation means that the role of the coefficients for Lorentz

Renormalizability of a quantum field theory can Lo e TR . : X :
viewed as the requirements that the number of primitiverV'OIa“on is limited in this context to contraction with the

divergent one-particle-irreducibl@Pl) diagrams is finite and result of the integration. For similar reasons, no new issues

that the number of parameters suffices to absorb the corr&/iS€ With manipulations such as Wick rotations. We can

sponding infinities. To establish renormalizability of the therefore perform the necessary regularization of divergent
QED extensior(1), we first determine the superficial degree
of divergence of a general Feynman diagram. Using the
Feynman rules for the theory provided in the Appendix, it
follows that the superficial degree of divergerizef a gen-
eral diagram in the QED extension is

Cr

3 @
D:4_§E¢_EA_VM1_VAF1 (4)

(b)
whereE,, is the number of external fermion legs, is the
number of external photon Ieg‘s:x’M1 is the number of inser-
tions of theM ; operator in a fermion propagator, awg is
the number of insertions okgg) , in a photon propagator.
{e)

The expressiofd) shows that there are a finite number of
potentially divergent 1PI diagrams at one loop. Their topolo-
gies correspond to those of the divergent diagrams associated
with conventional QED, displayed in Fig. 1. However, in
addition to these usual diagrams, there is a set of diagrams
obtained from them by single insertions of coefficients for
Lorentz violation allowed by the Feynman rules. All such
insertions lead to 1PI divergent diagrams, except for those
involving the coefficients,, b,,, H,,, (Kag) , inserted into
logarithmically divergent diagrams of conventional QED. FIG. 2. Fermion-photon vertices in the QED extension.
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integrals by extending spacetimede- 4—2e dimensions in 1 1
the conventional way, so that the one-loop divergent correc-
tions to the effective Lagrangian take the form of poles in the
infinitesimal parametee, as usual.

Certain diagrams involve factors ok, which introduces
complications in dimensional regularization because the N N
properties ofys are dimension dependent. One possibility is Y 7o)
to use the 't Hooft—Veltman definitiof6] of ys, in which the
y-matrix algebra is infinite-dimensional in non-integer di-

mensions and the first fouy* are treated differently from . .
the others. In particularys anticommutes with these four Practical or conceptual advantage over more conventional
while commuting with all the others: regularizations. In any case, standard dimensional regulariza-

tion suffices for our purposes here.

FIG. 3. Two contributions to the cubic photon interaction.

{rs,7"}=0, ne{0123, [v5,7*]1=0, u=4.

® B. Generalized Furry theorem and photon-interaction vertices
This procedure introduces a technical breaking of Lorentz
invariance in all but the first four dimensions, but without
introducing new physical features in our perturbation expan
sion because the integrals to be regularized have conve
tional Lorentz properties. In any case, in the present conte
it is simpler to adopt instead a naigye matrix that anticom-
mutes with all of the othey matrices,

Renormalizability of the QED extension at one loop re-
quires that no divergent contributions to the three- or four-
point photon vertices arise, since these must be absent in an
\belian gauge theory. In conventional QED, the Furry theo-
Xom [5] plays a useful role in this regard. In this section, we
establish a generalized Furry theorem and use it and other
calculations to prove the absence of divergent contributions
to photon interactions at one loop.
{76,74=0, u=0, © Fn conventional QED, the FuFr)ry theorem relies on the
which leads to errors of order in y-matrix manipulations ~¥-matrix structure of the photon-fermion vertex, which leads
and hence to errors in finite terms. Since we are interestetp @ cancellation between two nonzero loops differing only in
here in the divergences at one loop, all of which are simpldn€ direction of the charge flow. However, the QED exten-
poles ine, the naiveys leaves the poles unaffected while Sion (1) includes terms with more genergtmatrix struc-
easing calculation. Determination of the finite radiative con{ureés. In this case, corresponding loops with Lorentz-
tributions at one loop would require more care but lies beiolating insertions either cancel or add, depending on the

yond our present scope. charge-conjugation properties of the associatenatrix in-
Another issue arises because the one-loop integrals sp&§ion. . _
an infinite range of four-momentum. The thedty is known As an example, consider the cubic photon vertex at one

to violate stability or microcausality at sufficiently high en- 100p with an insertion ofl’y" at one of the fermion-photon
ergy and momentum, where unrenormalizable terms fronyertices in Fig. 1c). This gives two contributions shown in
Planck-scale physics become important and must be includedd- 3. Take the loop momenturk to be positive in the
in the analysis[3]. The Feynman rules adopted here areclockwise direction, and assign théh external photon line a
therefore strictly valid only over a range of energy and mo-momentunp,, and Lorentz index,, . Definek, =k+p; and
mentum lying below the Planck scale. We proceed in thii2=K+p1+p». Then, the two diagrams yield an expression
section under the reasonable and customary assumption tHoportional to

any new physics entering at high scales has negligible effect

on the leading-order low-energy physics described by the d% | TrL(K+m) y#1(Ky+m) y#2(Kypt m)Ipe]
Lagrangian(1). A definitive result concerning the validity of (2m)d (k?— m2)(k§— mz)(kiz— m?)
this assumption would be of interest.
A technical point to note is that no external-leg propaga- Tr{T3(Kyo— m) y#2(ky—m) y#1(k—m)]
tors appear because we are calculating corrections to the one- - 2\ (L2 2 (L2 2 . (7)
(k“=m®)(k1—m?)(k{,—m")

loop effective action. External legs introduce additional com-

plications because the full propagator at all orders in

coefficients for Lorentz violation is needed to establish the'rak|ng the transpose of the argument of the trace in the sec-
asymptotic Hilbert spack2]. More attention would therefore ond term and inserting suitable factors@€ 1, whereC is

be required to extract the finite radiative corrections to physithe charge-conjugation matrix, we can rewrite the numerator
cal scattering cross sections or decay amplitudes at one l0ogf the integrand as

We finally remark in passing that, since Lorentz symmetry
is no longer respected by the theory, certain Lorentz-
noninvariant regularization schemes might in principle be Tr[ (K+m) y#1(ky+m) y*2(kyp+ m) (43 -T43)],  (8)
envisaged instead. It is conceivable that a scheme chosen to
respect both observer Lorentz invariance and any remaining
subgroup of the particle Lorentz symmetry might offer somewhere
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1 1 1
2 2 2
FIG. 4. Cubic photon vertex witl'{ propagator insertion.
p 1 Propag 3 (a) 3 (b) 3 (©)
TIE _ (CFIC—l)T FIG. 5. Permutations for the cubic photon vertex.

. 1 proportional to the other coefficients for Lorentz violation
=cty,—d*ysy,—e"—if"ys+ EQMVUM- 9 occur either.
For the quartic photon vertex, the generalized Furry theo-
) ] ] rem and the dimensionality df, together imply that the
In this case, it follows that only the terms Ity associated  only potential divergences arise from insertionsagf, or
with C violation survive: those involvind,ys,ysy*. The g, . In this case, there are four permutations of each type
usual Furry theorem is a special case for @reserving  of insertion. The contributions involving, ,, are zero be-
QED interaction, withl"{' replaced byy*. cause the trace of an odd number pfmatrices vanishes.

If instead a factor of’{" is inserted in a fermion propaga- Once again, explicit calculation reveals that no divergence
tor, a related argument applies. See Fig. 4. Three converproportional toc,,, occurs either, as required for renormaliz-
tional fermion-photon vertices occur, but an extra fermionability.
propagator appears in the loop along with another momen-
tum factor from the insertion. Since the propagator has no C. Propagator corrections
net effect while the signs from the momentum insertion and ] ) ]
the extra conventional vertex cancel, the surviving terms are [N this subsection, we provide the results of our calcula-
the same as before. tions for one-loop corrections to the photon and fermion

For a four-point vertex, an extra propagator anchatrix ~ Propagators. The calculational methods parallel the conven-

appear relative to the three-point vertex. These combine tfional case, so for brevity we restrict the discussion largely to

give an overall relative sign. It therefore follows that coeffi- the presentation of results. _
cients surviving in a three-point function are eliminated in  FOr the photon propagator, the complete one-loop diver-
the corresponding four-point function, and vice versa. Thes§€nce including the standard QED result is
arguments can be generalized to include insertiongl pin - 4q?
fermion propagators and arbitrary numbers of photon legs w,,(p)= T'O[(pupv_ p277w)_(clw4r CV,)DZ
around the loop.

The generalization of the Furry theorem thus shows that _ anf a
there are no contributions proportionaltiq, c,,,, or g, ., 2CapP" P Myt (Ca Cap)P Py
for odd numbers of photon legs on a fermion loop, while +(CuatCri) PP, (10
there are no contributions proportionaldg, d,,, e,, f,,
or H,, for even numbers of photon legs. The contributionswherel ,=i/1672¢. Only the symmetric part of,,,, contrib-
from other pairs of diagrams with opposing fermion loopsutes. Corrections coming from diagrams involving vertex
must be explicitly calculated and typically are nonzero. Thisand propagator insertions gf“* and the antisymmetric part
applies to both finite and divergent corrections. For exampleof c#” cancel. All other potential divergent corrections to this
it is no longer necessarily the case that one-loop radiativpropagator can be shown to vanish, using arguments similar

corrections vanish fon-point photonSmatrix amplitudes g those in Sec. 11l B. Note tha;,uv is symmetric and gauge

with odd n. Even for the 3-point photon vertex, there could invariant,p“; —0. The resul{10) agrees with the original

. g . nv
now be a nonzero amplitude. Although it lies outside OUr.alculation in Ref[2].

present scope, it would be interesting to evaluate these radia- For the fermion propagator, the usual QED correction is
tive effects and consider possible phenomenological implica- '

R ) =2l (1+ “o(4+Hm]. (11
To investigate renormalizability, it is necessary to calcu- QeoP) =l (1% &)y, p*= (4+ HHm] @y
late explicitly the divergent one-loop contributions to the 1o divergent correction,, arising from all possible inser-

three- and _four-point photon vertices for those cases Wherg, s of anx term in the standard one-loop QED diagram are
the generalized Furry theorem allows a nonzero answer. FQfi,an by

the cubic vertex there are three vertices and three propaga-

tors, so any nonzero divergent contribution would occur

three times. The resulting permutations are illustrated in Fig. Xy (p)= -2,
5 for the case of propagator insertions. Any diagram with an

H,, insirtion is finki]te either bfecau330cl)f the gim)zlmsionality of o
H,, or because the trace of an odd numberyafatrices _1 _ v_ v
vz;nishes. Explicit calculation reveals that no divergences Ze(p)= 3 ol (36— 1)¢,,p "= 4c,,p"y"],

3
(1+&)(a,+ysb,) y*+ EHW(T’“’ '
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q
2d(p) = ?I 0[(3§_ 1)dVMpM757V_4d;LVpM757V

—3me“B“"da50W],

2e(P)=0%lo[(1+€)e,p”—3me,y“],

Ef(p):qzlo(l"' g)lfMpMySI
q2
24P =75 1ol (€= 1)0nuP o™ = 20, P

+ Zg,u,aapuo-l“}_ mgaﬁyeaﬂy,u,’)/S’yM]!

2y, (P)= 3%l o(Kap),¥57";

4q” —_
EkF(p):Tloa(F),uav pMy .

D. Quadratic-term renormalization factors

12
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2
(Zb),u,aba: b,u_ m[mgaﬁyeaﬁyﬂ

—6(Kap) 1,
2

q
(ZC),uVaBCaB: C,u.V+ m[CMV_F Cv,u

- (kF),U,)\V)\]'
2
(Zd)/.z,vaﬂdaﬁ: d,uv+ m(dﬂv+ dV,u):

(Ze)pﬂl: (Zf)MV: Nuvs
2
(Zg))\uvaﬁygaﬁy: g%uv+m(29)\ﬂv_ gv)\M

+0,u— ﬂﬂvgxﬁﬁ"‘ ﬂxyg,“sé),

q
T6mZe Hur

2
(ZH)/.LVQBH&B: H,uv+

To renormalize the quadratic terms, we must redefine the

bare fields and the fermion mass in terms of renormalized

ones,

mg=2Z,m,

Ye=\Z,  Ab=Z\A¥,

and the bare coefficients for Lorentz violation in terms of

renormalized ones,
ag,=(Za),“@n,  be,=(Zp),Da,

deuy=(Z4) 4, dug,

feu=(Z1) . "fa,

OBr = (Zhr ™9y Heww=(Zn) u™PHap,

(Kar)s.= (ZkAF),ua(kAF)a )

CB,LLV: (Zc)yvaﬂcaﬁ ’

eB/.L: (Ze)p.aea ’

(kF)BK)\,Lw: (ZkF)K}\/.waByg( kF)aﬁyS .

13

19

_Zmda'BfaBMV),

2
(Zi, ) u“(Kap) o= (Kap) , + m(kAF),u ,

2
q
aByd, —
(ZkF)K)\,lLV Ay (kF)a,Byﬁ_(kF)K)\MV—’_ m (kF)K)\[LV
1
- E”[LK(CV)\J’_C)\V)
+ E’?VK(C;L}\JFC)\,LL)

1
+ E’?,ux(cw“' CKV)

- EWV}\(C}LK_l_ CK[.L) .

In this section, a subscripd is added to bare quantities We find that these renormalization factors suffice to render
where needed to distinguish them from renormalized ones finite at one loop all corrections to the quadratic fermion and

An analysis of Eqs(11) and(12) leads to the following

expressions for the above renormalization factors:
2

R T

1+4),

(Za)#“aa= a#— mmeﬂ ,

(19

photon terms.

The derivation of Eqs(15) parallels the standard QED
case. For example, the only correction to the Lorentz- and
CPT-invariant fermion kinetic term comes frolqep(p),
as usual. We therefore have

iEBp’pB+EBEQED(p)|m=O¢B+ e
=iZ, b+ Plop(L+EPy+ ...

where the right-hand side is written in terms of one-loop
renormalized quantities and the ellipsis refers to higher-order
terms that can be neglected. The right-hand side of this equa-
tion must be finite, yielding the first of Eq£L5).

For the coefficients for Lorentz violation, similar methods
apply. For example, for the, term we find that the only

(16)
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relevant corrections come frof(p)|m=o- Including the ef- q°
fects arising from the wave-function renormalizatizip re- Be=Zqd Zq=1+ 5. (19

veals that no renormalization ef* is needed at one loop. A
more involved example is given by the correctionscig,,
which arise from botf.(p) andX_(p). Incorporating also

the wave-function renormalizatiafy, leads to the above ex- Zq\/Z—A: 1. (20)
pression for ZC)W“ﬁcaﬁ. As a final example, consider

(ZkF)K}\W“ﬁV‘S. Here, it is useful to note that the term Note that theZ factors for the couplings are all independent
—2p“pPc,pzm,, in Eq. (10) must cancel a correction to the of the gauge parameter=(1—¢), as expected. .
tree-level kg) .45 term, and hence the correction itself must At this stage no more parameters can be renormalized, so
also have the symmetry of the Riemann tensor. Implementll the remaining divergent correctiod$; must be made
ing this requirement reveals that all the divergent terms canfinite by theZ factors already defined. Inspection shows that
cel simultaneously provided, takes the same form as in this is indeed the case, provided the Ward identity holds. We
conventional QED at one loop. can therefore conclude that the theory is multiplicatively
renormalizable and that it remains gauge invariant at one
loop.

This is in accordance with the usual QED Ward identity,

E. Vertex corrections and Ward identities

The remaining _1PI d|agram§ arise in connection with thelv_ RENORMALIZATION GROUP AND BETA FUNCTIONS
one-loop three-point vertex. This section presents the results

of our calculations of the associated diagrams. Given the results for the one-loop divergences presented

For this vertex, the standard QED divergence at one loopn Sec. Ill, several interesting issues become amenable to

is recovered: analysis. In particular, we can initiate a study of the behavior
i .3 " of the Lorentz- andC P T-violating QED extension over a

I'gep=—a7To(1+ &) »". a7 large range of energy scales. This offers, for example, partial

) ) o ) . insight about the absolute and relative sizes of the coeffi-
The divergent correctioni; arising from all possible single cients for Lorentz violation and hence is of value from both
insertions of arx term in the standard one-loop QED three- theoretical and experimental perspectives.

point vertex are found to be In this section, we begin with some preliminary remarks
delineating the framework for our analysis. We then obtain
Tf\‘/.l=0, the beta functions and solve the renormalization-group equa-
tions for the running of the coefficients for Lorentz violation.
9 Some implications of these results are discussed.

rg=- 3 1ol (3¢ =1)c™y,—4c™y,],
A. Framework

q® Any regularization scheme naturally introduces a mass

Ig=— 3 1l(36-1)d™ y5y,—4d*“y57a], scalew. In the Pauli-Villars scheme it is the momentum cut-
off, while in dimensional regularization it is the unit of mass
required to maintain a dimensionless actiordidimensions.
In a conventional field theory, the bare Green functions are
independent of the value chosen far However, they are
If=—q%lo(1+&)ifrys, related by multiplicative renormalizability to the renormal-
ized Green functions, which may depend pnas a conse-
quence of the regularization procedure.
Ig=- 7'0[(5_1)9am"aﬁ+29aﬁﬂgw In perturbation theory, the coefficients of a renormalized
Green function typically depend on logarithmspfig:?) of
+29°*Pag,], the momentunp. As a result, ifyp? is very different fromp,
perturbation theory can become invalid even for small cou-
=0, plings. To study the physics at momenta much larger flaan
the Green function must be expressed in terms of a new
3 renormalization mass.’'~+/p? chosen to keep the loga-
T =———1o(kp) aﬁayﬁ_ (18  rithms small, so that it is justifiable to neglect higher-order
F 3 . terms.
In the present case, we are interested in the behavior of
The reader is cautioned not to confuse the standard notatiaRe coefficients for Lorentz violation over a large range of

I’y for the divergent 3-vertex contributions with the quanti- scales. We are therefore interested in the dependence of the

Te=—q%lo(1+&)e,

3

tiesI'* andI'{ in Egs.(1) and(2). renormalized Green functions on the renormalization mass
Taking into account the resultd5), renormalization of scalew. A standard procedure to obtain this is to solve the
the QED vertex correctiofil7) yields renormalization-group equation at the appropriate order in
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perturbation theonf20,21]. The solution can be expressed order in the string tension. In the present context, the exis-
through the dependence qn of the renormalized running tence of these operators suggests that the Lagragiaan
couplingsx(u), wherex generically denotes parameters in be regarded as an effective low-energy theory. From this per-
the theory. spective, the key assumption made in applying %) at
Under the assumption that the Lorentz- andone loop is that the theory remains valid as an effective field
CPT-violating QED extension is a multiplicatively renor- theory at this order. Then, any problems arising from un-
malizable theory to all orders, the usual derivation of therenormalizability at higher loops would be suppressed at low
renormalization-group equation can be followed. For arenergies, allowing one-loop calculations to be performed as
n-point Green functiod’(n), we can write though the theory were fully multiplicatively renormalizable.
Unrenormalizable effects entering at some multiloop level
Tg(Mp.Xe]=Z "x(u),]T(N)[P.x(1),x], (21)  might cause loss of predictability at that order in perturbation
theory, but lower-order predictions would remain valid in the
where x includes the coefficients for Lorentz violation as region where the corresponding running couplings are small.
well as m and g. The factor ofZ~"2 arises from wave- For definiteness, we proceed in what follows under the
function renormalization of the external legs of the Greenreasonable and practical assumption that it is meaningful to
function. Noting that the left-hand side of this equation isapply Eq.(22) at one loop. Although beyond our present
independent of, differentiation with respect tav yields scope, it would be interesting either to prove all-orders mul-
tiplicative renormalizability of the QED extension or to de-

od termine the formal regime of validity of the results to be
O_ﬂm{z [(X(w),pIC(MIPX(w), 1]} (22 presented below.

This is the renormalization-group equation, which provides a B. The beta functions

nontrivial constraint ol"(n) through the explicitu depen- Given a theory with a seix.}, j=1,2 N, of running
J 1 1 LI 1

dence. parameters, the beta functipl] for a specific parametes

For a one-loop calculation, it suffices to impose E2R)
only to one-loop order. If the running couplings become
large enough, the perturbative approach fails. However, in dx;
the region where the couplings remain small, the accuracy of BXJEMM! (23
the perturbative approximation is improved compared to us-

ing fixed couplings. This improvement can be attributed t0 ayhere 44 is the renormalization mass parameter relevant to
partial resummation of the perturbation series that includegne regularization method. In dimensional regularization with
leading logarithmic corrections to all orders in perturbationyinimal subtraction, the beta function for a given parameter
theory. - . . can be calculated directly from the simpdepole in the cor-
Despite the link between higher loops and respondingz factor [22,23. In this subsection, we summa-
renormalization-group improvement, the explicit one-l0opyize the procedure and use it to obtain all the one-loop beta

solution of Eq.(22) only uses multiplicative renormalizabil- ¢,nctions for the Lorentz- an@ P T-violating QED exten-
ity at one loop. Since one-loop multiplicative renormalizabil- gj5,

is

ity of the Lorentz- andCPT-violating QED extension is For each parametes , define theZ factorZ, by

proved in the previous section, it follows that we can per- ' %

form one-loop renormalization-group calculations without X = uPZ, X (24)
i X%

meeting practical obstacles. In effect, this procedure makes
the reasonable assumption that the couplings remain smaIIh the factomx that th lized i
and hence that the perturbation approximation is valid. HowVNere he aﬁ O™, ensuresd_ at the renormalize parar(?_
ever, the derivation of the renormalization-group equatiorf)terxj as the sam_e mass dimension as its corresponding

are parameter. lil=4-2¢ dimensions, the fieldgs and

outlined above shows that adopting this calculational proce: . .
dure also tacitly assumes that tﬁe (%ED extension is mFL)JItipIi-Aﬂ have mass d'm‘?”s'o” (32¢€)/2 and (1-¢), respec-
catively renormalizable at all orders. Resolving this multi-t'vely' We therefore find
loop issue lies well beyond our present scope, so we restrict
ourselves here to a few pertinent remarks.

It is known that operators of mass dimension greater than
four are required in the full QED extension for causality and
stability at Planck-related energy scal&3. Although such

operators are unnecessary at low energy, where the tiigory

=1, pm=pr,=pm,=0. (25)

In minimal subtraction, only the divergent terms in the
regulated integrals are subtracted. Since these divergent
terms are poles ir¢, any givenZ factor takes the generic

holds sway, their presence implies that the full theory is un-form
renormalizable in the usual sense. However, this may be ir- ©
relevant in the underlying Planck-scale theory. For example, _ an
> ovant I i . ; _ Z, =%+ 2, -1 (26)
difficulties with ultraviolet properties are absent in some i n=1 €

string theories even though the corresponding particle field
theories appear to have unrenormalizable terms at leading can then be shown thg22]
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N
ij: lim _pxja]1+k21 Px X

K e, |
e—0 an
which involves only the simple poleil.
Among thepxj, only p, is nonzero in the present case.

Equation(27) therefore implies that each beta function other
than B, is nontrivial only due to theg dependence of the
corresponding factor. The running of all the coefficients for
Lorentz violation at any loop order is therefore driven by the
standard QED running of the charge This result is ex-
pected because the interactions in the thedyyall arise
from the minimal coupling in the covariant derivative and
are therefore controlled only by the chargeeven though
the perturbation theory is also an expansion in the coeffi-
cients for Lorentz violation.

Using the expressiof27), we obtain the following set of

PHYSICAL REVIEW D 65 056006

o'?ajl ing the one-loop running of the coefficients for Lorentz vio-
(27) lation and other parameters in the theory.

C. Running couplings

To solve the coupled partial-differential equatid@s) for
the running parameters;(x), boundary conditions are re-
quired. We provide these as the values

Xjo=X;j(x0) (29)

of the parameterg; at the scaleu,. In what follows, it is
convenient to define the quantity

a5 m
Q(M)El—mm%, (30)

results for all the beta functions in the Lorentz- andWwhich controls the running of the usual QED charge with the

CPT-violating QED extension:
3¢° q°
Pn==gm2™  Fam g2

392
(IBa),u.: - ﬁmeﬂi

q2
(ﬁb),u: - W[mgaﬁyeaﬂyﬂ_ 6(kAF)M]1

q2
(ﬁc)/u/:ﬁ[c,uv—i_ va_ (kF),uava]!

2
(Bo) =g (). (B, =(B1), =0,

2
q
(Bg))\/u/:ﬁ(ZQ)\,uv_ gv)\,u,+ ng)\_ n/uzg)\aa

+ 7\ Vg,uaa) ’

2
q
(ﬁH)yV:W(Hyv_ zmdaﬁeaﬁ,u,v)a

2

q
(IBKAF)M:W(kAF)Mi

9’ 1
(BkF)K)\,uV:m[ kFK)\p,V_ En,ul((cv)\ + C)\V)
1 1
+ EnVK(C,u)x_F C)\,u) + Enﬂk(cru(—’_ CKV)

1
- Env)\(c,u,K_FCK,u) : (28)

scalepu.
The first two of Eqs(28) yield
a(p)?=Q a5, m(u)=Q%m, (3D
which is the standard QED result. Substituting these expres-
sions in the remaining equations permits a complete integra-

tion. As an example, consider the coefficielt, . Construct-
ing the beta function fod,,+d,, gives

2

o
T 1 T
gy @+ dD=52Q (d+dD, (32
which can be rewritten as
[Q*(d+d")]=0. (33

dinpu
Therefore, the symmetric part af,, runs like Q2. Simi-
larly, we find the antisymmetric part has no running. Com-
bining the two gives the running af,, .

In this way, we find that the coefficients for Lorentz vio-
lation run as follows:

— 9/4
a,u_aO,u_mO(l_Q )eO/.L’

1
b, =bo,—zMo(1- Q%Y g5 e

aBym

9
- Z'” Q(kAF)O,uv
1 -3
CMV:CO,MV_g(l_Q )[CO#V“'COV#_(kF)O;LaVa]!

1
d,u,V:dOMV_ E(l_Q_z)(dOMV+dOVM)’

Through the definition23), these beta functions specify a

complete set of coupled partial-differential equations govern- €.,=€u, f.=Fo.,
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1 Q"
g)\/.LV:go)\/.LV_ 5(1—Q_9/4)(290)\,MV_gOV)\,u_l_gOV/J.)\ 10

- n,u,VgO)\aa—’_ ﬂv}\go,u,aa)!

1
HMV: HO;LVJF EmO(l_ Q9/4)d(0)(ﬁ€aﬁ,u,p '

0.1

(Kar) .= Q™ (Kar)oy -

00L™5"4 6 s 10 12 14 16 18

1
(kF)K)\}LV:(kF)OK)\ILLVJ’_ g(l_Qig) log(,u/l GEV)

FIG. 6. Variation of the functio n,
X{nﬂk[cv)\_l—c)\v_ (kF)Ova)\a] (k)

— Dol CunFCor et (Ke) 0an ] also be necessary to account for the possible embedding of
N the charge (1) group in a larger unification gauge group.

~ 7ulCoxt Cnt (KE)0vac] Since the functiorQ(u) is sensitive to the coefficient of

+ 7l C ot Crn— (K)o T} (34) the logarithm, the combination of the above factors implies

that different physically realistic theories can produce a va-

Some coefficients increase or decrease W@thwhile some  riety of behaviors forQ(u). For the standard-model fermi-
are unaffected, including irreducible combinations such a®ns alone, the sum of the squared charges is about 0.7, while
the totally antisymmetric part @, ,, . Note that the mixings the Landau pole for running between the electrogveak scale
of coefficients for Lorentz violation displayed in these resultsMew=250 GeV and the Planck scald p=2x10" GeV

are consistent with the symmetry-based predictions given ccurs at a corresponding factor of about 1.5. For simplicity
the end of Sec. II. and to gain basic insight, we consider explicitly the case

where this factor is chosen to be 1.

Figure 6 shows the various powers of the funct@fw)
for this caseq(%:l, plotted as a logarithmic function of

The expression£34) display a range of behavior for the from m,,, to M. In a simple scenario for Lorentz a@P T
running of the coefficients for Lorentz violation. All the run- viplation, such as might arise in spontaneous symmetry
ning is controlled by the single functioQ(x) given in Eq.  breaking[9], it is conceivable that near the Planck scale all
(30), but the powers ofQ(u) involved range from—3 to  nonzero coefficients for Lorentz violation are the same order
9/4. In this section, we comment on some implications ofof magnitude in Planck units. Then, Fig. 6 can be directly
this behavior. interpreted in terms of the divergence of renormalization-

Note first that the calculations above are performed forgroup trajectories at low energies. If instead the coefficients
the Lorentz- an€ P T-violating QED extension with a single for Lorentz violation start at different sizes at the Planck
Dirac fermion. However, the full standard-model extensionscale, then matching the curves in Fig. 6 to the trajectories of
involves additional interactions, three generations of chirathe running couplings requires shifts. In any case, the figure
fermion multiplets, a scalar field, and several intermeshe@&hows that some coefficients for Lorentz violation increase
sets of coefficients for Lorentz violation. All these would while others decrease as the energy scale changes, with pos-
affect the structure of the solutiori34). A definitive under-  sible relative changes of several orders of magnitude.
standing of the physical implications of the running of the  The rate of running of the coefficients for Lorentz viola-
coefficients for Lorentz violation must therefore await ation is relatively small, as is to be expected from the loga-
complete analysis within the standard-model extensionrithmic scale dependence and from the slow running of the
Nonetheless, despite these caveats, some meaningful phygJED couplingg. This running would therefore be insuffi-
cal insight can be obtained. cient by itself to account for the heavy suppression of coef-

We focus here on the behavior@f «) from low energies ficients for Lorentz violation necessary for compatibility
to the Planck scale. A key factor in determining this behaviomwith existing experimental bounds. If not already present at
is the value of the fermion chargg, at the reference scale the Planck scale, any suppression must be driven by some
o, Which controls the size of the coefficient of the logarithm other factor relevant between the electroweak and the Planck
in Eqg. (30). In a realistic theory, the running of the QED scales. In fact, it is known that unrenormalizable terms be-
chargeq involves all charged fermions, so the factqﬁ in come important for consistency as the Planck scale is ap-
Eq. (30) must be replaced with a quantity involving a sum proached3]. We conjecture that, in mixing with other coef-
over squared charges of all fermions participating in theficients in the renormalization-group equations, these terms
loops. At sufficiently high energies, this includes all known could suffice to provide the necessary suppression at the
fermions in the standard model and possibly others predictedlectroweak scale. A rapid running of coefficients for Lorentz
by the theory but as yet unobserved. Any charged scalars iwiolation with negative mass dimension is consistent with
the theory could also play a role. In many theories, it mayexpectations from the resul{84), which indicate that di-

D. Some implications
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In the standard-model extension, the coefficients for Lor-

entz violation may vary with the particle species. Figure 6
shows that the running @@(«) with the scalew can suffice

to induce a significant range of values for the various coef- This appendix provides the Feynman rules appropriate for
ficients specific to a given species, even if all these coeffiour one-loop calculations using the thedfy with the stan-
cients are comparable at some large scale. The figure alstard gauge-fixing term-(9-A)?/2a. They are linear in the
suggests that conventional running alone cannot separate cosefficients for Lorentz an@ P T violation.

efficients for a given species by more than several orders of The fermion propagator is
magnitude. In contrast, for different species of the same non- (y,p*+m)
zero charge, no separation is induced between coefficients > =1

for Lorentz violation of a specific type.

Note also that the running of the coefficients in the full . . .
standard-model extension must also be controlled by factor‘é’here the momenturp* is unders_tood to t.ravel in the d|rec—'
Q,(x) and Qs(u) associated with the SB) and SU3) t|9n of the charge arrow shqwn in the dla.gram.. The coeffi-
gauge groups, respectively. In some theories, thé35tbu- cients for L_orent; anqj PT V|0Iat|.on contained inl"'{ and
pling runs faster than the others, which suggests a large¥1 léad to insertions in the fermion propagator:
spread in the quark-sector coefficients for Lorentz violation .
and emphasizes the value of a range of tests sensitive to —>—X>—=—1IMy, (A2)
different coefficients for hadrorf41-15. In other theories,
the U(1) coupling runs the fastest, so the greatest spread may
be in the charged-lepton sector, emphasizing the need for —>—e>—=il{p,. (A3)
different measurements with electrofis6,17 and muons
[19]. Taken together, all these considerations underline the For a photon of momenturp*, the propagator is

APPENDIX: FEYNMAN RULES

pZ—mZ (A1)

importance of performing experiments measuring a wide va- i p,p
riety of different coefficients, both within a given species and H V= ——2( Nyt “—2”5 , (A4)
across different sectors of the standard-model extension. P P

whereé=a—1. The coefficients for Lorentz an@dPT vio-
lation yield two types of insertion on this propagator:

In this paper we have shown the one-loop multiplicative
renormalizability of the general Lorentz- a@P T-violating
QED extension(1). A generalized Furry theorem has been prrro U = —2ip“p'3(kF)aﬂBV, (A5)
obtained and used to prove the absence of one-loop diver-
gences in the cubic and quartic photon vertices. The diver-
gent one-loop_correcnons to the p_hoton propagator are given SV =2(Knp) “€ pA. (AB)
in Eq. (10), while those to the fermion propagator are in Egs.
(11) and(12). The assoc_iated renormalization fac_:tors are inThe momentunp” for the (k,e)® insertion is taken to travel
i‘?fﬁ%ﬁ?pﬂ‘oﬂ&g{;;&idé'l\r/srgf/gzoi?]e;;;%cgggg'g)nS_I_thoethe from the p index to thewv index. Note that the Feynman

: diagram is symmetric: the antisymmetry f,, 5, underu, v

usual Ward |dent_|t|_e_s are fou_nd tO.hO'F’ at this order. . interchange is compensated by the reversal of the momentum
We have also initiated an investigation into the running Ofdirection

the coefficients for Lorentz violation and the "L~ o fermion-photon vertex is
renormalization-group equations. Following some discussion
of the framework, the one-loop beta functions are obtained

as Eq.(28). The associated partial-differential equations are % =—igy~, (A7)
solved, and the running couplings are provided in Eg6),

(31), and(34). We show that these equations imply that dif-

ferent coefficients for Lorentz violation typically run differ- Whereq is the fermion charge and is the space-time index
ently between the electroweak and Planck scales and cd&i the photon line. The dimensionless coefficients for Lor-
lead to a spread of several orders of magnitude over thigntz andCPT violation lead to the additional vertex

range. Our work emphasizes the value of developing tests to

measure many different coefficients for Lorentz D& T %

violation, both for specific field species and across all sectors =—iql'f. (A8)

of the standard-model extension.

V. SUMMARY
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