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One-loop renormalization of Lorentz-violating electrodynamics
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We show that the general Lorentz- andCPT-violating extension of quantum electrodynamics is one-loop
renormalizable. The one-loop Lorentz-violating beta functions are obtained, and the running of the coefficients
for Lorentz andCPT violation is determined. Some implications for theory and experiment are discussed.
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I. INTRODUCTION

The standard model of particle physics is invariant un
Lorentz andCPT transformations. However, the possibili
that nature exhibits small violations of Lorentz andCPT
symmetry appears compatible with quantum field theory
with existing experiments@1#. A general description of the
associated effects can be formulated at the level of quan
field theory as a Lorentz- andCPT-violating standard-mode
extension@2#. The Lagrangian of this theory includes all po
sible operators that are observer Lorentz scalars and tha
formed from standard-model fields and coupling coefficie
with Lorentz indices. Imposing the usual SU(3)3SU(2)
3U(1) gauge invariance and restricting attention to lo
energy effects, the standard-model extension is well appr
mated by the usual standard model together with all poss
Lorentz-violating terms of mass dimension four or less t
are constructed from standard-model fields.

Among the interesting open issues associated with L
entz andCPT violation is the manner in which the low
energy theory connects to the underlying Planck-level the
as the energy scale is increased. Some insight into this
has been obtained through the study of causality and stab
in Lorentz-violating quantum field theory@3#. In the present
work, we study a different facet of this connection, involvin
the role of radiative corrections and the renormalizat
group.

To provide a definite focus and a tractable scope, we li
attention here to the special case of effects from one-l
divergences in the Lorentz- andCPT-violating quantum
electrodynamics~QED! of a single fermion. This QED ex
tension can be regarded as a specific limit of the stand
model extension. Even in this simplified limit, relative
little is known about loop effects. Some one-loop calcu
tions have been performed in the photon sector@2,4#, but a
comprehensive treatment has been lacking. One goal o
present work is to fill this gap. Tools such as a generaliza
of the Furry theorem@5# are developed, and all divergen
one-loop corrections are determined. We use these to p
one-loop renormalizability and gauge invariance of t
theory. The calculations are presented here in dimensi
0556-2821/2002/65~5!/056006~12!/$20.00 65 0560
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regularization@6,7#, although we have also checked their v
lidity in Pauli-Villars regularization@8#.

In the standard-model extension, all Lorentz- a
CPT-violating effects are controlled by a set of coefficien
that can be regarded as originating in an underlying theor
the Planck scale. For example, they might be associated
expectation values in string theory@9#, and specific nonzero
coefficients emerge in realistic noncommutative field the
ries @10#. Several of these coefficients in different sectors
the standard-model extension are now bounded by exp
ments involving hadrons@11–14#, protons and neutrons@15#,
electrons@16,17#, photons@18#, and muons@19#. Our results
in this work can be used to gain insight into the relationsh
among coefficients for Lorentz andCPT violation as the
scale ranges between low and high energies.

A basic tool for studying quantum physics over differe
scales is the renormalization group@20,21#. Here, we discuss
its relevance in the context of the Lorentz- an
CPT-violating standard-model extension. We use our cal
lations of the one-loop divergences to extract the correspo
ing beta functions for all the coefficients for Lorentz an
CPT violation in the general QED extension. Solving th
associated set of coupled partial-differential equations for
renormalized coefficients yields their running as the scal
changed. Knowledge of this running offers some insight in
the possible relative sizes of nonzero Lorentz- a
CPT-violating effects.

This paper is organized as follows. Section II provid
some basic information about the general Lorentz- a
CPT-violating QED extension. Renormalizability of th
theory is considered in Sec. III. Some general issues are
cussed, following which we present the results of our o
loop calculation. We establish the absence of divergent cu
and quartic photon interactions, present explicit results for
divergent radiative corrections to the Lagrangian, and sh
that the Ward identities are preserved at this order. Sec
IV begins with a discussion of the application of th
renormalization-group method in the context of Lorentz a
CPT violation. The one-loop beta functions for all param
eters in the theory are then derived. The resulting coup
partial-differential equations are solved for the running p
©2002 The American Physical Society06-1
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KOSTELECKÝ, LANE, AND PICKERING PHYSICAL REVIEW D65 056006
rameters, and some implications for experiment are con
ered. A summary is provided in Sec. V. The Feynman ru
used in our analysis are presented in the Appendix. Throu
out this work, our notation is that of Refs.@2,3#.

II. BASICS

The Lagrangian L of the general Lorentz- and
CPT-violating QED extension for a fermion fieldc of mass
m in four spacetime dimensions can be written as@2#

L5
1

2
i c̄GmDJ mc2c̄Mc2

1

4
FmnFmn

2
1

4
~kF!klmnFklFmn1

1

2
~kAF!keklmnAlFmn, ~1!

whereGn5gn1G1
n andM5m1M1, with

G1
n[cmngm1dmng5gm1en1 i f ng51

1

2
glmnslm ,

M1[amgm1bmg5gm1
1

2
Hmnsmn. ~2!

As usual, we define the covariant derivativeDm[]m
1 iqAm and the electromagnetic field strengthFmn[]mAn

2]nAm .
In the fermion sector, the coefficients for Lorentz viol

tion aream , bm , cmn , dmn , em , f m , glmn , Hmn . Of these,
am , bm , em , f m , glmn governCPT violation. The coeffi-
cientsam , bm , Hmn have dimensions of mass, whilecmn ,
dmn , em , f m , glmn are dimensionless. Bothcmn anddmn can
be taken to be traceless, whileHmn is antisymmetric and
glmn is antisymmetric on its first two indices. In the photo
sector, the coefficients for Lorentz violation are (kAF)m ,
(kF)klmn . CPT violation is governed only by (kAF)m ,
which has dimensions of mass. The coefficient (kF)klmn is
dimensionless, has the symmetry properties of the Riem
tensor, and is double traceless:

~kF!klmn5~kF!mnkl52~kF!lkmn ,

~kF!klmn1~kF!kmnl1~kF!knlm50,

~kF!mn
mn50. ~3!

The requirement that the Lagrangian be Hermitian imp
that all the coefficients for Lorentz violation are real.

In the Lorentz-violating theory~1!, two distinct types of
Lorentz transformation are relevant@2#. The Lagrangian~1!
is invariant under observer Lorentz transformations: ro
tions and boosts of the observer inertial frame have no ef
on the physics because both the field operators and the c
ficients for Lorentz violation transform covariantly and b
cause each term in the Lagrangian~1! is an observer scalar
These coordinate transformations are distinct from rotati
and boosts of a particle or localized field configurati
within a fixed observer inertial frame. The latter are call
particle Lorentz transformations. They leave unchanged
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coefficients for Lorentz violation and hence change the ph
ics. The theory~1! therefore violates particle Lorentz invar
ance.

Since the coefficients for Lorentz violation are tran
formed by an observer Lorentz transformation, an appro
ate boost can make at least some of them large. To a
issues with perturbation theory, in this work we limit calc
lations to concordant frames@3#: ones in which the coeffi-
cients for Lorentz violation are small compared to the f
mion massm or to the dimensionless chargeq. Any frame in
which the Earth moves nonrelativistically is known expe
mentally to be concordant, so this restriction offers no pr
tical difficulty in applying our results. However, to mainta
generality, we make no assumptions concerning the rela
sizes of the different coefficients for Lorentz violation.

The hierarchy of scales between the coefficients for L
entz violation and the parametersm,q has implications for
the structure of dominant one-loop Lorentz- a
CPT-violating effects. In particular, since Lorentz andCPT
violation can be assumed small and since we are intereste
leading-order Lorentz- andCPT-violating effects, it suffices
for the purposes of this work to define a one-loop diagram
one that contains exactly one closed loop and is either ze
or first order in coefficients for Lorentz violation. All rel
evant one-loop diagrams are thereforeO(q2) and at most
linear in the coefficients for Lorentz violation. Note that
would be invalid to include nonlinear contributions from th
coefficients for Lorentz violation without also considerin
multiloop contributions at high order inq, which could be
the same order of magnitude.

Combined with symmetry arguments, the restriction
linear Lorentz- andCPT-violating effects enables som
strong predictions about which terms in the Lagrangian~1!
can contribute to the renormalization of any given coe
cient. Since QED preservesC, P, and T invariance, any
Lorentz-violating terms mixing linearly under radiative co
rections must have identicalC, P, andT transformation prop-
erties. Table I lists these properties for the field operat
appearing in the Lagrangian~1!. For brevity, the correspond
ing coefficients for Lorentz violation are listed in the tab
rather than the field operators themselves.

The table reveals terms for which theC,P,T symmetries
allow mixing under renormalization group flow. Other r
strictions also exist. Since in what follows we adopt a ma
independent renormalization scheme, operators assoc

TABLE I. Discrete-symmetry properties.

C P T CP CT PT CPT

c00,(kF)0 j 0k ,
cjk ,(kF) jklm 1 1 1 1 1 1 1

bj ,gj 0l ,gjk0 ,(kAF) j 1 1 2 1 2 2 2

b0 ,gj 00,gjkl ,(kAF)0 1 2 1 2 1 2 2

c0 j ,cj 0 ,(kF)0 jkl 1 2 2 2 2 1 1

a0 ,e0 , f j 2 1 1 2 2 1 2

H jk ,d0 j ,dj 0 2 1 2 2 1 2 1

H0 j ,d00,djk 2 2 1 1 2 2 1

aj ,ej , f 0 2 2 2 1 1 1 2
6-2
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FIG. 1. One-loop topologies
for QED.
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with dimensionless coefficients cannot receive correcti
from ones associated with massive coefficients. Thus,
example,am can receive corrections fromem on symmetry
grounds, butem cannot receive corrections fromam on di-
mensional grounds. There are also restrictions arising f
the rotational invariance of QED. For instance, rotatio
symmetry preventse0 and f j from mixing at this level of
approximation, even though this would be allowed by t
C, P, T properties of the corresponding field operato
All these features are confirmed by the explicit calculatio
that follow.

III. RENORMALIZABILITY AT ONE LOOP

In this section, we give an explicit demonstration
renormalizability at one loop for the QED extension~1!. Fol-
lowing some general considerations, we obtain a genera
tion of the Furry theorem and establish the finiteness of
photon vertices. The divergent propagator and vertex cor
tions are given along with the renormalization factors, a
the Ward identities are shown to hold.

A. Setup

Renormalizability of a quantum field theory can b
viewed as the requirements that the number of primitiv
divergent one-particle-irreducible~1PI! diagrams is finite and
that the number of parameters suffices to absorb the co
sponding infinities. To establish renormalizability of th
QED extension~1!, we first determine the superficial degre
of divergence of a general Feynman diagram. Using
Feynman rules for the theory provided in the Appendix
follows that the superficial degree of divergenceD of a gen-
eral diagram in the QED extension is

D542
3

2
Ec2EA2VM1

2VAF , ~4!

whereEc is the number of external fermion legs,EA is the
number of external photon legs,VM1

is the number of inser-

tions of theM1 operator in a fermion propagator, andVAF is
the number of insertions of (kAF)m in a photon propagator.

The expression~4! shows that there are a finite number
potentially divergent 1PI diagrams at one loop. Their topo
gies correspond to those of the divergent diagrams assoc
with conventional QED, displayed in Fig. 1. However,
addition to these usual diagrams, there is a set of diagr
obtained from them by single insertions of coefficients
Lorentz violation allowed by the Feynman rules. All su
insertions lead to 1PI divergent diagrams, except for th
involving the coefficientsam , bm , Hmn , (kAF)m inserted into
logarithmically divergent diagrams of conventional QE
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These exceptions arise because the mass dimensionali
the coefficients involved ensures a finite result.

As an illustration, the QED diagram in Fig. 1~e! leads to
the set of divergent contributions illustrated in Fig. 2.
these diagrams, dimensionless coefficients for Lorentz vio
tion are represented as filled circles while the others are
resented by crosses. The notation is detailed in the Appen

As usual, each additional 1PI diagram involves a one-lo
integration. To evaluate the divergent contributions of the
diagrams to the effective action, a regularization scheme
the loop integrations is needed. In this paper, we adopt
mensional regularization. However, we have also repea
our calculations using Pauli-Villars regularization. It turn
out that the usual correspondence between the two sche
holds, supporting the expected scheme independence o
physical results.

In dimensional regularization, the presence of parti
Lorentz violation has little effect on the standard evaluat
of loop integrals. Although use is sometimes made of
Lorentz properties of the integrand, the standard techniq
hold because the integrands involve momentum variab
that behave covariantly under both observer and part
transformations, as usual. Moreover, the linearity of Lore
violation means that the role of the coefficients for Loren
violation is limited in this context to contraction with th
result of the integration. For similar reasons, no new iss
arise with manipulations such as Wick rotations. We c
therefore perform the necessary regularization of diverg

FIG. 2. Fermion-photon vertices in the QED extension.
6-3
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KOSTELECKÝ, LANE, AND PICKERING PHYSICAL REVIEW D65 056006
integrals by extending spacetime tod5422e dimensions in
the conventional way, so that the one-loop divergent corr
tions to the effective Lagrangian take the form of poles in
infinitesimal parametere, as usual.

Certain diagrams involve factors ofg5, which introduces
complications in dimensional regularization because
properties ofg5 are dimension dependent. One possibility
to use the ’t Hooft–Veltman definition@6# of g5, in which the
g-matrix algebra is infinite-dimensional in non-integer d
mensions and the first fourgm are treated differently from
the others. In particular,g5 anticommutes with these fou
while commuting with all the others:

$g5 ,gm%50, mP$0,1,2,3%, @g5 ,gm#50, m>4.
~5!

This procedure introduces a technical breaking of Lore
invariance in all but the first four dimensions, but witho
introducing new physical features in our perturbation exp
sion because the integrals to be regularized have con
tional Lorentz properties. In any case, in the present con
it is simpler to adopt instead a naiveg5 matrix that anticom-
mutes with all of the otherg matrices,

$g5 ,gm%50, m>0, ~6!

which leads to errors of ordere in g-matrix manipulations
and hence to errors in finite terms. Since we are intere
here in the divergences at one loop, all of which are sim
poles in e, the naiveg5 leaves the poles unaffected whi
easing calculation. Determination of the finite radiative co
tributions at one loop would require more care but lies
yond our present scope.

Another issue arises because the one-loop integrals
an infinite range of four-momentum. The theory~1! is known
to violate stability or microcausality at sufficiently high e
ergy and momentum, where unrenormalizable terms fr
Planck-scale physics become important and must be inclu
in the analysis@3#. The Feynman rules adopted here a
therefore strictly valid only over a range of energy and m
mentum lying below the Planck scale. We proceed in t
section under the reasonable and customary assumption
any new physics entering at high scales has negligible ef
on the leading-order low-energy physics described by
Lagrangian~1!. A definitive result concerning the validity o
this assumption would be of interest.

A technical point to note is that no external-leg propag
tors appear because we are calculating corrections to the
loop effective action. External legs introduce additional co
plications because the full propagator at all orders
coefficients for Lorentz violation is needed to establish
asymptotic Hilbert space@2#. More attention would therefore
be required to extract the finite radiative corrections to phy
cal scattering cross sections or decay amplitudes at one l

We finally remark in passing that, since Lorentz symme
is no longer respected by the theory, certain Loren
noninvariant regularization schemes might in principle
envisaged instead. It is conceivable that a scheme chose
respect both observer Lorentz invariance and any remai
subgroup of the particle Lorentz symmetry might offer so
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practical or conceptual advantage over more conventio
regularizations. In any case, standard dimensional regula
tion suffices for our purposes here.

B. Generalized Furry theorem and photon-interaction vertices

Renormalizability of the QED extension at one loop r
quires that no divergent contributions to the three- or fo
point photon vertices arise, since these must be absent i
Abelian gauge theory. In conventional QED, the Furry the
rem @5# plays a useful role in this regard. In this section, w
establish a generalized Furry theorem and use it and o
calculations to prove the absence of divergent contributi
to photon interactions at one loop.

In conventional QED, the Furry theorem relies on t
g-matrix structure of the photon-fermion vertex, which lea
to a cancellation between two nonzero loops differing only
the direction of the charge flow. However, the QED exte
sion ~1! includes terms with more generalg-matrix struc-
tures. In this case, corresponding loops with Loren
violating insertions either cancel or add, depending on
charge-conjugation properties of the associatedg-matrix in-
sertion.

As an example, consider the cubic photon vertex at o
loop with an insertion ofG1

m at one of the fermion-photon
vertices in Fig. 1~c!. This gives two contributions shown in
Fig. 3. Take the loop momentumk to be positive in the
clockwise direction, and assign thenth external photon line a
momentumpn and Lorentz indexmn . Definek15k1p1 and
k125k1p11p2. Then, the two diagrams yield an expressi
proportional to

E ddk

~2p!d FTr@~k”1m!gm1~k” 11m!gm2~k” 121m!G1
m3#

~k22m2!~k1
22m2!~k12

2 2m2!

2
Tr@G1

m3~k” 122m!gm2~k” 12m!gm1~k”2m!#

~k22m2!~k1
22m2!~k12

2 2m2!
G . ~7!

Taking the transpose of the argument of the trace in the
ond term and inserting suitable factors ofCC21, whereC is
the charge-conjugation matrix, we can rewrite the numera
of the integrand as

Tr@~k”1m!gm1~k” 11m!gm2~k” 121m!~G1
m32G̃1

m3!#, ~8!

where

FIG. 3. Two contributions to the cubic photon interaction.
6-4
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G̃1
n[2~CG1

nC21!T

5cmngm2dmng5gm2en2 i f ng51
1

2
glmnslm . ~9!

In this case, it follows that only the terms inG1
m associated

with C violation survive: those involvingI ,g5 ,g5gm. The
usual Furry theorem is a special case for theC-preserving
QED interaction, withG1

m replaced bygm.
If instead a factor ofG1

m is inserted in a fermion propaga
tor, a related argument applies. See Fig. 4. Three con
tional fermion-photon vertices occur, but an extra fermi
propagator appears in the loop along with another mom
tum factor from the insertion. Since the propagator has
net effect while the signs from the momentum insertion a
the extra conventional vertex cancel, the surviving terms
the same as before.

For a four-point vertex, an extra propagator andg matrix
appear relative to the three-point vertex. These combin
give an overall relative sign. It therefore follows that coef
cients surviving in a three-point function are eliminated
the corresponding four-point function, and vice versa. Th
arguments can be generalized to include insertions ofM1 in
fermion propagators and arbitrary numbers of photon l
around the loop.

The generalization of the Furry theorem thus shows t
there are no contributions proportional tobm , cmn , or glmn

for odd numbers of photon legs on a fermion loop, wh
there are no contributions proportional toam , dmn , em , f m ,
or Hmn for even numbers of photon legs. The contributio
from other pairs of diagrams with opposing fermion loo
must be explicitly calculated and typically are nonzero. T
applies to both finite and divergent corrections. For exam
it is no longer necessarily the case that one-loop radia
corrections vanish forn-point photonS-matrix amplitudes
with odd n. Even for the 3-point photon vertex, there cou
now be a nonzero amplitude. Although it lies outside o
present scope, it would be interesting to evaluate these ra
tive effects and consider possible phenomenological impl
tions.

To investigate renormalizability, it is necessary to calc
late explicitly the divergent one-loop contributions to t
three- and four-point photon vertices for those cases wh
the generalized Furry theorem allows a nonzero answer.
the cubic vertex there are three vertices and three prop
tors, so any nonzero divergent contribution would occ
three times. The resulting permutations are illustrated in F
5 for the case of propagator insertions. Any diagram with
Hmn insertion is finite either because of the dimensionality
Hmn or because the trace of an odd number ofg-matrices
vanishes. Explicit calculation reveals that no divergen

FIG. 4. Cubic photon vertex withG1
m propagator insertion.
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proportional to the other coefficients for Lorentz violatio
occur either.

For the quartic photon vertex, the generalized Furry th
rem and the dimensionality ofbm together imply that the
only potential divergences arise from insertions ofcmn or
glmn . In this case, there are four permutations of each t
of insertion. The contributions involvingglmn are zero be-
cause the trace of an odd number ofg matrices vanishes
Once again, explicit calculation reveals that no divergen
proportional tocmn occurs either, as required for renormali
ability.

C. Propagator corrections

In this subsection, we provide the results of our calcu
tions for one-loop corrections to the photon and fermi
propagators. The calculational methods parallel the conv
tional case, so for brevity we restrict the discussion largely
the presentation of results.

For the photon propagator, the complete one-loop div
gence including the standard QED result is

v̄mn~p!5
4q2

3
I 0@~pmpn2p2hmn!2~cmn1cnm!p2

22cabpapbhmn1~cma1cam!papn

1~cna1can!papm#, ~10!

whereI 05 i /16p2e. Only the symmetric part ofcmn contrib-
utes. Corrections coming from diagrams involving vert
and propagator insertions ofglmn and the antisymmetric par
of cmn cancel. All other potential divergent corrections to th
propagator can be shown to vanish, using arguments sim
to those in Sec. III B. Note thatv̄mn is symmetric and gauge
invariant,pmv̄mn50. The result~10! agrees with the origina
calculation in Ref.@2#.

For the fermion propagator, the usual QED correction

SQED~p!5q2I 0@~11j!gmpm2~41j!m#. ~11!

The divergent correctionsSx arising from all possible inser
tions of anx term in the standard one-loop QED diagram a
given by

SM1
~p!52q2I 0F ~11j!~am1g5bm!gm1

j

2
HmnsmnG ,

Sc~p!5
q2

3
I 0@~3j21!cnmpmgn24cmnpmgn#,

FIG. 5. Permutations for the cubic photon vertex.
6-5
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Sd~p!5
q2

3
I 0@~3j21!dnmpmg5gn24dmnpmg5gn

23meabmndabsmn#,

Se~p!5q2I 0@~11j!empm23memgm#,

S f~p!5q2I 0~11j!i f mpmg5 ,

Sg~p!5
q2

2
I 0@~j21!glmnpnslm22glmnpmsln

12gma
apnsmn2mgabgeabgmg5gm#,

SkAF
~p!53q2I 0~kAF!ng5gn,

SkF
~p!5

4q2

3
I 0~kF!man

apmgn. ~12!

D. Quadratic-term renormalization factors

To renormalize the quadratic terms, we must redefine
bare fields and the fermion mass in terms of renormali
ones,

cB5AZcc, AB
m5AZAAm, mB5Zmm, ~13!

and the bare coefficients for Lorentz violation in terms
renormalized ones,

aBm5~Za!m
aaa , bBm5~Zb!m

aba ,

cBmn5~Zc!mn
abcab , dBmn5~Zd!mn

abdab ,

eBm5~Ze!m
aea , f Bm5~Zf !m

a f a ,

gBlmn5~Zg!lmn
abggabg , HBmn5~ZH!mn

abHab ,

~kAF!Bm5~ZkAF
!m

a~kAF!a ,

~kF!Bklmn5~ZkF
!klmn

abgd~kF!abgd . ~14!

In this section, a subscriptB is added to bare quantitie
where needed to distinguish them from renormalized one

An analysis of Eqs.~11! and ~12! leads to the following
expressions for the above renormalization factors:

Zc512
q2

16p2e
~11j!,

ZA512
q2

12p2e
, ~15!

Zm512
3q2

16p2e
,

~Za!m
aaa5am2

3q2

16p2e
mem ,
05600
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~Zb!m
aba5bm2

q2

32p2e
@mgabgeabgm

26~kAF!m#,

~Zc!mn
abcab5cmn1

q2

12p2e
@cmn1cnm

2~kF!mln
l#,

~Zd!mn
abdab5dmn1

q2

12p2e
~dmn1dnm!,

~Ze!mn5~Zf !mn5hmn ,

~Zg!lmn
abggabg5glmn1

q2

16p2e
~2glmn2gnlm

1gnml2hmngld
d1hlngmd

d!,

~ZH!mn
abHab5Hmn1

q2

16p2e
~Hmn

22mdabeabmn!,

~ZkAF
!m

a~kAF!a5~kAF!m1
q2

12p2e
~kAF!m ,

~ZkF
!klmn

abgd~kF!abgd5~kF!klmn1
q2

12p2eF ~kF!klmn

2
1

2
hmk~cnl1cln!

1
1

2
hnk~cml1clm!

1
1

2
hml~cnk1ckn!

2
1

2
hnl~cmk1ckm!G .

We find that these renormalization factors suffice to ren
finite at one loop all corrections to the quadratic fermion a
photon terms.

The derivation of Eqs.~15! parallels the standard QED
case. For example, the only correction to the Lorentz- a
CPT-invariant fermion kinetic term comes fromSQED(p),
as usual. We therefore have

i c̄Bp”cB1c̄BSQED~p!um50cB1 . . .

5 iZcc̄p”c1q2I 0c̄~11j!p”c1 . . . , ~16!

where the right-hand side is written in terms of one-lo
renormalized quantities and the ellipsis refers to higher-or
terms that can be neglected. The right-hand side of this eq
tion must be finite, yielding the first of Eqs.~15!.

For the coefficients for Lorentz violation, similar method
apply. For example, for theem term we find that the only
6-6
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relevant corrections come fromSe(p)um50. Including the ef-
fects arising from the wave-function renormalizationZc re-
veals that no renormalization ofem is needed at one loop. A
more involved example is given by the corrections tocmn ,
which arise from bothSc(p) andSkF

(p). Incorporating also

the wave-function renormalizationZc leads to the above ex
pression for (Zc)mn

abcab . As a final example, conside
(ZkF

)klmn
abgd . Here, it is useful to note that the term

22papbcabhmn in Eq. ~10! must cancel a correction to th
tree-level (kF)mnab term, and hence the correction itself mu
also have the symmetry of the Riemann tensor. Implem
ing this requirement reveals that all the divergent terms c
cel simultaneously providedZA takes the same form as i
conventional QED at one loop.

E. Vertex corrections and Ward identities

The remaining 1PI diagrams arise in connection with
one-loop three-point vertex. This section presents the res
of our calculations of the associated diagrams.

For this vertex, the standard QED divergence at one l
is recovered:

GQED
m 52q3I 0~11j!gm. ~17!

The divergent correctionsGx
m arising from all possible single

insertions of anx term in the standard one-loop QED thre
point vertex are found to be

GM1

m 50,

Gc
m52

q3

3
I 0@~3j21!camga24cmaga#,

Gd
m52

q3

3
I 0@~3j21!damg5ga24dmag5ga#,

Ge
m52q3I 0~11j!em,

G f
m52q3I 0~11j!i f mg5 ,

Gg
m52

q3

2
I 0@~j21!gabmsab12ga

b
bsam

12gambsba#,

GkAF

m 50,

GkF

m 52
4q3

3
I 0~kF!mab

agb. ~18!

The reader is cautioned not to confuse the standard nota
Gx

m for the divergent 3-vertex contributions with the quan
ties Gm andG1

m in Eqs.~1! and ~2!.
Taking into account the results~15!, renormalization of

the QED vertex correction~17! yields
05600
t
t-

n-

e
lts
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on

qB5Zqq, Zq511
q2

24p2e
. ~19!

This is in accordance with the usual QED Ward identity,

ZqAZA51. ~20!

Note that theZ factors for the couplings are all independe
of the gauge parametera5(12j), as expected.

At this stage no more parameters can be renormalized
all the remaining divergent correctionsGx

m must be made
finite by theZ factors already defined. Inspection shows th
this is indeed the case, provided the Ward identity holds.
can therefore conclude that the theory is multiplicative
renormalizable and that it remains gauge invariant at
loop.

IV. RENORMALIZATION GROUP AND BETA FUNCTIONS

Given the results for the one-loop divergences presen
in Sec. III, several interesting issues become amenabl
analysis. In particular, we can initiate a study of the behav
of the Lorentz- andCPT-violating QED extension over a
large range of energy scales. This offers, for example, pa
insight about the absolute and relative sizes of the coe
cients for Lorentz violation and hence is of value from bo
theoretical and experimental perspectives.

In this section, we begin with some preliminary remar
delineating the framework for our analysis. We then obt
the beta functions and solve the renormalization-group eq
tions for the running of the coefficients for Lorentz violatio
Some implications of these results are discussed.

A. Framework

Any regularization scheme naturally introduces a m
scalem. In the Pauli-Villars scheme it is the momentum cu
off, while in dimensional regularization it is the unit of mas
required to maintain a dimensionless action ind dimensions.
In a conventional field theory, the bare Green functions
independent of the value chosen form. However, they are
related by multiplicative renormalizability to the renorma
ized Green functions, which may depend onm as a conse-
quence of the regularization procedure.

In perturbation theory, the coefficients of a renormaliz
Green function typically depend on logarithms ln(p2/m2) of
the momentump. As a result, ifAp2 is very different fromm,
perturbation theory can become invalid even for small c
plings. To study the physics at momenta much larger thanm,
the Green function must be expressed in terms of a n
renormalization massm8'Ap2 chosen to keep the loga
rithms small, so that it is justifiable to neglect higher-ord
terms.

In the present case, we are interested in the behavio
the coefficients for Lorentz violation over a large range
scales. We are therefore interested in the dependence o
renormalized Green functions on the renormalization m
scalem. A standard procedure to obtain this is to solve t
renormalization-group equation at the appropriate orde
6-7
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perturbation theory@20,21#. The solution can be expresse
through the dependence onm of the renormalized running
couplingsx(m), wherex generically denotes parameters
the theory.

Under the assumption that the Lorentz- a
CPT-violating QED extension is a multiplicatively reno
malizable theory to all orders, the usual derivation of t
renormalization-group equation can be followed. For
n-point Green functionG(n), we can write

GB~n!@p,xB#5Z2n/2@x~m!,m#G~n!@p,x~m!,m#, ~21!

where x includes the coefficients for Lorentz violation a
well as m and q. The factor ofZ2n/2 arises from wave-
function renormalization of the external legs of the Gre
function. Noting that the left-hand side of this equation
independent ofm, differentiation with respect tom yields

05m
d

dm
$Z2n/2@x~m!,m#G~n!@p,x~m!,m#%. ~22!

This is the renormalization-group equation, which provide
nontrivial constraint onG(n) through the explicitm depen-
dence.

For a one-loop calculation, it suffices to impose Eq.~22!
only to one-loop order. If the running couplings becom
large enough, the perturbative approach fails. However
the region where the couplings remain small, the accurac
the perturbative approximation is improved compared to
ing fixed couplings. This improvement can be attributed t
partial resummation of the perturbation series that inclu
leading logarithmic corrections to all orders in perturbati
theory.

Despite the link between higher loops an
renormalization-group improvement, the explicit one-lo
solution of Eq.~22! only uses multiplicative renormalizabil
ity at one loop. Since one-loop multiplicative renormalizab
ity of the Lorentz- andCPT-violating QED extension is
proved in the previous section, it follows that we can p
form one-loop renormalization-group calculations witho
meeting practical obstacles. In effect, this procedure ma
the reasonable assumption that the couplings remain s
and hence that the perturbation approximation is valid. Ho
ever, the derivation of the renormalization-group equat
outlined above shows that adopting this calculational pro
dure also tacitly assumes that the QED extension is mult
catively renormalizable at all orders. Resolving this mu
loop issue lies well beyond our present scope, so we res
ourselves here to a few pertinent remarks.

It is known that operators of mass dimension greater t
four are required in the full QED extension for causality a
stability at Planck-related energy scales@3#. Although such
operators are unnecessary at low energy, where the theor~1!
holds sway, their presence implies that the full theory is
renormalizable in the usual sense. However, this may be
relevant in the underlying Planck-scale theory. For exam
difficulties with ultraviolet properties are absent in som
string theories even though the corresponding particle fi
theories appear to have unrenormalizable terms at lea
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order in the string tension. In the present context, the e
tence of these operators suggests that the Lagrangian~1! can
be regarded as an effective low-energy theory. From this
spective, the key assumption made in applying Eq.~22! at
one loop is that the theory remains valid as an effective fi
theory at this order. Then, any problems arising from u
renormalizability at higher loops would be suppressed at
energies, allowing one-loop calculations to be performed
though the theory were fully multiplicatively renormalizabl
Unrenormalizable effects entering at some multiloop le
might cause loss of predictability at that order in perturbat
theory, but lower-order predictions would remain valid in t
region where the corresponding running couplings are sm

For definiteness, we proceed in what follows under
reasonable and practical assumption that it is meaningfu
apply Eq. ~22! at one loop. Although beyond our prese
scope, it would be interesting either to prove all-orders m
tiplicative renormalizability of the QED extension or to d
termine the formal regime of validity of the results to b
presented below.

B. The beta functions

Given a theory with a set$xj%, j 51,2, . . . ,N, of running
parameters, the beta function@21# for a specific parameterxj
is

bxj
[m

dxj

dm
, ~23!

wherem is the renormalization mass parameter relevan
the regularization method. In dimensional regularization w
minimal subtraction, the beta function for a given parame
can be calculated directly from the simplee pole in the cor-
respondingZ factor @22,23#. In this subsection, we summa
rize the procedure and use it to obtain all the one-loop b
functions for the Lorentz- andCPT-violating QED exten-
sion.

For each parameterxj , define theZ factor Zxj
by

xjB5mrxj
eZxj

xj , ~24!

where the factormrxj ensures that the renormalized para
eter xj has the same mass dimension as its correspon
bare parameter. Ind5422e dimensions, the fieldsc and
Am have mass dimension (322e)/2 and (12e), respec-
tively. We therefore find

rq51, rm5rG1
5rM1

50. ~25!

In minimal subtraction, only the divergent terms in th
regulated integrals are subtracted. Since these diver
terms are poles ine, any givenZ factor takes the generic
form

Zxj
xj5xj1 (

n51

` an
j

en . ~26!

It can then be shown that@22#
6-8
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bxj
5 lim

e→0
F2rxj

a1
j 1 (

k51

N

rxk
xk

]a1
j

]xk
G , ~27!

which involves only the simple polea1
j .

Among therxj
, only rq is nonzero in the present cas

Equation~27! therefore implies that each beta function oth
than bq is nontrivial only due to theq dependence of the
correspondingZ factor. The running of all the coefficients fo
Lorentz violation at any loop order is therefore driven by t
standard QED running of the chargeq. This result is ex-
pected because the interactions in the theory~1! all arise
from the minimal coupling in the covariant derivative an
are therefore controlled only by the chargeq, even though
the perturbation theory is also an expansion in the coe
cients for Lorentz violation.

Using the expression~27!, we obtain the following set of
results for all the beta functions in the Lorentz- a
CPT-violating QED extension:

bm52
3q2

8p2 m, bq5
q3

12p2 ,

~ba!m52
3q2

8p2 mem ,

~bb!m52
q2

16p2@mgabgeabgm26~kAF!m#,

~bc!mn5
q2

6p2 @cmn1cnm2~kF!man
a#,

~bd!mn5
q2

6p2 ~dmn1dnm!, ~be!m5~b f !m50,

~bg!lmn5
q2

8p2~2glmn2gnlm1gnml2hmngla
a

1hlngma
a!,

~bH!mn5
q2

8p2~Hmn22mdabeabmn!,

~bkAF
!m5

q2

6p2 ~kAF!m ,

~bkF
!klmn5

q2

6p2FkFklmn2
1

2
hmk~cnl1cln!

1
1

2
hnk~cml1clm!1

1

2
hml~cnk1ckn!

2
1

2
hnl~cmk1ckm!G . ~28!

Through the definition~23!, these beta functions specify
complete set of coupled partial-differential equations gove
05600
r

-

-

ing the one-loop running of the coefficients for Lorentz vi
lation and other parameters in the theory.

C. Running couplings

To solve the coupled partial-differential equations~28! for
the running parametersxj (m), boundary conditions are re
quired. We provide these as the values

xj 0[xj~m0! ~29!

of the parametersxj at the scalem0. In what follows, it is
convenient to define the quantity

Q~m![12
q0

2

6p2 ln
m

m0
, ~30!

which controls the running of the usual QED charge with t
scalem.

The first two of Eqs.~28! yield

q~m!25Q21q0
2 , m~m!5Q9/4m0 , ~31!

which is the standard QED result. Substituting these exp
sions in the remaining equations permits a complete inte
tion. As an example, consider the coefficientdmn . Construct-
ing the beta function fordmn1dnm gives

d

d ln m
~d1dT!5

q0
2

3p2 Q21~d1dT!, ~32!

which can be rewritten as

d

d ln m
@Q2~d1dT!#50. ~33!

Therefore, the symmetric part ofdmn runs like Q22. Simi-
larly, we find the antisymmetric part has no running. Co
bining the two gives the running ofdmn .

In this way, we find that the coefficients for Lorentz vio
lation run as follows:

am5a0m2m0~12Q9/4!e0m ,

bm5b0m2
1

6
m0~12Q9/4!g0

abgeabgm

2
9

4
ln Q~kAF!0m ,

cmn5c0mn2
1

3
~12Q23!@c0mn1c0nm2~kF!0man

a#,

dmn5d0mn2
1

2
~12Q22!~d0mn1d0nm!,

em5e0m , f m5 f 0m ,
6-9
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glmn5g0lmn2
1

3
~12Q29/4!~2g0lmn2g0nlm1g0nml

2hmng0la
a1hnlg0ma

a!,

Hmn5H0mn1
1

2
m0~12Q9/4!d0

abeabmn ,

~kAF!m5Q21~kAF!0m ,

~kF!klmn5~kF!0klmn1
1

6
~12Q23!

3$hmk@cnl1cln2~kF!0nal
a#

2hnk@cml1clm1~kF!0mal
a#

2hml@cnk1ckn1~kF!0nak
a#

1hnl@cmk1ckm2~kF!0mak
a#%. ~34!

Some coefficients increase or decrease withQ while some
are unaffected, including irreducible combinations such
the totally antisymmetric part ofglmn . Note that the mixings
of coefficients for Lorentz violation displayed in these resu
are consistent with the symmetry-based predictions give
the end of Sec. II.

D. Some implications

The expressions~34! display a range of behavior for th
running of the coefficients for Lorentz violation. All the run
ning is controlled by the single functionQ(m) given in Eq.
~30!, but the powers ofQ(m) involved range from23 to
9/4. In this section, we comment on some implications
this behavior.

Note first that the calculations above are performed
the Lorentz- andCPT-violating QED extension with a single
Dirac fermion. However, the full standard-model extens
involves additional interactions, three generations of ch
fermion multiplets, a scalar field, and several intermes
sets of coefficients for Lorentz violation. All these wou
affect the structure of the solutions~34!. A definitive under-
standing of the physical implications of the running of t
coefficients for Lorentz violation must therefore await
complete analysis within the standard-model extens
Nonetheless, despite these caveats, some meaningful p
cal insight can be obtained.

We focus here on the behavior ofQ(m) from low energies
to the Planck scale. A key factor in determining this behav
is the value of the fermion chargeq0 at the reference scal
m0, which controls the size of the coefficient of the logarith
in Eq. ~30!. In a realistic theory, the running of the QE
chargeq involves all charged fermions, so the factorq0

2 in
Eq. ~30! must be replaced with a quantity involving a su
over squared charges of all fermions participating in
loops. At sufficiently high energies, this includes all know
fermions in the standard model and possibly others predi
by the theory but as yet unobserved. Any charged scalar
the theory could also play a role. In many theories, it m
05600
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also be necessary to account for the possible embeddin
the charge U~1! group in a larger unification gauge group.

Since the functionQ(m) is sensitive to the coefficient o
the logarithm, the combination of the above factors impl
that different physically realistic theories can produce a
riety of behaviors forQ(m). For the standard-model fermi
ons alone, the sum of the squared charges is about 0.7, w
the Landau pole for running between the electroweak sc
mew.250 GeV and the Planck scaleM P.231019 GeV
occurs at a corresponding factor of about 1.5. For simplic
and to gain basic insight, we consider explicitly the ca
where this factor is chosen to be 1.

Figure 6 shows the various powers of the functionQ(m)
for this case,q0

251, plotted as a logarithmic function ofm
from mew to M P . In a simple scenario for Lorentz andCPT
violation, such as might arise in spontaneous symme
breaking@9#, it is conceivable that near the Planck scale
nonzero coefficients for Lorentz violation are the same or
of magnitude in Planck units. Then, Fig. 6 can be direc
interpreted in terms of the divergence of renormalizatio
group trajectories at low energies. If instead the coefficie
for Lorentz violation start at different sizes at the Plan
scale, then matching the curves in Fig. 6 to the trajectorie
the running couplings requires shifts. In any case, the fig
shows that some coefficients for Lorentz violation increa
while others decrease as the energy scale changes, with
sible relative changes of several orders of magnitude.

The rate of running of the coefficients for Lorentz viol
tion is relatively small, as is to be expected from the log
rithmic scale dependence and from the slow running of
QED couplingq. This running would therefore be insuffi
cient by itself to account for the heavy suppression of co
ficients for Lorentz violation necessary for compatibili
with existing experimental bounds. If not already presen
the Planck scale, any suppression must be driven by s
other factor relevant between the electroweak and the Pla
scales. In fact, it is known that unrenormalizable terms
come important for consistency as the Planck scale is
proached@3#. We conjecture that, in mixing with other coe
ficients in the renormalization-group equations, these te
could suffice to provide the necessary suppression at
electroweak scale. A rapid running of coefficients for Loren
violation with negative mass dimension is consistent w
expectations from the results~34!, which indicate that di-

FIG. 6. Variation of the functionQ(m)n.
6-10
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mensionless coefficients increase towards the Planck s
while the massive ones decrease or remain unchanged
though it lies outside our present scope, it would be inter
ing to investigate further this line of reasoning in the cont
of explicit models.

In the standard-model extension, the coefficients for L
entz violation may vary with the particle species. Figure
shows that the running ofQ(m) with the scalem can suffice
to induce a significant range of values for the various co
ficients specific to a given species, even if all these coe
cients are comparable at some large scale. The figure
suggests that conventional running alone cannot separat
efficients for a given species by more than several order
magnitude. In contrast, for different species of the same n
zero charge, no separation is induced between coeffici
for Lorentz violation of a specific type.

Note also that the running of the coefficients in the f
standard-model extension must also be controlled by fac
Q2(m) and Q3(m) associated with the SU~2! and SU~3!
gauge groups, respectively. In some theories, the SU~3! cou-
pling runs faster than the others, which suggests a la
spread in the quark-sector coefficients for Lorentz violat
and emphasizes the value of a range of tests sensitiv
different coefficients for hadrons@11–15#. In other theories,
the U~1! coupling runs the fastest, so the greatest spread
be in the charged-lepton sector, emphasizing the need
different measurements with electrons@16,17# and muons
@19#. Taken together, all these considerations underline
importance of performing experiments measuring a wide
riety of different coefficients, both within a given species a
across different sectors of the standard-model extension

V. SUMMARY

In this paper we have shown the one-loop multiplicat
renormalizability of the general Lorentz- andCPT-violating
QED extension~1!. A generalized Furry theorem has be
obtained and used to prove the absence of one-loop d
gences in the cubic and quartic photon vertices. The di
gent one-loop corrections to the photon propagator are g
in Eq. ~10!, while those to the fermion propagator are in Eq
~11! and ~12!. The associated renormalization factors are
Eqs.~15! and~19!. The divergent one-loop corrections to th
fermion-photon vertex are given in Eqs.~17! and ~18!. The
usual Ward identities are found to hold at this order.

We have also initiated an investigation into the running
the coefficients for Lorentz violation and th
renormalization-group equations. Following some discuss
of the framework, the one-loop beta functions are obtain
as Eq.~28!. The associated partial-differential equations a
solved, and the running couplings are provided in Eqs.~30!,
~31!, and~34!. We show that these equations imply that d
ferent coefficients for Lorentz violation typically run differ
ently between the electroweak and Planck scales and
lead to a spread of several orders of magnitude over
range. Our work emphasizes the value of developing tes
measure many different coefficients for Lorentz andCPT
violation, both for specific field species and across all sec
of the standard-model extension.
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APPENDIX: FEYNMAN RULES

This appendix provides the Feynman rules appropriate
our one-loop calculations using the theory~1! with the stan-
dard gauge-fixing term2(]•A)2/2a. They are linear in the
coefficients for Lorentz andCPT violation.

The fermion propagator is

5 i
~gmpm1m!

p22m2 , ~A1!

where the momentumpm is understood to travel in the direc
tion of the charge arrow shown in the diagram. The coe
cients for Lorentz andCPT violation contained inG1

m and
M1 lead to insertions in the fermion propagator:

52 iM 1, ~A2!

5 iG1
mpm. ~A3!

For a photon of momentumpm, the propagator is

52
i

p2 S hmn1
pmpn

p2 j D , ~A4!

wherej5a21. The coefficients for Lorentz andCPT vio-
lation yield two types of insertion on this propagator:

522ipapb~kF!ambn, ~A5!

52~kAF!aeambn pb. ~A6!

The momentumpm for the (kAF)a insertion is taken to trave
from the m index to then index. Note that the Feynma
diagram is symmetric: the antisymmetry ofeambn underm,n
interchange is compensated by the reversal of the momen
direction.

The usual fermion-photon vertex is

52 iqgm, ~A7!

whereq is the fermion charge andm is the space-time index
on the photon line. The dimensionless coefficients for L
entz andCPT violation lead to the additional vertex

52 iqG1
m. ~A8!
6-11
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Phys. Rev. Lett.80, 1818 ~1998!; Phys. Rev. D61, 016002
05600
~2000!; 64, 076001~2001!; N. Isgur et al., Phys. Lett. B515,
333 ~2001!.

@14# O. Bertolamiet al., Phys. Lett. B395, 178 ~1997!.
@15# L. R. Hunteret al., in Ref. @1#; D. Bearet al., Phys. Rev. Lett.

85, 5038 ~2000!; D. F. Phillips et al., Phys. Rev. D63,
111101~R! ~2001!; M. A. Humphreyet al., physics/0103068;
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