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f B and f Bs
from QCD sum rules
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The decay constants of the pseudoscalar mesonsB and Bs are evaluated from QCD sum rules for the
pseudoscalar two-point function. Recently calculated perturbative three-loop QCD corrections are incorporated
into the sum rule. An analysis in terms of the bottom quark pole mass turns out to be unreliable due to large
higher order radiative corrections. On the contrary, in theMS scheme the higher order corrections are under
good theoretical control and a reliable determination off B and f Bs

becomes feasible. Including variations of all
input parameters within reasonable ranges, our final results for the pseudoscalar meson decay constants are
f B5210619 MeV and f Bs

5244621 MeV. Employing additional information on the productABBf B from
global fits to the unitarity triangle, we are in a position to also extract theB-mesonB parameterBB51.26
60.45. Our results are quite compatible with analogous determinations of the above quantities in lattice QCD.
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I. INTRODUCTION

Experimental effort in recent years has provided us wit
wealth of new information on the decays of bottom hadro
To achieve a good understanding of these data, also the
pact of the strong interactions has to be controlled quan
tively. This requires the accurate calculation of hadronic m
trix elements involving B hadrons. Generally, hadroni
matrix elements contain contributions from low energies a
thus nonperturbative methods should be employed for t
evaluation. Current approaches include lattice QCD, Q
sum rules and the heavy quark effective theory~HQET!. In
this work, we shall consider a calculation of the simple
type of hadronic matrix elements, namely the pseudosc
B- and Bs-meson decay constantsf B and f Bs

in the frame-
work of QCD sum rules@1–4#.

The pseudoscalar decay constants parametrizeB-meson
matrix elements of the axial-vector current with the cor
sponding quantum numbers and are defined by

^0u~ q̄gmg5b!~0!uB~p!&5 i f Bpm ,

^0u~ s̄gmg5b!~0!uBs~p!&5 i f Bs
pm . ~1!

Throughout this work we assume isospin symmetry anq
can denote an up or down quark. Weak interactions ind
the leptonic decay of theB meson. For example,f B then
appears in the decay width of the processbū→ l n̄ l which
takes the form

G~B2→ l 2n̄ l !5
GF

2

8p
uVubu2f B

2ml
2mBS 12

ml
2

mB
2 D , ~2!
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completely analogous to the corresponding decay of the l
pseudoscalar mesons. Despite the suppression by the s
factorsml

2 and uVubu2, there is some hope that the lepton
decayB→ l n̄ l can be measured at theB factories within the
next years. Oncef B is assumed to be known, this woul
provide a very clean determination ofuVubu. In any case,f B
is an important quantity for it also enters more complica
hadronic matrix elements ofB mesons like form factors o
matrix elements of four-quark operators.

The calculation of heavy meson decay constants in Q
has a rather long history. For charmed mesons, they w
first considered in@5,6#, whereas the extraction off B from
QCD sum rules was investigated in@7–16#. The first deter-
mination of f B @7# dates back already twenty years. Neve
theless, due to recent theoretical progress, we find it leg
mate to reconsider this problem. Very recently, t
perturbative three-loop orderas

2 correction to the correlation
function with one heavy and one massless quark has b
calculated@17,18# for the first time. It turns out that in the
pole mass scheme, which was used for most previous an
ses, due to renormalon problems@19#, the perturbative ex-
pansion is far from converging. However, taking the qua
mass in the modified minimal subtraction (MS) scheme@20#,
a very reasonable behavior of the higher orders is obtai
and a reliable determination off B becomes feasible@66#.

The starting point for the sum rule analysis is the tw
point functionC(p2) of two hadronic currents.

C~p2![ i E dx eipx^VuT$ j 5~x! j 5~0!†%uV&, ~3!

whereV denotes the physical vacuum andj 5(x) will be the
divergence of the axial vector current,

j 5~x!5~M1m!:q̄~x!ig5Q~x!:, ~4!

with M and m being the masses ofQ(x) and q(x). In the
following, Q(x) denotes the heavy quark which later will b
©2002 The American Physical Society05-1
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MATTHIAS JAMIN AND BJÖRN O. LANGE PHYSICAL REVIEW D65 056005
specified to be the bottom quark, whereasq(x) can be one of
the light quarks up, down or strange. Note that the curr
j 5(x) is a renormalization invariant operator. In the case
(ūb) the corresponding matrix element is given by

~mb1mu!^0u~ ūig5b!~0!uB&5 f BmB
2, ~5!

wheremB is theB-meson mass.
Up to a subtraction polynomial which depends on t

large p2 behavior,C(p2) satisfies a dispersion relation~for
the precise conditions see@21#!:

C~p2!5E
0

` r~s!

~s2p22 i0!
ds1subtractions, ~6!

where r(s) is defined to be the spectral functionr(s)
[Im C(s1i0)/p. To suppress contributions in the dispersi
integral coming from higher excited states, it is further co
venient to apply a Borel~inverse Laplace! transformation to
Eq. ~6! which leads to@67#

uBuC~p2![uĈ~u!5E
0

`

e2s/ur~s!ds. ~7!

Bu is the Borel operator and the subtraction polynomial h
been removed by the Borel transformation. As we shall d
cuss in detail below, the left-hand side of this equation
calculable in renormalization group improved perturbat
theory in the framework of the operator product expansion
the Borel parameteru can be chosen sufficiently large.

Under thecrucial assumption of quark-hadron duality, th
right-hand side of Eq.~7! can be evaluated in a hadron-bas
picture, still maintaining the equality, and thereby relati
hadronic quantities like masses and decay widths to the
damental standard model parameters. Generally, howe
from experiments the phenomenological spectral funct
rph(s) is only known from threshold up to some energys0 .
Above this value, we shall use the theoretical express
r th(s) also for the right-hand side. In the case of theB me-
sons, we approximate the phenomenological spectral fu
tion by the pole of the lowest lying hadronic state plus t
theoretical spectral function above the thresholds0 ,

rph~s!5mB
4 f B

2d~s2mB
2 !1u~s2s0!r th~s!. ~8!

This is legitimate ifs0 is large enough so that perturbatio
theory is applicable. The central equation of our sum-r
analysis forf B then takes the form

mB
4 f B

25E
0

s0
e~mB

2
2s!/ur th~s!ds. ~9!

Besides the sum rule of Eq.~9!, in our numerical analysis
we shall also utilize a second sum rule which arises fr
differentiating Eq.~7! with respect to 1/u:
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d~1/u!
@uĈ~u!#5E

0

`

se2s/ur~s!ds

5mB
6 f B

2e2mB
2 /u

1E
s0

`

se2s/ur th~s!ds. ~10!

Taking the ratio of the sum rules of Eqs.~10! and ~9!, the
decay constant drops out, and, as far as the phenomeno
cal side is concerned, we end up with a sum rule which o
depends on the heavy meson massmB . In our numerical
analysis, this additional sum rule will be used to fix the co
tinuum thresholds0 from the experimental value ofmB . The
resultings0 is then used in thef B sum rule of Eq.~9!.

In Sec. II, we give the expressions for the perturbat
pseudoscalar spectral function up to the next-next-to-lead
order in the strong coupling, and in Sec. III, the nonpert
bative condensate contributions are summarized. Sectio
contains our numerical analysis of the sum rules. Finally
Sec. V, we compare our results to previous determination
f B in the literature and we present an estimate of the h
ronic B parameter in theB-meson systemBB .

II. PERTURBATIVE SPECTRAL FUNCTION

In perturbation theory, the pseudoscalar spectral func
has an expansion in powers of the strong coupling const

r~s!5r~0!~s!1r~1!~s!a~ma!1r~2!~s!a~ma!21¯ ,
~11!

with a[as /p. The leading order termr (0)(s) results from a
calculation of the bare quark-antiquark loop and is given

r~0!~s!5
Nc

8p2 ~M1m!2sS 12
M2

s D 2

. ~12!

For the moment, we have only kept the small quark masm
in the global factor (M1m)2 and have set it to zero in th
subleading contributions. Higher order corrections inm up to
orderm4 will be discussed further below.

Our expressions for the spectral function always impl
itly contain au-function which specifies the starting point o
the cut in the correlatorC(s). Although generally, we prefe
to utilize theMS mass, in order to have a scale independ
starting point of the cut, in this case we chose the pole m
Mpole. Modulo higher order corrections, it is always possib
to rewrite the mass in the logarithms which produce the
in terms of the pole mass such that theu-function takes the
form u(s2Mpole

2 ).
The orderas correction for the two-point functionC(s)

was for the first time correctly calculated in Ref.@22#, keep-
ing complete analytical dependencies in both massesM and
m. Further details on the calculation can also be found
Ref. @23#. From these results it is a simple matter to obta
the corresponding imaginary part:
5-2
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r~1!~s!5
Nc

16p2 CF~M1m!2s~12x!H ~12x!@4L2~x!12 lnx

3 ln~12x!2~522x!ln~12x!#1~122x!

3~32x!ln x13~123x!ln
mm

2

M2 1
1

2
~17233x!J ,

~13!

wherex[M2/s andL2(x) is the dilogarithmic function@24#.
The explicit form of the first order correction is sensitive
the definition of the quark mass at the leading order. Eq
tion ~13! corresponds to running quark masses in theMS
scheme,M (mm) andm(mm), evaluated at the scalemm .

The term proportional to lnmm
2 /M2 cancels the scale de

pendence of the mass at the leading order, reflecting the
that r(s) is a physical quantity, i.e., independent of t
renormalisation scale and scheme. Transforming the qu
mass into the pole mass scheme@68#, the resulting expres
sion becomes scale independent and of course agrees
Eq. ~4! of @8#. As shall be discussed in more detail belo
however, the perturbative corrections tof B in the pole mass
scheme turn out to be rather large and we refrain from p
forming a numerical analysis of the sum rule in this schem
Therefore, our expressions for the spectral function will o
be presented in theMS scheme.

The three-loop, orderas
2 correctionr (2)(s) has only been

calculated very recently by Chetyrkin and Steinhau
@17,18# for the case of one heavy and one massless quar
completely analytical computation of the second order tw
point function is currently not feasible. However, one c
construct a seminumerical approximation forr (2)(s) by us-
ing Pade´ approximations together with conformal mappin
into a suitable kinematical variable@25,26#. The input used
in this procedure is the knowledge of eight moments for
correlator for large momentumx→0, seven moments fo
small momentumx→`, and partial information on the
threshold behaviorx→1. In our analysis, we have made u
of the programRvs.m which contains the required expre
sions forr (2)(s) and was kindly provided to the public b
the authors of@17,18#.

In Refs. @17,18#, the pseudoscalar spectral functionr(s)
has been calculated in the pole mass scheme. Thus we
have to add tor (2)(s) the contributions which result from
rewriting the pole mass in terms of theMS mass. The two
contributionsD1r (2) andD2r (2) which arise from the leading
and first order contributions, respectively, are given by

D1r~2!~s!5
Nc

8p2 ~M1m!2s@~3220x121x2!r m
~1!2

22~12x!~123x!r m
~2!#, ~14!
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D2r~2!~s!52
Nc

8p2 CF~M1m!2srm
~1!H ~12x!~123x!

3@4L2~x!12 lnx ln~12x!#2~12x!

3~7221x18x2!ln~12x!1~3222x

129x228x3!ln x1
1

2
~12x!~15231x!J .

~15!

Explicit expressions for the coefficientsr m
(1) and r m

(2) can be
found in Appendix B. Furthermore, in Refs.@17,18# the
renormalization scale of the couplingma was set toMpole.
Since in our numerical analysis we plan to vary the scalema
independently frommm , the contribution which results from
reexpressinga(M ) in terms ofa(ma) in the two-loop part
needs to be included as well.

Close to threshold, in the pole mass scheme, the pse
scalar spectral function behaves asv2(as ln v)k where v
[(12x)/(11x) at any orderk in perturbation theory. This
behavior, however, does not persist in theMS scheme, where
for each order, an additional factor of 1/v is obtained, such
that the orderas

2 correction goes like a constant forv→0.
Nevertheless, as we will see in more detail below, num
cally the corrections for the integrated spectral function sh
a much better convergence than in the pole mass schem

Let us now come to a discussion of the corrections in
small massm. At the leading order in the strong coupling an
up to orderm4, they can, for example, be found in Ref.@27#:

rm
~0!~s!5

Nc

8p2 ~M1m!2H 2~12x!Mm22m2

22
~11x!

~12x!

Mm3

s
1

~122x2x2!

~12x!2

m4

s J . ~16!

The somewhat bulky expressions for the first orderas cor-
rection can be obtained by expanding the results of@22,23# in
terms ofm and have been relegated to Appendix C. Nume
cally, the size of the orderas corrections increases with in
creasing order in the expansion inm. However, even for the
case ofBs the mass corrections inms become negligible
before the perturbative expansion for these correcti
breaks down.

In the process of performing the expansion of the res
of @22,23# in terms ofm, it is found that starting with order
m3 logarithmic terms of the form lnm appear in the expan
sion. They are of infrared origin, and in the framework of t
operator product expansion it should be possible to abs
them by a suitable definition into the higher dimension
operator corrections, the vacuum condensates. If the ope
product expansion is performed in terms of non-normal
dered, minimally subtracted condensates rather than
more commonly used normal ordered ones, the mass lo
rithms indeed disappear@27–29#.
5-3
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MATTHIAS JAMIN AND BJÖRN O. LANGE PHYSICAL REVIEW D65 056005
III. CONDENSATE CONTRIBUTIONS

In the following, we summarize the contributions to th
two-point function coming from higher dimensional oper
tors which arise in the framework of the operator prod
expansion and parametrize the appearance of n
perturbative physics, if the energy approaches the confi
ment region. Here, we decided to present directly the in

grated quantity uĈ(u) because the spectral function
corresponding to the condensates containd-distribution con-
tributions.

The leading order expression for the dimension-th
quark condensate is known since the first works on the p
doscalar heavy-light system@8#:

uĈ q̄q
~0!~u!52~M1m!2M ^q̄q&e2M2/uF12S 11

M2

u D m

2M

1
M2m2

2u2 G . ~17!

To estimate higher order mass corrections in our numer
analysis, we have included the corresponding expansion
to orderm2 @27#. From the mass logarithms of the perturb
tive orderas andm3 correction, it is a straightforward matte
to also deduce the first order correction to the quark cond
sate since the mass logarithms must cancel once the q
condensate is expressed in terms of the non-normal ord
condensate@27–29#. We were not able to find the following
result in the literature and assume that it is new:

uĈ q̄q
~1!~u!5

3

2
CFa~M1m!2M ^q̄q&H GS 0,

M2

u D
2F11S 12

M2

u D S ln
mm

2

M2 1
4

3D Ge2M2/uJ ,

~18!

whereG(n,z) is the incompleteG function. Again, the term
ln mm

2 /M2 cancels the scale dependence of the mass at
leading order.

The next contribution in the operator product expansion
the dimension-four gluon condensate. Although its influen
on the heavy-light sum rule turns out to be very small,
have nevertheless included it in the analysis. The co
sponding expression for the Borel transformed correlato
given by

uĈFF
~0!~u!5

1

12
~M1m!2^aFF&e2M2/u. ~19!

In some earlier works on the pseudoscalar sum rule this c
tribution appears with a wrong sign@8,9,15#, although of
course this has negligible influence on the numerical resu

The last condensate contribution that we consider in
work is the dimension-five mixed quark-gluon condens
which still has some influence on the sum rule since it
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enhanced by the heavy quark mass. Again here the resu
well known from the literature and we just cite it for th
convenience of the reader:

uĈ q̄Fq
~0! ~u!52~M1m!2

M ^gsq̄sFq&
2u S 12

M2

2u De2M2/u.

~20!

We have checked explicitly that the contribution of the ne
higher dimensional operator, the four-quark condensate
extremely small, and thus have neglected all higher dim
sional operators. The corresponding results for the cond
sate contributions to the sum rule of Eq.~10! can be calcu-
lated straightforwardly by differentiating the abov
expressions with respect to 1/u.

IV. NUMERICAL ANALYSIS

In our numerical analysis of the pseudoscalar heavy-li
sum rule, we shall mainly discuss the values of our inp
parameters, their errors, and the impact of those errors on
values of f B and f Bs

. To begin, however, let us investigat
the behavior of the perturbative expansion.

As was already mentioned above, in the pole m
scheme the first two orderas andas

2 corrections toĈ(u) are
of similar size than the leading term, thus not showing a
sign of convergence. For central values of our input para
eters and a typical valueu55 GeV2, the first order correc-
tion amounts to 78% and the second order to 85% of
leading term. To be consistent with the perturbative result
r(s), we have usedmb

pole54.82 GeV, which results from
relation ~B5! up to orderas

2. Because of the large correc
tions, we shall not pursue an analysis in the pole m
scheme any further. On the contrary, in theMS scheme for
mm5ma5mb andu55 GeV2, the first and second order co
rections are 11% and 2% of the leading term, respectiv
while at mm'4.5 GeV the second order term vanishes e
tirely. Hence, in theMS scheme the perturbative expansi
converges rather well and is under good control.

In Figs. 1 and 2, as the solid lines we display the lepto
decay constantsf B and f Bs

, for central values of all input

FIG. 1. f B as a function of the Borel parameteru for different
sets of input parameters. Solid line: central values of Table I; lo
dashed line:mb(mb)54.16 GeV~upper line!, mb(mb)54.26 GeV
~lower line!; dashed line:mm53 GeV~lower line!, mm56 GeV~up-
per line!.
5-4
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parameters which have been collected in Tables I and II,
function of the Borel variableu. For u&4 GeV2 the power
corrections become comparable to the perturbative te
whereas foru*6 GeV2 the continuum contribution gets a
important as the phenomenological part. Thus a reliable s
rule analysis should be possible in the range roughly gi
by 4 GeV2&u&6 GeV2. In this region we extract our centra
resultsf B5210 MeV andf Bs

5244 MeV.
As an additional input parameter the continuum thresh

s0 is required. This parameter can be determined from
ratio of the sum rules of Eqs.~10! and ~9!, which only de-
pends on the heavy meson mass. To this end, for a certai
of input parameters,s0 is tuned such as to reproduce th
Particle Data Group values formB andmBs

@30# in the sta-
bility region ~a minimum in this case! of the ratio of sum
rules. In Tables I and II, we also present the resulting val
for s0 and the corresponding locationu0 of the minimum of
the mB sum rule. For central values of all input paramete
we obtains0533.6 GeV2 and u055.6 GeV2 for the B me-
son, as well ass0535.5 GeV2 andu055.1 GeV2 for the Bs
meson. In Fig. 3, we show the resultingmB and mBs

as a

FIG. 2. f Bs
as a function of the Borel parameteru for different

sets of input parameters. Solid line: central values of Table II; lo
dashed line:mb(mb)54.16 GeV~upper line!, mb(mb)54.26 GeV
~lower line!; dashed line:mm53 GeV~lower line!, mm56 GeV~up-
per line!.

TABLE I. Values for all input parameters, continuum thresho
s0 @GeV2#, points of maximal stabilityu0 @GeV2#, and correspond-
ing uncertainties forf B ~MeV!.

Parameter Value s0 u0 D f B

mb(mb) 4.2160.05 GeV
33.1
34.2

6.1
5.2

715

mm 3.026.0 GeV
33.5
34.4

6.8
4.0

610

ma 3.026.0 GeV
34.2
33.1

5.1
6.2

12
21

^q̄q&(2 GeV) 2(267617 MeV)3
33.9
33.3

5.7
5.5

66

O(as
2)

23O(as
2)

no O(as
2)

62

as(MZ) 0.118560.0020 61
^aFF& 0.02460.012 GeV4 61

m0
2 0.860.2 GeV2 71
05600
a

,

m
n

d
e

set

s

,

function of u for central input parameters. As can be se
from this figure, in the stability region, the sum rule repr
duces the physical heavy meson masses which are indic
as horizontal lines. Our results forf B and f Bs

are then ex-

tracted atu0 , around which also the sum rules for the dec
constants are most stable and display an inflection point

The dominant source of uncertainty for the decay co
stants is the error on the bottom quark massmb . For this
value we have taken an average over recent determina
@31–39# which results inmb(mb)54.2160.05 GeV. The er-
ror onmb has been chosen such that all individual results
included within one standard deviation. The correspond
variations of f B and f Bs

are displayed as the long-dashe
lines in Figs. 1 and 2, where the upper line corresponds
lower value ofmb and the lower line to a largermb . The
impact of the variation ofmb on the error off B and f Bs

has
been quantified in Tables I and II.

Another important source of uncertainty is the renorm
ization scalemm . We have decided to varymm in the range

-

FIG. 3. mB ~solid line! andmBs
~dashed line! as a function of the

Borel parameteru for central input parameters. The horizontal lin
indicate the corresponding experimental values for these quant

TABLE II. Values for all input parameters, continuum thres
olds s0 @GeV2#, points of maximal stabilityu0 @GeV2#, and corre-
sponding uncertainties forf Bs

@MeV#.

Parameter Value s0 u0 D f Bs

mb(mb) 4.2160.05 GeV
34.8
36.4

5.4
4.8

716

mm 3.026.0 GeV
35.2
37.2

6.2
3.6

18
29

ma 3.026.0 GeV
36.2
34.9

4.7
5.5

11

^s̄s&/^q̄q& 0.860.3
35.9
35.2

5.3
4.7

68

^q̄q&(2 GeV) 2(267617 MeV)3
35.7
35.3

5.2
4.9

15
24

ms(2 GeV) 100615 MeV 62

O(as
2)

23O(as
2)

no O(as
2)

63

as(MZ) 0.118560.0020 61
^aFF& 0.02460.012 GeV4 61

m0
2 0.860.2 GeV2 71
5-5
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MATTHIAS JAMIN AND BJÖRN O. LANGE PHYSICAL REVIEW D65 056005
3–6 GeV, with a central valuemm5mb . If mm is smaller
than about 3 GeV, the perturbative corrections become
large and the expansion unreliable. As the dashed line
Figs. 1 and 2, we then show the corresponding results
mm53 GeV ~lower line! and mm56 GeV ~upper line!. The
uncertainties forf B and f Bs

which result frommm are again
listed in Tables I and II. To indicate the influence of ev
lower scales, let us briefly discuss the casemm52.5 GeV.
Here, we finds0538.4 GeV2 being rather large, as well a
u052.9 GeV2 which is very small. At such a lowu0 , the
perturbative and operator product expansions are not
reliable. Nevertheless, the value forf B extracted atu0 turns
out surprisingly close to our central result, such that the e
estimate of Table I is more conservative. The variation
ma , on the other hand, only has a minor impact on the e
of f B and f Bs

and is also given in Tables I and II.
The present uncertainties in the remaining QCD para

etersas , the strange quark massms and the condensate pa
rameters have much less influence on the errors off B and
f Bs

. Thus let us be more brief with the discussion of the

quantities. The current value ofas(MZ) by the Particle Data
Group, as(MZ)50.118560.0020 @30#, has been used
whereas our choice for the strange massms(2 GeV)5100
615 MeV is obtained from two very recent analyses of s
lar and pseudoscalar QCD sum rules@40,41#. The resulting
ms is compatible to the determination from hadronict de-
cays, as well as lattice QCD results@42–44#. Besides the
variation of as(MZ), in order to estimate the influence o
higher order corrections, we have either removed or doub
the knownO(as

2) correction. The resulting uncertainty fo
the decay constants, however, turns out to be small.

Our value for the quark condensate has been extra
from the Gell-Mann–Oakes–Renner relation@45# with cur-
rent values for the up- and down-quark masses@41#. The
ratio ^s̄s&/^q̄q& has been chosen such as to include res
from Refs.@3,46–49,69#. The mixed quark-gluon condensa
is parametrized bŷgsq̄sFq&5m0

2^q̄q& with m0
2 being de-

termined in Ref.@50#, and finally, for the gluon condensa
we take a generous range which includes previous va
found in the literature. All uncertainties forf B and f Bs

result-
ing from these parameters are also listed in Tables I and
Where entries fors0 and u0 are missing, we have used th
values corresponding to central input parameters.

Adding all errors for the various input parameters
quadrature, our final results for theB andBs meson leptonic
decay constants are

f B5210619 MeV, f Bs
5244621 MeV. ~21!

In the next section, we shall compare these values with
vious QCD sum rule and lattice QCD determinations.

V. CONCLUSIONS

The only truly nonperturbative method to compute ha
ronic matrix elements is QCD on a space-time lattice a
thus it is very interesting to compare our findings to t
corresponding results in lattice gauge theory. For the lepto
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heavy meson decay constants, they have been compiled
recent review article by Bernard@51,70#. Taking into account
dynamical sea quark effects and estimating the correspo
ing uncertainties, his world averages read

f B5200630 MeV,
f Bs

f B
51.1660.04. ~22!

The lattice value forf B is in good agreement with our resu
of Eq. ~21!, and also our ratiof Bs

/ f B51.16 turns out to be
perfectly consistent with Eq.~22!. Nevertheless, due to siz
able discretisation errors on the lattice, in our opinion,
present the QCD sum rule determination of the decay c
stants is more precise.

We now come to a comparison with recent QCD sum r
results forf B and f Bs

. The status of sum rule calculations o

f B in the pole mass scheme has been summarized in
review article @14# with the result f B5180630 MeV. Al-
though roughly 15% lower, within the errors this result
compatible with our value~21!. However, due to the large
perturbative corrections in the pole mass scheme, and
strong dependence on the bottom quark mass which in@14#
was taken to bemb

pole54.760.1 GeV, the theoretical error i
not controlled reliably. Let us remark that the orderas

3 cor-
rection in the relation betweenMS mass and pole mass alon
gives a shift ofmb

pole by roughly 200 MeV@52–54#. Typical
results for f Bs

turn out to be about 35 MeV higher thanf B

@14#, so that the difference betweenf Bs
and f B is in agree-

ment to our result. Our result forf B is also completely com-
patible with the very recent analysis of Ref.@16#, which was
performed in the framework of HQET and resulted inf B
5206620 MeV, suffering however from the problems o
the pole mass discussed above.

After submission of our work, an independent analysis
the heavy-light meson sum rules by Narison@55# was pub-
lished, which also employs the heavy quark mass in theMS
scheme. For the convenience of the reader, even though
@55# appeared later, we comment on this analysis. The m
difference to our analysis lies in the fact that in Ref.@55# the
bottom quark mass is extracted from the sum rule formB ,
with the resultmb(mb)54.0560.06 GeV. We have checke
that for this value ofmb one needss0537.5 GeV2 to repro-
duce mB , and finds a stability region aroundu0
54.3 GeV2. Inserting these parameters into thef B sum rule,
we obtain f B5270 MeV, in conflict to our result~21!. We
are able to reproduce the value quoted by Narison,f B
5205 MeV, atu52.7 GeV2, which roughly corresponds to
his preferredt[1/u value. Around thisu, however, thef B
sum rule is unstable, casting doubts on the procedure of
demanding stability in the continuum thresholds0 , besides
theu stability. Furthermore, the rather low value ofmb com-
pared to our world average presented above, as well as
very high value ofs0 , indicate that the pseudoscalar su
rule is not a good place to determinemb . On the other hand
our investigation demonstrates that perfectly compatible
sults are obtained with a more standard value formb . The
5-6
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ratio f Bs
/ f B has been calculated by the same author in@56#

with the resultf Bs
/ f B51.1660.05, in agreement to our find

ings.
The heavy-meson decay constantf B plays an important

role in the mixing of neutralB0 andB̄0 mesons. The relevan
hadronic matrix element can be expressed as@57#

^B̄0uQ̂DB52uB0&5
8

3
BBf B

2mB
2, ~23!

where Q̂DB52 is the scale invariant four-quark operat
which mediatesB0-B̄0 mixing andBB is the corresponding
scale invariantB parameter which parametrizes the deviati
of the matrix element from the factorization approximatio
In the factorization approximation, by definition we wou
haveBB51. The combinationABBf B can be extracted from
an analysis of experimental data onB0-B̄0 mixing together
with additional inputs which determine the matrix eleme
of the quark mixing or Cabibbo-Kobayashi-Maskawa matr
A very recent analysis then yieldsABBf B5236635 MeV
@58,59#. Taking together our result forf B and the quoted
value forABBf B , we are in a position to give an estimate
the scale invariantB-parameterBB , which reads

BB51.2660.45. ~24!

For simplicity we have assumed Gaussian errors in both
put quantities. The result again is in very good agreemen
corresponding determinations ofBB on the lattice which
gaveBB51.3060.1260.13 @51#, although our error in this
case is bigger.

To conclude, in this work we have presented a QCD s
rule determination of the leptonic heavy-meson decay c
stants f B and f Bs

. Due to large perturbative higher orde
corrections, an analysis in terms of the bottom quark p
mass appeared unreliable. On the contrary, employing
heavy quark mass in theMS scheme, up to orderas

2 the
perturbative expansion displays good convergence and
liable determination off B and f Bs

turned out possible. Ou
central results have been presented in Eq.~21!, where the
dominant uncertainty arose from the present error in the
tom quark massmb(mb). Taking into account independen
information onABBf B from B0-B̄0 mixing, we were also in
a position to give an estimate on theB-mesonB-parameter
BB in Eq. ~24!. All our results are in very good agreement
lattice QCD determinations of the same quantities. Furt
improvements of our results will only be possible if th
dominant theoretical uncertainties could be reduced. T
would require a more precise value of the bottom mass,
a reduction of the renormalization scale dependence, req
ing the next perturbative orderas

3 correction, which at
present seems to be out of reach.
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APPENDIX A: THE BOREL TRANSFORM

The Borel operatorBu is defined by (s[2p2)

Bu[ lim
s,n→`
s/n5u

~2s!n

~n21!!

]n

~]s!n . ~A1!

The Borel transformation is an inverse Laplace transfo
@60#. If we set

f̂ ~u![Bu@ f ~s!#, then f ~s!5E
0

` 1

u
f̂ ~u!e2s/udu.

~A2!

In this work we just need the following Borel transform:

BuF 1

~x1s!aG5
1

uaG~a!
e2x/u. ~A3!

Cases in which logarithms appear can be treated by
evaluating the spectral function and then calculating the
persion integral of Eq.~7!.

APPENDIX B: RENORMALIZATION GROUP FUNCTIONS

For the definition of the renormalization group functio
we follow the notation of Pascual and Tarrach@61#, except
that we define theb function such thatb1 is positive. The
expansions ofb(a) andg(a) take the form

b~a!52b1a2b2a22b3a32¯ , ~B1!

g~a!5g1a1g2a21g3a31¯ , ~B2!

with

b15
1

6
@11CA24Tnf #,

b25
1

12
@17CA

2210CATnf26CFTnf #,

~B3!

and

g15
3

2
CF ,

g25
CF

48
@97CA19CF220Tnf #.

~B4!

The relation between pole and runningMS mass is given
by
5-7
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M ~mm!5Mpole@11a~ma!r m
~1!~mm!1a~ma!2r m

~2!~ma ,mm!#,
~B5!

where

r m
~1!5r m,0

~1! 2g1 ln
mm

M ~mm!
, ~B6!

r m
~2!5r m,0

~2! 2@g21~g12b1!r m,0
~1! # ln

mm

M ~mm!

1
g1

2
~g12b1!ln2

mm

M ~mm!

2 Fg11b1 ln
mm

ma
G r m

~1! . ~B7!

The coefficients of the logarithms can be calculated from
renormalization group@26# and the constant coefficientsr m,0

(1)

and r m,0
(2) are found to be@62,63#
l.

ep

05600
e

r m,0
~1! 52CF , ~B8!

r m,0
~2! 5CF

2 S 7

128
2

15

8
z~2!2

3

4
z~3!13z~2!ln 2D

1CACFS 2
1111

384
1

1

2
z~2!1

3

8
z~3!2

3

2
z~2!ln 2D

1CFTS 3

4
2

3

2
z~2! D1CFTnf S 71

96
1

1

2
z~2! D . ~B9!

APPENDIX C: MASS CORRECTIONS AT ORDER as

Below, we present the orderas mass corrections to the
pseudoscalar spectral function which arise from expand
the results by@22,23# up to orderm4, after the higher dimen-
sional operators have been expressed in terms of non-no
ordered condensates:
rm
~1!~s!5

Nc

8p2 CF~M1m!2MmH ~12x!@4L2~x!12 lnx ln~12x!22~42x!ln~12x!#12~325x1x2!

3 ln x13~223x!ln
mm

2

M2 12~729x!J , ~C1!

rm2
~1!

~s!52
Nc

8p2 CF~M1m!2m2H ~12x!@4L2~x!12 lnx ln~12x!#2~21x!~42x!ln~12x!1~612x2x2!ln x

16 ln
mm

2

M2 1~823x!J , ~C2!

rm3
~1!

~s!52
Nc

8p2 CF~M1m!2
Mm3

s H 4L2~x!12 lnx ln~12x!22
~717x22x2!

~12x!
ln~12x!12

~617x22x2!

~12x!
ln x

16
~22x2!

~12x!2 ln
mm

2

M2 1
~918x29x2!

~12x!2 J , ~C3!

rm4
~1!

~s!5
Nc

8p2 CF~M1m!2
m4

s H 2L2~x!1 ln x ln~12x!2
~13224x227x212x3!

2~12x!2 ln~12x!

1
~12222x227x212x3!

2~12x!2 ln x13
~4212x1x213x3!

2~12x!3 ln
mm

2

M2 1
~6264x115x2111x3!

4~12x!3 J . ~C4!
d-
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