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The decay constants of the pseudoscalar me&asd By are evaluated from QCD sum rules for the
pseudoscalar two-point function. Recently calculated perturbative three-loop QCD corrections are incorporated
into the sum rule. An analysis in terms of the bottom quark pole mass turns out to be unreliable due to large
higher order radiative corrections. On the contrary, in M scheme the higher order corrections are under
good theoretical control and a reliable determinatiorﬁBo:fandfBS becomes feasible. Including variations of all
input parameters within reasonable ranges, our final results for the pseudoscalar meson decay constants are
fg=210+19 MeV andeS=244i 21 MeV. Employing additional information on the produ(éB_BfB from
global fits to the unitarity triangle, we are in a position to also extractBimesonB parameteBg=1.26
+0.45. Our results are quite compatible with analogous determinations of the above quantities in lattice QCD.
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I. INTRODUCTION completely analogous to the corresponding decay of the light
pseudoscalar mesons. Despite the suppression by the small
Experimental effort in recent years has provided us with &actorsm? and |V,,|?, there is some hope that the leptonic
wealth of new information on the decays of bottom hadronsdecayB— 17, can be measured at tiefactories within the
To achieve a good understanding of these data, also the inmext years. Oncdg is assumed to be known, this would
pact of the strong interactions has to be controlled quantitaprovide a very clean determination |of ,,|. In any casefg
tively. This requires the accurate calculation of hadronic mais an important quantity for it also enters more complicated
trix elements involving B hadrons. Generally, hadronic hadronic matrix elements @ mesons like form factors or
matrix elements contain contributions from low energies andmatrix elements of four-quark operators.
thus nonperturbative methods should be employed for their The calculation of heavy meson decay constants in QCD
evaluation. Current approaches include lattice QCD, QCDhas a rather long history. For charmed mesons, they were
sum rules and the heavy quark effective theG#QET). In  first considered iff5,6], whereas the extraction df from
this work, we shall consider a calculation of the simplestQCD sum rules was investigated [ii—16). The first deter-
type of hadronic matrix elements, namely the pseudoscalanination of fg [7] dates back already twenty years. Never-
B- and B;-meson decay constantg and st in the frame-  theless, due to recent theoretical progress, we find it legiti-
work of QCD sum rule$1-4]. mate to reconsider this problem. Very recently, the
The pseudoscalar decay constants parameBimeeson perturbative three-loop order: correction to the correlation
matrix elements of the axial-vector current with the corre-function with one heavy and one massless quark has been

sponding quantum numbers and are defined by calculated[17,18§ for the first time. It turns out that in the
pole mass scheme, which was used for most previous analy-
(0[(ay,ysb)(0)[B(p))=ifgp,., ses, due to renormalon problerid], the perturbative ex-
pansion is far from converging. However, taking the quark
(0](S,,¥5b)(0)[B«(p)) = ifg Py (1)  mass in the modified minimal subtractiokl§) schemeg20],

a very reasonable behavior of the higher orders is obtained
and a reliable determination ¢ becomes feasiblEg6].

The starting point for the sum rule analysis is the two-
ﬁoint functionW (p?) of two hadronic currents.

Throughout this work we assume isospin symmetry gnd
can denote an up or down quark. Weak interactions induc
the leptonic decay of th&8 meson. For examplefg then

appears in the decay width of the procdss— |7, which o _ _ .
takes the form v(p )Elf dx ePX( Q| T{js(x)j5(0) T} €2), 3
. Gt o m? where() denotes the physical vacuum ajy{x) will be the
L(B™—1"m)= g [Vul*fgmimg| 1- mZ)! (2)  divergence of the axial vector current,
Js(X)=(M+m)iq(x)iysQ(x):, 4
*Electronic address: jamin@uni-hd.de with M and m being the masses @(x) andq(x). In the
"Electronic address: boll@cornell.edu following, Q(x) denotes the heavy quark which later will be
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specified to be the bottom quark, wheregg) can be one of d - S

the light quarks up, down or strange. Note that the current - m[u‘[’(u)]:f se *p(s)ds

js5(X) is a renormalization invariant operator. In the case of 0

(ub) the corresponding matrix element is given by 5

=mgfie M/

(my+my,)(0| (Ui y5b)(0)|B) = fgm, 5 .

+f se YUp(s)ds. (10

. So

wheremg is the B-meson mass.

Up to a subtraction polynomial which depends on the__, . :
ergep o () satstes o dipersin rlataor (21,0 0L T S LD 0L
the precise conditions s¢21]): Y p ' ' p g

cal side is concerned, we end up with a sum rule which only
depends on the heavy meson mass. In our numerical
analysis, this additional sum rule will be used to fix the con-
tinuum thresholds, from the experimental value ofiz. The
resultings, is then used in théz sum rule of Eq(9).

In Sec. Il, we give the expressions for the perturbative
pseudoscalar spectral function up to the next-next-to-leading

integral coming from higher excited states, it is further con-Order in the strong coupling, and in Sec. ll, the nonpertur-

venient to apply a Borelinverse Laplacetransformation to bative condensate contributions are summarized. Section IV
Eq. (6) which leads tq67] contains our numerical analysis of the sum rules. Finally, in

Sec. V, we compare our results to previous determinations of
fg in the literature and we present an estimate of the had-

uBu\P(pZ)Eu‘i'(u)z fxe’s’”p(s)ds. 7) ronic B parameter in th@&-meson systenBg .
0

‘P(pz):fow(s_’:%imdw subtractions, (6)

where p(s) is defined to be the spectral functigs(s)
=|m W (s+i0)/. To suppress contributions in the dispersion

Il. PERTURBATIVE SPECTRAL FUNCTION

B, is the Borel operator and the subtraction polynomial has , ,
been removed by the Borel transformation. As we shall dis- N Perturbation theory, the pseudoscalar spectral function
cuss in detail below, the left-hand side of this equation id'@S @n €xpansion in powers of the strong coupling constant,
calculable in renormalization group improved perturbation
theory in the framework of the operator product expansion, if ~ P(8)=p'%(8)+pM(s)a(ua) +p?(s)alua)*+
the Borel parameten can be chosen sufficiently large. 11

Under thecrucial assumption of quark-hadron duality, the
right-hand side of Eq(7) can be evaluated in a hadron-basedwith a= as/#. The leading order terp(®)(s) results from a
picture, still maintaining the equality, and thereby relatingcalculation of the bare quark-antiquark loop and is given by
hadronic quantities like masses and decay widths to the fun-
damental standard model parameters. Generally, however, ©) c 5 2\2
from experiments the phenomenological spectral function pr(s)=g 2 (M+m)s{1-—]. (12)
ppn(8) is only known from threshold up to some enesgy
Above this value, we shall use the theoretical expressio

pn(S) also for the right-hand side. In the case of Biene- ;0 global factor 1 +m)? and have set it to zero in the

sons, we approximate the phen.omenolog|'cal spectral fur“”S'ubleading contributions. Higher order correctionsiap to
tion by_the pole of the Io_west lying hadronic state plus theorderm“ will be discussed further below.
theoretical spectral function above the thresigjd Our expressions for the spectral function always implic-
itly contain aé-function which specifies the starting point of
Ppn(S)=MafE8(s—mg) + 6(S—Sg) pn(S). (8)  the cutin the correlato¥ (s). Although generally, we prefer
to utilize theMS mass, in order to have a scale independent
This is legitimate ifs, is large enough so that perturbation starting point of the cut, in this case we chose the pole mass
theory is applicable. The central equation of our sum-ruléM poe- Modulo higher order corrections, it is always possible
analysis forfg then takes the form to rewrite the mass in the logarithms which produce the cut
in terms of the pole mass such that théunction takes the
% form 6(s—M?2,0).
m‘éfézJ eMs=9uy  (s)ds. 9 The orderay correction for the two-point functiod’(s)
0 was for the first time correctly calculated in RE22], keep-
ing complete analytical dependencies in both madéesnd
Besides the sum rule of E€Q), in our numerical analysis m. Further details on the calculation can also be found in
we shall also utilize a second sum rule which arises fronRef. [23]. From these results it is a simple matter to obtain
differentiating Eq.(7) with respect to : the corresponding imaginary part:

"For the moment, we have only kept the small quark nmass
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N,
pY(s)= 12;2 Ce(M+ m>2s(1—x>{ (1—X)[4L,(X)+2 Inx Azp?(s)=— g5 Cr(M+ m)zsrﬁn“{ (1—x)(1—3x)
XIn(1—x)—(5—2x)In(1—x)]+ (1—2x%) X[4L,y(x)+2 InxIn(1—x)]—(1—X)

ui 1 X (7—21x+8x?)In(1—x)+(3— 22
X (3—=x)In x+3(1—3x)InW+ 5(17—33x)],

1
2_ay3 Zi1— _
(13 +29%°—8x>)In x+ 2(1 X)(15 31x)’.

(15
wherex=M?/s andL ,(x) is the dilogarithmic functiofi24].
The explicit form of the first order correction is sensitive to Explicit expressions for the coefficient§’ andr( can be
the definition of the quark mass at the leading order. Equafound in Appendix B. Furthermore, in Ref§l7,1§ the
tion (13) corresponds to running quark masses in g  renormalization scale of the coupling, was set toM yqe.
schemeM () andm(x,,), evaluated at the scaje,,. _Slnce in our numerical analysis we plan to_vary the sggle
The term proportional to |ﬁlﬁﬂ\/|2 cancels the scale de- independently fronu,,, the contribution which results from

pendence of the mass at the leading order, reflecting the fa([:?expressmg;(M) in terms ofa(u,) in the two-loop part
that p(s) is a physical quantity, i.e., independent of the heeds to be included as well.

PRS) 7S o . Close to threshold, in the pole mass scheme, the pseudo-
renormalisation scale and scheme. Transforming the quargC

. h | h h i alar spectral function behaves a& asInv)< where v
mass into the pole mass schef@8], the resulting expres- =(1-x)/(1+x) at any ordek in perturbation theory. This

sion becomes scale independent and of course agrees WB%havior however, does not persist in M8 scheme, where

Eq. (4) of [8]. As shall_be dlscus§ed N more detail below, for each order, an additional factor ofvlis obtained, such
however, the periurbative correctionsfipin the pole mass that the ordera? correction goes like a constant for—0.
scheme turn out to be rather large and we refrain from per; S

formi ical vsis of th le in thi h Nevertheless, as we will see in more detail below, numeri-
orming a numerical analysis or the sum ruie in this SChemMee, 1y 1he corrections for the integrated spectral function show

Therefore, our expressions for the spectral function will only, ch better convergence than in the pole mass scheme.
be presented in th®!S scheme. Let us now come to a discussion of the corrections in the

The three-loop, ordes? correctionp®)(s) has only been  small massn. At the leading order in the strong coupling and
calculated very recently by Chetyrkin and Steinhauseup to ordem?*, they can, for example, be found in RE27]:
[17,18 for the case of one heavy and one massless quark. A

completely analytical computation of the second order two- ) N, 5 5

point function is currently not feasible. However, one can pm (8)= g2 (M+m)% 2(1-x)Mm—2m
construct a seminumerical approximation fdf)(s) by us-

ing Padefipproxi_mation_s together with conformal mappings (1+x) Mm®  (1—2x—x2) m*

into a suitable kinematical variab[@5,26. The input used -2 1-% s + 1-x? 5| (16)

in this procedure is the knowledge of eight moments for the
correlator for large momenturr—0, seven moments for

sr:nallh n;(;)rtr)]err]]tumxﬂoo, and partllall mforrr;]anon or:j the ection can be obtained by expanding the resul{2af23 in
threshold behaviox— 1. In our analysis, we have made USe (grmg ofm and have been relegated to Appendix C. Numeri-

of the programRus.m which contains the required expres- .5y the size of the ordes, corrections increases with in-
sions forp®)(s) and was kindly provided to the public by creasing order in the expansionrim However, even for the
the authors 0f17,18. case ofB, the mass corrections im, become negligible
In Refs.[17,18), the pseudoscalar spectral functip(s)  before the perturbative expansion for these corrections
has been calculated in the pole mass scheme. Thus we stijleaks down.
have to add tgp®)(s) the contributions which result from In the process of performing the expansion of the results
rewriting the pole mass in terms of théS mass. The two of [22,23 in terms ofm, it is found that starting with order
contributionsA ;p andA,p® which arise from the leading ™M> logarithmic terms of the form Im appear in the expan-
and first order contributions, respectively, are given by sion. They are of infrared origin, and in the framework of the
operator product expansion it should be possible to absorb
them by a suitable definition into the higher dimensional
N ) operator corrections, the vacuum condensates. If the operator
A1pP(s)= o5 (M +m)2s[(3—20x+ 21x?)r'Y product expansion is performed in terms of non-normal or-
8w dered, minimally subtracted condensates rather than the
@ more commonly used normal ordered ones, the mass loga-
—2(1-x)(1-3x)ry"], (14 rithms indeed disappef27—29.

The somewhat bulky expressions for the first ordercor-
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IIl. CONDENSATE CONTRIBUTIONS 240

In the following, we summarize the contributions to the 230t
two-point function coming from higher dimensional opera- 5t
tors which arise in the framework of the operator products
expansion and parametrize the appearance of nonz 20} y
perturbative physics, if the energy approaches the confine™ 0 £/ R ]
ment region. Here, we decided to present directly the inte- 100 S e T T TT T T TT T T T

grated quantity uW(u) because the spectral functions /
corresponding to the condensates contadistribution con- 80T T T 50 50 70 8.0
tributions. u[GeV’]

The leading order expression for the dimension-three

guark condensate is known since the first works on the pseu- FIG. 1. fg as a function OT th.e Borel parameterfor different
doscalar heavy-light systef8]: sets of input parameters. Solid line: central values of Table I; long-

dashed linemy(m,)=4.16 GeV (upper ling, my(my)=4.26 GeV
2 (lower line); dashed linew,= 3 GeV (lower ling), w,,=6 GeV (up-
14 M_)ﬂ per ling.
u

7O 20 A\ a— MUl 1 _
uWq, (u)=—(M+m)“M(qgje U1

2M

enhanced by the heavy quark mass. Again here the result is
(17) well known from the literature and we just cite it for the
convenience of the reader:

To estimate higher order mass corrections in our numerical =~ o) , M(gsqoFa) M2\ o
analysis, we have included the corresponding expansion up Y¥arg(W) = —(M+m) 2u 1=55)¢ :
to orderm? [27]. From the mass logarithms of the perturba- (20
tive ordera andm® correction, it is a straightforward matter
to also deduce the first order correction to the quark condenA/e have checked explicitly that the contribution of the next-
sate since the mass logarithms must cancel once the quahigher dimensional operator, the four-quark condensate, is
condensate is expressed in terms of the non-normal orderektremely small, and thus have neglected all higher dimen-
condensat¢27-29. We were not able to find the following sional operators. The corresponding results for the conden-
result in the literature and assume that it is new: sate contributions to the sum rule of EG0) can be calcu-
lated straightforwardly by differentiating the above
. 3 M2 expressions with respect toul/
U (u)= >Cra(M+ m)2M<Hq){ F( O'T)

M2\ [ 2 4
1‘7)('”W+§

M2m?
2u?

IV. NUMERICAL ANALYSIS

1+

e'\"z’ﬁ In our numerical analysis of -li
, ysis of the pseudoscalar heavy-light
sum rule, we shall mainly discuss the values of our input
(18 parameters, their errors, and the impact of those errors on the
values offg and st. To begin, however, let us investigate

wherelI'(n,z) is the incompletd” function. Again, the term the behavior of the perturbative expansion.
In u2/M? cancels the scale dependence of the mass at the As was already mentioned above, in the pole mass

leading order. scheme the first two order, anda? corrections to¥ (u) are
The next contribution in the operator product expansion isf similar size than the leading term, thus not showing any
the dimension-four gluon condensate. Although its inﬂuenc%ign Of Convergence_ For Centra' Va|ues Of our input param_
on the heavy-light sum rule turns out to be very small, weeters and a typical value="5 Ge\?, the first order correc-
have nevertheless included it in the analysis. The correfon amounts to 78% and the second order to 85% of the
sponding expression for the Borel transformed correlator iseading term. To be consistent with the perturbative result for
given by p(s), we have usednf®®=4.82 GeV, which results from
relation (B5) up to orderag. Because of the large correc-
tions, we shall not pursue an analysis in the pole mass
scheme any further. On the contrary, in & scheme for
wm=ma=m, andu=>5 Ge\?, the first and second order cor-
In some earlier works on the pseudoscalar sum rule this coriections are 11% and 2% of the leading term, respectively,
tribution appears with a wrong sigi8,9,15, although of  Wwhile at u,~4.5 GeV the second order term vanishes en-
course this has negligible influence on the numerical resultdirely. Hence, in theMS scheme the perturbative expansion
The last condensate contribution that we consider in thiconverges rather well and is under good control.
work is the dimension-five mixed quark-gluon condensate In Figs. 1 and 2, as the solid lines we display the leptonic
which still has some influence on the sum rule since it isdecay constant$g andeS, for central values of all input

. 1
u«If<F°F>(u)=1—2(M+m)2<aFF>e—M2/U. (19)
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270 ' ' ' ' TABLE Il. Values for all input parameters, continuum thresh-
260 bbbty olds s, [GeV?], points of maximal stability, [GeV?], and corre-
sponding uncertainties fc)‘rBS [MeV].

E st S — Parameter Value So U Afg
230 s My(mp) 4.21+0.05 GeV gg'i i'g +16
220 35.2 6.2 +8
N | | | . 3.0-6.0 GeV 372 36 -9
3.0 5.0 6.0 7.0 8.0
u[GeV?] e 3.0-6.0 GeV gi'g g; +1
FIG. 2. fg_as a function of the Borel parameterfor different (S8)/(qQ) 0.8-03 359 53 +g
sets of input parameters. Solid line: central values of Table II; long- 352 47

dashed linemy(m,)=4.16 GeV (upper ling, my(m,)=4.26 GeV TN (2 GeV _(267+17 MeV)? 35.7 5.2 +5
(lower line); dashed lineu,= 3 GeV (lower ling), u,,=6 GeV (up- (qa)( ) (267= ) 353 49 -4
per line. my(2 GeV) 100+ 15 MeV *2
O(a?) 2X 0(a?) 3

parameters which have been collected in Tables | and Il, as a %s no O(a?) -
function of the Borel variablel. For u<4 Ge\? the power ag(My) 0.1185+0.0020 +1
corrections become comparable to the perturbative term, (aFF) 0.024+0.012 GeV *+1
whereas foru=6 Ge\? the continuum contribution gets as m3 0.8+0.2 Ge\? *1

important as the phenomenological part. Thus a reliable sum
rule analysis should be possible in the range roughly given
by 4 GeV'<u=6 GeV’. In this region we extract our central fnction of u for central input parameters. As can be seen

resultsfg=210 MeV andfg =244 MeV. from this figure, in the stability region, the sum rule repro-
As an additional input parameter the continuum thresholdiuces the physical heavy meson masses which are indicated

So is required. This parameter can be determined from thes horizontal lines. Our results fég and fg_are then ex-

ratio of the sum rules of Eqg¢10) and (9), which only de-  yacted a,, around which also the sum rules for the decay

pends on the heavy meson mass. To this end, for a certain S&fnstants are most stable and display an inflection point.

of input parameterss, is tuned such as to reproduce the  The gdominant source of uncertainty for the decay con-

Particle Data Group values fong andmg_[30] in the sta-  giants is the error on the bottom quark mass. For this

bility region (a minimum in this caseof the ratio of sum value we have taken an average over recent determinations
rules. In Tables I and I, we also present the resulting value§31—-39 which results inmy(m,) =4.21+0.05 GeV. The er-

for sy and the corresponding locatiar of the minimum of  ror onm, has been chosen such that all individual results are
the mg sum rule. For central values of all input parameters,included within one standard deviation. The corresponding
we obtains,=33.6 GeV andu,=5.6 Ge\ for the B me-  variations offg and fg_ are displayed as the long-dashed

son, as well as,=35.5 GeV and Up=5.1 GeV for theBs jines in Figs. 1 and 2, where the upper line corresponds to a
meson. In Fig. 3, we show the resultimgg andmg_as a  |ower value ofm, and the lower line to a largen,. The

_ i impact of the variation ofm, on the error offg andfg has
TABLE I. Values for all input parameters, continuum thresholds s

s, [GeV?], points of maximal stabilityi, [GeV?], and correspond- been ql?]ant!fled in Tables | an(;l Il . is th |
ing uncertainties fof g (MeV). Another Important source of uncertainty Is the renormal-

ization scaleu,,. We have decided to vary,, in the range

Parameter Value So Ug Afg
331 6.1 _
My (M) 4.21+0.05 GeV 342 592 ¥15
335 6.8
— +
Mm 3.0-6.0 GeV 344 40 +10
342 51 +2
Ma 3.0-6.0 GeV 331 62 _1
— 339 57
— 3
(q9)(2 GeV) (267=17 MeV) 333 55 +6
2X O(a? . . . .
O(a? no (9(( Zzs)) *2 %50 4.0 5.0 L 60 7.0 8.0
s u[GeV7]
as(My) 0.1185-0.0020 +1
(aFF) 0.024+0.012 GeV +1 FIG. 3. mg (solid line) andeS (dashed lingas a function of the
m(z) 0.8+0.2 Ge\? ¥1 Borel parameteu for central input parameters. The horizontal lines

indicate the corresponding experimental values for these quantities.
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3-6 GeV, with a central valug.,,=m,. If u,, is smaller heavy meson decay constants, they have been compiled in a
than about 3 GeV, the perturbative corrections become tocecent review article by Bernat&1,70. Taking into account
large and the expansion unreliable. As the dashed lines idynamical sea quark effects and estimating the correspond-
Figs. 1 and 2, we then show the corresponding results foing uncertainties, his world averages read
um=3 GeV (lower line) and u,,=6 GeV (upper ling. The
uncertainties foifg andeS which result fromu,, are again f

B

listed in Tables | and II. To indicate the influence of even f5=200+30 MeV, f—5=1.16i 0.04. (22)
lower scales, let us briefly discuss the cagg=2.5 GeV. B
Here, we finds,=38.4 Ge\f being rather large, as well as

u0=2.§ GeVf WZ'Ch IS very sn;lall. At such a lowl, the e |aice value forf is in good agreement with our result
perturbative and operator product expansions are not Veryt £ (21) and also our ratid, /f,=1.16 turns out to be
reliable. Nevertheless, the value fiy extracted aug turns s

out surprisingly close to our central result, such that the erro : o . . L
estimate of Table | is more conservative. The variation ofable discretisation errors on the "'?““C.e’ In our opinion, at
Ma, on the other hand, only has a minor impact on the erropresen't the QCD sum rule determination of the decay con-
of fg andfg_and is also given in Tables | and II. stants Is more precise. . .
s . . We now come to a comparison with recent QCD sum rule
The present uncertainties in the remaining QCD param:

results forfg andfg . The status of sum rule calculations of
etersas, the strange quark mass; and the condensate pa- fg in the pole ma;s scheme has been summarized in the
rameters have much less influence on the error§zofnd B ! X
B review article[14] with the resultfg=180+=30 MeV. Al-

st' Thus let us be more brief with the discussion of thesethough roughly 15% lower, within the errors this result is

guantities. The current value of,(M;) by the Particle Data compatible with our valug21). However, due to the large
Group, ag(Mz)=0.1185-0.0020 [30], has been used, peryrbative corrections in the pole mass scheme, and the
whereas our choice for the strange masg¢2 GeV)=100  gyong dependence on the bottom quark mass whigh4h
+15 MeV is obtained from two very recent analyses of scay, 55 taken to bmgole:4_7to_1 GeV, the theoretical error is

lar and pseudoscalar QCD sum rul[d€,41]. The resulting

mg is compatible to the determination from hadronide- tion in the relation betwedrls d pol |
cays, as well as lattice QCD result42—44]. Besides the rection in the relation betwe mass and pole mass alone

: : pole :
variation of ay(M5), in order to estimate the influence of 9iVeS @ shift ofm,™= by roughly 200 MeV[52-54. Typical

higher order corrections, we have either removed or doubleffSults forfg_turn out to be about 35 MeV higher thdg

the knownO(a?) correction. The resulting uncertainty for [14], so that the difference betwedp_andfg is in agree-

the decay constants, however, turns out to be small. ment to our result. Our result fdig is also completely com-
Our value for the quark condensate has been extractgghtible with the very recent analysis of REE6], which was

from the Gell-Mann—Oakes—Renner relatigb] with cur-  performed in the framework of HQET and resulted fig

rent values for the up- and down-quark maspél. The  =206+20 MeV, suffering however from the problems of

ratio (ss)/(qq) has been chosen such as to include resultshe pole mass discussed above.

from Refs[3,46—49,69 The mixed quark-gluon condensate  After submission of our work, an independent analysis of

is parametrized byg.qoFq)=m3(qq) with mj being de- the heavy-light meson sum rules by Narig@b] was pub-

termined in Ref[50], and finally, for the gluon condensate lished, which also employs the heavy quark mass inMige

we take a generous range which includes previous valuescheme. For the convenience of the reader, even though Ref.

found in the literature. All uncertainties fég andfg_result-  [55] appeared later, we comment on this analysis. The main

ing from these parameters are also listed in Tables | and Idifference to our analysis lies in the fact that in R&5] the

Where entries fos, and u, are missing, we have used the bottom quark mass is extracted from the sum rulenfgy,

values corresponding to central input parameters. with the resultm,(m,) =4.05+0.06 GeV. We have checked
Adding all errors for the various input parameters inthat for this value ofm, one needs,=37.5 GeV? to repro-

quadrature, our final results for tfeand B, meson leptonic duce mg, and finds a stability region aroundi,
decay constants are =4.3 GeV\*. Inserting these parameters into thesum rule,

we obtainfg=270MeV, in conflict to our result21). We
fg=210+19 MeV, stz 244+ 21 MeV. (22 are able to reproduce the value quoted by Naristy,
=205 MeV, atu=2.7 Ge\?, which roughly corresponds to
In the next section, we shall compare these values with prelis preferredr=1/u value. Around thisu, however, thefg

vious QCD sum rule and lattice QCD determinations. sum rule is unstable, casting doubts on the procedure of also
demanding stability in the continuum threshagl, besides

the u stability. Furthermore, the rather low valuemf, com-
pared to our world average presented above, as well as the
The only truly nonperturbative method to compute had-very high value ofsy, indicate that the pseudoscalar sum
ronic matrix elements is QCD on a space-time lattice andule is not a good place to determing,. On the other hand,
thus it is very interesting to compare our findings to theour investigation demonstrates that perfectly compatible re-
corresponding results in lattice gauge theory. For the leptonisults are obtained with a more standard valuenfigr. The

perfectly consistent with Eq22). Nevertheless, due to siz-

not controlled reliably. Let us remark that the ordef cor-

V. CONCLUSIONS
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ratio fg_/fg has been calculated by the same authdisBl  pointing out a sign misprint in the original version of Eq.
with the resultfz /fg=1.16+0.05, in agreement to our find- (15, and M.J. would like to thank the Deutsche Forschungs-

ings. gemeinschaft for their support.

The heavy-meson decay constdgt plays an important

role in the mixing of neutraB® andB® mesons. The relevant APPENDIX A: THE BOREL TRANSFORM

hadronic matrix element can be expressed5d$ The Borel operatof3, is defined by §=—p?)
. 8 (—s)" 9"
B°|Qag—2|B%) = = Bgfzm3, 23 = lim ——
(B”Qap=2/B°) 3Bsfems (23) B, Serllrjx(n_l)! 9™ (A1)
s/n=u

where Q,5_, is the scale invariant four-quark operator

which mediate8%-B® mixing andBg is the corresponding
scale invarianB parameter which parametrizes the deviation
of the matrix element from the factorization approximation. R %1
In the factorization approximation, by definition we would f(uy=B,[f(s)], then f(s)zf —t(u)e ¥Udu.
haveBg= 1. The combination/Bgfg can be extracted from o U

an analysis of experimental data &3-B° mixing together

with additional inpUtS which determine the matrix elementS|n this work we just need the fo”owing Borel transform:
of the quark mixing or Cabibbo-Kobayashi-Maskawa matrix.

The Borel transformation is an inverse Laplace transform
[60Q]. If we set

(A2)

A very recent analysis then yieldgBgfg=236+35MeV 1 1 i
[58,59. Taking together our result fofg and the quoted B, (x+8)® = uT (@) e~ (A3)
value for\Bgfg, we are in a position to give an estimate of
the scale invarianB-parameteiBg, which reads Cases in which logarithms appear can be treated by first
evaluating the spectral function and then calculating the dis-
Bg=1.26+0.45. (24 persion integral of Eq(7).

For simplicity we have assumed Gaussian errors in both iny, oo\ iy 5. RENORMALIZATION GROUP FUNCTIONS
put quantities. The result again is in very good agreement to

corresponding determinations &g on the lattice which For the definition of the renormalization group functions
gaveBg=1.30+0.12+0.13[51], although our error in this we follow the notation of Pascual and Tarrgd@i], except
case is bhigger. that we define thes function such thai3, is positive. The

To conclude, in this work we have presented a QCD sunexpansions of3(a) and y(a) take the form
rule determination of the leptonic heavy-meson decay con-

stantsfg and fBS. Due to large perturbative higher order B(a)=—pBa— Bra’— Bzas—---, (B1)
corrections, an analysis in terms of the bottom quark pole ) 5
mass appeared unreliable. On the contrary, employing the y(@)=yia+ ya+yza+---, (B2

heavy quark mass in thBIS scheme, up to ordes? the .

perturbative expansion displays good convergence and a ré"—'th

liable determination of g andeS turned out possible. Our 1

central results have been presented in &1), where the B1= 6[11CA—4Tnf],
dominant uncertainty arose from the present error in the bot-

tom quark massn,(m,). Taking into account independent

information onyBgfg from B°-B° mixing, we were also in Bo= i[l?Ci—lOCATnf—6CFTnf],
a position to give an estimate on tlBemesonB-parameter 12
Bg in Eq. (24). All our results are in very good agreement to (B3)

lattice QCD determinations of the same quantities. Furtheand
improvements of our results will only be possible if the

dominant theoretical uncertainties could be reduced. This 3
would require a more precise value of the bottom mass, and y1==Cg,
a reduction of the renormalization scale dependence, requir- 2
ing the next perturbative ordeag correction, which at c
present seems to be out of reach. yy= 4_2[97CA+9CF_20Tnf]-
ACKNOWLEDGMENTS (B4)

It is a pleasure to thank H. G. Dosch and A.dHer for The relation between pole and runni@ mass is given
discussions. We also thank M. Steinhauser and A. Penin fdoy
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M (tm) =M poid 1+ a( o)t 0 () +ala)r @ (o )1, rib=—Ce, (B9)
(BS5)

where

r(2) _Cz(l_ —(2)- _§(3)+3§(2)In 2)
m.0 128 8

riD=rd (B6)

o~ nling e 1111 1
() +CACF( Sea tal@+ g §(3)——§(2)In2)

r(z)—r(zé [y2+(y1— ﬂl)rmo]mM( )

3 71
+CFT(———§(2))+CFTnf 5" 25(2)) (B9)

(71 B1)In? M( m)

APPENDIX C: MASS CORRECTIONS AT ORDER  ag
r (B7)
D

Mm
v+ B In—
1 1 "

a Below, we present the orders mass corrections to the

pseudoscalar spectral function which arise from expanding
The coefficients of the logarithms can be calculated from thehe results by22,23 up to ordem?, after the higher dimen-
renormalization group26] and the constant coeffICIentﬂ) sional operators have been expressed in terms of non-normal

andr(?) are found to bg62,63 ordered condensates:
<1>(s)— Ce(M+m) Mm[(l X)[4Lo(X)+2 InxIn(1—X) —2(4—x)In(1—X)]+ 2(3—5x+x?)
2
Mm
><Inx+3(2—3x)InW+2(7—9x)], (CY)

p'B(s)=— l:'Tcch(lvl +m)2m2‘ (1=X)[4Lo(X)+ 2 InXIn(1—X)]— (2+X)(4—X)In(1—X) + (64 2x—X?)In X

2
M
+6 Inmmz+(8—3x)), (C2)
@) Ne o mamz™™ | 4,00+ 2 Inxin( T2 1 282,
Pm3(S)= g2 CFl m) 2(X)+2 InxIn(1-x) = n(1-x) T—x X
(2—x%) um (9-+8x—9x?)
+ e —
Sa—0r"M2 T T (1x? | ©3
D N, M ,m* oL iy Inl (13— 24x—27x°+2x3) (1
=— +m)— X)+InxIn(1l—x)— n(1—x
pm4(s) 87TZ F( ) S 2( ) ( ) 2(1_X)2 ( )
(12—22x—27x2+2x3)I . (4—12X+Xx2+3x3) w2  (6—64x+15x2+11x3) c
2(1—x)2 nx 21—x° "wm? 4(1-x)3 (C4
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