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Study of yr— @7 below 1 GeV using an integral equation approach
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The scattering ofym— 77 is studied using the axial anomaly, elastic unitarity, analyticity, and crossing
symmetry. Using the technique to derive Roy’s equation, an integral equation f&-weve amplitude is
obtained in terms of the strong-wave pion-pion phase shifts. Its solution is obtained numerically by an
iteration procedure using as the starting point the solution of an integral equation of Muskelishvilli-Omnes
type. It is, however, ambiguous and depends sensitively on the second derivativePafvethe amplitude at
s=m?2 which cannot be directly measured.
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[. INTRODUCTION wheres, t, andu are the kinematical variables for this pro-
cess and will be defined below. In the chiral lintihe zero
One of the fundamental calculations in particle theory islimit of the pion four-momentg the matrix element is given
the 7%— yy decay ratd1]. It is a combination of partially by the anomaly equation
conserved axial vector current and the short distance behav-

ior of quantum chromodynamid§)CD): e
q y aQCD) G(0,0,00=\= W:WO GeV? (4)
™ w
A(70— yy)=iF e K ek (1)

where the zero in the argument &f(0,0,0) refers to the

with chiral limit of the massless pions; the number of colNtsis
equal to 3.

) Experimentally\ is measured at an average photon pion
e“N¢ 1 energy of 0.4 GeV and, assuming that there is no momentum
Fyy= 1272f =0.025 GeV", 2 dependence i5(s,t,u), it is equal to[5]

. _ A®XP=12.9+0.9+0.5 GeV °. (5)
where e is the electric chargef,.=0.0924 GeV, and\,

=3 is the number of colors in QCD. This calculation is valid The agreement between experiment and theory is not good
in a world wheren® is massless. Some corrections have tobut certainly corrections will have to be made because mea-
be made in order to take into account the finite value of thesurements made in this experiment are far from the chiral
pion mass. It turns out that the massless pion anomaly forsymmetry limit.
mula is in very good agreement with the pion lifetime data The calculations of this process are usually done within
[2], implying that the correction due to the physical pionvector meson dominanc&/MD) models[6—8]. Recently,
mass in Eq(2) is very small. this process was discussed within the framework of chiral
Another axial anomaly result is the procegs— 77 or  perturbation theoryChPT) to one loop[9] and also with a
its analytical continuatiory— 3 [3]. This last process re- combination of ChPT and VMIP10] and the unitarization of
quires more corrections because, for practical considerationthe ChPT two-loop amplitudglL1].
measurements are done at an energy far from the chiral limit The purpose of this paper is to investigate the scattering
where the anomaly formula is applicable. Furthermore, theof y7°— 7" v~ using the dispersion relation, elastic unitar-
analytical continuation from one process to the other is aty, and knowledge of th@-wave pion-pion phase shifts. An
delicate procedure due to the presence of a complex singintegral equation is obtained and is similar to the
larity, which is absent in the former reaction. The calculationMuskelishvilli-Omnes(MO) integral equation used in the
of the processym— mr is in itself interesting because of pion form factor calculatioi12]. The integral equation ob-
future experiments being proposed at various accelerator faained here is, however, much more complicated due to the
cilities and also its important role in the calculation ®®  symmetry of the problem. Its solution can only be obtained

—yy* [4]. by a numerical method.
The y7— - amplitude is given by The pion form factor calculation, using the MO integral
equation approach, yields a pion radius too low by 10% and
A(y(K)7(po)— 7t (py) 7 (P2)) a modulus of the pion form factor at theresonance also too

low by 15%. This is due to the assumption of the elastic
=i€e""" "€, Po,P1,P2,G(s,t,u) (3) unitarity relation which is valid only in the low energy region
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below 1.2 GeV but cannot be true at and above thdn terms of the functionG;,.(s,t,u) the differential cross
p' (1.5 GeV) region. In order to remove this discrepancysection for the procesgn®— 7" 7~ is
one has to use also, as input, the pion rms radius and hence
one has either to make an extra subtraction in the dispersion do 1 , (s—4m3)¥2 )
relation or to make use of the polynomial ambiguity of the = (s—mZ)——————sir? 6|G(s,t,u)|>.

. : dcosd 1024w sl/2
solution of the MO equation. One would then get not only

the correct value of the absolute value of the pion form factor ©)

at thep mass(i.e., thep leptonic width, but also complete

agreement with the pion form factor below 1 Gg¥. The Ill. VECTOR MESON DOMINANCE AND PION FORM

phases of the form factor are of course the experimental FACTOR

P-wave 7 phase shifts due to the solution of the MO equa- . . o .
tion. Because our integral equation solution is a more sophisti-

é:ated and precise approach to the vector meson dominance
models[14,15, where unitarity and the dispersion relation
fre extensively used, it cannot avoid the same problems that
are present in these models; namely, the solution can be
uniquely obtained only when the asymptotic behavior of the
solution is specified. It is thus useful to review briefly the
gND models and calculations of the pion form factor with
and without introducing the contact term.

We also face the same problem in the calculation of th
scatteringym°— 7+ 7~. The problem could, however, be
more serious here than in the pion form factor calculatio
because of the existence of thend u channels. Not only
does the first derivative of the dominaRtwave amplitude
vanish at the energy squareet me, but its second deriva-
tive at this energy is not accessible to experiments because
the lack of experimental precision.

A further complication is because of the ambiguity of the
solution of the integral equation obtained here due to the A.Vector meson dominance models for theym°—
symmetry of the problem. It is related to but not purely of the process
polynomial type. For this reason we cannot make a compa- | et ys consider the VMD models without and with the
rable prediction of theym®— 7" 7~ cross section at the  ontact terms for theym®— =" 7~ process as previously

mass or thel'(p—my) width. The measurement of this giscussed in the literatufé,7]. Without the contact term, the
width could be used to make a prediction of the energy dey\p model for the yn®— 7"~ amplitude is

pendence ofyn%— 77~ away from thep mass and in

o

particular in the low energy region where the the first mea- N[ m? m? m?
surement o\, Eq. (5), was made. GMY(s,t,u)= 3|3 Pt (10
m,—s m,—t my—u

Il. KINEMATICS AND PARTIAL WAVE PROJECTION wheres,t,u are the invariant kinematics andis defined by

The kinematics of this process are defined sas(k  EQ. (4). With a contact term, it can be written as
+po)?, t=(p1—Po)?, andu=(p,—py)?. Because all par-

ticles involved are on shell, one has-t+u=3m?2. In the m? m? m?
- i G*MIYs,t,u) = L+ P2 +—"—¢
center of mass system, in terms of the scattering aaglee oL _ 2 2 2
3-Clm’-s mi—t m’-u
have P P
(11
2 _
t= 3 S+E(S_m2) [1—amZ/s cosé, wherec is proportional to the strength of the contact term.
2 2 N T Equation(11) can be rearranged to give
3m2-s 1 2
u= - =(s—m?)y1-4m?/scosd.  (6) GUmdcqs t u)zé My _c s
2 2 " i s 3 2_ 3— 2
m;—s Cmy
The partial wave expansion f@(s,t,u) is given as follows
[11,13; +[s—t]+[s—ul{. (12)
G(s,t,u)= Gi(s)P/(cosb) (M) In Eq. (10), the y7®— "7~ amplitude vanishes ast,u

odd | —oo while those in Eqs(11) and(12) do not vanish because

of the presence of the contact term. We have introduced phe-
nomenologically the contact term ¢ in the scatteripg®
€., 77 without considering how it influences the VMD
for the corresponding proce$s— yy. Assuming complete
3 VMD for P—vyy, one hasc=1 in order that the

_ 2 : Kawarabayashi-Suzuki-Riazuddin-FayyazuddiKSRF re-
Ga(s)= SwJ dQsir? 0G(st,u). ® lation [17] remains valid6,7].

where 6 is the scattering angle arf®| is the first derivative
of the Legendre polynomial. Hence the lowest partial wav
is
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The strength of the contact term also influences the value Equation(10) yields a decay widtH (p— 7y) =36 keV
of the second derivative of tHe-wave amplitude as=m?2.  which is too small compared with the experimental value.
Expanding Eq(11) in a power series o§,t,u, Equation (11) for c=1 yields a decay width (p— 7y)
=81 keV in much better agreement with the désae be-

21 P4t l low). The experimental value of thewrm coupling or the
_—

w

G'MIqs,t,u) =N 1+ ——

3-cm t3 ¢ m? KSREF relation 17] for the pr7r coupling is used to calculate
P P these widths.
(13) One can improve these equations by making the vector
mesonp unstable using the self-energy correction for the
the P-wave projection of this equation is propagatof16] and the KSRF relatiofiL7]. This same result
can also be obtained using the inverse amplitude for the vec-

m? 6 (s—m?)2 1 tor form factorwithout assuming the KSRF relation. The

Gi(s)=N| 1+ 5= —72T+ — 2 width obeys the KSRF relation as a consequence of the
P p implementation of the unitarity relatiopl8]. The factor

m5/(m2—s) is then replaced by a functiofd(s) which is

normalized to unity as=0 and is defined as follows:

where the pion mass is introduced by hand. One has finally

(14

1
d?G4(s) 12 1 QO(s)=
= —\. 1 1—s/sg—(1/967%F2){(s—4m2)H +2s/3
dSz 2 5(3_C) m;4) ( 5) S/Sg ( w){(s mw) 7777(8) S }
Instead of characterizing the contact term by the infinite (16

energy behavior of the matrix element, we can specify its

presence by evaluating its second derivative forRhwave  where f_=0.093 GeV, andsy is related to thep mass
at s=m>. For pure VMD, c=0, it is equal to squaredni=0.593 GeV by requiring that the real part of
(12/15)>\(mp‘4) and for the hidden symmetry modgl], ¢ the denominator of Eq16) vanish at thep mass;H __(s) is

=1,itis (6/5))\(m;4). a well-known integral over the phase space factor:
( 2 2 2
s—4m> s+ s—4m> s—4m>
2—2\/ In tim\|——, s=4m2,
S 2m,. S
ami—s s 5
H..(s)={ 2—-2 arcta 5, Oss<4m;, a7
S s—4am:,
s—4m? \4mi-s+-s
2-2 In , s=0.
L S 2m_
Let us call the phase dd(s) 8. ThenQ(s) has the following degrees
phase representation: 175
150 > 2
s sfw 8(z)dz 18 125 .
(s)=exp = an2(z—s—ie) | (18) 100
75
The phase’ is exactly the elasti®-wave w7 phase shift as 50
can be seen from Fig. 1. Alternatively, one can use the ex- 25
perimental phase shift to calculate the functidfs) but the Gev? s
expression given above is most convenient. 0. 0.4 0.6 0.8 1
Other functiond)(s) normalized to unity as=s, can be FIG. 1. The phase of the functidi(s) in degreegvertical axi3
expressed in terms of the functiéh(s) by the simple rela- s given as a function o (Ge\?). The experimental data are taken
tion Q(s,sp) = Q(s)/Q(sp)- from Refs.[27-29.
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Q(s) as given by Eq.(16) has a ghost pole as  €1(s) defined by Eq(16) becomes a simple pole in this limit.

—2.5x10° GeV? which is far away from the physical re- We shall elaborate this fact later in this article.

gion relevant to our calculation and hence is irrelevant for In the following, we shall define the functidg(s,t,u) at

our low energy calculation. the symmetry poins=t=u= me while the chiral symmetry
The function()(s) defined here is the same as the inversdimit of this function is the chiral anomaly given by Eq.

of the D function given by Ref[10] except for the definition (4). How are they related to each other? There is no clean

of the p mass, which is approximate there. answer to this problem. Chiral perturbation theory could be
In both approaches, the chiral symmetry limit should beused. The answer depends, however, on one parameter, the

defined as the limit of,t,u tending to zero first and then scale paramet¢®,11]. We prefer to look at the largd,, limit

m2—0. This order should be respected because the brandh get their relation.

point ats,t,u=4m?2 also goes to zero in the chiral limit. ~ Settings=t=u=0 in the chiral limit in Eqs.(10),(11),

Using this definition we could have calculatedn terms of W€ have
N\ without using the larg&, limit, but the difference is neg-
ligible as discussed previously.

Replacingm?/(m2—s) by Q(s) in Eq. (10) yields I'(p
—my)=42 keV and withc=1 (the hidden symmetry
model with the additional assumption of a complete vector_ . . . . . .
meson dominance model far®— y7) in Eq. (11) this gives This expression will be used in the following analysis. For
['(p—my)=95 keV. The differences between these valuest=1, we havex =1.04%\, whereas the corresponding value
and those obtained previously are just due to ghéinite ~ for the one-loop ChPT9,11], assuming that the scale param-
width correction. These results show the importance of th@ter,uzsz), is A=1.053\, which is insignificantly larger.
presence of the contact term. While the present experimentgh terms ofx, with chiral symmetry broken but in the large
data forl'(p— my) are not settled, it is likely that the result N _|imit, one has
for the hidden symmetry model is favorésee below.

3 m
14—,

=m? = 2 = 2 E_:
G(s=m,, t=mZ, u=m;)=\=NX\ 3¢ 2

(22)

With chiral symmetry broken, the pions acquire a finite N m2_m§T mz—mi m2_m§T
but small mass, and Eg&l0)—(12) become, respectively, Gv™MIqs,t,u)= p2 + p2 + ”2 —C
3-c m’—s m—t  m’-u
A
G'™d(s,t,u)= §{Q(s)+Q(t)+Q(u)}, (19 (23

B. Vector meson model for pion form factor

The solution of the integral for the pion form factor with

A
GVMIYs,t,u)2= =——{Q(s)+ Q(t) + Q(u)—c}, (20
3-c : . .
the assumption of an elastic form factor is

and V(s)=Pr()Q(s) (24)
where()(s) is given by Eq.(16), P,(s) is a polynomial of
degreen in s with real coefficients, and,(0)=1. For a
given a set of stron§-wave 77 phase shifts, the solution of
the MO equation is not unique. One can multiply the solution
Q)(s) by a real polynomial to get a different set of solutions
with different asymptotic conditions. The low energy con-
straint enables us to fix at least some coefficients of the poly-
nomial.

Q(s)

G Meeqs,t,u) )\[ 14 — SH

v situ)== T

18 _ 2
3 3 Cmp

+[s—>t]+[s—>u]]. (22

Equations(19),(20),(21) do not, however, satisfy the elastic
unitarity relation, i.e., the projecté@lwave does not have the _ If One assume®,(s)=1, the square of the modulus g’f
phase of theP-wave 7 interactions below 1 GeV19] as the pion form factor at the mass is too small by about 30%

can be seen in Fig. 3 below. This result is not surprisingS€€ Fig- 2 and the rms radius of the pion is too small by
because the multiple scattering correction, which should 10%- Constraining the rms radius to be equal to Its experi-
be relevant for this problem, is not taken into account inMental value, we have to sg0] Pn(s)=1+0.15(s/my) or
these equations. The contact term model withl satisfies
the phase theorem better than the pure VMD model because
of the presence of the contact term significantly increases the
magnitude of the resonance term compared with the back-
ground terms from thé andu channels. This leads us to a The connection between this equation and the contact term
smaller correction using the following integral equation ap-was recently discussd@1]. The following integral equation

V(s)= (25

S
1+O.15—2)Q(s).
m

p

proach where the unitarity relation is explicitly built in.
Equationg10),(11),(12) can be considered as the lafgg
limit of QCD. This is true becaust ~N, and the function

for the processywr— m is more complicated because the
integral equation involves both right and left cuts on the real
axis and hence the ambiguity of the solution is not simply the
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AbsV Squared _ (s—mi)2 o o(z)dz
G(s,t,u)=\+ 5 75 -
40 ™ ami(z—m2)“(z—s—ie)
30 +[s—t]+[s—u] (26)
20 (for an explicit demonstration of this equation, see REf)),
where the symmetry point in the problem is st=u
10 =m?2, and\, is related to\, as will be discussed later. The
cev? s subtracted linear terms do not contribute because they are

0.2 0.4 0.6 0.8 1 1.2 proportional to 6—m?2)+ (t—m?2)+(u—m2)=0. One can
make a partial fraction of the dispersion integral to show that
one can equally well work with the once subtracted disper-
sion relation, which we shall use in the following:

FIG. 2. The square of the modulus of the functidfs) (vertical
axis) is given as a function of in Ge\? (dashed ling The square
of the modulus of the pion form factdrf(s) from Eq. (25) is also
shown(solid line). Experimental data are taken from R€f30,31].

G(s,t,u)=\+
polynomial ambiguity but is only related to it. It can be ob-
tained only by solving the integral equation numerically as
will be shown below.

(s—m2) (= ImG4(z)dz

T Jaml(z—m2)(z—s—ie)

+[s—t]

+[s—u]
=A(s)+A(t) +A(u), (27)

IV. INTEGRAL EQUATION APPROACH USING ELASTIC where ImG,(z) is the imaginary part of th®-wave ampli-
UNITARITY RELATION tude.
The assumption of the dominance of tRevave ampli-
tude made to get the integral equation can be experimentally
checked by measuring the absence of deviation from the

In this article, the procesgm— 7 is studied using the
dispersion relation and elastic unitarity for the lowest partial

wave. An integral equation of the type of the i L - :

A ; . . . sin 6 angular distribution given by Ed9). Should this as-
Muskhelishvilli-Omnes integral equatiofl2] is obtained. : ; -
The difference is that the integral equation to be treated hersumptlon be incorrect, one could try to treat the contribution

is much more complicated because of crossing symmetry; ngglﬁgeb; |82ienrgpsagg1a; \;\glle;mlglitt% éi%lon phenomenologi-
exact solution has been found. We shall get the solution of " "'« janote by3,(s) the lowestP hartial wave projec-
this integral equation by an iterative procedure, but with thetion of G(s.t,u) as gliven by Eq(8). The elastic unitarity
crucial property that the iterative solution for the lowest par- o ation iv’es’ e
tial wave satisfies the phase theorem at every step as requireo, 9
by unitarity [19]. As the solution of the MO equation is am-
biguous by a polynomial, we find a similar problem here.
But the ambiguity is not the same, i.e., a new solution canno\yvhere S is the P-
be obtained by multipying the old solution by a polynomial.
We start first by deriving the dispersion relation of the
single variables,t,u for ym— a7r; we then project out the
P-wave amplitude where the rescattering effect is importan
because of the presence of the low enepgyesonance at
0.77 GeV. The rescattering effect is supposed to be negligibl
for higher partial waves because there are no resonances be-

IMmG4(s)=G,(s)e ' sins(s) (28

wave 7 phase shift obtained from the
available experimental data, which show that it passes
through 90 ° at the mass as can be seen from Fig. 1. There
s no measurable inelastic effect below 1.2 GeV. Projecting

ut theP wave from Eq.(27) and interchanging the order of
gnegration, we have

low 1.5 GeV for the two pions irF, H, etc., waves. After Gy(s)=N+

_ s—mifoc Gy(z)e 19 sin5(z)d

solving the integral equation numerically, one should put the T JamZ (z—mi)(z—s—ie) ‘
results obtained into the form of the single variable disper-

sion relation. The crucial point is that the single variable ifw G.(2)e 9 sins(z)
dispersion relation for the scattering amplitude does not sat- 2m ) am2 1

isfy the phase theorem, but iBswave projection does.
The integral equation can be derived using the technique 1 [z—a(s)]?

of Roy’s equation forrm— 7 scatterind 22]. We begin by X b(s) |~ b(s)?

writing a twice subtracted dispersion relation 8(s,t,u) at

z—a(s)+b(s)‘
nz= a(s)—b(s)|

a fixedt. This dispersion relation can be shown to be valid in z—a(s) 4
general. Using the same technique as that used in obtaining > > ] (29
the Roy’s equation, namely, using the fixedispersion re- b(s) 3(z—m7)

lation, crossing symmetry, and keeping only #avave for _ o ) _ _
the partial wave expansion of the absorptive part, one arrive§he first derivative ofG,(s) at s=m;_ vanishes and its sec-
at ond derivative with respect te evaluated as=m? is
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d2G,(s) 12 (= ImG,(2)dz The solution of the integral equation E(1) is of the
=—_— —_—. (300 MO type[12]:
ds? | . S7lam? (z-m2)? _
) G{)(s)= 02 (s,m2) + T4~ D(s)+ (s mz)s_mi
The standard solution of the MO equation is ambiguous —* 3 T B T

by a polynomial, but the problem here is much more com- _ . ‘

plicated because of the symmetry of teg,u channels, » 0" Yz,m2)e@sins(2)T§ Y(2)dz

which leads to a much more complicated integral equation, j

and hence it does not have the same type of ambiguity. Equa-

tion (29) is a complicated integral equation. It is similar to, (33

but more complicated than, the Muskelishvili-Omnes type

[12], because the andu channel contributions are also ex- Where

pressed in terms of the unknown functi@n(s). It should be

noticed that the first term has a cut frorm to « and the 5(s,m2)=m,

second one has a cut from 0 tex. For s=4m? the argu- T PL(m2)Q(m2)

ment of the logarithm function in Eq29) never vanishes o

and hence this enables one to solve the integral equation ., this new functionf) is normalized to unity as= mi and

the following iteration scheme which converges very fast. P, (s) is a polynomial of thenth degree with real coeffi-
cients. In the following, as in Eq25), we take only the first

lterative solutions two terms in the polynomial and hence set

am? (z—m?)(z—s—ie)

(39

As remarked above, the integral equati@®) has both s
right and left cuts. In setting up the iterative scheme, it is Pn(s)=1+a—;,
important to keep in mind that the final solution should be m,
symmetric in thes,t,u variables as given by Eq27). Be- ) )
cause of this analytical structure, we can define an iteratioWherea is a parameter that is related to the contact term
procedure that consists of splitting E&9) into two separate defined previously. The second derivative of thevave am-

(35

equations: plitude, defined by the sum rule EQ0), depends sensitively
on the parametedt.

. N - s— me Equation(33) is not really a typical solution written down

G(l')(S)=§+TS N(s)+ for this type of integral equation. It is usually written in

terms of the “driving” termT{~Y)(z). This procedure is not
J'oo G{(2)e "D sin5(z) at all valid for the present situation; we must modify it in

X

dz (3D  order to get a final solution for the full amplitude that is
completely symmetric in ths,t,u variables. Equatiof33) is
written with this fact in mind. The first term on its right-hand
side (RHS represents the VMD in the channel with or
_ without a contact term, the second term is the corresponding
“ contribution from thet andu channels, and the third term is

) 2\ 3 . :
(i—-1) - = (i) —i8(2) oj
Ts 79 3 * 27 4m261 (z)e siné&(z) the rescattering due to the final state interaction irstblean-

™

am? (z—m2)(z—s—ie)

and

nel.
1 [z—a(s)]? z—a(s)+b(s)| At first sight one would think that the RHS of E(33)
X b 1- 2 In|—— b does not have the-wave phasé. This is not so, because we
(s) b(s) z—a(s)—h(s)| . / . €
first note that the last integral can be separated into a princi-
_ pal part integral and a delta-function contribution which is
z—a(s) 4 : ; - . . )
- >-1dz, (32 purely imaginary. Then combining this delta-function contri-
b(s)*  3(z—m3) bution with T§ ~1)(s) in Eq. (33), we have

wherei=1 andG{" is the value of the functiot®,(s) cal- , _

culated at theth step in the iteration procedure; the Born G{)(s)=0Q(s,m2)

term T'B_l(s) is calculated at thei (- 1)th step. An iteration

g)éilgtisngefmed as a numerical calculation of both these prm 0 Y(z,m2)e@ sins(2) T4~ V(2)dz
The Born term is real fos=0 and has a left cut in s for 4m? (z—mi)(z—s)

s<0. In writing Egs.(31),(32), care was taken to preserve (36)

the symmetry in thes,t,u variables for the function

F(s,t,u), which requires us to split the subtraction constantyhere P stands for the principal part integration. We have

N in Eg. (29) symmetrically into three equal pieces; one made the usual decompositidiiD for the partial wave am-
piece contributes to Eq31) and the other two to E(q32). plitude, which can be shown to be quite general and inde-

N — s—m?
§+T<E;‘1>(s)Rem—l(s,m'f,)]+ -
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pendent of any dynamical scheme:e®sings)  Whichis independent of. With this expression for the Born

=N(9)p(9)2(s,m2) where N(s) contains only the left-hand term, the iteration scheme can be sta}rted by calculating the
—1 = . ) solution of the integral equation as given by Eg3). The

cut, D~ 7(s)={}(s) contains only the right-hand cut, and pext step is to calculate the Born term by Eg2); there is

p(s)=+/(1—4m:/s). Equation (36) shows that indeed no arbitrariness at this step. The iteration scheme is contin-

G(l')(s) has the phasé. ued until convergence of the solution is obtained.

One arbitrarily defines the convergence of the iteration The number of iterations depends on the original choice
scheme at théth iteration step whenG{|/|G{ V)| differs  of the Born term i.e., how close it is to the final solution.
from 1 by less than 1% or so in the energy range from theEven for a not very good approximation f6f>) such as that
two-pion threshold to 1 GeMAlternatively, one can also given by Eq.(39), it is found that after one iteration one can
require that the ratigT|/| TS~ Y| be unity within an accu-  already reach a reasonable approximation for the solution of
racy of 1%) the integral equation.

Once the solution for the partial wave is obtained, one Convergence to the final solution far=0.3,0.5,0.7, with
should return to the calculation of the full amplitude. This a precision of the order of 1% or better, could be achieved
can be done by combining tﬁﬁgfl) Born term in Eq.(33)  without using the iteration scheme if one chose a good ex-
with higher uncorrected partial wavé®r rescatteringfrom  pression forT %(s). For this purpose, one can use instead the
thet andu channels to get the final solution: Born terms calculated from the following zero width contri-
bution of thet andu channels of Eq(11), which depends on
the strength of the contact term:

G<i>(s,t,u)=%({5(s,m3,)[1+3|<‘-1>(s)]}

31 N1+
H(sotH{(sou)), 37 Tg(s)zzf d cosg sir? ‘9(Ta)
. -1
where the function (1) denotes the multiple rescattering
correction: m—m2| [mi-mZ| 2«
X 5 5 - (40)
2 -1 2082 i i—1 m,—t mi—u | lta
10D (g)= S— mwfm O~ Hz,m;)e'?sind(z)Tg ~(z)dz
= 5 _ )
7 Jam? (z=m7)(z—s—ie) - where we have used the lardg relation
It is obvious thatG((s,t,u) does not have the phasef the . c 41
P-wave 7 scattering, but itd-wave projection does. This *T 3¢ (42)

is so because, projecting out the 1 partial wave from Eq.

R : i—1 i
(37), we arrive at Eq(33) W't.h TB (s) replaced byTg(s). We make use of this relation here to calculate the Born terms
Because of the assumed criterion for the convergence of the d also to et the relation betwerrand s
iteration scheme T *(s)=Tg(s), it is easily seen that and aiso to get the relation betweranda..

(i) . Equation(40) is obtained in the limit of of a narrovy
Gi (s) has the _phasé, using the .results of Eq33) and Eq. width. As discussed above, this limit is obtained when we let
(36). The remaining higher partial wavés-1 are all real

, : the number of colord,— . In this limit, as will be shown
because we have assumed that the strong final state interges ow, Eq. (37) becomes Eq(11) or Eq. (12). The pure
tions of the higher partial waves are negligible. The ﬁnalVMD ,modél corresponds ta=0 and for. mod.els with the
solution EQ.(37) is completely symmetric in ths,t,u vari- contact termc=1, e.g., the hidden symmetry moddl], a

ables. =1/2. (More precisely, the hidden symmetry model with no
contact term in the pseudoscalar mesons decaying into two
V. NUMERICAL SOLUTIONS gammas requires=1.) For the real situation wherd,=3
We shall solve our integral equation numerically for vari- there should be a substantial correction to this relation.
ous values ofr defined by Eq(35), corresponding to differ- For «=0, without an iteration of the integral equation,

ent values of the contact terms as discussed in(EQ. We ~ ON€ can get a precision only of the order of 5%. For other
examine the following cases=0,0.30,0.50,0.70. The itera- Values ofa, using Eq.(40) for the Born terms, and without
tion scheme can be done by first guessing a solution fof©ing through the iteration scheme, one can already achieve
Te(s) corresponding to a chosen value @fWe can take a & Precision of better than 1% using only E@1). Fora
rather arbitrary first solution for this function. For example, =0, after five iterations a precision of better than 1% is
for a givena we can take thé andu channel contribution to  ré@ched. For other values of=0.3,0.5,0.7 a precision of

the Born term as better than 1(_)3% is reached after only four iterations. These
numbers indicate that the rescattering effect is much more
. 31 Y mg_ quT mi_ mi important fora=0 and much less important for other values
TB(s)=Zf d cosé sir? 03 5 5 , of a.
-1 m,—t m,—u The slow convergence of the iteration schemeder0 is

(39) due to a large violation of the phase theorem at the zeroth
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degree Square Abs

140 |
120 ¢
100 |
80 |
60 |
40 |

20 ¢

GeV

FIG. 3. TheP-wave strongmm phase shift(vertical axig as a
function of the energy is shown by the solid line. The projected
P-wave amplitude phase of7’— 7" 7~ as given by the VMD
model without contact term, Eq19), is given by the long dashed
line; with the contact ternc=1, Eq.(20), by the short dashed line;
with the contact ternt=1, Eq.(21), by the medium dashed line.

order as shown in Fig. 3. For other cases the violation of the FIG. 4. Plot of the square of the absolute value of Freave
phase theorem is not so serious and even without the itergmplitude|G,(s)|2 in units of X2 as a function ofs in Ge\2 for
tion scheme one can already get an approximate solutioR=0.5 (solid line); a=0.0 (short dashed line a=0.3 (medium
accurate to better than 1% by directly solving the integraldashed ling «=0.7 (long dashed ling

equation as discussed above.

Instead of parametrizing our solution by the valuexofit . .
is more physigal to descrige the solution ;s a function of théhat the larger the values.@n‘ the higher are the maximum
width T'(p— ). This quantity is not unambiguous and will values of theP-wave amplitude. _
be defined in the following section. It is denoted Byp In Fig. 6 the modulus of the ratio@,(s)/€)(s) is plotted
—ary) using our definition while the corresponding partial against the energy squaredGe\?); this ratio indicates the
width using the usual Breit-Wigner parametrization is de-deviation from the Breit-Wigner form as given by the func-
noted byl'(p— 77), With the value of thep mass the same i, 5(3).
as in our definition, i.e.m;=0.593 GeV¥ and I'(p— ) For various values ofy, accurate valuegto better than
=0.156 GeV. There is a substantial difference for the valuesl%) of the modulus of thé®-wave amplitude from the two-
of I'(p— m7y) using these two definitions. In Tablell(p
—ay), '(p—7Y)pw, and the second derivative of the
P-wave amplitude as= me are given as functions of the
numerical value ofx.

For various values of, the square of the absolute value 1.5
of the P-wave amplitudeG,(s), in units of \?, is plotted
against the energy squarsdin Fig. 4 and Fig. 5. It is seen

Square Abs

TABLE I. Solution of theP-wave amplitude for theym— 7
integral equation as a function of the parameterThe second
column isI'(p— my) in keV according to the definition given in 1.3
the text. The third column i§'(p— 77y),, in keV using the Breit-
Wigner formula Eq.(45) evaluated at the maximum of the cross
section. The fourth column is the second derivatives ofRtweave

amplitude at the poins=m2 in GeV 2. 1.2
a F(p—=my) T(p—=7Ybow N 1d?Gy(s)/ds?(s=m3)

(keV) (keV) GeV 2 1.1
0.00 50.7 57.8 4.88
0.30 68.0 76.4 5.30

S

0.50 84.3 91.8 5.64 0.10.1250.150.175 0.2 0.2250.25
0.70 103 111 6.00

FIG. 5. Same as Fig. 4 but with 0.08 Ge¥s<0.25 Ge\f.
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Abs Abs

0.2 0.4 0.6 0.8 ™1 0.2 0.4 0.6 0.8 1 °
FIG. 6. Plot of the ratig3G,(s)/Q(s,m?)| in units of \ for FIG. 7. Plot of the absolute value of the functid(s) defined
various values otx. The curves are the same as in Fig. 4. by Eq.(43) in units of A as a function ok in GeV2. The curves are

the same as in Fig. 4.
pion threshold to 1 GeV can be obtained by using the modu-
lus of Q(s) divided the functionC(s) given in Table II: In Fig. 9, |G(s,t,u)|? with cos¢=0 and cog=0.75 are
plotted againss (in GeV?) for the special case=0.5. Fig-
_ N ures with other values af and cos are not shown because
G1(s)=Q(s,m2)C(s) 3 (42)  they are quite similar to Fig. 9. Therefore the higher partial
waves are completely negligible for energies below 1 GeV.
We are also interested in finding the corrections due to the
multiscattering effect in the VMD approximation to the func-  VI. COMPARISON WITH EXPERIMENTAL DATA AND
tion A(s) defined by Eq(27) and given by Eq(37): OTHER THEORETICAL WORK

Our calculation can be compared with experimental data

— O 2
As)= Q(s,m)J(s) 43 at low and high energy. At low energy, the only experimental
or data available are given by Ré6]. From Fig. 5, at an en-
r degrees
J(s)=§[1+3li’l(s)] (44)

. . . . 1
for the value ofi attained at the end of the iteration of the 50

integral equation. In Fig. 7 the modulus &€s) is plotted
against the energy squarsdn units of Ge\f. If there were 125
no corrections to the VMD model(s) would be unity. It is
seen that the corrections are most important for the case of 100
a=0.

In Fig. 8 the phase ofA(s) is also plotted against the 75
energy squared for various values ofr and compared with
the P-wave 7 phase shift.

50
TABLE Il. Relation between thé-wave amplitudeG,(s) and
Q(s,m?) as given by the functiol©(s) defined by Eq(42) in the 25
text.
a 1/C(s) 0 0.2 0.4 0.6 0.8 1 °
0.00 2.45%°—1.66%%+1.163+0.2813 FIG. 8. Plot of the phase of the functiok(s) defined by Eq.
0.30 0.808%+0.66%+ 0.3250 (43 as a function ofs in GeV?. The solid line represents the
0.50 —0.75%%+1.27&%+0.705%+ 0.3267 P-wave strongm7 phase shift; the dotted liney=0.5; the short
0.70 —1.0153+1.1832+0.89%+0.318 dashed line,a«=0.0; the medium dashed liney=0.3, the long

dashed linep=0.7.
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Square Abs obtained is denoted by(p— 7y) and is approximately 10%
7 lower than the value obtained by using the maximum ob-
servedy— 7 Cross section in combination with the Breit-
6 Wigner formula, Eq.(45), which is now denoted by'(p

— 1Y) pw (See Table)l
Using our method, we could even integrate the measured

> cross section on either side of tipemass by 0.1 GeV in
order to improve the experimental accuracy without chang-
4 ing its value by more than 1%. This precision would not be
possible if one did the calculation with the mass as the
3 value of the maximum cross section.
The present experimental results are not consistent with
2 each other. The more recently published experimental results
by Caparoet al. gave the value forl'(p— 7y)=81+4
1 +4 keV[23], whereas earlier results by Hustehal. gave a

lower value[24]. These two experiments were Primakoff-
like experiments using a high energy charged pion beam on a
0.2 0.4 0.6 0.8 1 ° heavy target. The experimental result frehe™ reaction
o gives a higher value for thp— 7y width [26] but has a
FIG. 9. Square of the modulus @(s,t,u) in units of A% with large error.

cos#=0 (long dashed ling and coy)=0.7 (short dashed lineand A more recent unpublished result using photoproduction
the square of the modqlus of t.rRewave amplitudeG,(s) (solid of a pair of pions off a nucleon target yield¥ p— 7)pw
line) for «=0.5 as functions oéin GeV?. =96+ 12 keV [25]. Unlike the two previous Primakoff ex-

periments, this experiment might have some difficulties in
ergy s=0.16 GeV, corresponding to the average energyisolating the data corresponding to the one-pion exchange
measured in Ref5] we have, fora=0.5,|G;(s)|=|G(s,t diagram from the background effect; one must also take into
=u)|=1.15\, which is about one standard deviation smalleraccount the fact that the exchanged pion is off its mass shell.
than the measured value (1:29.09+0.05)\. It is clearly Because of the lack of experimental information on the
important to improve the precision of this experiment. second derivative of th@-wave amplitude as=0 or the

At higher energy, the experimental cross sectionyar  parameter (see Table), we cannot predict the solution of

—rar is usually analyzed in terms of the Breit-Wigner for- the integral equation to get tH& p— ) width.

mula: Corresponding to a naive pure VMD model without a
contact term, from Table I, our calculation with= 0 yields
do  24ms m(p—2mT(p—my) a width of I'(p—my)=50.7keV or I'(p—7y)pw
ds (s— mi)z (mi—s)%mifﬁ(s) . (45 =57.8 keV, whereas, corresponding to the hidden symmetry

model withc=1, our calculation witha=0.5 yieldsT'(p

This formula is usually not accurate because it either ne—_>777/):84'3 kev or [(p—my)pw=918 keV. With «

glects the contribution of the part of the amplitude from thezo'5 the value forl (p— my)p, is Somewhat smaller than

t and u channels or assumes that the cross section can t’;he value of 96 keV obtained by Hannah using the Pade

i . o . Ifverse amplitude method for the ChPT two-loop amplitude,
fitted with a Brelt-ngner form, which may not be true. Fur- which was calculated numericall{1]. For this special value
thermore, the maximum of the modulus of tRevave am-

) . ; o ., of @, one would also recover the main result of the hidden
plitude is shifted significantly toward lower energy, which _ —
complicates analysis of the experimental data using4). ~ Symmetry model withc=1. The low energy parametefs

The result of our calculation shows that, at the maximumand D, corresponding to the first and second derivatives of
of the absolute value of the-wave amplitude, the phase of the functionA(s), Eq. (43), defined and evaluated by Han-
the amplitude is not 90°. The only method that we findnah[11] are in agreement to an accuracy of 2% with those
acceptable is to define themass as the value sfwhen the  from our integral equation approach. The difference between
phase of the functiof), which is the same as the experimen- this work and that of Hannah is presumably due to the inter-
tal P-wave 7 phase shift, passes through 90 °. Its width ispretation of Eq(45), the treatment of the multiple scattering
proportional to the inverse of the derivative with respecs to €ffects, and also the interpretation of the contact term. Han-
of cots ats=m?: nah’s work shows the importance of resummation of the per-

g turbation series by the inverse amplitude or Pauhod.

d There is a similar treatment of this problem by Holstein
T = d—scot6(5)|5=m2. (46)  [10]. The Holstein solution was obtained by taking the prod-
e ’ uct of three functions:
With this definition thep width as given by Eq(16) is 0.156 GH(s,t,u)=AP,(s,L,u)Q(s) Q) Q(u) (47)

GeV. One can then use tliRewave cross section at= mi to
calculate the widthl'(p— y) using Eq.(45). The value whereP,(s,t,u) is a polynomial ins,t,u constructed in such
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a way that this equation has the same low energy limit as that 2 -
given by ChPT. The merit of this equation is that the phase - -
theorem is explicitly obeyed as can be seen by projecting out 1.g _--7

the P wave from this equation. But this equation is not right -

because all higher partial waves suchFadH, etc., have the 1.6 -7

p resonance or they all have the phase of Bh@ave phase e

shift which is not correct. The singularity associated with the 1 4 //

multiple scattering effects that are present in our integral L,/

equation approach is not contained in E4j7). All possible 1.2 17

solutions that can be written in terms of the product of three

functions ins,t,u variables will have this problem. An ex- ~ _ffoc--zo-mmmomommmommomoomoomm oo oo

ception is the problem involving three hadrons with two light 0.2 0.4 0.6 0.8 1
particles having no interactions between them, but they in- FIG. 10. Plot of the absolute value &fs) (vertical axig defined

teract with an infinitely heavy target. by Eq.(43) in units offvss(GeVz) for =0 for various values of

Holstein's solution yleIQS a pomparablg value f.B(p the p width. The solid curve represents,=0.156 GeV, the short
_nm/_)pw as does our solution with=0.5. This re;ult IS N0t jached curvel.—0.039 GeV, and the long dashed curVe,
surprising because the value of the second derivative of his g gos4 Gev. i

solution ats=m? is also comparable with ours. His solution

can be fixed by projecting out tHewave imaginary part and ) , ,
putting it in Eq.(26) to provide the necessary corrections. known, the maximum cross section for this process cannot

It should be reemphasized that our result is not in the’e pr_edigted wi_th reliability. The solution of the integral_
product form as in Eq(47) but is a sum of three identical €quation is ambiguous and depends on the second derivative

functions with interchange of the,t,u variables[Eq. (26)  Of the P-wave amplitude as=m?Z.. This problem is similar
and Eq.(37)]. It is a direct consequence of the fixedlis-  to the problem of the contact term in the usual VMD model.

persion relation, using crossing symmetry and neglecting the If the ambiguity of the solution of the integral equation
contribution from higher partial waves at low energy in thecan be interpreted as the imperfection of the elastic unitarity

absorptive part. relation in describing low energy phenomena, then one must
be satisfied with a precision of the order of 15% in amplitude
VII. IMPORTANCE OF THE MULTIPLE SCATTERING for the pion form factor caIcuIatio[A]. This inadequacy can
CORRECTION AS A FUNCTION OF THE p then be removed using knowledge of the pion rms raiis
WIDTH For the ym— 7o calculation, this inadequacy becomes

more serious because of the existence of singularities asso-
ciated with thet and u channels. Furthermore, the corre-
gsponding first derivative of th®-wave amplitude vanishes
because of the symmetry of the problem, and hence we can
gnly use knowledge of the second derivativesatmfr to

Our formulation of the problemy7— 7 is quite useful
in understanding the importance of the multiple scatterin
effects as a function of the width. We have previouly stated
that in the largeN, limit the multiple scattering effects
should vanish and we should recover the VMD models a N o . .
given by Eqs(10)—(12). In order to see that this statement is improve the elgsnc unitarity relation. This last parameter
correct, it is sufficient to study the correction factds) cannot be pr_eC|ser measured and hence we cannot predict
defined by Eq(43) as a function of the width. It is suffi- | (p—7y) with certainty. .
cient to study this question for the case when 0. In Fig. We show in this article that there is a one-to-one corre-
10, the modulus of the functiod(s) is plotted against the spondence between the contact term in the VMD model and
energy squared when thewidth is increased or decreased the ambiguity associated with the parameten our integral
by a factor of 4 wherf _ is changed by a factor of 2. This can eduation approach. This parameter plays the role of the sec-
be seen from examining the definition of the funct@gs),  ond derivative of theP-wave amplitude as=m? .

Eqg. (16). The result is that the multiple scattering effect in- Note added in proof.The electromagnetic correction
creases as the width increases, and decreases as thepthe for this process was recently carried out by LI. Ametler,
width decreases. It is easy to see that for a zero width resav. Knecht, and P. TalaveréRef. [32]). These authors point
nance the correction factd(s) is unity. out that the discrepancy at low energy between the theory

The result of this section also provides some argumentand experiment disappears as a consequence of this correc-
for neglect of the multiple scattering effect in the study oftjon.

(7y|37) and(3w|7y) with the 37 resonating as the state
because of the extremely small width of this resondi2de.
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