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Study of gp\pp below 1 GeV using an integral equation approach
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The scattering ofgp→pp is studied using the axial anomaly, elastic unitarity, analyticity, and crossing
symmetry. Using the technique to derive Roy’s equation, an integral equation for theP-wave amplitude is
obtained in terms of the strongP-wave pion-pion phase shifts. Its solution is obtained numerically by an
iteration procedure using as the starting point the solution of an integral equation of Muskelishvilli-Omnes
type. It is, however, ambiguous and depends sensitively on the second derivative of theP-wave amplitude at
s5mp

2 which cannot be directly measured.
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I. INTRODUCTION

One of the fundamental calculations in particle theory
the p0→gg decay rate@1#. It is a combination of partially
conserved axial vector current and the short distance be
ior of quantum chromodynamics~QCD!:

A~p0→gg!5 iF ggemnstem* knes* kt8 ~1!

with

Fgg5
e2Nc

12p2f p

50.025 GeV21, ~2!

where e is the electric charge,f p50.0924 GeV, andNc
53 is the number of colors in QCD. This calculation is va
in a world wherep0 is massless. Some corrections have
be made in order to take into account the finite value of
pion mass. It turns out that the massless pion anomaly
mula is in very good agreement with the pion lifetime da
@2#, implying that the correction due to the physical pio
mass in Eq.~2! is very small.

Another axial anomaly result is the processgp→pp or
its analytical continuationg→3p @3#. This last process re
quires more corrections because, for practical considerati
measurements are done at an energy far from the chiral
where the anomaly formula is applicable. Furthermore,
analytical continuation from one process to the other i
delicate procedure due to the presence of a complex si
larity, which is absent in the former reaction. The calculat
of the processgp→pp is in itself interesting because o
future experiments being proposed at various accelerato
cilities and also its important role in the calculation ofp0

→gg* @4#.
The gp→pp amplitude is given by

A„g~k!p0~p0!→p1~p1!p2~p2!…

5 i emnstemp0np1sp2tG~s,t,u! ~3!
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wheres, t, andu are the kinematical variables for this pro
cess and will be defined below. In the chiral limit~the zero
limit of the pion four-momenta!, the matrix element is given
by the anomaly equation

G~0,0,0![l5
e

4p2f p
3

59.70 GeV23 ~4!

where the zero in the argument ofG(0,0,0) refers to the
chiral limit of the massless pions; the number of colorsNc is
equal to 3.

Experimentally,l is measured at an average photon pi
energy of 0.4 GeV and, assuming that there is no momen
dependence inG(s,t,u), it is equal to@5#

lexpt512.960.960.5 GeV23. ~5!

The agreement between experiment and theory is not g
but certainly corrections will have to be made because m
surements made in this experiment are far from the ch
symmetry limit.

The calculations of this process are usually done wit
vector meson dominance~VMD ! models @6–8#. Recently,
this process was discussed within the framework of ch
perturbation theory~ChPT! to one loop@9# and also with a
combination of ChPT and VMD@10# and the unitarization of
the ChPT two-loop amplitude@11#.

The purpose of this paper is to investigate the scatte
of gp0→p1p2 using the dispersion relation, elastic unita
ity, and knowledge of theP-wave pion-pion phase shifts. An
integral equation is obtained and is similar to t
Muskelishvilli-Omnes~MO! integral equation used in th
pion form factor calculation@12#. The integral equation ob
tained here is, however, much more complicated due to
symmetry of the problem. Its solution can only be obtain
by a numerical method.

The pion form factor calculation, using the MO integr
equation approach, yields a pion radius too low by 10% a
a modulus of the pion form factor at ther resonance also too
low by 15%. This is due to the assumption of the elas
unitarity relation which is valid only in the low energy regio
©2002 The American Physical Society04-1
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below 1.2 GeV but cannot be true at and above
r8 (1.5 GeV) region. In order to remove this discrepan
one has to use also, as input, the pion rms radius and h
one has either to make an extra subtraction in the disper
relation or to make use of the polynomial ambiguity of t
solution of the MO equation. One would then get not on
the correct value of the absolute value of the pion form fac
at ther mass~i.e., ther leptonic width!, but also complete
agreement with the pion form factor below 1 GeV@4#. The
phases of the form factor are of course the experime
P-wavepp phase shifts due to the solution of the MO equ
tion.

We also face the same problem in the calculation of
scatteringgp0→p1p2. The problem could, however, b
more serious here than in the pion form factor calculat
because of the existence of thet and u channels. Not only
does the first derivative of the dominantP-wave amplitude
vanish at the energy squareds5mp

2 , but its second deriva
tive at this energy is not accessible to experiments becaus
the lack of experimental precision.

A further complication is because of the ambiguity of t
solution of the integral equation obtained here due to
symmetry of the problem. It is related to but not purely of t
polynomial type. For this reason we cannot make a com
rable prediction of thegp0→p1p2 cross section at ther
mass or theG(r→pg) width. The measurement of thi
width could be used to make a prediction of the energy
pendence ofgp0→p1p2 away from ther mass and in
particular in the low energy region where the the first m
surement ofl, Eq. ~5!, was made.

II. KINEMATICS AND PARTIAL WAVE PROJECTION

The kinematics of this process are defined ass5(k
1p0)2, t5(p12p0)2, and u5(p22p0)2. Because all par-
ticles involved are on shell, one hass1t1u53mp

2 . In the
center of mass system, in terms of the scattering angleu, we
have

t5
3mp

2 2s

2
1

1

2
~s2mp

2 !A124mp
2 /s cosu,

u5
3mp

2 2s

2
2

1

2
~s2mp

2 !A124mp
2 /s cosu. ~6!

The partial wave expansion forG(s,t,u) is given as follows
@11,13#:

G~s,t,u!5 (
odd l

Gl~s!Pl8~cosu! ~7!

whereu is the scattering angle andPl8 is the first derivative
of the Legendre polynomial. Hence the lowest partial wa
is

G1~s!5
3

8pE dV sin2 uG~s,t,u!. ~8!
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In terms of the functionG3p(s,t,u) the differential cross
section for the processgp0→p1p2 is

ds

d cosu
5

1

1024p
~s2mp

2 !
~s24mp

2 !3/2

s1/2
sin2 uuG~s,t,u!u2.

~9!

III. VECTOR MESON DOMINANCE AND PION FORM
FACTOR

Because our integral equation solution is a more soph
cated and precise approach to the vector meson domin
models@14,15#, where unitarity and the dispersion relatio
are extensively used, it cannot avoid the same problems
are present in these models; namely, the solution can
uniquely obtained only when the asymptotic behavior of
solution is specified. It is thus useful to review briefly th
VMD models and calculations of the pion form factor wi
and without introducing the contact term.

A. Vector meson dominance models for thegp0\p¿pÀ

process

Let us consider the VMD models without and with th
contact terms for thegp0→p1p2 process as previously
discussed in the literature@6,7#. Without the contact term, the
VMD model for thegp0→p1p2 amplitude is

Gvmd~s,t,u!5
l

3 S mr
2

mr
22s

1
mr

2

mr
22t

1
mr

2

mr
22u

D ~10!

wheres,t,u are the invariant kinematics andl is defined by
Eq. ~4!. With a contact term, it can be written as

Gvmdc~s,t,u!5
l

32c H mr
2

mr
22s

1
mr

2

mr
22t

1
mr

2

mr
22u

2cJ
~11!

wherec is proportional to the strength of the contact ter
Equation~11! can be rearranged to give

Gvmdcc~s,t,u!5
l

3 H F mr
2

mr
22s

S 11
c

32c

s

mr
2D G

1@s→t#1@s→u#J . ~12!

In Eq. ~10!, the gp0→p1p2 amplitude vanishes ass,t,u
→` while those in Eqs.~11! and~12! do not vanish becaus
of the presence of the contact term. We have introduced p
nomenologically the contact term c in the scatteringgp0

→p1p2 without considering how it influences the VMD
for the corresponding processP→gg. Assuming complete
VMD for P→gg, one has c51 in order that the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin~KSRF! re-
lation @17# remains valid@6,7#.
4-2
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The strength of the contact term also influences the va
of the second derivative of theP-wave amplitude ats5mp

2 .
Expanding Eq.~11! in a power series ofs,t,u,

Gvmdc~s,t,u!5lF11
3

32c

mp
2

mr
2

1
1

32c

s21t21u2

mr
4

1•••G ,

~13!

the P-wave projection of this equation is

G1~s!5lF11
3

32c

mp
2

mr
2

1
6

5~32c!

~s2mp
2 !2

mr
4

1•••G
~14!

where the pion mass is introduced by hand. One has fin

d2G1~s!

ds2 U
s5m

p
2

5
12

5~32c!

1

mr
4
l. ~15!

Instead of characterizing the contact term by the infin
energy behavior of the matrix element, we can specify
presence by evaluating its second derivative for theP wave
at s5mp

2 . For pure VMD, c50, it is equal to
(12/15)l(mr

24) and for the hidden symmetry model@7#, c
51, it is (6/5)l(mr

24).
e
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Equation~10! yields a decay widthG(r→pg)536 keV
which is too small compared with the experimental valu
Equation ~11! for c51 yields a decay widthG(r→pg)
581 keV in much better agreement with the data~see be-
low!. The experimental value of therpp coupling or the
KSRF relation@17# for therpp coupling is used to calculate
these widths.

One can improve these equations by making the ve
mesonr unstable using the self-energy correction for ther
propagator@16# and the KSRF relation@17#. This same result
can also be obtained using the inverse amplitude for the v
tor form factorwithout assuming the KSRF relation. Ther
width obeys the KSRF relation as a consequence of
implementation of the unitarity relation@18#. The factor
mr

2/(mr
22s) is then replaced by a functionV(s) which is

normalized to unity ats50 and is defined as follows:

V~s!5
1

12s/sR2~1/96p2f p
2 !$~s24mp

2 !Hpp~s!12s/3%

~16!

where f p50.093 GeV, andsR is related to ther mass
squaredmr

250.593 GeV2 by requiring that the real part o
the denominator of Eq.~16! vanish at ther mass;Hpp(s) is
a well-known integral over the phase space factor:
Hpp~s!55
222As24mp

2

s
ln

As1As24mp
2

2mp
1 ipAs24mp

2

s
, s>4mp

2 ,

222A4mp
2 2s

s
arctanA s

s24mp
2
, 0<s<4mp

2 ,

222As24mp
2

s
ln
A4mp

2 2s1A2s

2mp
, s<0.

~17!
n

Let us call the phase ofV(s)d. ThenV(s) has the following
phase representation:

V~s!5expF s

pE4mp
2

` d~z!dz

z~z2s2 i e! G . ~18!

The phased is exactly the elasticP-wavepp phase shift as
can be seen from Fig. 1. Alternatively, one can use the
perimental phase shift to calculate the functionV(s) but the
expression given above is most convenient.

Other functionsV(s) normalized to unity ats5s0 can be
expressed in terms of the functionV(s) by the simple rela-
tion V(s,s0)5V(s)/V(s0).
x-

FIG. 1. The phase of the functionV(s) in degrees~vertical axis!
is given as a function ofs (GeV2). The experimental data are take
from Refs.@27–29#.
4-3
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TRAN N. TRUONG PHYSICAL REVIEW D 65 056004
V(s) as given by Eq.~16! has a ghost pole ats
522.53105 GeV2 which is far away from the physical re
gion relevant to our calculation and hence is irrelevant
our low energy calculation.

The functionV(s) defined here is the same as the inve
of theD function given by Ref.@10# except for the definition
of the r mass, which is approximate there.

In both approaches, the chiral symmetry limit should
defined as the limit ofs,t,u tending to zero first and the
mp

2 →0. This order should be respected because the bra
point at s,t,u54mp

2 also goes to zero in the chiral limit

Using this definition we could have calculatedl̄ in terms of
l without using the largeNc limit, but the difference is neg-
ligible as discussed previously.

Replacingmr
2/(mr

22s) by V(s) in Eq. ~10! yields G(r
→pg)542 keV and with c51 ~the hidden symmetry
model with the additional assumption of a complete vec
meson dominance model forp0→gg) in Eq. ~11! this gives
G(r→pg)595 keV. The differences between these valu
and those obtained previously are just due to ther finite
width correction. These results show the importance of
presence of the contact term. While the present experime
data forG(r→pg) are not settled, it is likely that the resu
for the hidden symmetry model is favored~see below!.

With chiral symmetry broken, the pions acquire a fin
but small mass, and Eqs.~10!–~12! become, respectively,

Gvmd~s,t,u!5
l

3
$V~s!1V~ t !1V~u!%, ~19!

Gvmdc~s,t,u!25
l

32c
$V~s!1V~ t !1V~u!2c%, ~20!

and

Gvmdcc~s,t,u!5
l

3 H FV~s!S 11
c

32c

s

mr
2D G

1@s→t#1@s→u#J . ~21!

Equations~19!,~20!,~21! do not, however, satisfy the elast
unitarity relation, i.e., the projectedP wave does not have th
phase of theP-wave pp interactions below 1 GeV@19# as
can be seen in Fig. 3 below. This result is not surpris
because the multiplepp scattering correction, which shoul
be relevant for this problem, is not taken into account
these equations. The contact term model withc51 satisfies
the phase theorem better than the pure VMD model beca
of the presence of the contact term significantly increases
magnitude of the resonance term compared with the ba
ground terms from thet and u channels. This leads us to
smaller correction using the following integral equation a
proach where the unitarity relation is explicitly built in.

Equations~10!,~11!,~12! can be considered as the largeNc

limit of QCD. This is true becausef p
2 ;Nc and the function
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V(s) defined by Eq.~16! becomes a simple pole in this limit
We shall elaborate this fact later in this article.

In the following, we shall define the functionG(s,t,u) at
the symmetry points5t5u5mp

2 while the chiral symmetry
limit of this function is the chiral anomalyl given by Eq.
~4!. How are they related to each other? There is no cl
answer to this problem. Chiral perturbation theory could
used. The answer depends, however, on one paramete
scale parameter@9,11#. We prefer to look at the largeNc limit
to get their relation.

Setting s5t5u50 in the chiral limit in Eqs.~10!,~11!,
we have

G~s5mp
2 , t5mp

2 , u5mp
2 ![l̄5lF11

3

32c

mp
2

mr
2G .

~22!

This expression will be used in the following analysis. F
c51, we havel̄51.049l, whereas the corresponding valu
for the one-loop ChPT@9,11#, assuming that the scale param
eter m25mr

2 , is l̄51.053l, which is insignificantly larger.

In terms ofl̄, with chiral symmetry broken but in the larg
Nc limit, one has

Gvmdc~s,t,u!5
l̄

32c H mr
22mp

2

mr
22s

1
mr

22mp
2

mr
22t

1
mr

22mp
2

mr
22u

2cJ .

~23!

B. Vector meson model for pion form factor

The solution of the integral for the pion form factor wit
the assumption of an elastic form factor is

V~s!5Pn~s!V~s! ~24!

whereV(s) is given by Eq.~16!, Pn(s) is a polynomial of
degreen in s with real coefficients, andPn(0)51. For a
given a set of strongP-wavepp phase shifts, the solution o
the MO equation is not unique. One can multiply the soluti
V(s) by a real polynomial to get a different set of solutio
with different asymptotic conditions. The low energy co
straint enables us to fix at least some coefficients of the p
nomial.

If one assumesPn(s)51, the square of the modulus o
the pion form factor at ther mass is too small by about 30%
~see Fig. 2!, and the rms radius of the pion is too small b
10%. Constraining the rms radius to be equal to its exp
mental value, we have to set@20# Pn(s)5110.15(s/mr

2) or

V~s!5S 110.15
s

mr
2D V~s!. ~25!

The connection between this equation and the contact t
was recently discussed@21#. The following integral equation
for the processgp→pp is more complicated because th
integral equation involves both right and left cuts on the r
axis and hence the ambiguity of the solution is not simply
4-4
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STUDY OF gp→pp BELOW 1 GeV USING AN . . . PHYSICAL REVIEW D 65 056004
polynomial ambiguity but is only related to it. It can be o
tained only by solving the integral equation numerically
will be shown below.

IV. INTEGRAL EQUATION APPROACH USING ELASTIC
UNITARITY RELATION

In this article, the processgp→pp is studied using the
dispersion relation and elastic unitarity for the lowest par
wave. An integral equation of the type of th
Muskhelishvilli-Omnes integral equation@12# is obtained.
The difference is that the integral equation to be treated h
is much more complicated because of crossing symmetry
exact solution has been found. We shall get the solution
this integral equation by an iterative procedure, but with
crucial property that the iterative solution for the lowest p
tial wave satisfies the phase theorem at every step as req
by unitarity @19#. As the solution of the MO equation is am
biguous by a polynomial, we find a similar problem he
But the ambiguity is not the same, i.e., a new solution can
be obtained by multipying the old solution by a polynomi

We start first by deriving the dispersion relation of t
single variabless,t,u for gp→pp; we then project out the
P-wave amplitude where the rescattering effect is import
because of the presence of the low energyr resonance a
0.77 GeV. The rescattering effect is supposed to be neglig
for higher partial waves because there are no resonance
low 1.5 GeV for the two pions inF, H, etc., waves. After
solving the integral equation numerically, one should put
results obtained into the form of the single variable disp
sion relation. The crucial point is that the single variab
dispersion relation for the scattering amplitude does not
isfy the phase theorem, but itsP-wave projection does.

The integral equation can be derived using the techni
of Roy’s equation forpp→pp scattering@22#. We begin by
writing a twice subtracted dispersion relation forG(s,t,u) at
a fixedt. This dispersion relation can be shown to be valid
general. Using the same technique as that used in obtai
the Roy’s equation, namely, using the fixedt dispersion re-
lation, crossing symmetry, and keeping only theP wave for
the partial wave expansion of the absorptive part, one arr
at

FIG. 2. The square of the modulus of the functionV(s) ~vertical
axis! is given as a function ofs in GeV2 ~dashed line!. The square
of the modulus of the pion form factorV(s) from Eq. ~25! is also
shown~solid line!. Experimental data are taken from Refs.@30,31#.
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G~s,t,u!5l̄1F ~s2mp
2 !2

p E
4mp

2

` s~z!dz

~z2mp
2 !2~z2s2 i e!

G
1@s↔t#1@s↔u# ~26!

~for an explicit demonstration of this equation, see Ref.@11#!,
where the symmetry point in the problem is ats5t5u

5mp
2 , andl̄, is related tol, as will be discussed later. Th

subtracted linear terms do not contribute because they
proportional to (s2mp

2 )1(t2mp
2 )1(u2mp

2 )50. One can
make a partial fraction of the dispersion integral to show t
one can equally well work with the once subtracted disp
sion relation, which we shall use in the following:

G~s,t,u!5l̄1F ~s2mp
2 !

p E
4mp

2

` Im G1~z!dz

~z2mp
2 !~z2s2 i e!

G1@s↔t#

1@s↔u#

5A~s!1A~ t !1A~u!, ~27!

where ImG1(z) is the imaginary part of theP-wave ampli-
tude.

The assumption of the dominance of theP-wave ampli-
tude made to get the integral equation can be experimen
checked by measuring the absence of deviation from
sin2 u angular distribution given by Eq.~9!. Should this as-
sumption be incorrect, one could try to treat the contribut
of the higher partial waves in ther region phenomenologi-
cally by using some real amplitudes@11#.

Let us denote byG1(s) the lowestP partial wave projec-
tion of G(s,t,u) as given by Eq.~8!. The elastic unitarity
relation gives

Im G1~s!5G1~s!e2 id(s) sind~s! ~28!

where d is the P-wave pp phase shift obtained from th
available experimental data, which show that it pas
through 90 ° at ther mass as can be seen from Fig. 1. The
is no measurable inelastic effect below 1.2 GeV. Project
out theP wave from Eq.~27! and interchanging the order o
integration, we have

G1~s!5l̄1
s2mp

2

p E
4mp

2

` G1~z!e2 id(z) sind~z!

~z2mp
2 !~z2s2 i e!

dz

1
3

2pE4mp
2

`

G1~z!e2 id(z) sind~z!

3H 1

b~s! S 12
@z2a~s!#2

b~s!2 D lnUz2a~s!1b~s!

z2a~s!2b~s!
U

12
z2a~s!

b~s!2
2

4

3~z2mp
2 !
J dz. ~29!

The first derivative ofG1(s) at s5mp
2 vanishes and its sec

ond derivative with respect tos evaluated ats5mp
2 is
4-5
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TRAN N. TRUONG PHYSICAL REVIEW D 65 056004
d2G1~s!

ds2 U
s5m

p
2

5
12

5pE4mp
2

` Im G1~z!dz

~z2mp
2 !3

. ~30!

The standard solution of the MO equation is ambiguo
by a polynomial, but the problem here is much more co
plicated because of the symmetry of thes,t,u channels,
which leads to a much more complicated integral equat
and hence it does not have the same type of ambiguity. E
tion ~29! is a complicated integral equation. It is similar t
but more complicated than, the Muskelishvili-Omnes ty
@12#, because thet andu channel contributions are also e
pressed in terms of the unknown functionG1(s). It should be
noticed that the first term has a cut from 4mp

2 to ` and the
second one has a cut from 0 to2`. For s>4mp

2 the argu-
ment of the logarithm function in Eq.~29! never vanishes
and hence this enables one to solve the integral equatio
the following iteration scheme which converges very fast

Iterative solutions

As remarked above, the integral equation~29! has both
right and left cuts. In setting up the iterative scheme, it
important to keep in mind that the final solution should
symmetric in thes,t,u variables as given by Eq.~27!. Be-
cause of this analytical structure, we can define an itera
procedure that consists of splitting Eq.~29! into two separate
equations:

G1
( i )~s!5

l̄

3
1TB

( i 21)~s!1
s2mp

2

p

3E
4mp

2

` G1
( i )~z!e2 id(z) sind~z!

~z2mp
2 !~z2s2 i e!

dz ~31!

and

TB
( i 21)~s!5

2l̄

3
1

3

2pE4mp
2

`

G1
( i )~z!e2 id(z) sind~z!

3H 1

b~s! S 12
@z2a~s!#2

b~s!2 D lnUz2a~s!1b~s!

z2a~s!2b~s!
U

12
z2a~s!

b~s!2
2

4

3~z2mp
2 !
J dz, ~32!

wherei>1 andG1
( i ) is the value of the functionG1(s) cal-

culated at thei th step in the iteration procedure; the Bo
term TB

i 21(s) is calculated at the (i 21)th step. An iteration
cycle is defined as a numerical calculation of both th
equations.

The Born term is real fors>0 and has a left cut in s fo
s,0. In writing Eqs.~31!,~32!, care was taken to preserv
the symmetry in thes,t,u variables for the function
F(s,t,u), which requires us to split the subtraction consta
l̄ in Eq. ~29! symmetrically into three equal pieces; on
piece contributes to Eq.~31! and the other two to Eq.~32!.
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The solution of the integral equation Eq.~31! is of the
MO type @12#:

G1
( i )~s!5

l̄

3
V̄~s,mp

2 !1TB
( i 21)~s!1V̄~s,mp

2 !
s2mp

2

p

3E
4mp

2

` V̄21~z,mp
2 !eid(z) sind~z!TB

( i 21)~z!dz

~z2mp
2 !~z2s2 i e!

~33!

where

V̄~s,mp
2 !5

Pn~s!V~s!

Pn~mp
2 !V~mp

2 !
, ~34!

i.e., this new functionV̄ is normalized to unity ats5mp
2 and

Pn(s) is a polynomial of thenth degree with real coeffi-
cients. In the following, as in Eq.~25!, we take only the first
two terms in the polynomial and hence set

Pn~s!511a
s

mr
2

, ~35!

wherea is a parameter that is related to the contact termc
defined previously. The second derivative of theP-wave am-
plitude, defined by the sum rule Eq.~30!, depends sensitively
on the parametera.

Equation~33! is not really a typical solution written down
for this type of integral equation. It is usually written i
terms of the ‘‘driving’’ termTB

( i 21)(z). This procedure is not
at all valid for the present situation; we must modify it
order to get a final solution for the full amplitude that
completely symmetric in thes,t,u variables. Equation~33! is
written with this fact in mind. The first term on its right-han
side ~RHS! represents the VMD in thes channel with or
without a contact term, the second term is the correspond
contribution from thet andu channels, and the third term i
the rescattering due to the final state interaction in thes chan-
nel.

At first sight one would think that the RHS of Eq.~33!
does not have theP-wave phased. This is not so, because w
first note that the last integral can be separated into a pri
pal part integral and a delta-function contribution which
purely imaginary. Then combining this delta-function cont
bution with TB

( i 21)(s) in Eq. ~33!, we have

G1
( i )~s!5V̄~s,mp

2 !H l̄

3
1TB

( i 21)~s!Re@V̄21~s,mp
2 !#1

s2mp
2

p

3PE
4mp

2

` V̄21~z,mp
2 !eid(z) sind~z!TB

( i 21)~z!dz

~z2mp
2 !~z2s!

J ,

~36!

where P stands for the principal part integration. We ha
made the usual decompositionN/D for the partial wave am-
plitude, which can be shown to be quite general and in
4-6
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pendent of any dynamical scheme:eid sind(s)

5N(s)r(s)V̄(s,mp
2) where N(s) contains only the left-hand

cut, D21(s)5V̄(s) contains only the right-hand cut, an
r(s)5A(124mp

2 /s). Equation ~36! shows that indeed
G1

( i )(s) has the phased.
One arbitrarily defines the convergence of the iterat

scheme at thei th iteration step whenuG1
( i )u/uG1

( i 21)u differs
from 1 by less than 1% or so in the energy range from
two-pion threshold to 1 GeV.~Alternatively, one can also
require that the ratiouTB

( i )u/uTB
( i 21)u be unity within an accu-

racy of 1%.!
Once the solution for the partial wave is obtained, o

should return to the calculation of the full amplitude. Th
can be done by combining theTB

( i 21) Born term in Eq.~33!
with higher uncorrected partial waves~for rescattering! from
the t andu channels to get the final solution:

G( i )~s,t,u!5
l̄

3
„$V̄~s,mp

2 !@113I ( i 21)~s!#%

1$~s↔t !%1$~s↔u!%…, ~37!

where the functionI ( i 21) denotes the multiple rescatterin
correction:

I ( i 21)~s!5
s2mp

2

p E
4mp

2

` V̄21~z,mp
2 !eid(z) sind~z!TB

i 21~z!dz

~z2mp
2 !~z2s2 i e!

.

~38!

It is obvious thatG( i )(s,t,u) does not have the phased of the
P-wavepp scattering, but itsP-wave projection does. This
is so because, projecting out thel 51 partial wave from Eq.
~37!, we arrive at Eq.~33! with TB

i 21(s) replaced byTB
i (s).

Because of the assumed criterion for the convergence o
iteration scheme,TB

i 21(s).TB
i (s), it is easily seen tha

G1
( i )(s) has the phased, using the results of Eq.~33! and Eq.

~36!. The remaining higher partial wavesl .1 are all real
because we have assumed that the strong final state int
tions of the higher partial waves are negligible. The fin
solution Eq.~37! is completely symmetric in thes,t,u vari-
ables.

V. NUMERICAL SOLUTIONS

We shall solve our integral equation numerically for va
ous values ofa defined by Eq.~35!, corresponding to differ-
ent values of the contact terms as discussed in Eq.~11!. We
examine the following cases:a50,0.30,0.50,0.70. The itera
tion scheme can be done by first guessing a solution
TB(s) corresponding to a chosen value ofa. We can take a
rather arbitrary first solution for this function. For examp
for a givena we can take thet andu channel contribution to
the Born term as

TB
0~s!5

3

4E21

1

d cosu sin2 u
l̄

3 H Fmr
22mp

2

mr
22t

G1Fmr
22mp

2

mr
22u

G J ,

~39!
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which is independent ofa. With this expression for the Born
term, the iteration scheme can be started by calculating
solution of the integral equation as given by Eq.~33!. The
next step is to calculate the Born term by Eq.~32!; there is
no arbitrariness at this step. The iteration scheme is con
ued until convergence of the solution is obtained.

The number of iterations depends on the original cho
of the Born term i.e., how close it is to the final solutio
Even for a not very good approximation forTB

(0) such as that
given by Eq.~39!, it is found that after one iteration one ca
already reach a reasonable approximation for the solutio
the integral equation.

Convergence to the final solution fora50.3,0.5,0.7, with
a precision of the order of 1% or better, could be achiev
without using the iteration scheme if one chose a good
pression forTB

0(s). For this purpose, one can use instead
Born terms calculated from the following zero width cont
bution of thet andu channels of Eq.~11!, which depends on
the strength of the contact term:

TB
0~s!5

3

4E21

1

d cosu sin2 u
l̄~11a!

3

3H Fmr
22mp

2

mr
22t

G1Fmr
22mp

2

mr
22u

G2
2a

11aJ ~40!

where we have used the largeNc relation

a5
c

32c
. ~41!

We make use of this relation here to calculate the Born te
and also to get the relation betweenl and l̄.

Equation~40! is obtained in the limit of of a narrowr
width. As discussed above, this limit is obtained when we
the number of colorsNc→`. In this limit, as will be shown
below, Eq. ~37! becomes Eq.~11! or Eq. ~12!. The pure
VMD model corresponds toa50 and for models with the
contact termc51, e.g., the hidden symmetry model@7#, a
51/2. ~More precisely, the hidden symmetry model with n
contact term in the pseudoscalar mesons decaying into
gammas requiresc51.! For the real situation whereNc53
there should be a substantial correction to this relation.

For a50, without an iteration of the integral equatio
one can get a precision only of the order of 5%. For oth
values ofa, using Eq.~40! for the Born terms, and withou
going through the iteration scheme, one can already ach
a precision of better than 1% using only Eq.~31!. For a
50, after five iterations a precision of better than 1%
reached. For other values ofa50.3,0.5,0.7 a precision o
better than 1023% is reached after only four iterations. The
numbers indicate that the rescattering effect is much m
important fora50 and much less important for other valu
of a.

The slow convergence of the iteration scheme fora50 is
due to a large violation of the phase theorem at the ze
4-7



th
er
tio
ra

th
ill

ial
e

ue

e
e

e

c-

ss

ted

;

TRAN N. TRUONG PHYSICAL REVIEW D 65 056004
order as shown in Fig. 3. For other cases the violation of
phase theorem is not so serious and even without the it
tion scheme one can already get an approximate solu
accurate to better than 1% by directly solving the integ
equation as discussed above.

Instead of parametrizing our solution by the value ofa, it
is more physical to describe the solution as a function of
width G(r→pg). This quantity is not unambiguous and w
be defined in the following section. It is denoted byG(r
→pg) using our definition while the corresponding part
width using the usual Breit-Wigner parametrization is d
noted byG(r→pg)bw with the value of ther mass the same
as in our definition, i.e.,mr

250.593 GeV2 and G(r→pp)
50.156 GeV. There is a substantial difference for the val
of G(r→pg) using these two definitions. In Table IG(r
→pg), G(r→pg)bw, and the second derivative of th
P-wave amplitude ats5mp

2 are given as functions of th
numerical value ofa.

For various values ofa, the square of the absolute valu
of the P-wave amplitudeG1(s), in units of l̄2, is plotted
against the energy squareds, in Fig. 4 and Fig. 5. It is seen

TABLE I. Solution of theP-wave amplitude for thegp→pp
integral equation as a function of the parametera. The second
column isG(r→pg) in keV according to the definition given in
the text. The third column isG(r→pg)bw in keV using the Breit-
Wigner formula Eq.~45! evaluated at the maximum of the cro
section. The fourth column is the second derivatives of theP-wave
amplitude at the points5mp

2 in GeV22.

a G(r→pg) G(r→pg)bw l̄21d2G1(s)/ds2(s5mp
2 )

~keV! ~keV! GeV22

0.00 50.7 57.8 4.88
0.30 68.0 76.4 5.30
0.50 84.3 91.8 5.64
0.70 103 111 6.00

FIG. 3. TheP-wave strongpp phase shift~vertical axis! as a
function of the energy is shown by the solid line. The projec
P-wave amplitude phase ofgp0→p1p2 as given by the VMD
model without contact term, Eq.~19!, is given by the long dashed
line; with the contact termc51, Eq.~20!, by the short dashed line
with the contact termc51, Eq. ~21!, by the medium dashed line.
05600
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that the larger the values ofa the higher are the maximum
values of theP-wave amplitude.

In Fig. 6 the modulus of the ratio 3G1(s)/V̄(s) is plotted
against the energy squareds (GeV2); this ratio indicates the
deviation from the Breit-Wigner form as given by the fun

tion V̄(s).
For various values ofa, accurate values~to better than

1%! of the modulus of theP-wave amplitude from the two-

FIG. 4. Plot of the square of the absolute value of theP-wave

amplitudeuG1(s)u2 in units of l̄2 as a function ofs in GeV2 for
a50.5 ~solid line!; a50.0 ~short dashed line!; a50.3 ~medium
dashed line!; a50.7 ~long dashed line!.

FIG. 5. Same as Fig. 4 but with 0.08 GeV2<s<0.25 GeV2.
4-8
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pion threshold to 1 GeV can be obtained by using the mo

lus of V̄(s) divided the functionC(s) given in Table II:

G1~s!5V̄~s,mp
2 !C~s!

l̄

3
. ~42!

We are also interested in finding the corrections due to
multiscattering effect in the VMD approximation to the fun
tion A(s) defined by Eq.~27! and given by Eq.~37!:

A~s!5 V̄~s,mp
2 !J~s! ~43!

or

J~s!5
l̄

3
@113I i 21~s!# ~44!

for the value ofi attained at the end of the iteration of th
integral equation. In Fig. 7 the modulus ofJ(s) is plotted
against the energy squareds in units of GeV2. If there were
no corrections to the VMD model,J(s) would be unity. It is
seen that the corrections are most important for the cas
a50.

In Fig. 8 the phase ofA(s) is also plotted against th
energy squareds for various values ofa and compared with
the P-wavepp phase shift.

TABLE II. Relation between theP-wave amplitudeG1(s) and

V̄(s,mp
2 ) as given by the functionC(s) defined by Eq.~42! in the

text.

a 1/C(s)

0.00 2.457s321.662s211.162s10.2813
0.30 0.808s210.667s10.3250
0.50 20.759s311.278s210.705s10.3267
0.70 21.015s311.183s210.898s10.318

FIG. 6. Plot of the ratiou3G1(s)/V(s,mp
2 )u in units of l̄ for

various values ofa. The curves are the same as in Fig. 4.
05600
-

e

of

In Fig. 9, uG(s,t,u)u2 with cosu50 and cosu50.75 are
plotted againsts ~in GeV2) for the special casea50.5. Fig-
ures with other values ofa and cosu are not shown becaus
they are quite similar to Fig. 9. Therefore the higher par
waves are completely negligible for energies below 1 Ge

VI. COMPARISON WITH EXPERIMENTAL DATA AND
OTHER THEORETICAL WORK

Our calculation can be compared with experimental d
at low and high energy. At low energy, the only experimen
data available are given by Ref.@5#. From Fig. 5, at an en-

FIG. 7. Plot of the absolute value of the functionJ(s) defined

by Eq.~43! in units of l̄ as a function ofs in GeV2. The curves are
the same as in Fig. 4.

FIG. 8. Plot of the phase of the functionA(s) defined by Eq.
~43! as a function ofs in GeV2. The solid line represents th
P-wave strongpp phase shift; the dotted line,a50.5; the short
dashed line,a50.0; the medium dashed line,a50.3, the long
dashed line,a50.7.
4-9
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ergy s.0.16 GeV2, corresponding to the average ener
measured in Ref.@5# we have, fora50.5, uG1(s)u.uG(s,t
5u)u51.15l, which is about one standard deviation smal
than the measured value (1.2960.0960.05)l. It is clearly
important to improve the precision of this experiment.

At higher energy, the experimental cross section forgp
→pp is usually analyzed in terms of the Breit-Wigner fo
mula:

ds

ds
5

24ps

~s2mp
2 !2

mr
2G~r→2p!G~r→pg!

~mr
22s!21mr

2Gr
2~s!

. ~45!

This formula is usually not accurate because it either
glects the contribution of the part of the amplitude from t
t and u channels or assumes that the cross section ca
fitted with a Breit-Wigner form, which may not be true. Fu
thermore, the maximum of the modulus of theP-wave am-
plitude is shifted significantly toward lower energy, whic
complicates analysis of the experimental data using Eq.~45!.

The result of our calculation shows that, at the maxim
of the absolute value of theP-wave amplitude, the phase o
the amplitude is not 90 °. The only method that we fi
acceptable is to define ther mass as the value ofs when the
phase of the functionV, which is the same as the experime
tal P-wavepp phase shift, passes through 90 °. Its width
proportional to the inverse of the derivative with respect ts
of cotd at s5mr

2 :

1

mrGr
5

d

ds
cotd~s!us5m

r
2. ~46!

With this definition ther width as given by Eq.~16! is 0.156
GeV. One can then use theP-wave cross section ats5mr

2 to
calculate the widthG(r→pg) using Eq. ~45!. The value

FIG. 9. Square of the modulus ofG(s,t,u) in units of l̄2 with
cosu50 ~long dashed line!, and cosu50.7 ~short dashed line!, and
the square of the modulus of theP-wave amplitudeG1(s) ~solid
line! for a50.5 as functions ofs in GeV2.
05600
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obtained is denoted byG(r→pg) and is approximately 10%
lower than the value obtained by using the maximum o
servedgp→pp cross section in combination with the Brei
Wigner formula, Eq.~45!, which is now denoted byG(r
→pg)bw ~see Table I!.

Using our method, we could even integrate the measu
cross section on either side of ther mass by 0.1 GeV in
order to improve the experimental accuracy without cha
ing its value by more than 1%. This precision would not
possible if one did the calculation with ther mass as the
value of the maximum cross section.

The present experimental results are not consistent w
each other. The more recently published experimental res
by Caparo et al. gave the value forG(r→pg)58164
64 keV @23#, whereas earlier results by Hustonet al.gave a
lower value @24#. These two experiments were Primakof
like experiments using a high energy charged pion beam o
heavy target. The experimental result frome1e2 reaction
gives a higher value for ther→pg width @26# but has a
large error.

A more recent unpublished result using photoproduct
of a pair of pions off a nucleon target yieldsG(r→pg)bw
596612 keV @25#. Unlike the two previous Primakoff ex
periments, this experiment might have some difficulties
isolating the data corresponding to the one-pion excha
diagram from the background effect; one must also take
account the fact that the exchanged pion is off its mass sh

Because of the lack of experimental information on t
second derivative of theP-wave amplitude ats50 or the
parametera ~see Table I!, we cannot predict the solution o
the integral equation to get theG(r→pg) width.

Corresponding to a naive pure VMD model without
contact term, from Table I, our calculation witha50 yields
a width of G(r→pg)550.7 keV or G(r→pg)bw
557.8 keV, whereas, corresponding to the hidden symm
model with c51, our calculation witha50.5 yields G(r
→pg)584.3 keV or G(r→pg)bw591.8 keV. With a
50.5 the value forG(r→pg)bw is somewhat smaller than
the value of 96 keV obtained by Hannah using the Pade´ or
inverse amplitude method for the ChPT two-loop amplitud
which was calculated numerically@11#. For this special value
of a, one would also recover the main result of the hidd
symmetry model withc51. The low energy parametersC̄
and D̄, corresponding to the first and second derivatives
the functionA(s), Eq. ~43!, defined and evaluated by Han
nah @11# are in agreement to an accuracy of 2% with tho
from our integral equation approach. The difference betw
this work and that of Hannah is presumably due to the in
pretation of Eq.~45!, the treatment of the multiple scatterin
effects, and also the interpretation of the contact term. H
nah’s work shows the importance of resummation of the p
turbation series by the inverse amplitude or Pade´ method.

There is a similar treatment of this problem by Holste
@10#. The Holstein solution was obtained by taking the pro
uct of three functions:

G1
H~s,t,u!5lPn~s,t,u!V~s!V~ t !V~u! ~47!

wherePn(s,t,u) is a polynomial ins,t,u constructed in such
4-10
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a way that this equation has the same low energy limit as
given by ChPT. The merit of this equation is that the pha
theorem is explicitly obeyed as can be seen by projecting
the P wave from this equation. But this equation is not rig
because all higher partial waves such asF, H, etc., have the
r resonance or they all have the phase of theP-wave phase
shift which is not correct. The singularity associated with t
multiple scattering effects that are present in our integ
equation approach is not contained in Eq.~47!. All possible
solutions that can be written in terms of the product of th
functions ins,t,u variables will have this problem. An ex
ception is the problem involving three hadrons with two lig
particles having no interactions between them, but they
teract with an infinitely heavy target.

Holstein’s solution yields a comparable value forG(r
→pg)bw as does our solution witha50.5. This result is not
surprising because the value of the second derivative of
solution ats5mp

2 is also comparable with ours. His solutio
can be fixed by projecting out theP-wave imaginary part and
putting it in Eq.~26! to provide the necessary corrections

It should be reemphasized that our result is not in
product form as in Eq.~47! but is a sum of three identica
functions with interchange of thes,t,u variables@Eq. ~26!
and Eq.~37!#. It is a direct consequence of the fixedt dis-
persion relation, using crossing symmetry and neglecting
contribution from higher partial waves at low energy in t
absorptive part.

VII. IMPORTANCE OF THE MULTIPLE SCATTERING
CORRECTION AS A FUNCTION OF THE r

WIDTH

Our formulation of the problemgp→pp is quite useful
in understanding the importance of the multiple scatter
effects as a function of ther width. We have previouly stated
that in the largeNc limit the multiple scattering effects
should vanish and we should recover the VMD models
given by Eqs.~10!–~12!. In order to see that this statement
correct, it is sufficient to study the correction factorJ(s)
defined by Eq.~43! as a function of ther width. It is suffi-
cient to study this question for the case whena50. In Fig.
10, the modulus of the functionJ(s) is plotted against the
energy squared when ther width is increased or decrease
by a factor of 4 whenf p is changed by a factor of 2. This ca
be seen from examining the definition of the functionV(s),
Eq. ~16!. The result is that the multiple scattering effect i
creases as ther width increases, and decreases as the thr
width decreases. It is easy to see that for a zero width re
nance the correction factorJ(s) is unity.

The result of this section also provides some argume
for neglect of the multiple scattering effect in the study
^gu3p& and^3pupg& with the 3p resonating as thev state
because of the extremely small width of this resonance@21#.

VIII. CONCLUSION

We have studied in this article the scattering ofgp
→pp using the integral equation approach. Because the
ond derivative of theP-wave amplitude ats5mp

2 is not
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known, the maximum cross section for this process can
be predicted with reliability. The solution of the integr
equation is ambiguous and depends on the second deriv
of the P-wave amplitude ats5mp

2 . This problem is similar
to the problem of the contact term in the usual VMD mod

If the ambiguity of the solution of the integral equatio
can be interpreted as the imperfection of the elastic unita
relation in describing low energy phenomena, then one m
be satisfied with a precision of the order of 15% in amplitu
for the pion form factor calculation@4#. This inadequacy can
then be removed using knowledge of the pion rms radius@4#.

For the gp→pp calculation, this inadequacy become
more serious because of the existence of singularities a
ciated with thet and u channels. Furthermore, the corr
sponding first derivative of theP-wave amplitude vanishe
because of the symmetry of the problem, and hence we
only use knowledge of the second derivative ats5mp

2 to
improve the elastic unitarity relation. This last parame
cannot be precisely measured and hence we cannot pr
G(r→pg) with certainty.

We show in this article that there is a one-to-one cor
spondence between the contact term in the VMD model
the ambiguity associated with the parametera in our integral
equation approach. This parameter plays the role of the
ond derivative of theP-wave amplitude ats5mp

2 .
Note added in proof.The electromagnetic correctio

for this process was recently carried out by Ll. Ametle
M. Knecht, and P. Talavera~Ref. @32#!. These authors poin
out that the discrepancy at low energy between the the
and experiment disappears as a consequence of this co
tion.
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FIG. 10. Plot of the absolute value ofJ(s) ~vertical axis! defined

by Eq.~43! in units of l̄ vs s (GeV2) for a50 for various values of
the r width. The solid curve representsGr50.156 GeV, the short
dashed curveGr50.039 GeV, and the long dashed curveGr

50.624 GeV.
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