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Effective Lagrangian for sbg and sby vertices in the minimal supergravity model
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Complete expressions of tlﬁ)g and?by vertices are derived in the framework of supersymmetry with
minimal flavor violation. As examples, the branching ratios of charniedscayd B— K + X (no charm] and
exclusive processeB;— yy are calculated with the minimal supergravity assumptions.
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I. INTRODUCTION leading order(NLO) supersymmetric SUSY QCD correc-
tions to those processes have been evaluated in our another
The rareB decays serve as a good test for new physicsvork [4].

beyond the standard mod@M) since they are not seriously ~ The most general form of the superpotential which does
affected by the uncertainties due to long distance effects. Theot violate gauge invariance and the conservation laws in
forthcoming B factories will make more precise measure- SM is
ments on the rarB-decay processes and those measurements
should set more strict con;traint; on the new physics peyond W= e Aih2+ € hm;p@ _ hld(g%(?lz_ F'%V'JQ‘D@'
SM. The main purpose of investigatif®jdecays, especially SR
the rare decay modes, is to search for traces of new physics —hL(A2Vv* Q) —H3Q) 0" (1)
and determine its parameter space. In all the extensions of
the SM, supersymmetry is considered as one of the most A . .
plausible candidates. In the general supersymmetric extefiereH*,H? are Higgs superfieldQ' andL' are quark and
sion of the SM, new sources of flavor violation may appear€pPton superfields in doublets of the weak (@lJgroup,
in those soft breaking ternj4]. Applying the mass insertion WhereL= 1L2’3 areAthe indices of generations; the rest super-
method, the influence of those nonuniversal soft breakindields U', D' and R' are quark superfields of the- and
terms on various flavor changing neutral curréRCNC)  d-types and charged leptons in singlets of the weak2pU
processes is discussed in the literatuf2s However, too respectively. Indices,j are contracted for the SB) group,
many free parameters which exist in the supersymmetryandh,,h, 4 are the Yukawa couplings. In order to break the
model with nonuniversal soft breaking terms decrease thsupersymmetry, the soft breaking terms are introduced as
model prediction ability. Thus for a practical calculation
whose results can be compared with the data, one needs tq
reduce the number of the free parameters in some way, i.e;soft™ —
by enforcing some physical conditions and assuming reason- 2 == 2~ i~ 5 i~
a)kgle symm%tries. A?r)e/alization of this idea is the ?ninimal _mQ'Qil*Qil_mU'UI*UI_mD'DI*DI

M H* HE = mZ HZ* H2—mA L L - mi R*R!

supergravity(MSUGRA), which is fully specified by only (MO At MaA N+ MaAEN2 + H.C
five parameterf3]. In this work, we perform a strict analysis (MaAghy tMANATMeA A+ H.C)
on thesbg (shy) effective Lagrangian in the minimal flavor +[Buej; Hilsz+ eijAl'h,'Hilf}T?'

violation supersymmetry up to the leading order. The next e g
— Aghg(H1Q;—H3VYQ1) D!

*Postal address. — AL (HEV*'Q-HIQ) U +H.cl, (2
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Wheremﬁl, maz, mf,,mé,,mél, mal andmgl are the param- parameters that result in mass splitting between leptons,

eters in unit of mass squaretig,m,,m; denote the masses quarks and their supe(symmetric partners. Taking into ac-
of A3 (a=1.2,...,8), )\iA (i=1,2,3) and\g, which are count of the soft breaking terms E(R), we can study the

i : phenomenology within the minimal supersymmetric exten-
the SU(3)xSU(2)xU(1) gauginosB is a free parameter gjon of the standard mod&@SSM). The resultant mass ma-
in unit of massA|, A, A (1=1,2,3) are the soft breaking trix of the up-type scalar quarks is written as

2, 2, (1 2. 5 |
Mg+ My +| 5 = §S|n20W cos 28m3 —my(A,+ u cotB)
6= ) , ®)
—myi(AL+ i cotB) m3i+my +§sin20W cos 28m3

and the corresponding mass matrix of the down-type scalar quarks is

2 2 1 1 . 2 |
Mo+ mgi+| 5+ §sm20W cos 28m3 —Mgi(Agt p tanp)
2
BIZ 1 ) (4)
—mg(A}+ u tanB) m2D.+m§|—§sin20W cos 28m3
|
with my, mg (1=1,2,3) being the masses of thia genera- malz mazz mﬁl = mél =mZ,= mfﬂ
tion quarks. One difference between the MSSM and SM is Q
the Higgs sector. There are four charged scalars, two of them = sz| = m%,
are physical massive Higgs bosons and other are massless
Goldstones bosons in the SUSY extension. The mixing ma- M= Mo = Ma= M
trix can be written as e e
sing —cosp Under these assumptions, the MSUGRA is specified by five
= _ (5)  parameters:
cosB sing

, . . Ag,My, My, tangs,s ,
with tang=v, /v, andv;,v, being the vacuum expectation 0:Mo, M2, aNS, S )

values of the two Higgs scalars. Another matrix that we will
use in the later derivation is the chargino mixing matrix. The
SUSY partners of the charged Higgs boson ¥d combine

to give four Dirac fermionsy; ,x, . The two mixing ma-
trices Z* appearing in the Lagrangian are defined as

and the flavor structure of the model is similar to SM, i.e.,
flavors change only via the CKM matrix.

The supersymmetric contributions will modify the Wilson
coefficients of the effectivabg and sby vertices. For the
W-boson propagator, we adopt the nonlinBaigauge whose

(Z27)TM 2" =diagm ,m ), (6)  9auge fixing term i$5]
X1 X2
where M, is the mass matrix of charginos. In a similar way, == Efo (9)
Zy p diagonalize the mass matrices of the up- and down-type gaugefixing €

squarks respectively: ] . ] ]
with f:(aMW*“—|eAMW+”—|§mW¢+) in our calcula-

zlm2 z =diagm?Z, ,m2 ), tions. A thorough discussion about the gauge invariance was
v given by Deshpandet al.[6,7].
2t m2, z. =diag m2, ,m2,). (7) As in the case of SMI12], the operator basis fdr—sgin
bbb Dy D the supersymmetry consists of
In the framework of minimal supergravifMSUGRA), the
unification assumptions at the ground unified the@JT) O,= 1 S(iD)%w b (10)
scale are expressed & (4m)2 ’
Al=Ag=A=Ao, (8)
O,= s{iD,gG-o}w_b,

B=A,—1, (4)?

055007-2



EFFECTIVE LAGRANGIAN FORgbg AND ;b'y VERTICES . .. PHYSICAL REVIEW D 65 055007

1 —
O3=——siD ,(igG*")y,w _b, :
= am)? p(19sG*")y 2‘/\_
b s b W-,G, H™ 8 b Xj 8

_ 2 FIG. 1. The one-loop self-energy diagrams for>s in the
O4= (4 7,.)2S(ID) (Msw_+mpw.)b, SUSY model with minimal flavor violation.

1 _
1 03— 0O7= ——=siD ,(ieQ4F*") v, w_b,
(95—(4 )ngSG (M + My, )b. ST (amr QF*)y

In these operatord) ,=d,—igsG, and G, =Ga ,T2 de-

notes the gluon fleld strength tensor wnfia ,=3,G5

-9 Ga+gsfab°G GS, andG-o= G,,0"". with F,, being the electromagnetic field strength tensor and
For tl’anSItIOHb—>S'y, the operator ba3|s is somewhat dif- F-o= FWU‘”-

ferent from those in Eq.10) and the changes are reflected in

the following replacements:

1 —
05—>08: —SeQdF‘ a'(msw,+mbw+)b
(4m)?

Il. THE EFFECTIVE LAGRANGIAN FOR ?bg(?by)

At first, we present the analysis sb mixing. The self-

Oy— 0= 1 g{im eQyF - olw_b, (12) energy diagrams are drawn in Fig. 1. The unrenormalsted
(4m)? self-energy is given as

2

P
Ao(X 'XH'XDL’XXB)+ ) Aq(X X X ,xXB)) pw_+( Bo(Xi ’XH'XGL’XXB)
w

i 2
3= = > VibVi*s{

3272 i<uct

2

p

+ Bl(xi 1X 7X~i 1X ) (mSw +mbw+)+co(xl 1X X"ia
2 H Ua Xg

w

} (12

W

with the symbolic definitions;=m#/m2 , x =m? . m? , x_,=m2,/m? , x =m? /m? with i=u,c,t. Those form factord\,,
w H H w’ Ul U, W’ Ty Xg W
Ai, By, B; andC, are complicated functions of the parameters and their explicit expressions are collected in Appendix A.

We renormalize theb self-energy according to the well-known prescription, namely by demanding that the renormalized

self-energyi vanish when one of the external legs is on its mass $Beltl(. Obviously, this is a necessary physical
condition which must be satisfied. This is realized as

2

p
A* +Ap(X 'XH'XLNJ'Q ,XXB)-i- _mz Aq(X; 'XH’XO‘“ ,xXB)) pw_+( BX +Bo(X ’XH’XDL'XX;g)
W

c 2
i 92 2 V|bV [

3277- i=u,c,t

2

2
p
*
Bj +Bo(X; ,xH,xD,a ,XXB)+ 7z B1(X; ,xH,xa,a ,XXB) Mpw ¢

p
+— i - +
B.(X; 'XH’Xu;’XxB) Mg _

m2
W w
*
+(C* + Co(X; X Xgi XB 5 ] (13
w
where
. m2+m?
AF = _AO(Xi ’XH'XDL ,XXB)_ 2 (Al(xi ’XH’XDL ’XXﬂ)—'_ B]_(Xi IXnya\a ,XXB))’
w
mZ
S
B; == BO(Xi ’XH'XGL ,XXB)_ E(Al(xl ’XH’XDIH ’XXB)+ Bl(xi ’XH'XGL 'XXB)), (14)
W
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b s
FIG. 2. The one-loop diagrams fbr—sg in the SUSY model with minimal flavor violation.
m2

b
B =—Bg(X; ,X ,X~; ,X )——(A1(X,X ,X=; ,X )+By(X;,X ,X=; ,X )),
S 0( i H O Xﬂ) mz( 1( i CRA XB) 1( i TR XB))

w

c*=

i X X5 ’XXB)+ZB]'(Xi X Xg ’XxBHCO(Xi XX ,xXB)).
w

After carrying out the renormalization procedure described above, the self-energy is written as

2_ 2 2 2, 2
pT—my—mg mp,+mg 2
ibVis) | =5 AulXi X, X5 X )= B1(Xi X, Xgi X ) [+ | ——By(Xi X . X5 X )
3271- i=uct m2 Y Ua g m?2 UL xg 2 U X
W W W
m 2 mg
+ F(Al(xi ’XH'XG;'XXB)+81(Xi ’XH’XO‘H’XX[,)) Msw _ + Ba(xi X, Xgi X, )+ 2 (A(X ’XH'XDL’XXB)
W W W
+Bl(xi,xH,xaia,xX6)) My — i Xnya.aaXXﬁ)_*'ZBl(XiaXH,XGiaaXXﬁ))lwar]- (15
W

This procedure is exactly the same as that adopted in the SM té@ke

Next, let us calculate the unrenormalizﬁnig vertexI" ,(p,q) corresponding to Fig. 2. Keeping terms up to orﬂélqz/m\fv
[11,12,14-1§ we have

i 2 2
b—sg a IgZ * p ’)/p+(p+q) 7p+pypp
Fp _gST 3277_2 i:;,C,t Vibvis[ AO(Xi IXH!X[‘J\Q ,XXB) ’}/pw*—‘rAl(Xi ’XH,XDL,XXB) msv w_
2
q by,4 4v,b
+F (X ,xH,xa,ﬂ,xXB)prw,+F2(xi ,xH,xo,n,xXB) 2 w_+F3(X ,xH,xo,n,xXﬁ) 2
w w

dv,4 1
FFa(Xi X, X X, ) o+ B1(X XX ,XXB)F((KSH&)«Wr Ypb)(Msw_+ My )
W
1 mpMg
+F5(Xi VXHYXGi ,XX ) [q 7p] mSw +mbw+)+co(xl 1X X'“i 1X ) 2 ’)/pw+ (16)
o w LY
whereF;(x; x,,%; X ) (i=1, ..., 5) arecollected in Appendix A. From Eq12) and Eq.(16), it is easy to show thatt,
a B
obeys the Ward-Takahashi identity
T, (p,)=gsTX(p+a) ~2(p)]. (17)

According to the general principle of renormalizatishg vertex does not exist in the fundamental Lagrangian, thus it does
not need to be renormalized. In other words, the divergence would be canceled as the physical conditions are taken into
account. In the nonlined®; gauge, as well as in the unitary gauge, the one-loop penguin diagram results in a divergence. On
other side, all the one-loop diagrams which contribute to lhesg or b—svy processes must constitute a convergent
subgroup. Thus obviously, the renormalizations of the penguin and flavor-changing self-energies are associated. In fact, the
Ward-Takahashi identity holds for the unrenormalized penguin, to renormalizebtheertex, we demand that the Ward-

Takahashi identity be preserved for the renormalized ve]?f;&sg [17],
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b —S
» (P =0T (p+a)~3(p)]. (18)

It is noted that with this requirement, just as in the SM dds@, the renormalization of thgbg vertex is realized when we

renormalize the self-energy by enforcing the physical condilien0 as one of the external legs being on its mass shell.

Moreover, indeed, the renormalization scheme ofdbg vertex pledges the current conservation for an on-shell transition,

since the renormalized self-energ§$p+q) andi(p) are zero as botb ands are on mass she|lL7].
This renormalization scheme can be understood from another angle. The requirement that the Ward-Takahashi identity holds

and conditioni(on—shell)zo realize the renormalization of tfﬁ)g vertex and the scheme is equivalent to summing up the

contributions of penguin and flavor-changing self-energies to the transitignat one-loop level. This procedure can be
generalized to two-loop calculations.
Applying Eq. (18), we have

P2 2 2

~bosg a IgZ *) mb+ms
I, "=gsT 322 i:%o,t VipVig —miv (AL(X ,xH,xD.a,xXﬁ)+Bl(xi,xH,xD,a,xXE))ypw,
A Pyt (P Ay, TPy, e by,4
1(X0 X, X0 X ) 2 o 1(><i,xH,xUL,xXB)m2 Yo+ Fa(Xi X XG0 X, ) el
w W W
1
+F3(XI1X X'“l 1X )qyppw +F4(X|1X X'“l 1X )q’ypq w7+Bl(Xi XX~ X )_((p+¢I)7 +7 p)
HUL T x mR p P
w w
1
X(Msw_+Mpw )+ Fs(X; ’XHlXGinuXXﬁ)F[Qa?’p](msw—_i_mbw-%—)_(Al(Xi X Xgi X, )
mpMg
+2B1(X; ,xH,xDia, y Wyt (19
W
|
The terms of dimension-four which are related to thewhere the Wilson coefficientS;(x, ) (i=1, ..., 5) can be

;'ypa)ib vertex cancel each other as long as webleinds  found in Appendix B.

quarkS be on their mass Shﬁ&] so that we do not need to For the Verte)sb’y, the Feynman d|agrams are drawn in
conS|der them at all. We ignore all terms which vanish asrjg.

m; /M2 —0, whereas in the coefficients keep the part which W|th all unrenormalized quantities the Ward-Takahashi
are proportional to Intﬁc/m\fv) in the final effective vertex identity for thesby vertex is in form
for b—sg, we can recast Eq19) to a form with the operator

basis given in Eq(10): Hsg(p q)=— —e[E(erq) S (p)]. (22)
osg_4Gk ° 4,
Fp \/E thV 2 Ci(u )O + cchslan y _
4 *
+§Vuqusln Xy 03 (20) b 8
After matching between the effective theory and the full
theory[13], we have the effective Lagrangian fbr—sg at v
the weak scale in the minimal flavor violating supersymme- + w0
try as
b b 8
4G¢ . .
gbésgz_vtbvrsz Ci(pn O, (21 FIG. 3. The one-loop diagrams ftr— sy in the SUSY model
NA i=1 w with minimal flavor violation.
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To renormalize thgby vertex, we demand that the Ward-
Takahashi identity be preserved for the renormalized vertex

PHYSICAL REVIEW D 65 055007

A. CharmlessB decay

~b—sy

7 117,

~ b—sg

1 . .
9T, ~(p.a)=—zelX(p+a)—=(p)].

The other steps are similar to those applied in the calcu

lation for thesbg vertex. The result is written as

4G

Losy== 5 VsV Calia, 01 Cal ) Oa Cel 11, O

As an example, we first apply the effective Lagrangian
Eqg. (21) and Eq.(24) to discuss the branching ratio of
charmlessB decay:B— K+ X (no charm), which is due to
the loop-inducedsg effective coupling. At the quark level,
the processB— K+ X (no charm) involve subprocessés
—sg, b—sqg b—sgg and bg—sq with g=u,d,s. In
principal, the decay mode— suu(bu—su) can be induced
by weak charged current at tree level. The contributions from
tree level charged current are highly Cabibbo suppressed,
that has been first stated in REZ5]. In contrast, the penguin
diagram contributions, although originating from the one-
loop level, are not Cabibbo suppressed as compared to the

+C O.+C o 24 mainb decay modes. With the effective Lagrangian E{.),
) Ort Coln,) ot G we obtain the width of the inclusive charmldsdecay at the

and those coefficient are also collected in Appendix B.

Ill. THE APPLICATION OF EFFECTIVE LAGRANGIAN

In this section, we apply the effective Lagrangian Ex{)
and Eq.(24) to calculating the rates of the raBedecays up
to the leading orde(LO). When the effective Lagrangian is
applying at the hadronic scale, we should evolve those Wil-
son coefficients from the weak scale down to the hadronic
scale. The running depends on the anomalous dimension ma-
trix of concerned operator21]. The coefficientsC;(m, )

obtained at the weak scaM,, are regarded as the initial
conditions for the differential renormalization group equa-
tions (RGES9. At present, the most strong constraint on su-
persymmetry parameter space originates from theBame-
cesses:B—Xgy. The experimental measurements of the
decay B—Xgy is BR(B—Xsy)=2.32+0.57+0.35x 104
[22]. The theoretical prediction of the branching ratio for
inclusive B— Xgy is given as

I'(B—Xsy)

Br(BoX.y)= —— 5V
B XY = L B xern)

quark level[26]:

I'(b— s+ X (no charm)

=I'(b—suu)+I'(b—sdd)
+I'(b—ss9+TI'(b—sg)+I'(b—sgg
+I'(bg(g=u,d,s)—sq)

Gimg «12) 8%s 2
:mlvtbvt3| —— [Calpp) + Col(pep)|

2

+8 o o 2C N
3%\ m, |Calpp)] 6.2

35 ) .
X €|C3(Mb)| +20 RgC5(up)

X[Copp) + Cs(ﬂb)])“ - (25

_ IVioVi? Baen] Co(my) + Co(my) |

Assuming that the partoriguarks and gluondragment into

- V|2 M, hadronswith an odd number of strangengsgth unit prob-
cb Wp(m—) ability and supposing the production rate Af or other
b strange baryon& *,3° is much smaller than that for me-
( 2ag(my) (mﬁ)) sons, one can haje7]
X1+ ———F| =] |,
37 mg

wherea,, is the QED fine structure constant and the phase- I'(b—s+ X (no charm)=1"(B— K+ X (no charm).

space factor p(m./my)=1-8(m./my)%+8(m./my)®

+(me/my)8—24(m,/mp)* In(m./m,). The last term in the

bracket is the one-loop corrections to the semileptonic decaylote that in above equation, we ignore the interference ef-
with f(m./m,))=2.4[24]. When we calculate the branching fects that arise as the partons evolve into the same final state
ratios of other rare processes, Be>Xgy constraint must be hadrons via different modes. This assumption should not lead
taken into account. In the two examples, we will discuss theo big distinction for the inclusive ratg28]. In order to get
branching ratios of the QCD induced charm|&decay| B branching ratios, following the standard procedure we em-
— K+ X (no charm) and rare procesBs— vy in the super- ploy the well-known measured or evaluated decay rates to
symmetric model. reduce the uncertainties in numerical analysis

055007-6
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Br(B— K+ X (no charm) where the current operators are defined as

B I'(b—s+ X (no charm)

— Br(B_)XC+e;e) Qiz(;cryuw—ba)(aiyﬂw—cﬁ)x
I'(b—cevy)

4 Q5=(S,7,0-bp)(Cpytem_c,),
3 VeV -}

X0.12, (26)

x0.88 Q§=(§amw7ba)q:u§sc i (Qp7" o),

=
2 I“C
|Vcb| P( m,

where the symbo{- - -} denotes the contents in the paren-

thesis of Eq(25), p(m./my) is the standard phase factor, the Q5=(S,v,0-bg) 2 (Gpy*w_d,),
numerical factor 0.88 is due to the QCD correction to Bhe q=u.ds.cb

semileptonic decay|4] and 0.12 is the measured branching

ratio of the B semileptonic decay23]. Note that them; — —
dependence, which exists in the rate of a fermion transiting Q5=(S,¥u0-ba) ; , (A7 @ dg),
into three-fermion final states, disappears. amnass

B. The branching ratio of B¢—yy Qf—,Z(gay,wabﬂ) 2 (aﬁy#mqa)_
Now, let us turn to the calculation of the rare procBss a=uds.c.b 28)
— v in the supersymmetry theory. The investigationBqf

— vy decay is interesting for the following reasons. H denote the S lor indi Atth K |
It is well known that the QCD corrections to the rare Heré,a, denote the St8) color indices. € weak scale,

decayb— sy are relatively largé29—32. Therefore, we can W€ have the initial values for those Wilson coefficients of
expect that the QCD corrections p—syy are also large. Current operators:
The leading ordefLO) QCD corrections to this decay rate

have been given in Ref§33—364 and found to be large as c fu)=0
13,..., My )
expected.
In the Bs— yy decay, the final photons can be in a
CP-odd or aCP-even stat¢37—39. Therefore we can study CS(pm.)=1. (29)
w

CP violation effects in the process.

From the experimental point of vieBs— y7y decay can , o )
be easily identified by putting a cut for the energy of the fina)With the initial values of current and penguin operators at the
photons, e.g., the energy of each photon is larger than 10(yeak scale, we can calculate their contributions at any scale
MeV. In this case, two hard photons will be easily detected irS in the SM casp41]. , ,
the experimenf40]. Using the effective Lagrang|an E@7), the amplitude for

The same as other rare processes, this decay rate is alf}f decayBs—yy can be written a§33]
sensitive to the physics beyond SM.

The effective Lagrangian relevant By— yvy is

Apyy=AF Fr+i AT F, P, (30)
L 4GFV V*% CS(w )OC+Eq. (24), (27) Where Fv=%€u0apF“P. Here, A" (A7) is CP-even
== i i . y nr— 2% uva . '
S R = Ha) <A (CP-odd) part in a HQET inspired approach:
AenG, f m;(mgff_m(saff) ) A mé
At= — 2V VA ————— Cs () = 5 —orr——=7 (— Mpd(Mp) +mMI(Mg))D () ¢
> mBs tbVts 3AS(mBS_AS)(mgff+m§ff) 8 (Mp 9 mgff-i—mg” b b S s Mb
enG, m_ (Mg +mg™H2+Am?2 —(mg+mg™?) ) . i
A =— f VeV — — — (o5 - I(mg)C
\/577 B, " tbVts 3mB As(mB A g (M) 4=iTs.ch Qq ( q) q(Mb)

(MpA (M) +mMgA (mMg))D ()
+
9(my "+ mg™)

, (31)
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whereQg= 5 for q=u,c andQq=—1/3 forq=d,s,b. The Cel( ) =3(C(mp) + Cap) — Co(up)) + Co( 1)
unitarity of the Cabibbo-Kobayashi-MaskaWw@KM) matrix
Si—uctVib V=0 is used when we obtain the above equa- +Ca(up) — Co o),
tion, and we have neglected the contributionVgf,V;; due
to Vi Vi<VypVZ. The parameterA, enters Eq.(31) Cs(un) = Cp(pp) =4(C3(up) + Cal ) —3Cs(mp)
through the bound state kinematiga3]. me™,me"" denote ()
the effective masses of the quarks in Bemeson, 6\ Mb)s
(MEM2=m2—23\,, D(up) = C5(p) +3C(1p),
(mgff)zz(mgff)z_mz +2m _,TS, (32) whereC;(w) (i=1, ..., 6) are thecoefficients of the cur-
BS BS

rent operatorQ; at scaleu. The “effective” coefficient of

where \, originates from the matrix element of the heavy diPole operatorC_gff(,_u) contains renormalization scheme
quark expansiof42]. The LO QCD corrected Wilson coef- dependent contributions from current operatas ... e

ficientsC® (i=1, ..., 6)show up in combination33—35; ~ Here, we efafdopt the naive dlmerlsmnal reductioiDR)
scheme:Cg''(u) =C7(n) + Cg(p) —3Cs(n) —Co(p) [41].
Cu(mp) =Cy( pp) =3(C§( pp) — CE(pp))+ Co(1p) The functionsl (m,), J(my) and A(m,) originate from the
. irreducible diagrams with one internal light quark propagat-
—Cslmp), (33 ing, their expressions are written as

m2
I(mg)=1+ m—;‘A(mq),

Bs

2 2

m —4mq
J(my)=1-— s—A(my),
BS
r 2 _ 2 12 2
| mBS+,/mBS 4mq _ f mg .
n —im or —=1,
m Jr\/m2—4m2 m?
B, By a ] q
A(mg) = 2 , (34)
mB—4mq mg
—| 2tan’| ——=— | —@| for —52<1.
my amg
\ s

Using the above expressions, the partial decay width is theRleremg, my,, andAg are the universal scalar quark mass,

given as gaugino mass and trilinear scalar coupling. They are as-
sumed to arise through supersymmetry breaking in a hidden-
m sector at the GUT scaleg,r=2x 10'® GeV. In our numeri-
B s 1 cal calculation, to maintain consistency of the theory and the
BCW: EUA [*+[A7]%). (35 up-to-date experimental observation, when we obtain the nu-

merical value of the Higgs boson mass in the MSUGRA

model with the five parameters, we include all one-loop ef-
IV. NUMERICAL RESULTS fects in the Higgs potentidll8]. Moreover we also employ

the two-loop RGE$19] with one-loop threshold corrections

In this section, we present our numerical analysis abouf1g 2(] as the energy scale runs down from the MSUGRA
the branching ratios of inclusive charmleBsdecays[B  gcgle to the lower weak scale.

—K+X (no charm) and exclusive proces3,— yvy in the For the SM parameters, we hawg=1.4 GeV,m,=4.8
MSUGRA model. As aforementioned, the model is fully gq\,/ m=174 GeV,m_=80.23 GeV,m_=91.12 GeV,m
L 1 W - 1 Z . L BS

specified by five parameters )
=5.369 GeV, a.(my) =135, as(my)=0.12 at the weak
scale[23], together with the experimentally measured life-
Mg, My2,Ag,tansB,sgr ). time of B, 7, =1.61X 10 *? s. The other parameters relat-
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2 T T T T T T T T

the SM prediction

(a)

B, (B — K + X (no charm)) x 100

200 300

FIG. 4. The branching ratio — K+ X (no
charm in MSUGRA versus (8 my(my,
=300 GeV) and(b) m;;, (my=300 Ge\j. The
other parameters are taken Ag=0, sin (u)

1000
mg (GeV)

=+ and tanB3=30 (solid lineg or tang=10

®) (dash lines

B, (B = K + X (no charm)) x 100

L L L L L L
200 300 400 600 700 900

ing to the non-perturbative QCD are takenf%g 0.2 GeV,

\,=0.12 Ge\, and A =0.57 GeV[36]. In our later calcu-
lations, we always seA,=0, sgnu)=+. Using the mea-
sured branching ratios

B, _(B—Xsy)=3.24x107%,

B,  (B—Xsy)=1.40x10"*,

1000

my (GeV)

In Fig. 4, we plot the branching ratios of charmleBs
decay B,(B—K-+X (nocharm) versus parameterm,
(mys0), where other parameters are setmag,=300 GeV
(mpy=300 GeV), tarB=10 (dash lines or tang= 30 (solid
lines). From Fig. 4, we find that the supersymmetric contri-
butions make theB,(B—K+X (no charm) deviate from
the SM predictions about 10% when those supersymmetry
particles have the weak scale masses; when the masses of
those supersymmetry particles increases further, the new
physics contributions mildly become immaterial.

together with theoretical uncertainties and experimental er- The branching ratios ofBs—yy versus parameters

rors, we get a possible range @s(u,) + Cg(up)| as

0.190%<| Cg( 1) + Cg( p)| <0.4155.

my (my) are plotted in Fig. 5, with other parameters being
set asmy;»=300 GeV (my,=300 GeV), tarB=10 (dash
lines) and tanB= 30 (solid lineg. When those supesymmetry
particles have the weak scale masses, the supersymmetry

In the following analysis we restrict the coefficient corrections enhance thig,(Bs—yvy) by about 60% com-
|Ce(ju6) + Ca(p)| Within this region and study the branch- pared to the SM prediction. Together ywth the increase pf the
ing ratios of B—K+ X (no charm) andB,— yy. We find  Masses of the supersymmetric particles, Fhe prediction of
that the standard model prediction for the branching ratio$r(Bs— v7) tumns back to the value determined by SM.

are B,(B—K+X (no charm)=1.901x10 2, B,(Bs— v7)
=3.56x 10 ’. Then with the aforementioned inputs of the
five SUSY parameters we evaluate the supersymmetric con- In this work, we discuss the contributions of the SUSY
tributions to the branching ratios of those processes. sector to the effective Lagrangian for~sg andb—svy in

V. DISCUSSIONS

055007-9
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44 (a)
%
S
T
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the SM prediction
34 g
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200 300 400 500 600 700 800 900 m“(’gev) FIG. 5. The branching ratio oBg— yy in
¢ MSUGRA versus(a) m, (my,=300 GeV) and
(b) my, (My=300 GeV). The other parameters
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(b) (solid lineg or tanB=10 (dash lines
x |
7
T
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35 the SM prediction 1
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200 300 400 500 600 700 800 900 1000
my (GeV)

the MSUGRA model. As many authors suggested, if theas the SUSY particles are heavier and heavier, the contribu-
masses of the lightest SUSY particles are close to the eletion of the standard model to the rare processes becomes
troweak energy scale, the contribution from the SUSY sectomore and more important and finally the main contribution
to the Wilson coefficients of the induced operators is compauniquely is due to SM. This is indeed nothing new, but the

rable with that from SM. decoupling theorem of the SUSY sector demanded by the
The strongest constraint on the SUSY model comes frOWL‘mitarity of the Smatrix.

the Higgs boson mass. The recent experimental data have |n this work, we adopt the nonlineaR; gauge.
already excluded the range ™,,<108 GeV, whereH is  The advantage is that the Ward-Takahashi identity
the lightest Higgs boson in the SUSY model. Anotehryqiqs at the one-loop level no matter for the unrenormal-

constraint which is closely related to our discussion is thqzed or renormalized quantities. This advantage would
measurement on the branching ratio of the inclusive ProcesSs more obvious as we 9o .on doing the two-loop

B—Xst+ . .
Our numerical results indicate that within a reasonablecalcmatlons'
Our numerical results also show that as all SUSY particles

MSUGRA parameter range, the SUSY contributions tobecome very heavy, the values of all coefficients tend to that
branching ratios 0BR(B— K+ X (no charm) can enlarge y Y:

the SM prediction by about 10%. When applying the eﬁec_determined .by the SM sector which is consistent with the
tive bsy vertex, we employ the heavy quark effective theoryresunS obtained beforfd 7].
(HQET) to calculate the branching ratio Bf— X;+ y where
the leading order QCD corrections are included. Numeri-
cally, for the rare procesBs— vy, the SUSY contributions ACKNOWLEDGMENTS
enhance the SM prediction by about 60%.
If the masses of the SUSY particles are larger, the SUSY This work is partially supported by the National Natural
contributions to those processes would become weaker. Theéscience Foundation of China.

055007-10



EFFECTIVE LAGRANGIAN FORgbg AND ;b'y VERTICES. . .. PHYSICAL REVIEW D 65 055007

APPENDIX A: THE EXPRESSIONS OF THE FORM FACTORS

The form factors in self-energy are given as

A (14 5] A+ S hinx, o 3 K inx N A T+ D K Inx
O(Xi’XH’Xa‘H'XXﬁ)_ 5 5 tInx, Xi_l_(Xi—l)z 2t B 5 +inx, Xi_XH_(Xi—XH)Z
(2x X;—x?)Inx . 3 X5
e 2 (AT At S i, -
(xi—xH) a, B X= i —xXB

_ . - 2
XGL(ZXXB xa,a)ln XUL XX[; In xxﬁ

- 2 _ 2’
(Xg =X ) XG =X )

a

2 2 2
x;\| 2x2+5x—1  2x?Inx; X, | 2XiToxix, —xT 2xX (Inxi—Inx )

Al(XI ’XH’XLNJi 1XXB): ( l+ E)

3x-1° (-1 2taip 3(x—x,)° (=X )"

X2, —BX-, X
Uﬂ/

+3 (A —

_ 3 o 4
a B 3(XGL XXB) (XUL, xXB)

—2x*> 2%~ x (Inx-, —Inx )
Xp Xp U Xp Ya Xp

2 2In X — X m
xZInx; X Inx—xx, Inx_ Xp @B, ®p
- +22ﬁ—,—2m COS,B(As Bs)
H @ W

Bo(Xi ,X , X~ ,X )=
o(Xi X, ol xﬁ) xi—1 X — X

X~ InX-; —x Inx
U, Ue X Xp
X[ A+1+Inx,— :

X~ =X
Ua Xg
X;+1 X; Inx; Xi+X, xixH(In Xj—In xH)
B1(Xi X, X5 X )= =X 5 51X S -
o Xp 2(x,—1) (x;—21) 2(Xi_XH) (Xi_XH)
~. + . o
mXB ap B XU‘a XXﬁ ZXULXX/f(In XU'H In Xxxf)

+ —\/5 (A3"B3") — — '

@ B \2m cosp (XDL Xx,;) (Xaia xxﬁ)
c R 1 I Xi x?Inx; | tartB A 1 I Xi
olXi 'XH’XDL’XXB)_E tathxt g 1) 5 +5tInx, + o

- X2 In x; +(2xHxi—xﬁ)Ian N (BLF)2 A+§+| ) X

(X —x)? (Xi—x)? & B 2cogpB 2 M X. —X
o Lo 1 U g
, —X._. _ 2

XDL(ZXXﬁ XU'a)InXU‘a X)(ﬁln XXB

" 7 2| (A1)

(% L_XXB) (XD;_XXﬁ)
The expressions df;(X; X X X )(i=1, ...,5) arewritten as

a B
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x\| 5x*—22x+5 (3x;—1)Inx; 1| X(5xF—22x,+5x2)
Fl(xi WX X, X )= 1+ — + +
HYUL ™ X 2] 18(x;—1)° 3(x—1)* tarf B 36(x—x,)°
2 _ 12
(03X —3x?)(Inx;~Inx ) X5 — 8% X, —17

U
+§: ( 1.’1"8)2 a
i 4 @ l - — 3
6(x—x,) B 36(qu xXﬂ)
2,3 _
N (SXGLXXﬁJFXXﬁ)(In XDL In Xx,;)

_ 4
6(xl~J ] xXB)

x3—15x2—12x,+8  (5x2—2x;)Inx; 1 Xi(X{ —5X;X —2x2)
1 I I H H
Fao(Xi X X5 X )=| = - + -
U, " xg 12(x,—1)3 2(x;—1)% tarf3 12(x—x,)°
x2x2(Inx — | X2 =X X —2x%  x-,x? (Inx-; —Inx )
XN, nXH)] > (A2 Ve "Uaxg Txg Vo xe Y, Xe
VY i - _ 3 . 4 '
2(Xi XH) a B 6(X0ia XXB) (Xain XXB)
5x3+3x2+6x;+4  X(2x7—x—2)InX; 1| xi(5x7+5xx,—4x%)
Fa(Xi,X X~ ,X )= + +
H UL X 12(x;—1)3 2(x;—1)% tar? 8 12(x—x,,)°
2 _ g2
(2xx,—xPx2)(Inx;—Inx ) S 4 X5~ XgX, ~2X
+ + , —
2(x=x,)" ap G(XGL_XX,,)B
X, X2 (Inx-, —Inx )
Vo Xp Y, Xp

_ 4
(Xala XXB)

1
tar?

Xj

5x2—22x+5 (3%, —1)Inx;
F (X X X ,xX )=—|1+ 0 +
a B

18(x;—1)° 3(x;—1)%

Xi(5x%—22x;x_+5x2)
_ H H

36(Xi_XH)3

X2, —8x-, x —17x?
U U Xg X

+ (AP — -
c%( i ) 36(Xai_xxﬂ)3

3 2,2
.\ (xHxi—BxHxi)(In x;—1In xH) ,

6(x—x,)*

(3%x-; x> +x3)(Inx-, —Inx )
n Yoy X Xp Ua Xg

_ 4
6(xL~J ) XXB)

Xi(X;—3) X; In X;

Fs(X X Xg X )=

[xi(xi =3x) xx2(Inx;—Inx)

Xg 4(xi—1)2  2(x—1)3 4(x—x,)? 2(x—x,,)°
m XD'+XX XD,XX(—|nXO,+|nXX)
XB af o ap « B o« XB a B
+2 = (A3 B3") 5 3 (A2)
ap \2m, cosp Z(Xﬁi,_xxﬁ) (XDL—XXB)

APPENDIX B: THE WILSON COEFFICIENTS OF THE PENGUIN-INDUCED OPERATORS

The Wilson coefficients for effectivbgg(g) vertices:
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5x,+1  x2+2x7

3 3 2 2
1 [xt X (InXe—InX - 2X7+5XX, = XX?

Cilpm,)=— + Inx, |+ +
AT 210t axgt Y s (x—x’ 6(x,—x,)°
2 _ 2 2
hs x)(ﬁxoz(lnxDz InxXﬁ) 2xXﬁ+5xXﬁxDi xDz
+2> (A5 - T e
a B (XDi xXﬁ) (XXB Xaz)
X~ 2 — 4+ 13— 3% 1 XOC(Nx—=Inx ) 2xx%+5x0x =X}
Colpr,) =X ————Inx+ — |+ - — -
4(1—x%,) 8(1—xy) tar? 8 4(X,,— %) 24(x,— %)
2 _ 2 _ 2
hes Xxﬁxﬁi(lnxﬁi InxXB) 2Xxﬁ+5Xx,,XGi Xf’f.
F2 (A T o,
a, B (Xx,; in) (XXB Xf’i)
Cin —9x2+ 16x,— 4 - 13+18%| 1 | (23 =3xx)(Inx—Inx)
= X¢+ +
SHw 6(1—x)* 1 x)? tartg 6(x, 0’
2 3 3 - 2 _ B 2
16thf._29xtXH+7Xt . 45y xXﬁ(In XUi lnx"/’)+ 11xXB 7xXBin+2in
3 1
36(x,,—xp)* @B S(Xxﬁ_xﬁi)4 18(Xx,;_xﬁf,)3
Crn ) X2 — X . x2—1 Xex (Inx=Inx ) X Xg+x¢ m A
=X nx - -2 =
AT (1-x)% " 2(1—x)° (xH—xt)3 2(XH—X1)2 a B \/Emwcos,B 873
y ZXX,;XDi(InXDi_InXxB) . XXB+XG?,
v )3 v 2|’
%) %)
In , 3-x, xp(INx=Inx ) 3x X=X m. h
Cs(p,) =X il > 3 1 (A3 B3")
2(1—x¢)°  4(1—x%,) 2(X, = Xy) 4(X, = X) o \/Emwcos,B
XXﬂXOi(In xai—ln Xx,,) Xxﬁ+xﬁi
g CR 2| (BD)
(Xxﬁ_xﬁj) Z(XXB_XGi)

with

m

a,B Q Y a
A; :_ZE»Z++— Iz
u' T ; ul T2’
\/2mWS|n,8

Bi'=-zz, (B2)

and the mixing matrice_@,aizzt are given in Eqs(6),(7). The first term in each of the above expressions is the SM
contributions[12] and the second terms is the charged Higgs contributions. The supersymmetric correction exists in the third
term.

The Wilson coefficients for effectivb?y vertex are
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18— 11x—1 15¢>— 16x,+4 x| XXX 25 (3XPX,+2xx?) (Inx—InX,)
Colm,,) =Xt 3 2 InX |+ 3 2
8(1—x,) 4(1—x,) tarf B|  72x—x) 12x—X,,)
2 72 2 _ 2 _
. 2 (Aaﬁ)z 8X0i+ SXD‘Z’XX[, 7xXﬁ (3xaix)(/f ZXDixXﬁ)(In xDi In xXﬁ)
3 N v 2 VRV '
a, B 36( xGi xXﬁ) G(Xﬁi XXB)
— 1934252 3x4— 303+ 54x2— 32+ 8 x| 19+109x,— 98¢
Colm,)= 3 7 Inx; |+ - 3
12(1—x,) 6(1—x,) tarf B 108x—X,)
2 2
(3x3—9x2x  —4x3)(Inx,—Inx ) S5~ 10IxGex  +43
n H H H n z (Ag,ﬁ)z a o Xp Xg

36(%—x,)* B

v 3
54( X5 2 xxﬁ)

3 _ 2 2 3 —
(6xcji 27X0ixx,,+ 12X0ixx,,+ ZXXﬂ) (In Xﬁi In Xx,,)

_ 4
9(XD 2 xXﬁ)

—5x2+8%—3  3x—2 1 (x2+xx ) (Inx;—Inx,)
Calu,) =X P 3 INXt | =Xy| 50— 3
4(1—x,) 2(1—x,) (X¢—=x,) 2(x—x,,)
m 7X-,—5X (3x2,+2X-3X )(INX-5—InX )
a, a, Ua Ua Urx Ua
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+ . A—
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> +
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