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Top quark seesaw model, vacuum structure, and electroweak precision constraints
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We present a complete study of the vacuum structure of top quark seesaw models of the electroweak
symmetry breaking, including bottom quark mass generation. Such models emerge naturally from bosonic
extra dimensions. We perform a systematic gap equation analysis and develop an improved broken phase
formulation for including exact seesaw mixings. The composite Higgs boson spectrum is studied in the large-
Nc fermion-bubble approximation and an improved renormalization group approach. The theoretically allowed
parameter space is restrictive, leading to well-defined predictions. We further analyze the electroweak precision
constraints. Generically, a heavy composite Higgs boson with a mass of;1 TeV is predicted, yet fully
compatible with the precision data.
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I. INTRODUCTION

Unraveling the mystery of electroweak symmetry brea
ing ~EWSB! is the most compelling challenge facing partic
physics today. It is of central importance because it devol
into the question of the fundamentalorganizing principlefor
the dynamics at or above the electroweak scale.

Supersymmetry provides an excellent candidate for
organizing principle. It is an extra-dimensional theory
which the extra dimensions are fermionic, or Grassmann
Supersymmetry can lead naturally, upon ‘‘integrating ou
the extra fermionic dimensions~i.e., descending from a su
perspace action to a space-time action!, to perturbative ex-
tensions of the standard model~SM!, such as the minima
supersymmetric SM~MSSM!. In such a scheme the Higg
sector contains at least two weak doublets, and the ligh
Higgs boson is expected to be in a range determined by
perturbative electroweak constraints,&140 GeV. From a
‘‘bottom-up’’ perspective a lesson from the supersymmetry
that anorganizing principlefor physics beyond the standar
model can be derived from hidden extra dimensions wh
are then integrated out. Upon specifying the algebraic pr
erties of the extra dimensions one is led to a particular s
metry structure and a class of dynamics for the EWSB.

On the other hand, the organizing principle for phys
beyond the standard model may descend from hidden e
dimensions other than fermionic, and thus different from
supersymmetry. It could, for instance, be a theory of co
pactified bosonic extra dimensions with gauge fields in
bulk. By using the transverse lattice technique@1–4#, one
can ‘‘integrate out’’ the bosonic extra dimensions, preserv
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gauge invariance, and arrive at an effective Lagrangian
cluding Kaluza-Klein~KK ! modes~in a sense the KK mode
are analogues of superpartners!. This leads naturally to a
strong dynamical origin of the EWSB@5,6#. The top-color
model @7,8# and, in particular, the top quark seesaw mod
@9#, emerge naturally from extra dimensions in this way@5#,
following the original suggestion in@10#. Top quark seesaw
models are particularly favored from our perspective beca
they have a natural dynamics with minimal fine-tuning a
are consistent with the electroweak precision constraints

The organizing principle of bosonic extra dimensio
leading to strong dynamical electroweak symmetry break
can be described in the sequence of Figs. 1–4, in ana
with @5#. In Fig. 1, we show a lattice approximation to th
fifth dimension of a 114 theory in which the gauge fields, i
particular from QCD, and SM fermions propagate in t

FIG. 1. Dirac fermion corresponding to constantf has both
chiral modes on all branes. The3 symbols denote thef couplings
on each brane, and the links are the latticized fermion kinetic te
which become Wilson links when gauge fields are present.
©2002 The American Physical Society06-1
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bulk. The lattice description reveals theSU(3)3SU(3)
3•••, one gauge group per lattice brane, the top-color str
ture @1,2,5#. A Dirac fermion has both left- and right-hande
chiral modes on each lattice brane and hopping links to n
est neighbor branes.

It is well known that chiral fermions can be localized
the fifth dimension by background fields@11,12#. A free fer-
mion has the action

E d5xC̄„i ]”2g5]52f~x5!…C, ~1!

wheref is a background-field giving mass.~Here we neglect
the gauge interactions.! From the lattice viewpoint, we mus
decompose]5 into ‘‘fast’’ components~high momentum! and
‘‘slow’’ components~low momentum!. The fast components
correspond to distance scales much shorter than the la
spacing, and the dynamics in the lattice description co
sponding to the slow scale must match onto a Lagranig
which implements the fast scale behavior. If the backgrou

FIG. 2. A chiral fermion occurs on branen wheref(x5) swings
rapidly through zero. The chiral fermion has kinetic term~Wilson
links! connecting to adjoining branes.

FIG. 3. Pure top quark condensation by the top-color force
obtained in the limit of critical coupling on branen and decoupling
to the nearest neighbors. Decoupling corresponds to taking the c
pactification mass scale large; the links are then denoted by da
lines.
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field is approximately constant then we impose]5 fastC50,
i.e., we discard high momentum field components ofC in
the lattice approximation, and both chiral components
kept on each lattice brane. We thus have the Dirac ferm
depicted in Fig. 1.

If, on the other hand,f(x5) swings through zero rapidly
in the vicinity of brane n, then we impose„g5]5 fast
1f(x5)…C50 in the vicinity of this brane, and one chira
component ofC ~corresponding to the non-normalizable s
lution! is thus projected to zero on the brane. A single chi
component is thus kept on the branen, as shown in Fig. 2.
The chiral zero mode is essentially a localized dislocation
the lattice.

We can furthermore demand the coupling strength
SU(3)n on the nth brane to be arbitrary, hence it can b
supercritical. This can be triggered by renormalization
fects due to thef field as well, e.g., a background fiel
coupling as inf(x5)(Gmn

a )2, will renormalize the coupling
on the branen @5#. It is, therefore, not coincidental to expe
this to happen; indeed a variety of effects are expected n
the dislocation, e.g., the chiral fermions themselves can fe
back onto the gauge fields to produce such renormaliza
effects. The result is a chiral condensate on the branen form-
ing between chiral fermions. IdentifyingC5(t,b)L and tR
as the chiral zero modes on the branen and, in the limit that
we take the compact extra dimension very small, the nea
neighbor links decouple at low energies. As shown in Fig
under this limit we recover a top-color model with pure to
quark condensation@13–16#.

In Fig. 4, we consider the case that some of the links
nearest neighbors are not completely decoupled. Again,
can arise from renormalizations due to background fields
due to warping@5#. Thus the mixing with heavy vector-like
fermions occurs in addition to the chiral dynamics on t
branen. In this limit, we naturally obtain an effective to
quark seesaw model@9#.

In the present paper we will undertake a complete a
systematic analysis of the effective 4-dimensional top qu

s

m-
ed

FIG. 4. Top quark seesaw model arises when the effects
nearest neighbor vectorlike fermions are retained, i.e., when th
heavier states are only partially decoupled. Keeping more li
maintains the seesaw. Usually we denotetRn;xR , tLn11

;xL , tRn11;tR .
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TOP QUARK SEESAW MODEL, VACUUM STRUCTURE, . . . PHYSICAL REVIEW D65 055006
seesaw vacuum structure and the precision electroweak
straints. This also extends the earlier works in Refs.@9,17,18#
which studied the precision bounds on the seesaw sche
The Higgs boson in this scheme is composite and he
with a mass;1 TeV, and the theory would seemingly b
ruled out by the precision constraints on the oblique para
etersS-T @19#. We have, however, necessary compensa
positive T contributions coming from the additional seesa
quarks (x), and the size of these effects can be well p
dicted by systematically solving the gap equations. Rema
ably, a heavy Higgs boson is derived and naturally consis
with precision constraints in the top quark seesaw mode

In the recent classification of various models by Pes
and Wells@20#, such compensating effects have been cha
terized as ‘‘conspiratorial.’’ Certainly many models introdu
such compensating effects in anad hocway to achieve the
consistency with the precision data. However, when the
quark seesaw was first proposed in 1998, it lay outside of
S-T ellipse by several standard deviations@9#, and the model
was thus DOA~dead on arrival!. Remarkably, in 1999, with
a refined initial state radiation andW-mass determination a
the CERNe1e2 collider LEP-II, theS-T error ellipse shifted
along its major axis toward the upper right. Since then
theory remains fully consistent at the 2s level, as illustrated
in Fig. 5. Indeed the theory lies within theS-T plot for natu-
ral values of its parameters. One might say that, with
theoretically expected scale for the seesaw partner mas
Mx;4 TeV, the shift in the error ellipse was predicted
the theory—the top quark seesaw has therefore score
first predictive phenomenological success. Or, more con
vatively, we may view the measured error ellipse as a de

FIG. 5. The 68% and 95% C.L.S-T contours~solid!, superim-
posing the standard model curve for Higgs boson mass var
from 100 GeV up to 1000 GeV. The pre-1999 95% ellipse is sho
with a dashed line. For the top quark seesaw model with a 1
composite Higgs boson, we show theS-T contributions as a func-
tion of x mass. The data is therefore consistent with a;1 TeV
Higgs boson andMx;4.0 TeV. ~The S-T ellipses are taken from
1999 precision fit@26#.!
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mination of the heavy seesaw partner mass, and ob
roughly Mx;4 TeV. In this picture, the high precision elec
troweak measurements are therefore probing the mass
heavy new particle, thex quark, significantly above the elec
troweak mass scale.

Let us briefly summarize the logical path that leads to
top quark seesaw model, irrespective of the recent intere
bosonic extra dimensions as a rationale for this scheme
deed, the observed large top quark mass at Tevatron is
gestive of new dynamics responsible for generating
EWSB involving intimately the top quark. The ‘‘top quar
condensation’’ or ‘‘top-mode standard model’’@13–16#, is
the earliest and simplest idea that involves a BCS-like p
ing ^ t̄ t&. It predicts a top quark mass in the SM determin
by the quasi-infrared fixed point@21#, mt;220 GeV, pro-
vided the new dynamics scaleL for the condensate genera
tion is chosen to be very large. The model involves fin
tuning in the gap equation under the largeL limit, and the
degree of fine-tuning is ofO(mt

2/L2). The minimal top
quark condensate model predicts a too heavy top quark m
so the simplest scheme is ruled out.

In top quark condensation, with the fermion-bubble a
proximation @omitting the full renormalization group~RG!
improvement inherent in@21##, it is conceptually easy to se
that a dynamical mass gapmdyn is generated and related t
the weak scale through the Pagels-Stokar formula@22#,

f p
2 5vweak

2 5
Nc

16p2
mdyn

2 ln~L2/mdyn
2 !, ~2!

where vweak5@2A2GF#21/2.174 GeV. This relation leads
to mdyn;700 GeV for a typical top-color breaking scaleL
;3.5 TeV. Thus, the degree of fine-tuning is roughly r
duced to the order of;(mdyn/L)2;(1/4)2;10%, which is
at a reasonable level and is actually ‘‘realistic’’ for th
Nambu–Jona-Lasinio~NJL! model as an approximation t
the full dynamics.@E.g., the NJL model with fermion loops
slightly exaggerates the degree of fine-tuning, and whe
fits to QCD, one has a degree of fine-tuning, roughly ab

(mass gap/L)2;( 1
3 M p /M p)2;11%, whereM p;1 GeV is

the mass of proton andM p/3 the dynamical mass of constitu
ent quarks.# If the top quark mass had been;700 GeV, our
problem would have been solved, and the EWSB would n
essarily be identified with at̄ t condensate. Raising the sca
of L leads to the aforementioned fine-tuning problem and
top quark is too light to produce the full electroweak co
densate.

The top-color force@7,8# is gauge dynamics that can pro
duce a nonzerôt̄ t& condensation. It involves an imbeddin
of QCD into a larger group, which is essentially dictated
the quantum numbers of the top quark to beSU(3)
→SU(3)13SU(3)23••• @and possibly also theU(1)Y
→U(1)Y13U(1)Y23•••#. While this construction always
seemedad hoc, with latticized bosonic extra dimensions a
an organizing principle, we have seen that it becomes nat
@1,2,5#. The top-color force can directly produce the^ t̄ t&
condensate, and the Pagels-Stokar relation~2! requiresL

g
n
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HONG-JIAN HE, CHRISTOPHER T. HILL, AND TIM M. P. TAIT PHYSICAL REVIEW D65 055006
;1014 GeV. Thus the fine-tuning;mt
2/L2;10223 becomes

a severe problem in the simplest realization. Alternative
the top-color force can produce a light top quark mass at
natural scaleL;O(1) TeV, and then another strong dynam
ics, e.g., technicolor, is required to provide the major
strength of the EWSB. This is known as top-color assis
technicolor~TC2! @7#, and it frees one from the requireme
that the top quark condensate generates all of the obse
vweak. It also largely solves the problematic constraints
the extended technicolor~ETC!, which prohibits the genera
tion of a large massmt;vweak. Many interesting phenom
enological consequences of this TC2 scheme arise@8,23#.

We can, alternatively, construct a top quark seesaw mo
in which the dynamical mass term involving the top quark
of order 700 GeV and thus is associated with thefull elec-
troweak symmetry breaking. This involves typically a pa
ing of thetL (I 5 1

2 ) with a new quark,xR (I 50), which has
the same quantum numbers astR . We choose, for natural
ness sake,L;O(TeV), and hence this mass term is of th
order;700 GeV by the Pagels-Stokar formula~2!. We then
incorporate anI 50 quark with the same quantum numbe
as tR , xL , with additional mass terms, and we construc
seesaw mechanism. With the seesaw it is possible to ad
the physical mass of the top quark to its experimental va
of 174 GeV@9#. Hence, the top-color seesaw mechanism
be readily implemented by introducing a pair of isosingl
vector-like quarksxL and xR , of hyperchargeY54/3, in
analogy with thetR . This model produces a bound-sta
Higgs boson, primarily composed oft̄ LxR with a mass of
order;1 TeV or so, while thex mass is at the TeV scale

Note that the top quark seesaw modeldoes not invoke
technicolor, but rather replaces technicolor entirely with th
top-color. In a sense, it is a pure ETC model, where E
~top-color! is sufficiently strong to form condensates. It th
offers new model building possibilities, and may allow inte
esting extensions to solve the flavor problem. The basic
namics of the model can be extended to all families if one
willing to tolerate more fine-tuning. Again, extra-dimensio
point the way to a full flavor model extension@5#. While
there are the additional ‘‘x ’’ quarks involved in the strong
dynamics,these do not carry weak-isospin quantum nu
bers. This is an advantage from the viewpoint of mod
building, since the constraint of theSparameter is essentiall
irrelevant for the top quark seesaw, since we have onl
chiral top quark condensate in the EWSB channel, and
extend by including only vector-like fermions.

The top quark seesaw model makes a robust predic
about the nature of the electroweak condensate: the
handed top quark is unambiguously identified as
electroweak-gauged condensate fermion. The scheme
mands the presence of top-color interactions, but beyond
I 51/2 component of the EWSB, the remainder of the str
ture, e.g., thex quarks and the additional strong forces whi
they feel, appear to be fairly arbitrary. However, as we ha
seen above, a remarkable aspect of the top quark se
model, is that the ingredients, which otherwise appear to
rather arbitrary, i.e., the top-color@tilting U(1)’s#, vector-like
x quarks, etc., are all naturally given by theories of ex
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dimensions where top quark and gauge fields propagat
the bulk @1,2,5#. The theory may be depicted graphical
from the latticized bulk in Fig. 4 as explained above. O
obtains an effective~113!-dimensional Lagrangian descrip
tion in which all of the SM gauge groups are replicated
each Kaluza-Klein~KK ! mode, e.g., for QCD we find
SU(3)→SU(3)3SU(3)3•••, with N additional copies for
N KK modes. Moreover, the vector-likex quarks can arise a
the KK modes of fermions in the bulk.

As mentioned at the outset, the top quark seesaw sch
implies that, in the absence of the seesaw mechanism, the
quark would have a much larger mass, of order;700 GeV.
This has the effect of raising the masses of all the color
and any additional heavy gauge bosons, permitting the
top-color structure to be moved to somewhat higher m
scales. This gives more model-building elbow room, a
may reflect the reality of new strong dynamics. We belie
that the top quark seesaw is a sufficiently significant a
novel, but relatively new idea in dynamical models of EWS
and opens up a large range of new model building possib
ties.

In this work, we perform a systematic analysis of t
dynamical vacuum structure for minimal top quark sees
models by quantitatively solving the gap equations. The
quark mass and the full EWSB are generated together.
inclusion of the bottom quark seesaw mechanism is furt
studied. We carry out the analysis using an improved bro
phase formulation, in comparison to the traditional gau
invariant formalism; the former allows us to treat all th
seesaw mixing effects in a precise way and thus relia
analyze the model parameter space. The composite H
boson mass spectrum is computed by several indepen
approaches. We further study the precision bounds via
S-T oblique corrections and theZbb̄ vertex correction, from
which we derive nontrivial constraints on the parame
space and the composite Higgs spectrum. The effects of
color instantons@7# are also analyzed, as a source to gener
part or all of the bottom quark mass.

II. DYNAMICAL TOP QUARK SEESAW MODEL AND THE
GAP EQUATIONS

A. The minimal model

In the minimal top quark seesaw scheme@9# the full
EWSB occurs via the condensation of the left-handed
quark tL with a new, right-handed weak-singlet quarkxR .
The xR quark has hyperchargeY54/3 and is thus indistin-
guishable from thetR . The dynamics which leads to thi
condensate is the top-color force, as discussed below, an
tilting U(1)’s arerequired. The fermionic mass scale of th
weak-isospinI 51/2 condensate is;700 GeV. This corre-
sponds to the formation of a dynamical bound state we
doublet Higgs field,H;(x̄RtL , x̄RbL)T. To leading order in
1/Nc this yields, via the Pagels-Stokar formula, the prop
Higgs vacuum expectation valuevweak5174 GeV and the
top quarkI 5 1

2 dynamical mass term,

mtxt L̄xR1H.c. ~mtx;700 GeV!. ~3!
6-4
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Moreover, the model incorporates a left-handed we
isosinglet x quark, with (I , Y)5(0, 4/3). Thus,x quarks
have an allowed Dirac mass term,

mxxx L̄xR1H.c. ~4!

This may be viewed as a dynamical mass through additio
new dynamics~yet unspecified! at a still higher mass scale
However, since thexR andxL quarks carry the same (I ,Y)
charges, we prefer to introduce Eq.~4! by hand and ignore
temporarily, its dynamical origin. Furthermore, the le
handedx quark can form an allowed weak-singlet Dira
mass term with the right-handed top quark, leading to

mxtx L̄tR1H.c., ~5!

which again may be viewed as a dynamical mass term in
enlarged theory. There is no direct left-handed top quark c
densate with the right-handed anti-top quark in this sche
since they do not share the same strong top-color dynam
~cf. Sec. II B!. Thus, the resulting mass matrix for thet2x
system is

2~ t̄ L x̄L!S 0 mtx

mxt mxx
D S tR

xR
D 1H.c. ~6!

This seesaw mass matrix can be exactly diagonalized by
tating the left- and right-handed fields,

S tL

xL
D 5KL

t S tL8

xL8
D , S tR

xR
D 5KR

t S tR8

xR8
D , ~7!

with

KL
t 5S cL sL

2sL cL
D , KR

t 5S 2cR sR

sR cR
D , ~8!

which are determined by obtaining the~positive! mass eigen-
values,mt andMx . For convenience, we have used the a
breviationsL5sinuL , and so forth. Our parametrization ha
also implicitly assumed the mass matrix to be real, and t
orthogonal. In the absence of further ingredients, this w
always be the case because any stray complex phase i
mass matrix can be absorbed by redefining the ferm
fields. The~rotated! mass eigenstate fields are denoted byt8
and x8 to distinguish them from the interaction eigensta
fields t andx. The mass eigenvalues and rotation angles
given by

mt
25

1

2
@mxx

2 1mxt
2 1mtx

2 2A~mxx
2 1mxt

2 1mtx
2 !224mxt

2 mtx
2 #,

~9!

→
mtx

2 mxt
2

mxt
2 1mxx

2 U
(mxx@mxt ,mtx)

,
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25

1

2
@mxx

2 1mxt
2 1mtx

2 1A~mxx
2 1mxt

2 1mtx
2 !224mxt

2 mtx
2 #,

~10!

→mxx
2 1mxt

2 u(mxx@mxt ,mtx) ,

S sL

cL
D 5

1

A2
F17

mxx
2 1mxt

2 2mtx
2

Mx
22mt

2 G 1/2

, ~11!

S sR

cR
D 5

1

A2
F17

mxx
2 2mxt

2 1mtx
2

Mx
22mt

2 G 1/2

. ~12!

The fermionic mass matrix thus admits a conventional s
saw mechanism, yielding the physical top quark mass as
eigenvalue that is;mtxmxt /mxx!mtx;700 GeV. The top
quark mass can be adjusted to its experimental value by
choice of mxt /mxx . The diagonalization of the fermionic
mass matrix does not affect the physical vacuum expecta
value ~VEV!, vweak.174 GeV, of the composite Higg
doublet. Indeed, the Pagels-Stokar formula is now modifi
as

vweak
2 [ f p

2 .
Nc

16p2

mt
2

sin2uR
S ln

L2

M̄2
1cD , ~13!

wheremt is the physical top mass, sinuR5sR'mxt /mxx the
right-handed seesaw angle,M̄5Amxt

2 1mxx
2 , andc denotes

sub-leading terms, and we expectc;O(1).
The Pagels-Stokar formula now differs from that obtain

~in large-Nc approximation! for pure top quark condensatio
models, by a large enhancement factor 1/sin2 uR. This is a
direct consequence of the seesaw mechanism. The me
nism incorporatescL5(tL , bL), which provides the source
of the weak-isospinI 51/2 quantum number of the compo
ite Higgs boson, and thus the origin of the EWSB vacuu
condensate. Note that we have separated the problem
EWSB from the weak-isosinglet physics in thexL,R and tR
sector, which is an advantage of the seesaw mechanism s
the electroweak constraints are not so restrictive on the
singlets.

B. Top-color dynamics

Let us turn to some of the dynamical questions, e.g., h
does the top-color force produce the dynamicalmtx mass
term? We proceed by introducing an embedding of QCD i
the gauge groupsSU(3)1^ SU(3)2, with coupling constants
h1 andh2, respectively. These symmetry groups are brok
down to SU(3)QCD at a high mass scale. We assign t
representations for relevant fermions under the full set
gauge groupsSU(3)1^ SU(3)2^ SU(2)W^ U(1)Y as be-
low;

cL : ~3, 1, 2, 11/3!, xR : ~3, 1, 1, 14/3!,

tR , xL : ~1, 3, 1, 14/3!. ~14!
6-5
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This set of fermions is incomplete; the representation sp
fied has @SU(3)1#3, @SU(3)2#3, and U(1)Y@SU(3)1,2#

2

gauge anomalies. These anomalies will be canceled by
mions associated with either the dynamical breaking
SU(3)1^ SU(3)2, or with theb quark mass generation~an
explicit realization of the latter case will be given in Sec. II!.
The crucial dynamics of the EWSB and top quark mass g
eration will not depend on the details of these additio
fermions. Schematically, the picture looks like

SU(3)1 SU(3)2

SS tL
bL

D
xR

•••

D SS tR
bR

D
xL

•••

D
This can be viewed as a two lattice-brane approximat

to a higher dimensional model with localized chiral fermio
@5#.

We further introduce a scalar field,F, transforming as
(3̄, 3, 1, 0), with a negative massM F

2 and an associate
quartic potential such thatF develops a diagonal VEV,

^Fj
i &5Vd j

i , ~15!

and the top-color group is broken down to the usual QC

SU~3!1^ SU~3!2→SU~3!QCD , ~16!

yielding massless gluons and an octet of degenerate colo
with massL given by

L25~h1
21h2

2!V2. ~17!

F is just the Wilson link connecting the two branes in t
411 picture, andV the inverse compactification scale. A
ternatively, from a pure 311 perspective this symmetr
breaking can arise dynamically, which is akin to dimensio
deconstruction@4#. We will describeF as a fundamenta
field in the present model for the sake of simplicity.

The scalarF also has the correct quantum numbers
form a Yukawa interaction with the singlet seesaw qua
xL,R and thus provides the requisite mass termmxx ,

2yxx R̄FxL1H.c.→2mxxx̄x. ~18!

This also happens automatically in the latticized ext
dimension scheme where this term plays the role of the
mion ~hopping! kinetic term. We stress that this is an ele
troweak singlet mass term. In this schemeyx is a
perturbative coupling constant so thatV@mxx . Finally, as
both tR andxL carry identical top-color andU(1)Y quantum
numbers, we should also include the explicit weak-sing
mass term, of the form,mxtx L̄tR1H.c.

At energy scales below the coloron mass, the effec
Lagrangian of this minimal model isSU(3)C^ SU(2)W
^ U(1) invariant and can be written as
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L05Lkinetic2~mxxx L̄xR1mxtx L̄tR1H.c.!1Lint . ~19!

Lint contains the residual top-color interactions from the e
change of the massive colorons, and can be written as
operator product expansion,

Lint52
h1

2

L2 S c L̄gm
Ta

2
cLD S x R̄gm

Ta

2
xRD1LL1RR1•••,

~20!

whereLL (RR) refers to left-handed~right-handed! current-
current interactions andTa’s are the brokenSU(3) genera-
tors. Since the top-color interactions are strongly coupl
forming boundstates, higher dimensional operators mi
have a significant effect on the low energy theory. Howev
if the full top-color dynamics induces chiral symmet
breaking through a second order~or weakly first order! phase
transition, then one can analyze the theory using the fun
mental degrees of freedom, namely the quarks, at scales
nificantly lower than the top-color scale. We will assume th
this is the case, which implies that the effects of the hig
dimensional operators are suppressed by powers of the
color scale, and it is sufficient to keep in the low ener
theory only the effects of the operators shown in Eq.~20!.
Furthermore, theLL and (RR) interactions do not affect the
low-energy effective potential in the large-Nc limit, so we
will ignore them.~One should keep in mind that these inte
actions may have other effects, such as contributions to
custodial symmetry violation parameterT, but these effects
are negligible if the top-color scale is in the multi-Te
range.!

To leading order in 1/Nc and upon performing the familia
Fierz rearrangement, we obtain the following scalar-ty
NJL @24# interaction:

Lint5
h1

2

L2
~c L̄xR!~x R̄cL!. ~21!

It is convenient to pass to a partial mass eigenbasis with
following transformations for right-handed fields,

xR→ cosu xR2sinu tR , tR→ cosu tR1sinu xR ,
~22!

where

tanu 5
mxt

mxx
. ~23!

In this basis, the NJL Lagrangian takes the form,

L05Lkinetic2M̄x R̄xL1H.c.1
h1

2

L2
@c L̄~cosu xR2sinu tR!#

3@~cosu x R̄2sinu t R̄ !cL#, ~24!

with

M̄5Amxx
2 1mxt

2 . ~25!
6-6
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C. Gap equation analysis

At this stage we have the choice of using the renorm
ization group~RG!, or to study the mass gap equation f
mtx . Ultimately these should be equivalent. The RG a
proach requires the construction of the effective potentia
the composite Higgs boson, and its minimization. The g
equations get us there directly. A further rationale for stu
ing the gap equations is that they in principle allow one

explore the limits, such asM̄.L which are conceptually
more difficult with the renormalization group.~The
dimension-6 operator makes no sense above the scaleL in
the RG, but the cutoff theory can still be expressed in the
equation language.! In the following, we will start with the
gap equation analysis, and we find it instructive to begin
treatingmtx as a mass insertion and examine its depende

on the parametersM̄ and u. An improved derivation of the
seesaw gap equation without mass insertion will be given
Appendix A 1 and Sec. II D.

To derive gap equations, we expand the NJL ver
in Eq. ~24! and find that the four individua

vertices, (t L̄xR)(x R̄tL), (t L̄tR)(t R̄tL), (t L̄tR)(x R̄tL),

and (t R̄tL)(t L̄xR), can form two types of dynamical conden

sates,^t L̄xR& and ^t L̄tR&. Correspondingly, we have tw
mass-gap terms,

2mtx t̄ LxR2mtt t̄ LtR , ~26!

where the diagonal massmtt can be conveniently put into th
top propagator while the off-diagonal massmtx will be in-
cluded up toO(mtx

3 ) in the present analysis. We can the
write down the two gap equations formtx and mtt , as
graphically shown in Fig. 6. It is clear that these are
large-Nc Schwinger-Dyson equations@expanded up to
O(mtx

3 )# for the NJL Lagrangian~24!. From Fig. 6, we de-
rive

FIG. 6. Top quark seesaw gap equations formtx andmtt .
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mtx52sc
h1

2

L2 (
j 51

4

D j ,

mtt52s2
h1

2

L2 (
j 51

4

D j , ~27!

→ mtx

mtt
5

s

c
5

mxt

mxx
,

where (s, c)5(sinu, cosu) and the term( j 51
4 D j represents

the sum of four loop integrals on the right-hand side of ea
gap equation in Fig. 6. It is important to note that thesame
loop graphs appear in both gap equations formtx andmtt so
that we have the relationmtt /mtx5s/c as above. This mean
that the two coupled gap equations are actually reduce
one independent gap equation, say, formtx . By explicit cal-
culation of the loop integrals, we write this gap equation
the following form, up toO(mtx

3 ),

mtx5mtx

k

kc
F12

mtx
2

L2 X~11s2!lnS L2

M̄2
11D 2

c2L2

L21M̄2

1
s4

c2
lnS c2

s2

L2

mtx
2

11D C2c2
M̄2

L2
lnS L2

M̄2
11D G

1O~mtx
4 !, ~28!

where for convenience we have used the definitionsk
5h1

2/(4p) and kc52p/Nc . There are several ways to se
that these reproduce normal top condensation in the de
pling limit. For instance, takingM̄→` for fixed L and using
the relationmtx5mtt(s/c), we find

mtt5mtt

k

kc
F12

mtt
2

L2
lnS L2

mtt
2

11D G , ~29!

which is just the familiar top condensation gap equatio
with mtt the dynamical top quark mass. Here we have
coupled xL and xR with M̄→`. We can also obtain top
condensation by setting sin2 u5s250 andM̄→0, which de-
couplesxL and tR , and causesxR to play the role oftR . A
main advantage of this mass-insertion gap equation~28! is
that it allows us to analytically solve formtx @ignoring a
small O(s4) term#:

mtx.LF 12
kc

k
2c2

M̄2

L2
lnS L2

M̄2
11D

~11s2!lnS L2

M̄2
11D 2

c2L2

L21M̄2

G 1/2

, ~30!

where we have discarded the trivial solutionmtx50.
This clearly shows that for the fixedk/kc.1, the conden-

sate turns off like a second order phase transition as we r
6-7
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the scaleM̄ . This is essentially to compensate the decoupl
of the heavy fermion in the loop of massM̄ . The gap equa-
tion ~28! or ~29! also shows that we require supercritic
coupling as the massM̄ becomes large. We can further d
rive the effective seesaw critical couplingkc

eff from the gap
equation~28! or ~30! by settingmtx50, i.e., we have

kc
eff

kc
5

1

12c2
M̄2

L2
lnS L2

M̄2
11D , ~31!

which is displayed in Fig. 7 as a function ofM̄ /L. For k

.kc
eff , we havemtx.0. We see thatkc

eff5kc for M̄50, and

as M̄ increases the effective seesaw critical couplingkc
eff

moves abovekc(52p/Nc) implying that stronger top-colo
force is required compared to the non-seesaw case. Fin
we note that using the complete seesaw diagonaliza
~7!,~8! and the NJL vertex~21!, we can derive the exac
large-Nc seesaw gap equation without using a mass-inser
approximation~cf. Appendix A 1!. This will allow us to re-
liably analyze the full seesaw parameter space.

The electroweak structure of the low energy theory is b
read off from the effective Lagrangian, which may be d
rived from the traditional gauge-invariant renormalizati
group analysis as below. We proceed by rewriting the N
interaction~21! with the introduction of an auxiliary color
singlet field,F0, which becomes theunrenormalizedcom-
posite Higgs doublet,

L05Lkinetic2@M̄x R̄xL1h1c L̄~cosu xR2sinu tR!F01H.c.#

2L2F0
†F0 . ~32!

FIG. 7. Effective seesaw critical couplingkc
eff ~scaled by con-

stant kc[2p/3) as a function of M̄ /L, for tanu5mxt /mxx

5(0, 0.1, 0.2, 0.3, 0.5, 0.8).
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To derive the effective Lagrangian at a low energy scalem,
we integrate out the modes of momentaM>uku>m. For m

,M̄,L, the heavy fieldx decouples, so that we have

Lm,M̄5Lkinetic2h1 sinu ~c L̄tRF01H.c.!1ZFuDF0u2

2M̃F
2 ~m!F0

†F02l̃~F0
†F0!2, ~33!

where the effective scalar wave-function renormalizatio
mass term and quartic coupling are given by

ZF~m!5
1

2

k

kc
F lnS L2

M̄2D 1sin2u lnS M̄2

m2 D 1O~1!G ,

M̃F
2 ~m!5L22

k

kc
FL22cos2u M̄2 lnS L2

M̄2D
1O~M̄2,m2!G , ~34!

l̃~m!52p
k2

kc
F lnS L2

M̄2D 1sin4u lnS M̄2

m2 D 1O~1!G ,

where (k,kc)5(h1
2/4p, 2p/Nc). These relations hold form

,M̄ in the large-Nc approximation, and illustrate the decou
pling of thex field at the scalem,M̄ . In the limit sinu!1,
the induced couplings are those of the usual NJL model;
the Higgs doublet is predominantly a bound state ofx̄RcL ,
and the corresponding fermion loop, with loop momentu
ranging overM̄,uku,L, controls most of the renormaliza
tion group evolution of the effective Lagrangian.

In order for the composite Higgs doublet to develop
VEV, the top-colorSU(3)1 gauge force must be supercrit
cal, as indicated by the preceding gap equation analy
Once k(5h1

2/4p) is supercritical, we are free to tune th

renormalized Higgs boson mass,MF
2 (m)5M̃F

2 (m)/ZF , to
any desired value. This implies that we are free to adjust
renormalized VEV of the Higgs doublet to the electrowe
value, ^F&5v/A2.174 GeV. The renormalized effectiv
Lagrangian atm,M̄ takes the form

Lm,M̄5Lkinetic2gt sinu ~c L̄tRF1H.c.!1uDFu2

2MF
2 ~m!F†F2l~F†F!2, ~35!

where

F5F0AZF, gt5
h1

AZF

, MF
2 ~m!5

M̃F
2 ~m!

ZF
, l5

l̃

ZF
2

.

~36!

When the top-color interaction is supercritical,F be-
comes tachyonic at low energy scales,M̃F

2 (m→0),0 and a
dynamical condensate will be induced. This condens
breaks the electroweak symmetrySU(2)L ^ U(1)Y
6-8
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TOP QUARK SEESAW MODEL, VACUUM STRUCTURE, . . . PHYSICAL REVIEW D65 055006
→U(1)EM and induces mixing between the top quark andx
fields. In the minimal top seesaw model the physical part
spectrum can be readily seen by writing the Higgs double
the unitary gauge,F5(1/A2)(v1h, 0)T, where h is the
neutral Higgs boson of the theory. The resulting top qu
mass can be read off from the renormalized Lagrangian,

mt 5
gtv

A2
sinu, ~37!

which corresponds to the Pagels-Stokar formula in the fo
of Eq. ~13!.

Finally, by minimizing the effective Higgs potential in Eq
~35! and using the results in Eq.~34!, we can derive the
approximate formula for the physical Higgs boson mass
keeping the leading logarithmic terms,

Mh ' 2mtx , ~38!

which shows that the physical Higgs boson mass is ab
two times the dynamical mass gap, as expected from
usual large-Nc bubble approximation@15,24#. In Sec. II F, we
will derive a more preciseMh using two improved analyses

D. Tadpole condition and improved analysis
in the broken phase

Before proceeding to perform the numerical analysis
gap equations, we consider an alternative~yet equivalent!
derivation of the gap equation based on the Higgs tadp
condition in the broken phase of the effective theory.~For a
simpler example of a broken phase analysis in NJL,
@25#!. We also present the improved RG analysis in the b
ken phase of the low energy theory, which allows us to p
cisely treat the seesaw mass diagonalization and the mi
effects in Higgs Lagrangian.@This is unlike the usual gauge
invariant RG analysis around Eq.~32! where the Higgs
vacuum is unshifted and thus the exact seesaw mass d
nalization is not allowed.# As a consequence, the Higgs b
son mass and its Yukawa coupling can be more preci
analyzed in the present broken phase formalism. We be
by choosing the unitary gauge of the Higgs doublet and sh
ing the bare fieldF0 to the broken phase vacuum,

F05
1

A2
S v01h0

0 D , ~39!

which results in the fermionic seesaw mass matrix given
Eq. ~6!. Thus the effective Lagrangian at the scalem5L can
be written as
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LL52~ t L̄ x L̄!S 0 mtx

mxt mxx
D S tR

xR
D 2

h1

A2
t L̄xRh01H.c.

2
1

2
L2h0

22L2v0h0

52mtt 8̄t82Mxx 8̄x82
1

2
L2h0

22L2v0h0

2
h1

A2
@cLtL8̄1sLxL8̄#@sRtR81cRxR8 #h01H.c., ~40!

where we have performed the exact seesaw diagonaliza
according to Eqs.~7!,~8!. Now, we evolve the Lagrangian
down to the scalem(,Mx<L) by integrating out the mo-
mentakP(m, L). The heavy quarkx decouples and we ar
rive at the renormalized broken phase Lagrangian,

Lm,Mx
52mtt 8̄t82

gt

A2
cLsRt 8̄t8h1

1

2
~]mh!22DT̃ h

2
1

2
Mh

2h22Vint~Zh
21h!, ~41!

where gt5h1 /AZh and Vint(Zh
21h) contains the effective

Higgs self-interactions. The Higgs tadpole termDT̃ and
mass termMh

2 are defined by

DT̃5~Zh
21/2vL21dT̃!Zh

21/2, Mh
25~L21dM̃h

2!/Zh ,
~42!

with dT̃ and dM̃h
2 computed from the one-loop Higgs tad

pole and self-energy corrections, respectively. The Higgs
pole condition,DT̃50, results in

v0L21dT̃ 5 0, ~43!

wheredT̃ comes from one-loop tadpole diagrams~cf. Fig. 8!.
Note that the tadpole loops indT̃ will be integrated from
zero momentum to the cutoffL ~independent of the renor
malization scalem) as they are really vacuum graphs wi
vanishing external momentum. The equation~43! is just the
minimization condition of the Higgs potential in its broke
phase, and is equivalent to the gap equation derived from
NJL formalism in Sec. II C and Appendix A 1, as will b
clear shortly. Figure 8 shows that the condition in Eq.~43!
actually represents the exact large-Nc gap equation without

FIG. 8. The large-Nc tadpole condition for minimizing the
Higgs potential.
6-9
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mass insertion.@The mass-insertion tadpole condition, ful
equivalent to gap equation~28! in Sec. II C, will be given in
Appendix A 2.# Now, using the relationmtx5h1v0 /A2, we
can explicitly derive, from Eq.~43!, a single gap equation fo
mtx ,

mtx5
k

kc
H cLsRS mt2

mt
3

L2
lnFL21mt

2

mt
2 G D

1sLcRS mx2
mx

3

L2
lnFL21mx

2

mx
2 G D J , ~44!

where (k,kc)5(h1
2/4p, 2p/Nc). Equation~44! is the same

as the exact large-Nc NJL gap equation derived in Appendi
A 1. It also reduces back to the approximate mass-inser
gap equation~28! ~cf. Sec. II C and Appendix A 2! after ex-
panding the seesaw rotation angles and mass eigenvalu
to O(mtx

3 ), as we have verified. This provides a consisten
check of our analysis. Since the right-hand side of Eq.~44!
contains the mass gapmtx in an implicit way, it is less trans-
parent than the approximate mass-insertion gap equation~28!
presented earlier. But, the precise treatment of all see
mixing effects in Eq.~44! has an advantage of allowing us
reliably explore the full seesaw parameter space, and is
ticularly useful in our later quantitative numerical analysi

We proceed by computing the wave-function renormali
tion constant of the Higgs field,Zh , and obtain

Zh5
1

2

k

kc
H cL

2sR
2 lnFL21mt

2

mt
2 G1~cR

21sL
2sR

2 !lnFL21mx
2

mx
2 G J ,

~45!

where we have dropped the smallO(1) constant terms
~which are not logarithmically enhanced! together with the
tiny O(mt

2/Mx
2) terms. The renormalizedt8- t̄ 8-h vertex has

Yukawa couplingcLsRgt /A2 with gt5h1 /AZh. The dynami-
cal massmtx in the seesaw matrix takes the form,mtx

5h1v0 /A25gtv/A2, which, with Eq.~45!, results in a more
precise form of the seesaw Pagels-Stokar formula,

v25
mtx

2

4pkc
H cL

2sR
2 lnFL21mt

2

mt
2 G1~cR

21sL
2sR

2 !lnFL21Mx
2

Mx
2 G J .

~46!

This equation is an improvement over the previous form
~13! @or Eq. ~37!# in that the exact seesaw mixing effec
associated with the leading logarithmic terms are includ
To check the consistency, we note that Eq.~46! reduces back
to Eq. ~13! under the limit (sL

2 , sR
2)!1 and mtx

'mt /(mxt /mxx)'mt /sinuR ~where sinuR'mxt /mxx). Fi-
nally, we note that the above Pagels-Stokar formula is
rived under the large-Nc fermion bubble approximation
which, for the low scale cutoffL&10425 GeV, is found to
work well in comparison with the full RG evolution~includ-
ing non-large-Nc terms! @27#.
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E. Solutions to the top quark seesaw gap equation

In this subsection we present a systematic numer
analysis of the top quark seesaw gap equations. From
approximate or exact gap equation@cf. Eq. ~30! or Eq.~44!#,
we can see that the seesaw mass gapmtx /L ~scaled byL)
can be solved as a function of thex-mass parametermxx /L
~scaled byL), for each givenk/kc ~the strength of top-color
gauge force! and the seesaw parameterr t5(mxt /mxx)2. Ex-
ploring such a relation betweenmtx /L andmxx /L will al-
low us to explicitly examine the behavior of the second ord
phase transition of the mass gapmtx as thex quark mass
scalemxx becomes large. This is shown in Fig. 9 for a typic
input of k/kc52 and a wide range ofr t values. We have
plotted seesaw solutions using both the approximate m
insertion gap equation~30! and the exact gap equation~44!,
depicted as dotted and dashed curves in Fig. 9. We see
the two types of solutions indeed converge in the sm
mtx /L region as expected, and deviate more from each o
for largermtx /L values. As the ratiomxx /L moves beyond
;0.63, the mass gapmtx smoothly turns off, indicating a
second order phase transition has occurred. In another l
mxx /L→0, the difference between the two sets of curv
becomes the largest as the approximate curves ofmtx /L all
fall into zero while the exact ones smoothly approach
about 0.63, a particular solution of the reduced gap equat
12kc /k5(mtx /L)2 ln(11L2/mtx

2 ) ~with k/kc52), derived
from Eq. ~44! in the limit mxx /L→0.

We now turn to the physical solutions in which we supe
impose the requirements of the top quark mass,mt
5174.3 GeV, and the full EWSB VEV,v5246 GeV. Our
strategy is to fix the coloron massL ~characterizing the top-
color breaking scale!, and the top-color gauge coupling a

FIG. 9. Solutions for top quark seesaw gapmtx with k/kc52
and Ar t5mxt /mxx5(0.1, 0.3, 0.5, 0.6), respectively. The physic
seesaw solutions~satisfying mt5174 GeV and v5A2vweak

5246 GeV) are plotted as solid curves, extracted from Fig.
The upper set of curves~dashed curves! are derived from the exac
large-Nc gap equation~44! and the lower ones~dotted curves! from
the mass-insertion gap equation~30!.
6-10
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FIG. 10. Solutions of the top
quark seesaw gap equations a
shown in plots~a!–~c! for k/kc

5(1.2, 1.5, 2, 4), with mt

5174.3 GeV and v5A2vweak

5246 GeV superimposed. Th
solid curves are derived from th
exact gap equation~44! while the
dotted curves from the mass inse
tion gap equation~30!. The pre-
dicted physical mass-eigenvalu
of x quark is also shown in the
plot ~d!.
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that scale (h1, or equivalently,k/kc). Then, we are left with
three seesaw parameters (mtx , mxt , mxx) @or, equivalently,
(mtx , r t , mxx)# to be determined. Indeed, we have thr
coupled equations to make this determination comple
feasible: the gap equation~44! @or Eq. ~30!#, the top mass
eigenvalue equation~9!, and the Pagels-Stokar formula~46!
@or Eq. ~37!#. From this set of solutions, all other physic
quantities, such as the seesaw mixing angles, the massx
quark, and the Higgs boson mass and Yukawa couplings,
be predicted as functions ofL for each givenk/kc .

In Figs. 10~a!–10~c!, we present our complete physic
seesaw solutions as functions ofL and for various inputs of
k/kc . For completeness, we also show the prediction of
x mass (Mx) in Fig. 10~d!. Figure 10~c! shows that the mas
gapmtx ranges from;700 GeV up to;1.7 TeV for 1.05
<k/kc<4, and is quite flat in the entire region ofL. There
is also a lower limit on the allowed region ofL for each
fixed k/kc . For instance,L has to be greater than 1.8 Te
for k/kc52. Furthermore, it is instructive to map our sol
05500
ly

f
an

e

tions into the plane ofmtx /L vs mxx /L in Fig. 9. Since the
seesaw parameters (mtx , r t , mxx) are determined as in Figs
10~a!–10~c! for each givenL and k/kc , we see that the
physical solutions fork/kc52 ~solid curves! indeed take a
unique trajectory in themtx /L2mxx /L plane of Fig. 9. For
L varying from 1.8 TeV to 80 TeV, the~exact and approxi-
mate! physical solutions move from left to right along th
two solid curves and fall into good agreement formxx /L
*0.56.

With these solutions we are ready to predict physical
servables. We first consider the effectivet8-t 8̄-h Yukawa
coupling, which can be extracted from Eq.~41!,

Yhtt5gtcLsR5
h1

AZh

cLsR . ~47!

In the limit of r t5(mxt /mxx)2!1 andxt5(mtx /mxx)2!1,
Eq. ~47! can be approximated asYhtt'Ar t(h1 /AZh). With
6-11
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the leading order seesaw mass relation,mt'Ar tmtx

5Ar t(h1 /AZh)(v/A2), we arrive at an approximate equ
tion, Yhtt'A2mt /v'1, as in the SM. Now, we can unde
stand the gross behavior ofYhtt in Fig. 11~a!. Namely, for the
low L region, the seesaw solutions ofr t and mtx /mxx are
quite sizable@cf. Figs. 10~a!–10~c!# so that the above limit
(r t , xt)!1 is not good and the deviationYhtt21 is large;
also smallerk/kc values have largerr t , suggesting larger
deviation of Yhtt from unity. But, whenL increases, the
ratios (r t , xt) drop off quickly and thusYhtt approaches
Yhtt51.

Other important couplings include the effectiveW-t8-b
andZ-t8-t8 gauge couplings, which are now modified by t
seesaw rotations oft andx @cf. Eqs.~11!,~12!#. The W-t8-b
coupling gWtb , for instance, involves only the left-hande
fields (tL8 , bL) and we derive

gWtb

gWtb
SM

5cL512
xt

2~11r t!
2 F11

8r t23

4~11r t!
2

xtG1O~xt
3!,

~48!

where (Ar t,Axt )[(mxt , mtx)/mxx,1. We see that the ef
fective couplinggWtb is reduced from its SM value, and th
deviation becomes small in the limit (r t , xt)!1 ~valid in the
large L region, cf. Fig. 10!. This picture is quantitatively
shown in Fig. 11~b!. Such deviations are important for pre
cision experimental tests at various colliders before the s
saw quarkx can be directly produced.

Finally, we remark that, using the freedom to adjustr t @or
equivalently, sinu in Eq. ~22!#, we can apparently accommo
date any fermion mass lighter than;700 GeV. However,

FIG. 11. The predicted effective Higgs Yukawa couplingYhtt in
~a!, andW-t-b gauge couplinggWtb shown as the ratio over its SM
value in ~b!.
05500
e-

this requires some fine-tuning. This freedom may be use
in constructing more complete models involving all thr
generations. The top quark is unique, however, in that
large mass is very difficult to accommodate in any other w
and there is less apparent fine-tuning. We therefore believ
is generic, in any model of this kind, that the top qua
receives the bulk of its mass through this seesaw mechan

F. The composite Higgs boson mass

With the seesaw gap equation solved in the previous s
section, we can proceed to analyze the mass spectrum o
composite Higgs boson. From Eqs.~40!, ~42!, and~45!, and
taking the usual large-Nc fermion-bubble approximation, we
can straightforwardly compute the physical Higgs bos
massMh . A lengthy calculation gives

Mh
25

1

Zh
H S 12

k

kc
DL21

k

kc
F S 3sL

2cR
21~cL

2cR
21sL

2sR
2 !

3
Mx

2

Mx
22mt

2
12cLcRsLsR

Mxmt

Mx
22mt

2D Mx
2

3 lnS L2

Mx
2

11D 1S 3cL
2sR

22~cL
2cR

21sL
2sR

2 !
mt

2

Mx
22mt

2

22cLcRsLsR

Mxmt

Mx
22mt

2D mt
2 lnS L2

mt
2

11D
22sL

2cR
2

L2Mx
2

L21Mx
2

22cL
2sR

2
L2mt

2

L21mt
2G J . ~49!

FIG. 12. The predicted mass spectrum of the top quark see
Higgs boson:~a! by the large-Nc fermion-bubble calculation; and
~b! by an improved RG analysis including the Higgs self-coupli
evolution.
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To compare with Eq.~38!, we consider the limit r t

[(mxt /mxx)2→0 and expand all quantities in terms of th
small parameter xt[(mtx /mxx)2, so that, (mt , Mx)
'(0,mxxA11xt) and (sL , sR)'(xt, 0). With these, we
verify that theMh

2 formula ~49! reduces toMh'2mtx , in
agreement with the approximate mass relation~38! derived
by the gauge-invariant renormalization group analysis. Us
the physical seesaw solutions@cf. Figs. 10~a!–10~c!#, we can
plot the predicted Higgs boson mass from Eq.~49! @Eq. ~38!#
as the solid@dotted# curves in Fig. 12~a!. It is important to
note that our current large-Nc fermion-bubble approximation
predicts a heavy Higgs boson mass, typically around 1 T
@28#, saturating the SM unitarity bound.

When the ratiok/kc becomes closer to one~i.e., k be-
comes more critical!, the Higgs boson mass becomes light
as expected from the mass formula~49!. Also, the approxi-
mate relationMh'2mtx in Eq. ~38! holds better for smaller
k/kc;1 ~to about 30%) and becomes less reliable for lar
k/kc value with an overestimate factor up to;2. This
shows that the current improved broken phase calculatio
Mh ~including exact seesaw mixings! already works better
than the usual approach which results inMh'2mtx
@9,17,29#.

Finally, we note that the above calculation of the Hig
boson massMh includes only the large-Nc fermion-bubble
contributions, but ignores the non-large-Nc Higgs propaga-
tion in the loop. For the leading logarithmic terms inMh ,
this corresponds to solving the RG equations~RGEs! for top
Yukawa coupling (yt) and Higgs self-coupling (l) by keep-
ing the fermion-bubble terms. This approach also applie
the calculation of top quark massmt and results in the
Pagels-Stokar formula which, in the case of a low cut
scaleL;10425 GeV, is found to agree well with the ful
RG evolution. In the minimal top-condensate model@15#, the
large-Nc fermion-bubble calculation ofmt agrees with full
RG analysis to 5–14 % ~34%! level for L5105–
104 (1019) GeV, while for the Higgs boson mass predi
tion, the former tends to overestimateMh by a factor of
1.8–2 ~1.2! for L5105–104 (1019) GeV @27#. This is due
to the fact that for a high scaleL, mt is controlled by the
infrared quasifixed point@21#; for a low scaleL, the infrared
fixed point is not reached and themt value is mainly deter-
mined by the dominant large-Nc RG running so that the
fermion-bubble calculation works well@27#.

The Higgs boson mass in the case of a high scaleL is
again controlled by the infrared quasifixed point~where the
yt term andl term tend to cancel in theb function of l);
however, the situation with a low scaleL is different as the
infrared fixed point is not reached and the positive~non-
large-Nc) l2 term in theb function of l has a sizable nu
merical coefficient compared to the negative large-Nc yt

4

term. Thisl2 term can drivel ~and thusMh) to lower value
and corrects the usual fermion-bubble calculation by a fa
;1.8–2 for L5104–105 GeV @15,27#, but, the uncertain-
ties of the one-loop RG predictions~from the unknown non-
perturbative dynamics associated with the compositen
condition at m5L) also become much larger, ofO(100
2200) GeV @15#, as the infrared fixed point is not so re
05500
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evant. Hence, the one-loop full RG analysis~with compos-
iteness conditions! @15# may not be more reliable than th
usual fermion-bubble calculation for theories with alow
scaleL. Similar features should hold for theMh analysis in
the top quark seesaw model@except a complication by the
new mass scaleMx between (mt , Mh) andL#. Nevertheless,
we feel it is useful to implement such an improved one-lo
RG analysis ofMh below ~in the spirit of Ref.@15#!, as a
comparison.

Using the mass-independentMS scheme@15#, we con-
sider the top-quark seesaw RG evolution in two steps:~i! for
the range L>m>Mx ; ~ii ! for the range Mx>m
>(Mh , mt). We start with the gauge-invariant effective La
grangian~32! at m5L,

LL5Lkinetic2@mxtx L̄tR1mxxx R̄xL1h1c L̄xRF01H.c.#

2L2F0
†F0 , ~50!

where for simplicity the partial rotation~22! is not taken
since we will use a mass-independent RG scheme@15# and
considerMx.mxx . For L.m>Mx , the effective Lagrang-
ian LMx<m,L contains

2~mxtx L̄tR1mxxx R̄xL1h1c L̄xRF01H.c.!1ZFuDF0u2

2M̃F
2 ~m!F0

†F02l̃~F0
†F0!2

52~mxtx L̄tR1mxxx R̄xL1gtc L̄xRF1H.c.!1uDFu2

2MF
2 ~m!F†F2l~F†F!2, ~51!

where gt5h1 /ZF
1/2, MF

2 5M̃F
2 /ZF , and l5l̃/ZF

2 , with

ZF(m).(k/kc)ln(L/m) and l̃(m).4p2(k2/kc)ln(L/m) in
the modified minimal subtraction~ MS) scheme. The SM
gauge couplings are negligible for the current analysis
we can write the RGE ofl in the regionL>m>Mx ,

b~l!5
dl

d ln m
.

1

8p2
@2Ncgt

412Nclgt
2112l2#, ~52!

where thel terms on the right-hand side tend to decreasl
~andMh) and are ignored in the usual fermion-bubble calc
lation ~which is justified forgt

2@l andNc@1). The large-Nc

relationgt5h1 /ZF
1/2 gives thec-x-F Yukawa coupling,

gt
2~m!.

8p2/Nc

ln~L/m!
@1, ~53!

which suggests the compositeness boundary condi
gt

2(L)5`. The complete large-Nc RGE for gt is

dgt
2

d ln m
5

1

8p2 FNcgt
223

Nc
221

Nc
g3

2Ggt
2 , ~54!

where the effect of the QCD couplingg3 is found to be
numerically negligible for the current analysis, so thatgt

2

may be solved analytically,
6-13
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gt
2~m!.Fgt

22~L!1
Nc

8p2
ln

L

m G21

. ~55!

The boundary valuel(L) may be estimated using the abo
large-Nc fermion-bubble relationl5l̃/ZF

2 , corresponding
to keeping the first term on the right-hand side of the R
~52!, i.e.,

l~m!.Fgt
22~L!1

Nc

8p2
ln

L

m G21

, ~56!

from which, we define the compositeness conditions am
5L,

l~L!5gt
2~L!5`. ~57!

Using this and Eq.~55!, we can solve the complete RGE~52!
and deducel(Mx). As m approaches the scaleMx , we per-
form the partial diagonalization~22! to the mass terms in Eq
~51! and then decouplex at m<Mx . This gives the effective
Lagrangian~35! derived earlier, withM̄.Mx and the renor-
malized t-t-F Yukawa couplingyt(m)5gt(m)sinu for m
<Mx . The on-shell condition mt(mt)5yt(mt)v/A2
5174 GeV requiresyt(mt).1, so thatyt(m) is constrained
to be small, close to 1,

yt
2~m!.F12

Nc

8p2
ln

m

mt
G21

*1 ~m<Mx!. ~58!

The numerical effect ofyt(m) on the relevantl running is
found to be small formP(Mh ,Mx). Thus, the step-~ii ! RG
evolution ofl in the regionMx>m>Mh is essentially con-
trolled by the simplified RGE,dl/d ln m.3l2/2p2. The
physical Higgs boson mass is then numerically solved fr
the on-shell condition,

Mh
252v2l~Mh!.2v2F 1

l~Mx!
1

3

4p2
ln

Mx
2

Mh
2G21

, ~59!

and is plotted in Fig. 12~b!.
Since thex massMx is determined from solving the see

saw gap equation for each givenL and k/kc in Sec. II E,
Fig. 12~b! shows different Higgs boson mass spectrua
k/kc varies. We see that forL,10 TeV, Mh ranges around
(0.721.25) TeV;1 TeV, while for L*10 TeV thel run-
ning becomes more significant, bringingMh down to
;650– 400 GeV which is about a factor 2 below the larg
Nc fermion-bubble calculation in Fig. 12~a!, as also expected
from the analysis of the minimal top-condensate mo
@15,27#. However, we must note that for dynamical symm
try breaking theories with a low scale cutoffL;
102100 TeV, the infrared fixed point becomes less relev
and the uncertainties inMh associated with the composite
ness condition~57! are large, aroundO(1002200) GeV, so
that the naive one-loop RG running is not so reliable a
higher loop corrections could be important as well. Furth
more, the simplest mass-independentMS RG scheme may
05500
s

-

l
-

t

d
-

have its drawback in treating such low scale dynamical th
ries, in comparison with the mass-dependent renormaliza
@30# which suggests that the large Higgs boson mass ne
L will suppressl running and result in higherMh values
@31,16#. Hence, the RG improved spectrum in Fig. 12~b!
only serves as a reference to show how the traditional la
Nc fermion-bubble calculation in the top quark sees
model might be improved when including the perturbati
Higgs self-coupling evolution.

III. EXTENSIONS WITH BOTTOM QUARK

A. The mechanism for bottom quark mass

As things stand, we have not addressed the issue of
bottom quark mass. The simplest way of producing theb
quark mass is to include additional weak-singlet fermio
fieldsvL andvR together withbR , which are charged unde
the gauge groupSU(3)1^ SU(3)2^ SU(2)W^ U(1)Y ,

bR , vL : S 1, 3, 1, 2
2

3D , vR : S 3, 1, 1, 2
2

3D .

~60!

Such assignments for theb2v sector nicely cancel the un
wanted gauge anomalies from the top quark seesaw se
~cf. Sec. II A!, so that we can regard their presence a
generic part of the standard top-color picture. We furth
allow v̄LvR and v̄LbR mass terms, in addition to thex2t
mass terms@cf. Eq. ~19! in Sec. II B#,

Lmass52~mxxx L̄xR1mxtx L̄tR!2~mvvv L̄vR1mvbv L̄bR!

1H.c. ~61!

With the previous assignments for thex quarks, the extended
model can be schematically represented as below:

SU(3)1 SU(3)2

S S tL
bL

D I51
2

SxR

wR
D I50

D S S tR
bR

D I50

SxL

wL
D I50

D
We see that the additional quarkvR joins the strong top-

color SU(3)1 like xR . After the top-color breaking and in
tegrating out massive colorons, we have the following N
interactions:

Lint5
h1

2

L2
@~ c̄LxR!~ x̄RcL!1~ c̄LvR!~v̄RcL!#

→2L2~F t0
† F t01Fb0

† Fb0!2h1~ c̄LF t0xR1c̄LFb0vR!

1H.c., ~62!
6-14
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which contains two scalar doubletsF t0 and Fb0 after the
bosonization of the NJL vertices. The LagrangianLmass
1Lint , however, poses a globalU(1) symmetry under which
the fields transform as

cL→cL , tR→eiatR , bR→eiabR ,

xL(R)→eiaxL(R) , vL(R)→eiavL(R) ,

F t0→e2 iaF t0 , Fb0→e2 iaFb0 . ~63!

If this symmetry were exact, the dynamical condensa

^t L̄xR& and^bL̄vR& ~or, equivalently, the scalar VEVŝF t0&
and ^Fb0&) would spontaneously break it and generate
problematic massless Goldstone boson~the Peccei-Quinn ax
ion!. Fortunately, the symmetry is anomalous, and the t
color instanton effect@7# induces an effective Peccei-Quin
breaking term via the ’t Hooft flavor determinant@32# with
the form

c0

L2
detFc L̄S xR

vR
D G1H.c.5

c0

L2
eab~c L̄

axR!~c L̄
bvR!1H.c.,

~64!

wherec0 is a ~complex! constant depending on details of th
top-color strong dynamics and from experience with QC
we expectc0;O(0.121). In analogy with theh8 in QCD,
this effective interaction will provide a non-zero mass for t
axionic pseudo-Goldstone boson. It is also possible that s
an effective Peccei-Quinn breaking term may also arise fr
additional flavor dynamics at a scale much above the t
color breaking scale@17#. In general, we parametrize th
Peccei-Quinn breaking interaction as

LPQB5
jh1

2

L2
eab@~x R̄cL

a!~v R̄cL
b!1~c L̄

axR!~c L̄
bvR!#

→2jeab@L2F t0
a Fb0

b 1h1~x R̄cL
aFb0

b 1v R̄cL
bF t0

a !#

1H.c. ~65!

where we ignore a possible phase in the parameterj and let
it be real for the purpose of the current study. With the to
color instantons as the origin of this effective interaction,
can estimate the typical size ofj,

j5c0 /h1
25c0F8p2

3

k

kc
G21

;O~102221023!, ~66!

where c0;O(0.121) and k/kc;224. Since the relevan
values ofj are tiny, it is justified to treat it as a perturbatio
and only include the corrections up toO(j1). We note that,
in addition to generating an explicit axion mass, the abo
interaction~65! also provides a correction to the mass ter
mtxt L̄xR and mbvbL̄vR , i.e., we generally have, from Eqs
~62! and ~65!,

mtx5h1~^F t0&1j^Fb0&!, mbv5h1~^Fb0&1j^F t0&!.
~67!
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The second equation gives the physicalb mass, mb
'mbvmvb /mvv , via the following seesaw matrix:

2~bL̄ v L̄!S 0 mbv

mvb mvv
D S bR

vR
D 1H.c. ~68!

For j*1022, there is the interesting possibility that theb
mass may completely originate fromLPQB ~for example,
from top-color instanton effects!. This requires^Fb0&50,
implying the leading order Lagrangian~62! to have a zero
mass gap in the (bL̄vR) channel which can be realized whe
v becomes very heavy (mvv@L) and decouples. In this
special case, the whole model reduces back to our mini
top quark seesaw model studied in Sec. II, except that n
the b quark acquires its mass from top-color instantons,

mb'mbvmvb /mvv ~with mbv5jh1^F t0&5jmtx!.

~69!

Consequently, the Higgs doubletFb0 is also removed from
the low energy theory and the remaining analysis of t
decoupling limit becomes identical to Sec. II. However,
the more general cases wherev does not decouple from th
theory (mvv&L), the b quark can acquire its mass from
both terms in the second relation of Eq.~67!; and further-
more, forj&1023 andmvb /mvv&1, the massmb predomi-
nantly comes from the leading order term. Such no
decoupling scenarios also have a rich physical Hig
spectrum as both Higgs doublets~including the massive ax
ion! will be accessible in our low energy theory. These w
be systematically studied below.

B. Gap equations for top and bottom quark seesaws and the
physical solutions

In this subsection, we derive the gap equations for b
top and bottom quark seesaws up toO(j) and analyze their
physical solutions. This is in analogy with Sec. II D, but wi
the b seesaw mass gap andO(j) corrections included. We
start by explicitly defining the bare fields of the two Higg
doubletsF t0 andFb0 in the shifted vacuum,

F t05S ~v t01ht0
0 1 ip t0

0 !/A2

p t0
2 D ,

Fb05S pb0
1

~vb01hb0
0 1 ipb0

0 !/A2
D , ~70!

where, as in usual 2-Higgs-doublet model~2HDM! and upon
renormalization, the rotations ofht

0 and hb
0 give the mass

eigenstates of neutral Higgs bosons (h0, H0), while the com-
binations of the other six scalarsp t

0,6 and pb
0,6 result in

three would-be Goldstone bosons~eaten byW6, Z0) and
three physical Higgs states (A0, H6). Now, we can explicitly
write the two seesaw mass gaps in Eq.~67! as
6-15
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mtx5
h1

A2
~v t01jvb0!, mbv5

h1

A2
~vb01jv t0!. ~71!

In the same spirit of Sec. II D and using the Lagrang
Lmass1Lint1LPQB, we obtain two coupled gap equations u
to O(j) from the tadpole conditions of the neutral Higg
fields ht0

0 andhb0
0 , as shown in Fig. 13. Thus we can deriv

them as

mtx5
k

kc
@Ft1jFb#, mbv5

k

kc
@Fb1jFt#, ~72!

or, equivalently, up toO(j),

k

kc
~mtx2jmbv!5Ft ,

k

kc
~mbv2jmtx!5Fb , ~73!

where

Ft5cL
t sR

t S mt2
mt

3

L2
lnFL21mt

2

mt
2 G D

1sL
t cR

t S Mx2
Mx

3

L2
lnFL21Mx

2

Mx
2 G D ,

Fb5cL
bsR

bS mb2
mb

3

L2
lnFL21mb

2

mb
2 G D

1sL
bcR

bS Mv2
Mv

3

L2
lnFL21Mv

2

Mv
2 G D , ~74!

and the seesaw rotation anglessL,R
t,b and cL,R

t,b are similarly
defined as in Eqs.~11!,~12!. We see that the two gap equ
tions decouple from each other at the leading orderO(j0)
and the correlations appear atO(j) which are generally
small. TheO(j) terms become important only for very larg
tanb5v t /vb and sizablej*1022. For instance, a typica
case with tanb540 and j5231022 gives the ratio

FIG. 13. Coupled gap equations for top and bottom quark s
saws up toO(j). The black dots denote the vertices associated w
small j couplings.
05500
n

(jv t)/vb580%, implying that thej term makes up abou
80% of the mass gapmbv and thus theb mass. Another
important role of theO(j) interactions is their contributions
to the Higgs boson masses, especially, the mass of the p
doscalarA0.

Similar to the RG analysis in Sec. II D, we can furth
evolve the Higgs LagrangianLmass1Lint1LPQB, from the
scaleL down tom(,mxx,vv<L) by integrating out loops
with the heavy fermions (x,v). The Higgs fields get renor
malized, e.g.,ht0

0 5Zht
1/2ht

0 , hb0
0 5Zhb

1/2hb
0 , and so on. We can

write down the renormalized Higgs VEVs,v t5Zht

1/2v t
0 and

vb5Zhb

1/2vb
0 , and define their ratio, tanb5v t /vb , as usual.

Here, the two neutral Higgs wave-function renormalizati
constants are computed as

Zht
5

1

2

k

kc
H cL

t2sR
t2 lnFL21mt

2

mt
2 G1~cR

t21sL
t2sR

t2!

3 lnFL21mx
2

mx
2 G J 1O~j2!,

Zhb
5

1

2

k

kc
H cL

b2sR
b2 lnFL21mb

2

mb
2 G1~cR

b21sL
b2sR

b2!

3 lnFL21mv
2

mv
2 G J 1O~j2!, ~75!

in which thej corrections appear only atO(j2) as can be
seen from the interaction LagrangianLint1LPQB. Then,
from Eqs.~67! and ~75!, we derive two new Pagels-Stoka
formulas,

v t
25

~mtx2jmbv!2

4pkc
H cL

t2sR
t2 lnFL21mt

2

mt
2 G1~cR

t21sL
t2sR

t2!

3 lnFL21Mx
2

Mx
2 G J 1O~j2!,

vb
25

~mbv2jmtx!2

4pkc
H cL

b2sR
b2 lnFL21mb

2

mb
2 G1~cR

b21sL
b2sR

b2!

3 lnFL21Mv
2

Mv
2 G J 1O~j2!, ~76!

with a physical constraint from the EWSB, (v t
21vb

2)1/25v
.246 GeV. Again, we see that thej correction may be
important only for the second equation ofvb when tanb is
very large andj is sizable. Since typicallymtx&1 TeV and
mbv*10–20 GeV, we see that the effects ofj in Eq. ~76! is
negligible forj&1023.

Now, we are ready to solve the gap equations for
top-bottom quark seesaw system. We note that our exten
model has three input parameters (L, k/kc , tanb), and
three extra unknown parameters (mbv , r b , mvv) ~with r b

e-
h
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FIG. 14. Solutions of the top
and bottom quark seesaw ga
equations with k/kc52
and tanbP(1, 5, 12, 40), where
we have superimposed th
physical constraints, (mt , mb)
5(174.3, 4.2) GeV and v
5246 GeV. The solid curves are
for the top sector while the dotted
curves are for the bottom secto
Here we have chosen the regio
j&1023 in which thej effects are
negligible ~invisible!.
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[mvb /mvv) from the b-seesaw sector, in addition t
(mtx , r t , mxx) from the t-seesaw sector. On the other han
we have six physical conditions in total: two seesaw g
equations@in Eq. ~72!#, two Pagels-Stokar formulas@in Eq.
~76!#, and two mass-eigenvalue equations@in Eq. ~9! for mt
and a similar one formb#. Thus, all six seesaw paramete
can be completely solved as functions ofL for each given
(k/kc , tanb). Consequently, the masses ofx andv are also
predicted, together with all seesaw mixing angles. We d
play our systematic numerical solutions for a wide range
tanb values in Fig. 14, where we have chosenj&1023 and
found that thej corrections are negligible and the differen
from j50 case is invisible in the plots. From this figure, w
also see that thex andv are highly degenerate for all solu
tions; the same feature holds for the parameters (mxx , mvv)
whenL*223 TeV. This fact can be understood by notin
that the real difference between the top and bottom qu
sectors is controlled by the experimental ratiomt /mb'40
@1 and the input ratio tanb5v t /vb . The former is con-
nected to seesaw parameters via

mt

mb
'

mtxmxt /mxx

mbvmvb /mvv
5

mtx

mbv
Ar t

r b
, ~77!
05500
,
p

-
f

rk

while the latter can be deduced from the Pagels-Stokar
mula ~76! after ignoring theO(j) corrections and the insen
sitive logarithmic factors, i.e., tanb5v t /vb;mtx /mbv ,
where we have also expanded the right-hand sides of
~76! like Eq. ~13! in which we can see the heavy mass
(Mx , Mv) @or (mxx , mvv)# of the vector-like fermions
(x, v) have only logarithmic dependence, obeying the d
coupling theorem@33,34#. Similar decoupling behavior ap
pears on the right-hand sides of the gap equations~72!–~74!.
Indeed, it is this decoupling nature that makes the right-h
side of Eq.~76! insensitive to (Mx , Mv). Thus, we arrive at
two approximate relations below, which control the quali
tive features of the two sectors,

Ar t

r b
;

mt /mb

tanb
;

40

tanb
,

mtx

mbv
;tanb. ~78!

Using these, we can now understand, in Fig. 14, why
main difference betweent andb sectors are reflected in th
6-17
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FIG. 15. The effect of the
O(j) corrections on the physica
seesaw solutions, fork/kc52 and
tanb540. The solid curves are
for the top sector while the bottom
sector is depicted by dotted curve
@j&O(1023)# and dashed curves
@j5231022#. A sizable value of
j5231022 ~representing typical
instanton effect! can provide
about 80% of theb mass for
tanb540; while forj&O(1023),
the b mass is almost fully given
by O(j0) seesaw corrections.
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ratios (r t , r b) for small tanb values, but manifest in the
mass gaps (mtx , mbv) for large tanb values. Finally, be-
cause of their vector-like decoupling nature, the hea
masses (Mx , Mv) or (mxx , mvv) remain highly degenerate
and numerically they are located at around (0.6320.65)L
for k/kc52, as shown in Fig. 14. However, we expect su
a picture for theb-sector to be modified whenj correction to
the mass gapmbv becomes significant in the very high tanb
region. As a typical case, we may consider tanb540 andj
5231022 @which is a generic size of the top-color instant
contribution withc05O(1) andk/kc52 in Eq.~66!#. In this
case, we deduce a ratio (jv t)/vb5j tanb580% for the
mass gapmbv in Eq. ~71!, implying that thej term makes up
about 80% ofmbv and theb mass. Consequently, the E
~76! no longer gives the relationv t /vb;mtx /mbv @and thus
Eq. ~78!# because in the second formula of Eq.~76! thejmtx
term is non-negligible on the right-hand side. But, t
t-sector remains essentially the same as before since in
mass-gapmtx @cf. Eq. ~71!# the ratio (jvb)/v t5j/tanb
,!1 and is completely negligible even for small tanb. Our
numerical solutions for this large (tanb, j) scheme are
shown as dashed curves in Fig. 15, in comparison with
05500
y

he

e

small or zero j cases (j&1023) shown as dotted
curves. Indeed, we see sizable modifications for the see
parameters in theb sector, i.e., the gapmbv is lifted up
by a factor of;2 while the ratior b5mvb /mvv is shifted
down by about one-half. As a consequence, the m
scale Mv ~or mvv) for v is also pushed up somewha
closer to the scaleL. This gives an interesting example i
which the effects of top-color instantons@7# are significant
and provide the dominant contribution to the bottom qua
mass.

C. Mass spectrum of composite Higgs sector

We proceed to analyze the physical Higgs boson m
spectrum of this extended model. Starting from the Lagra
ian Lmass1Lint1LPQB at m5L and performing the seesaw
mass diagonalization, we evolve it down to the scalem
(,Mx,v<L) by integrating out the loop momenta betwe
m andL and arrive at the renormalized effective Lagrangi
with only light quarks (t8, b8) and the two-doublet Higgs
bosons,
6-18
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Lm,Mx,v<L52mtt 8̄t82mbb8̄b82
1

A2
@gtcL

t sR
t t 8̄t8ht

0

1gbcL
bsR

bb8̄b8hb
0#2

i

A2
@gtcbcL

t sR
t t 8̄g5t8ht

0

1gbsbcL
bsR

bb8̄g5b8hb
0#A02b8̄@gtcbcL

bsR
t PR

1gbsbsR
bcL

t PL#t8H21H.c.2@DT̃tht
0

1DT̃bhb
0#2

1

2
@M22

2 ht
021M11

2 hb
02

12jM12
2 ht

0hb
01MA

2A0212MH6
2 H1H2#

2Vint~ht
0 , hb

0 , A0, H6!, ~79!

where

~gt , gb!5~h1 /Zht

1/2, h1 /Zhb

1/2!,

~sb , cb!5~sinb, cosb!,

PL,R5~17g5!/2,

and the unitary gauge is chosen so that only the phys
Higgs scalars (ht

0 , hb
0 , A0, H6) are relevant. Here,DT̃t and

DT̃b are the tadpole terms which we used to derive the
equations~72! above. The Higgs boson mass terms are co
puted up toO(j) and are expressed as

M22
2 5M22,0

2 1jdM22
2 , M11

2 5M11,0
2 1jdM11

2 ,

jM12
2 5jdM12

2 ,

MH6
2

5M 6,0
2 1jdM 6

2 , MA
25jdMA

2 , ~80!

where the leadingO(j0) contributions are

M22,0
2 5Mh

2@Eq. ~49!#u(s,c)L,R→(st,ct)L,R
,

M11,0
2 5Mh

2@Eq. ~49!#u (s,c)L,R→(st,ct)L,R

(mt ,Mx)→(mb ,Mv)
,

M 6,0
2 5

k

kc
FL2~Zht

21cb
21Zhb

21sb
2 !S kc

k
21D1~a11mt

21a12!

3 lnS L2

mt
2

11D 1~ ā21Mx
21a22!lnS L2

Mx
2

11D
1~ ā31Mx

21a32!lnS L2

Mv
2

11D G , ~81!
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S a11

a21

a31

a41

D 5
cb

2

Zht S ~sR
t cL

b!2

~cR
t cL

b!2

~sR
t sL

b!2

~cR
t cL

b!2

D 1
sb

2

Zhb S ~cL
t sR

b !2

~sL
t sR

b !2

~cL
t cR

b !2

~sL
t cR

b !2

D ,

S a12

a22

a32

a42

D 5
2sbcb

Zht

1/2Zhb

1/2S mtmbcL
t sR

t cL
bsR

b

MxmbsL
t cR

t cL
bsR

b

MvmtsL
t cR

t cL
bsR

b

MxMvsL
t cR

t sL
bcR

b

D ,

with ā215a211(a41Mx
21a42)/(Mx

22Mv
2 ), and ā315a31

1(a41Mv
2 1a42)/(Mv

2 2Mx
2). The axionic pseudoscalarA0 is

massless at this order due to the Peccei-Quinn symm
~63!. One recovers a simple and intuitive picture under
approximate limit (r t , r b)!1, i.e.,

M22,0'2mtx , M11,0'2mbv ,

M 6,0'A2~mtx
2 1mbv

2 !1/2, ~82!

which are all controlled by the dynamical mass ga
(mtx , mbv) and become equal in the special case of tab
51, as expected. These approximate formulas agree with
independent Higgs potential analysis in Appendix B.

For theO(j) corrections, we first perform a careful ca
culation of theA0 mass, and obtain

MA
25jdMA

25
2jL2

sin 2bAZht
Zhb

1O~j2!. ~83!

It is remarkable to notice that the Peccei-Quinn break
massMA is proportional toAjL instead of being controlled
by the dynamical mass gaps (mtx , mbv). As noted above, the
essential difference betweenA0 and the other Higgs scalar
is that A0 is a massless Goldstone boson atO(j0) and its
nonvanishing mass comes from the explicit Peccei-Qu
breakingj term. Hence, it is natural to see thatMA is not
controlled by the dynamical gaps (mtx , mbv), but instead
scales likeAjL @35#. This results in theA0 being relatively
heavier than naively expected, providedj*1023. Such an
O(jL2) correction also shows up in other Higgs boson m
formulas atO(j) and is thus a generic feature of the explic
Peccei-Quinn breaking. So, we can express the leadinj
corrections to (ht

0 , hb
0 , H6) masses in terms ofMA

2 while the
rest of thej terms are ofO(jmtx

2 , jmbv
2 ) and thus much less

significant. With this in mind, we compactly summarize t
O(j) masses of (ht

0 , hb
0 , H6) as,
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FIG. 16. The mass spectrum of the Higg
bosons are plotted fork/kc52 and tanb
P(2, 5, 12, 40) in the extended model with bo
tom quark seesaw, where the parameterj is rep-
resentatively chosen asj5331023.
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jdM11
2 .sb

2MA
2 , jdM22

2 .cb
2MA

2 ,

jdM12
2 .2sbcbMA

214j~mtx
2 1mbv

2 !,

jdM 6
2 .MA

22j~cotb mtx
2 1tanb mbv

2 !, ~84!

which can be most easily extracted from the Higgs poten
analysis shown in Appendix B. Due to the mixing mass te
betweenht

0 and hb
0 , we diagonalize them into the mas

eigenstates (h0, H0) with the physical masses,

Mh,H
2 5

1

2
@M11

2 1M22
2 6A~M11

2 2M22
2 !214M12

4 #. ~85!

The corresponding rotation angleaP@2p/2, 0# is deter-
mined by tan(2a)52M12

2 /(M11
2 2M22

2 ).
Based upon these, we can finally analyze the Higgs bo

mass spectrum of this model using the physical solution
the seesaw gap equations derived in the previous subsec
We present our numerical results in Fig. 16, where
choosek/kc52 and a wide range of tanb values. The
Peccei-Quinn breaking parameterj is set to a representativ
value ofj5331023 for all plots. The proportionality ofMA
with L can be clearly seen, and asMA moves above 1 TeV
the Higgs bosons (H0, H6) becomes much more degenera
with A0, while the lightest neutral Higgs bosonh0 remains
around 1 TeV, saturating the SM unitarity bound. This is
05500
l

on
to
on.
e

quite generic feature of this model unless the parameterj is
much smaller, around 1024 or below, which is unlikely in the
top-color instanton picture. Also, too smallj (&1024

21025) will have more significant mass splittings amon
Higgs bosons (A0, H0, H6) which cause large weak-isospi
violation in the oblique parameterT ~in addition to resulting
in a very light axionA0). This is disfavored from the experi
mental viewpoint. Thus, our analysis favors a relative
heavy axionA0 ~together with other Higgs scalars! and the
top-color instanton@7# interpretation of the Peccei-Quin
breaking for this model.

IV. CONSTRAINTS FROM PRECISION OBSERVABLES

After quantitative analyses on the vacuum structure a
composite Higgs spectrum in the dynamical top quark s
saw models, we proceed to systematically study their exp
mental constraints from the electroweak precision data.
most important bounds come from the radiative correctio
to the oblique parametersT andS @19# and also the correc
tions to theZbb̄ vertex induced by theb-v mixing in the
bottom quark seesaw sector. It is remarkable that the m
mal top quark seesaw model, having a typical heavy co
posite Higgs boson around 1 TeV, is nontrivially compatib
with the S-T bounds, due to the conspiracy from the lar
positive seesaw correction to theT parameter. The case fo
the extended model with bottom quark seesaw is more c
plex because of theb-v mixing and the two Higgs doublets
In this extended model the precisionT bound requires a cer
tain degeneracy in the mass spectrum of the Higgs sca
6-20
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and thus favors a relatively heavy axionA0. As we will
show, with the top-color instanton interpretation of t
Peccei-Quinn breaking, the resulting precision bounds on
heavyx andv masses are similar to that of the minimal to
quark seesaw model.

A. In the minimal top quark seesaw model

The minimal top quark seesaw model has a single co
posite Higgs boson in addition to the singlet seesaw quarx
in the spectrum. As we have shown in Fig. 12, this compo
Higgs scalar has its mass typically around;1 TeV. Its con-
tributions to the obliqueSandT parameters can be express
as

DSH51
1

12p
lnS Mh

2

mh,ref
2 D ,

DTH52
3

16p cos2 uW

lnS Mh
2

mh,ref
2 D ,

~86!

wheremh,ref is the reference point of the SM Higgs boso
mass. Since in the pure SM the current precision d
@36# favors a light Higgs boson mass around 100 GeV,
see that a heavy Higgs scalar with a;1 TeV mass will
drive DT in the negative direction relative to a light SM
Higgs scalar and thus is excluded by the current precis
S–T contour shown in Fig. 17~a! @37#. However, the top
quark seesaw sector has generic weak-isospin violation f
the t-x mixing which will significantly contribute toDT in
the positive direction, as can be seen from the formula

DT5
Nc

16p2v2a
F sL

4Mx
22sL

2~11cL
2!mt

2

12sL
2cL

2
Mx

2mt
2

Mx
22mt

2
ln

Mx
2

mt
2 G

5
Ncmt

2

16p2v2a
F2S ln

Mx
2

mt
2

21D 1
1

r t
G ~mt /mxt!

2

11r t
1OS mt

4

mxt
4 D ,

~87!

in which r t5(mxt /mxx)2&1. Here, we have subtracted o
the usual SM top contribution as it was already included
the precision fit. The expanded formula indeed shows a
able DT.0; it also exhibits the decoupling nature of th
vector-like heavy quarkx, since the large mass paramete
go with negative powers~for fixed ratio r t) @39#.

Next, we compute thex2t contribution toDS, and obtain
05500
e

-

te

ta
e

n

m

n
z-

DS5
Nc

36p
sL

2H 44S Mx
2

mz
2

2
mt

2

mz
2D 22 ln

Mx
2

mt
2

218cL
2G1S mt

2

mz
2

,
Mx

2

mz
2 D 2S 11

mt
2

mz
2

11D F1S mt
2

mz
2D

1S 11
Mx

2

mz
2

11D F1S Mx
2

mz
2 D J

5
Nc

9p F ln
Mx

2

mt
2

2
5

2
1

mz
2

20mt
2G ~mt /mxt!

2

11r t
1OS mt

4

mxt
4 D ,

~88!

where mz is the mass of weak gauge bosonZ0, and the
relevant functionsF1(y) andG1(y1 , y2) are defined as

F1~y!524A4y21arctan
1

A4y21
, ~89!

G1~y1 , y2!5
5~y1

21y2
2!22y1y2

9~y12y2!2

1
3y1y2~y11y2!2y1

32y2
3

3~y12y2!3
ln

y1

y2
. ~90!

Now, keeping the dominant leading logarithmic terms in t
above expanded formulas, we can directly estimate the r
tive size ofDS versusDT,

DS

DT
'

16pa

9
'0.04!1, ~91!

which shows thatDS is only about 4% ofDT and thus
negligible in comparison with the typical values ofDT.0,
as advertised earlier in the Introduction.

In Fig. 17, we assemble the completeDS andDT contri-
butions from the minimal top quark seesaw model, includ
both the corrections from the composite Higgs boson and
seesaw quarks, and compare them with the 95% C.L. con
for DS2DT. Each figure corresponds to a different choice
k/kc , and shows the trajectory in theDS2DT plane as the
x mass varies. As a comparison, we have plotted the res
based on both the large-Nc fermion-bubble calculation and
the improved RG approach~cf. Sec. II F!. For the relevant
parameter space here, the improved RG approach g
lower Higgs boson mass values~around 400–500 GeV! so
that the curves are slightly shifted towards the upper left.
a consequence, in the improved RG approach the up
bound onMx is more relaxed fork/kc*1.2, while the lower
bound onMx remains at a similar level. The figure clear
illustrates that the top quark seesaw model can be consis
with the electroweak precision data providedMx is in the
appropriate mass range. For instance, when the top-c
6-21
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FIG. 17. Top quark seesaw contributions
DS andDT are compared with the 95% C.L. er
ror ellipse ~with mh

ref51 TeV) for k/kc

51.05, 1.2, 2, 4. TheDS-DT trajectories~includ-
ing both Higgs andx contributions! are shown as
a function ofMx . In each plot, the curve on the
right is derived from the large-Nc fermion bubble
calculation, and as a comparison, the curve on
left is deduced by an improved RG approach~cf.
Sec. II F!. For reference, the SM Higgs correc
tions to (S, T), relative tomh

ref51 TeV, are given
for mh

SM varying from 100 GeV up to 1.0 TeV in
plot ~a!.
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force is slightly supercritical, we see that precision data
effectively probingMx;4 TeV. A high luminosity Linear
Collider at GigaZ can further improve these indirect pre
sion constraints on the top quark seesaw dynamics wi
much smallerDS2DT error ellipse@41#. Finally, in Fig. 18,
we display the sameDS2DT trajectories as in Fig. 17, bu
with the corresponding Higgs boson mass (Mh) values
marked. We see that as each trajectory moves up along
DT direction, theMh value changes very little and thus th
rise ofDT is really due to the decrease ofMx ~as marked in
Fig. 17!. Figure 18 further shows that the relevant Hig
boson mass is about 1–1.4 TeV in the large-Nc fermion-
bubble calculation and 400–500 GeV in the improved R
approach. As we explained in Sec. II F, the large-Nc fermion-
bubble calculation may over-estimateMh due to the igno-
rance of non-large-Nc effects of the Higgs propogation in th
loop, while the improved RG approach may underestim
Mh due to the sizable uncertainties associated with the c
positeness condition at the scaleL;10425 GeV and the use
of simple mass-independent renormalization in such low c
off theories. So, the two approaches are complementary
the realMh values should lie between these two estimat
Actually, the shift between the two trajectories along theDS
direction is mainly due to the effect of the Higgs boson ma
Thus, taking into account our ignorance of the detailed
namics around the scaleL and above, we may view th
region between the two trajectories inside theDS2DT el-
lipse as the viable parameter space allowed by the preci
data.
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B. In the extended model with bottom seesaw

The inclusion of a bottom quark seesaw generates a
tional b-v mixing which have nontrivial contributions to th
SandT parameters and also to theZbb̄ vertex. Furthermore,
the composite Higgs sector now contains two doublets
thus has additional corrections to the precision observab
We start by calculating the complete set of loop diagra
@including the mass-eigenstate seesaw qua
(t8, b8, x8, v8)# that contribute to theS and T parameters.
The general results can be summarized below:

DS5
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2 D G J , ~92!
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FIG. 18. Same as Fig. 17, but with the corr
spondingMh values marked on theDS-DT tra-
jectories instead. It shows that each trajectory
very insensitive toMh and the large increase
along the positiveDT direction is due to the top
quark seesaw contribution asMx decreases~cf.
Fig. 17!. In each plot, the shift of the left trajec
tory relative to the right one is due to the small
Mh values~estimated around 400–500 GeV!, but
DS!DT generally holds so thatDS is much less
significant.
ti

a

u

DT5
Nc

16psw
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2 @sL
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~93!

where the functionsF2(x) andF3(x1 , x2) are given by

F2~x!5A124x ln
122x2A124x

122x1A124x
, ~94!

F3~x1 , x2!5x11x22
2x1x2

x12x2
ln

x1

x2
, ~95!

where (sw , cw)5(sinuW, cosuW) anduW is the weak angle.
The above general formulas contain exact seesaw rota
angles and heavy masses (Mx , Mv) in various places. So, it
is instructive to derive the expanded expressions in which
large masses exhibit the expected decoupling nature and
sign of these corrections will become clear. Thus, we ded
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4 D , ~96!
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11r t
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2
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2
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4
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'
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16p2v2a
H ~sL

t22sL
b2!F2 ln

Mx
2

mt
2

1
1

r xr t~11r t!
G22sL

t 2J ,

~97!

where

r t[S mxt

mxx
D 2

<1, r b[S mvb

mvv
D 2

<1, r x[S mxx

Mx
D 2

;1,

sL
t25

~mt /mxt!
2

11r t
1OS mt

4

mxt
4 D , sL

b25
~mb /mvb!2

11r b
1OS mb

4

mvb
4 D ,

~98!

and in the last line of Eq.~97! we have used the relation
Mx.Mv ~cf. Fig. 14! to further simplify the expression.
Now, from Eq.~96! we see that the inclusion of theb seesaw
further adds positive terms toDS which, however, are com-
parable to the first term of thet sector only for small tanb
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FIG. 19. The contributions from the top an
bottom quark seesaws oblique parametersS ~up-
per plot! and T ~lower plot!, based on Eqs.
~92!,~93! and the physical seesaw solutions~cf.
Fig. 14!.
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;O(125) where r b!r t so that mvb!mxt @cf. Figs.
14~a!,~b!#. For large tanb, mvb becomes closer tomxt so that
(mt /mxt)

2@(mb /mvb)2. Consequently,DS is dominated by
the t-seesaw sector and thus is very similar to the situatio
the minimal top quark seesaw model whereDS;0 @cf. Eq.
~91!#.

With these we can understand the picture shown in F
19~a!, based on the exact formulas~92!,~93! and the physical
seesaw solutions~cf. Fig. 14!. Next, we examine the mor
nontrivial features inDT as shown in Fig. 19~b!. From the
last equation in the expanded formula~97!, it is instructive to
see that theb-seesaw sector adds negative corrections wh
could cancel thet-seesaw contributions for small tanb re-
gion where we have (mt /mxt)

2;(mb /mvb)2, i.e.,sL
t ;sL

b , as
can be understood from the physical seesaw solutions in
14~a!,~b!. Intuitively, we expect that such a cancellation b
comes maximal when tanb→1 so that the custodialSU(2)c
symmetry is restored in the seesaw sector aside from
mt-mb mass difference@reflected in the last~negative! con-
stant term on the right-hand side~RHS! of Eq. ~97!#. This is
why we seeDT,0 for tanb51 in Fig. 19~b!. However, the
b-seesaw contribution in Eq.~97! quickly decreases sincesL

b

drops off as tanb moves up, and when tanb*1.5 we see
that the seesaw contributions become significantly posi
again andDT approaches the values in the minimal t
quark seesaw model for tanb*40 where r b.r t (mvb
.mxt) as shown in Fig. 14~a!,~b! so that (mb /mvb)2

!(mt /mxt)
2, making b-seesaw term inDT negligible. In

summary, for 1.5&tanb&40, we still have sizable positive
DT.0, but in the moderate to small tanb regionsDT be-
comes smaller than that of the minimal model and th
would help to weaken the strong constraints fromT and
lower the bounds on (x,v) masses. However, the addition
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positive contributions from the two-Higgs-doublet sector
the extended model tend to shift upDT somewhat, this non-
trivially renders our final bounds onMx,v quite similar to the
situation in the minimal top quark seesaw model, as will
studied below.

Now, we turn to analyze the oblique corrections from t
composite two-doublet-Higgs boson sector. Since we h
derived the Higgs mass spectrum in Sec. III C~cf. Fig. 16!,
we can readily compute the corresponding oblique corr
tions in our model by using the analytical formulas belo
@42,43#,

SH5
1

12p H cos2~b2a!F ln
MH

2

Mh
2

1G2~Mh
2 ,MA

2 !2 ln
MH6

2

MhMA
G

1sin2~b2a!FG2~MH
2 ,MA

2 !2 ln
MH6

2

MHMA
G J , ~99!

TH5
1

32p2v2a
$cos2~b2a!@F3~MH6

2 ,Mh
2!

1F3~MH6
2 ,MA

2 !2F3~MA
2 ,Mh

2!#1sin2~b2a!

3@F3~MH6
2 ,MH

2 !1F3~MH6
2 ,MA

2 !2F3~MA
2 ,MH

2 !#%,

~100!

where (Mh , MH , MA , MH6) are masses of the neutral an
charged physical Higgs scalars (h0, H0, A0, H6) and a is
the neutral Higgs mixing angle~cf. Sec. III C!. The function
G2(x1 , x2) is given by
6-24
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FIG. 20. The contributions
from the seesaw sector and th
two-doublet-Higgs sector to the
oblique parameters T ~solid
curves! andS ~dashed curves!.
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5

6
1

2x1x2

~x12x2!2

1
~x11x2!~x1

224x1x21x2
2!

2~x12x2!3
ln

x1

x2
.

~101!

The above formulas are valid forMHiggs
2 @mz

2 and are well
justified for our model~cf. Fig. 16!. In the numerical analysis
we have also used more generalS–T formulas in Refs.
@42,43# as a consistency check. SinceF3(x1 , x2)→0 asx1
→x2, we see thatTH could be much suppressed as long
the masses of (H0, A0, H6) have good degeneracy.

As shown in Fig. 20, we findSH in our model to be
generically small whileTH can be large and positive forL
&10 TeV due to the sizable mass splittings among Hig
scalars (H0, A0, H6). However, for largerL, the A0 mass
increases and becomes more and more degenerate
(H0, H6) which quickly bringsTH down, as expected. Th
seesaw contributions are also plotted in the same figure
gether with the final summed results. We see that the in
sion of bottom seesaw helps to reduce the total seesaw
tributions in the T parameter, but the two-doublet-Higg
sector tends to lift it up. This nontrivially brings our finalT
bounds in Fig. 21 to the same level as in the minimal
05500
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seesaw model. For instance, in the case ofk/kc52, Figs. 21
and 17~c! show that thex mass in the extended model
bounded into the region around 6–23 TeV for 2&tanb
&40, while in the minimal top quark seesaw model we ha
10&Mx&14 TeV. For the top-color force being more crit
cal ~i.e., smallerk/kc values below 2), the seesaw correctio
DT is slightly larger~cf. Fig. 19!, but at the same time the
massMx (Mv) becomes even lower for a givenL scale
@similar to the picture in Fig. 10~d!# and thus the bounds o
Mx could be further weakened, in analogy with the minim
top quark seesaw model. In summary, theT bound in the
extended model restrict the mass range ofx and v to be
typically around 3–20 TeV, depending on the values ofk/kc
and tanb.

Another important bound due to the inclusion of the b
tom seesaw comes from the precision measurement of
Z-b-b̄ vertex. The seesawb-v mixing induces a positive
shift in the left-handedZ-b-b̄ coupling,

dgL
b51

e

2 sinuW cosuW
~sL

b!2, ~102!

which results in a decrease ofRb5G@Z→bb̄#/G@Z
→hadrons#, i.e., Rb.Rb

SM20.39(sL
b)2, as also obtained in

Ref. @17#. The latest update ofRb data gives@44#, Rb
6-25
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FIG. 21. Top and bottom
quark seesaw contributions toDS
and DT are compared with the
95% C.L. error ellipse~with mh

ref

51 TeV) for k/kc52 and j53
31023 with a variety of values of
tanb. TheDS-DT trajectories~in-
cluding both Higgs boson and
quark contributions! are shown as
a function ofMx . For reference,
the SM Higgs corrections to
(S, T), relative to mh

ref51 TeV,
are depicted formh

SM varying from
100 GeV up to 1.0 TeV in plot~a!.
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50.2164660.00065, which is about 1s above the SM value
Rb50.215860.0002. This puts an upper bound on t
b-seesaw angle,

sL
b .

mb /mvb

A11r b

.
mb

MvAr b

, ~103!

and correspondingly a lower bound on the massMv

(.Mx), as summarized in Fig. 22. From the physical sees
solutions@cf. Fig. 14~a! in Sec. III B#, we expect that theRb

bound will mainly constrain the low tanb region in whichr b

is much smaller. Indeed, the current Fig. 22 shows that
larger values of tanb (*15), the model is free from theRb

bound, while for very small values of tanb (&223), we
obtain,Mx,v*10 TeV, which is somewhat stronger than t
T bound in Fig. 21. As a final remark, we note that t
two-doublet-Higgs sector can also contribute to theRb , and
especially a charged Higgs boson lighter than about 200–
GeV will significantly reduce theRb value @45#. But, in our
model, the relevant Higgs boson mass spectrum after im
ing theS–T bounds is generically around;1 TeV or above
~cf. Figs. 16 and 20!, which renders the Higgs correction t
Rb negligible.
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V. CONCLUSIONS

Electroweak symmetry breaking~EWSB! through the top
quark seesaw is an attractive mechanism that may natu
emerge from theories with bosonic extra dimensions. In t
work, we have systematically investigated the top quark s
saw mechanism for generating the large top quark mass
gether with the full EWSB. We have applied the gap equ
tion analysis to study the seesaw vacuum structure
determine the physical parameter space. With the top-c
breaking scale (L) and the top-color gauge coupling (h1) as
inputs, and further imposing the physical values of the
quark mass (mt) and the full EWSB VEV (v), we are able to
predict all other seesaw parameters and thus the phy
spectrum of the model from solving the seesaw gap equat
This includes the masses of singlet seesaw quarkx and the
composite Higgs bosonh0. The Higgs boson massMh is at
the order of the seesaw mass gapmtx , and typically around
;0.521 TeV. The effective couplings, such as the Yukaw
coupling h-t- t̄ and gauge couplingsW-t-b and Z-b-b̄, etc.,
are also analyzed, in comparison with their SM values.

The fermion content of the top quark seesaw is inco
plete due to gauge anomalies, but a minimal choice of ad
tional weak-singlet fermions,v, the seesaw partners for th
bottom quark, renders the theory anomaly free and thus c
plete. This extended model contains two dynamical m
6-26
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FIG. 22. TheRb limits are shown for theb
seesaw anglesL

b5sinuL
b in plot ~a! and for the

massMv(.Mx) in plot ~b!. Here, we choose
k/kc52 and a wide range of tanb values.
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gapsmtx and mbv in the (tx) and (bv) channels, respec
tively. We have performed a complete analysis of t
coupled seesaw gap equations in this extended model.
low energy theory contains two composite Higgs double
Top-color instantons@7# are found to provide an econom
and plausible mechanism for the mass generation of
pseudo-scalarA0. In addition, they may also produce a si
nificant part of theb mass via the bottom seesaw. We ha
analyzed the resulting Higgs spectrum in this extend
model by using two independent approaches. The Higgs
son mass spectrum typically contains the lightesth0 with a
mass around;1 TeV, and three other quite degenerate s
lars, with masses around one to a few TeV. We also no
that this model has a particular simple limit, namely, wh
the seesaw quarkv becomes heavy enough and decoup
from the low energy theory, it reduces back to the minim
top quark seesaw model with a single Higgs doublet, an
this case, the bottom mass arises entirely from the top-c
instanton contribution.

We have further analyzed the electroweak precis
bounds on both the minimal and extended seesaw mod
We find that it is generic in these models to have a sm
oblique parameterS, but a significantly positive seesaw co
tribution to T that largely cancels with the negativeT from
the heavy Higgs boson, in full consistency with the curre
S–T bounds. This makes the dynamical top quark see
models fully viable, and as a result, the current precision d
is able to indirectly confine the heavyx mass to the natura
range of aboutO(3210) TeV ~for k/kc<2) in the minimal
seesaw model. For the extended model with the bottom
saw, the mass of the singlet seesaw quarkv is found to have
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good degeneracy withx. The b2v mixing tends to reduce
the seesaw contribution inT ~especially for the small to mod
erate tanb values!, but the additional correction in the two
Higgs-doublet sector makesT more positive and thus the
final S–T bounds appear at the similar level to that of t
minimal model, i.e., the allowed seesaw quark massesMx,v
ranges from a few TeV up to;30 TeV for 1.05&k/kc&4.
We have also analyzed the correction to theZbb̄ gauge cou-
pling induced by theb2v mixing and found that theRb
measurement can put stronger bounds than theT parameter
only for very small tanb region, around tanb & 223.

So far, the top quark seesaw mechanism, with neces
ingredients arising automatically in theories with bosonic e
tra dimensions, remains a most natural picture of the
namical EWSB scenario, and is consistent with the curr
experimental data. In addition to successfully driving the f
EWSB and providing the large top quark mass observed
the Tevatron, it has interesting phenomenological impli
tions, including composite Higgs bosons, additional we
singlet quarks in the TeV region, and, ultimately, an ent
new layer of strong interaction forces at nearby scales
explore.
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APPENDIX A: EQUIVALENT DERIVATIONS OF TOP
QUARK SEESAW GAP EQUATION

1. Exact large-Nc gap equation in the NJL formalism

In this appendix, we derive the exact NJL seesaw g
equation in the large-Nc limit based on the Schwinger-Dyso
equation without mass insertion, and prove it results in
same equation as the tadpole condition~44! in Sec. II D.
Starting from the NJL vertex~21! in Sec. II B, we can write
down the large-Nc Schwinger-Dyson equation as shown
Fig. 23.

Then, we make use of the exact seesaw rotations in
~7!,~8! to transform the fields on both sides of the Schwing
Dyson equation into the mass eigenbasis. The expanded
grams are shown in Fig. 24 with proper rotation angles
sociated with each graph. The sums of the expan
diagrams on both sides should be equal to each other, an
particular, each expanded diagram in the upper plot of F
24 must be equal to the sum of the two relevant expan
diagrams in the lower plot of Fig. 24 which share the sa
external lines.~One of two relevant diagrams in the lowe
plot of Fig. 24 has at8-loop and another has ax8-loop.! This
leads us to split the Schwinger-Dyson equation of Fig.
into four separate equations, which, however, take the
lowing identical form:

mtx52@cLsRD t1cRsLDx#, ~A1!

with

D t52
h1

2Nc

L2
trE dk4

2p4

i

k”2mt

PR ,

Dx52
h1

2Nc

L2
trE dk4

2p4

i

k”2Mx

PR , ~A2!

wherePL,R5(17g5)/2. By a direct evaluation of the loop
integralsD t and Dx with the cutoff L, we can rewrite the
Schwinger-Dyson equation~A1! as

FIG. 23. Exact large-Nc Schwinger-Dyson equation for the NJ
interaction in the minimal top quark seesaw model.
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mtx5
k

kc
H cLsRS mt2

mt
3

L2
lnFL21mt

2

mt
2 G D

1sLcRS mx2
mx

3

L2
lnFL21mx

2

mx
2 G D J , ~A3!

which is just the exact large-Nc seesaw gap equation fo
mtx , identical to the tadpole condition~44! in Sec. II D. This
proves the equivalence between the NJL formalism and
Higgs tadpole formalism for deriving the seesaw gap eq
tion.

2. Mass-insertion gap equation from tadpole condition

Here, we derive the tadpole condition with mass insert
up toO(mtx

3 ) and prove it results in the same equation as
approximate NJL gap equation in Sec. II C. From the N
interaction in Eq.~24!, we introduce the auxiliary fieldF0
which, in the unitary gauge, takes the form of Eq.~39! with
the VEV explicitly shifted. Then, the effective Lagrangian
the scalem5L becomes

LL52~ t L̄ x L̄ !S mtt mtx

0 M̄
D S tR

xR
D 2

h1

A2
t L̄~cxR1stR!h0

1H.c.2
1

2
L2h0

22L2v0h0 , ~A4!

where

mtx5c
h1v0

A2
, mtt5s

h1v0

A2
, → mtt

mtx
5

s

c
, ~A5!

FIG. 24. Diagrams expanded from both sides of the largeNc

Schwinger-Dyson equation in Fig. 23, by using the exact see
rotations in Eqs.~7!,~8!.
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ands/c5mxt /mxx is the same as in Eq.~23!. The diagonal

mass termsmtt (M̄ ) will be put into thet(x) propagator as
usual, while the nondiagonal mass termmtx can be included
via the mass insertion order by order. It is then straightf

ward to derive the tadpole condition 05v0L21dT̃ @similar

to Eq. ~43!# with dT̃ computed from the one-loop Higg
tadpole diagrams. This is shown in Fig. 25, in which w
perform the mass insertion ofmtx up to the third power. As a
result, we derive a single condition onmtx , which is identi-
cal to the gap equation~28! derived earlier in Sec. II C by
using the NJL formalism. This shows the equivalence
tween these two mass-insertion approaches.

APPENDIX B: POTENTIAL ANALYSIS FOR HIGGS
BOSON MASS SPECTRUM WITH BOTTOM

QUARK SEESAW

In this Appendix, we present an independent derivation
the composite Higgs spectrum by analyzing the Higgs po
tial in the extended model with a bottom quark seesaw. T
potential analysis confirms the results derived in Sec.
where the Higgs boson masses are explicitly computed in
broken phase including the exact seesaw mass diagona
tions. We start from the gauge-invariant LagrangianLmass

1Lint1LPQB in Sec. III @cf. Eqs.~61!, ~62!, and ~65!#, and
evolve it down to the scalem(,Mx,v<L). We can thus
derive the gauge-invariant effective Lagrangian with two d
namical Higgs-doublet fields and their interaction terms,
to O(j),

Lm,Mx,v
52h1@stc̄tRF t01sbc̄bRF t01H.c.#1ZtuDmF t0u2

1ZbuDmFb0u21j~Zt1Zb!

3eab@~DmF t0!a~DmFb0!b1H.c.#2VH , ~B1!

where (st , sb)[(sinut , sinub) and (tanu t , tanub)
[(mxt /mxx , mvb /mvv), with (u t , ub) the partial rotation
angles for (tR , xR) and (bR , vR) @cf. Eqs.~22!,~23! in Sec.
II B #. The Higgs potentialVH can be written as

FIG. 25. Higgs tadpole condition with mass insertions
O(mtx

3 ).
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VH5M̃ t
2uF t0u21M̃b

2uFb0u21jM̃ tb
2 @eabF t0

a Fb0
b 1H.c.#

1l̃ t~F t0
† F t0!21l̃b~Fb0

† Fb0!21l̃ tb~F t0
† Fb0!

3~Fb0
† F t0!1j@l̃ t8uF t0u21l̃b8uFb0u2#

3@eabF t0
a Fb0

b 1H.c.#, ~B2!

where the loop-induced Higgs boson mass terms and c
plings are graphically defined in Fig. 26. For simplicity, th
fermion lines ofxR and vR represent the fields before th
partial rotations mentioned above, but we keep in mind t
such rotations just split each graph into two; this will n
affect our current general derivation as is easy to che
From Eq. ~B2! and Fig. 26, we can derive three gene
relations, up toO(j),

jM̃ tb
2 5j@M̃ t

21M̃b
22L2#, l̃ t852l̃ t , l̃b852l̃b .

~B3!

The next step is to write down the renormalized Hig
potential, analyze the physical vacuum and derive the Hi
boson mass spectrum. So, we first expressVH in terms of
renormalized quantities,

FIG. 26. Effective mass terms and quartic self-couplings in
Higgs potential.
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VH5Mt
2uF tu21Mb

2uFbu21jMtb
2 @eabF t

aFb
b1H.c.#

1l t~F t
†F t!

21lb~Fb
†Fb!21l tb~F t

†Fb!~Fb
†F t!

1j@l t8uF tu21lb8uFbu2#@eabF t
aFb

b1H.c.#, ~B4!

with the following renormalization relations:

Mt
25M̃ t

2Zt
21 , Mb

25M̃b
2Zb

21 , Mtb
2 5M̃ tb

2 ~ZtZb!21/2,

l t5l̃ tZt
22 , l t85l̃ t8Zt

23/2Zb
21/2, lb5l̃bZb

22 ,

lb85l̃b8Zt
21/2Zb

23/2, l tb5l̃ tb~ZtZb!21. ~B5!

where (Zt , Zb) are the wave function renormalization co
stants of (F t0 ,Fb0), defined asF t05Zt

21/2F t and Fb0

5Zb
21/2Fb . Then, we can shift the VEVs of the two reno

malized Higgs-doublets, (F t ,Fb), similar to Eq.~70! in Sec.
III B. For the analysis of physical vacuum and the Hig
boson mass spectrum, it is convenient to choose the un
gauge, in which the three physical combinations~orthogonal
to the would-be Goldstone bosons! are defined asA0

5sinb8pb
01cosb8pt

0 and H65sinb8pb
61cosb8pt

6 , with
tanb85(v t1jvb)/(vb1jv t)5tanb1j(12tanb)1O(j2).

Minimizing the effective Higgs potentialVH in Eq. ~B4!,
we derive two extremum conditions,

@Mt
21l tv t

2#1j cotbFMtb
2 1

3

2
l t8v t

21
1

2
lb8vb

2G50,

~B6!

@Mb
21lbvb

2#1j tanbFMtb
2 1

1

2
l t8v t

21
3

2
lb8vb

2G50,

which determine the physical vacuum and is forma
equivalent to the gap equations~tadpole conditions! derived
in Eq. ~72! of Sec. III B. These conditions are needed in o
derivation and can be used to simplify the mass formulas
the Higgs bosons. We start by extracting theA0 mass term
from Higgs potential~B4! and obtain, up toO(j),

MA
25

j

2 sinb cosb
@22Mtb

2 2l t8v t
22lb8vb

2#5
2jL2

sin 2bAZtZb

,

~B7!
ev

ev

05500
ry

r
r

where we have used the minimal conditions in Eq.~B6!, and
the relations in Eqs.~B3! and~B5!. This result confirms our
explicit one-loop calculation ofMA in Eq. ~83! of Sec. III C.
We proceed by deriving the mass formulas for the neu
and charged Higgs bosons (ht

0 , hb
0 , H6), which can be sum-

marized up toO(j),

M11
2 52lbvb

21jF3lb8v tvb2tanb S Mtb
2 1

1

2
l t8v t

21
3

2
lb8vb

2D G
.4mbv

2 1sin2b MA
2 , ~B8!

M22
2 52l tv t

21jF3l t8v tvb2cotb S Mtb
2 1

3

2
l t8v t

21
1

2
lb8vb

2D G
.4mtx

2 1cos2b MA
2 , ~B9!

jM12
2 5jFMtb

2 1
3

2
l t8v t

21
3

2
lb8vb

2G
.2sinb cosb MA

214j~mtx
2 1mbv

2 !, ~B10!

and

MH6
2

5
l tb

2
@v t sinb81vb cosb8#2

2
j

sin 2b
@2Mtb

2 1l t8v t
21lb8vb

2#

.2~mtx
2 1mbv

2 !1@MA
224j~mtx

2 cotb1mbv
2 tanb!#,

~B11!

where mass notations ofM11,22,12
2 are the same as Eq.~80! in

Sec. III C, and for simplification we have used the relatio
Mx.Mv , which results in Zt.Zb.Ztb /2 and l t.lb
.l tb /2. These are good approximations since the he
massesMx and Mv only affect them via weak logarithmic
dependences~due to the decoupling theorem! andMx.Mv

is also justified from our physical seesaw solutions in F
14. In summary, the above analysis agrees with our calc
tions in Sec. III C, and is particularly simple in extractin
leading corrections atO(j). It is also remarkable that in this
analysis we derive all relations in a rather general and for
manner in which no explicit one-loop calculation is need
for the quantities such asZt,b andl t,b,tb .
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