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We present a complete study of the vacuum structure of top quark seesaw models of the electroweak
symmetry breaking, including bottom quark mass generation. Such models emerge naturally from bosonic
extra dimensions. We perform a systematic gap equation analysis and develop an improved broken phase
formulation for including exact seesaw mixings. The composite Higgs boson spectrum is studied in the large-
N, fermion-bubble approximation and an improved renormalization group approach. The theoretically allowed
parameter space is restrictive, leading to well-defined predictions. We further analyze the electroweak precision
constraints. Generically, a heavy composite Higgs boson with a masslofTeV is predicted, yet fully
compatible with the precision data.

DOI: 10.1103/PhysRevD.65.055006 PACS nuntderl2.60.Nz, 11.15.Ex, 12.15.Ff

[. INTRODUCTION gauge invariance, and arrive at an effective Lagrangian in-
cluding Kaluza-Klein(KK) modes(in a sense the KK modes

Unraveling the mystery of electroweak symmetry break-are analogues of superpartner$his leads naturally to a
ing (EWSB) is the most compelling challenge facing particle strong dynamical origin of the EWSE,6]. The top-color
physics today. It is of central importance because it devolve§odel[7,8] and, in particular, the top quark seesaw model
into the question of the fundamentaiganizing principlefor ~ [9], emerge naturally from extra dimensions in this W&y,
the dynamics at or above the electroweak scale. following the original suggestion ifil0]. Top quark seesaw

Supersymmetry provides an excellent candidate for thignodels are particularly favored from our perspective because
organizing principle. It is an extra-dimensional theory inthey have a natural dynamics with minimal fine-tuning and
which the extra dimensions are fermionic, or Grassmanniarfiré consistent with the electroweak precision constraints.
Supersymmetry can lead naturally, upon “integrating out” The organizing principle of bosonic extra dimensions
the extra fermionic dimensionge., descending from a su- leading to strong dynamical electroweak symmetry breaking
perspace action to a space-time actjdo perturbative ex- can be described in the sequence of Figs. 1-4, in analogy
tensions of the standard modé@M), such as the minimal With [5]. In Fig. 1, we show a lattice approximation to the
Supersymmetric SMMSSM) In such a scheme the H|ggs fifth dimension of a ¥4 theory in which the gauge fields, in
sector contains at least two weak doublets, and the lighteg@rticular from QCD, and SM fermions propagate in the
Higgs boson is expected to be in a range determined by the 1
perturbative electroweak constraintss140 GeV. From a
“bottom-up” perspective a lesson from the supersymmetry is
that anorganizing principlefor physics beyond the standard
model can be derived from hidden extra dimensions which R
are then integrated out. Upon specifying the algebraic prop- ><><><><><><‘
erties of the extra dimensions one is led to a particular sym- y
metry structure and a class of dynamics for the EWSB.

On the other hand, the organizing principle for physics
beyond the standard model may descend from hidden extra
dimensions other than fermionic, and thus different from the
supersymmetry. It could, for instance, be a theory of com-
pactified bosonic extra dimensions with gauge fields in the
bulk. By using the transverse lattice technique-4], one
can “integrate out” the bosonic extra dimensions, preserving

2 n n+1 N

FIG. 1. Dirac fermion corresponding to constapthas both
chiral modes on all branes. The¢ symbols denote the couplings
*Electronic address: HIHe@physics.utexas.edu on each brane, and the links are the latticized fermion kinetic terms
TElectronic address: Hill@fnal.gov which become Wilson links when gauge fields are present.
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FIG. 2. A chiral fermion occurs on bramewhere ¢(x%) swings FIG. 4. Top quark seesaw model arises when the effects of
rapidly through zero. The chiral fermion has kinetic tefviilson nearest neighbor vectorlike fermions are retained, i.e., when these
links) connecting to adjoining branes. heavier states are only partially decoupled. Keeping more links

maintains the seesaw. Usually we denotg,~xr, tin+1
bulk. The lattice description reveals t@U(3)xXSU(3)  ~xi: tra+1~tr-

X ..., one gauge group per lattice brane, the top-color struc-

ture[1,2,5. A Dirac fermion has both left- and right-handed field i imatel tant th ; W=0
chiral modes on each lattice brane and hopping links to neaglg \;\?eagigrco;(:g”n zisg ;%ﬁei?umi?ergecmﬁéﬁﬂoﬁﬁ

est n.elghbor branes. . . . . the lattice approximation, and both chiral components are
It IS We.” k”OW” that chiral fermlc_)ns can be localized in kept on each lattice brane. We thus have the Dirac fermion
the fifth dimension by background fiel@i$1,12. A free fer- deoi i
) . picted in Fig. 1.
mion has the action If, on the other handg(x°) swings through zero rapidly
o in the vicinity of branen, then we impose(y°ds tast
f dox W (i o— 3,5(75_¢(X5))xp, ) + ¢(x®))¥ =0 in the vicinity of this brane, and one chiral
component oV (corresponding to the non-normalizable so-
lution) is thus projected to zero on the brane. A single chiral
component is thus kept on the braneas shown in Fig. 2.
The chiral zero mode is essentially a localized dislocation in
the lattice.

whereg is a background-field giving masdiere we neglect
the gauge interactionsFrom the lattice viewpoint, we must
decomposé@s into “fast” componentsthigh momenturpand
“slow” components(low momentun). The fast components — \ya can furthermore demand the coupling strength of
correspond to distance scales much shorter than the Iatti@u(s) on the nth brane to be arbitrary, hence it can be
spacing, and the dynamics in the latfice description CQr.re'supercritical. This can be triggered by renormalization ef-
s%onr?lng TO the slor\]/v ?cale m:Jstbmhatch onftoha It;aglian'g'arf‘ects due to theg field as well, e.g., a background field
which implements the fast scale behavior. If the backgroun . . By, ~a \2 .ot L .
%ouplmg as ing(x°)(G,,)*, will renormalize the coupling

on the branen [5]. It is, therefore, not coincidental to expect
this to happen; indeed a variety of effects are expected near
the dislocation, e.g., the chiral fermions themselves can feed-
back onto the gauge fields to produce such renormalization
S effects. The result is a chiral condensate on the brefioem-
eI SN U SIS FRAE | ing between chiral fermions. Identifying = (t,b),_ andtg
’ =4 as the chiral zero modes on the branand, in the limit that

we take the compact extra dimension very small, the nearest
N AN LS /S N N tr neighbor links decouple at low energies. As shown in Fig. 3,
N RN i I BN RN under this limit we recover a top-color model with pure top
guark condensatiofiL3—-16.

In Fig. 4, we consider the case that some of the links to
nearest neighbors are not completely decoupled. Again, this
can arise from renormalizations due to background fields, or
due to warpindg5]. Thus the mixing with heavy vector-like

FIG. 3. Pure top quark condensation by the top-color force isfermions occurs in addition to the chiral dynamics on the
obtained in the limit of critical coupling on brameand decoupling  branen. In this limit, we naturally obtain an effective top
to the nearest neighbors. Decoupling corresponds to taking the corfuark seesaw modgd].
pactification mass scale large; the links are then denoted by dashed In the present paper we will undertake a complete and
lines. systematic analysis of the effective 4-dimensional top quark
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mination of the heavy seesaw partner mass, and obtain
roughly M ~4 TeV. In this picture, the high precision elec-
troweak measurements are therefore probing the mass of a
heavy new particle, thg quark, significantly above the elec-
troweak mass scale.

Let us briefly summarize the logical path that leads to the
top quark seesaw model, irrespective of the recent interest in
bosonic extra dimensions as a rationale for this scheme. In-
deed, the observed large top quark mass at Tevatron is sug-
gestive of new dynamics responsible for generating the
EWSB involving intimately the top quark. The “top quark
condensation” or “top-mode standard mod€l13-1§, is
the earliest and simplest idea that involves a BCS-like pair-

ing (tt). It predicts a top quark mass in the SM determined
by the quasi-infrared fixed poirf21], m,~220 GeV, pro-
vided the new dynamics scale for the condensate genera-
tion is chosen to be very large. The model involves fine-
S tuning in the gap equation under the lar§elimit, and the
degree of fine-tuning is on(th/Az). The minimal top
FIG. 5. The 68% and 95% C.IS-T contours(solid), superim-  quark condensate model predicts a too heavy top quark mass,
posing the standard model curve for Higgs boson mass varyin§0 the simplest scheme is ruled out.
from 100 GeV up to 1000 GeV. The pre-1999 95% ellipse is shown In top quark condensation, with the fermion-bubble ap-
with a dashed line. For the top quark seesaw model with a 1 Te\proximation[omitting the full renormalization groupRG)
composite Higgs boson, we show tBeT contributions as a func- improvement inherent ifi21]], it is conceptually easy to see
tion of x mass. The data is therefore consistent with-a& TeV  that a dynamical mass gapgy, is generated and related to
Higgs boson andv,~4.0 TeV.(The S-T ellipses are taken from the weak scale through the Pagels-Stokar fornh2#,
1999 precision fif26].)

0.2

T 0.0

seesaw vacuum structure and the precision electroweak con- ffrzv\fveak:N—szgynm( Az/mﬁyn), 2)
straints. This also extends the earlier works in Rgfsl7,1§
which studied the precision bounds on the seesaw scheme.
The Higgs boson in this scheme is composite and heavyyhere v ea=[2vV2Gg] ¥?=174 GeV. This relation leads
with a mass~1 TeV, and the theory would seemingly be to my,,~700 GeV for a typical top-color breaking scate
ruled out by the precision constraints on the oblique param~3.5 TeV. Thus, the degree of fine-tuning is roughly re-
etersS-T [19]. We have, however, necessary compensatingluced to the order of (mgy,/A )%~ (1/4)>~10%, which is
positive T contributions coming from the additional seesawat a reasonable level and is actually “realistic” for the
quarks ), and the size of these effects can be well pre-Nambu—Jona-Lasini¢NJL) model as an approximation to
dicted by systematically solving the gap equations. Remarkthe full dynamics[E.g., the NJL model with fermion loops
ably, a heavy Higgs boson is derived and naturally consisterglightly exaggerates the degree of fine-tuning, and when it
with precision constraints in the top quark seesaw model. fits to QCD, one has a degree of fine-tuning, roughly about

In the recent classification of various models by Peskirymass gapk)2~ (1M, /M )2~11%, whereM ,~1 GeV is

: p/Vip ' P

and Wells[20], such compensating effects have been characne mass of proton arid /3 the dynamical mass of constitu-
terized as “conspiratorial.” Certainly many models introduce ent quarks, If the top qu%rk mass had been700 GeV. our
such compensating effects in ad hocway to achieve the 1, 110m would have been solved, and the EWSB would nec-

consistency with the precision data. However, when the to . . e o -

quark seesaw was first proposed in 1998, it lay outside of thgssarlly be identified with &t condensate. Raising the scale

ST ellipse by several standard deviatic[@é‘h and the model of A leads to the aforementioned fine-tuning problem and the

was thus DOA(dead on arrival Remarkably, in 1999, with ;[jop quark is too light to produce the full electroweak con-
! : ensate.

a refined initial state radiation and-mass determination at . .

the CERNe" e~ collider LEP-II, theS-T error ellipse shifted The top—colog‘orce{?,S] is gauge dynamics that can pro-
along its major axis toward the upper right. Since then theduce a nonzergtt) condensation. It involves an imbedding
theory remains fully consistent at ther2evel, as illustrated Of QCD into a larger group, which is essentially dictated by
in Fig. 5. Indeed the theory lies within ti&T plot for natu-  the quantum numbers of the top quark to [84J(3)

ral values of its parameters. One might say that, with the>SU(3)1XSU(3),X --- [and possibly also theJ(1)y
theoretically expected scale for the seesaw partner mass of U(1)y1XU(1)y2X---]. While this construction always

M ~4 TeV, the shift in the error ellipse was predicted by seemedad hog with latticized bosonic extra dimensions as
the theory—the top quark seesaw has therefore scored i) Organizing principle, we have seen that it becomes natural
first predictive phenomenological success. Or, more consefi,2,5. The top-color force can directly produce tKét)
vatively, we may view the measured error ellipse as a deterondensate, and the Pagels-Stokar relat@nrequires A
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~10** GeV. Thus the fine-tuning- m?/ A%~ 10 2®becomes dimensions where top quark and gauge fields propagate in
a severe problem in the simplest realization. Alternativelythe bulk [1,2,5]. The theory may be depicted graphically
the top-color force can produce a light top quark mass at th&om the latticized bulk in Fig. 4 as explained above. One
natural scale\ ~ (1) TeV, and then another strong dynam- obtains an effectivel+3)-dimensional Lagrangian descrip-
ics, e.g., technicolor, is required to provide the majoritytion in which all of the SM gauge groups are replicated for
strength of the EWSB. This is known as top-color assiste@ch Kaluza-Klein(KK) mode, e.g., for QCD we find
technicolor(TC2) [7], and it frees one from the requirement S UY(3)—SU(3)xSU(3)x - - -, with N additional copies for

that the top quark condensate generates all of the observ KK modes. Moreove_r, the_vector-lllgequarks can anse as
the KK modes of fermions in the bulk.

Vweak- It @lso largely solves the problematic constraints on ;
the extended technicol¢dETC), which prohibits the genera- . A.S mentlo.ned at the outset, the top quark seesaw scheme
tion of a large Massm ~o.... Many interesting phenom- implies that, in the absence of the seesaw mechanism, the top
. 9 U Pweak: | y 9p quark would have a much larger mass, of ordefO0 GeV.
enological consequences of this TC2 scheme 4fs29]. This has the effect of raising the masses of all the colorons
_ We can, alternatively, construct a top quark seesaw model,y 4y additional heavy gauge bosons, permitting the full
in which the dynamical mass term involving the top quark isyqn_color structure to be moved to somewhat higher mass
of order 700 GeV and thus is associated with thlé elec-  scajes. This gives more model-building elbow room, and
troweak symmetry breaking. This involves typically a pair- may reflect the reality of new strong dynamics. We believe
ing of thet, (I=3) with a new quarkyg (1=0), whichhas  that the top quark seesaw is a sufficiently significant and
the same quantum numbers tas We choose, for natural- novel, but relatively new idea in dynamical models of EWSB
ness sakeA ~O(TeV), and hence this mass term is of the and opens up a large range of new model building possibili-
order~700 GeV by the Pagels-Stokar formy®. We then ties.
incorporate arl =0 quark with the same quantum numbers In this work, we perform a systematic analysis of the
astg, xL, with additional mass terms, and we construct adynamical vacuum structure for minimal top quark seesaw
seesaw mechanism. With the seesaw it is possible to adjuatodels by quantitatively solving the gap equations. The top
the physical mass of the top quark to its experimental valuguark mass and the full EWSB are generated together. The
of 174 GeV[9]. Hence, the top-color seesaw mechanism carinclusion of the bottom quark seesaw mechanism is further
be readily implemented by introducing a pair of isosinglet,studied. We carry out the analysis using an improved broken
vector-like quarksy, and yr, of hyperchargeY=4/3, in  phase formulation, in comparison to the traditional gauge-
analogy with thetg. This model produces a bound-state invariant formalism; the former allows us to treat all the

Higgs boson, primarily composed of yr with a mass of seesaw mixing effects in a precise way and thus reliably
order~1 TeV or so, while they mass is at the TeV scale. analyze the model parameter space. The composite Higgs

Note that the top quark seesaw modieles not invoke b0son mass spectrum is computed by several independent
technicolor but rather replaces technicolor entirely with the @pproaches. We further study the precision bounds via the
top-color. In a sense, it is a pure ETC model, where ETCS-T oblique corrections and thébb vertex correction, from
(top-colop is sufficiently strong to form condensates. It thuswhich we derive nontrivial constraints on the parameter
offers new model building possibilities, and may allow inter- space and the composite Higgs spectrum. The effects of top-
esting extensions to solve the flavor problem. The basic dyeolor instanton$7] are also analyzed, as a source to generate
namics of the model can be extended to all families if one igart or all of the bottom quark mass.
willing to tolerate more fine-tuning. Again, extra-dimensions
point the way to a full flavor model extensid®]. While
there are the additional ¥” quarks involved in the strong !l. DYNAMICAL TOP QUARK SEESAW MODEL AND THE
dynamics,these do not carry weak-isospin quantum num- GAP EQUATIONS
bers This is an advantage from the viewpoint of model
building, since the constraint of tf&parameter is essentially
irrelevant for the top quark seesaw, since we have only a In the minimal top quark seesaw scherf the full
chiral top quark condensate in the EWSB channel, and wEWSB occurs via the condensation of the left-handed top
extend by including only vector-like fermions. quarkt, with a new, right-handed weak-singlet quayl.

The top quark seesaw model makes a robust predictiomhe xr quark has hyperchargé=4/3 and is thus indistin-
about the nature of the electroweak condensate: the lefguishable from thetz. The dynamics which leads to this
handed top quark is unambiguously identified as thecondensate is the top-color force, as discussed below, and no
electroweak-gauged condensate fermion. The scheme délting U(1)’s arerequired. The fermionic mass scale of this
mands the presence of top-color interactions, but beyond the&eak-isospinl = 1/2 condensate is-700 GeV. This corre-
| =1/2 component of the EWSB, the remainder of the strucsponds to the formation of a dynamical bound state weak-
ture, e.g., they quarks and the additional strong forces which doublet Higgs fieldH~ (xrt, , xgrb,)". To leading order in
they feel, appear to be fairly arbitrary. However, as we havel/N, this yields, via the Pagels-Stokar formula, the proper
seen above, a remarkable aspect of the top quark seesayiggs vacuum expectation valug,e,=174 GeV and the
model, is that the ingredients, which otherwise appear to beop quarkl =3 dynamical mass term,
rather arbitrary, i.e., the top-colftilting U(1)’s], vector-like L
x quarks, etc., are all naturally given by theories of extra m,t xg+H.c. (m,~700 GeV. 3)

A. The minimal model
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Moreover, the model incorporates a left-handed weak- 1

isosinglet y quark, with (,Y)=(0,4/3). Thus,y quarks miZz[MifF#iﬁ mt2X+ \/(M)Z(X+M)2(t+mfx)2—4ﬂ)2(tmt2)(],
have an allowed Dirac mass term, (10)
M)(XXLXR+ H.c. (4) —)ILL)Z(X‘i‘ M)Z(t|(lu‘)()(>lu’)(l ‘ml)() y

This may be viewed as a dynamical mass through additional

2 2 2 712
new dynamicgyet unspecifiefdat a still higher mass scale. (SL _ i I/'LXX+/‘LXt_mtX (11)
However, since thgg and x, quarks carry the samd,(Y) c) 2 |\/|)2(_mt2 '
charges, we prefer to introduce Eg) by hand and ignore, )
temporarily, its dynamical origin. Furthermore, the left- s 1| 2 _ 2, 212
handedy quark can form an allowed weak-singlet Dirac ( R):_ 1;M _ (12)
mass term with the right-handed top quark, leading to cr/ V2| M2 —m?
Kyxitrt H.C., (5)  The fermionic mass matrix thus admits a conventional see-

saw mechanism, yielding the physical top quark mass as an

which again may be viewed as a dynamical mass term in agigenvalue that is-my, u,/u,,<m;,~700 GeV. The top
enlarged theory. There is no direct left-handed top quark conduark mass can be adjusted to its experimental value by the
densate with the right-handed anti-top quark in this schemeshoice of u,/u,, . The diagonalization of the fermionic
since they do not share the same strong top-color dynamid§ass matrix does not affect the physical vacuum expectation
(cf. Sec. I1B. Thus, the resulting mass matrix for the y ~ value (VEV), vyea=174 GeV, of the composite Higgs

system is doublet. Indeed, the Pagels-Stokar formula is now modified
as
— — [0 m tr
—(te X X)( +H.c. (6) 5 , Ne m¢ 2
Mxt Hxx/ \XRr Uiea= o= InWJrc , (13

1672 sirf 6
This seesaw mass matrix can be exactly diagonalized by ro-
tating the left- and right-handed fields, wherem, is the physical top mass, St=Sr~ i1/, the
right-handed seesaw anglel,= \/f“xzt+f“x2x' and c denotes
t t tr [ tr sub-leading terms, and we expeet O(1).
Y | =Kgr ' @) The Pagels-Stokar formula now differs from that obtained
L XL XR . . . .
(in largeN, approximation for pure top quark condensation
models, by a large enhancement factor £/8in This is a
direct consequence of the seesaw mechanism. The mecha-
c s “Cr Sk nism incorpqratespL=(tL , b)), which provides the source
Ktﬁ( ) KEZ( ) (8) of the weak-isospir = 1/2 quantum number of the compos-
—S. C SR Cr ite Higgs boson, and thus the origin of the EWSB vacuum
condensate. Note that we have separated the problem of
which are determined by obtaining tfgositive mass eigen- EWSB from the weak-isosinglet physics in the g andtg
values,m; andM . For convenience, we have used the ab-sector, which is an advantage of the seesaw mechanism since
breviations =sin g, , and so forth. Our parametrization has the electroweak constraints are not so restrictive on the iso-
also implicitly assumed the mass matrix to be real, and thusinglets.
orthogonal. In the absence of further ingredients, this will
always be the case because any stray complex phase in the
mass matrix can be absorbed by redefining the fermion _ )
fields. The(rotated mass eigenstate fields are denoted’by L€t us turn to some of the dynamical questions, e.g., how
and x' to distinguish them from the interaction eigenstatedoes the top-color force produce the dynamiog| mass
fieldst and y. The mass eigenvalues and rotation angles aré&rm? We proceed by introducing an embedding of QCD into

et
L

!
XR

with

B. Top-color dynamics

given by the gauge groupSU(3);® SU(3),, with coupling constants
h, andh,, respectively. These symmetry groups are broken
1 down to SU(3)qcp at a high mass scale. We assign the
m2= E[M)Z(X-l-,u)z(t-i- M~ V(uh + uitmi)2—4ulmi 1, representations for relevant fermions under the full set of
9) gauge groupsSU(3);®SU(3),®SU(2)y®U(1)y as be-
low;
me iy Yot (3,1L,2,+13), xgi (3,11 +4/3),
242 '
o™ Foonl ooy troxL: (L,3,1, +4/3). (14)
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This set of fermions is incomplete; the representation speci- —r 1 )

fied has[SU(3),J% [SU(3),1% and U(1)y[SU(3);,? Lo= Lunetc™ (M XLXRT X LtRTHE)F L. (19
gauge anomalies. These anomalies will be canceled by feg,;  contains the residual top-color interactions from the ex-
mions associated with either the dynamical breaking ofthange of the massive colorons, and can be written as an
SU(3);®SU(3),, or with theb quark mass generatidlan  operator product expansion,

explicit realization of the latter case will be given in Sec).lll

The crucial dynamics of the EWSB and top quark mass gen- h% T a
eration will not depend on the details of these additional ﬁint:—P(',ULY“?J/L) XRYu 5 XR| TLLARRE -,
fermions. Schematically, the picture looks like (20)
SU(3)1 SU(3); whereLL (RR) refers to left-handedight-handed current-
current interactions and@®'s are the brokersU(3) genera-
(t'-) (tR) tors. Since the top-color interactions are strongly coupled,
b br forming boundstates, higher dimensional operators might
XR XL have a significant effect on the low energy theory. However,

if the full top-color dynamics induces chiral symmetry
breaking through a second order weakly first orderphase

This can be viewed as a two lattice-brane approximatiorf@nsition, then one can analyze the theory using the funda-
to a higher dimensional model with localized chiral fermionsMental degrees of freedom, namely the quarks, at scales sig-
[5]. nificantly lower than the top-color scale. We will assume that

this is the case, which implies that the effects of the higher
dimensional operators are suppressed by powers of the top-
color scale, and it is sufficient to keep in the low energy
theory only the effects of the operators shown in E).
Furthermore, thé L and RR) interactions do not affect the
low-energy effective potential in the largés limit, so we
will ignore them.(One should keep in mind that these inter-
actions may have other effects, such as contributions to the
custodial symmetry violation paramet€r but these effects
are negligible if the top-color scale is in the multi-TeV
. range)
z\;ﬁLdE%srgiszli’\a/zi %I;'O”S and an octet of degenerate CO|0I’OHS. To leading order in M, and upon performing the familiar
Fierz rearrangement, we obtain the following scalar-type
NJL [24] interaction:

We further introduce a scalar field, transforming as

(§, 3,1,0), with a negative mas!;/lfI> and an associated
guartic potential such thab develops a diagonal VEV,

(®)=V3, (15
and the top-color group is broken down to the usual QCD,

SU(3);@SU(3),—SU(3)gcp. (16)

A%=(h2+h3)V2, 17)
2

D is ju_st the Wilson IinI_< connecting the_ 'Fwo.branes in the ﬁint:h—12(¢LXR)(XR¢L)- (21
4+1 picture, anaV the inverse compactification scale. Al- A
ternatively, from a pure 31 perspective this symmetry . . ) o
breaking can arise dynamically, which is akin to dimensionalt IS convenient to pass to a partial mass eigenbasis with the
deconstruction4]. We will describe® as a fundamental following transformations for right-handed fields,
field in the present model for the sake of simplicity.

—qj + i
The scalar® also has the correct quantum numbers to AR~ €O xr—SINO1r,  tr— COPtrtSING xr,

form a Yukawa interaction with the singlet seesaw quarks (22
XL,r @nd thus provides the requisite mass tery , where
— Y XrR®xLtH.C—— MXX;X' (18) tand = M (23

72
This also happens automatically in the latticized extra- w

dimension scheme where this term plays the role of the ferln this basis, the NJL Lagrangian takes the form,
mion (hopping kinetic term. We stress that this is an elec-
troweak singlet mass term. In this schenyg is a
perturbative coupling constant so thée w . Finally, as
bothtg andy, carry identical top-color antd(1)y quantum
numbers, we should also include the explicit weak-singlet X[(cosd yg—sinftg) ¥ ], (24)
mass term, of the formy,x, tg+H.c. )

At energy scales below the coloron mass, the effectivevith
Lagrangian of this minimal model iISU(3)c®SU(2)w _
®U(1) invariant and can be written as M= ul, +us . (25

e
Lo= Liinetic— M xgxL +H.C.+ P[l//L(COS19 Xr—SiNOtg)]
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my, t t X X Xt hi 4

®
m, 2 A,
t Xr t=—S —2 A, (27)
my t t o X X Xy My S K

(% m_tt - E - M_XX,
= + + & 9+ & &
where , ¢) =(sind, cod)) and the termZJf‘: 14, represents
the sum of four loop integrals on the right-hand side of each

gap equation in Fig. 6. It is important to note that game
loop graphs appear in both gap equationsnipy andm;; so
FIG. 6. Top quark seesaw gap equationsrfgy andm, . that we have the relatiom,;/m;, = s/c as above. This means
that the two coupled gap equations are actually reduced to
one independent gap equation, say,fgy. By explicit cal-
C. Gap equation analysis culation of the loop integrals, we write this gap equation in
the following form, up toO(mg),
At this stage we have the choice of using the renormal-
ization group(RG), or to study the mass gap equation for
m, . Ultimately these should be equivalent. The RG ap- My =M, —

2
m;
1- A—;((l‘FSZ)'n

A2 ) c2A2
M2

. . 3 . K¢ A2+ MZ
proach requires the construction of the effective potential of
the composite Higgs boson, and its minimization. The gap 4 2 A2 2 2
: . . S cc A M A
equations get us there directly. A further rationale for study- + —2In — 5 +1 —c2—2|n = +1
ing the gap equations is that they in principle allow one to ¢ ST My
explore the limits, such aM>A which are conceptually +O(mf) (29)
X

more difficult with the renormalization group(The

dimension-6 operator makes no sense above the acafe  where for convenience we have used the definitions,

the RG, but the cutoff theory can still be expressed in the gap- hf/(4w) and x.=2m/N.. There are several ways to see

equation languageln the following, we will start with the that these reproduce normal top condensation in the decou-

gap equation analysis, and we find it instructive to begin bypling limit. For instance, takingl — for fixed A and using

treatingm;, as a mass insertion and examine its dependencge relationm;, = my(s/c), we find

on the parameterM and 6. An improved derivation of the

seesaw gap equation without mass insertion will be given in

Appendix A1 and Sec. I D. My mtt
To derive gap equations, we expand the NJL vertex

in Egq. (24 and find that the four individual o is just the familiar top condensation gap equation,
vertices,  (Lxr)(xrt),  (ttr)(trt),  (tLtr)(xwrt).  with my the dynamical top quark mass. Here we have de-
and (gt ) (t xr), can form two types of dynamical conden- coupled y, and yg with M—o. We can also obtain top
sates,(t_xgr) and (t tg). Correspondingly, we have two condensation by setting $ifi=s>=0 andM— 0, which de-
mass-gap terms, couplesy, andtg, and causegg to play the role oftg. A
main advantage of this mass-insertion gap equaf®® is
that it allows us to analytically solve fam, [ignoring a

2

m 2
1——|
K¢

+1/], (29)

tt

— My, t xr— Myt tr, (26)  smallO(s*) term|:
P 2 A2 1/2
where the diagonal mass;; can be conveniently put into the 1-—S— 02—2 In| = + 1)
top propagator while the off-diagonal masg, will be in- me,=A K A . (30)
cluded up toO(mg) in the present analysis. We can then X o [ A? c?A?
write down the two gap equations fon,, and my, as (1+s%In W”Ll A2 M2
graphically shown in Fig. 6. It is clear that these are the
IargeN Schwinger-Dyson  equationgexpanded up to where we have discarded the trivial solutiop,=0.
(’)(mtX)] for the NJL Lagrangiarf24). From Fig. 6, we de- This clearly shows that for the fixeel k.>1, the conden-
rive sate turns off like a second order phase transition as we raise
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FIG. 7. Effective seesaw critical couplin@ff (scaled by con-

stant k,=27/3) as a function of M/A, for tanf= ¢/ py
=(0,0.1,0.2,0.3,0.5,0.8).

the scaleMl. This is essentially to compensate the decoupling

of the heavy fermion in the loop of mass. The gap equa-

PHYSICAL REVIEW D65 055006

To derive the effective Lagrangian at a low energy sgale
we integrate out the modes of momemte |k|=u. For u

<M<A, the heavy fieldy decouples, so that we have
L, <= Lxinetic— N1 SING (1 tg@o+H.C) + Zg|DDy|?
~ M3 (1) 50— X(P§Do)%, (33

where the effective scalar wave-function renormalization,
mass term and quartic coupling are given by

AZ
'”(W

A2—coLoM?In

2

+sin20In(M—

u?

A2
W)

: (34

+0(1)

1 «
Zo(w)=5

K¢

+O(M2, u2)

2 2

A2\ M
W +sintdIn F +0(1) |,

KZ

7\(/1,)=27TK—C In

tion (28) or (29) also shows that we require supercritical where (k. 1) = (hi/4m, 2mIN,). These relations hold fog
coupling as the maskl becomes large. We can further de- <M in the largeN. approximation, and illustrate the decou-

rive the effective seesaw critical couplimjff from the gap
equation(28) or (30) by settingm;,=0, i.e., we have

K§“ 1
—= = 31

Kc M?2

which is displayed in Fig. 7 as a function ﬁ/_A. For «
> &, we havem,,>0. We see thak$"= «. for M=0, and

as M increases the effective seesaw critical couplicd
moves abovec.(=2m/N.) implying that stronger top-color

force is required compared to the non-seesaw case. Finall

pling of the y field at the scalege<M. In the limit sin6<1,

the induced couplings are those of the usual NJL model; but
the Higgs doublet is predominantly a bound stateygf), ,

and the corresponding fermion loop, with loop momentum
ranging overM <|k|<A, controls most of the renormaliza-
tion group evolution of the effective Lagrangian.

In order for the composite Higgs doublet to develop a
VEV, the top-colorSU(3); gauge force must be supercriti-
cal, as indicated by the preceding gap equation analysis.
Once K(=h§/4w) is supercritical, we are free to tune the

renormalized Higgs boson mas¥l3 (u)=M?3(u)/Zs, to

any desired value. This implies that we are free to adjust the
renormalized VEV of the Higgs doublet to the electroweak
value, (®)=v/\2=174 GeV. The renormalized effective

we note that using the complete seesaw diagonalizatioh@drangian aju<M takes the form

(7),(8) and the NJL vertex21), we can derive the exact

largeN. seesaw gap equation without using a mass-insertion

approximation(cf. Appendix A 1. This will allow us to re-
liably analyze the full seesaw parameter space.

[',u< M= ['kinetic_ o siné ( ’r//Lth) + H-C-) + | D<I)|2

~ME(w)®TD -\ (DTD)?, (35)

The electroweak structure of the low energy theory is bes}ere
read off from the effective Lagrangian, which may be de-
rived from the traditional gauge-invariant renormalization
group analysis as below. We proceed by rewriting the NJL® = ®,\/Z,
interaction(21) with the introduction of an auxiliary color-
singlet field, ®,, which becomes thenrenormalizedcom-
posite Higgs doublet,

M3 () X

Z, " z2

hy

M3 ()=

(36)

When the top-color interaction is supercriticab, be-
comes tachyonic at low energy scalSi;é(MHO)<0 and a
dynamical condensate will be induced. This condensate
breaks the electroweak symmetrySU(2),@U(1)y

Lo= Lyinetic— [M xrxL + 1t (COSH xg—sind tg) Po+H.C]
—A2D[D,. (32
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—U(1)gm and induces mixing between the top quark and AvAr v
fields. In the minimal top seesaw model the physical particle

spectrum can be readily seen by writing the Higgs doublet in @ ® Q Q

the unitary gauge®=(1/y2)(v+h, 0)T, whereh is the = ¢ + =0

neutral Higgs boson of the theory. The resulting top quark
mass can be read off from the renormalized Lagrangian,

I
I
h

FIG. 8. The largeN, tadpole condition for minimizing the
Higgs potential.

g .
m; = —siné, (37)
’ ol ()t
Ly=—(tL xu) o )\ xe \/EtLXR otH.c.
which corresponds to the Pagels-Stokar formula in the form 1
of Eq. (13). - EAZhS—AZUOhO

Finally, by minimizing the effective Higgs potential in Eq.
(35 and using the results in E@34), we can derive the o 1
approximate formula for the physical Higgs boson mass by =-—mt't'"—=M,x'x' — EAzhé—szoho
keeping the leading logarithmic terms,

hl ’ ’ ’ ’
__\/E[CLtL+ SLXL][SRtR+ CRXR] h0+ H.C., (40)
Mh ~ thX, (38)

where we have performed the exact seesaw diagonalization

. . . ) according to Eqgs(7),(8). Now, we evolve the Lagrangian
which shows that the physical Higgs boson mass is abo“&own to the scales(<M <A) by integrating out the mo-

two times the dynamical mass gap, as expected from thﬁentake(,u, A). The heavy quarly decouples and we ar-
usual largeN; bubble approximatiofl15,24. In Sec. Il F, we iy at the renormalized broken phase Lagrangian,
will derive a more precis®l, using two improved analyses.

- — 1 ~
Lyem =—mt't! —&cLth’t’th —(&Mh)Z—AT h
D. Tadpole condition and improved analysis X \/E 2
in the broken phase
1.2 2 -1
= 5Mih®=Vin(Z, "), (41)

Before proceeding to perform the numerical analysis for 2

gap equations, we consider an alternatiyet equivalent . 1 . .

derivation of the gap equation based on the Higgs tadpoléév_here gt_h_ll‘/z—h _and Vinl(Zp, _h) contains the effective

condition in the broken phase of the effective the¢For a  H199S self-u;teracﬂoqs. The Higgs tadpole tedT and
simpler example of a broken phase analysis in NJL, se@'ass termMj are defined by

[25]). We also present the improved RG analysis in the bro-  _ B -~ __ ~

ken phase of the low energy theory, which allows us to pre- AT=(z, Yo AP+ 6T)Zy, 1, Mﬁ:(A2+ oM ﬁ)/zh’

cisely treat the seesaw mass diagonalization and the mixing (42)

effects in Higgs LagrangiafThis is unlike the usual gauge-

invariant RG analysis around Eq32) where the Higgs

vacuum is unshifted and thus the exact seesaw mass diag - ~ ]
nalization is not allowed.As a consequence, the Higgs bo- POle condition AT=0, results in
son mass and its Yukawa coupling can be more precisely
analyzed in the present broken phase formalism. We begin
by choosing the unitary gauge of the Higgs doublet and shift- -

ing the bare fieldP, to the broken phase vacuum, wheresT comes from one-loop tadpole diagrafto Fig. 8).

Note that the tadpole loops ifT will be integrated from
zero momentum to the cutoff (independent of the renor-

, (39 malization scalew) as they are really vacuum graphs with
vanishing external momentum. The equati{dB) is just the
minimization condition of the Higgs potential in its broken
phase, and is equivalent to the gap equation derived from the

which results in the fermionic seesaw mass matrix given irNJL formalism in Sec. IIC and Appendix A1, as will be

Eq. (6). Thus the effective Lagrangian at the scale A can  clear shortly. Figure 8 shows that the condition in E4p)

be written as actually represents the exact lalyg-gap equation without

with 6T and 6M? computed from the one-loop Higgs tad-
%c_)le and self-energy corrections, respectively. The Higgs tad-

voA2+ 8T =0, (43)

1

2

UQ+ hO

q)oz 0
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mass insertion[The mass-insertion tadpole condition, fully « 1 g e e g
equivalent to gap equatidi28) in Sec. Il C, will be givenin "k 09 E 3
Appendix A 2] Now, using the relatiomy,,=hvo/\2, we = Exact (dashed) & Approx (dotted) 3
can explicitly derive, from Eq43), a single gap equation for 08 Physical Solutions (solid) 3
My s 07 F K/ =2 =
K md | A%+m? 06 £ 3

m‘X_K_C CLSg| mi— Pln mtz 0.5 ;_ _;

04 F 3

mf( A2+ m)2( E %o, %0 E

MG T @ O L E

X 02 F " ¥0.6 =

where (k, ko) = (hZ/4m, 2rIN,). Equation(44) is the same o1 E 103 05%, E
as the exaCt Iargel_c NJL gap equatlon derlved In Appendlx EI L1l | 1111 I 1111 | L1l I 1111 I 111 | L I=‘I I 1 I“‘ﬁ 1 |‘I;‘I 11 | 111 IE

A1. It also reduces back to the approximate mass-insertior o= 07 02 03 02 05 06 07 08 05 1
gap equatior(28) (cf. Sec. Il C and Appendix ARafter ex-
panding the seesaw rotation angles and mass eigenvalues 1 My /A
to (’)(me), as we have verified. This provides a consistency
check of our analysis. Since the right-hand side of @d)
Sg?éiltn;;Zet&agsp%gﬁﬁlgt:%?spsljﬁ:gévr?gnlté;[l)ej (;utgg)i seesaw solutions(satisfying m}=174 GeV and v= \/vae_ak
presented earlier. But, the precise treatment of all seesa>+0 V) are plotted as solid curves, extracted from Fig. 10.
g . ' . %e upper set of curveglashed curvesare derived from the exact
mixing effects in Eq(44) has an advantage of allowing us to largeN, gap equatiorf44) and the lower oneglotted curvesfrom
reliably explore the full seesaw parameter space, and is Paffie mass-insertion gap equatis).
ticularly useful in our later quantitative numerical analysis.
We proceed by computing the wave-function renormaliza-
tion constant of the Higgs field,;,, and obtain

FIG. 9. Solutions for top quark seesaw gap, with «/x.=2
and \/r_tz,uxt/,u”:(o.l,0.3,0.5,0.6), respectively. The physical

E. Solutions to the top quark seesaw gap equation

In this subsection we present a systematic numerical

2 ] analysis of the top quark seesaw gap equations. From the

2
A +mj
2

My

+(Chtssp)In approximate or exact gap equatiaf. Eq.(30) or Eq.(44)],
we can see that the seesaw mass iggp' A (scaled byA)
can be solved as a function of themass parametet, , /A

(scaled byA), for each giverx/ . (the strength of top-color

where we have dropped the smafi(1) constant terms 92uge forcgand the seesaw parameter (u,/ Mxx)zl- Ex-
(which are not logarithmically enhancetbgether with the {Jlorlngtsuch ? _rtelzlatlon bet\/\f{ﬁafnt;)(/h/\ and lftﬁ)](//\ will 3" q
tiny O(m/M?) terms. The renormalizet-t’-h vertex has OW US 10 EXPICITly examine he behavior of the second order

; : = . phase transition of the mass gap, as thex quark mass
Yukawa coupllpg:Lngt/\/f with gt_.hll‘/z_h' The dynami- scaleu,, becomes large. This is shown in Fig. 9 for a typical
cal massm;, in the seesaw matrix takes the formm,

o o . . : input of k/k,=2 and a wide range of, values. We have
=hywo/\2=gw/\2, which, with Eq.(45), results in a more plotted seesaw solutions using both the approximate mass-
precise form of the seesaw Pagels-Stokar formula,

insertion gap equatiof80) and the exact gap equati¢ad),
depicted as dotted and dashed curves in Fig. 9. We see that
the two types of solutions indeed converge in the small
m, /A region as expected, and deviate more from each other
for largerm;, /A values. As the ratiq:,, /A moves beyond
(46) ~0.63, the mass gapy, smoothly turns off, indicating a
second order phase transition has occurred. In another limit,
This equation is an improvement over the previous formulau,,/A—0, the difference between the two sets of curves
(13) [or Eq. (37)] in that the exact seesaw mixing effects becomes the largest as the approximate curves, pfA all
associated with the leading logarithmic terms are includedfall into zero while the exact ones smoothly approach to
To check the consistency, we note that Ef) reduces back about 0.63, a particular solution of the reduced gap equation,
to Eg. (13) under the limit 6,s3)<1 and my  1—«kc/k=(my,/A)?IN(1+AZm) (with x/k=2), derived
~Mi/ (ol ey, ) =m/sindg (where sigg~u,./u,,). Fi-  from Eq.(44) in the limit u, /A —0.
nally, we note that the above Pagels-Stokar formula is de- We now turn to the physical solutions in which we super-
rived under the larg®, fermion bubble approximation, impose the requirements of the top quark mass,
which, for the low scale cutofA <10%"° GeV, is found to =174.3 GeV, and the full EWSB VE\(; =246 GeV. Our
work well in comparison with the full RG evolutiofinclud-  strategy is to fix the coloron mass (characterizing the top-
ing non-largeN. termsg [27]. color breaking sca)e and the top-color gauge coupling at

2 1« 262 A%+ m?
== —jcispIn| ——
h 2KC LR mtz

(49)

2

m

2__tx 2.2

ve= ciskIn
4’7TKC[ L°R

2 2 2 2
+m; A?+M2
2
X

2
m;

+(c3+ sfs%)ln[
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1 10 10°
1 42 L T T T T T T T
08 [ * Inputs: m=174.3GeV, v=246GeV ]
= -t exact:  solid 2
05 - approxi: dotted =
04 . -
i3 N T wrrrrwreee e _:
C () ]
C 1 1 1 1 oo 1 1 1 1 Lo 1T
102 B T T T T T T T T I T T T T T T T I__
> g ]
£ 10 - FIG. 10. Solutions of the top
S E e quark seesaw gap equations are
= B ] shown in plots(a@)—(c) for «/x,
1 = = =(1.2,15,2,4), with m,
E 3 =174.3 GeV and v=2vyex
) : =246 GeV superimposed. The
E . solid curves are derived from the
15 L ] exact gap equatiotd4) while the
S Tt ] dotted curves from the mass inser-
ﬁ q o ] tion gap equation(30). The pre-
~ - 7 dicted physical mass-eigenvalue
E"s C ] of x quark is also shown in the
05 7 plot (d).
: 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I:
102 B T T T T T T T T I T T T T T T .I I__
N B ]
o
B 10 E
= F 3
= C ]
I e t.3 - E
E 2 -1 I‘5 } 2 1 1 } 1 1 1 I 1 i 1 1 1 i 1 1 E
1 10 10°
A (TeV)

that scale ;, or equivalently«/«.). Then, we are left with  tions into the plane ofn;, /A vs u,, /A in Fig. 9. Since the
three seesaw parametens(, u,, i,,) [or, equivalently, —seesaw parameterm(,,r, u,,) are determined as in Figs.
(M, ey iy,)] to be determined. Indeed, we have threelO(@-10(c) for each givenA and «/«., we see that the
coupled equations to make this determination completelphysical solutions for/«x.=2 (solid curve$ indeed take a
feasible: the gap equatio@4) [or Eq. (30)], the top mass unique trajectory in then,, /A —pu,, /A plane of Fig. 9. For
eigenvalue equatiof®), and the Pagels-Stokar formulé6) A varying from 1.8 TeV to 80 TeV, théexact and approxi-
[or Eqg. (37)]. From this set of solutions, all other physical mate physical solutions move from left to right along the
quantities, such as the seesaw mixing angles, the mags oftwo solid curves and fall into good agreement fo, /A
quark, and the Higgs boson mass and Yukawa couplings, carn 0.56.
be predicted as functions of for each givenx/«. With these solutions we are ready to predict physical ob-
In Figs. 1qa)—-10(c), we present our complete physical servables. We first consider the effectivet’-h Yukawa
seesaw solutions as functions dfand for various inputs of coupling, which can be extracted from Edd),
«/ k.. For completeness, we also show the prediction of the

x mass M,) in Fig. 10(d). Figure 1@c) shows that the mass hy
gapm,, ranges from~700 GeV up to~1.7 TeV for 1.05 Yhtt:gtCLSR:\/?CLSR- (47
<«kl/k.<4, and is quite flat in the entire region &f. There h

is also a lower limit on the allowed region ¢t for each
fixed k/ k.. For instance A has to be greater than 1.8 TeV In the limit of rt:(,uxt/,u”)2<1 andx;=(my, /u )2<1,
for x/k.=2. Furthermore, it is instructive to map our solu- Eq. (47) can be approximated a6~ \ri(h;/\Zy). With
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FIG. 11. The predicted effective Higgs Yukawa coupliig, in
(a), andW-t-b gauge couplin@y, shown as the ratio over its SM
value in(b).

the leading order seesaw mass relatiom,~ \/r—tmtx
=ri(h1/VZy)(v/\)2), we arrive at an approximate equa-
tion, Yyu~+v2m,/v~1, as in the SM. Now, we can under-
stand the gross behavior ¥f,;; in Fig. 11(a). Namely, for the
low A region, the seesaw solutions of andm;, /u,, are
quite sizablgcf. Figs. 1@a)—10(c)] so that the above limit
(ry, X;)<<1 is not good and the deviatiovi,;—1 is large;
also smallerx/«. values have larger;, suggesting larger
deviation of Yy;; from unity. But, whenA increases, the
ratios (,X;) drop off quickly and thusY, approaches
Yhee=1.

Other important couplings include the effectiVé-t’-b

PHYSICAL REVIEW D65 055006
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FIG. 12. The predicted mass spectrum of the top quark seesaw
Higgs boson:(a) by the largeN. fermion-bubble calculation; and
(b) by an improved RG analysis including the Higgs self-coupling
evolution.

this requires some fine-tuning. This freedom may be useful
in constructing more complete models involving all three
generations. The top quark is unique, however, in that its
large mass is very difficult to accommodate in any other way,
and there is less apparent fine-tuning. We therefore believe it
is generic, in any model of this kind, that the top quark
receives the bulk of its mass through this seesaw mechanism.

F. The composite Higgs boson mass

With the seesaw gap equation solved in the previous sub-
section, we can proceed to analyze the mass spectrum of the
composite Higgs boson. From Ed40), (42), and(45), and

andZ-t'-t’ gauge couplings, which are now modified by the taking the usual largél, fermion-bubble approximation, we

seesaw rotations dfand y [cf. Egs.(11),(12)]. The W-t’-b
coupling gw,, for instance, involves only the left-handed
fields (t, , b_) and we derive

X 8r,—3
g\évl\;bzcl-z - t 2 + - 2X[ +O(Xf)l
Owib 2(1+ry) 4(1+ry)
(48)

where (i, VX )=, M)/ 1, <1. We see that the ef-
fective couplinggwyp is reduced from its SM value, and the
deviation becomes small in the limit(, x;) <1 (valid in the
large A region, cf. Fig. 10. This picture is quantitatively
shown in Fig. 11b). Such deviations are important for pre-

cision experimental tests at various colliders before the see-

saw quarky can be directly produced.

Finally, we remark that, using the freedom to adjygtor
equivalently, sim in Eq. (22)], we can apparently accommo-
date any fermion mass lighter than700 GeV. However,

can straightforwardly compute the physical Higgs boson
massMy,. A lengthy calculation gives

1 K K
Mﬁ:Z— (1—— A%+ —| | 3s?ci+(cici+sPst)
h Kc Kc
M?2 M. m
X Xt 2
X—+2CLCRSLSR— M
2 2 2 2 X
M —my M{—my
A2 m?
2.2 2.2 2.2 t
XIn| — +1|+| 3c{Sg—(CLCrRTS[SR)—5
MY M —m;
Mth 2 ?
—2CCrSLSR—5—— |Mi In| < +1
MX_ t t
2.2 ZM)Z( 2.2 Azmtz
—2S[Cr—5 5~ 2C[SR 5| |- (49
+My A+m;
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To compare with EQ.(38), we consider the limitr,  evant. Hence, the one-loop full RG analy$mith compos-
('““xt/f““xx) —0 and expand all quantities in terms of the iteness conditions[15] may not be more reliable than the
small parameter x,;=(my,/x,,)% so that, (M, M,) usual fermion-bubble calculation for theories withlaw
~(0, MXX\/lTXt) and (s, Sg)~(X;,0). With these, we scaleA. Similar features should hold for th‘d_h ar_waly3|s in
verify that theM? formula (49) reduces toM,~2m, , in the top quark seesaw modgxcept a complication by the
agreement with the approximate mass relaii®88) derived New mass scald,, betyveen M, M) andAl]. Nevertheless,
by the gauge-invariant renormalization group analysis. Usin e feel it IS useful to |mplgment sugh an improved one-loop
the physical seesaw solutiopsf. Figs. 1@a)—10(c)], we can G analysis oM, below (in the spirit of Ref.[15]), as a

: . comparison.
plot the predicted Higgs boson mass from E#f) [Eq. (38)] . . —
as the soliddotted curves in Fig. 123). It is important to Using the mass-independehtS scheme[15], we con-

note that our current largd; fermion-bubble approximation sider the top-quark seesaw RG evolution in two stépdor

. . . e range A=u=M,; (i) for the range M, =u

Fzrg]d I(S:;Stl?rarlﬁ]agv}tlhzlggl\j Er?ifgrri]t;]:c?jﬁgplca"y around 1 Te =(M hs mt3)2 W(ta- stax with the gauge-invariant effective La-

When the ratiox/ k. becomes closer to on@e., « be- grangian(32) at u '
comes more criticg) the Higgs boson mass becomes lighter, —r
as expected from the mass formi#9). Also, the approxi- Ea=Luneic™ LaXutR T tpXrxe+ Mufixr®ot H.C
mate relationM,~2m, in Eq. (38) holds better for smaller —A2<I>$<DO, (50)
xlk.~1 (to about 30%) and becomes less reliable for larger
kl k. value with an overestimate factor up te2. This  Wwhere for simplicity the partial rotatiori22) is not taken
shows that the current improved broken phase calculation dfince we will use a mass-independent RG schgb and
My, (including exact seesaw mixingslready works better considerM =u . ForA>u=M,, the effective Lagrang-
than the usual approach which results Mp~2m,  ianLy <,<, contains
[9,17,29.

Finally, we note that the above calculation of the Higgs —(u . x tr+ i, XrXL+ N1t xrPo+ H.C) +Zy|DD|?
boson masdMy, includes only the largéd, fermion-bubble

contributions, but ignores the non-larije-Higgs propaga- — M3 () DD~ N (D D)2

tion in the loop. For the leading logarithmic terms lif, ,

this corresponds to solving the RG equatioREES for top = — (L XLtRT My XRXLF Ot xr® +H.C) +[DD|?
Yukawa coupling ¥;) and Higgs self-couplingX) by keep- 5

ing the fermion-bubble terms. This approach also applies to ~ —M&(w) @@ —\ (D T®)?, (51)

the calculation of top quark mas®, and results in the _ _
Pagels-Stokar formula which, in the case of a low cutoffwhere g,.=h,/Z? M3=M2/Z,, and \=X\/Z3, with
scaleA~10*"° GeV, is found to agree well with the full Zo(m)=(rlk)In(A/x) and )\(M) 4772(K2/Kc)|n(/\///«) in

RG evolution. In the minimal top-condensate mode], the  the modified minimal subtractiogMS) scheme. The SM
largeN, fermion-bubble calculation ofn; agrees with full  gauge couplings are negligible for the current analysis and
RG analysis to 5-14%(34% level for A=10°~ e can write the RGE ok in the regionA=u>M

10* (10'% GeV, while for the Higgs boson mass predic- X
tion, the former tends to overestimaké, by a factor of

1.8-2(1.2 for A=10°-10" (10'%) GeV [27]. This is due B(N)=
to the fact that for a high scal&, m, is controlled by the
infrared quasifixed poirt21]; for a low scaleA, the infrared
fixed point is not reached and time, value is mainly deter-

1
ding g2l Nog; + 2N A g7 + 1222], (52)

where the\ terms on the right-hand side tend to decremse
mined by the dominant largé; RG running so that the I(anth) and are ignored |r12the usual fermion-bubble calcu-
fermion-bubble calculation works wel27]. ation (which |$Ju5§|f|gd forgy>\ andN >1). The Igrgel\lC
The Higgs boson mass in the case of a high sealis  relationgi=hi/Zy" gives they-x-® Yukawa coupling,
again controlled by the infrared quasifixed poimthere the 8772/N
y; term and\ term tend to cancel in thg function of \); gt(
however, the situation with a low scale is different as the In(A/p)
infrared fixed point is not reached and the positiven-
largeN.;) \? term in theg function of A\ has a sizable nu-
merical coefficient compared to the negative lahyey;
term. ThisA? term can drivex (and thusM},) to lower value 2
and corrects the usual fermion-bubble calculation by a factor dgi - i
~1.8-2 forA=10"-10 GeV [15,27], but, the uncertain- ding 872
ties of the one-loop RG predictioriBom the unknown non-
perturbative dynamics associated with the compositenesshere the effect of the QCD coupling; is found to be
condition atu=A) also become much larger, @(100 numerically negligible for the current analysis, so tlgﬁt
—200) GeV[15], as the infrared fixed point is not so rel- may be solved analytically,

°>1, (53
which suggests the compositeness boundary condition
gf(A)zoc. The complete larg®, RGE forg; is

2

-1
e

Ncgtz_
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-1 have its drawback in treating such low scale dynamical theo-

(55)  ries, in comparison with the mass-dependent renormalization
[30] which suggests that the large Higgs boson mass nearby
. . A will suppress\ running and result in highe,, values
The boundary valua (A) may be estimated using the above [31,16. I—I?rfnce the RG g|mproved spectn?m mh Fig. ()2
largeN,; fermion-bubble relatiorn=X/Z3,, corresponding only serves as a reference to show how the traditional large-
to keeping the first term on the right-hand side of the RGEN, fermion-bubble calculation in the top quark seesaw
(52), i.e., model might be improved when including the perturbative
Higgs self-coupling evolution.

9i(p) =

ko

Mu)=| g 2(A)+

A -1
R (56)
IIl. EXTENSIONS WITH BOTTOM QUARK

from which, we define the compositeness conditionguat

A A. The mechanism for bottom quark mass

As things stand, we have not addressed the issue of the
)\(A):gtz(A):oo_ (57) bottom quark mass. The simplest way of producing lthe
quark mass is to include additional weak-singlet fermionic
Using this and Eq(55), we can solve the complete RGE2)  fields w, andwg together withbg, which are charged under
and deduce\(M,). As u approaches the scal¢, , we per-  the gauge grougU(3);® SU(3),® SU(2)y@U(1)y,
form the partial diagonalizatiof22) to the mass terms in Eq.
(51) and then decouplg at u<M, . This gives the effective b ] ( B 2) _ ( B 2)

) ) ] e Ry @ 1,31L-=5|, wg: (311 —=].
Lagrangian(35) derived earlier, wittVl=M, and the renor- 3 3
malized t-t-& Yukawa couplingy,(u)=g(x)siné for u (60)
<M,. The on-shell condition mt(mt)=yt(mt)v/\/§
=174 GeV requirey,(m;)=1, so thaty,(u«) is constrained

Such assignments for the— w sector nicely cancel the un-
to be small, close to 1,

wanted gauge anomalies from the top quark seesaw sector
1 (cf. Sec. 1l A), so that we can regard their presence as a
=1 (u=<M,). (59 genenc part of the standard top-color picture. We further

allow w_wg and w bg mass terms, in addition to the—t
mass termsgcf. Eq. (19) in Sec. I B,

I
my

yi(p) =

The numerical effect of/;(x) on the relevani running is

found to be small forw e (Mp,,M ). Thus, the stegi) RG L L L L
evolution of\ in the regionM,=u=My, is essentially con-  Lias6= — (4 XLXRT M yiXLR) — (M eo®@L ORT U up@ DR)
trolled by the simplified RGE dN/dIn u=3\%272. The

physical Higgs boson mass is then numerically solved from +H.c. (61)
the on-shell condition,

With the previous assignments for teguarks, the extended

271-1
M2=202\ (M) =202 + im_xl (59) model can be schematically represented as below:

SU(3), SU(3),

and is plotted in Fig. 1().

Since they massM, is determined from solving the see- (tL) |=1 (tR) =0
saw gap equation for each given and «/«. in Sec. Il E, b. 2 b
Fig. 12b) shows different Higgs boson mass spectrua as YR YL
«l k¢ varies. We see that fok<10 TeV, M, ranges around WR) =0 WL) =0

(0.7-1.25) TeV~1 TeV, while forA=10 TeV the\ run-

ning becomes more significant, bringingl, down to We see that the additional quaik; joins the strong top-
N650 400 GeV Wh|Ch |S about a faCtor 2 belOW the Iarge C0|or SU(3)1 ||ke XR- After the top C0|0r break|ng and |n_

N, fermion-bubble calculation in Fig. 12, as also expected tegrating out massive colorons, we have the following NJL
from the analysis of the minimal top-condensate modefnteractions:

[15,27]. However, we must note that for dynamical symme-

try breaking theories with a low scale cutoffA~

10—-100 TeV, the infrared fixed point becomes less relevant h2

and the uncertainties iM;, associated with the composite- Lint= [(¢LXR)(XR¢L)+(lﬂLwR)(leﬁL)]
ness conditior{57) are large, around@(100—-200) GeV, so
that the naive one-loop RG running is not so reliable and 2/t + - -
higher loop correctionspcould be imgortant as well. Further- — APy Prot PpoPro) — N1 (¢ Proxrt ¥ Prowr)

more, the simplest mass—independ&TtB RG scheme may +H.c.,, (62

055006-14
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which contains two scalar doublets,, and @, after the The second equation gives the physidal mass, m,

bosonization of the NJL vertices. The LagranQidiass ~Mpotob! Moo, Via the following seesaw matrix:
+ L;nt, however, poses a globdi(1) symmetry under which
the fields transform as - ( 0 mm)( bg
_ _ —(b.  w) +H.c. (68
Y=, tg—e€tg, br—e'bg, Bab Moo\ OR
XL(R)HeiaXL(R), wL(R)HeiawL(R), For £=10 2, there is the interesting possibility that the
mass may completely originate fromipog (for example,
Do—e Dy, Dpg—e 1 Dy,. (63 from top-color instanton effects This requires(®,)=0,

implying the leading order Lagrangia62) to have a zero
If this symmetry were exact, the dynamical condensategnass gap in theb( wg) channel which can be realized when
<tLXR> and(waR> (or, equivalently, the scalar VEMsD () » becomes very heavyu(,,>A) and decouples. In this
and (®,,)) would spontaneously break it and generate aspecial case, the whole model reduces back to our minimal
problematic massless Goldstone boéitye Peccei-Quinn ax- top quark seesaw model studied in Sec. Il, except that now
ion). Fortunately, the symmetry is anomalous, and the topthe b quark acquires its mass from top-color instantons,
color instanton effecf7] induces an effective Peccei-Quinn
breaking term via the 't Hooft flavor determinal&2] with My~ My lhob/ Low  (With My, = Ehy (Do) =Emy).
the form

(69

Cop ,— -
+H.c= _ZEQ'B( lﬂLaXR)(lﬂL’BwR)'f' H.C., ] ]

A Consequently, the Higgs doublét,, is also removed from
64 the low energy theory and the remaining analysis of this

A2 - WR
. . . decoupling limit becomes identical to Sec. Il. However, in
wherec, is a(complex constant depending on details of the the more general cases whesedoes not decouple from the

top-color strong dynamics and from e_xpenen,cg with QCDtheory (w..=A), the b quark can acquire its mass from
we expec_tcoj O(O‘lf 1). !n anal_ogy with they” in QCD, both terms in the second relation of E&7); and further-
this effective interaction will provide a non-zero mass for the more, foré=<10"3 and . / 1, the massn, predomi-
axionic pseudo-Goldstone boson. It is also possible that Sucrrllantly comes from ’;;“éb Ilé;?h;g order tern’tl) Such non-
an effective Peccei-Quinn breaking term may also arise from

decoupllng scenarios also have a rich physical Higgs
additional flavor dynamics at a scale much above the tOpspectrum as both Higgs doublétacluding the massive ax-
color breaking scalg¢17]. In general, we parametrize the

R R . ion) will be accessible in our low energy theory. These will
Peccei-Quinn breaking interaction as : .
be systematically studied below.
2

1 @ a .
ﬁPQBZFGQB[(XR‘ﬁL)(le//f)+ (L “xr) (P ’BwR)] B. Gap equations for top and bottom quark seesaws and the
physical solutions
— — EePLA2DEDE + hy (xrU T DL+ oy D) ] In this subsection, we derive the gap equations for both
top and bottom quark seesaws up®6¢) and analyze their
+H.c. (65 physical solutions. This is in analogy with Sec. Il D, but with

h . ible oh i th dq1 the b seesaw mass gap aid@d &) corrections included. We
where we ignore a possible phase in the param’gm'r el start by explicitly defining the bare fields of the two Higgs
it be real for the purpose of the current study. With the top- doublets®,, and @y, in the shifted vacuum,

color instantons as the origin of this effective interaction, we
can estimate the typical size 6f (Vio+h&+i 7.,?0)/\/5)

5 _1 0~ -
f=colhi=col o X _0(102-10°%), (69 0
3 k¢
Tho
wherecy~0(0.1-1) and k/k.~2—4. Since the relevant CI>b0=< o . 0 ) (70
values of¢ are tiny, it is justified to treat it as a perturbation (vpot+Npg+i ”bo)/‘/z

and only include the corrections up @(¢1). We note that,
in addition to generating an explicit axion mass, the abovevhere, as in usual 2-Higgs-doublet modEIHDM) and upon
interaction(65) also provides a correction to the mass termsrenormalization, the rotations dfY and hy give the mass
M, tLxr @nd m,,b  wg, i.e., we generally have, from Egs. eigenstates of neutral Higgs bosom@ (H°) Whl|e the com-
(62) and (65), binations of the other six scalarms® and 7o~ result in
three would-be Goldstone bosofisaten byw=, Zz% and
My, =1 (Do) + E(Ppo)), My, =h1((Ppo) + E(Py)). three physical Higgs statesf, H*). Now, we can explicitly
(67)  write the two seesaw mass gaps in Ej/) as
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hy, hy, hy, by, hy,

FIG. 13. Coupled gap equations for top and bottom quark see-
saws up ta0(¢). The black dots denote the vertices associated with

small ¢ couplings.

h h
mtX=7;<vto+§vbo>, mbm=7%<vbo+§vto>. (71)

In the same spirit of Sec. IID and using the Lagrangian
Linasst Lintt Lpos, We obtain two coupled gap equations up
to O(¢) from the tadpole conditions of the neutral Higgs
fields h)y andhyy, as shown in Fig. 13. Thus we can derive

them as
K K
mt)(:K_[FtJrng]i mbw:K_[Fb+§Ft]! (72)
Cc C
or, equivalently, up ta(¢),

K K
_(mt)(_gmbw):Ft! _(mbw_gmt)():Fb! (73)
Kc Kc

where
3 2, 2
F.=c| sk mt—ﬂtzln A +2mt
A m;
M3 [ AZ+M?2
+8Cx( M= —In 1.
A M2
3 2, 2
Fo=cPs2| my— 2in AT
b L°R b 2 2
M
MJ [ A%+ M2
+spepl M, — —In| ———=| |, (74
M(J)

and the seesaw rotation angle{§R and ctL"bR are similarly
defined as in Eq911),(12). We see that the two gap equa-
tions decouple from each other at the leading or@é£°)
and the correlations appear &(¢) which are generally
small. TheO(¢) terms become important only for very large
tanB=v,/v, and sizableé=10 2. For instance, a typical
case with taB=40 and é=2x102 gives the ratio

PHYSICAL REVIEW D65 055006

(év)/lvp,=80%, implying that the term makes up about
80% of the mass gamy, and thus theb mass. Another
important role of theD(¢) interactions is their contributions

to the Higgs boson masses, especially, the mass of the pseu-
doscalarA®.

Similar to the RG analysis in Sec. 11D, we can further
evolve the Higgs Lagrangialysst Lini+ Lpge, from the
scaleA down to u(<pu,, ..~A) by integrating out loops
with the heavy fermionsx, ). The Higgs fields get renor-
malized, e.g.h%=21h?, hd,=zt2h?, and so on. We can

write down the renormalized Higgs VEVs,tZZﬁizv? and

vb=z§fvg, and define their ratio, tgf=v,/v,,, as usual.
Here, the two neutral Higgs wave-function renormalization
constants are computed as

2 2
_ t2.t2 t t2, ot2.12
th_fx_ Cc°sgIn 2 +(Ccg+9S"sg
¢ t
A2+ ,
XIn > +0O(&9),
m
X
AZ+m?2
Zh == —1cP2sPIn +(cB2+ sP2gh?)
b 2 K¢ mkz)
A%+m2 ,
X1In > +0(&9), (75)
mw

in which the ¢ corrections appear only &(&?) as can be
seen from the interaction Lagrangiafy,+ Lpqg. Then,
from Egs.(67) and (75), we derive two new Pagels-Stokar
formulas,

2
(M, — £my,,)° 2+ m;
2 X « t2.12 t2 1212
vi=—————1C"sgIn +(CR+S"SR
t A7k, mt2
A*+M? ,
XIn| ———=| 1 +0(&9),
X
2
(Mpy— EMyy)° AZ+mg
2 L X b2 b2 b2 b2 b2
vp=——"7— 3 C.°Sg"In| ——=— |+ (Cg"+S.°SR)
b 4’7TKC mg
A%+ M2 "
XIn| ——— 1 +O(§9), (76)
Mw

with a physical constraint from the EWSBy{+v2)Y?=v
=246 GeV. Again, we see that th& correction may be
important only for the second equation @f when targ is
very large and is sizable. Since typicallyn,, <1 TeV and
m,,=10-20 GeV, we see that the effectséoin Eq. (76) is
negligible foré<103.

Now, we are ready to solve the gap equations for the
top-bottom quark seesaw system. We note that our extended
model has three input parameterd,(«/«.,tang), and
three extra unknown parametersiy,, My, fee) (With 1y
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FIG. 14. Solutions of the top
and bottom quark seesaw gap
equations with Kklk=2
and tanBe(1,5,12,40), where
we have superimposed the
physical constraints, nf;, m,)
=(174.3,42) GeV and v
=246 GeV. The solid curves are
for the top sector while the dotted
curves are for the bottom sector.
Here we have chosen the region
£=<10"% in which the¢ effects are
negligible (invisible).

=t/ oo) from the b-seesaw sector, in addition to while the latter can be deduced from the Pagels-Stokar for-
(M, Ty py,) from thet-seesaw sector. On the other hand, mula (76) after ignoring theO(¢) corrections and the insen-

we have six physical conditions in total: two seesaw gapsitive logarithmic factors, i.e.,
equationdin Eq. (72)], two Pagels-Stokar formuldsn Eq.

(76)], and two mass-eigenvalue eq
and a similar one fom]. Thus, all
can be completely solved as funct

(k/ k¢, tanB). Consequently, the massesybndw are also
predicted, together with all seesaw mixing angles. We di

uatigims Eq. (9) for m,
six seesaw parameters
ions /offor each given

taﬂ=vt/vb~ mtX/mbw,

where we have also expanded the right-hand sides of Eq.
(76) like Eq. (13) in which we can see the heavy masses
(M, ,M,) [or (u,y, e, ] of the vector-like fermions
(x, w) have only logarithmic dependence, obeying the de-
scoupling theoren{33,34. Similar decoupling behavior ap-

play our systematic numerical solutions for a wide range of€ars on the right-hand sides of the gap equati@as-(74).

tang values in Fig. 14, where we h

ave chosea10 2 and

Indeed, it is this decoupling nature that makes the right-hand

found that thet corrections are negligible and the difference side of Eq.(76) insensitive to ¥1,, M ). Thus, we arrive at
from £=0 case is invisible in the plots. From this figure, we two approximate relations below, which control the qualita-
also see that thg andw are highly degenerate for all solu- tive features of the two sectors,

tions; the same feature holds for th

e parameters, ( &)

whenA=2-3 TeV. This fact can be understood by noting

that the real difference between the top and bottom quark
sectors is controlled by the experimental ratp/m,~40
>1 and the input ratio taB=uv/v,. The former is con-

nected to seesaw parameters via

m My syt By My \/E
bo Vb’

M, Mpytob/hew M

(77
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Using these, we can now understand, in Fig. 14, why the
main difference betweenhandb sectors are reflected in the



HONG-JIAN HE, CHRISTOPHER T. HILL, AND TIM M. P. TAIT PHYSICAL REVIEW D65 055006
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E c ] FIG. 15. The effect of the
~ 10 = O(¢) corrections on the physical
g E 3 seesaw solutions, fot/ k=2 and
3 r b tanB=40. The solid curves are
=1 E b 3 for the top sector while the bottom

£ (d) . 3 sector is depicted by dotted curves
= = [£=0O(10 %] and dashed curves
—~ - i =2X10"?]. A sizable value o
[£=2x102]. A sizable value of
= 1 F E £=2X10"2 (representing typical
=) E 3 instanton effegt can provide
glo [ ] about 80% of theb mass for
Ess E 3 tan8=40; while foré<©(1073%),
E 3 the b mass is almost fully given
1072 L(©) | . by O(&°%) seesaw corrections.
102 L T T T T T T T T | T T T T T T T I_:
s
£ f ]
@ 10 §_ _g
> c =
= r ]
1 = E
E(dD | 3
1 10 10°
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ratios (,,ry) for small tang values, but manifest in the small or zero £ cases £<10 %) shown as dotted
mass gapsfy, , My,,) for large tang values. Finally, be- ~CUrVes. Indeed, we see sizable modifications for the seesaw
cause of their vector-like decoupling nature, the heavyparameters in thé sector, i.e., the gapn,,, is lifted up
massesM,, M,) or (u,,, i) remain highly degenerate, by a factor of~2 while the ratior,= wp/ e IS Shifted

and numerically they are located at around (6-6365)A down by about one-half. As a consequence, the mass
for k/k,=2, as shown in Fig. 14. However, we expect suchscaleM, (or u,,) for o is also pushed up somewhat,

a picture for theb-sector to be modified wheficorrection to  closer to the scalé\. This gives an interesting example in
the mass gam,,, becomes significant in the very high t8n  which the effects of top-color instantofg] are significant
region. As a typical case, we may consider gan40 andé  and provide the dominant contribution to the bottom quark
=2x10"2 [which is a generic size of the top-color instanton mass.

contribution withcy=O(1) andx/k.=2 in Eq.(66)]. In this

case, we deduce a raticu;)/v,=¢&tanB=80% for the

mass gapn,,, in Eq. (71), implying that the¢ term makes up C. Mass spectrum of composite Higgs sector
about 80% ofm,, and theb mass. Consequently, the Eq.
(76) no longer gives the relation, /v,~my, /my,, [and thus We proceed to analyze the physical Higgs boson mass

Eq. (78)] because in the second formula of E¢6) theém;,  spectrum of this extended model. Starting from the Lagrang-
term is non-negligible on the right-hand side. But, theian Ly,sst Linit Lpop at w=A and performing the seesaw
t-sector remains essentially the same as before since in teass diagonalization, we evolve it down to the scale
mass-gapmy, [cf. Eq. (71)] the ratio €vy)/v,=¢&/tang (<M, ,<A) by integrating out the loop momenta between
<<1 and is completely negligible even for small @gnOur  x andA and arrive at the renormalized effective Lagrangian
numerical solutions for this large (t#h ¢) scheme are with only light quarks {',b’) and the two-doublet Higgs
shown as dashed curves in Fig. 15, in comparison with th&osons,
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p<M, <A t b 2 OtCLSr t an| Cf? (cheP)? Sé (sisB)2
: ag| Zn| (sksD? | Zn,| (cicR)? |’
bobR7 R/ RO t 37 4710
+0CLSRD'b hb]_ﬁ[gtCBCLSRt yst'hy ay (ckeP)? (sich)?
+0pSpClSRD" vsb' hg]A°—b'[gic 4crskPr "
tt
~ a MyMyC SKCS
+ngIBSgC}_PL]t,H_+H.C._[ATth? 12 o Lt Rt LbRb
L Q2|  2sgCy M, MpS| CRC( SR
+AT,h?]— z[|v|§2h?24r M2 h02 s | 2,z M,misicrelsy |
s M M| ckslch
+2EM2hPhd+M2A22+ 2M 2 L HHH ]
~Vi(h?, h®, A%, H™), (79 with ay=axn+(ayM2+a,)/(M2-M2), and ag=ay
+(a,M%+a,)/ (M2 —M?). The axionic pseudoscalaf is
where massless at this order due to the Peccei-Quinn symmetry
(63). One recovers a simple and intuitive picture under the
(gt,gb):(hl/za{ hl/zﬁf), approximate limit ¢;, rp)<1, i.e.,
(sg. Cp)=(sinpB, cosp),
b b M22,U%2mt)(! Mll,0'%2mbw1
PLr=(1%5)/2,
. . . M %\/E 2 + 2 \1/2 (82)
and the unitary gauge is chosen so that only the physical +,0 (M + Mp,,) ™%

Higgs scalarsff®, h), A%, H) are relevant. HereAT, and

AT, are the tadpole terms which we used to derive the gagvhich are all controlled by the dynamical mass gaps
equationq72) above. The Higgs boson mass terms are com{m, , m,,) and become equal in the special case ofaan

puted up toO(£) and are expressed as

=1, as expected. These approximate formulas agree with our

independent Higgs potential analysis in Appendix B.
M3,=M3%, o+ EM3,,  MI=MZ, o+ ESMTy, For the O(¢) corrections, we first perform a careful cal-
culation of theA® mass, and obtain

EMT,= E0M,,
Mi.=M2 o+ E6M2,  M3=£0M3, (80)

where the leading(£°) contributions are

M3=¢5M3=

2¢A?

sin ZB\/thZhb

+0(&%). (83

It is remarkable to notice that the Peccei-Quinn breaking
M2, =MZEq. (49][(s.0), g (steh, g massM 4 is proportional toJ€A instead of being controlled
’ ’ by the dynamical mass gaps\(, , m,,,). As noted above, the
essential difference betwedf and the other Higgs scalars

M1 =M{lEq. (49)]

(Mg M) —(mp M) is that A® is a massless Goldstone bosonc(tt®) and its
(s r= (WL R nonvanishing mass comes from the explicit Peccei-Quinn

breakingé term. Hence, it is natural to see thislt, is not

K _ _ K¢
MgO:K_ AZ(Zh[1c2+Zhblsé)(7—l +(aymi+ayy)
C
A2 2
A 2
XIn| = +1|+(axMj+azxp)inl —+1
m; MY

+(agyM2+ag)In

A2
W“)

w

055006-19

controlled by the dynamical gapsn{, , my,), but instead
scales likeJ&A [35]. This results in theA® being relatively
heavier than naively expected, providézt 10 3. Such an
O(£A?) correction also shows up in other Higgs boson mass
formulas atO(¢) and is thus a generic feature of the explicit
Peccei-Quinn breaking. So, we can express the leading
corrections to k2, hY, H*) masses in terms &f14 while the
rest of the¢ terms are ofo(£m7, , émg,,) and thus much less
, (81  significant. With this in mind, we compactly summarize the
O(¢) masses offf?, h, H) as,
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quite generic feature of this model unless the paramgeter
much smaller, around 10 or below, which is unlikely in the
top-color instanton picture. Also, too smaf (<10 *
—10%) will have more significant mass splittings among
Higgs bosons A°, H®, H*) which cause large weak-isospin
violation in the oblique parametdr (in addition to resulting
in a very light axionA®). This is disfavored from the experi-

which can be most easily extracted from the Higgs potenti eeanvtalax:gvn\:/f\)‘? '(rt'g ;T]lé‘?’w?tw o?gglylilis ]?\g%rasl a?ar:gl?ﬁ;/ely
analysis shown in Appendix B. Due to the mixing mass term y 9 99

betweenh? and hg, we diagonalize them into the mass top—cqlor mstanton[?] interpretation of the Peccei-Quinn
. o : breaking for this model.
eigenstatesh®, H?) with the physical masses,

EOMT=s;MZ,  E0MB~CEM3,
EOM Ty~ —5,CsMa+4AE( m$X+ m2,),

£OML=MZ— &(cotB m;, +tang my,), (84)

IV. CONSTRAINTS FROM PRECISION OBSERVABLES

After quantitative analyses on the vacuum structure and
composite Higgs spectrum in the dynamical top quark see-
saw models, we proceed to systematically study their experi-
The corresponding rotation anglee[— 7/2,0] is deter- mental constraints from the electroweak precision data. The
mined by tan(2)=2M3,/(M%,—M53,). most important bounds come from the radiative corrections

Based upon these, we can finally analyze the Higgs bosot® the oblique parametefsand S[19] and also the correc-
mass spectrum of this model using the physical solutions ttions to theZbb vertex induced by théd-» mixing in the
the seesaw gap equations derived in the previous subsectidmttom quark seesaw sector. It is remarkable that the mini-
We present our numerical results in Fig. 16, where wemal top quark seesaw model, having a typical heavy com-
choosex/k,=2 and a wide range of tg® values. The posite Higgs boson around 1 TeV, is nontrivially compatible
Peccei-Quinn breaking parameteis set to a representative with the S-T bounds, due to the conspiracy from the large
value of¢=3x 102 for all plots. The proportionality ol positive seesaw correction to tfiieparameter. The case for
with A can be clearly seen, and &k, moves above 1 TeV, the extended model with bottom quark seesaw is more com-
the Higgs bosonsH®, H*) becomes much more degenerateplex because of the-w mixing and the two Higgs doublets.
with A°, while the lightest neutral Higgs bosdi? remains  In this extended model the precisi@rbound requires a cer-
around 1 TeV, saturating the SM unitarity bound. This is atain degeneracy in the mass spectrum of the Higgs scalars

1
ME =5 [Mi+ M3, V(ME—M5)*+4MT,]. (85)
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and thus favors a relatively heavy axigx. As we will
show, with the top-color instanton interpretation of the

Peccei-Quinn breaking, the resulting precision bounds on the

heavyy and w masses are similar to that of the minimal top
quark seesaw model.

A. In the minimal top quark seesaw model

The minimal top quark seesaw model has a single com-

posite Higgs boson in addition to the singlet seesaw gqyark

in the spectrum. As we have shown in Fig. 12, this composite

Higgs scalar has its mass typically arourd TeV. Its con-

tributions to the obliqu&andT parameters can be expressed

as
AS =+ | ( M;
=+-——1In ,
12m mﬁ,ref
AT 3 I Mﬁ
= — n ,
" 16mcog oy |\ m2

(86)

wheremy, . is the reference point of the SM Higgs boson

mass. Since in the pure SM the current precision data
[36] favors a light Higgs boson mass around 100 GeV, we

see that a heavy Higgs scalar with~-al TeV mass will
drive AT in the negative direction relative to a light SM
Higgs scalar and thus is excluded by the current precisio
S-T contour shown in Fig. 1@) [37]. However, the top

PHYSICAL REVIEW B5 055006

Nc 2 )2( t MX
AS—%SL 44(—2—F — |n¥
z z t
2 2 2 2
m m m
182G, | —, ;)—(11—;+1 F, —‘2)
mZ zZ mZ mZ
M2 M2
+(11 ;‘+1)F1( 2*)]
Z Z
_Nef My 5 mE i (mdp? fme
9m| m? 2 20m?| 1+r1y M;‘(t ’

(88)

where m, is the mass of weak gauge bos@fl, and the
relevant functions=(y) andG4(y,,Y») are defined as

1
F =—4\4y—larctah——, 89
5(yi+Y3) —2y1Ys
Gi(y1,¥Y2)=
9(Y1‘Y2)2
3 +Y2)—Yi-Vs
L eyity) Tyitye v (90)

n—.
3(y1—y2)?® Y2

Now, keeping the dominant leading logarithmic terms in the

r:ilbove expanded formulas, we can directly estimate the rela-

tive size of AS versusAT,

guark seesaw sector has generic weak-isospin violation from

the t-y mixing which will significantly contribute taAT in
the positive direction, as can be seen from the formula

N
AT:m sﬁMi—sE(l%—cf)mtz
2.2 2
m; M
+2stc; —*—In—
yTmy mg
_ Neme MY L e e
16720 %a m? re 1+r Myt 7
(87)

in which rt=(,uxt/,u“)251. Here, we have subtracted out

AS 167«
AT 9

~0.04<1, (91

which shows thatAS is only about 4% ofAT and thus
negligible in comparison with the typical values &>0,
as advertised earlier in the Introduction.

In Fig. 17, we assemble the compl&t& and AT contri-
butions from the minimal top quark seesaw model, including
both the corrections from the composite Higgs boson and the
seesaw quarks, and compare them with the 95% C.L. contour
for AS—AT. Each figure corresponds to a different choice of
kl k., and shows the trajectory in theS— AT plane as the
x mass varies. As a comparison, we have plotted the results
based on both the large: fermion-bubble calculation and
the improved RG approacfef. Sec. Il 5. For the relevant
parameter space here, the improved RG approach gives
lower Higgs boson mass valugéaround 400-500 Ge\Vso
that the curves are slightly shifted towards the upper left. As

the usual SM top contribution as it was already included ina consequence, in the improved RG approach the upper
the precision fit. The expanded formula indeed shows a sizsound onM , is more relaxed fok/ k.= 1.2, while the lower

able AT>0; it also exhibits the decoupling nature of the
vector-like heavy quarly, since the large mass parameters
go with negative power§or fixed ratior;) [39].

Next, we compute thg —t contribution toA S, and obtain

bound onM  remains at a similar level. The figure clearly
illustrates that the top quark seesaw model can be consistent
with the electroweak precision data providbt, is in the
appropriate mass range. For instance, when the top-color
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AS andAT are compared with the 95% C.L. er-
ror ellipse (with mif=1 TeV) for «/k.

0 i R SRR o poomeeeooes -0 =1.05,1.2,2, 4. ThRAS-AT trajectories(includ-

r Right curve: Ferﬁljon-bubble 7 ; ; bt
- . 1F Left curve: Improved RG g ing both Higgs andy contribution$ are shown as
A e el a function ofM, . In each plot, the curve on the

1] 08 right is derived from the largék, fermion bubble
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02 L 0 J os FIG. 17. Top quark seesaw contributions to

=
w
72
’u‘
5
b
<

AT

0.8

I ]
© ] i @ ] calculation, and as a comparison, the curve on the
0.6 | 1222TeV | o6 left is deduced by an improved RG approdch
] ] Sec. IIB. For reference, the SM Higgs correc-
04 b 7 o4 tions to (S, T), relative tom{®=1 TeV, are given
: ] 1" for mM varying from 100 GeV up to 1.0 TeV in
] : ] plot ().
) ! - v | — 02
0 116 TeV =M, - 36=Mx i
L x| <
o S AP 1o
K/K, = | 1 ]
0‘2 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 _0.2
0.4 0.2 0 02 -04 0.2

. . o . B. In the extended model with bottom seesaw
force is slightly supercritical, we see that precision data are

effectively probingM ,~4 TeV. A high luminosity Linear ~__ The inclusion of a bottom quark seesaw generates addi-
Collider at GigaZ can further improve these indirect preci_t|onal b-w mixing which have nontrivial contributions to the

sion constraints on the top quark seesaw dynamics with §andT parameters and also to tééb vertex. Furthermore,

much smalleAS— AT error ellipse[41]. Finally, in Fig. 18, the composite Higgs sector now contains two doublets and
we display the samAS— AT trajectories as in Fig. 17, but thus has additional corrections to the precision observables.

. ; . We start by calculating the complete set of loop diagrams
with the corresponding Higgs boson masl values y%including the mass-eigenstate  seesaw  quarks

marked. We see that as each trajectory moves up along thg: ¥', ")] that contribute to theS and T parameters.
AT direction, theMy, value changes very little and thus the The general results can be summarized below:

rise of AT is really due to the decrease Wi, (as marked in
Fig. 17. Figure 18 further shows that the relevant Higgs

boson mass is about 1-1.4 TeV in the laigefermion- O Ne | M)Z( m? M)z(
bubble calculation and 400—-500 GeV in the improved RG AS_% S| 44 m m2 —21 m?
z z

approach. As we explained in Sec. Il F, the laiefermion-
bubble calculation may over-estimaké,, due to the igno-

2 2 2 2
rance of non-largéd, effects of the Higgs propogation in the t2 my My my m;

. - : —18,°Gy| —,—5 | — | 1= +1|F{| —
loop, while the improved RG approach may underestimate m2’ m? m2 m2
M), due to the sizable uncertainties associated with the com-
positeness condition at the scale- 10°~°> GeV and the use NE: M2 M2 e
of simple mass-independent renormalization in such low cut- Hl 1241 | Fy | =X +5E2 o8l —¢_ My
off theories. So, the two approaches are complementary and 5 m§ m§ m§
the realM,, values should lie between these two estimates.

Actually, the shift between the two trajectories along A& M2 2 n12 2
. . . . . ) m, M ® m,
direction is mainly due to the effect of the Higgs boson mass. +2In—— 18cEZG1 — 5|~ ( — = l)
Thus, taking into account our ignorance of the detailed dy- my m;, m; m,
namics around the scalé and above, we may view the
region between the two trajectories inside th&8— AT el- mg M2 M 2
lipse as the viable parameter space allowed by the precision XFo| — |+ 7—;’—1 Fi —;) , (92
data. m; m; m;

055006-22



TOP QUARK SEESAW MODEL, VACUUM STRUCTURE, ... PHYSICAL REVIEW B5 055006

-0.4 -0.2 0 02 -04 -0.2 0 0.2

! FIG. 18. Same as Fig. 17, but with the corre-
, ®1.05=M, spondingM,, values marked on thAS-AT tra-
0 e SM T o | oo -0 jectories instead. It shows that each trajectory is
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L my, =1.():TeV 1t ﬁ%?tcgv”?ﬁe?ﬁog'gg’ble ] very insensitive toM, and the large increase
= T R A B | .mf .e'. .p?V? PR along the positiveA T direction is due to the top
<08 '4'8()' L [ A A 08 quark seesaw contribution a4, decreasescf.

i e © qF o @ A Fig. 17. In each plot, the shift of the left trajec-

06 |- 1= 459710143 TeV ] g6 tory relative to the right one is due to the smaller

i X0 1 95%C.L. ] M, values(estimated around 400—-500 GgWut

s & i I o AS<AT generally holds so thatS is much less
oL 4t 1 significant.

i ! 1r A1 ]
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o IS AN . i
K/, = : K/, =4 E ]
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AS
N N M2
AT=——"—[s2cP?F3(M2, m2) +cl2P?F (M2, m?) AT=——{|2( I -1 |+ ———
16ms2cim?2 LTt A et 16720 %a m? rr(1+ry)
b
+512sP2F5 (M2, M2)—s%cl?F5(M2, md) (Ml 20)2 | M2 1 (Mo )2
—|2In—+
—sP2cP2F (M2, m2) + (cl2cP?— 1)Fy(m?, m3) ], 1+r, m2 T r(d+r) | 14Ty,
4 4 2 2
(93 me My mymy ]
where the function§,(x) andF3(x;, X,) are given by Mf(t /J’ib Mitmg
1-2x—\1—4 N :
TAXTNAITAX ~— (8PP 2 I—E o+ —————— | - 25! 2
T L e U TR G =RV NE RN
(97)
2X1Xo  Xq
F3(Xq, X2) =Xq+Xp— In—, (95  where
X1— X2 X2

2 2 2
where 6,,, c,,) =(sin 6, cosé,) and 6y, is the weak angle. rts(ﬂ) <1, rbz( 'uwb> <1, rxz(%) ~1,
The above general formulas contain exact seesaw rotation Mxx Moo X

angles and heavy masseéd (, M) in various places. So, it

is instructive to derive the expanded expressions in which all,  (M/g)? Lo _f bo (Mp/ p)? m_ﬁ
large masses exhibit the expected decoupling nature and the™ 1+ r 2| LT Ty 4 |
. . . t /‘L)(t b /‘l’wb
sign of these corrections will become clear. Thus, we deduce
2 2 2 2 (98)
_NC MX S) mZ (mt/Iu’)(t) Mo)
AS=g, I”F_ 2 oom2| 1er, T lnFJ“ 3 and in the last line of Eq(97) we have used the relation
z M,=M, (cf. Fig. 14 to further simplify the expression.
m2  m?2 (My/ wup)? m? 4 Now, from Eq.(96) we see that the inclusion of theseesaw
+9—2In—§ % —:,—4b , (96)  further adds positive terms S which, however, are com-
m; my, trp Myt Mob parable to the first term of thiesector only for small ta@
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~0O(1-5) where rp<r, so that u,,<u, [cf. Figs. positive contributions from the two-Higgs-doublet sector in
14(a), (b)] For large tarﬁ b becomes closer ta ; so that the extended model tend to shift W' somewhat, this non-
(mt/MXt) >(my/ )2 ConsequentlyAS is domlnated by trivially renders our final bounds av , , quite similar to the
thet-seesaw sector and thus is very similar to the situation irsituation in the minimal top quark seesaw model, as will be
the minimal top quark seesaw model whex&8~0 [cf. Eq. ~ Studied below.
(9D)]. Now, we turn to analyze the oblique corrections from the
With these we can understand the picture shown in Figcomposite two-doublet-Higgs boson sector. Since we have
19(a), based on the exact formulé@2),(93) and the physical ~derived the Higgs mass spectrum in Sec. Illd&. Fig. 16,
seesaw solution&f. Fig. 14. Next, we examine the more We can readily compute the corresponding oblique correc-
nontrivial features inPAT as shown in Fig. 1®). From the tions in our model by using the analytical formulas below
last equation in the expanded form@¥), it is instructive to ~ [42,43,
see that thé-seesaw sector adds negative corrections which

could cancel the-seesaw contributions for small t@nre- 1 2 2
gion where we haverty/uy,)*~ (My/op)°, i€, ~5, 88 5= - [co§(,8 @)| N5+ Gy(M2 M2) ~ In"
can be understood from the physical seesaw solutions in Fig. h hivia
14(a),(b). Intuitively, we expect that such a cancellation be- M2

comes maximal when tgh— 1 so that the custodi&®U(2), . _ 2 _

symmetry is restored in the seesaw sector aside from the +Si?(B -~ )| Go(Mi;.MR) Ir1M M a ®9

m,-m, mass differencéreflected in the las{negative con-

stant term on the right-hand sid@HS) of Eq. (97)]. This is

why we seeAT<0 for tang=1 in Fig. 19b). However, the ) )

b-seesaw contribution in Eq97) quickly decreases sina® TH:W{Cog(IB— a)[F3(M{;+,Mp)

drops off as ta8 moves up, and when t#8= 1.5 we see U

that the seesaw contributions become significantly positive +F3(I\/If|: M32)—F3(M3,M2)]+sir?(B— a)

again andAT approaches the values in the minimal top

quark seesaw model for t@#=40 where rb_rt(Mwb X[F3(M7 - ,MZ)+F3(M?Z+ ,M2)—F3(MA,M2) 1},
=u,) as shown in Fig. 14),(b) so that Mo/ ) 100
<(mt/,uxt) making b-seesaw term iMAT negligible. In (100
summary, for 1.5tanB=<40, we still have sizable positive
AT>0, but in the moderate to small t@regionsAT be-  where M, My, M4, My+) are masses of the neutral and
comes smaller than that of the minimal model and thuscharged physical Higgs scalark% H®, A®, H*) and « is
would help to weaken the strong constraints frdmand  the neutral Higgs mixing angleef. Sec. Il ©. The function
lower the bounds ony,w) masses. However, the additional G,(x;, X) is given by
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5 2X1X5 seesaw model. For instance, in the case/ef,=2, Figs. 21
Go(Xq, Xo)=— 5+ — and 17c) show that they mass in the extended model is
(X1 X2) bounded into the region around 6-23 TeV fos@ng

=40, while in the minimal top quark seesaw model we have
) 10=M =14 TeV. For the top-color force being more criti-
2(X;—Xp)? X2 cal(i.e., smallerx/ . values below 2), the seesaw correction
(101) AT is slightly larger(cf. Fig. 19, but at the same time the
massM, (M,) becomes even lower for a giveh scale
[similar to the picture in Fig. 1@)] and thus the bounds on
M, could be further weakened, in analogy with the minimal
top quark seesaw model. In summary, fhéound in the

2 2
N (X1 +X2) (XT=4X1 X +X3)  Xq

The above formulas are valid fovlZ;,,>m2 and are well
justified for our modelcf. Fig. 16. In the numerical analysis

we have also used more gene@&T formulas in Refs. :
9 extended model restrict the mass rangeyoénd o to be

[42,43 as a consistency check. SinEg(x;, X;)—0 asx; . .
—.X,, We see thall,, could be much suppressed as long aStyplcally around 3—-20 TeV, depending on the valuekbf,

0 A0 g+ and targ.
theAZ]aSSrfoevinOfm F|Ag ' ;’0 )ﬁ:vsngé)o?nd%%(in;?ggi to be Another important bound due to the inclusion of the bot-
. y H

. . L m w comes from the precision m rement of th
generically small whileTy can be large and positive fox tom seesaw comes from the precision measurement of the

<10 TeV due to the sizable mass splittings among Higg-b-P vertex. The seesaw-w mixing induces a positive
scalars H°, A°, H™). However, for largerA, the A° mass  shift in the left-handed-b-b coupling,

increases and becomes more and more degenerate with

(H® H*) which quickly bringsT,, down, as expected. The

seesaw contributions are also plotted in the same figure, to- 5QE= +
gether with the final summed results. We see that the inclu-

sion of bottom seesaw helps to reduce the total seesaw con- _
tributions in the T parameter, but the two-doublet-Higgs which results in a decrease oR,=I[Z—bb]/I'[Z
sector tends to lift it up. This nontrivially brings our findl —hadrons, i.e., Ry=R5"—0.39(s')?, as also obtained in
bounds in Fig. 21 to the same level as in the minimal topRef. [17]. The latest update oR, data gives[44], R,

by2
2 sin HWCOSQW(SL) ’ (102
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FIG. 21. Top and bottom
quark seesaw contributions oS
and AT are compared with the
95% C.L. error ellipsgwith m®'
=1 TeV) for k/k,=2 and ¢=3
% 102 with a variety of values of
tanB. TheAS-AT trajectorieg(in-
cluding both Higgs boson and

0.2

T | L | LI I L

i (@ ] quark contributionsare shown as
- 12 - o6 a function ofM, . For reference,
- s the SM Higgs corrections to
[ 95%C.L. ] (ST), relative to me=1 Tev,
— - 04 are depicted fom:™ varying from
r 7 100 GeV up to 1.0 TeV in plot).
- - 02
L o~ T?_I_VEX. _______ __ 0
i Ptanf =40 |
i | | 1 | | 1 I i | | 1 | Il i _0.2

-0.4 -0.2 0 0.2

=0.21646+0.00065, which is aboutd above the SM value V. CONCLUSIONS
R,=0.2158+0.0002. This puts an upper bound on the

b-seesaw angle, Electroweak symmetry breakin@WSB) through the top

quark seesaw is an attractive mechanism that may naturally
emerge from theories with bosonic extra dimensions. In this
work, we have systematically investigated the top quark see-

o~ Mp/ Kb __ Mo (103  saw mechanism for generating the large top quark mass to-
- Vitr, My gether with the full EWSB. We have applied the gap equa-

tion analysis to study the seesaw vacuum structure and

determine the physical parameter space. With the top-color
and correspondingly a lower bound on the mas, breaking scale {) and the top-color gauge coupling4() as
(=M,), as summarized in Fig. 22. From the physical seesavnputs, and further imposing the physical values of the top

solutions[cf. Fig. 14a) in Sec. Il B], we expect that th&,
bound will mainly constrain the low tg8 region in whichr,

larger values of tag (=15), the model is free from thi,
bound, while for very small values of tgh (=2—3), we

obtain, M,

quark massity) and the full EWSB VEV (), we are able to

predict all other seesaw parameters and thus the physical
is much smaller. Indeed, the current Fig. 22 shows that fospectrum of the model from solving the seesaw gap equation.

This includes the masses of singlet seesaw qyasaad the
composite Higgs bosoh®. The Higgs boson madd,, is at
,=10 TeV, which is somewhat stronger than the the order of the seesaw mass gay , and typically around
T bound in Fig. 21. As a final remark, we note that the~0.5—1 TeV. The effective couplings, such as the Yukawa
two-doublet-Higgs sector can also contribute to e and

coupling h-t- t and gauge couplingg/-t-b and Z-b- b, etc.,

especially a charged Higgs boson lighter than about 200—30&re also analyzed, in comparison with their SM values.

GeV will significantly reduce th&,, value[45]. But, in our The fermion content of the top quark seesaw is incom-
model, the relevant Higgs boson mass spectrum after impogplete due to gauge anomalies, but a minimal choice of addi-
ing theS—T bounds is generically around1l TeV or above tional weak-singlet fermionsy, the seesaw partners for the
(cf. Figs. 16 and 20 which renders the Higgs correction to bottom quark, renders the theory anomaly free and thus com-
Ry, negligible. plete. This extended model contains two dynamical mass
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gapsm;, andmy,, in the (ty) and (bw) channels, respec- good degeneracy witly. The b—w mixing tends to reduce
tively. We have performed a complete analysis of thethe seesaw contribution ifi(especially for the small to mod-
coupled seesaw gap equations in this extended model. Therate tarB valueg, but the additional correction in the two-
low energy theory contains two composite Higgs doubletsHiggs-doublet sector makeEk more positive and thus the
Top-color instanton$7] are found to provide an economic final S-T bounds appear at the similar level to that of the
and plausible mechanism for the mass generation of theinimal model, i.e., the allowed seesaw quark masées,
pseudo-scalaA®. In addition, they may also produce a sig- ranges from a few TeV up te-30 TeV for 1.05= k/k.<4.

nificant part of theb mass via the bottom seesaw. We haveye have also analyzed the correction to Zeb gauge cou-
analyzed the resulting Higgs spectrum in this extendegjing induced by theb— e mixing and found that ther,
model by using two independent approaches. The Higgs bgneasurement can put stronger bounds tharTtparameter
son mass spectrum typically contains the lighteswith a only for very small tang region, around tag < 2— 3.
mass around-1 TeV, and three other quite degenerate sca- g far, the top quark seesaw mechanism, with necessary
lars, with masses around one to a few TeV. We also noticghgredients arising automatically in theories with bosonic ex-
that this model has a particular simple limit, namely, whentra dimensions, remains a most natural picture of the dy-
the seesaw quark becomes heavy enough and decouples amical EWSB scenario, and is consistent with the current
from the low energy theory, it reduces back to the minimalexperimental data. In addition to successfully driving the full
top quark seesaw model with a single Higgs doublet, and iewsB and providing the large top quark mass observed at
this case, the bottom mass arises entirely from the top-colghe Tevatron, it has interesting phenomenological implica-
instanton contribution. ~ tions, including composite Higgs bosons, additional weak-
We have further analyzed the electroweak precisionsinglet quarks in the TeV region, and, ultimately, an entire
bounds on both the minimal and extended seesaw modelgew layer of strong interaction forces at nearby scales to
We find that it is generic in these models to have a smalpypjore.
oblique paramete$, but a significantly positive seesaw con-
tribution to T that largely cancels with the negatidefrom
the heavy Higgs boson, in full consistency with the current
S—T bounds. This makes the dynamical top quark seesaw We thank many colleagues, especially R. Sekhar Chi-
models fully viable, and as a result, the current precision dataukula, for discussions and reading the manuscript. H.J.H.
is able to indirectly confine the heayy mass to the natural thanks the Fermilab Theory Group for invitations and sup-
range of abou®(3—10) TeV (for x/k.<2) in the minimal  port of his summer visits during which this collaboration was
seesaw model. For the extended model with the bottom sednitiated and part of his work was performed. H.J.H. was
saw, the mass of the singlet seesaw quaiik found to have supported by the U.S. Department of Energy under Grant
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APPENDIX A: EQUIVALENT DERIVATIONS OF TOP
’ — ’ ’

QUARK SEESAW GAP EQUATION
1. Bxact largeN. gap equation in the NJL formalism FIG. 24. Diagrams expanded from both sides of the |aige-
In this appendix, we derive the exact NJL seesaw gafschwinger-Dyson equation in Fig. 23, by using the exact seesaw
equation in the larg®\, limit based on the Schwinger-Dyson rotations in Eqs(7),(8).
equation without mass insertion, and prove it results in the

same equation as the tadpole conditi@4) in Sec. IID. p me [ A2+ m?
Starting from the NJL vertex21) in Sec. |1 B, we can write My, =— CLSR( m— —1In ¢ )
down the largeN. Schwinger-Dyson equation as shown in X ke A? mf
Fig. 23.
Then, we make use of the exact seesaw rotations in Egs. N B mf(l A%+ m)z( A3
(7),(8) to transform the fields on both sides of the Schwinger- SLCR| My P n m2 ' (A3)
X

Dyson equation into the mass eigenbasis. The expanded dia-
grams are shown in Fig. 24 with proper rotation angles as- = = . . .
sociated with each graph. The sums of the expandeffNich is just the exact larght, seesaw gap equation for
diagrams on both sides should be equal to each other, and Rt » 1dentical to the tadpole conditio@4) in Sec. Il D. This

particular, each expanded diagram in the upper plot of FigProves the equivalence between the NJL formalism and the

24 must be equal to the sum of the two relevant expandefi99S tadpole formalism for deriving the seesaw gap equa-
diagrams in the lower plot of Fig. 24 which share the samé!°"-

external lines(One of two relevant diagrams in the lower

plot of Fig. 24 has a'-loop and another hasyd -loop.) This 2. Mass-insertion gap equation from tadpole condition

leads us to split the Schwinger-Dyson equation of Fig. 23 . . . . .
into four separate equations, which, however, take the fol- Here, we derive the tadpole condition with mass insertion

lowina identical form: up to(’)_(mtX) and prove it resm_JIts in the same equation as the
owing ldentical form approximate NJL gap equation in Sec. Il C. From the NJL
My, = —[CLSrA+CrSLA ], (A1) interaction in Eq.(24), we introduce the auxiliary field
which, in the unitary gauge, takes the form of Eg89) with
the VEV explicitly shifted. Then, the effective Lagrangian at

with the scalew=A becomes
2 4 My Mgy | [t —
t=—h1thr dke i . La=—(t x1) o M ( >_EtL(CXR+StR)hO
A2 ) 27% k—m, XR
1
+H.c— = A%h3— A%vghy, (A4)
niNe [kt T 2 27 0 O
= — r _ ,
a2 ) ontkem, R
where
whereP | g=(1% ys5)/2. By a direct evaluation of the loop h h m. s
integralsA; and A, with the cutoff A, we can rewrite the m :Cﬂ7 mnzsﬂ, -~ L= (AB)
Schwinger-Dyson equatiofAl) as NG V2 My €
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FIG. 25. Higgs tadpole condition with mass insertions to o .
o(my).
E"ﬁfb; ————— —————— —————— —— e ———
L L . .
ands/c= ./ py, is the same as in Eq23). The diagonal w * - *
mass termsn,; (M) will be put into thet(y) propagator as
usual, while the nondiagonal mass temm, can be included @/ Kt o K o @
via the mass insertion order by order. It is then straightfor- X\ _* N & A N A
ward to derive the tadpole condition=Q A%+ ST [similar v Vi "’LQ v Vi i
to Eq. (43)] with 6T computed from the one-loop Higgs ~ #"  ™™ AN RSN
tadpole diagrams. This is shown in Fig. 25, in which we ® o o o o o
perform the mass insertion af;, up to the third power. As a 5 '}; )% xt
result, we derive a single condition o, , which isidenti- b b
cal to the gap equatio28) derived earlier in Sec. 11C by
using the NJL formalism. This shows the equivalence be-(p0 o o o
: : . ! (N P
tween these two mass-insertion approaches. % N o
YL L Yo L
APPENDIX B: POTENTIAL ANALYSIS FOR HIGGS 0,/ N , 0/ N ,
BOSON MASS SPECTRUM WITH BOTTOM * ® @ *
ARK SEESAW 'y 'y
QUARK SEES ex e

In this Appendix, we present an independent derivation of FIG. 26. Effective mass terms and quartic self-couplings in the
the composite Higgs spectrum by analyzing the Higgs potenkiggs potential.
tial in the extended model with a bottom quark seesaw. The ~ _ _
potential analysis confirms the results derived in Sec. Il Vi=M{|®o|?+Mp| Dyl 2+ EME[ *FD DL +H.c]
where the Higgs boson masses are explicitly computed in the
broken phase including the exact seesaw mass diagonaliza-
tions. We start from the gauge-invariant Lagrangi@f,ss
+ Lintt Lpgg in Sec. Il [cf. Egs.(61), (62), and(65)], and
evolve it down to the scalg.(<M, ,<A). We can thus X[ePDEDE,+H.cl, (B2)
derive the gauge-invariant effective Lagrangian with two dy-

namical Higgs-doublet fields and their interaction terms, ugvhere the loop-induced Higgs boson mass terms and cou-
to O(&), plings are graphically defined in Fig. 26. For simplicity, the

fermion lines of yr and wg represent the fields before the
partial rotations mentioned above, but we keep in mind that
such rotations just split each graph into two; this will not
L = —hy[sptp® o+ Sprbr®P o+ H.C]+Z,|D , D0/ affect our current general derivation as is easy to check.
# Mo HETRTI0 TP TERTHO 1Dy From Eq.(B2) and Fig. 26, we can derive three general
+Zp|D , Ppol?+ E(Zy+ Zy) relations, up ta0(&),

XU P P10) 2+ Ny (PP o) 2+ Np( PP o)

X(DJoD@ro) + E[N{| Dol >+ Np| Dol ]

X €“P[(DH*®5)*(D ,Ppo)P+H.c]-Vy, (Bl . o ~ -~ o~

e“P[(D#®9)“(D ,Ppo) 1=Vu, (BY M2 M2+ WM2-A2), NI=2%,, X[=2%,.
(B3)

where &, Sp)=(siné,siné,) and  (tang;, tanoy) The next step is to write down the renormalized Higgs

=(fyt! Byyr Bob! Rww), With (6;, 6p) the partial rotation potential, analyze the physical vacuum and derive the Higgs

angles for {r, xg) and br, wg) [cf. EQs.(22),(23) in Sec.  boson mass spectrum. So, we first exprégsin terms of
[ B]. The Higgs potentiaV/y can be written as renormalized quantities,
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Vi=MZ|® |2+ M| D |2+ EME[ e*PDIDE+H.c ]
AN PP )24 N (DD )2+ N (D] D) (D] D)
+EN D2\ D2 [ ePDFDE+H.C], (B4

with the following renormalization relations:

. Mi= |\~/I§Zg1, M= mtzb(ztzb)ﬂ/z,

MN=MZo 2 N =NZTYZ R Np=N0Z, 2,

MN=NZ Y2032 Np=Nw(ZiZp) L (B5)

where ¢;, Z,) are the wave function renormalization con-

PHYSICAL REVIEW D65 055006

where we have used the minimal conditions in B8f), and

the relations in EqS(B3) and(B5). This result confirms our
explicit one-loop calculation ol , in Eq. (83) of Sec. Il C.

We proceed by deriving the mass formulas for the neutral
and charged Higgs bosonBX, hY, H*), which can be sum-
marized up toO(§),

M2,=2 v+ € 3\ [vwp—tand | M3+

1 3
SMui+ ?605”

=4m2 +siPBM3, (B8)

3 1
“Nvi+ -M;vg)

A2 2
stants of (g, ®po), defined asd=2; Y4b, and dy, =4m;, +coS B My, (B9Y)
=Z, Y%, . Then, we can shift the VEVs of the two renor- 3 3
malized Higgs-doubletsd{; ,®y,), similar to Eq.(70) in Sec. 42 _ [Mz N 24 SN2
lIIB. For the analysis of physical vacuum and the Higgg 2= Mip+ M vit 5 v
boson mass spectrum, it is convenient to choose the unitary =~ 2 9 9
gauge, in which the three physical combinatigaghogonal = —sin g coB My +4&(mi, +mp,,), (B10)
to the would-be Goldstone bosonsre defined asA® and
=sing md+cosB'#Y and H*=sing'm, +cosB'm , with
tang’ = (v+ évp)/ (vp+ €v) =tanf+ g(l_—tan{8)+(’)(§2). . e _ ,
Minimizing the effective Higgs potentiaf; in Eq. (B4), My == 7[vtsm,8’ +vy,cosB’]
we derive two extremum conditions,
§ 2 2 2
3 1 — S5 2Mp T N vT N o
[M2+\w?]+ & cotg| M3+ 57\{th+ zxgvﬁ =0, sin2
(B6) =2(mf, +mp,) +[M2—4&(m7, cotB+mp, tanpB)],
1 3 B1l
[M2+Apui]+ £tanB| M3 + E)\{vt2+ Ex{,vﬁ =0, 1)

which determine the physical vacuum and is formally

equivalent to the gap equatioftadpole conditionsderived

in Eq. (72) of Sec. Il B. These conditions are needed in our ™

where mass notations Mflyzzﬂare the same as E(BO) in
Sec. llIC, and for simplification we have used the relation,
M,=M,, which results inZ=2Z,=7,/2 and \y=N\y,
Nip/2. These are good approximations since the heavy

derivation and can be used to simplify the mass formulas fofa@ssesVl, andM,, only affect them via weak logarithmic

the Higgs bosons. We start by extracting th& mass term
from Higgs potentialB4) and obtain, up ta@(¢),

¢ 2¢N?

2 2 r.2 r.2

=—— [ 2M§,— N vf— A\ Up | = —————,

A ZSIH,BCOS,B[ b MUt~ AU sin2BVZ.Z,
(B7)

dependence&ue to the decoupling theorgrandM , =M,

is also justified from our physical seesaw solutions in Fig.
14. In summary, the above analysis agrees with our calcula-
tions in Sec. IlIC, and is particularly simple in extracting
leading corrections ab(¢). It is also remarkable that in this
analysis we derive all relations in a rather general and formal
manner in which no explicit one-loop calculation is needed
for the quantities such &5, , and\¢p 1.

[1] H.-C. Cheng, C. T. Hill, S. Pokorski, and J. Wang, Phys. Rev. [5] H. Cheng, C. T. Hill, and J. Wang, Phys. Rev.aa, 095003

D 64, 065007(2001.

[2] C. T. Hill, S. Pokorski, and J. Wang, Phys. Rev6B, 105005
(2001).

[3] W. A. Bardeen and R. B. Pearson, Phys. Rev.l) 547
(1976; W. A. Bardeen, R. B. Pearson, and E. Rabinovilmil.
21, 1037(1980.

[4] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Rev.

Lett. 86, 4757(2001).

(20012.

[6] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Lett. B
513 232(2009).

[7] C. T. Hill, Phys. Lett. B345, 483(1995; 266, 419 (1991).

[8] K. Lane and E. Eichten, Phys. Lett. 862 382 (1995; K.
Lane,ibid. 433 96 (1998.

[9] B. A. Dobrescu and C. T. Hill, Phys. Rev. Lei1, 2634
(1998; R. S. Chivukula, B. A. Dobrescu, H. Georgi, and C. T.

055006-30



TOP QUARK SEESAW MODEL, VACUUM STRUCTURE, ... PHYSICAL REVIEW B5 055006

Hill, Phys. Rev. D59, 075003(1999. metry Breaking, Nagoya, Japan, 1990; FERMI-CONF-90/
[10] B. A. Dobrescu, Phys. Lett. B61, 99(1999; H. Cheng, B. A. 170-T; G. Cvetic, Rev. Mod. Phy31, 513(1999.

Dobrescu, and C. T. Hill, Nucl. Phy&589, 249 (2000; and  [28] With the seesaw mechanism embedded in a more general

hep-ph/0004072. theory, there are more composite scalars with mixings, and one
[11] R. Jackiw and C. Rebbi, Phys. Rev.13, 3398(1976; D. B. of the neutral Higgs bosons may be as light€L00) GeV

Kaplan, Phys. Lett. B288 342 (1992. (9,29

[12] N. Arkani-Hamed and M. Schmaltz, Phys. Revsl 033005  [29] B. A. Dobrescu, Phys. Rev. B3, 015004(2001.
(2000; E. A. Mirabelli and M. Schmaltzjbid. 61, 113011 301 H. Georgi and H. D. Politizer, Phys. Rev. B}, 1829(1976.
(2000; G. Dvali and M. Shifman, Phys. Lett. B75 295 [31] M. Bando, T. Kugo, N. Maekawa, N. Sasakura, K. Suehiro,

2000 D. E. Kapl d T. M. Tait, J. High E Phys, and Y. Watabiki, Phys. Lett. R46, 466 (1990.
(2000 apian an a 'gh Energy Phy [32] G. 't Hooft, Phys. Rev. Lett37, 8 (1976; Phys. Rep142 357

020(2000. (1986
[13] Y. Nambu, in Proceedings of Strong Coupling Gauge Theorieisg] T App.elquist and J. Carrazone, Phys. Re\D2856(1975.
and Beyond, Nagoya, Japan, 1990, pp. 3-12. [34] E.g., N. Maekawa, Phys. Rev. 52, 1684 (1995.

[14] V. A. Miransky, M. Tanabashi, and K. Yamawaki, Mod. Phys. [35] We have confirmed Eq83) by using an independent Higgs

Lett. A 4, 1043(1989. . . potential analysigcf. Appendix B.
[15] W. A. Bardeen, C. T. Hill, and M. Lindner, Phys. Rev.4),  [36] particle Data Group, D. E. Grooet al, Eur. Phys. J. A5, 1

1647(1990. (2000, http://pdg.Ibl.gov; LEP Electroweak Working Group,
[16] For a recent review on top condensation, G. Cvetic, Rev. Mod.  http://lepewwg.web.cern.ch; A. Gurtu, talk given at 30th Inter-
Phys.71, 513(1999. national Conference on High Energy Physics, 2000, Osaka,
[17] H. Collins, A. K. Grant, and H. Georgi, Phys. Rev. @, Japan; M. W. Groewald, “Electroweak Analysis,” presenta-
055002(2000. tion on behalf of LEP and SLD Collaborations, and the Elec-
[18] R. S. Chivukula and C. Hbling, Phys. Rev. Lett85, 511 troweak Working Group, at LEP Physics Jamboree, CERN,
(2000. Geneve, 2001.
[19] M. E. Peskin and T. Takeuchi, Phys. Rev. Léf, 964 (1990); [37] Our currentS-T contours are derived using the recent preci-
Phys. Rev. D46, 381(1992; W. J. Marciano and J. L. Rosner, sion data[36] and the global fitting packagearpr[38].
Phys. Rev. Lett65, 2963 (1990; D. Kennedy and P. Lan- [38] J. Erler, contribution to Workshop of QCD and Weak Boson
gacker,ibid. 65, 2967(1990; Phys. Rev. D44, 1591 (1992); Physics, Batavia, lllinois, 1999, hep-ph/0005084 and http://
B. Holdom and J. Terning, Phys. Lett. B}7, 88 (1990; M. www.physics.upenn.edu/ erler/electroweak/ GAPP.html.
Golden and L. Randall, Nucl. Phy8361, 3 (1992; G. Al- [39] Similar features of largAT>0 and the decoupling of heavy
tarelli and R. Barbieri, Phys. Lett. B53 161(199)); G. Al- seesaw masses were also found in top quark seesaw models
tarelli, R. Barbieri, and S. Jadach, Nucl. PhB&69, 3 (1992. with vectorlikeweak doubleseesaw quarkigt0].
[20] M. E. Peskin and J. D. Wells, Phys. Rev6®, 093003(2002. [40] Hong-Jian He, T. Tait, and C.-P. Yuan, Phys. Rev.6R
[21] C. T. Hill, Phys. Rev. D24, 691 (1981); B. Pendleton and G. 011702R) (2000.
G. Ross, Phys. Let@8B, 291(1981); C. T. Hill, C. N. Leung,  [41] K. Moenig, presentation at Linear Collider Workshop, Fermi-
and S. Rao, Nucl. Phy8262 517 (1985. lab, Batavia, IL, 2000, hep-ex/0101005; J. Erler, S. Heinem-
[22] H. Pagels and S. Stokar, Phys. Rev20Q) 2947 (1979. eyer, W. Hollik, G. Weiglein, and P. M. Zerwas, Phys. Lett. B
[23] G. Buchalla, G. Burdman, C. T. Hill, and D. Kominis, Phys. 486, 125(2000.
Rev. D53, 5185(1996; K. Lane, ibid. 54, 2204 (1996; E. [42] H. E. Haber, presented at the Theoretical Advanced Study In-
Eichten, K. Lane, and J. Womersley, Phys. Rev. L&@t.5489 stitute, Boulder, Colorado, 1992, hep-ph/9306207; H. E. Haber
(1998; Phys. Lett. B405 305 (1997; H.-J. He and C.-P. and H. E. Logan, Phys. Rev. 62, 015011(2000, and refer-
Yuan, Phys. Rev. Leti83, 28 (1999; G. Burdman,ibid. 83, ences therein.
2888(1999; G. Burdman, K. Lane, and T. Rador, Phys. Lett. [43] H.-J. He, N. Polonsky, and S. Su, Phys. Rev6f) 053004
B 514, 41 (2001). (2002.
[24] Y. Nambu and G. Jona-Lasinio, Phys. R&22 345(1961). [44] M. W. Grunewald, presentation on behalf of ALEPH,
[25] C. T. Hill and D. S. Salopek, Ann. Phy@\.Y.) 213 21 (1992. DELPHI, L3, OPAL and SLD Collaborations, and the Elec-

[26] M. L. Swartz, talk given at XIX International Symposium on troweak Working Group, at LEP Physics Jamboree, CERN,
Lepton and Photon Interactions at High Energies, 1999, Genee, 2001.
hep-ex/9912026. [45] E.g., A. Denner, R. J. Guth, W. Hollik, and J. H. Kuhn, Z.
[27] C. T. Hill, presentation at the Workshop on Dynamical Sym- Phys. C51, 695(1991).

055006-31



