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Production of light pseudoscalars in external electromagnetic fields by the Schwinger mechanism

J. A. Grifols and Eduard Masso´
Grup de Fı´sica Teo`rica and IFAE, Universitat Auto`noma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Subhendra Mohanty
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

~Received 1 March 2001; revised manuscript received 28 September 2001; published 5 February 2002!

We calculate the probability of the decay of external inhomogeneous electromagnetic fields to neutral
pseudoscalar particles that have a coupling to two photons. We also point out that our estimate for axion
emission in a previous paper was incorrect.
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I. INTRODUCTION

The Schwinger mechanism is a nonperturbative proc
by which an infinite number of zero frequency photons c
decay into electron-positron pairs@1#. In this paper we show
that this mechanism can be generalized to study the pro
tion of other kinds of light particles from intense electroma
netic ~EM! fields. The light particle that we consider is
pseudoscalar~PS! having a coupling to two photons.

In Sec. II we derive the formula for the decay of classic
background fields into PS particles. This is achieved by
tegrating out the particle fields from the total Lagrangian
obtain the effective action of the classical background fie
The imaginary part of the effective Lagrangian is related
the probability of decay of classical background fields in
particles. In Sec. III we derive, from the usual coupling
the PS to two photons, the specific interaction Lagrang
that should be used in the general formalism of Sec. II
order to account for vacuum decay into PS. For static E
fields, we show that a necessary condition is that the fie
are inhomogeneous. In Secs. IV, V, and VI, we explici
calculate the PS production in a variety of situations. S
cifically we consider a dipole magnetic field, a cylindric
capacitor, and a spherical capacitor. Section VII is devote
the conclusions.

II. DECAY OF CLASSICAL BACKGROUND FIELDS
INTO PARTICLES

We start with the action for the pseudoscalarf ~massm)
coupled to the backgroundE andB fields of the general form

S@f,E,B#5E d4x
1

2
f~x!@2]22m21 f ~x!#f~x! ~1!

where f (x) is some scalar function ofE andB fields. From
Eq. ~1! we obtain the effective action for the backgroundE
andB fields formally as

eiSe f f[E,B]5E DfeiS[f,E,B] . ~2!
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The effective Lagrangian for theE and B fields can be re-
lated to the Green’s function off in externalE andB fields
as follows. Differentiate Eq.~2! by m2

i
]Se f f@E,B#

]m2
52

E Dff2eiS[f,E,B]

E DfeiS[f,E,B]

52
1

2E d4xG~x,x;E,B!

52
1

2E d4xE d4p

~2p!4
G~p;E,B!.

~3!

The effective Lagrangian of the background fields is the
fore formally given by the expression

Le f f@E,B#5
i

2E dm2E d4p

~2p!4
G~p;E,B!. ~4!

The probability of externalE and B fields to decay into
quanta off is related to the imaginary part ofLe f f as fol-
lows:

P512u^0ueiSe f f[E,B] u0&u2

512expF22 ImE d3x dtLe f f@E,B#G . ~5!

In the case that this probability is small, we can write t
probability densityw ~per unit volume and unit time! ap-
proximately as

w52 ImLe f f@E,B#. ~6!

We now give the general procedure for obtaining the eff
tive action of the background fields by calculating t
Green’s function off in backgroundE andB fields follow-
ing the method of Duff and Brown@2#.

The effective Lagrangian can be calculated by t
method if the background fields contained inf (x) in the
interaction Lagrangian
©2002 The American Physical Society04-1
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LI~x!5
1

2
f ~x!f2~x! ~7!

can be expanded in a Taylor series near some reference
x̄. Expandingf (x) nearx5 x̄,

f ~x!5a~ x̄!1bm~ x̄!~x2 x̄!m

1gmn
2 ~ x̄!~x2 x̄!m~x2 x̄!n1•••

a~ x̄!5 f ~ x̄!, bm~ x̄!5S ] f

]xmD
x5 x̄

,

gmn
2 ~ x̄!5

1

2 S ]

]xm

] f

]xnD
x5 x̄

. ~8!

The equation for the Green’s function for thef field is given
by

@]x
21m22a2bm~x2 x̄!m2gmn

2 ~x2 x̄!m~x2 x̄!n#G~x,x̄!

5d4~x2 x̄!. ~9!

In momentum space

~x2 x̄!m→2 i
]

]pm
~10!

and the equation for the Green’s function in moment
space is

F2p21m22a1 ibm

]

]pm
1gmn

2 ]

]pm

]

]pn
GG~p!51.

~11!

We choose as an ansatz for the solutionG(p) the form

G~p!5 i E
0

`

dse2 is(m22 i e)eipmAmnpn1Bmpm1C ~12!

whereA(s),B(s) andC(s) are to be determined. They mu
satisfy the boundary condition in the case of vanishing
ternal fields, i.e. whena,b,g→0

Amn→sgmn, Bm→0, C→0 ~13!

and in this limit we should obtain

G~p!5 i E
0

`

dse2 ism21 isp2
5

1

m22p2
~14!

i.e., the free particle Green’s function.
To solve forA,B, andC we insert ansatz~12! in Eq. ~11!.

We have

i E
0

`

ds@2p21m22a1 i b•~2iA•p1B!

1~2ip•A1B!•g2
•~2iA•p1B!12i tr~g2

•A!#
05500
int

-

3exp$2 ism21 ip•A•p1B•p1C%51. ~15!

Equation~15! has the general form

E
0

`

dsg~s!e2h(s)51 ~16!

whose solution is

g~s!5
]h~s!

]s
~17!

with h(0)50 andh(`)5`. Using the form of the solution
~17! for Eq. ~15!,

i @2p21m22a1 i b•~2iA•p1B!

1~2ip•A1B!•g2
•~2iA•p1B!12i tr~g2

•A!#

5 im22 ip•
]A

]s
•p2

]B

]s
•p2

]C

]s
, ~18!

and comparing equal powers ofp on both sides we get the
following linear differential equations forA,B, andC:

]A

]s
5114A•g2

•A

]B

]s
52iA•b14A•g2

•B

]C

]s
5 ia1b•B2 iB•g2

•B12 tr~g2
•A!.

~19!

The solutions of these equations which satisfy the bound
conditions~13! are given by

A5
1

2
g21

•tan~2gs! ~20!

B52
i

2
g22

•@12sec~2gs!#•b ~21!

C5 ias2
1

2
tr@ ln cos~2gs!#

1
i

8
b•g23

•@ tan~2gs!22gs#•b . ~22!

TheseA,B and C determineG(p) when substituted in Eq
~12!. The effective Lagrangian is obtained by substituti
this G(p) in Eq. ~4! and carrying out the integration overm2,

Le f f52
i

2E0

`ds

s E d4p

~2p!4
exp$2 ism21 ip•A•p

1B•p1C%. ~23!

The Gaussian integral may be evaluated using
4-2
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E d4p exp$ ip•A•p1B•p%

52 ip2~detA!21/2expF i

4
B•A21

•BG ~24!

where detA is the determinant of the matrixAn
m . Using now

Eqs.~20!–~22!, we have

Le f f52
1

32p2E0

`ds

s3
e2 is(m22a)FdetS 2gs

sin 2gsD G
1/2

eil (s)

~25!

where

l ~s!5
1

4
b•g23

•@ tan~gs!2gs#•b. ~26!

The coefficients of the Taylor expansion of the backgrou
fields~8! determine the effective action on integrating out t
quantum fieldf. In particular, an imaginary part ofLe f f may
be non-zero, depending on the signs of the eigenvalues o
g2 matrix. When this occurs, we have a non-zero probabi
~6! that the external EM fields decay in PS particles.

To the effective Lagrangian in Eq.~25! we should add
subtractions to render it finite ats50. When this is done, we
have that in the limitb→0,g2→0, the effective Lagrangian
Le f f→0, as it should be. In the Appendix A we illustrate th
method for the familiar case of production of charged sca
fields in a constant electric field.

The formulas~20!–~22!, ~25! differ by some signs and
factors of i from the solutions displayed in Ref.@3#. There,
we presented the formulas for the case thatf (x) had only
spatial variation and thereforeb and g2 had only i 51,2,3
indices. In @3# we used the metric (1,1,1) while in the
present paper we consider spatial as well temporal varia
and use the metric (1,2,2,2). This introduces some
changes in intermediate formulas but of course the final
sults we get in the present paper are identical with the fi
results we got in@3#.

III. EFFECTIVE EM-FIELDS –PS-PAIR INTERACTIONS

In this section we show that a coupling of a pseudosc
to two photons induces an interactionLI that may lead to PS
production in a background of EM fields.

The generic pseudoscalar–two-photon interaction~see
Fig. 1! can be written as

FIG. 1. PS–two-photon interaction.
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Lfgg5
1

8
gfemnrsFmnFrs . ~27!

We should mention that in the special case where the P
an axion the couplingg is related to the massm of the axion.

We need to evaluate the loop diagram of the type sho
in Fig. 2 with an infinite number of zero-frequency photo
external legs. The imaginary part of this diagram gives
probability for the decay of the external electromagne
field.

To calculate this diagram, we first evaluate the proc
fA→fA, where A is an external photon. We useiLfgg
from Eq. ~27! in momentum space,

1

4
gf̃emnrskmÃnF̃rs . ~28!

The two-photon two-PS interaction is then obtained contra
ing the internal photon legs,

4S 1

4
gf̃ D 2

emnrskmF̃rs

2 ignn8

k2
em8n8r8s8~2km8!F̃r8s8 .

~29!

The factor of 4 in Eq.~29! is for the four possible ways o
joining the photon legs. Due to the presence of thek2 term in
the denominator, the effective coupling~29! is non-local.
However, when we calculate the effective action for the e
ternal EM field the momentumk is integrated over. One ca
therefore make use of the identity

E d4kkmkm8g~k2!5E d4k
gmm8k

2

4
g~k2! ~30!

to simplify Eq. ~29!. Thus, we can reduce the effective tw
PS-two photon interaction to a local interaction vertex. Ba
in configuration space, it is given by

LI52
1

4
g2f2FmnFmn5

1

2
g2f2~E22B2! ~31!

~see Fig. 3!.

FIG. 2. Loop diagram showing an infinite number of phot
external legs.
4-3
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With the interaction Lagrangian~31! we can go back to
the formalism of Sec. II and calculate the probability dens
We can readily identifyf (x) in Eq. ~7!,

f ~x!5g2~E22B2!. ~32!

In order to have a non-trivialLe f f , one needs non-zero se
ond derivatives of the EM fields as they appear in express
~32!. As we said in Sec. I, depending on the sign of t
correspondingg2 matrix we may have PS production. W
illustrate it in some simple physical situations in the follow
ing sections.

IV. PRODUCTION OF PSEUDOSCALARS IN DIPOLE
MAGNETIC FIELDS

In a static dipole magnetic field the PS-pair–EM intera
tion is given by

LI52
1

2
g2B2~r !f2

52
1

2
g2S B0

2z0
63z21r 2

4r 8 D f2 ~33!

whereB0 is the field strength at a pointrW05(0,0,z0) on thez
axis. We have now

f ~rW !52g2S B0
2z0

6 3z21r 2

4r 8 D . ~34!

ExpandingB2(r ) near the pointrW0

L5
1

2
fF2]22m21 f ~rW0!1

] f

]xi
U

rW5rW0

~xi2xi0! ~35!

1
1

2

]2f

]xi]xj
U

rW5rW0

~xi2xi0!~xj2xj 0!]f1•••

~36!

we find that the coefficients of the Taylor expansion a
given by

a5 f ~rW0!52g2B0
2[am ~37!

~b! i5
] f

]xi
U

rW5rW0

5~0,0,6g2B0
2z0

21! ~38!

and

FIG. 3. Two-PS–two-photon interaction.
05500
.
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-

e

~g2! i j 5
1

2

]2f

]xi]xj
U

rW5rW0

5
3g2B0

2

4z0
2 S 5 0 0

0 5 0

0 0 228
D

[S am
2 0 0

0 am
2 0

0 0 2bm
2
D . ~39!

Therefore we find using the notation and formalism of Sec
that the effective action on integrating out the PS field
given by

Le f f52
1

32p2E0

`ds

s3
e2 is(m22am)

2ams

sinh 2ams

3A 2bms

sin 2bms
eil m(s) ~40!

with

l m~s!5lm~bms2tanbms! ~41!

lm5
9g4B0

4

z0
2

1

bm
3

5
3

7A21
gB0z0 . ~42!

The imaginary part of the expression~40! can be performed
by enclosing the simple poles ats52 inp(2am)21, n
50,1, . . . ,with a contour from below. We get

Im Le f f5
1

8p5/2
am

3/2bm
1/2(

n51

`

~21!n11Cn
(m)e2np/2hm

~43!

Cn
(m)5n23/2Fsinhn

bm

am
pG21/2

el̃ m ~44!

with

hm5
am

m22am

5
A15

2 S m2z0

gB0
1z0gB0D 21

~45!

and
4-4
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l̃ m5lmFn
bm

am

p

2
2tanhn

bm

am

p

2 G . ~46!

In Eqs.~44! and ~46! we can putbm /am5A28/5. The main
contribution to the above integral comes from then51 term
and we find thatw is given by the expression

w50.036
g2B0

2

z0
2 e2.72lme2p/2hm . ~47!

The probabilityw of field decay is extremely suppressed f
realistic parameters. To illustrate this, let us choose a mam
and a couplingg consistent with the axion window:

m;1023 eV

g;10213 GeV21 . ~48!

Also, let us choose

B051 Tesla

z0510 cm . ~49!

With these values, we get

hm;10219 ~50!

and sincehm appears in the exponential in Eq.~47!, we see
that the probabilityw is indeed extremely suppressed. Fo
dipole magnetic field to be unstable and decay into axio
one needshm*1, but this would correspond either to unr
alistic values for the external field parameters~49! or to ex-
cluded values for the axion mass and coupling~48!. For non-
axion models,g and m are not related~still there are
restrictions on these parameters, see Ref.@4#!. One could
havehm;1 by tuningg andm. Imposing that the field~49!
does not decay into pseudoscalars leads to the constrain

S m

10212 eV
D 2

*
g

10213 GeV21
. ~51!

V. PRODUCTION OF PSEUDOSCALARS IN A
CYLINDRICAL CAPACITOR

The modulus of the electric field inside a cylindrical c
pacitor whose axis lies along thez axis depends only onr
5(x21y2)1/2,

E~r!5
l

2p

1

r
~52!

with l the linear electric charge density.
The bilinear interaction term~31! is
05500
s,

LI5
1

2
g2E2~r!f2~x!

5
1

2
gc

2S 1

r2D f2~x! ~53!

wheregc[lg/2p. The corresponding functionf (x) is

f ~r!5gc
2S 1

r2D . ~54!

Expanding the fields near some reference point (x0 ,y0 ,z0)
with r05(x0

21y0
2)1/2

L5
1

2
fF2]22m21 f ~r0!1

] f

]r U
r5r0

~r2r0!

1
1

2

]2f

]r2U
r5r0

~r2r0!2Gf1••• . ~55!

It can be written as in Eq.~8! with

a5 f ~r0![ac ~56!

~b! i5
f 8

r0
~x0 ,y0! ~57!

and

~g2! i j 5
f 8

2r0
3 S y0

2 2x0y0

2x0y0 x0
2 D 1

f 9

2r0
2 S x0

2 x0y0

x0y0 y0
2 D

~58!

where primes denote derivatives with respect tor taken at
r5r0. In the above formulas, the spatial indices run over
2.

Introducing the explicit form off, we get

ac5
gc

2

r0
2

~59!

~b! i52
2gc

2

r0
4 ~x0 ,y0! ~60!

and theg2 matrix ~58! reads

~g2! i j 5
gc

2

r0
6 S 2y0

213x0
2 4x0y0

4x0y0 2x0
213y0

2D . ~61!

Next, we diagonalizeg2 by rotating the coordinates with a
orthogonal matrix. For example, we can use
4-5
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~O! i j 5
1

r0
S x0 y0

2y0 x0
D . ~62!

In diagonal form we have

~gD
2 ! i j 5

gc
2

r0
4 S 3 0

0 21D[S ac
2 0

0 2bc
2D . ~63!

We needbW in the diagonal basis given bybW D5O•bW . We get

~bD! i5~22gc
2r0

23 ,0!. ~64!

The expression forLe f f ~25! finally reads

Le f f 52
1

32p2E0

`ds

s3
e2 is(m22ac)

3A 2acs

sinh 2acs
A 2bcs

sin 2bcs
eil c(s) ~65!

where

l c~s!5lc~acs2tanhacs! ~66!

lc5gc
4r0

26ac
235

gc

3A3
. ~67!

We are not able to perform the integration in Eq.~65! by the
procedure of extendings to the complex plane, as we hav
done in Sec. IV. The reason is the presence of essential
gularities contained inl c(s). ~For a discussion of the impli
cations of essential singularities in the context of QED p
production calculations at finite temperature, see Ref.@5#.!

We shall calculate the integral~65! numerically. We make
the change of variables

x5~m22ac2lcac!s ~68!

so that

w52 ImLe f f5
1

16p2

1

~m22ac2lcac!
2

I c ~69!

FIG. 4. I c as a function of 1/hc for the valuelc50.1. Dotted
line: I c obtained by numerical integration of Eq.~70!. Full line: I c

as given by Eq.~76! with A50.28 andk51.026.
05500
in-

ir

where

I c5E
0

`dx

x3
sin~fc!SA 2hcx

sinh 2hcx
A 2hcx/A3

sin~hcx/A3!

1
2

9
x221D . ~70!

We have introduced the necessary subtractions and defi

hc5
ac

m22ac2lcac

~71!

and

fc5x1lc tanhhcx . ~72!

As it stands,I c depends on the two adimensional paramet
lc andhc , which reflect its dependence on both the stren
of the interaction and on the mass of the scalar particles
order to explore numerically this two-dimensional space
should focus on those regions for which the results m
physical sense. This is even more so because a blind com
tation of the integral leads easily to wild fluctuations due
the violent oscillations of the integrand for large domains
parameter space.

Since the electric field should be inhomogeneous
scales of the order of a particle’s Compton wavelength,
have

UE21S dE

dr D
0

m21U.1 . ~73!

In our case, this means

r0m,1 . ~74!

Moreover, we should restrict our survey to subcritical con
tions, i.e. conditions such that we find ourselves bel
the point where catastrophical pair production starts

FIG. 5. Same as Fig. 4 forlc50.4 andA50.43 andk52.1.
4-6
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earnest and vacuum breakdown occurs. The system wil
subcritical whenever the field energy stored in a volume
sizem23, and which is converted into a PS pair, is at most
the order of twice the scalar particle rest mass. A crude b
of an envelope estimate gives

lc
2/m2r0

2&O~1!. ~75!

Using both restrictions as a rough guide, we perform
numerical integration ofI c as a function ofhc

21 for hc and
lc in the ballpark of the values required by Eqs.~74! and
~75!. The results for two values oflc are displayed in Figs. 4
and 5. The curves are accurately fit by an analytic expres
of the form,

I c5Ahc
2e2k/hc ~76!

with A andk depending onlc . (A andk are positive.! Equa-
tion ~76! has a form that closely resembles the class
Schwinger result and characterizes a typical non-perturba
process.

The electric field would break down into pseudoscalar
the exponent in Eq.~76! becomes small. Again we choos
the values consistent with the axion window~48! and for the
field parameters we take

E0;104 V/m

r0;0.1 cm . ~77!

This leads to

hc;10222 ~78!

which implies a large negative value of the exponent in E
~76! that suppresses field decay.

VI. PRODUCTION OF PSEUDOSCALARS IN A
SPHERICAL CAPACITOR

The modulus of the electric field inside a spherical capa
tor depends only onr 5urWu,

E~r !5
Q

4p

1

r 2
~79!

whereQ is the electric charge.
05500
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The bilinear interaction term is then

LI5
1

2
g2E2~r !f2~x!

1

2
gs

2S 1

r 4D f2~x! ~80!

wheregs5Qg/4p.
The corresponding functionf (x) depends only onr,

f ~r !5gs
2S 1

r 4D . ~81!

Expanding the fields near some reference point w
(x0 ,y0 ,z0) with modulusr 0

L5
1

2
fF2]22m21 f ~r 0!1

] f

]r U
r 5r 0

~r 2r 0!1
1

2

]2f

]r 2U
r 5r 0

3~r 2r 0!2Gf1••• . ~82!

In Cartesian coordinates it can be written as in Eq.~8! with

a5 f ~r 0![as ~83!

~b! i5
f 8

r 0
~x0 ,y0 ,z0! ~84!

and

~g2! i j 5
f 8

2r 0
3 S y0

21z0
2 2x0y0 2x0z0

2x0y0 x0
21z0

2 2y0z0

2x0z0 2y0z0 x0
21y0

2
D

1
f 9

2r 0
2 S x0

2 x0y0 x0z0

x0y0 y0
2 y0z0

x0z0 y0z0 z0
2
D ~85!

where primes denote derivatives with respect tor taken at
r 5r 0. Introducing the form off (x), we get

as5S gs
2

r 0
4 D ~86!

and

~b! i52
4gs

2

r 0
6 ~x0 ,y0 ,z0! ~87!

and
4-7
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~g2! i j 5
2gs

2

r 0
8 S 5x0

22y0
22z0

2 6x0y0 6x0z0

6x0y0 2x0
215y0

22z0
2 6y0z0

6x0z0 6y0z0 2x0
22y0

215z0
2
D . ~88!
o-
a

r
e

rical
to

fined

he

te

PS
k-
The g2 matrix ~88! can be diagonalized by rotating the c
ordinates with an orthogonal matrix. For example, we c
use

~O! i j 5
1

r 0d0
S 2z0r 0 0 x0r 0

2x0y0 d0
2 2y0z0

x0d0 y0d0 z0d0

D ~89!

whered05Ax0
21z0

2.
In diagonal form we have

~gD
2 ! i j 5

2gs
2

r 0
6 S 21 0 0

0 21 0

0 0 5
D [S 2bs

2 0 0

0 2bs
2 0

0 0 as
2
D .

~90!

One must also usebW in the diagonal basis given bybW D

5O•bW . We get

~bD! i5~0,0,24gc
2r 0

25!. ~91!

The expression forLe f f ~25! is given in this case by

Le f f52
1

32p2E0

`ds

s3
e2 is(m22as)A 2ass

sinh 2ass

2bss

sin 2bss
eil s(s)

~92!

where

l s~s!5ls~ass2tanhass! ~93!

ls5
4gs

4

r 0
10

1

as
3

5
2

5A10

gs

r 0
. ~94!

As in the precedent section, we cannot perform the integ
tion in Eq. ~92! by extendings to the complex plane sinc

FIG. 6. I s as a function of 1/hs for the valuels50.2. Dotted
line: I s obtained by numerical integration of Eq.~97!. Full line: I s

given by Eq.~101! with A50.30 andk51.46.
05500
n

a-

again there are essential singularities and we do a nume
integration. The procedure is very similar. It is convenient
change variables,

x5~m22as2lsas!s ~95!

so that

w52 ImLe f f5
1

16p2

1

~m22as2lsas!
2

I s ~96!

where

I s5E
0

`dx

x3
sin~fs!SA 2hsx

sinh 2hsx

2hsx/A5

sin~hsx/A5!
1

1

5
x221D .

~97!

We have introduced the necessary substractions and de

hs5
as

m22as2lsas

~98!

and

fs5x1ls tanhhsx . ~99!

Here we follow a similar strategy as before to pinpoint t
relevant parameter space. We get similar restrictions:

r 0m,1 and ls
2/r 0

2m2&O~1!. ~100!

In Figs. 6 and 7 we displayI s as a function ofhs
21 for a

couple of values ofls . Again, we see that the approxima
behavior is that of a decreasing exponential,

I s5Ahs
2e2k/hs ~101!

with positive constantsA andk ~that depend onls!.
When one considers realistic values for the field and

parameters it turns out that the probability of field brea

FIG. 7. Same as Fig. 6 forls50.5 andA50.35 andk51.92.
4-8
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down is extremely suppressed as it happens in the cases
have been analyzed in the precedent sections, namely
dipole magnetic field and the cylindrical capacitor.

VII. CONCLUSIONS AND FINAL REMARKS

In the presence of strong external fields, the phys
vacuum breaks down because particle-antiparticle pairs
being pumped out of it at the expense of field energy. T
case of a strong uniform electric field spontaneously crea
electron-positron pairs is the best known~QED! example for
this phenomenon. Such a process is of a nonperturbative
ture and the QED case has been solved exactly by Schwi
and others@1#. Their solution, however, does not include th
back reaction on the external field exerted by the presenc
the producede1e2 pairs. Clearly, creation of pairs require
the supply of mass energy and kinetic energy which mus
furnished by the external field. A balanced energy budge
therefore only possible through a corresponding reductio
the energy stored in the field. Because electrons and p
trons carry charge they will fly to the external sources of
field and thus the field~and hence its energy! will diminish.
So, unless from the outside the field is restored, the
production process cannot be indefinitely sustained. If no
ing is done from the outside a catastrophic breakdown of
initially strong ~critical! electric field will inevitably follow.

In the present paper we dealt with pseudoscalar partic
Pseudoscalars are fundamental ingredients of many com
tions of particle physics models. Examples run from axio
to superlight partners of gravitinos. In the previous sectio
we have derived the probability for pair production of PS
electric and magnetic fields. Contrary to the QED case m
tioned above, constant fields do not cause the disruptio
the vacuum. Field gradients are necessary for the phen
enon to occur. Hence, we studied PS pair production in
homogeneous fields. We have calculated the probability
general case and based our computation on an effective
tion formalism formulated by Brown and Duff. We then ha
applied the general formulas to a few specific cases: PS
duction in a magnetic dipole field and between the plates
a charged capacitor~either cylindrical or spherical!. Again,
back reaction was ignored and therefore adequate boun
conditions were implicitly assumed that take into account
fact that pairwise creation of PS requires field energy to
depleted.

In the three cases studied, we found that o
probability shows the non-perturbative behaviorw;exp
(2const3m2/g) expected for subcritical fields. Finally, w
should point out that in a previous paper@3# we erroneously
estimated axion emission in the Coulomb field of an atom
nucleus. This result is incorrect because we overlooked
question of appropriate boundary conditions that guaran
energy conservation and which are clearly not met in t
microscopic system.
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APPENDIX: DECAY OF A CONSTANT ELECTRIC FIELD
INTO CHARGED SCALARS

We start with the equation for the Green’s functionG(p):

@2~p2eA!21m2#G~p!51

@2p21m21e~Ampm1pmAm!2e2A2#G~p!51 . ~A1!

We assume constantE andB fields. The vector potential can
be choosen as

Am52
1

2
Fmn xn→ i

2
Fmn

]

]pn
. ~A2!

When inserted in Eq.~A1!, one gets an equation of the form
given in Eq.~11!, except for a term

Fm
npm

]

]pn
G~p! ~A3!

that leads to an expression containing

Fm
npmpaAam . ~A4!

The antisymmetry ofF and the fact thatF and A commute
makes this term vanish. Then our equation is

F2p21m21
e2

4
FmnFr

m ]2

]pn]pr
GG~p!51 ~A5!

and with our definitions in Eq.~8!, b50 and

gnr
2 52

e2

4
FmnFr

m

[2
e2

4
Fnr

2 . ~A6!

Let us work out the special case of a constantE field. We
have

~g2!nr52
e2

4 S E2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2E2

D . ~A7!

~We have chosen thez direction as the direction ofE.! The
eigenvalues ofg2

r
n are negative so

FdetS 2gs

sin 2gsD G
1/2

5
eEs

sinheEs
~A8!

and
4-9
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Le f f52
1

32p2E0

`ds

s3
e2 ism2 eEs

sinheEs
. ~A9!

To this expression forLe f f one should add a subtraction
make it finite ats50. When this is done,Le f f→0 when
eE→0.

The probability of scalar production can now be calc
lated using Eq.~5!. The integral can be calculated by conto
integration by closing the real axis with a contour on t
-

s.

05500
-

negative imaginary plane. This contour encloses poless
52 inp/eE which contribute to the integral. The final resu
for the constant electric field decay probability density is

w5
aE2

2p2 (
n51

`
~21!n11

n2
expS 2

npm2

eE D ~A10!

which coincides with the well-known formula found in tex
books@6#.
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