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Production of light pseudoscalars in external electromagnetic fields by the Schwinger mechanism
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We calculate the probability of the decay of external inhomogeneous electromagnetic fields to neutral
pseudoscalar particles that have a coupling to two photons. We also point out that our estimate for axion
emission in a previous paper was incorrect.
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[. INTRODUCTION The effective Lagrangian for thE and B fields can be re-
lated to the Green’s function @b in externalE andB fields
The Schwinger mechanism is a nonperturbative procesas follows. Differentiate Eq(2) by m?
by which an infinite number of zero frequency photons can

decay into electron-positron pair§]. In this paper we show f Dp2eiSIHE Bl
that this mechanism can be generalized to study the produc- . dSer E,B]

tion of other kinds of light particles from intense electromag- ! om2 B ,

netic (EM) fields. The light particle that we consider is a fD¢e'S[¢’E’B]

pseudoscalafPS having a coupling to two photons.
In Sec. Il we derive the formula for the decay of classical 1
background fields into PS particles. This is achieved by in- =- EJ d*xG(x,x;E,B)
tegrating out the particle fields from the total Lagrangian to
obtain the effective action of the classical background fields.

4
The imaginary part of the effective Lagrangian is related to - _ lf d4xf d’p G(p;E,B).
the probability of decay of classical background fields into 2 (27)* T
particles. In Sec. lll we derive, from the usual coupling of 3

the PS to two photons, the specific interaction Lagrangian , ) i )

that should be used in the general formalism of Sec. Il in! he €ffective Lagrangian of the background fields is there-
order to account for vacuum decay into PS. For static EMOre formally given by the expression

fields, we show that a necessary condition is that the fields i 4

are inhomogeneous. In Secs. IV, V, and VI, we explicitly Lo E B]:'_f dmzf dp
calculate the PS production in a variety of situations. Spe- efft™= 2 (27)
cifically we consider a dipole magnetic field, a cylindrical

capacitor, and a spherical capacitor. Section VIl is devoted tdhe probability of externaE and B fields to decay into

G(PEB). (&

the conclusions. quanta of¢ is related to the imaginary part df.¢; as fol-
lows:
Il. DECAY OF CLASSICAL BACKGROUND FIELDS P=1-[(0[e'>E8|0)|?
INTO PARTICLES
We start with the action for the pseudoscatatmassm) = l—exp{ —21Im f d*x dtLe{ E,B]|. )

coupled to the backgrourtelandB fields of the general form
In the case that this probability is small, we can write the
probability densityw (per unit volume and unit timeap-

S ¢.E.B]= f d4x%¢(x>[—a2—m2+f(x>]¢<x> () ~ Proximately as
W:2 ImLeff[E,B]. (6)

wheref(x) is some scalar function d& andB fields. From We now give the general procedure for obtaining the effec-
Eg. (1) we obtain the effective action for the backgrougd tive action of the background fields by calculating the
andB fields formally as Green'’s function ofg in backgrounde andB fields follow-
ing the method of Duff and Browf2].
The effective Lagrangian can be calculated by this
e‘seff[E'B]=J DepeiSI#EE] @ _method. if the back_ground fields contained fifx) in the
interaction Lagrangian
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1
£,0=5F()¢%(x) @

can be expanded in a Taylor series near some reference point

X. Expandingf(x) nearx=x,

f(x) = a(x) + B, (X) (x—x)*

+ 92 () (X=X)H(X—X)"+ - - -

— [ af
ﬁp.(x)_ ﬁ X_;y

a(x)=f(x),

, — 1 o af
yﬂv(x)_z ax_,uaxv 7_' (8)

The equation for the Green'’s function for tiefield is given
by

[92+mP— a— B, (X—X) = 72 ,(Xx—X)(x—X)"]G(X,X)
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X exp{—ism?+ip-A-p+B-p+C}=1. (15)

Equation(15) has the general form

f dsgs)e "®=1 (16)
0
whose solution is
B dh(s) 1
a(s)= 7S (17

with h(0)=0 andh(«)=0. Using the form of the solution
(17) for Eq. (15),

i[—p?+m’—a+iB-(2iA-p+B)
+(2ip-A+B)- ¥ (2iA-p+B)+2i tr(y?-A)]
A oB aC
=im?—ip. — PP g (18)

and comparing equal powers pfon both sides we get the
following linear differential equations fo,B, andC:

dA
—=1+ . .
75 1+4A-y-A

B
£=2|A~ﬁ+4A-—f~B

%:ia—FI{B—iB"YZ'B"‘Z tr(yz-A).

(19

=54 (x—X). 9
In momentum space
(X=X} =i = (10
X—X)H— —i—
Py
and the equation for the Green’s function in momentum
space is
—p2+m2—a+iB i 'y G(p)=1.
”f?p ’”5I0 ﬁpv
(11)

We choose as an ansatz for the solut®¢p) the form

G(p)=i f dse Sm* - igiPuA TR B EC (1)

whereA(s),B(s) andC(s) are to be determined. They must
satisfy the boundary condition in the case of vanishing ex-

ternal fields, i.e. whemy,3,y—0
A*Y—sgt?,

and in this limit we should obtain

B*—0, C—O0 (13

G(p)=i fo dse i is’ = (14)

m2_ p2

i.e., the free particle Green’s function.

To solve forA,B, andC we insert ansatzl?) in Eq. (11).
We have

ifwds[—p2+ m’—a+ipB-(2iA-p+B)
0

+(2ip-A+B)- - (2iA-p+B)+2i tr(y?-A)]

The solutions of these equations which satisfy the boundary
conditions(13) are given by

1
A=zy tan(2ys) (20
B=— 5y 2 [1-sea2s)]- B (21)

1
C=ias— Etr[ln cog2ys)]

+'§p. y 3. [tan2ys) - 295]- B. (22

TheseA,B and C determineG(p) when substituted in Eq.
(12). The effective Lagrangian is obtained by substituting
this G(p) in Eq. (4) and carrying out the integration over,

f dSJ ol 2,0 A,
——exp{—ism+i
Lett= (2m)* p-A-p

+B-p+C}. (23

The Gaussian integral may be evaluated using
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FIG. 1. PS—two-photon interaction.
f d*pexp{ip-A-p+B-p}
i
= —iwz(detA)‘l’zexr{ZBA‘l- B} (24)

where deA is the determinant of the matri/; . Using now
Egs.(20)—(22), we have

1 (=ds 2ys \]¥?2
- _ _ ais(mt—a) il(s)
Lett™ " 3om2)o 8 ° [de<sin21fs” ¢
(25
where
1 —3
I(s)= 2By ° [tan(ys)— ys]- B. (26)
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FIG. 2. Loop diagram showing an infinite number of photon
external legs.

1
L4y =g It " F 1 b (27

We should mention that in the special case where the PS is
an axion the coupling is related to the mags of the axion.

We need to evaluate the loop diagram of the type shown
in Fig. 2 with an infinite number of zero-frequency photon
external legs. The imaginary part of this diagram gives the
probability for the decay of the external electromagnetic
field.

To calculate this diagram, we first evaluate the process
dA— @A, where A is an external photon. We use&,,,

The coefficients of the Taylor expansion of the backgroundrom Eg.(27) in momentum space,
fields(8) determine the effective action on integrating out the
guantum fieldg. In particular, an imaginary part df.¢; may

be non-zero, depending on the signs of the eigenvalues of the
¥? matrix. When this occurs, we have a non-zero probability

1 - ~ =
Zggbe“”p"kMA,,FW. (28

(6) that the external EM fields decay in PS particles.
To the effective Lagrangian in Eq25) we should add
subtractions to render it finite at=0. When this is done, we

have that in the limi{3—0,vy*—0, the effective Lagrangian
Les—0, as it should be. In the Appendix A we illustrate the
method for the familiar case of production of charged scalar

fields in a constant electric field.

The formulas(20)—(22), (25) differ by some signs and
factors ofi from the solutions displayed in Rdf3]. There,
we presented the formulas for the case thiad) had only
spatial variation and therefor@ and y* had onlyi=1,2,3
indices. In[3] we used the metric{,+,+) while in the

The two-photon two-PS interaction is then obtained contract-
ing the internal photon legs,

1 - 2 uvpay, T _igvv’ “
4 Zg¢ € kﬂFpgTE

P r

vea (_kﬂ')’ﬁp/a/ .
(29)

The factor of 4 in Eq(29) is for the four possible ways of
joining the photon legs. Due to the presence ofkhéerm in

the denominator, the effective couplin@9) is non-local.
However, when we calculate the effective action for the ex-
ternal EM field the momenturk is integrated over. One can

present paper we consider spatial as well temporal variatiotherefore make use of the identity

and use the metric ,—,—,—). This introduces some

changes in intermediate formulas but of course the final re-
sults we get in the present paper are identical with the final

results we got if3].

Ill. EFFECTIVE EM-FIELDS -PS-PAIR INTERACTIONS

k2
f d*kk,k,g(k?) = f d4kg“+g(k2) (30)

to simplify Eq. (29). Thus, we can reduce the effective two
PS-two photon interaction to a local interaction vertex. Back
in configuration space, it is given by

In this section we show that a coupling of a pseudoscalar

to two photons induces an interactigp that may lead to PS
production in a background of EM fields.

The generic pseudoscalar—two-photon interactisee
Fig. D can be written as

1 1
Li=—7Q¢°F, Fr"=50%¢%(E*~B%) (31

(see Fig. 3.
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FIG. 3. Two-PS—two-photon interaction. 2
0 0 -—bp
With the interaction LagrangiafB81) we can go back to
the formalism of Sec. Il and calculate the probability density.
We can readily identifyf (x) in Eq. (7), Therefore we find using the notation and formalism of Sec. Il
that the effective action on integrating out the PS field is
f(x)=g*(E*-B?). (32 given by
In order to have a non-trivials¢f, One needs non-zero sec-
ond derivatives of the EM fields as they appear in expression 1 (=d ’
(32). As we said in Sec. |, depending on the sign of the Loti=— f _Se—is(mz—am)—_ AmS
correspondingy? matrix we may have PS production. We ¢ 3272J)o s° sinh 2ap,s

illustrate it in some simple physical situations in the follow-

ing sections. 2Pws
X sin 2bmse ; (40

IV. PRODUCTION OF PSEUDOSCALARS IN DIPOLE
MAGNETIC FIELDS

In a static dipole magnetic field the PS-pair—EM interac—Wlth

tion is given by

1 [ n(S)=\m(by,s—tanb,,s) (42
L=~ 59252(”¢2
372412 9gB; 1 3
__ =2 r2,6 2 = =
- 29 (BOZO 8 d) (33) )\m ZS b% 7\/ﬁ-gBOZO- (42)

whereB is the field strength at a poiﬁgz (0,07p) on thez

axis. We have now
The imaginary part of the expressiof0) can be performed

. 372412 by enclosing the simple poles a&=—inw(2a,)"%, n
f(r)=-g? BSZS—8 (34  =0,1,...,with a contour from below. We get

ExpandingB?(r) near the poinfo

1 oo
Im Eeff: 5 a3/2br:|]-42nzl (— 1)n+1cgm)e—nrr/27;m

,c—l 2 m24f(r, ot 35 e
—§¢ —J°—m°+ ("o)‘Fa_Xi F_F(Xi_xio) (35 43)
-0
1 5f 1
2 IXiIXj | -_- (Xi=Xio) (X = Xjo)] -+ - -- CM=n~32 sinhn— 7 elm (44)
~To a
(36) "
we find that the coefficients of the Taylor expansion are
given by with
a=f(ry)=—9’Bi=an (37
a, V15[ m?z, -1
of N M= =5 g—B+ZogBo (45)
(Bi=5 | =(006°B3zY) (39 "= am °
Hr=r,
and and
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- by, 7 by 1., )
Im=N\m na—mE—tanhna—mE . (46) L‘,—Eg E“(p) p°(X)
In Egs.(44) and (46) we can putb,,/a,= 28/5. The main — }92 i) H%(X) (53)
2%¢ p?

contribution to the above integral comes from the 1 term
and we find thatv is given by the expression

whereg.=\g/27. The corresponding functiof(x) is
ZBZ
w= o.oseyezmmef ™27, (47 1
° f<p>=g§( —2) : (54)
P
The probabilityw of field decay is extremely suppressed for
realistic parameters. To illustrate this, let us choose a mass Expanding the fields near some reference poiagt,\o,2o)

and a couplingy consistent with the axion window: with po=(x3+y2)"2
m~10"3 eV 1 Jf
EZEd’[_az_mz"”f(Po)ﬁL% (p—po)
g~101% Gev 1. (48) p=no
1 9°f
Also, let us choose +5 P (p—po)2|dp+--- . (55)
P P=po
Bo=1 Tesla
It can be written as in Eq.8) with
Z,=10 cm. (49
a=f(po)=ac (56)
With these values, we get
P~ 10719 (50) (B)i= E(Xo Yo) (57

and sincez,, appears in the exponential in E@7), we see and
that the probabilityw is indeed extremely suppressed. For a
dipole magnetic field to be unstable and decay into axions, fr y2 —XoYo 7 [ X2 XoYo
one needsy,,=1, but this would correspond either to unre- (7/2)”. =— 5 — )
alistic values for the external field parameté§) or to ex- 2py \ ~XoYo Xo 2p5\ XaYo Yo
cluded values for the axion mass and coupli#g). For non- (58
axion models,g and m are not related(still there are
restrictions on these parameters, see R&f. One could Wwhere primes denote derivatives with respecpttaken at
have »,,~1 by tuningg andm. Imposing that the field49) p=po. In the above formulas, the spatial indices run over 1,
does not decay into pseudoscalars leads to the constraint 2.

Introducing the explicit form of, we get
2

m g
= ) (51 2
(1012 ev] 10 Gev? =2 (59
Po

V. PRODUCTION OF PSEUDOSCALARS IN A
CYLINDRICAL CAPACITOR 29;

(B)i=——4 (Xo0.Yo) (60)
The modulus of the electric field inside a cylindrical ca- Po
pacitor whose axis lies along tteaxis depends only op )
= (x2+y2) 2 and they? matrix (58) reads
2 2 2
A gc[ —Yot3Xg  4XoYo
E(p)= =~ 52 (Y)ij=—% : (61)
(=5 p (52) Top8l Axeyo —Xx6+3y5
with \ the linear electric charge density. Next, we diagonalize/? by rotating the coordinates with an
The bilinear interaction ternBl) is orthogonal matrix. For example, we can use
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Ic Ic
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0.1
0.1
0 0.2 0.4 0.6 0.8 1 1/n0 0 0.2 0.4 0.6 0.8 1 1/n0
FIG. 4. |, as a function of 1j, for the valuex.=0.1. Dotted FIG. 5. Same as Fig. 4 for,=0.4 andA=0.43 andk=2.1.

line: 1. obtained by numerical integration of E.0). Full line: |
as given by Eq(76) with A=0.28 andk=1.026.

where

1
(om:—(_xo z°> (62) = [ L 20 [ 2900\3
Pol ™Yo %o ° Jox3 be sinh 29XV sin( .x//3)

In diagonal form we have

2
g3(3 0\ (al 0O +§x2—1» (70)
<a%>i,-—p—é(o _1)=< 0 —bg)' (63)

. R . We have introduced the necessary subtractions and defined
We needB in the diagonal basis given g =0- 8. We get

=(—209%p=3 a
(Bo)i=(—29%p,°%,0). (64) ho=————— (72)
. . m*— a.— A:a;
The expression foLe¢; (25) finally reads
% and
Legg=— ! d—sefis(mzf%)
32w%Jo s°
Pc=X+ A tanhyx. (72
2a.s 2bes ©
X sinh 2a.s V sin 2b se ¢ (65) As it stands] . depends on the two adimensional parameters
¢ ¢ \c and ., which reflect its dependence on both the strength
where of the interaction and on the mass of the scalar particles. In
order to explore numerically this two-dimensional space we
[.(s)=\.(a.s—tanha.s) (66)  should focus on those regions for which the results make

physical sense. This is even more so because a blind compu-
g tation of the integral leads easily to wild fluctuations due to
Ae=02p, ba, S =——. (67)  the violent oscillations of the integrand for large domains of
3.3 parameter space.
Since the electric field should be inhomogeneous on

We are not able to perform the integration in Egf) by the scales of the order of a particle’s Compton wavelength, we

procedure of extending to the complex plane, as we have
done in Sec. IV. The reason is the presence of essential sin-
gularities contained im.(s). (For a discussion of the impli-

cations of essential singularities in the context of QED pair _,[dEY
. : o E Hl=— m*>1. (73
production calculations at finite temperature, see R&f) dp/,
We shall calculate the integréd5) numerically. We make
the change of variables .
In our case, this means
X=(M?— a;—\ea.)S (69)
m<1. (74)
so that po
1 1 Moreover, we should restrict our survey to subcritical condi-
W=21mLey=——7 — Sle (69  tions, i.e. conditions such that we find ourselves below
167 (M*—ac—\cac) the point where catastrophical pair production starts in
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earnest and vacuum breakdown occurs. The system will be The bilinear interaction term is then
subcritical whenever the field energy stored in a volume of

sizem~ 2, and which is converted into a PS pair, is at most of 1

the order of twice the scalar particle rest mass. A crude back L= EngZ(r)gbz(X)
of an envelope estimate gives

N2m2p3=O(1). (79 %gz( }4) #*(x) (80)

heregs=Qg/4.

. .. . W
Using both restrictions as a rough guide, we perform the The corresponding functiof(x) depends only om,

numerical integration of; as a function ofngl for ». and

\¢ in the ballpark of the values required by Eq%4) and 1
(75). The results for two values of; are displayed in Figs. 4 f(r)= gg( _> ) (81)
and 5. The curves are accurately fit by an analytic expression ré

of the form, ) ) ) .
Expanding the fields near some reference point with

(X0,Y0,Z0) With modulusr

l;=Anze X7 (76)
1 af 1 9°f
L=5¢ —82—m2+f(ro)+§’ (r=ro)+5—
with A andk depending on\.. (A andk are positive. Equa- r=ro ar r=rg
tion (76) has a form that closely resembles the classical
Schwinger result and characterizes a typical non-perturbative )
process. X(r—=rg)|p+--- . (82
The electric field would break down into pseudoscalars if

the exponent in Eq(76) becomes small. Again we choose |n Cartesian coordinates it can be written as in &).with
the values consistent with the axion wind¢$8) and for the

field parameters we take

a=f(rg)=aq (83
- f'
Eo~ 10" Vim (B)= -0 Yo.20 (84)
and
po~0.1 cm. (77
2,2
. YotZo —XoYo —XoZo
This leads to f s o
(P =5 —XoYo XoTZp —YoZo
0 2,2
—XoZo —VYoZo XpTVYo
122
7 o X5 XoYo XoZo
2
— | x z
which implies a large negative value of the exponent in Eq. +2r§ Yo Yo y020 (85)
(76) that suppresses field decay. XoZo YoZo 2o

where primes denote derivatives with respect timken at

VI. PRODUCTION OF PSEUDOSCALARS IN A r=Tro. Introducing the form off(x), we get

SPHERICAL CAPACITOR

2
g
The modulus of the electric field inside a spherical capaci- as= ( r_z) (86)
tor depends only on=|r|, 0
and
Q1 2
E(r)=—— (79 49
4 r2 (B)i:_r_;(xo,yolo) (87)
0
whereQ is the electric charge. and
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2 22
» [ X0~ Yo~ %o

29
(Y :r_; 6XoYo
0 6X0Zg

—Xg+5Y5-2
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6X02¢

6Y0Zo
-y 52

6XoYo
(88)
6Yo0Zo

The y? matrix (88) can be diagonalized by rotating the co- again there are essential singularities and we do a numerical
ordinates with an orthogonal matrix. For example, we carintegration. The procedure is very similar. It is convenient to

use
—Zolg 0 Xol' o
1 2
(O)il:ﬁ —Xo¥o d5g —YoZo (89)
oo
Xodo  Yodo  Zodo
wheredy= X3+ z3.
In diagonal form we have
262 -1 0 b 0
(yg)”:r_; 0 -1 0|=| 0 -—b?
°\o o0 5 0 0 a?
(90)

One must also us@ in the diagonal basis given bgp
=0- /. We get

(Bo)i=(0,0-40%r5°). (9D

The expression foLg¢s (25) is given in this case by
Lo — 1 wd_se—is(mz—as) / .2ass .2st ol <9

© 3272)0 &3 sinh 2assin 2bgs
(92)

where
[s(s) =A\s(ass—tanhags) (93
4921 2

_ %0 9s (94)

o= - =
* ri%ad 51070

change variables,

X=(m?— as—\qas)S (95
so that
2 ImL ! [ (96)
W=2 ImLes=
o 1672 (M= ag—ag)? °
where
©dX 27X 2nXI\5 1
|S:J sin(pg)| \| T £ CINENE
0 x3 sinh 29X sin( pex/\/5) 5
(97)

We have introduced the necessary substractions and defined

as

Ns=™ 5 (98)

m*—ags— Ngag
and

Ps=X+\gtanhnx. (99

Here we follow a similar strategy as before to pinpoint the

relevant parameter space. We get similar restrictions:
rom<1l and \2/rim?=0(1). (100

In Figs. 6 and 7 we displays as a function ofngl for a

couple of values ol . Again, we see that the approximate

behavior is that of a decreasing exponential,

l=AnZe Wns (101

As in the precedent section, we cannot perform the integra-
tion in Eq. (92) by extendings to the complex plane since with positive constanté& andk (that depend on).

1 1/ns

FIG. 6. |5 as a function of L for the valuex;=0.2. Dotted
line: |5 obtained by numerical integration of E7). Full line: I
given by Eq.(101) with A=0.30 andk=1.46.

0 0.2 0.4 0.6 0.8

When one considers realistic values for the field and PS
parameters it turns out that the probability of field break-

T 1/Ms

FIG. 7. Same as Fig. 6 for;=0.5 andA=0.35 anck=1.92.

0 0.2 0.4 0.6 0.8
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down is extremely suppressed as it happens in the cases tHat the illuminating discussions that followed. Two of us
have been analyzed in the precedent sections, namely thé.A.G. and E.M. have partial support from the CICYT Re-
dipole magnetic field and the cylindrical capacitor. search Project AEN99-0766.

VIl. CONCLUSIONS AND FINAL REMARKS APPENDIX: DECAY OF A CONSTANT ELECTRIC FIELD
INTO CHARGED SCALARS

In the presence of strong external fields, the physical . _ _
vacuum breaks down because particle-antiparticle pairs are Ve start with the equation for the Green’s functiG(p):
being pumped out of it at the expense of field energy. The
casego?a s?rong uniform electric fiF:eId spontaneously gryeating [~ (p—eA?+m?]G(p)=1
electron-positron pairs is the best knoWED) example for
this phenomenon. Such a process is of a nonperturbative na- [—p
ture and the QED case has been solved exactly by Schwing
and otherg1]. Their solution, however, does not include the
back reaction on the external field exerted by the presence
the producece*e™ pairs. Clearly, creation of pairs requires 1 i P
the supply of mass energy and kinetic energy which must be A,=—5F,  X"—5F,,—.
furnished by the external field. A balanced energy budget is 2 2 9P,
therefore only possible through a corresponding reduction of . . .
the energy s)t/oeed in the fiel%l. Becausepelectr%ns and posl- hen.mserted in E(AL), one gets an equation of the form
trons carry charge they will fly to the external sources of thed'ven in Eq.(11), except for a term
field and thus the fieldand hence its energwvill diminish.
So, unless from the outside the field is restored, the pair F“p
production process cannot be indefinitely sustained. If noth- *ap,
ing is done from the outside a catastrophic breakdown of the : -
initially strong (critical) electric field will inevitably follow. that leads to an expression containing

In the present paper we dealt with pseudoscalar particles.
Pseudoscalars are fundamental ingredients of many comple-
tions of particle physics models. Examples run from axion
to superlight partners of gravitinos. In the previous sectio
we have derived the probability for pair production of PS i
electric and magnetic fields. Contrary to the QED case men- e2 52
tioned above, constant fields do not cause the disruption of —p?+m’+ —FuFh=———|G(p)=1 (A5)
the vacuum. Field gradients are necessary for the phenom- 4 9Py,
enon to occur. Hence, we studied PS pair production in in- . o . B
homogeneous fields. We have calculatgd thFe)z probability in gnd with our definitions in Eq(8), =0 and
general case and based our computation on an effective ac-

Z+m?+e(A*p,+p, A4 —e?A%JG(p)=1. (A1)

e assume constaktandB fields. The vector potential can
&e choosen as

(A2)

G(p) (A3)

FAPupA™. (A4)

SThe antisymmetry of and the fact thaF and A commute
?jnakes this term vanish. Then our equation is

2

tion formalism formulated by Brown and Duff. We then have yipz - e—FWFg

applied the general formulas to a few specific cases: PS pro- 4

duction in a magnetic dipole field and between the plates of )

a charged capacitdeither cylindrical or spherical Again, - e_Fz (A6)
back reaction was ignored and therefore adequate boundary 4 e

conditions were implicitly assumed that take into account the
fact that pairwise creation of PS requires field energy to bd-et us work out the special case of a constanfield. We
depleted. have

In the three cases studied, we found that our 5
probability shows the non-perturbative behaviar-exp E
(—constx m?/g) expected for subcritical fields. Finally, we e?
should point out that in a previous paf&i we erroneously (yz)yp: 7l o
estimated axion emission in the Coulomb field of an atomic
nucleus. This result is incorrect because we overlooked the 0
guestion of appropriate boundary conditions that guarantee
energy conservation and which are clearly not met in thigWe have chosen thedirection as the direction dt.) The

(A7)

o O o o
o O o o

_E2

microscopic system. eigenvalues ofy2; are negative so
2ys \|Y?  eEs
ACKNOWLEDGMENTS detf — = (A8)
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1 (=ds ., eEs neggtive imagi_nary pIar_1e. This contour encloses_ poles at
— —Zf s (A9) = —inm/eE which contribute to the integral. The final result
32m for the constant electric field decay probability density is

Loii= _—
eff 03 sinheEs

To this expression foL¢; one should add a subtraction to _qyntt narm2

make it finite ats=0. When this is donefLq;—0 when w= > exp( a7

eE—0. 2m2n=1 n? ek
The probability of scalar production can now be calcu-

lated using Eq(5). The integral can be calculated by contour which coincides with the well-known formula found in text-
integration by closing the real axis with a contour on thebooks[6].

o

(A10)
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