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Susceptibilities and screening masses in two flavor QCD
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We study QCD with two flavors of dynamical staggered quarks at finite temperature, with a bare sea quark
mass of about 17 MeV. We report investigations of baryon, isospin, charge and strangeness susceptibilities, as
well as screening masses obtained from correlators of local and one-link separated meson operators. These are
studied as functions of the valence quark mass at several temperatures. Our results for susceptibilities deviate
significantly from ideal gas values, and even more from the weak coupling series. We also report the first
measurement of off-diagonal quark number susceptibilities below the transition températusdere they
are the main contribution to charge fluctuations. We present evidence for a close connection between the
susceptibilities and the screening masses.
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I. INTRODUCTION While the world contains six flavors of quarks, it suffices
to consider two light § andd) and a moderately heawg)
Experiments at the Brookhaven Relativistic Heavy lonquark for the physics of the QCD phase transition. Starting
Collider (RHIC) are now seeking to establish the formation from a quenched theory where all quark loop effects are
of quark-gluon plasma. Proposals for experimental signaturned off, one can envisage successive approximations by
tures of the plasma have to take into account its physicalvhich dynamical quarks are switched on in the sequence of
nature. Such information is most reliably obtained in latticetheir masses. Such an incremental strategy is actually forced
simulations of the hot phase of QCD. At present the phasy the cost of lattice simulations of full QCD. Earlier we
transition temperatur&, is fairly well known[1,2], and rea- simulated QCD in the quenched approximation, and reported
sonably reliable information on the equation of state has als@ur measurements of various quark susceptibil[igdsin the
been obtained3]. Screening and fluctuations of conservedsimulations we report here, we go to the next level of ap-
charges are some of the other relevant properties of theroximation by using dynamical andd quarks with a bare
plasma. We report extensive new lattice results for these. mass of about 17 MeV. Our results indicate that at tempera-
We address two different physics questions in this papeitures abovd . the change due to the inclusion of light quarks
We are primarily interested in the question of baryon numbeis small. Unquenching the heavier strange quark may thus be
and electric charge fluctuations in the plasma. These areorrespondingly less important. Even in the cold phase be-
quantities of direct experimental relevance, as has been redpw T, taking still lighter u and d quarks may be more
ized recenthyf4,5]. We construct them from measurements ofcrucial in future than including dynamical strange quarks.
quark number susceptibilitiegs]. In addition, we study The plan of this paper is the following—technical mate-
screening masses in the plasma through the study of spatiéi@l on the simulations, including the lattice scales and details
correlators, paying special attention to their tensor structure®f the data taking procedure, is presented in the next section.
This gives a new relation between the susceptibilities and he definitions and notation, and details of measurements of
screening masses which are verified by our lattice measuréhe screening masses and quark number susceptibilities are
ments. In particular, we explain why nonperturbative phe-given in the following two sections, in that order. The dis-
nomena in the latter are closely connected with deviationsussion and summary in the final section is designed to fa-
from perturbation theory in the former. cilitate use by those who are mainly interested in applica-
Temperatures just abovi, are likely to be the most rel- tions of our results or wish to have an overview of future
evant region for applications in heavy ion physics and cosdirections in lattice measurements of susceptibilities.
mology. Lattice measurements of the equation of state devi-
ate significantly from the usual high temperature perturbative
expansion. This stimulated many attempts to re-sum the Il. THE SIMULATIONS AND SCALES
weak coupling expansion, with varying degrees of success
[7]. Many of these techniques would have definite predic-
tions for the susceptibilities that we measure. Since our mea- We have simulated QCD with two flavors of light dy-
surements also deviate from the weak coupling expansioflamical staggered quarkdl(=2) with the R algorithm[9]
they stand as yet another invitation to resum the weak cousn N;XNZx N, lattices with N;=4. For investigations of
pling series. quark number susceptibilities, we chose spatially symmetric
lattices withN,=N,. On the other hand, screening correla-
tors were easier to measure on elongated lattices Wjth

A. Run parameters

*Electronic address: gavai@tifr.res.in >N, . Most of our simulations consisted of generating dy-
'Electronic address: sgupta@tifr.res.in namical configurations with two flavordN¢=2) of dynami-
*Electronic address: pushan@theory.tifr.res.in cal staggered quarks with the sea quark masdeld fixed
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TABLE |. Details of Ny=2 runs. The runs were made with a TABLE I1l. Details of new quenched runs. These runs supple-
trajectory length of 1 MD time unit, a time step of 0.01 and a ment earlier ones discussed|[#.
conjugate gradient stopping criterion of TQ/V. The starred run

was performed with half the MD time step but the same trajectoryT/T, ma B Size Statistics

length.

15 0.0167 5.8941 % 24X 107 800

/T, ma B Size Statistics 2.0 0.0125  6.0625  %16x10° 6500

4% 24X 107 850

0.00 0025 52875 12 81 3.0 00083 63375  A16x14 7500

1.00 0.025 5.2875 %12 249
4x16° 42

1.25 0.02 5.35 X128 50 ues ofN; at the quark masses of interest to[i§]. Thus, the

1.50 0.0125 5.420 %128 50 temperature of a run wittN;=4 at B.(N;) is T/T,=N;//4.

1.50 0.0167 5.429 % 83 50 SinceT, is known to be 16Z 17 MeV in physical unit$2],
4x128 50 this allows us to deduce the value of lattice spaciagin
4x16° 20 physical units using the relatioh=1/(N.a). For those val-

4X 16X 107 2001 ues of T which cannot be obtained by simulations on lattices
4% 16X 107 124 with different N, we use the two-loop beta function of QCD
AX 24X 10P 1500 to deduce the lattice spacing, and hence the temperature. A
2.00 0.0125 5.540 %18 50 recent global analysis of data assures us that this is possible
4% 16X 107 2021 [2]. The values of the inverse lattice spacings appropriate to

3.00 0.0083 5.675 £ 128 50 our measurements are given in Table |. The sea quark masses

4% 16° 1139 that we use arem=17=2 MeV (m/T.=0.1) and 12

+1 MeV (m/T.=0.075).
Another way of setting the lattice spacing is to use previ-
in physical units ain/T.=0.1 as the temperature was varied. ous lattice measurements of theneson mass with the same
A small set of runs withm/T,=0.075 was performed to quark mass and couplifd3]. This gives us a lattice spacing
check the magnitude of sea quark mass effects. The run pafa=580+-20 MeV at T., and hence the dynamical sea
rameters and statistics collected are shown in Table |. Weuark mass comes out to be=14.5-0.6 MeV (m/T,
emphasize that holding the quark mass fixed is important for=0.1) andm=10.9-0.4 (m/T.=0.075). This consistency
physics applications, whereas the older measurements fixasbtween the two estimates is, of course, not unexpected,
m/T instead. since it is well known thal./m, is reasonably independent
After a few tuning runs which reproduced the results ofof lattice spacing 10].
previous studieg9,10], we chose to run with parameters  The strange quark mass can be chosen in two different
similar to those used in previous works with two flavors ofways. One is to take the strange quark mass to be 75-170
staggered quarks, i.e., trajectory length of 1 molecular dyMeV [14]. This givesms/T.=0.41-1.0[22]. Alternatively,
namics(MD) time unit, integrated in 100 steps of 0.01 MD we can use the rationg/my=17-25[14] to get my/T,
time units each, and a conjugate gradient stopping criterior=1.7-2.5. Clearly, in the limit when the light quark masses
of 10 °\V on the modulus of the remainder vecto¥ ( are more realistic, the two procedures should give similar
=N2N,N,). It should be noted that very similar run param- values. However, the heavier the strange quark mass is, the
eters are often used iN;=4 hybrid Monte Carlo(HMC) more strongly will it be subject to lattice artifacts. In view of
runs, where a Metropolis choice ensures that the corredhis, we have chosen to work withg/T.=0.75, correspond-
weight for a configuration is obtained even for a finite num-ing to m¢=125 MeV. A realistic ratio of the strange and
ber of time steps. FON;=2 a bias-free estimate of the light quark masses will thus need future simulations with
weight is not guaranteed. In order to estimate systematic etighter u andd quark masses. Furthermore, the fact that the
rors from this source we also made a test run with half thestrange quark is reasonably heavy in lattice units indicates
step size but for the same trajectory length. that the unquenching effects on it would be small, at least
Part of the purpose of this work is a systematic comparinearT,.
son of screening masses with different numbers of dynamical
quarks. Details of ouN;=4 simulations are available else- C. Thermalization and autocorrelations
\l;vg;:egrlelséﬁt'esdl?rslsl]érl—? oevtv?all/s ecr),fvrvuenzllsr;%ueenr:ecrgfg d%CfeDWh:\e/g _ Because of the fact that each configuration takes a long

of new quenched configurations. Details of the algorithm ané?iié?}tﬁ‘iﬁtﬁf'aarLTnaJr?a:slstilcja?r:]r;ﬁl:g dﬁ?'&gﬁ;{gﬂ?ﬁgf
data taking remain as if8]. The run parameters and statis- :

tics for these quenched runs are listed in Table II. maliza_tion through measurements of plaquette_s, Wilson "'."e'
the chiral condensate and the number of conjugate gradient
iterations needed. Since plaquette measurements are not very
noisy, these were a good estimator of the approach to equi-
Relative temperature scales, i.&/T., can be deduced librium. At temperatures abovE., the difference of purely
from previous estimates of critical couplings for various val-spatial and mixed time-space plaquettes is nonzero, and it

B. Setting the scale
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300 - - - - - ing correlators and masses are classified according to the
symmetries of this transfer matrix, Screening masses are ob-
250} tained from the exponential decay of the screening correla-
tors
200
2150} C(z)= ! > M0)MT(x,y,zt) 1)
i M\ A
100 -
The operatoravi(x,y,z,t) are made from combinations of
50| quark and gluon fields which transform according to an irre-
ducible representatiofirrep) of the symmetry group, and the
8T 0T o3 Ohd O0b5 006 007 angular brackets denote averaging over the correct thermal

Ty distribution of fields. We shall also have occasion to use the

: , L ) ) meson susceptibilities
FIG. 1. A diagnostic for thermalization. The points at which the

trajectory length was changed are marked by vertical arrows.

N,
=2 C(2)=(— MO)MT(x,y,zt) ). (2
turns out to develop late during equilibration. This was one X zz: @ \% x,yEZ,t (OM0xy.2t) @

of the best criteria we observed for closeness of approach to
equilibrium. However, even more efficient was a scatter ploDetailed discussions of the isometries of the lattice and irreps
of the stochastic estimator of the condensate/) against of the transfer matrix can be found for gluon operators in
the number of conjugate gradient iteratiom.§). As shown [16,17] and staggered quark operatorq 15]. Here we only
in Fig. 1, a very definite directional movement occurs awaymention the features used in this work.
from equilibrium, but as equilibrium is approached the For operators made entirely out of gluon fields, “glue-
movement becomes a random walk within a well definedball” operators in the usual shorthand, the relevant symmetry
area in the plane afy andN4. Monitoring this scatter plot is that of a slice of the lattice. For screening correlators such
thus offered a possibility of tuning the algorithm to achievea slice includes two spatial directions and the Euclidean time
fast thermalization. direction. Since rotations of the spatial directions into Eu-
We did this by starting each run from an ordered configu-clidean time are disallowed, the full cubic grou,, breaks
ration with small trajectory lengths¢£0.05 MD unit9. As  down to the dihedral grou'}. For bilinear operators con-
the simulation proceeded, the plot ¢f/ againstN.4y began  structed from staggered quark fields, the “meson” operators,
to slow. When this happened we increased the trajectoryshe symmetries of the transfer matrix are more complicated
length in small steps until it reached unity or resulted indue to mixing of spin and flavor components and staggering
further motion. A post-facto check of the tuning was ob-of the quark fields. However, this transfer matrix also carries
tained after subsequent runs verl_fled that the system Cont”Pepresentations dDZ as shown in15]. DQ has eight one-
ueq to perform a random wajk without directed movement 4imensional and two two-dimensional irreps.
This method was developed in our earliéy=4 HMC runs In the continuum, thef=0 symmetry group is that of

and worked well also for thedd;=2 HMD runs. Using this .O(3) rotations of the slice, and breaks down Tor 0 to the

technique we often managed to achieve thermalization "%ymmetry group of the cylindef=0(2)x Z,. The lattice

20-30 units of MD time. .
A second issue in the control of computer time is thed'OupPs are subgroups_ of thes_e continuum groups. The real
eps of C are easily obtained. There are two one-

matter of how often measurements of an observable can ) . ;
made so that two successive measurements are ef“fective‘%’”ens"Onal ireps 0 and O, which come from theJ,
decorrelated. We have estimated autocorrelation times from 7 0 components of the even and odd spin representations of
variety of gauge and fermion observables and found them t&(3). There is a countable infinity of two-dimensional real

be small. Local operators such as plaquettes seem to be d§eps which span the spaces 8f=+M for any J>0.
sentially decorrelated in about 2 trajectories. Even long disThese also carry irreps of the remainiig subgroup which
tance observables, such as the pion screening correlator @rresponds to reflections~ —t, in Euclidean time.

the longest possible distance, are decorrelated in about 2—3 In the continuum limit the scalar irred; and a non-
trajectqries. In view of these results, we have taken data fofrivial irrep A, of DQ both collapse into the 0 irrep of the
screening masses on every second trajectory, and for susceglinder group; hence these screening masses must be degen-
tibilities every tenth trajectory. This is justified,posteriori  grate in this limit. The Q gets both theA; andAJ , and

by the fact that none of the screening masses is found 10 Bgance this pair of screening masses must also become degen-

very small. erate. The four remaining one-dimensional irré§s, col-
lapse into theJ,==*2 irrep of O(2), and the two-
lll. SCREENING CORRELATORS AND MASSES dimensional irepsE™ become thel,= =1 of O(2). All

_ ) these patterns of degeneracies have been verified in the glue
A. Symmetries and transfer matrices sector of theSU(2) pure gauge theofi7].
Screening involves the transfer matrix in a spatial direc- These seemingly esoteric group theoretic constructions
tion of the Euclidean finite temperature lattice. Thus, screenactually have very simple physical applications. It has long
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TABLE lll. Representations of local and one-link separated staggered mesons that were used in this study. The table is extracted from
[15]. Here D,#(x)=¢(x+u)+d(x—un). We have chosenp,=(—1)Y"2", 5=(—-1)*", 5,=(—1)', =1, and {=1, {,=
(—1)%, &,=(—1)"Y, ¢;=(—1)"*Y*% The spin-flavor and particle assignmentat0 are standardsRF is the symmetry group of the
T=0 staggered fermion transfer matrix aGdthat atT>0.

GRF G DQ Operator spim flavor Particle
1*++ 1, A1+ ;(I’)X(l’) 1®1 m, fo (0)
1" 1o A/ 20 (1) x (1) x(r) Y2¥s® Y2 Y5, Ys® Vs ™
3t 1, Af €(r) (1) Z(r) x (1) x(1) Yivs®Yivs: ViV YiYs P, Ay
24 Af e(NLmdr) &r) + 7, (r) £y (r) Ix(r) x(r)
By e(N)Lmdr) &(r) = 7, (r) £y (1) Ix(r) x(r)
3" 1 Af €(r) mAr) &r) m(r) &) x (r)x(r). Yivk®@ VY Vi®Yi P by
24 Af €(r) mo(r) &)L 7r) () + 7y () £y (r) Ix (r) x(r)
By €(r) (1) S L7 (r) x(r) = my(r) Ly (r) Ix(r) x(r)
3 1 A 721 x(r)Dyex(r) ¥i®L, Yiv® VY5 w, by
% E 7y (DX (1) Dy yx(1)
3 1s Ay 72(1) &) (1) x (1) Dex(r) YiY2® Yz, Yivs®Ys Py A
2, E nz(r)gz(r)nx,yg)X(r)Dx,yX(r)
3 1, As e(r)&i(r)x(r)Dyx(r) Ys®@YiVs, V2®YiVz ™
2 E” €(r) £,y (1) x(r) Dy yx(r)
3 1 A, 71) E(r) €(r) £(r) x(r)Dex(r) Y2¥s® v, 187 ™ 3o
2 E” 7(1) L(r) €(r) £y (1) X (1) Dy yx (1)

b_een appre_ciated thgt in screenin_g phenomena, particles of Cpg(z)=(—1)’C4(z) and Cay(z)=(—1)’Cy(2).
different spin may mix, and that different polarization com- (3)
ponents may have different dispersion relatiph8]. These
correspond, respectively, to mixing of equalfor differentJ ~ We found that these relations are satisfied for almost all the
and the distinction between differehtfor the samel. While  correlators to great accuracy at @llThe only small discrep-
we discuss only physics fof >0 and zero chemical poten- ancy is for the S/PS correlators &t=1.5T,, where the re-
tial here, it should be noted that the essential group theoriation is violated at the 68% confidence leyblt not at the
lies in the inequivalence of the spatial and temporal direc95% confidence level In order to rule out the finite MD-
tions. This is also true at finite chemical potential, and hencdime step errors as the source of this oddity, we ran a second
this group theory is also relevant to such future lattice comsimulation at this coupling with half the time step. The re-
putations. sults remained unchanged. Since our error estimates are
stable, we performed another run withh,=24. On this
B. Results longer lattice the S and PS agreed at the 68% confidence

We have investigated the usual “local” staggered mesonlevel' . '
. . ) : For staggered fermions, correlators are usually fitted to a
operators, i.e., those in which the quark and the antl—qua%rm such as

both land on the same lattice sitgee Table Ill. These are
familiar from theirT=0 characters. The scalaf *, S, and
the pseudo-scalat’ ~, PS, both belong to thé; of DY.
The three components of the vec®f* ", V, and the axial- +(—1)%A, cosiM,(z—N,/2)]. (4
vector 3", AV, can be further reduced. These give two
different copies ofA; , and also @B, . All the A; irreps  The correlator identities in Eq3) imply that the combina-
have been measured extensively before. tions Cy+Cay and Cy+(—1)*Cay project out the mass
We have also made the first eVEF-0 investigation of a  eigenstates in the chiral symmetric phase. We have also
class of “non-local” staggered mesons, one in which themade single mass fits to these projections to check for sta-
quark and the anti-quark are separated by one(tele Table bility of the fitted parameters. In addition we have extracted
l1). These are made gauge invariant by including any prodscreening masses by constructing local masses with these
uct of links that starts on one of these sites and ends oprojections. The local mass)(2), is defined by the solution
ar:]other. The various operators lie in the andE™ irreps of of
DY.
Chiral symmetry restoration gives the following relations cosim(z)(z—1-N,/2)] C(z—1) ®)
between the staggered local meson correlators: coshm(z)(z+1—-N,/2)] C(z+1)’

C(z)=A;coshM(z—N,/2)]
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TABLE |IV. Screening masses in units of temperatuvl,T, in various “meson” channels. A cross indicates that no data exists, and a
dash that no stable measurement was possible Nkke4 results are from runs reported [ib2].

Irrep TIT, S/IPS VIAV
Nf=0 Nf:2 Nf:4 Nf:0 Nf:2 Nf:4
A7 15 4.21+0.01 3.670.02 3.5¢0.01 5.32£0.08 5.440.08 5.6:0.1
2.0 4.528-0.008 4.08:0.01 3.744-0.001 5.64-0.02 5.72£0.04 5.6:0.1
3.0 4.84-0.04 4.346-0.008 4.2%0.01 5.656-0.008 5.72:0.03 5.6:0.1
A, 15 46-1.1 46-1.0 X 44+1.1 4.4:1.0 X
2.0 4.4-0.8 4.1-0.8 4112 4.4-1.0 3.651.2 3.9:0.7
3.0 4.4-0.6 4.8-0.8 5.2£2.0 5.0:0.6 — 5.6:2.8

where the correlation functions are estimated by a jack-knife The two parity projected local V and AV correlators are
procedure. In order to take care of covariance between varidentical. This implies that not only the screening masses,
ous measurements, we take the number of jack-knife bins tbut also the mixture of states excited by the operator are
be much smaller than the number of measurements. identical. In other words, tha; andb, screening states mix
In the N;=4 theory theB, correlators are identically zero for T>T.. Similar equalities were found in the parity pro-
[11]. A statistical test of this hypothesis is made through thgections of theA, (andE™~) correlators coming from the V
usual and AV non-local meson operators, showing thatgrend w
screening states also mix. The non-local S and PS correlators
2_ Chy (1) (v —h similarly bear evidence for the mixing of anda,. In addi-
X ; (yi—h) (o™ )ii(y;—hy), © tion, the equality of theéd, screening mass determined from
all four A, correlators at our disposal also argues for a mix-
wherey; are the measurements of the correlators at differenihg of 7 and theJ,=0 component of the/ . Thus both the
z, o is the covariance of these measurements, and the hyshenomena expected in screening correlators are seen—
pothesis being tested is that=0. With the data we have mixing of states of differenl and different components of

gathered ilN¢=2 QCD, we found that the same) having different dispersion relations.
15.8 (1.5T,), IV. QUARK NUMBER SUSCEPTIBILITIES
2_
x’=y132  (2.0Tc), @) A. Definitions
241  (3.0T,).

We define the partition function

SinceN,=16 in all these measurements, the number of de-

grees of freedom is 15. Thus, no alternative hypothesis cadi= | DUe “edetM(m,,u,)detM (my, uq)detM(mg, ug),

be supported by our data at the 99% confidence limitTfor %)

<2T.. For T=3T,, where there might be a signal, a one-

mass fit by the first term of Eq4) gave a coefficient about whereS; is the gluon action of interest arld denotes ap-

3o away from zero, and a screening madsT=4.5+0.2.  propriate lattice Dirac operators. The chemical potentials for

In the quenched theory, on the other hand, the situation wagach flavor can be combined into the singlet, triplet and octet

more like theN;=4 theory. At allT the B; correlator was SU(3) chemical potentials:

compatible with zero. The fits also gave similar agreement

with a vanishing correlator. More detailed studies of Bie o= Myt pat ts,  M3= My M,

correlator with high statistics at several temperatures above

2T, might be of interest in the future. and
The correlation functions in the remaining irreps are non- _ _

trivial. The screening masses obtained are listed in Table 1V, Mo~ Hut fa™ 2. ©

where we have also collected measurements made Wityr notational convention is that indices sucH aadf’ run
quenched andN;=4 dynamical staggered Fermions 8k  over the flavorai, d ands, and indices such asandj run
=4 lattices. Note that the two sets 8f correlators, the gver theSU(3) diagonal generators 0, 3 and 8.

S/PS and the V/AV, give different screening masses. The The quark number densities are
V/AV screening massM,, is consistent with free field

theory. At allT, the A, screening mass is close to the S/PS [ T\dlnzZ [T
screening masdVl s, but due to the large errors, is also con- Vs aue Vs
sistent withM,,. The E™ screening mass is harder to deter-

mine because the correlator is very noisy; the central value imhere M{ =M /du;, Vs=N3a% and T=1/N,a. Conver-
consistent with free field theory, but has very large errors. sion to the other basis simply follows using the definitions in

(trM; M}, (10)
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Eqg. (9) and the chain rule of differentiation. Note thag  iso-singlet quark number susceptibility for two flavors, de-
=(n,+nyg+ny)/3 andnz=(n,—ny)/2 are the baryon num- fined in[6], both in overall normalization and by terms con-
ber and isospin densities, respectively. These are densities t@#ining strangeness.
(conservedl charges and not of quark number. The quark Note that quark masses appear in two places: first in the
number susceptibilities are the second derivative of the fredeterminant in Eq(8) which defines the weights for the av-
energy with respect to the chemical potentials eraging, and second in the trace of the Dirac operators which
define the susceptibilities. The first is the dynamical sea
ang TVl 922 10Z 1 97 guark massn, and the second is the valence quark nrass
Xt == (V_) ST . T 55,7 . In principle these can be different. We work with light sea
Ipr 3 guark masses for theandd flavors, as described earlier, and
(1D use the quenched approximation for the strange quark, i.e.,

To lighten the notation, we shall put only one subscript onSet deM =1. _W?_ have earlier reported measurements of
the diagonal parts of. these susceptibilities when all the flavors are quendBéd

We are interested in evaluating the susceptibilities forF (')rh sta]tggered fqlL;jrkS each trace i? Eﬁ&)—(ld4) E?mesw
m,=my<m, at the pointu;=0 for all f, yielding much with a factor o to compensate for flavor doubling. We

simplification. For example, eaafy vanishes, a fact that we differ from the conventions of6] by this overall fa_ctor. ,
utilize as a check on our numerical evaluation. Moreover, thetl Thesg susceptlp|lltles are easy to compute in free field
product of the single derivative terms in Ed.1) vanishes, heory, i.e., for an_|deal Fermi gag._A_s expectags=0 for
since each is proportional to a number density. Finally, sincét = 0- All the off-diagonal susceptibilities are also zero. For
the masses are degeneralé(m,,0)=M(m,,0) for each X3 We obtain
configuration of gauge links under study. )

Flavor off-diagonal susceptibilities such as 1 sirf po cos’ pg (16

XFFT— 2
NNy P m2+ >, sinzpy}

T —1np’ —1np’
Xud= V_3 <trMu M, trM Md> (12

where the spectrum of momentapg= (27/N;)(ng+ 1/2),
are given entirely in terms of the expectation values of disfor n,=0,... N,—1, and p,=(27/N,)n,, where n,

connected loops. Such quantities are numerically hard te-q, . . N,—1 for »#0. ys is also given by the same ex-
compute. We discuss their evaluation later. SiMg=Mg, pression for the appropriate quark mag§"" andx©F" can
we obtainy,s= xq4s With each defined by an obvious gener- then be obtained using E€L5).

alization of the formula above. Of the flavor diagonal sus-

ceptibilities we shall use B. Optimizing the measurements

T - The traces required in measurements of the quark number

Xs=\y, [{(trMg M) +(tr(Mg "M susceptibility were estimated using a well-known stochastic
method. Such stochastic estimators for the tracebl &N

M MMM (13 matrices can be constructed from ensembles of

N-dimensional complex vector®, of which each compo-
Xu=Xq are given by an obvious generalization of this for- nent,z,, is drawn from a Gaussian distribution of unit vari-
mula. Numerically, the simplest quantity to evaluate is theance. From the identity

diagonal iso-vector susceptibility N
lf 75z H ef‘Z,u‘z/Z dZZa =0 (17)
2) TR 2m h

=

(M ME=M MM M), (14)

/7T
X3~ 2 ( V3
(here d?z means rdrdd and the complex numberz
Two more susceptibilities are of interest. These are the=r expif) we construct the estimator by multiplying both
baryon number and electric charge susceptibilities, sides by a matrix elemem,; and summing over the indi-
ces. The right hand side givesAtr The integral on the left

1 hand side has an obvious Monte Carlo estimator, giving the

XO:§(4X3+XS+4Xud+4Xus) relation
N
and 1 3 —_
tr A= > R'AR=R'AR, (18
1 ZNU =1
=—(10y3+ xst+ -2 . 1 . . . .

Xq 9( Oxs+ X5 Xua™2Xus) (19 whereN, is the number of vectors used in making the esti-

mate. Note that Eq(17) implies that the factor 2 above is
Note thaty, is the baryon number susceptibility for three part of the weight in the average over the ensemble of ran-
flavors of quarks. As a result, this expression differs from thedom complex vectors.
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TABLE V. Susceptibilities forT=1.5T. andm/T.=0.1. On the larger lattice we usét =40. . is measured with a single point source

by integrating the local PS correlator.

PHYSICAL REVIEW B5 054506

m, /T, 4% 83 4x16

N, X3/ T? 10y q/T? X, IT? X3/ T? 104y g/ T? X, /T?
0.1 20 0.96(4) -2 (2 104 (6)

40 0.96(3) —2.1(6) 0.98(3) 0.02(2) 106 (6)

100 0.96(2) 0.06 (4)
0.3 100 0.91(1) 0.06 (4) 96 (4) 0.91(2) 0.02(2) 96 (3)
0.5 0.84(1) 0.05(3) 88(3) 0.83(1) 0.02(1) 87 (2)
0.75 0.748(9) 0.05(3) 78 (2) 0.726(8) 0.02(1) 78 (2)
1.0 0.660(7) 0.04(3) 70 (2) 0.639(6) 0.014(8) 70 (2)

The stochastic estimator for @)? is a small modifica- dependence of susceptibility measurement§=atl.5T,. As
tion of that given in[6]. We drawL sets of independent the data in Table V clearly show, there is no significant vol-
random Gaussian vectors as before and construct the estimame dependence in the valuesyaf and x4 in going from
tor 4% 8% to 4x 16° lattices.
In view of this, we have chosen to make the remaining
measurements on>412® lattices. Close td, we would ex-
pect that the measurements are strongly volume dependent.
Based on our estimates of the screening masses we find that
If we draw N, vectors in the evaluation of the single trace, even at our smallest temperature of I2%he lattice is more
then it is simplest to divide these intosets ofN, /L vectors than 10 times larger than the longest correlation length. This
for the estimate of each ensemble average in the sum aboassures us that finite lattice size effects are negligible at the
[23]. lower end of our temperature range. On the other end of the
In [6] the sum above was taken over all pairs, and thescale, by the simple expedient of not going beyoid 3we
diagonal term was removed by subtracting a term equal to avoid the finite volume effects such as the onset of spatial
stochastic estimator for #¢). In [8] where that method was deconfinement.
used, we showed that reasonably large vales; 100 were Finally, one must optimize the conjugate gradient stop-
necessary to avoid a systematic biagjr- x3. However, the  ping criterion, in which the norm of the residual vector is
estimate is facilitated by excluding the diagonal term fromrequired to be smaller thaa\V. We were pleasantly sur-
the sum above. For example, we found that the error & tr prised to find that, in thermalized test configurations, results
scales as /N, whereas that in (#)? scales as N, , for  for y; and x,q changed by less than 1 part in*lén chang-
fixed L. The dependence dnwas marginal, as lon§, /L ing € in the range from 0.01 to 10. Increasinge by one
>5. order of magnitude meant a decrease of CPU time by 20—
Since the simulation time increases at least linearly in25 %. These numbers were reproduced for test configurations
volume, we need to make a choice of volume which reducesn three lattice volumes, and a variety ©fIn actual mea-
computation time without introducing large artifacts into the surements we choseto be 10°° for T=1.25T, and 103
measurements. We have made a detailed study of the volunztherwise.

L

2 -
(trA)szDjEﬂ(RiTARi)(RjTARj). (19

TABLE VI. Susceptibilities measured onx412® lattices forN¢=2 with m/T,=0.1 andN,=100. y,, is measured with a single point
source by integrating the local PS correlator.

m, /T, TIT.  xeerlT? X3!/ T? 10y ,q/T? X, /T? TITe  xeer/T? X3/ T? 10Pxua/T? X, IT?
0.1 1.25 1.1274 0.98) 0(1) 149(100  2.00 1.1276 0.97%7) 0(1) 84 (2
0.3 1.1250 0.8a1) 0.4(8) 119 (6) 1.1227 0.951(7) 0(1) 82 (2
0.5 1.1203 0.7048) 0.2(7) 99 (4) 1.1248 0.8899) 1(1) 79(2)
0.75 1.1112 0.5986) 0.0(6) 83(2) 1.1212 0.8496) 0.3(8) 75 (1)
1.0 1.0988 0.5116) 0.1(5) 72(2) 1.1162 0.7836) 0.4(7) 70 (1)
0.1 1.50 1.1275 0.961) 4 (3) 99 (4) 3.00 1.1277 0.99%4) 0.7(7) 75 (1)
0.3 1.1259 0.9037) 3(2 93(3) 1.1273 0.9884) 0.7(7) 75 (1)
0.5 1.1226 0.8296) 3(2 85 (3) 1.1264 0.9734) 0.7(7) 74 (1)
0.75 1.1162 0.73%4) 21 76 (2) 1.1248 0.9444) 0.6 (6) 72 (1)
1.0 1.1074 0.6464) 1.8(9) 69 (1) 1.1226 0.9124) 0.6 (6) 70 (1)

054506-7



RAJIV V. GAVAI, SOURENDU GUPTA, AND PUSHAN MAJUMDAR PHYSICAL REVIEW D65 054506

TABLE VII. Susceptibilities measured at=1.5T, on 4x12° 1
lattices forNy=2 with m/T.=0.075 and\,=80. 09}
0.8}
m, /Te Xrer/T? Xxs/T? 10Pxua/ T? X IT? 0.1 )
0.075 1.1276 0.971) 2(2) 106 (5) L06] 03 m;
0.1 1.1275 0.9711) 1(2) 106 (4) & . 4
0.3 1.1259 0.9068) 1(1) 98 (4) = oal 10 7°
0.5 1.1226 0.8286) 0(1) 90 (3) ' '
0.75 1.1162 0.7295) 0.4(8) 80(2)
1.0 1.1074 0.6414) 0.2 (6) 72(2) 02}
C. Results b5 1 5 2 25 3

T/Tc

Our main results on th& andm, dependence of5; and
Xud are collected in Table VI for two flavors of dynamical
fermions withm/T.=0.1. The results of a simulation at
=1.5T. with a smallerm/T.=0.075 are collected in Table
VIl. Comparing the two, we see no statistically significant
change iny; over this range of masses. Whjg is expected
to be strongly dependent an for T=T, in the chiral limit,
our results indicate that the dependencg oi the sea quark
mass away from the critical region is small. This suggests=7/6(6+Ny). A recent analysis showed thaf./Ays
that the values ofys or x,q in the chiral limit for T  =1.15+0.05 forN;=0 and 0.4% 0.02 forN;=2 [2]. Tak-
=1.25T. are within errors those in Table VI. Table VIII ing the scale for the strong coupling to ber®?, this means
shows that all the susceptibilities indeed vanisiTat0 as  that for Ny=2 the minimum occurs al=3300\ s (and T
expected. =110Ays for Ny=0). Thus in both cases, the weak cou-

A comparison of the dynamical and quenched theories ipling estimates decrease as a function of temperature in the
displayed in Fig. 2 in terms of the ratjg;/ xger. While the  range studied here, in contrast to our lattice results, which
general trend of the data are similar in the two cases, somi@crease. It would be interesting to check whether a full
quantitative differences are visible. The most important ofO(agz) computation fory approaches the lattice results, and
these is in the asymptotic value pfxger. FOr smallm, the  whether any resummations of the perturbation theory do bet-
ratio is 0.85 aff/T.= 3 in the quenched theory, whereas it is ter [7,20].
0.88 forN;=2. For largerm,,, x3 is almost unchanged on The off-diagonal susceptibilityy,q, vanishes forT>T_
unquenching the fermiong, changes by less than 3% when and also atT=0. As shown in Table VI, the errors on
the light fermions are unquenched, leading us to believe thag,q/T? for T>T, are of the order of 10°, and hence this is
the unquenching of the strange quark will not affect thisthe precision within which this quantity can be said to vanish

FIG. 2. x3/xgeT @s a function ofl/T, for m, /T.=0.1 (boxes,
0.3 (diamond$, 0.5 (up triangleg, 0.75 (down triangley and 1
(circles; all for m/T.=0.1. For comparison the curves show the
measurements in quenched QCD. All the data shown here is taken
on 4x12° lattices. The shaded area denotes the mass range for
strange quarks.

quantity significantly. for all m,. Thus, x,q and other non-diagonal parts of the
These observations are not explained in continuum pertuiflavor space susceptibilities can be totally neglected in con-
bation theory at high temperature, which yields structing other susceptibilities. It is interesting to note that
Xud IS zero in an ideal gas, and perturbative contributions

Ni[ as|®? start at ordew?3. Taking the scale to be:2T, as before, and
+8\/1+——| , (20 .

6\ the same values af./ Ays, we might then expecg,q to be
) ] non-zero at the level of 0.04—0(for N;=2) in the tempera-
when the plasmon term is resummgtd]. Here as is the  tyre range we studied. The substantially smaller, indeed van-
strong coupling at a scale appropriate to the temperdtute  jshing, value thus accentuates the puzzle about perturbation
is easy to see that this ratio is never less than 0.98 Nfor theory[24].
=0 (0.986 forN¢=2). This minimum is reached whems The only place whergq is definitely non-zero is for 0

o o <T<T.. Are-analysis of our data in the quenched theory at
TABLE VIII. Susceptibilities atT=0 in units of T,, measured T=0.75T,, [8] showed thaty,q differs from zero by over

on 12 lattices forN;=2 with m/T,=0.1 andN, = 80. four standard deviations. As displayed in Fig.x8q scales
inversely with the square of the pion screening mass, at

Ixeer=1—2| 28
XIXFFT™ ?

m, /Te X3/ Te 10Pxua/ T2 X ITS this temperature. Since it is known that the hadron masses
0.10 0.18(7) 0(1) 462 (11) are independent of temperature fron=0 to some point
0.30 0.024(9) 0.1(5) 182 (3) rather close td; [21], the only possible temperature depen-
0.50 0.007(4) 0.1(3) 122 (2) dence ofy,q, for suchT, would be in the value of the con-
0.75 0.002(2) 0.1(2) 89 (1) stant)(udeT. Note that the spatial lattice size is such that
1.00 0.000(1) 0.0(2) 71.4(8) M _L=10, and finite size effects are negligible. In order to

ensure this on %12% lattices, we are constrained to use
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FIG. 3. xuq scales as M2 for T=0.75T, in quenched QCD.
The measurements of,q and M, were both performed on the 10

same configurations on>412® lattices[8].

reasonably heavy quarks. The pion screening mass is then
rather large. In future we plan to study,q for T<T, in

more detail by pushing towards lower pion mass with larger o
lattices, covering a bigger range @fand using dynamical 2
quarks.

D. Relation to screening masses

The physics of a plasma lies in screening. However, it is . . . .
not always clear how screening appears in different guises. 4 45 5 Mo/T 5.5 6 8.5
Interestingly it can be shown that quark number susceptibil- S
ity is directly related to screening, and therefore the non- 5 4 Panela) shows 4 /T2 as a function ofn, /T, (for sea
perturbative physics in the two are likely to be the same. It iS;ark mass of 01L,) at T:1_5r°c (diamondy, 2T, ”(C"aes and
possible to present a deductive argument from first principlegt_ hoxes. Panel(b) shows 4¢3/ T2 (open symbolsand y./10T?
and use the data to illustrate it. Instead, we first show howjjled symbolg as a function ofMs/T at 2T, (circles and 3T,
the data prefers a relation betwegrand the S/PS screening (poxes. The lines are exponential fits.
massM g, and then give the group theoretical argument that

this is not a numerical coincidence. ropagators sandwichinggU and summed over all dis
The variation ofy; with m, at fixedT is shown in Fig. 4. propag INGoL &
: . tances. As a result, this quantity can be related to a suscep-
For large enoughm,, there is an exponential fall ofs, - :
; LU tibility constructed from a one-link separated meson screen-
which can be qualitatively understood as the effect of Boltz-

mann factors. It is less obvious that there should be athres'r—]g correlatar. In theT=0 notation, this turns out to be a

old m*(T) below which y3 is almost independent ah, . component of the on(_a-link L ForT.>O this component
The data indicates than* (T)=T. Such a threshold cannot "€duces to the irrep; of the appropriate symmetry group

be derived in a weak coupling expansion. Furthermore, thi?2 (see Table Il. Other correlators which lie in the same
threshold of constancy is exactly what prevemts/xeer  ''6P ar€ the one-link separated S and_:B”_S* and the a
from reaching unity asn,—0, since Fig. 4 is just another SPECific component of the one-link A8~ . In the con-
representation of the data in Fig. 2. tinuum limit the spectrum oA, screening masses is degen-
The only other observed non-perturbative effect in theerate with that of thed; , since they come from the same
quark sector of high-temperature QCD is in the screenindirep of the continuumO(2) symmetry[17]. The smallest
mass in the S/PS channdlls. That these two effects are A; screening mass comes from the S/PS local propagators
related is shown in the second panel of Fig. 4, where we plowhich are used to extradils. This, is the reason for the
X3 againstMg/T. A simple exponential relation between close relation betweeg; andMg shown in Fig. 4.
them is seen. The threshold we saw before disappears into Further numerical evidence in favor of this group theoret-
the relation betweem, andMg. The remaining question is ical argument is the similarity in the relation between
why the two should be related at all. x-(Mg) andx3(Mg), as shown in Fig. 4. The near equality
The answer is simple, and relies on the group theoreticadf the slopes lends support to our earlier observation that the
classification of screening correlators and masses accordirfy, screening mass seems to be equaWitp. We expect that
to the symmetries of th&>0 transfer matrix in the spatial for smaller lattice spacing or on using a fermion action
direction[15]. First, from Eq.(14) it can be seen thafs is  which restores the full flavor symmetry, the two screening
the thermal expectation value of a product of two quarkmasses should become equal. In this limit, the lines would be
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TABLE IX. Susceptibilities(in units of their values for an ideal also falls from 0.950.03 atT= 1.25T. to 0.696+0.004 at
gag obtained for degenerate dynamieadndd quarks of mass 17 T=3T, (it is 2/3 in theT—oe limit); therefore strangeness

MeV and quenched strange quarks with=125 MeV. Suscepti-  flyctuations become more significant than charge fluctuations
bilities below T, are discussed in the text. with increasingT.

FET FET FET FET In the low-temperature phases<OI <T., fluctuations are
e Xslxs Xslxs Xo/Xo Xa/Xq dominated by the flavor off-diagonal contribution. We have
1.25 0.80(3) 0.538(5) 0.71(2) 0.76(2) displayed evidencérig. 3) that y,q= 1/me, i.e., fluctuations
1.50 0.848(9) 0.657(4) 0.785(6) 0.817(8) are due to the lightest particle of given flavor. Although the
2.00 0.863(6) 0.757(6) 0.828(5) 0.846(5) value ofy,q is extremely small, the measure of fluctuation is
3.00 0.883(4) 0.841(4) 0.869(3) 0.877(3) the ratio ofy and the entropy densify]. While there are no

reliable measurements of the entropy To£ T, it is known

to be small. It is presently an open question whether the ratio
is smaller forT<<T. or on the other side of the QCD phase
transition.

Assuming that the inverse relation betwegry and the
pion mass generalizes to other flavor off-diagonal suscepti-
bilities, Eq. (15) can be used to predict thgt,/ xo~1/4 for
T<T.. Corrections to this number are then given in terms of
(m,/m)? and (m,/m,)?. These might further lower the
ratio by 15—-20%. As a result, in the low-temperature phase
we would obtain the hierarchy of fluctuationg=>xq
>Xs, In total contrast to the inverted hierarchy,<xq
< x that we have measured abovVg.

exactly parallel and the difference in valuesyof and x5 at
the sameM s would only reflect different operator overlaps
with the same state. This, in fact, is a prediction which
should be tested in future.

One further piece of information fits neatly into this group
theoretic frameworky 4 has the same symmetry gs and
therefore it is also related to the S/PS correlators at all non
zero temperatures. Since it vanishes Tor T, the relation
is trivial there. However, for non-zero<T., we have ob-
served thatyud=Z/Mf,. This relation would be as mysteri-
ous as that betweep; and Mg in the absence of the argu-
ment given above.

It is interesting to note that the preceding arguments rest
entirely on the group theory of screening correlators and In Euclidean quantum field theories B0, transfer ma-
masses, i.e., on the spatial direction transfer matrix of thérices in all directions are isomorphic, and one, for example,
finite temperature system. In terms of the Euclidean timecan focus on the time-direction transfer matriX—
direction transfer matrix, the group theory is the same as atexp(—Ha) (here H is the Hamiltonian andh the lattice
T=0 and there is no reason for the one-link separated vect®pacing. The eigenvalues of determine the hadron spec-
temporal correlator to be related to the S/PS. Thus, the physrum. The transfer matrix and, hence, its eigenvalues do not
ics of quark number susceptibility is related to screening corehange with temperature. Specifically, the symmetry of the

B. Screening and susceptibilities

relators and not to temporal correlators. transfer matrix remains the rotatior@(3) symmetry which
is used to classify particle statesTt0.
V. DISCUSSION AND SUMMARY At finite temperature or chemical potential all directions

are not equivalent. As a resulf, is not the same as any
spatial direction transfer matrix. These have a totally differ-
Since x4 is related to charge fluctuations, it can be ob-ent symmetry,C, that of the cylinder, as discussed exten-
served experimentally in heavy-ion collisiorfgt]. The sively in the literaturg¢15-17. If the two lowest eigenvalues
baryon susceptibilityyo, and the strange quark susceptibil- belonging to the scalar @f become degenerate, then a phase
ity, xs, can also be used to measure fluctuations of the cortransition occurs. In general, the eigenvalues of this transfer
responding quantitids]. Also, x, is related by a fluctuation- matrix determine screening masses in equilibrium. Breaking
dissipation theorem to the total amount of strangenesef O(3) to C implies strange phenomena like the “mixing”
produced in equilibrium, and hence can be used to probef different spins, or different states of the same spin taking
departures from equilibrium in heavy-ion collisions. Given on independent dispersion relatiofs]. While these phe-
the relevance of these quantities to the experimental seargfomena are strange, they are not new—the group theory is
for the quark-gluon plasma, we have collected our results iiamiliar from the textbook examples of the comparison be-

A. Event-to-event fluctuations

an easily usable form in Table IX. tween the hydrogen atom and the hydrogen molecular ion
The behavior of bothy, and x, aboveT, are essentially H, .
controlled byys. It is clear from Eq.(15), that for T>T,, Lattice studies of screening correlators have hovered on

where x3= x> xud=Xus» W& must havey,/xo~2. Closer the verge of this phenomenology. If it has not received wide-
to T, but still in the hot phase, ik is also neglected, we spread attention in the past, that is merely due to the practical
would havey,/xo~5/2. In fact, we find that this ratio de- difficulties of measuring some of the non-trivial irreps@f
creases from 2.180.08 at 1.25, to 2.02-0.01 at 3. as we show for the first time in Table IV. The equality of
This shows thaty, is significant at all temperatures in the parity projected correlators was used in Sec. Il B to point
plasma, but certainly becomes closetpwith increasingl  out that thep and w mix in screening, as do the; andb;.

(Fig. 2. In any case, charge fluctuations are twice as large ashe equality of screening masses also gives some evidence
baryon number fluctuations. Interestingly, we find thgtys  for the mixing of 7 with the J,=0 component of the/ w,
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causing a splitting in the screening masses of different comfied it in the dynamical QCD computation here. The small
ponents of the latter. We argued in Sec. IV D that the ob-difference(roughly 3% between the gquenched and dynami-

served relation betweeg; and the screening maddg or

cal results is also significant. Explanation of these results

betweeny,q andM . comes from precisely the same physicsstand as invitations to those who resum the continuum high-
as the mixing of different spins at finite temperature. Thetemperature perturbation theory. Future lattice computations
same argument also implies that since fluctuations are olyill need to push towards the continuum limit. Work in this

servable, screening phenomena are physical.

C. Future directions

direction is in progress, and will be reported soon.
As explained beforey,q vanishes in an ideal gas of
quarks, but in an interacting theory would take on a value of

Several directions for future work are clear, and have bee@rderag. This is several orders of magnitude larger than the
discussed in the body of the paper. Here we collect whalargest result that our measurements can tolerate. This obser-

seems to us the most important and fruitful possibilities.

One direction for future work is to examine as many of

vation also is an invitation to perturbation theory.
The off-diagonal susceptibilities are non-vanishing only

the non-local screening correlators as possible, in order tin the range & T<T,. This region of temperature is hard to
gather further information on all the quantum numbers thaktudy, since all the complications =0 QCD remain, and
screening correlators can come[Irb]. As we have seen, this npone of the simplifications 6f > T, QCD start. On the other
requires large lattices and immense statistics, and may WeHand it is an important input to studies of fluctuations in
profit from the use of new noise reduction techniques angheayy ion collisions. We have reported a first quantitative

improved actions which do not change the symmett@s

the positivity of the transfer matrix.

The ratioys/ xget IS not explained in perturbation theory.
We noted this in a quenched computat{@f and have veri-

observation here. Future work will push towards more real-
istic quark masses, taking the thermodynamic limit, and ex-
amining a larger range of temperatures.
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