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Bottomonium decay matrix elements from lattice QCD with two light quarks
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We calculate the long-distance matrix elements for the decays of theY(hb) and xb (hb) states in lattice
QCD with two flavors of light dynamical quarks. We relate the lattice matrix elements to their continuum
counterparts through one-loop order in perturbation theory. In the case of the leadingS-wave matrix element,
we compare our result with a phenomenological value that we extract from the experimental leptonic decay
rate by using the theoretical expression for the decay rate, accurate through relative orderas . Whereas
estimates of the leadingS-wave matrix element from quenched QCD are 40–45 % lower than the phenom-
enological value, the two-flavor estimate of the same matrix element is close to the phenomenological value.
Extrapolating to the real world of 211 light flavors, we find that this matrix element is approximately 6%
higher than the phenomenological value, but that the phenomenological value lies within our error bars. We
also compute the color-singlet and color-octet matrix elements forP-wave decays. We find the value of the
color-singlet matrix element for 211 flavors to be approximately 70% larger than the quenched value and the
value of the color-octet matrix element for 211 flavors to be approximately 40% larger than the quenched
value.

DOI: 10.1103/PhysRevD.65.054504 PACS number~s!: 12.38.Gc, 13.25.Gv
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I. INTRODUCTION

Bottomonium is a nonrelativistic system: the velocityv of
the b and b̄ quarks in the center-of-mass frame is much le
than unity (v2'0.1). Bodwin, Braaten and Lepage@1# have
shown that, within the framework of nonrelativistic quantu
chromodynamics~NRQCD!, the smallness ofv allows one
to expand the decay rates into light hadrons and/or elec
magnetic decay products in powers ofv. Each term in this
velocity expansion can be expressed as a finite numbe
terms, each of which is a product of a long-distan
(;1/Mbv) matrix element of a four-fermion operator b
tween bottomonium states and a short-distance (;1/Mb)
parton-level decay rate. Owing to the asymptotic freedom
QCD, the short-distance parton-level decay rate can be
culated perturbatively.

The S-wave bottomonium decay rates can be express
through next-to-leading order inv2, as

G~ 2s11S2s11→X!5G1~ 2s11S2s11!2 Im f 1~ 2s11S2s11!/Mb
2

1F1~ 2s11S2s11!2 Img1~ 2s11S2s11!/Mb
4 .

~1!

Similarly the P-wave bottomonium decay rates at lowe
non-trivial order inv are given by

G~ 2s11PJ→X!5H1~ 2s11PJ!2 Im f 1~ 2s11PJ!/Mb
4

1H8~ 2s11PJ!2 Im f 8~ 2s11S2s11!/Mb
2 .

~2!

The f ’s and g’s are proportional to the short-distance rat
for the annihilation of abb̄ pair from the indicated2s11LJ
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state, whileG1 , F1 , H1, andH8 are the long-distance ma
trix elements.1 The subscripts 1 and 8 indicate that thebb̄
pair is in a relative color-singlet or color-octet state. If o
works to leading order inv in the NRQCD Lagrangian, then
the matrix elements of the spin-singlet and spin-triplet sta
are equal.

In earlier papers@3#, we reported lattice NRQCD calcula
tions of G1 , F1 , H1, and H8 for the Y(hb) and xb (hb)
states that made use of quenched gauge-field configura
with inverse lattice spacingsa21'2.4 GeV and a21

'1.37 GeV. We found that the value of the best-measu
matrix elementG1 is 40–45 % below a phenomenologic
value that we extracted from the leptonic width of theY and
the theoretical expression for the width, accurate throu
relative orderas .2 The NRQCD Collaboration@4,5# had
noted that at least part of the discrepancy is likely due to
use of the quenched approximation. The reason that
quenched approximation underestimates the matrix elem
is that the distance scale associated with the bottomon
bound state@order 1/(Mbv)# is considerably larger than th
scale at which the matrix elements sample the wave func
~order a, which is order 1/Mb). If we fix the lattice QCD
coupling at 1/(Mbv) to a value that yields good agreeme
with the bottomonium spectrum, then, in the quenched
proximation, the coupling ata will be weaker than it should
be. Hence, the wave function at the origin will be too sma
leading to a prediction for the bottomonium decay rate tha
too small.

1Our quantitiesH1 andH8 are related to the quantitiesH1 andH8

in Ref. @2# by H15Mb
4H1 andH85Mb

2H8.
2The phenomenological value that we quote in the present pap

based on a slightly different value foras than was used in Ref.@3#.
©2002 The American Physical Society04-1
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G. T. BODWIN, D. K. SINCLAIR, AND S. KIM PHYSICAL REVIEW D65 054504
In this paper we present calculations of the decay ma
elements for theY(hb) andxb (hb) states that make use o
gauge configurations containing the effects of two flavors
light dynamical~staggered! quarks. These calculations con
firm that most, if not all, of the discrepancy in the previo
calculations of the matrix elements was, in fact, due
quenching. Our results, when extrapolated to three light
vors, lead to a slight overestimate of theY decay rate.

The remainder of this paper is organized as follows.
Sec. II we define the required matrix elements in the c
tinuum and on the lattice and describe the lattice implem
tation of NRQCD that we use in our calculations. Section
contains an outline of the perturbative calculation that we
to relate the lattice matrix elements to their continuum co
terparts. We present our results in Sec. IV, and Sec. V c
tains our conclusions.

II. MATRIX ELEMENTS AND LATTICE NRQCD

In the leading non-trivial order inv, the NRQCD La-
grangian for the bottom quark and antiquark is

LB5c†S Dt2
D2

2Mb
Dc1x†S Dt1

D2

2Mb
Dx, ~3!

wherec is the quark annihilation operator andx is the an-
tiquark creation operator.Dt and D are the gauge-covarian
temporal and spatial derivatives. Note that, although one
obtain the correct leading-order spectroscopy in the Coulo
gauge by replacingD with the simple~non-covariant! gradi-
ent operator, the covariant operator is needed to calculate
octet P-wave decay matrix element, even at lowest no
trivial order. Not surprisingly, Eq.~3! is just the Euclidean-
time Schro¨dinger Lagrangian for the bottom quarks and a
tiquarks.

We work to leading order inv in the Lagrangian. As we
have mentioned, at this order, the matrix elements of
spin-triplet and spin-singlet states are identical. Therefo
we approximate all of the long-distance matrix elements
Eqs. ~1! and ~2! as spin-singlet matrix elements. Using th
leading-order Lagrangian, we are able to compute the or
v2 S-wave matrix elementF1, with an error of orderv4.
Note, however, that, in order to obtain a full relative-order-v2

computation of theS-wave decay rate, we would need
computeG1 through relative-orderv2. This would require
relative-order-v2 terms in the Lagrangian, in which case th
spin-singlet and spin-triplet states would be distinguished

In terms of the fieldsx and c, the spin-singlet matrix
elements that we compute are

G15^ 1S0uc†xx†cu 1S0&, ~4a!

F15^ 1S0uc†xx†S 2
i

2
DI D 2

cu 1S0&,

~4b!

H15^ 1P1uc†~ i /2!DIx•x†~ i /2!DIcu 1P1&,
~4c!

H85^ 1P1uc†Taxx†Tacu 1P1&, ~4d!
05450
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wherex†DIc[x†Dc2(Dx)†c.
The vacuum-saturation approximation is valid for t

color-singlet matrix elements and is accurate up to errors
relative orderv4 ~Ref. @1#!. In that approximation, Eqs.~4a!,
~4b!, and~4c! become

G1'G 1
VS5^ 1S0uc†xu0&^0ux†cu 1S0&,

~5a!

F1'F 1
VS5^ 1S0uc†xu0&^0ux†S 2

i

2
DI D 2

cu 1S0&,

~5b!

H1'H 1
VS5^ 1P1uc†~ i /2!DIxu0&•^0ux†~ i /2!DIcu 1P1&.

~5c!

One can express vacuum-saturation values of the co
singlet matrix elements asG 1

VS5(3/2p)uRS(0)u2 and H 1
VS

5(9/2p)uRP8 (0)u2, whereRS(0) is the radial wave function
of the S-wave state at the origin andRP8 (0) is the derivative
of the radialP-wave wave function at the origin@1#. These
are the quantities that appear in decay rates in the co
singlet model. In contrast, the term proportional toH8 is
absent in decay rates in the color-singlet model.H8 is the
probability of finding abb̄g component inP-wave bottomo-
nium, with thebb̄ in a color-octet state.

In our lattice calculation of these matrix elements, w
transform our gauge field configurations to the Coulom
gauge. For this gauge choice, we can replace the covariaD
with the non-covariant“ in Eq. ~4!. Corrections to this re-
placement are suppressed byv2.

We employ various discretizations of the derivative ope
tor. For the operatorH1 , we replace the covariant derivativ
D with the non-covariant finite differenced, which is defined
by

d ic~x!5
1

2
@c~x1 i!2c~x2 i!#, ~6!

wherei is the unit vector in thei th spatial direction. ForF1
we employ four different discretizations ofD2:

D (2)~non!c~x!5(
i

@c~x1 i!1c~x2 i!22c~x!#,

~7a!

D (2)~cov!c~x!5(
i

H 1

u0
@Ui~x!c~x1 i!

1Ui
†~x2 i!c~x2 i!#22c~x!J , ~7b!

c†D (2)~non2!x52(
i

@~d ic!†d ix#, ~7c!

c†D (2)~cov2!x52(
i

@~dic!†dix#, ~7d!
4-2
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BOTTOMONIUM DECAY MATRIX ELEMENTS FROM . . . PHYSICAL REVIEW D65 054504
where the covariant finite differenced is defined by

dic~x!5
1

2u0
@Ui~x!c~x1 i!2Ui

†~x2 i!c~x2 i!#, ~8!

andu0 is the tadpole contribution toU. We adopt the defini-

tion u05^ 1
3 Uplaq&

1/4.
On the lattice, we obtain such matrix elements by m

suring the expectation value in the gluon background o
product of three operators: a source for abb̄ pair with the
appropriate quantum numbers at a~Euclidean! time 2T, the
appropriate four-fermion operator at time zero, and a sink
the bb̄ pair at timeT8. For convenience, and in order t
reduce noise, we divide this expectation value by the prod
of two other expectation values. One is the expectation va
of the product of the numerator source for thebb̄ pair at time
2T and a point sink that annihilates thebb̄ pair at time zero;
the other is the expectation value of the product of a po
source that creates abb̄ pair at time zero and the numerat
sink, which annihilates thebb̄ pair at timeT8. This ratio is
illustrated in Fig. 1.

In the cases ofG1 andH1, this ratio approaches the rati
of the matrix element to its vacuum-saturation approximat
in the limit T,T8→`. Hence, it gives an indication of th
accuracy of the vacuum-saturation approximation. In
case ofH8, this ratio yieldsH8 /H 1

VS in the limit T,T8→`.
We obtain values forG1 and H1 in the vacuum-saturation
approximation from the relations

(
x

^0ux†~x,T!c~x,T!c†~0,0!x~0,0!u0&

→
T→`

G 1
VS exp~2EST! ~9!

and

(
x

^0ux†~x,T!S 2
i

2
DI Dc~x,T!•c†~0,0!S 2

i

2
DI Dx~0,0!u0&

→
T→`

H 1
VS exp~2EPT!, ~10!

FIG. 1. Lattice calculation of a matrix element of a four-fermio
operator. The large discs represent the sources and sinks
smaller discs represent the four-fermion and point source opera
The lines are the nonrelativistic quark propagators.
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which follow from the fact that only the lowest-lying inter
mediate state with the correct quantum numbers contrib
to the amplitude in the limitT→`. Note that we can write

G 1
VS5ap

2 , ~11!

where one factor ofap is from the point source and the othe
is from the point sink. If we replace the point source
another~extended! source, the coefficient of the exponenti
is of the form apax , while if we use this new extended
source operator for both source and sink, the coefficien
ax

2 . Thus, introducing an extended source which has
greater overlap with the ground state gives us an alterna
method of extractingap and, hence,G1. Similar comments
hold for H1 andF1. We calculate theF1’s from

2(
x

^0ux~x,T!†D (2)~* !c~x,T!S~0!u0&

(
x

^0ux~x,T!†c~x,T!S~0!u0&

→
T→` F 1

VS

G 1
VS

,

~12!

whereD (2)(*) denotes any of the discretizations ofD2 in Eq.
~7!, and S(0) is any source with a finite overlap with th
lowestS-wave state on time slice 0.

In order to evaluate these matrix elements, we must
culate bottom-quark propagatorsG(x;y) on the lattice. Fol-
lowing Lepageet al. @6#, we calculate the retarded propag
tor Gr(x,t;0) by iterating the equation

Gr~x,x011;0!5~12H0/2n!nUx,x0

† ~12H0/2n!nGr~x,x0 ;0!

1dx,0dx011,0, ~13!

setting G(x,x0 ;0)50 for x0,0. In Eq. ~13!, H0
52D (2)/2M02h0 , D (2) is the gauge-covariant discrete La
placian, which is given by the expression in Eq.~7b! with u0
set to unity,h053(12u0)/M0, andM0 is the bare bottom-
quark mass. We note that our bare bottom-quark mas
defined to beu0 times that of Ref.@7#. The value two for the
discretization parametern turns out to be adequate for ou
calculations.

An expression that is similar to Eq.~13! exists for the
advanced propagatorGa . The relationGr(x;y)5Ga

†(y;x)
makes it possible to rewrite amplitudes, interchang
sources and sinks. Such a rewriting allows one to start
propagator calculations from a noisy~point or extended!
source, rather than a point source and, thereby, to red
both the statistical error and the number of calculatio
steps.

III. THE RELATIONSHIP BETWEEN LATTICE
AND CONTINUUM MATRIX ELEMENTS

We wish to relate our lattice results to the continuu
@modified minimal subtraction scheme (MS)# matrix ele-
ments that are used in phenomenology. Lattice matrix e
ments and continuum matrix elements differ only in t
choice of ultraviolet regulator. Furthermore, a change of

the
rs.
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G. T. BODWIN, D. K. SINCLAIR, AND S. KIM PHYSICAL REVIEW D65 054504
traviolet regulator is dependent only on the large-momen
~short-distance! parts of an amplitude. Consequent
asymptotic freedom allows us to compute the short-dista
coefficients that relate the lattice matrix elements to the c
tinuum matrix elements in a perturbation series in the str
couplingas . The short-distance coefficients are independ
of the hadronic state. Therefore, for purposes of compu
the short-distance coefficients, we choose, for convenie
to evaluate the operators in freeQQ̄ states.

We can expand the lattice-regulated matrix element of
operator in terms of continuum-regulated matrix elements
a complete set of operators:

^Oi&L5(
j

ci j ^Oj&C , ~14!

where theci j are the short-distance coefficients,^O& is the
matrix element of the operatorO in a freeQQ̄ state, and the
subscriptsL and C indicate the lattice- and continuum
regulated matrix elements, respectively. The matrix eleme
and short-distance coefficients can be expanded in pertu
tion series:

^Oi&L5^Oi&L
(0)1as^Oi&L

(1)1•••, ~15a!

^Oi&C5^Oi&C
(0)1as^Oi&C

(1)1•••, ~15b!

ci j 5ci j
(0)1asci j

(1)1•••. ~15c!

For simplicity, we use the same definition ofas and the same
scale foras in all three expansions in Eq.~15!.

At zeroth order in the perturbation series, the momentu
space expression for a lattice operator is equal to
momentum-space expression for the corresponding c
tinuum operator, plus terms of higher order in the latt
spacinga times the momenta. Therefore,

cii
(0)51, ~16!

and

ci j
(0)50 for DimOj,Dim Oi , ~17!

where DimO is the mass dimension~or, equivalently, order
in v) of the operatorO. For the operators that we consider
this paper,

ci j
(0)50 for iÞ j . ~18!

Since our lattice NRQCD action is accurate only to lea
ing order in v, only the following mixings can be treate
consistently:G1L into G1C and F1C , F1L into F1C , H1L
into H1C andH8C , andH8L into H8C andH1C . Therefore,
we need consider, at most, two operators in the expan
~14!. Then, using Eqs.~15!, ~16!, and ~18!, we equate the
terms of orderas

1 in Eq. ~14! to obtain

^Oi&L
(1)2^Oi&C

(1)5cii
(1)^Oi&C

(0)1ci j
(1)^Oj&C

(0) for iÞ j ,
~19!
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where no sum overj is implied. The quantities on the lef
side of Eq. ~19! are computed in perturbation theory. W
determine the short-distance coefficients on the right side
Eq. ~19! by expanding the quantity on the left side of E
~19! in powers of the externalQQ̄ 3-momenta and by choos
ing free QQ̄ states with particular color~and, in general,
spin! quantum numbers.

In the expansion of the quantity on the left side of E
~19! in powers of the externalQQ̄ 3-momenta, the various
terms are infrared finite, to the extent that the behavior of
integrand in the lattice matrix element matches the beha
of the integrand in the continuum matrix element at sm
loop momentum. The expansions for the various mixin
that we have mentioned above yield, at most, a linear in
red divergence in the lattice and continuum matrix eleme
Since our lattice action~and, implicitly, our continuum ac-
tion! are accurate to leading order inv2, those divergences
cancel between the lattice and continuum matrix elements
the left side of Eq.~19!.

In general, infrared divergences in differences betwe
lattice and continuum matrix elements cancel, provided t
one works consistently to a given order inv. This means
that, in order to compute coefficient of the mixing of a latti
matrix element into a continuum matrix element of relati
ordervn, one must employ lattice and continuum actions th
are accurate to relative ordervn. Then, the small-loop-
momentum behaviors of the lattice and continuum contri
tions on the left side of Eq.~19! will be the same, and infra-
red divergences in the mixing coefficient will cancel. On t
other hand, one should not compute operator mixings
exceed the accuracy inv of the action. For example, sinc
we use actions of leading order inv, we do not compute the
one-loop correction to the mixing ofG1L into F1C ~relative
orderv2). If one were to carry out such a computation, usi
the leading-order NRQCD lattice and continuum actio
then the expression for the one-loop correction would c
tain a cubic leading infrared divergence in both the latt
and continuum contributions on the left side of Eq.~19!. The
cubic leading divergence would cancel, but, owing to t
absence of order-v2 terms in the action, a linear subleadin
divergence would persist.

Applying Eqs.~14!, ~16!, and~18! to the operator matrix
elements that we consider in this paper, we obtain

G1L5~11e!G1 , ~20a!

F1L5~11g!F11fG1 , ~20b!

and

H1L5~11i !H11kH8 , ~21a!

H8L5~11h!H81zH1 , ~21b!

where we have dropped the subscriptC on the continuum
matrix elements, and the coefficientse, g, f, i, k, h
andz are of orderas . It turns out, in an explicit calculation
4-4
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BOTTOMONIUM DECAY MATRIX ELEMENTS FROM . . . PHYSICAL REVIEW D65 054504
that the coefficientk actually vanishes in orderas . Details
of the calculations of these coefficients will be given els
where@8#.

We note that the perturbation series for theMS continuum
short-distance coefficients that relate matrix elements
physical quantities contain renormalon ambiguities. TheMS
continuum operator matrix elements contain compensa
ambiguities, and, so, the physical quantities are ambig
free @9#. In contrast, the lattice operator matrix elements a
the short-distance coefficients that relate them to phys
quantities are free of renormalon ambiguities@9#. Conse-
quently, the perturbation series that relate the lattice and
MS continuum operator matrix elements contain renorma
ambiguities. At the one-loop order to which we work, t
factorial growth of the series associated with the presenc
renormalons is unimportant. However, because the series
relate the lattice and theMS continuum operator matrix ele
ments~and the series that relate physical quantities and
MS continuum operator matrix elements! ultimately fail to
converge, the value of anMS continuum matrix element is
meaningful only if one specifies the order in perturbati
theory that is employed in computing it.

IV. RESULTS

A. Lattice computation of the matrix elements

For the lattice calculations, we use gauge configurati
generated by the HEMCGC Collaboration@10# with two fla-
vors of light dynamical staggered quarks on a 163332 lattice
at b[6/g255.6. We use all 399 configurations with ligh
quark massm50.01~in lattice units! and 200 configurations
with quark massm50.025. As we have already mentione

we follow Lepageet al. in choosingu05@ 1
3 Tr Uplaq#

1/4 as
our definition of the tadpole contribution toU. Our measure-
ments yield u050.866985(11) at m50.01 and u0
50.866773(12) atm50.025. Since these are so close, w
use 0.866859 for our perturbative calculations. We cho
our bare bottom-quark mass to beMb51.56'1.80u0, where
1.80 is the value chosen by the NRQCD Collaboration@7# to
yield the best fit to theY-xb andY-Y8 mass splittings.

To calculate the required matrix elements, we first gau
fix our configurations to the Coulomb gauge. We then g
erate the advanced and retarded bottom-quark propag
from a stochastic estimator to anS-wave point source, a sto
chastic estimator to anS-wave Gaussian source, and a s
chastic estimator to aP-wave point source for each color o
each time slice. The width of the Gaussian source is cho
to be 2.5 in lattice units, which is approximately the radius
Y or hb . From these we calculate theS- andP-wave botto-
monium propagators, with both point and Gaussian sou
and sinks, and the matrix elements of Fig. 1 and Eq.~12!.
Because the extended source has a larger overlap with
ground state than does the point source, we extractax

2 from
fits of the propagator with an extended~Gaussian! source and
sink to the formax

2 exp(2ET) for largeT. We then calculate
the ratioap /ax from fits of the ratio of the propagator wit
extended source and point sink to the propagator with
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tended source and sink. Finally, we extractG1(H1)52a0
2.

@An extra factor of two appears here relative to Eq.~11!
because, owing to the spin independence of the lattice ac
at leading order inv, we compute propagators for only
single spin component.# In the case ofG1, the direct extrac-
tion from the point-source–point-sink propagator gives a
sult that is consistent with this indirect method. However,
H1 the point-point propagator is very noisy and shows
sign of a plateau in the effective wave-function plot. In th
case the indirect method is required. Figure 2 shows the
fective wave function as a function ofT for the S-wave
extended-extended propagator. Figure 3 shows the rati
the S-wave extended-point propagator to theS-wave
extended-extended propagator as a function ofT.

Our estimates ofF 1
VS/G 1

VS from the various discretiza
tions of D2 are obtained from fits to the propagator ratios
Eq. ~12! for the extended source. Our point-source results

FIG. 2. Effectiveax
2 as a function ofT for S-wave bottomonium.

FIG. 3. Ratio of the extended-point propagator to the extend
extended propagator as a function ofT for S-wave bottomonium.
4-5
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G. T. BODWIN, D. K. SINCLAIR, AND S. KIM PHYSICAL REVIEW D65 054504
these ratios are completely consistent with the extend
source results.

Finally, we extract the ratioH8 /H 1
VS from the quantity

represented in Fig. 1, where the 4-point vertex denotes
octet operator of Eq.~4d!. Its value for the case of a poin
source and sink is plotted in Fig. 4. We consider fits over
rangesT1<T, T8<T2, for all choices ofT1 andT2, exclud-
ing overlaps. From these we choose a ‘‘best’’ fit, i.e., o
with a good confidence level, small error, and a reasona
large rangeT22T1. The chosen best fit is over the rang
2–12 and has a confidence level of 40%. It yields a va
H8L /H1L50.01565(8). In comparison, the fit with the high
est confidence level~99.8%! is over the range 6–8 and yield
a valueH8L /H1L50.01540(16), which is in agreement th
selected fit. The results for the extended source are consi
the results for a point source, but the plateau occurs roug
one unit later inT,T8, and the ‘‘data’’ are noisier. We esti
mate the systematic error inH8L /H1L by examining the en-
tire plateau, both for the point-source data and for
extended-source data, and determining the range of fluc
tions in the region in which the signal-to-noise ratio is a
preciable.

Note that there is clear evidence for a plateau inH8L /H1L
for T,T8*1, and, so, we are justified in assuming that t
asymptotic behavior occurs for relatively smallT,T8, where
the signal-to-noise ratio is relatively good. An analysis of t
effective wave function for theP-wave state shows a platea

FIG. 4. H8L /H1L as a function ofT and T8 for point sources/
sinks. Error bars have been suppressed to make the graph
easily readable. The suffixp indicates that we used a point sour
and point sink.
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that starts atT'10. However, we observe in the ratios th
we use to calculateF1, in which we have decent signals ou
to T531, that the plateau can start much before effect
masses and effective wave functions indicate that one
obtained a pure state. This is also the case for the data
we present later onG1 /G1

VS . Presumably, the early onset o
a plateau in these ratios indicates that their values are
very different for the 1P and 2P states~and 1S and 2S
states!.

The results for these lattice matrix elements are given
Table I. The first error bar is statistical. The second error
is a combination of our estimate of the systematic error t
arises from our choice of fits and our estimate of the unc
tainty that arises from the fact that the propagators have
reached their asymptotic forms in the region of measu
ment. We note that the dependence on the light-quark ma
weak. For this reason and for the reason that we have fe
configurations at the higher light-quark mass, we have
calculated theP-wave matrix elements atm50.025.

B. Lattice-to-continuum conversion

First, let us present the one-loop results for the coe
cients that relate the lattice matrix elements to their c
tinuum (MS) counterparts. These coefficients were defin
and the method for their calculation was outlined in the S
III. The loop integrals were evaluated numerically, using t
adaptive Monte Carlo routineVEGAS @11#. The values of the
coefficients, in lattice units (a51), are presented in Table II
These values depend on the value of the bottom-quark m
in lattice units. However, as we have already discussed,
take the bottom-quark mass, in lattice units, to be the sam
both the values of the light-quark massm that we use. Then
with the exception ofz, the coefficients in Table II depend o
the light-quark mass only through the scale ofas , which is
proportional toa, since a depends~weakly! on m. z has
additional dependence ona and, hence, onm, since it con-
tains a term that is proportional to ln(ma), wherem is the
NRQCD factorization scale. We takem54.3 GeV, which is
close toMb(MS).

We convert the lattice matrix elements to continuum m
trix elements using the formulas of Eqs.~20! and~21!. Here,
we chooseas5aP(1/a), whereaP is defined in Ref.@7#. To
convert to physical units, we usea2152.44 GeV for m
50.01 anda2152.28 GeV form50.025, as determined b
the NRQCD Collaboration@7# from theY-xb mass splitting.

ore
TABLE I. Lattice bottomonium decay matrix elements for light quark massesm50.01 andm50.025.

m50.01 m50.025

G1L 0.2047960.0003660.0028 0.2126560.0006160.0028
F1L(non)/G1L 1.5307460.0004960.001 1.5481660.0006960.0005
F1L(cov)/G1L 0.9966760.0003760.0005 1.0074060.0004960.0005
F1L(non2)/G1L 0.8631060.0002760.0005 0.8722660.0003760.0003
F1L(cov2)/G1L 1.2320960.0002260.001 1.2396160.0002960.0005

H1L 0.0201660.0007860.0014 —
H8L /H1L 0.0156560.0000860.001 —
4-6
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Then, the required values ofas are aP(2.44 GeV)
50.294160.0070 andaP(2.28 Gev)50.305660.0076, re-
spectively. Our continuum matrix elements are given
Table III. The first two error bars arise from the statistic
and systematic uncertainties in the lattice calculation. T
third error bar is our estimate of the uncertainty from unc
culated two-loop corrections to the coefficients in Table
This uncertainty is estimated as the greater ofas times the
one-loop contribution andas

2 times the tree-level coefficient
Clearly this is the dominant uncertainty. In the case ofF1,
this uncertainty is magnified because the left side of
~20b! is very close in size to the second term on the right s
of Eq. ~20b!. Consequently, our calculation ofF1 is very
imprecise. The lattice operator matrix elemen
F1(cov), F1(non), andF1(non2) all yield values ofF1 that
are consistent with zero. Furthermore, the error bars in e
case are larger than the differences between the central
ues. The operator matrix elementF1(non2) yields the small-
est uncertainties, and it is the value that derives from
matrix element that we report in Table III.

There are some additional uncertainties that are not
cluded in Table III. One is the uncertainty that arises fro
the uncertainty in the NRQCD Collaboration’s determinati

TABLE II. Coefficients relating lattice and continuum matr
elements. The different versions ofg andf relate to the different
discretizations ofD2.

Coefficient Value

e 20.4387as

g(non) 20.9622as

g(cov) 22.543as

g(non2) 20.9489as

f(non) 4.822as

f(cov) 3.729as

f(non2) 3.078as

i 21.232as

h 0.05484as

z(m50.01) 20.01285as

z(m50.025) 20.01680as
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of a @7#. We include only the statistical uncertainty ina21 in
our calculation. The NRQCD collaboration also reports
order-a2 uncertainty and an order-v4 uncertainty. The former
is equivalent, in NRQCD, to the order-v2 uncertainty, which
we estimate later. The latter we ignore in comparison w
the order-v2 uncertainty in our calculation. The uncertain
in a translates into an uncertainty inG1 of approximately 8%
at m50.01 and 19% atm50.025. In the case ofH1, it leads
to an uncertainty of approximately 14% atm50.01. Another
uncertainty arises from the neglect of corrections of hig
order inv2 in the action. These are nominally of order 10%
but are expected to be much smaller for spin-averaged q
tities. ~Of course, in order to obtain a spin-averaged value
G1, one would need to observe thehb and measure its deca
width into gg.! Finally, there is the effect of order-a2 cor-
rections in the gluon and light-quark sectors, which cau
appreciable flavor-symmetry breaking at the values of
lattice spacing that we use. These effects could best be
mated by repeating the calculation at a different value ofb.

C. Phenomenological value of the matrix element

We obtain a phenomenological estimate forG1 from the
leptonic decay width ofY @12#

G~Y→e1e2!'
2pQb

2a2

3Mb
2~pole!

S 12
16as

3p DG1 . ~22!

Here, we use Mb(pole)55.060.2 GeV @13#, a(Mb)
51/132, as(Mb)50.212, and G(Y→e1e2)51.32
60.05 Gev@14#. The value ofG1 given in Table III includes
only the experimental uncertainty.

In extracting the phenomenological value ofG1, we have
not included the relative-order-as

2 correction to G(Y
→e1e2) @15#. It would be inconsistent to include this co
rection without also including the order-as

2 corrections to the
short-distance coefficients that relate the lattice operator
trix elements to the continuum ones. The relative-orderas

2

correction toG(Y→e1e2) contains a large dependence o
the NRQCD factorization scalem. If we did include this
correction in our extraction, then the phenomenologi
value ofG1 would range from 3.76 GeV3 to 8.77 GeV3 as
s (
TABLE III. Continuum MS bottomonium decay matrix elements from our lattice calculations with two dynamical light quarknf

52) and, for comparison, a phenomenological value ofG1. The error bar on the phenomenological value ofG1 does not include the
theoretical uncertainty.

Calculation (nf52)
Lattice units Physical units Phenomenology

m50.01
G1 0.2351~4!~32!~240! 3.416(6)(47)(340) GeV3 3.86(14) GeV3

F1 /G1 20.8–0.3 25 –2 GeV2 —
H1 0.032~1!~2!~5! 2.7(1)(2)(5) GeV5 —
H8 /H1 0.01354~5!~63!~390! 0.002275(9)(105)(660) GeV22 —
m50.025
G1 0.2456~7!~32!~270! 2.911(8)(38)(320) GeV3 3.86(14) GeV3

F1 /G1 20.9–0.3 24.7–1.5 GeV2 —
4-7
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the m ranges from 1 GeV toMb . This largem dependence
and the large size of the correction atm5Mb would seem to
indicate that the uncertainty in the phenomenological va
may be close to 100%. However, experience with one-lo
corrections to quarkonium decay processes suggests
such large corrections may be canceled by the order-as

2 cor-
rections to the short-distance coefficients that relate the
tice operator matrix elements to the continuum ones. C
tainly, the large m dependence in the relative-order-as

2

correction toG(Y→e1e2) would be compensated exact
by a largem dependence in the order-as

2 corrections to the
short-distance coefficients.

The uncertainty in the phenomenological value ofG1 that
arises from the uncertainty in the value ofMb is about 8%.
This is negligible in comparison with the uncertainty asso
ated with the perturbation expansion. Given present theo
ical uncertainties, it is not yet possible to extractF1 from
experiment.

H1 andH8 are related to thexb decay widths, which have
not yet been determined in experiments. Large correction
the perturbation series@16# are likely to be important source
of uncertainty in the determination of these quantities, o
experimental data become available.

D. Extrapolation to physical light-quark values

We use linear extrapolation methods to estimate the
culated matrix elements at the physical values of the lig
quark masses and at the physical number of light-quark
vors. Extrapolating to m50, we find that G1
53.75(1)(8)(38) GeV3. To extrapolate to the physical va
ues of the light-quark masses, we use the HEMCGC lig
hadron spectroscopy measurements on the gauge confi
tions that we employ@10# to estimate that one-third the ma
of the strange quark is approximately 0.0071, in lattice un
Then, we extrapolateG1 to this value ofm. Note that, since
we are using linear extrapolations in bothm and the number
of flavors, this procedure yields the same result as wo
settingms50.02 andmu5md50. Finally, we use our result
for quenched QCD atb56.0 @3# to extrapolate to three light
quark flavors, obtainingG154.10(1)(9)(41) GeV3. This re-
sult is approximately 6% higher than the phenomenolog
value. Similarly, extrapolations to three light-quark flavo
~with no extrapolation inm) yield H1'3.3 GeV5 and
H8 /H1'0.0018 GeV22.

E. Tests of the vacuum-saturation approximation

Our lattice calculations permit us to test the validity of t
vacuum-saturation approximation forG1 and H1. NRQCD
predicts that

G1 /G 1
VS511O~v4! ~23!

H1 /H 1
VS511O~v4!. ~24!

Note that, although our lattice action is accurate only to le
ing order inv, it doescontain interactions of relative orde
v2, which arise through the terms proportional to the gau
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field in the covariant derivatives. These interactions allow
the spin-independent emission of transverse gluons, wh
produces the leading correction to the vacuum-satura
approximation.3

In order to test the relations~23! and ~24!, we need to
observe a plateau in ratios of the form of Fig. 1. We ha
measured these ratios with both point and extended sou
The detailed method of analysis is similar to that for the ra
H8L /H1L described above. BecauseG1}G1L andH1}H1L ,
up to corrections of relative orderas , we use the lattice
quantities to evaluate the ratios in Eqs.~23! and~24!. We find
that

G1 /G 1
VS51.0017~1! ~25!

H1 /H 1
VS51.0049~2!. ~26!

These results are consistent withv2 being of order 0.1 and
justify our use of the vacuum-saturation approximation
computing matrix elements. Figure 5 shows the plateau
the ratio of lattice matrix elementsG1L /G 1L

VS. We note that
the plateau is reached forT,T8*1.

F. The nonrelativistic energy

For comparison with the work of the NRQCD Collabor
tion, we give our estimate for their ‘‘energy’’ENR @4#, which
is related to theES of Eq. ~9! by

ENR5ES12 lnu0 . ~27!

For m50.01 we obtainENR50.4841(2), and form50.025
we obtainENR50.4901(3)~statistical errors only!. This is to
be compared with the valueENR50.493(1) (m unspecified!

3The inclusion of covariant derivatives does not, of course, g
erate all of the relative-order-v2 contributions to the matrix ele-
ments we consider. In particular, the action that we use cont
none of the spin-dependent terms that distinguish states with
same orbital angular momentum but with different total angu
momentum~such as theY and thehb).

FIG. 5. The ratioG1L /G 1L
VS as a function ofT andT8, where the

subscriptx indicates the use of an extended source. The error b
have been suppressed for clarity of presentation.
4-8
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that was obtained by the NRQCD Collaboration@13# using
an action that is accurate through next-to-leading order inv2.

V. DISCUSSION AND CONCLUSIONS

We have measured, in lattice simulations with two ligh
quark flavors, the matrix elements of leading order and ne
to-leading order inv2 that mediate the decays of theY and
the color-singlet and color-octet matrix elements of lead
order inv2 that mediate the decays of thexb states. We have
also computed the relations between the lattice matrix
ments and continuum (MS) matrix elements to one-loop ac
curacy and have converted our lattice results to continu
results. We have extrapolated these results to the cas
three light-quark flavors.

Our measured value of the lowest-orderY-decay
matrix element, extrapolated to three flavors, isG1
54.10(1)(9)(41) GeV3. This is in good agreement with th
phenomenological valueG153.86(14), which we extracted
from the experimental value for the leptonic decay width
using the perturbative-QCD expression for the leptonic
cay width, accurate through relative orderas . This contrasts
with the value forG that we obtained in the quenched a
proximation@3#, which is 40–45 % lower than the phenom
enological value. The large size and large scale depend
of the order-as

2 correction to the leptonic width@15# suggest
that the theoretical uncertainty in the phenomenolog
value of the matrix element may be quite large. Howev
one can utilize the order-as

2 correction consistently only
when one has incorporated two-loop corrections into the
efficients for the lattice-to-continuum conversion. Then t
scale dependence would be compensated exactly, and
of the large correction would likely be canceled.

At present, the most that we can say about the next
leading-orderY-decay matrix elementF1 is that the con-
tinuum (MS) matrix element is probably negative. Notic
that, although the lattice matrix element is strictly positiv
the subtractions involved in converting it to a continuu
matrix element can, and apparently do, change its sign
this result is maintained at higher orders in perturbat
theory, then it is clear that any simple potential model, wh
must, of necessity, give a positive result, cannot yield
correct values for such higher-order matrix elements.

We find that the value of the color-singletP-wave matrix
elementH1 for three light-quark flavors is roughly 70%
higher than the quenched value. The color-octet contribu
to theP-wave decays, which is mediated byH8, arises from
a distinctive QCD effect: the process in which thebb̄ color-
singletP-wave state fluctuates into abb̄ color-octetS-wave
state plus a soft gluon. Such a contribution is absen
simple potential models. We find that the value ofH8 for
three light-quark flavors is about 40% larger than t
quenched value, but that the value of the ratioH8 /H1 for
three light-quark flavors is approximately 14% lower th
the quenched value. According to the velocity-scaling ru
both H1 and H8 are of orderv4 ~Ref. @1#!. Therefore, we
expect Mb

2H8 /H1 to be of order unity times a facto
1/(2Nc), whereNc53 is the number of QCD colors, to ac
05450
-
t-

g

e-

m
of

-

ce

l
r,

-
e
me

o-

,

If
n
h
e

n

in

,

count for the spin and color traces in the definition ofH1

~Ref. @17#!. Our result forMb
2H8 /H1 is smaller than this

estimate by about a factor of three. Our values forH1 and
H8 could be used to make predictions for the, as yet, unm
suredxb decay rates. However, as we have mentioned, la
next-to-leading-order corrections in the perturbation se
for those decay rates@16# suggest that further theoretica
progress may be necessary in order to achieve a precise
parison with experiment.

Our results indicate that the quenched approximat
yields a poor estimate of the NRQCD matrix elements.
we have mentioned, the trends in going from the quenc
approximation to the physical number of light-quark flavo
can be understood in terms of a simple picture. The lat
spacing and heavy-quark mass are determined by fittin
bottomonium spectroscopy, which probes the wave functi
at distances of order 1/(Mbv). On the other hand, the deca
matrix elements sample the wave function and its derivati
at much shorter distances, of ordera. In the absence of the
sea of light quark-antiquark pairs, the strong coupling co
stant runs too fast, becoming too small at the shorter
tance. This leads to an underestimate of the decay ma
elements, since the values of the wave function and its
rivatives depend on the strength of the potential at short
tances. We note that theS-wave matrix elementsG1 andH8
both increase by about the same fraction in going from
quenched approximation to three light-quark flavors, wh
theP-wave matrix elementH1 increases by a larger fraction
This may be becauseP-wave matrix elements depend on th
derivative of the wave function at the origin, as opposed
the wave function at the origin, and, so, are more sensitiv
changes in the strength of the potential at short distance

In order to improve the lattice estimates of the mat
elements forS- andP-wave bottomonium decay, one woul
first need more precise measurements of the lattice spacina.
A more stringent comparison with experiment would al
require a more precise determination of the bottom-qu
massMb , as well as a calculation to two-loop accuracy
the perturbative coefficients that relate the lattice matrix
ements to the continuum matrix elements.4 In the case ofF1
this last improvement is essential to obtain a useful pred
tion of the continuum matrix element. Beyond this it wou
be valuable to use gauge-field configurations that have b
generated with improved actions. Only when this has b
done could one justify using NRQCD actions that have be
improved to higher orders inv and a for the extraction of
bottomonium decay matrix elements.
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