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Bottomonium decay matrix elements from lattice QCD with two light quarks
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We calculate the long-distance matrix elements for the decays of (hg) and x,, (hy) states in lattice
QCD with two flavors of light dynamical quarks. We relate the lattice matrix elements to their continuum
counterparts through one-loop order in perturbation theory. In the case of the |&dinge matrix element,
we compare our result with a phenomenological value that we extract from the experimental leptonic decay
rate by using the theoretical expression for the decay rate, accurate through relativexgrdéthereas
estimates of the leadin§wave matrix element from quenched QCD are 40—-45 % lower than the phenom-
enological value, the two-flavor estimate of the same matrix element is close to the phenomenological value.
Extrapolating to the real world of 21 light flavors, we find that this matrix element is approximately 6%
higher than the phenomenological value, but that the phenomenological value lies within our error bars. We
also compute the color-singlet and color-octet matrix element®faave decays. We find the value of the
color-singlet matrix element for21 flavors to be approximately 70% larger than the quenched value and the
value of the color-octet matrix element fort2L flavors to be approximately 40% larger than the quenched
value.
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. INTRODUCTION state, whileG;, F;, H,, andHg are the long-distance ma-
o o ] trix elements: The subscripts 1 and 8 indicate that thk
Bottomonium is a nonrelativistic system: the veloaitpf  pair is in a relative color-singlet or color-octet state. If one
theb andb quarks in the center-of-mass frame is much lesswvorks to leading order im in the NRQCD Lagrangian, then
than unity ¢?~0.1). Bodwin, Braaten and Lepa#] have  the matrix elements of the spin-singlet and spin-triplet states
shown that, within the framework of nonrelativistic quantumare equal.
chromodynamic§NRQCD), the smallness of allows one In earlier paper$3], we reported lattice NRQCD calcula-
to expand the decay rates into light hadrons and/or electrdions of G;, F;, H;, andHg for the Y(#,) and x, (hy)
magnetic decay products in powerswof Each term in this states that made use of quenched gauge-field configurations
velocity expansion can be expressed as a finite number ofith inverse lattice spacings '~2.4 GeV anda?!
terms, each of which is a product of a long-distance~1.37 GeV. We found that the value of the best-measured
(~1Mpv) matrix element of a four-fermion operator be- matrix elementg, is 40—45% below a phenomenological
tween bottomonium states and a short-distaneel/M ) value that we extracted from the leptonic width of tieand
parton-level decay rate. Owing to the asymptotic freedom ofhe theoretical expression for the width, accurate through
QCD, the short-distance parton-level decay rate can be catelative orderag.? The NRQCD Collaboratior{4,5] had

culated perturbatively. noted that at least part of the discrepancy is likely due to the
The Swave bottomonium decay rates can be expressedjse of the quenched approximation. The reason that the
through next-to-leading order i, as quenched approximation underestimates the matrix element

is that the distance scale associated with the bottomonium
[(21S0,1—X) = G1( B 1S56,1)2 Imf1(271S,5,1)/ME  bound statdorder 1/Myv)] is considerably larger than the
4 scale at which the matrix elements sample the wave function
T *Sp601)2 IM Gy (*7Sp. 1) M. (order a, which is order 1 ,). If we fix the lattice QCD
(1) coupling at 1/M4v) to a value that yields good agreement
with the bottomonium spectrum, then, in the quenched ap-
Similarly the P-wave bottomonium decay rates at lowest proximation, the coupling a will be weaker than it should

non-trivial order inv are given by be. Hence, the wave function at the origin will be too small,
leading to a prediction for the bottomonium decay rate that is
[L(257Py—X)=H(25T1P)2 Im 1 (>571Py)/M} t00 Sn?a”_ P Y

+Hg(2571P;)2 Imfg( 27185, 4)IME.

2 lour quantitiesH; andHg are related to the quantitié$; andHg
, , , ) in Ref.[2] by H,;=MgH,; andHg=M2Hs,.
The f's andg's are proportional to the short-distance rates 2The phenomenological value that we quote in the present paper is

for the annihilation of b pair from the indicated?>* 2L based on a slightly different value far, than was used in Ref3].
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In this paper we present calculations of the decay matrixyhere y'Dy= y'Dy— (Dx) .

elements for theX'(77,) andx, (hp) states that make use of  The vacuum-saturation approximation is valid for the
gauge configurations containing the effects of two flavors ofg|or-singlet matrix elements and is accurate up to errors of

light dynamical(staggeregquarks. These calculations con- yg|ative ordem* (Ref.[1]). In that approximation, Eq$4a),
firm that most, if not all, of the discrepancy in the previous 4p), and (4¢) become

calculations of the matrix elements was, in fact, due to
guenching. Our r_esults, When extrapolated to three light fla- glmg\lfsz<1so| T x0)(0| xTy] 1Sy),
vors, lead to a slight overestimate of thiedecay rate. (5a)
The remainder of this paper is organized as follows. In

Sec. Il we define the required matrix elements in the con- Vs 1 . N i o)? 1
tinuum and on the lattice and describe the lattice implemen- F1~F1-=("So| /' x|0){0|x —5D ¥1So),
tation of NRQCD that we use in our calculations. Section IlI (5b)
contains an outline of the perturbative calculation that we use
to relate the lattice matrix elements to their continuum coun- VS_ /1 TR T oV, 1

. ~ =(P i/2)Dx|0)-(0|x"(i/2)Dyy| “Py).
terparts. We present our results in Sec. IV, and Sec. V con- Hy= M= ("Pa|y (i/2)Dx|0) (O x (i/2)Dy| “Py)

: : (50
tains our conclusions.

One can express vacuum-saturation values of the color-

Il. MATRIX ELEMENTS AND LATTICE NRQCD singlet matrix elements agY°=(3/2m)|Rg(0)|? and HY*
In the leading non-trivial order i, the NRQCD La- = (9/2m)|R5(0)|?, whereRg(0) is the radial wave function
grangian for the bottom quark and antiquark is of the Swave state at the origin ari@-(0) is the derivative

of the radialP-wave wave function at the origiflL]. These

are the quantities that appear in decay rates in the color-
X ) singlet model. In contrast, the term proportional # is

absent in decay rates in the color-singlet modéi. is the
where y is the quark annihilation operator andis the an-  probability of finding abbg component irP-wave bottomo-
tiquark creation operatoD; andD are the gauge-covariant nium, with thebb in a color-octet state.
temporal and spatial derivatives. Note that, although one can |, our lattice calculation of these matrix elements, we
obtain the correct leading-order spectroscopy in the Coulom4nsform our gauge field configurations to the Coulomb
gauge by replacin® with the simple(non-covariantgradi-  45,ge. For this gauge choice, we can replace the covadiant

ent operator, the covariant_ operator is needed to calculate thein "the non-covarian¥ in Eq. (4). Corrections to this re-
octet P-wave decay matrix element, even at lowest no”'placement are suppressed i

trivial order. Not surprisingly, Eq(3) is just the Euclidean-  \ye employ various discretizations of the derivative opera-
time Schralinger Lagrangian for the bottom quarks and an-, o the operatot,, we replace the covariant derivative

tiquarks. _ o _ D with the non-covariant finite differenc® which is defined
We work to leading order i in the Lagrangian. As we by

have mentioned, at this order, the matrix elements of the
spin-triplet and spin-singlet states are identical. Therefore, 1
we approximate all of the long-distance matrix elements in Si(X)= E[zp(xﬂ)—w(x—i)], (6)
Egs. (1) and(2) as spin-singlet matrix elements. Using the
leading-order Lagrangian, we are able to compute the orde
v? Swave matrix elementF;, with an error of ordern?.
Note, however, that, in order to obtain a full relative-ordér-
computation of theSwave decay rate, we would need to
computeG, through relative-order?. This would require A@(non) gr(x) =2, [(x+i)+ph(x—i)—24(x)],
relative-ordem? terms in the Lagrangian, in which case the :
spin-singlet and spin-triplet states would be distinguished. (73
In terms of the fieldsy and ¢, the spin-singlet matrix

elements that we compute are A@(cov)g(x) =, i[ui(x)l/,(xﬁ)
i (Uo
G1=("Sol " xx" ¥l So), (4a)

2

f D °
Le=4'\ D= oy

g+ x"

Dot on

Wherei is the unit vector in théth spatial direction. FofF;
we employ four different discretizations &f:

)2 +U (=) gp(x—D)]-24(x){, (7b)

Fr=('sy| l/’TXXT< —§D> | 1Sp),

4h

_ _ “0 yTA@ (nomy) x=— 2> [(&9) 8ix], (70)

Hy=( 1P|y (i/2)Dy- x'(i/2) D] 1Py), '
(40

Ha= (P Ty T0| 1Py, 49 W'A® (covy) x= -2 [(diy)'dix], (7d)
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{ Y } which follow from the fact that only the lowest-lying inter-
8 j\ "

mediate state with the correct quantum numbers contributes
to the amplitude in the limiT—. Note that we can write

o

where one factor od,, is from the point source and the other
FIG. 1. Lattice calculation of a matrix element of a four-fermion is from the point sink. If we replace the point source by
operator. The large discs represent the sources and sinks; tlnother(extended source, the coefficient of the exponential
smaller discs represent the four-fermion and point source operatorg of the formapa,, while if we use this new extended-
The lines are the nonrelativistic quark propagators. source operator for both source and sink, the coefficient is
aZ. Thus, introducing an extended source which has a
greater overlap with the ground state gives us an alternative
where the covariant finite differenakis defined by method of extractinga, and, henceg,. Similar comments

hold for H, and F;. We calculate theF;'s from

1
‘ = JU. —UT(x—i —j
IC0= g LD ZUEEVODE 8 oy, AP px TIS0)10) |, s
X 1

i ’
andug is the tadpole contribution to. We adopt the defini- D (0] x(x,T)T9s(x,T)S(0)|0) gy°
tion up=(3U piag ™ X

On the lattice, we obtain such matrix elements by mea- (12)
suring the expectation value in the gluon_background of JwhereA@(*) denotes any of the discretizationsb? in Eq.
product of three operators: a source fobla pair with the (7). and S(0) is any source with a finite overlap with the
appropriate quantum numbers atRuclidean time —T, the  |owest Swave state on time slice 0.
appropriate four-fermion operator at time zero, and a sink for  |n order to evaluate these matrix elements, we must cal-
the bb pair at timeT’. For convenience, and in order to culate bottom-quark propagato®x;y) on the lattice. Fol-
reduce noise, we divide this expectation value by the produdbwing Lepageet al.[6], we calculate the retarded propaga-
of two other expectation values. One is the expectation valutr G,(x,t;0) by iterating the equation
of the product of the numerator source for thie pair at time o - N _
—T and a point sink that annihilates thé pair at time zero; Gr (X0 + 1;0)= (1= Hof2n) Uy (1= Hol2n) "Gy (%, %0 0)
the other is the expe_ctau'on vglue of the product of a point + 8084+ 1.0 (13)
source that createskeb pair at time zero and the numerator
sink, which annihilates theb pair at timeT’. This ratio is  setting G(X,Xq;0)=0 for x,<0. In Eg. (13, Hgq
illustrated in Fig. 1. =—A®2My—h,, A@ is the gauge-covariant discrete La-

In the cases ofj; and’,, this ratio approaches the ratio placian, which is given by the expression in Egb) with u,
of the matrix element to its vacuum-saturation approximatiorset to unity,h,=3(1—ug)/Mg, andM, is the bare bottom-
in the limit T,T'—o. Hence, it gives an indication of the quark mass. We note that our bare bottom-quark mass is
accuracy of the vacuum-saturation approximation. In thelefined to bai, times that of Ref[7]. The value two for the
case 0OfHg, this ratio yieldsHg/H Y in the limit T,T'—o.  discretization parameter turns out to be adequate for our
We obtain values foG, and H, in the vacuum-saturation calculations.
approximation from the relations An expression that is similar to Eq13) exists for the

advanced propagatdé,. The reIationGr(x;y)=G;(y;x)
makes it possible to rewrite amplitudes, interchanging
> (0lxT(x,T)y(x,T) (0,0 x(0,0)|0) sources and sinks. Such a rewriting allows one to start all
X propagator calculations from a noigpoint or extended
source, rather than a point source and, thereby, to reduce
T both the statistical error and the number of calculational
— GYSexp(—EgT) (9)  steps.

and Ill. THE RELATIONSHIP BETWEEN LATTICE
AND CONTINUUM MATRIX ELEMENTS

t l < t I < We wish to relate our lattice results to the continuum
; (0lx (X’T)(_§D>¢(X’T)"/I (0'0)(_§D)X(0’0)|0> [modified minimal subtraction scheméV8)] matrix ele-

ments that are used in phenomenology. Lattice matrix ele-

T vs ments and continuum matrix elements differ only in the

— Hy~exp(—EpT), (10)  choice of ultraviolet regulator. Furthermore, a change of ul-
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traviolet regulator is dependent only on the large-momentunwvhere no sum ovey is implied. The quantities on the left
(short-distance parts of an amplitude. Consequently, side of Eq.(19) are computed in perturbation theory. We
asymptotic freedom allows us to compute the short-distancdetermine the short-distance coefficients on the right side of
coefficients that relate the lattice matrix elements to the conEq. (19) by expanding the quantity on the left side of Eq.
tinuum matrix elements in a perturbatlon series in the Stronglg) in powers of the extern@Q 3-momenta and by choos-

couplingas. The short-distance coefficients are mdependenfng free QQ states with particular colofand, in general
of the hadronic state. Therefore, for purposes of computmgpin) quantum numbers. ' '

the short-distance coeffici_ents, we choose, for convenience, || the expansion of the quantity on the left side of Eq.
to evaluate the operators n fTEQ states. . (19 in powers of the externalga 3-momenta, the various
We can expand the Ia_ttlce—regulated matrix _element of al}'erms are infrared finite, to the extent that the behavior of the
operator in terms of continuum-regulated matrix elements o ntegrand in the lattice matrix element matches the behavior
a complete set of operators: of the integrand in the continuum matrix element at small
loop momentum. The expansions for the various mixings
<0i>L:Z ciJ.((Qj)C, (14) that we have mentioned above yield, at most, a linear infra-
] red divergence in the lattice and continuum matrix elements.
) . ) Since our lattice actiofand, implicitly, our continuum ac-
where thec;; are the short-distance coefficien(€)) is the o) are accurate to leading order iff, those divergences
matrix element of the operat@ in a freeQQ state, and the  cancel between the lattice and continuum matrix elements on
subscriptsL and C indicate the lattice- and continuum- the |eft side of Eq(19).
regulated matrix elements, respectively. The matrix elements |n general, infrared divergences in differences between
and short-distance coefficients can be expanded in perturbgttice and continuum matrix elements cancel, provided that
tion series: one works consistently to a given order n This means
3 ) ) that,_in order to compute cc_)efficient of Fhe mixing of a Iatti_ce
(O =0+ a0+, (158 matrix element into a continuum matrix element of relative
orderv", one must employ lattice and continuum actions that
(O)c=(OND+ag 0P+ -, (15b  are accurate to relative order”. Then, the small-loop-
momentum behaviors of the lattice and continuum contribu-
cij=c{+ e+ - (150 tions on the left side of Eq19) will be the same, and infra-
red divergences in the mixing coefficient will cancel. On the
For simplicity, we use the same definition@f and the same other hand, one should not compute operator mixings that
scale forag in all three expansions in E4L5). exceed the accuracy in of the action. For example, since
At zeroth order in the perturbation series, the momentumwe use actions of leading orderin we do not compute the
space expression for a lattice operator is equal to thene-loop correction to the mixing @, into F;c (relative
momentum-space expression for the corresponding cororderv?). If one were to carry out such a computation, using
tinuum operator, plus terms of higher order in the latticethe leading-order NRQCD lattice and continuum actions,
spacinga times the momenta. Therefore, then the expression for the one-loop correction would con-
tain a cubic leading infrared divergence in both the lattice
=1, (16)  and continuum contributions on the left side of EbQ). The
cubic leading divergence would cancel, but, owing to the
and absence of order? terms in the action, a linear subleading
0)_ ) ) divergence would persist.
cij’=0 for DimO;<Dim O, 17 Applying Egs.(14), (16), and(18) to the operator matrix

. . . . . elements that we consider in this paper, we obtain
where DimQO is the mass dimensiofor, equivalently, order
in v) of the operato®. For the operators that we consider in _
this paper, G1.=(1+¢€)Gy, (209

c¥=0 for i#j. (18) Fio=(1+y) Fi+ ¢G, (20b)

Since our lattice NRQCD action is accurate only to lead-zng
ing order inv, only the following mixings can be treated
consistently:G;, into G;c and Fic, Fy into Fic, Hio _
into H,c andHgc, and’Hg, into Hgc and’H,c. Therefore, Ha =1+ O Hyt kHs, (213
we need consider, at most, two operators in the expansion
(14). Then, using Eqgs(15), (16), and (18), we equate the HeL=(1+n)Hg+ {Hy, (21b
terms of orderaé in Eqg. (14) to obtain
where we have dropped the subscripton the continuum
(0P —(0)P=cM0ND+c(H0)D for i#], matrix elements, and the coefficients y, ¢, ¢, «, 7
(19 and{ are of orderas. It turns out, in an explicit calculation,
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that the coefficienk actually vanishes in orderg. Details S—wave "wave functions” extended
of the calculations of these coefficients will be given else- 0.020 1
where[8]. L ]

We note that the perturbation series for M8 continuum 0.019 ]
short-distance coefficients that relate matrix elements to
physical quantities contain renormalon ambiguities. & 0.018 *

continuum operator matrix elements contain compensating
ambiguities, and, so, the physical quantities are ambiguity .,
free[9]. In contrast, the lattice operator matrix elements and ©
the short-distance coefficients that relate them to physical
quantities are free of renormalon ambiguitigd. Conse- 0.016
quently, the perturbation series that relate the lattice and the

MS continuum operator matrix elements contain renormalon 0.015
ambiguities. At the one-loop order to which we work, the

factorial growth of the series associated with the presence of oofalo v v o v by
renormalons is unimportant. However, because the series that 0 10 20

relate the lattice and thelS continuum operator matrix ele- T

ments(and the series that relate physical quantities and the
MS continuum operator matrix elementsitimately fail to
converge, the value of allS continuum matrix element is
meaningful only if one specifies the order in perturbation
theory that is employed in computing it.

0.017

-
XX
Fxxxxxxyyy
XXy X

b4

A B IS RaR A
*
M TS N I I

]
o

FIG. 2. EffectiveaZ as a function off for Swave bottomonium.

tended source and sink. Finally, we extr@t(Hl)=2a§.

[An extra factor of two appears here relative to Efl)
because, owing to the spin independence of the lattice action
at leading order irv, we compute propagators for only a
single spin componertin the case ofj;, the direct extrac-

A. Lattice computation of the matrix elements tion from the point-source—point-sink propagator gives a re-
sult that is consistent with this indirect method. However, for
7—(1 the point-point propagator is very noisy and shows no
sign of a plateau in the effective wave-function plot. In this
case the indirect method is required. Figure 2 shows the ef-
fective wave function as a function of for the Swave

IV. RESULTS

For the lattice calculations, we use gauge configuration
generated by the HEMCGC Collaboratift0] with two fla-
vors of light dynamical staggered quarks on 8482 lattice
at B=6/g°=5.6. We use all 399 configurations with light-

qlﬁrk mali$n=0.0i((|)nolgt5tlcpe\ unlts)hand 2?0 cgnflguratponsd extended-extended propagator. Figure 3 shows the ratio of
with quark massn=02.Uzss. As we have already Mmentioned, yhe  gyave extended-point propagator to th&wave

we follow Lepageet al. in choosinguo=[3TrUpy,gl"* @s  extended-extended propagator as a functiof.of
our definition of the tadpole contribution td. Our measure- Our estimates c)fy."\lfs/g\l/S from the various discretiza-
ments yield uy=0.866985(11) at m=0.01 and Uy  tjons of D? are obtained from fits to the propagator ratios of

=0.866773(12) am=0.025. Since these are so close, weEgq, (12) for the extended source. Our point-source results for
use 0.866859 for our perturbative calculations. We choose

our bare bottom-quark mass to blg,=1.56~1.8Q4,, where S—wave "wave functions” point/extended
1.80 is the value chosen by the NRQCD Collaborafitto 3.2
yield the best fit to théV'-y, andY-Y’ mass splittings. -
To calculate the required matrix elements, we first gauge I
fix our configurations to the Coulomb gauge. We then gen-
erate the advanced and retarded bottom-quark propagators 3.0
from a stochastic estimator to &wave point source, a sto-
chastic estimator to aBwave Gaussian source, and a sto-
chastic estimator to R-wave point source for each color on
each time slice. The width of the Gaussian source is chosen
to be 2.5 in lattice units, which is approximately the radius of L s
Y or 7,. From these we calculate tl8 and P-wave botto-

X

X

2.8

ap/ay

>
monium propagators, with both point and Gaussian sources 28~ B
and sinks, and the matrix elements of Fig. 1 and B®). -
Because the extended source has a larger overlap with the i
ground state than does the point source, we exu,%lcftom gl L 1
fits of the propagator with an extend@@aussiansource and 0 10 T =0 30

sink to the forma)z( exp(—ET) for largeT. We then calculate
the ratioa,/a, from fits of the ratio of the propagator with FIG. 3. Ratio of the extended-point propagator to the extended-
extended source and point sink to the propagator with exextended propagator as a functionTofor Swave bottomonium.
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that starts aff~10. However, we observe in the ratios that
we use to calculaté;, in which we have decent signals out
0.03 ‘,‘:.’.’:.’,o, :&. R to T=31, that the plateau can start much before effective
L/
*

0.02

masses and effective wave functions indicate that one has
obtained a pure state. This is also the case for the data that
we present later OGIIG\{S. Presumably, the early onset of

a plateau in these ratios indicates that their values are not
very different for the P and 2P states(and 1S and 2S
states.

The results for these lattice matrix elements are given in
Table I. The first error bar is statistical. The second error bar
is a combination of our estimate of the systematic error that
arises from our choice of fits and our estimate of the uncer-

_FIG. 4. Mg /1y as a function off andT" for point sources/ tainty that arises from the fact that the propagators have not
sinks. Error bars have been suppressed to make the graph more

easily readable. The suffix indicates that we used a point source reached their asymptotic forms in the region of measure-
and point sink. ment. We note that the dependence on the light-quark mass is

weak. For this reason and for the reason that we have fewer
configurations at the higher light-quark mass, we have not

) ) ) calculated thé>-wave matrix elements ah=0.025.
these ratios are completely consistent with the extended-

source results.

Finally, we extract the ratid{g/H ; VS from the quantity
represented in Fig. 1, where the 4-point vertex denotes the First, let us present the one-loop results for the coeffi-
octet operator of Eq(4d) Its value for the case of a point cients that relate the lattice matrix elements to their con-
source and sink is plotted in Fig. 4. We consider fits over thginuum (MS) counterparts. These coefficients were defined
rangesT;<T, T'<T,, for all choices ofT; andT,, exclud- and the method for their calculation was outlined in the Sec.
ing overlaps. From these we choose a “best” fit, i.e., onelll. The loop integrals were evaluated numerically, using the
with a good confidence level, small error, and a reasonablpdaptive Monte Carlo routineeGAs [11]. The values of the
large rangeT,—T,. The chosen best fit is over the range coefficients, in lattice unitsa=1), are presented in Table II.
2-12 and has a confidence level of 40%. It yields a valudhese values depend on the value of the bottom-quark mass
Hg /H,.=0.0156%8). In comparison, the fit with the high- in lattice units. However, as we have already discussed, we
est confidence levéD9.8%) is over the range 6—8 and yields take the bottom-quark mass, in lattice units, to be the same at
a value’Hg, /H,;, =0.01540(16), which is in agreement the both the values of the light-quark massthat we use. Then,
selected fit. The results for the extended source are consistenith the exception of, the coefficients in Table Il depend on
the results for a point source, but the plateau occurs roughlthe light-quark mass only through the scaleaqf, which is
one unit later inT,T’, and the “data” are noisier. We esti- proportional toa, since a depends(weakly) on m. { has
mate the systematic error g /H,,_ by examining the en- additional dependence anand, hence, om, since it con-
tire plateau, both for the point-source data and for thdains a term that is proportional to |n@), where u is the
extended-source data, and determining the range of fluctu®RQCD factorization scale. We take=4.3 GeV, which is
tions in the region in which the signal-to-noise ratio is ap-close toM,(MS).
preciable. We convert the lattice matrix elements to continuum ma-

Note that there is clear evidence for a platealifip /7, trix elements using the formulas of Eq20) and(21). Here,
for T,T'=1, and, so, we are justified in assuming that thewe choosex,= ap(1/a), whereap is defined in Ref[7]. To
asymptotic behavior occurs for relatively smalIT’, where  convert to physical units, we use '=2.44 GeV form
the signal-to-noise ratio is relatively good. An analysis of the=0.01 anda '=2.28 GeV form=0.025, as determined by
effective wave function for th®-wave state shows a plateau the NRQCD Collaboratiofi7] from theY -y, mass splitting.

B. Lattice-to-continuum conversion

TABLE |. Lattice bottomonium decay matrix elements for light quark masse€).01 andm=0.025.

m=0.01 m=0.025
Gi, 0.20479-0.00036+ 0.0028 0.2126% 0.00061+ 0.0028
Fa(non)/Gy, 1.53074+ 0.00049- 0.001 1.54816: 0.00069+ 0.0005
Fu(cOV) Gy, 0.99667- 0.00037 0.0005 1.00748 0.0004%- 0.0005
Fu(nom)/ Gy, 0.86310-0.00027 0.0005 0.87226 0.00037 0.0003
Fu(cov,)/ Gy, 1.23209+ 0.00022+ 0.001 1.23961 0.00029+ 0.0005

Hat 0.02016+ 0.00078+ 0.0014 —

Hey IHy, 0.01565- 0.00008¢ 0.001 —
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TABLE II. Coefficients relating lattice and continuum matrix of a [7]. We include only the statistical uncertaintyeiﬁl in
elements. The different versions gfand ¢ relate to the different  our calculation. The NRQCD collaboration also reports an
discretizations oD?. ordera? uncertainty and an order? uncertainty. The former
is equivalent, in NRQCD, to the ordef uncertainty, which

Coefficient Value we estimate later. The latter we ignore in comparison with
E —0.4387n, Fhe orders? unpertainty in our calculation. Thg uncertainty
y(non) ~0.9622, in a translates into an uncertainty §i of appromma}ely 8%
Y(cov) —254% atm=0.01 and 19% am=0.025. In the case df{,, it leads
Y(noy) —0 948915 to an uncertainty of approximately 14%rat=0.01. Another
#(non) 4.8221 s uncertainty arises from the neglect of corrections of higher
#(cov) 3'72%5 order inv? in the action. These are nominally of order 10%,
PR but are expected to be much smaller for spin-averaged quan-
¢(non,) 3.078&; " . - "
_1.23% tities. (Of course, in order to obtain a spin-averaged value of
¢ 0 05484; Gq, one would need to observe thg and measure its decay
7 : s width into yv.) Finally, there is the effect of order? cor-
¢(m=0.01) ~0.0128% rections in the gluon and light-quark sectors, which cause
{(m=0.025) —0.01680y

appreciable flavor-symmetry breaking at the values of the
lattice spacing that we use. These effects could best be esti-
mated by repeating the calculation at a different valug of

Then, the required values ok are «ap(2.44 GeV)

=0.2941+0.0070 andap(2.28 Gev)=0.3056+=0.0076, re- C. Phenomenological value of the matrix element

spectively. Our continuum matrix elements are given in

Table Ill. The first two error bars arise from the statistical . .

and systematic uncertainties in the lattice calculation. Théeptomc decay width ol [12]

third error bar is our estimate of the uncertainty from uncal- 27TQ2a’2 16a

culated two-loop corrections to the coefficients in Table II. [(Y—ete )~ b ( — 5) Gi. (22)

This uncertainty is estimated as the greatewgftimes the 3M§(po|e) 37

one-loop contribution and? times the tree-level coefficient.

Clearly this is the dominant uncertainty. In the casepf €ré, we use My(pole)=5.0+0.2 GeV [15’]’7 a(Mp)

this uncertainty is magnified because the left side of Eq=1/132, as(Mp)=0.212, and I'(Y—e'e)=132

(20D) is very close in size to the second term on the right side” 0-05 Gev14]. The value oiG, given in Table Ill includes

of Eq. (20b). Consequently, our calculation of; is very  ©Only the experimental uncertainty.

imprecise. The lattice operator matrix elements I extracting the phenomenological value@f, we have

Fi(cov), Fy(non), andF;(non,) all yield values ofF; that ~ hot included the relatlvg-ordqg correction  to 1“_(Y

are consistent with zero. Furthermore, the error bars in eachv€ €~) [15]. It would be inconsistent to include this cor-

case are larger than the differences between the central vdEction without also including the ordes corrections to the

ues. The operator matrix elemeft(non,) yields the small- ~ short-distance coefficients that relate the lattice operator ma-

est uncertainties, and it is the value that derives from thigrix elements to the continuum ones. The relative-oefr-

matrix element that we report in Table IlI. correction tol'(Y —e*e™) contains a large dependence on
There are some additional uncertainties that are not inthe NRQCD factorization scalg. If we did include this

cluded in Table Ill. One is the uncertainty that arises fromcorrection in our extraction, then the phenomenological

the uncertainty in the NRQCD Collaboration’s determinationvalue ofG; would range from 3.76 GeVto 8.77 GeV as

We obtain a phenomenological estimate ¢grfrom the

TABLE IIl. Continuum MS bottomonium decay matrix elements from our lattice calculations with two dynamical light quarks (
=2) and, for comparison, a phenomenological valueGof The error bar on the phenomenological valueGgfdoes not include the
theoretical uncertainty.

Calculation f;=2)

Lattice units Physical units Phenomenology

m=0.01

G, 0.23514)(32)(240) 3.4166)(47)(340) Ge\? 3.86(14) GeV
FilG, -0.8-0.3 —5-2 GeV —

Ha 0.0321)(2)(5) 2.7(1)(2)(5) GeV —

HglH, 0.013545)(63)(390) 0.00227%9)(105)(660) GeV? —
m=0.025

Gy 0.24567)(32)(270) 2.911(8)(38)(320) Ge\? 3.86(14) GeV
FilG, -0.9-0.3 —4.7-15 GeV —
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the u ranges from 1 GeV td1,,. This largex dependence
and the large size of the correctionat M, would seem to

=3
/

indicate that the uncertainty in the phenomenological value 1.003

may be close to 100%. However, experience with one-loop 1.002 KX

corrections to quarkonium decay processes suggests that 1001 | &% %
such large corrections may be canceled by the ondeter- 1 / %

rections to the short-distance coefficients that relate the lat-
tice operator matrix elements to the continuum ones. Cer-
tainly, the large u dependence in the relative—ord@f—
correction tol'(Y —e*e™) would be compensated exactly
by a largex dependence in the ordeé— corrections to the
short-distance coefficients.

The uncertainty in the phenomenological valueggfthat FIG. 5. The ratiog,, /G Y7 as a function off andT’, where the
arises from the uncertainty in the value Mf, is about 8%. subscriptx indicates the use of an extended source. The error bars
This is negligible in comparison with the uncertainty associ-have been suppressed for clarity of presentation.
ated with the perturbation expansion. Given present theoret-
ical uncertainties, it is not yet possible to extra&t from
experiment. field in the covariant derivatives. These interactions allow for

H, and’Hg are related to thg,, decay widths, which have the spin-independent emission of transverse gluons, which
not yet been determined in experiments. Large corrections tBroduces the leading correction to the vacuum-saturation
the perturbation serig4 6] are likely to be important sources approximatior?.
of uncertainty in the determination of these quantities, once In order to test the relation&3) and (24), we need to
experimenta| data become available. observe a plateau in ratios of the form of Flg 1. We have
measured these ratios with both point and extended sources.
The detailed method of analysis is similar to that for the ratio
‘Hg /H4. described above. Becau§gx G, and H < H, ,

We use linear extrapolation methods to estimate the calup to corrections of relative ordexs, we use the lattice
culated matrix elements at the physical values of the lightquantities to evaluate the ratios in E¢&3) and(24). We find
guark masses and at the physical number of light-quark flathat
vors. Extrapolating to m=0, we find that G;

D. Extrapolation to physical light-quark values

=3.751)(8)(38) Ge\l. To extrapolate to the physical val- G.1/GY®=1.00171) (25)
ues of the light-quark masses, we use the HEMCGC light-
hadron spectroscopy measurements on the gauge configura- HllH\l/s: 1.00492). (26)

tions that we employ10] to estimate that one-third the mass
of the strange quark is approximately 0.0071, in lattice units
Then, we extrapolatg, to this value ofm. Note that, since
we are using linear extrapolations in bathand the number
of flavors, this procedure yields the same result as woul
settingmgs=0.02 andm,=my=0. Finally, we use our results
for quenched QCD g8=6.0[3] to extrapolate to three light-
quark flavors, obtaining; =4.1011)(9)(41) Ge\?. This re-
sult is approximately 6% higher than the phenomenological F. The nonrelativistic energy

value. Similarly, extrapolations to three light-quark flavors Eor comparison with the work of the NRQCD Collabora-
(with no extrapolatlor; inm) yield H,~3.3 GeV and  tion, we give our estimate for their “energyEyg [4], which
Hg/H,;~0.0018 GeV “. is related to theEg of Eq. (9) by

These results are consistent with being of order 0.1 and
justify our use of the vacuum-saturation approximation in
omputing matrix elements. Figure 5 shows the plateau in
he ratio of lattice matrix elemeni§,, /G}>. We note that
the plateau is reached far,T'=1.

E. Tests of the vacuum-saturation approximation Enr=Est2Inug. (27

Our lattice calculations permit us to test the validity of the _ - _ _
. L For m=0.01 we obtainEyg=0.48412), and form=0.025
vacuum-saturation approximation fgs and H;. NRQCD we obtainEyg=0.4901(3)(statistical errors only This is to

predicts that be compared with the valugyg=0.493(1) fn unspecified
G11G1°=1+0(v*) (23

3The inclusion of covariant derivatives does not, of course, gen-
erate all of the relative-order? contributions to the matrix ele-
ments we consider. In particular, the action that we use contains
Note that, although our lattice action is accurate only to leadnone of the spin-dependent terms that distinguish states with the
ing order inv, it doescontain interactions of relative order same orbital angular momentum but with different total angular
v?, which arise through the terms proportional to the gaugenomentum(such as thé and thez,).

Hy I HYS=1+0(v?). (24)
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that was obtained by the NRQCD Collaboratid8] using  count for the spin and color traces in the definition7ef
an action that is accurate through next-to-leading ordefin (Ref. [17]). Our result forM2Hg/H, is smaller than this
estimate by about a factor of three. Our values#r and
V. DISCUSSION AND CONCLUSIONS Hg could be used to make predictions for the, as yet, unmea-
) ) ) _ ) ) suredy, decay rates. However, as we have mentioned, large
We have measured, in lattice simulations with two light- next-to-leading-order corrections in the perturbation series
quark flavors, the matrix elements of leading order and nexto, those decay ratefL6] suggest that further theoretical

to-leading order in“ that mediate the decays of theand  rqgress may be necessary in order to achieve a precise com-
the color-singlet and color-octet matrix elements of IeadmgpariSon with experiment.

order inv that mediate the decays of thg states. We have " oy results indicate that the quenched approximation
also computed the relations between the lattice matrix elegie|ds a poor estimate of the NRQCD matrix elements. As
ments and continuumMS) matrix elements to one-loop ac- we have mentioned, the trends in going from the quenched
curacy and have converted our lattice results to continuumpproximation to the physical number of light-quark flavors
results. We have extrapolated these results to the case ghn be understood in terms of a simple picture. The lattice
three light-quark flavors. spacing and heavy-quark mass are determined by fitting to
Our measured value of the lowest-ordéf-decay bottomonium spectroscopy, which probes the wave functions
matrix element, extrapolated to three flavors, @&  at distances of order M,v). On the other hand, the decay
=4.1011)(9)(41) GeV. This is in good agreement with the matrix elements sample the wave function and its derivatives
phenomenological valug;=3.86(14), which we extracted at much shorter distances, of orderin the absence of the
from the experimental value for the leptonic decay width bysea of light quark-antiquark pairs, the strong coupling con-
using the perturbative-QCD expression for the leptonic destant runs too fast, becoming too small at the shorter dis-
cay width, accurate through relative ordey. This contrasts tance. This leads to an underestimate of the decay matrix
with the value forG that we obtained in the quenched ap- elements, since the values of the wave function and its de-
proximation[3], which is 40—45 % lower than the phenom- rivatives depend on the strength of the potential at short dis-
enological value. The large size and large scale dependenggnces. We note that ti@wave matrix element&, andHg
of the ordere correction to the leptonic widtfiL5] suggest both increase by about the same fraction in going from the
that the theoretical uncertainty in the phenomenologicafjuenched approximation to three light-quark flavors, while
value of the matrix element may be quite large. Howeverthe P-wave matrix elemenit; increases by a larger fraction.
one can utilize the orde#? correction consistently only This may be becaugewave matrix elements depend on the
when one has incorporated two-loop corrections into the coderivative of the wave function at the origin, as opposed to
efficients for the lattice-to-continuum conversion. Then thethe wave function at the origin, and, so, are more sensitive to
scale dependence would be compensated exactly, and somanges in the strength of the potential at short distances.
of the large correction would likely be canceled. In order to improve the lattice estimates of the matrix
At present, the most that we can say about the next-toelements foiS- and P-wave bottomonium decay, one would
leading-orderY -decay matrix elemenf; is that the con- first need more precise measurements of the lattice spacing
tinuum (MS) matrix element is probably negative. Notice A more stringent comparison with experiment would also
that, although the lattice matrix element is strictly positive,require a more precise determination of the bottom-quark
the subtractions involved in converting it to a continuummassMy,, as well as a calculation to two-loop accuracy of
matrix element can, and apparently do, change its sign. [fhe perturbative coefficients that relate the lattice matrix el-
this result is maintained at higher orders in perturbatiorements to the continuum matrix elemefis. the case off;
theory, then it is clear that any simple potential model, whichthis last improvement is essential to obtain a useful predic-
must, of necessity, give a positive result, cannot yield thdion of the continuum matrix element. Beyond this it would
correct values for such higher-order matrix elements. be valuable to use gauge-field configurations that have been
We find that the value of the color-singlBtwave matrix ~ generated with improved actions. Only when this has been
element™; for three light-quark flavors is roughly 70% done could one justify using NRQCD actions that have been
higher than the quenched value. The color-octet contributiofimproved to higher orders in anda for the extraction of
to theP-wave decays, which is mediated b, arises from  bottomonium decay matrix elements.

a distinctive QCD effect: the process in which thie color-

singletP-wave state fluctuates intokeb color-octetSwave
state plus a soft gluon. Such a contribution is absent in

Simple potential models. We find that the Value’}ﬂjg for We wish to thank the NRQCD Collaboration, and espe-

three light-quark flavors is about 40% larger than thecjally G. P. Lepage, for discussions of their published and
qguenched value, but that the value of the rétig/H, for

three light-quark flavors is approximately 14% lower than

the quenched value. Accordm% to the velocity-scaling rules, “Alternatively, one could carry out a non-perturbatilattice) cal-

both H; aznd Hg are of orderv™ (Ref. [3!-])- Therefore, W€  culation of these coefficients or compute the short-distance decay
expect MgHg/H; to be of order unity times a factor coefficients in lattice perturbation theory, rather than in continuum
1/(2N.), whereN.= 3 is the number of QCD colors, to ac- perturbation theory.
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