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Static three-quark SU(3) and four-quark SU(4) potentials
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We present results on the static three- and four-quark potentials (8) $idd SU4), respectively, within
guenched lattice QCD. We use an analytic multihit procedure for the time links and a variational approach to
determine the ground state. The three- and four-quark potentials extracted are consistent with a sum of
two-body potentials, possibly with a weak many-body component at larger distances. For quark separations up
to ~1.2 fm where the results are most accurate, we find support fok tAesatzfor the baryonic area law.
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[. INTRODUCTION blocking[5]. We did not, however, find any improvement as
compared to the multihit procedure.

The nature of the three-quark potential is of prime impor- In addition to the S(B) gauge group we also present
tance in the understanding of baryon structure. However ugesults for SW4). Since the same issues regarding the area
to now it has received little attention in lattice QCD studies./aw dependence of the Wilson loop arise in any gauge group,
This is to be contrasted with the quark-antiquark potentiaf calculation in SW4) can help decide the preferred area law.
relevant for meson structure for which many lattice resultsThe difference between the two-body approximation and the
exist[1]. many-body force is bigger for S¥), reaching a maximum

The aim of the present work is to study the nature of thevalue of 20% for the lattice geometries that we looked at.
three-quark potential within lattice QCD. The fundamental The SU3) baryon Wilson loop is constructed by creating
question, which was raised more than twenty years ago, i@ gauge invariant three-quark state at titve0 which is
whether the static three-quark potential can be approximate@nnihilated at a later time:
by a sum of three two-body potentials, known in the litera- L
ture as theA Ansatz or whether it is a genuine three-body _ abc a'b'c! aa’ bb’ o
potential. The latter is obtained in the strong-coupling ap- 3731¢ € UGy, DUy, 27 U (xy.3
proximation by minimization of the energy of the three- (1.7
quark state. The resulting minimal length flux tube is a con-
figuration where the flux tubes from each quark merge at dor the three quark lines that are createckaind annihilated
point. Due to its shape it is known as tNeAnsatz aty and

Recently two lattice studies of the three-quark potential
have reached different conclusions: Preliminary results by ) )

Bali [1] at 8=6.0 favor theA Ansatzwhereas the analysis of U(xy,j)=P ex;{ ig fr(j)dX“Au(X)
lattice results aj3=5.7 by Takahashet al. [2] gives more
support to theY Ansatz The difficulty to resolve the domi-
nant area law for the baryonic potential is due to the fact th
the maximal difference between the twmsazeis a mere
15%.

In our study we make a number of technical improve-
ments in order to try and distinguish tNeandA Ansdze In 1
addition to using the standard technigues of smearing and the V3q=—lim ?In<W3q). 1.3
multihit procedure for noise reduction, we employ a varia- T—o
tional approacH4] to extract the ground and first excited
state of the three quarks. Both the multihit procedure, which In SU(4) the corresponding color singlet gauge invariant
is done analytically, and the variational approach were nofour-quark state is constructed in an analogous manner and
used in Ref[2]. These are especially important for the largerthe four-quark potential/,, is similarly extracted. We will
Wilson loops where the confining part of the potential is thebe using the term baryonic potential to denote the color sin-
most dominant. Instead of the multihit procedure for the timeglet combination ofN quarks despite the fact that in $1)
links we have also tried the recently proposed hypercubithe spin of the four-quark state is an integer.

: 1.2

whereP is the path ordering anbi(j) denotes the path from
A& to y for quark linej as shown in Fig. 1.
The three-quark potential is then extracted in the standard
way from the long-time behavior of the Wilson loop:
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FIG. 2. The Wilson loop for four quarks. The quarks are located
1 at positionsr,, r,, rs, andr,. The upper graph shows the local
minimum of the energy with one Steiner poifst and the lower is
FIG. 1. The baryonic Wilson loop. The quarks are located atthe minimum with two Steiner pointa andB.
positionsrq, r,, andrs.
The position of the Steiner point can be obtained analyti-

IIl. WILSON LOOP FOR THREE AND FOUR QUARKS cally [6] in terms of the three-quark positions and the differ-
ence between the two laws as compared to the two-body
A. SUQ) Ansatz

Here we describe in more detail the two possibilities put
forward for the area law of the S8) baryon Wilson loop. In 1 1
the strong—coupling Iimit in the presence of three heavy (2 rj4—§2 rjk) /E 2 ik (2.2
quarks the gauge invariant three-quark state with the least i i<k i<k
amount of flux will yield the lowest energy. If the three

quarks are at positions, r, andrs and provided none of attains [6] the maximum value of I(y—L,/2)/(L4/2)

the interior angles of the triangle with vertices at the quark=2/,/3—1=0.15 when the quarks form an equilateral tri-
sites is greater than 120° then the flux tubes from the quarkgngle. The factor of 1/2 is due to the non-Abelian nature of
will meet at an interior point, [6]. The positionr, is deter-  the gauge couplings giving half as much attraction faycp
mined by minimizing the static energy with the result in an antisymmetric color state agyg in a color singlet. In

3 general the attraction folN—1) quarks in arN quark anti-
(re—ra) _ 2.1) symmetric color state is a factor N 1) less than the at-

=N traction for aqain a color singlet. Because of this factor
La/(N-1D)<Ly.

which is known as the Steiner point. The angles between the
flux tubes are 120° independently of the vectgrslif one of B. SU4)
the interior angles of the triangle of the quarks is greater than In SU(4) the ground state of the system in strong coupling
120° then the flux tube at that angle collapses to a pointcorresponds to the configuration with minimal length for the
Time evolution of this state produces a three-bladed aredlux tubes which join the quarks. Minimization of the static
This area law is th& Ansatanentioned in the Introduction. energy results in the introduction of two Steiner poirs,
We denote the minimal length of the flux tube for tAissatz  and B, somewhere in space, with the flux tubes from two
Ly and the corresponding arég, . quarks joining atA, while the flux tubes from the other two
The second possibilitf7] is that the relevant area depen- quarks meet aB. This configuration is visualized in Fig. 2.
dence of the baryonic Wilson loop is given by the sum of theSince 4x4=6410 the two lines emanating from the two
minimal areas\;; spanning quark linesandj. This is known  Steiner points join to form a color singlet. In analogy to
as theA Ansatzwith the corresponding length and area de-SU(3) we will call this area law ther Ansatzwith a corre-
noted byL, andA,, respectively. sponding flux tube lengthy .
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In addition to the configuration with two Steiner points if we take the larger value far for the double string in the
there is another possible configuration with a single Steinetwo Steiner configuration. Therefore, we will pick geom-

point defined by the following equation: etries that maximize the difference between thand A
Ansdze Since for these geometries the difference between
L (re—Tp) theY andX Ansazeis of the order of 2% one has to keep in

, 2.3 mind that when we refer to thé Ansatave will in fact mean
the area law with one or two Steiner points.
The factor of 1/N—1) which relates the long-range part

where all four quark lines meet. The area law for the bal’y-of the two-bodyqq and aq potentia|s also occurs in lowest
onic Wilson loop now takes the shape of a long four-bladecbrder gluon exchange so that the two-body short-range po-
surface with the blades meetingA&gs shown in Fig. 2. Due tential is given by[7]
to this shape, we refer to this configuration as Xhkew and
denote the corresponding flux tube lengthLas 1

In contrast to SB) where for any given location of the —_—
three quarks, the Steiner point and therefore the energy can
be computed analytically, in §4), the twoSteiner points in
the Y Ansatzcan be obtained by an iterative numerical pro-whereV;, is the qq one-gluon potential
cedure. To keep this procedure simple, we assume that the
double string between the two Steiner points has the same
tension as the other four, single strings. In fact, the tension of Vi =—
the double string is 1.3%29) times greatef8]. Thus, we )
introduce a small, but systematic error. Since its effect is to
reduce the potential of thé Ansatzit has no bearing on our with C=(N?—1)/2N the quark Casimir oD(N).
conclusions. The two Steiner points then have vectors that Thus the expected forms of the “baryonic” potential in
each meet at 120° and one Steiner point can be obtained BU(N) that we will be applying to S(8) and SU4) are
terms of the other. Starting from an initial guess for the po-

& ne—ral

N=T ;k Vik, (2.9

9°Cr
47Trjk

(2.9

sition of one of the Steiner points, , we can computeg as N 1 g2C 1

the Steiner point ofr3, ry, andra. Thery, ry, andrg Vig(T1s - - - ) =5 Vo— F L ol
vectors lead now to a new estimate for a Steiner pojnt 2 N—1 ik 4mry N-1
which in turn is used to compute a nay, etc.(The proce- (2.6

dure converges after 30—40 iterations to the minimurhe
location of the single Steiner point is easily computed by a0r
numerical solution to Eq(2.3).

It has been argued if7] that the two-body force is the N 1 9°Cr
relevant interaction for any SB() gauge theory. Itis proven  Vy4(rq, ... ry)= EVO_ N=14 12 +oly
in [7] thatLy=L,/(N—1) holds for any location of the four J<k ATk

guarks. From the numerical investigation, it turns out that the 2.7
relative difference between thé energy and the two-body o
law is maximal for the configuration of maximal symmetry with ¢ the string tension of thgq potential.
for the four quarks. This amounts to putting the quarks on the
vertices of the regular tetrahedron and gives a relative differ-
ence of 21.96% with respect to the two-body term. This dif-
ference decreases as the configuration becomes more asym-As we mentioned in the Introduction, the two recent
metric in space and can decrease down to 5-6% for the mokittice studies of the baryonic potentig,1] have yielded
asymmetric locations of the quarks on & 1attice. There- different conclusions, the first supporting thé Ansatz
fore, in order to obtain a clear signal on which law is pre-and the second thAa Ansatz Since the difference between
ferred by the SW) quarks, we studied geometries with the two Ansazeis ~15% for SU3), obtaining conclusive
maximal symmetry. results requires making a large effort to reduce the statistical
As far as the four-bladed surface area law is concernedhoise, especially for the large loops where the absolute
we observed thdt y always exceedky by at most 3.5%. In  difference between the twAnsdze becomes more visible.
fact, the ratio, (x—Ly)/Ly, becomes minimal for the most In this work, we used a number of improvements as
symmetric configuration of the tetrahedron, obtaining a valueompared to previous studies in &)U To our knowledge,
of just 0.43%. Here the ratio in fact increases as one inthis is the first measurement of the 4-quark potential in
creases the asymmetry of the four-quark locations, becomingU(4). We describe briefly the techniques that we use in
maximal if all four quarks are located on a plane. In particu-order to reduce noise and extract more reliably the ground
lar, if the quarks are located at the vertices of a squdrg, ( state.
—Ly)/Ly takes its maximal value of 3.5%. With the current  We use the multihit procedul@] for the time links. For
data, discriminating an effect @?(3)% between ther An-  SU(3) the temporal links are integrated out analyticdIB}
satzand theX Ansatzs not possible. This remains true even and substituted by their average value

IIl. LATTICE TECHNIQUES
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FIG. 3. Theqq potential for SU3) at 3=6.0 on a 18x32
lattice using the multihit proceduréilled circles symbol and hy-
percubic blocking(crosses

f dU U,(n)efSaV)

U4(x)— Uy(x) = (3.1

f duU eBSaV)

with S,(U)=(1/N)Tr{U,(n)F'(n)] and F(n) is the staple
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FIG. 4. Comparison of the plateaus obtained in(§Ufor
—In[\g(t+1)/No(t)] solving the generalized eigenvalue equation
at each timet (filled circles and with the projected Wilson loop
—InN[Wp(t+1)/Wp(t)] (crosses The line is drawn to guide the
eye.

2

1 I [rg 3.3
a=5, m=g5{o] 3.3
for smearing level$=0, ... M—1 andry Sommer’s refer-

ence scal¢12]. In all our computations we used =4. For
SU(4) at B=10.9 we found that the parameters used gor

attached to the time link that is being integrated over. It has=5.8 in SU3) produce reasonable results.

been shown in S(2) [9] that replacing the time links by

The correlation matrice€(t) for the mesonic and bary-

their average value in this fashion reduces the error on largenic Wilson loops were analyzed using a variational method
Wilson loops of the order of tenfold. The factor found in Ref. [4]. We use two different variants both yielding consistent

[9]is x*T~0.88FT, whereT is the time extent of the Wilson
loop. For the SB) baryon loop the reduction factor will be

results.
In both variants we solve the generalized eigenvalue prob-

x3T giving an even larger noise reduction for the large loopslem [11]
Here we point out that the multihit procedure was not used in

Ref.[2]. In SU(4) the integration over the temporal links was

done numerically.

We compared the multihit procedure with the recently

proposed hypercubic blockind] on the time links. Using
the optimal parameters given[ifi] at 3=6.0, we compare in

Fig. 3 the results on the same configurations, using the ana-
lytic multihit procedure and using hypercubic blocking. As

C(Hvy(t) =N () C(tg)v(t)

taking to/a=1. In the first variant, the potential levels are
extracted via

(3.9

A (t+1)

aV,=lim,_,—In| ———
o (1)

(3.9

can be seen, the multihit procedure gives smaller errors fdpy fitting to the plateau. In the second variant we consider

large loops and therefore we adopt it in this work.

To maximize the overlap of the trial state with the three-

guark ground state we use smearing of the spatial [ihR

the projected Wilson loops

Wp(t)=v§(to) C(t)vo(to) (3.6

We replace each spatial link by a fat link by acting on it with and fit to the plateau value of In[Wp(t+1)/Wp(t)]. In

the smearing operat& defined by

SU(x)=P uj(x)+ak§_ [uk(x)uj(x+a|”<)u;(x+a])]),
J
(3.2

whereP denotes the projection onto ). This is iteratech
times. We consideM different levels of smearing and con-
struct anM X M correlation matrix of Wilson loopglL1]. For
the parametetr and the number of smearings,, for each
different smearing level we take what is found to be opti-
mal in [11], namely,

Fig. 4 we show the results of these two variants fofgUor
the four-quark static potential.

The projected correlation has a larger contamination of
excited states for time slidéda=3 but by the next time slice
the two procedures yield the same results. We have found
that for SU3), where then, for the Ith smearing level are
larger for the corresponding values than the number of
smearings used in SY), the projected method yields
smaller errors. In all cases we have checked that the values
we extract for the ground state within these two procedures
are consistent with each other. From Eg}5) we also obtain
the energy for the first-excited state. Although the data are
rather noisy, we can obtain an estimate, which we use to fix
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FIG. 5. The static baryonic potential A= 5.8 (filled circles in

physical units. The crosses are the sum of the stagigotential.
The curves for theél andY Ansdzeare also displayed. The quarks
are located at 1(0,0), (0l,0), (0,0l), and r=r,=rq3=ro3

=.2l.
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FIG. 6. The same as Fig. 5 but f@=6.0.

FIG. 7. Theqq potential for SW4) at 8= 10.9 fitted to the form
Vo—Db/r +or. The jackknife errors are comparable to the size of the
symbols. The filled circles are data for the on-amig potential
whereas the open circles give the potential whergthedq are on
different axes equidistant from the origin.
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FIG. 8. The static baryon potential for $4) geometry 1 in
lattice units. The notation is the same as that of Fig. 5. The quarks
are located at1(0,0), (01,0), (~1,0,0), (0-1,0), andr=ry,
=ly3=3=r14= V2l
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FIG. 9. As Fig. 8 but for geometry 2. Here the quarks are lo-
cated at (,0,0), (0l,0), (—1,0,0), (0,0l), andr=r1,=r,3=rz,
=r1=12l.
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FIG. 10. As Fig. 8 but for geometry 3. The quarks are located at
(r,0,0), (0Or,0), (0,0r), and (0,0,0).
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the minimum value for the time interval used in the extrac-and 19.1% for geometry 3. The string tension is obtained by
tlon of the grOUnd State, such that the excited state Contamﬁ'[ting the On_axigqa potentia| exc|uding the first point_ We
nation is less thae ™. find ayo=0.238(4) in agreement with the value of
0.2429(14) of Ref[15]. The quality of the fit is shown in
IV. RESULTS Fig. 7 with y?/degree of freedom 1.0, where we also in-
cluded the results when the quark and the antiquark are on
different axes.
The corresponding results for the four-quark static poten-
tial are shown in Figs. 8, 9, and 10 for geometries 1, 2, and
3, respectively. Again we find that the four-quark potential is

All the computations were carried out on lattices of size
16°x 32 at B8 values 5.8 and 6.0 for SB) and 10.9 for
SU(4). The B value for SU4) was chosen so that the lattice
spacing is close to the value for 8) at 8=6.0, assuming
the same physical string tension. In the case of33We

used 200 configurations @#=5.8 and 220 ag=6.0 avail- apPproximated by the sum afq potentials with a small en-
able at the NERSC archifa3] and for SU4) we generated hancement at larger distances. The results in all cases lie
100 quenched configurations. closer to theA Ansatz

We consider geometries on the lattice which produce the
biggest difference between the andY Ansdze For SUQ3)
each quark is placed on a different spatial axis equidistant OQur results for the static three- and four-quark potential in
from the origin. The results are shown in Figs. 5 and 6 forsy(3) and SU4) are consistent with the sum of two-body
B=5.8 and 6.0, respectively. To reduce systematic errorpotentials below a distance of about 0.8 fm, and inconsistent
when comparing with theq potential, we also compute, on with the Y Ansatzdefined with the string tension extracted

the same configurations, the statig potential with the from theqq potential.

quark and the antiquark at the same locations as the three For larger distances, where our statistical and systematic
quarks of theqqq potential. The errors shown on these fig- errors both become appreciable, there appears to be a small
ures are the jackknife errors. The string tension in latticeenhancement due to an admixture of a many-body compo-

units extracted from fitting theqa potentials is a\/o nent. Nevertheless, for the distances up to 1.2 fm that we
=0.329(3) a{3=5.8 and 0.224(3) 38=6.0 consistent with Were able to probe in this work, th& area law gives the

the value of Ref[14]. At short distances the baryonic poten- ¢l0S€st description of our data. _ _
tial, Vaq, is approximately equal to the sum of the corre- We have made use of all the known techniques in order to

sponding two-body potentials, i.e., we find agreement withreliably identify the plate_aus in the Wilson loops and extract

the tree level result thaW/s,~3/2V g. At larger distances, the ground-state potential. _Neve_rtheless,_for fche larger loops
Vg is enhanced compared to the tree level result. On thd1€ Plateaus were hard to identify, resulting in large errors.

same figures we also show the curves corresponding tA the Thisis a Cha”e_”g'_”g numerical problem, and we cannot ex-
andY Ansize The lattice data lie closer to the curve given ¢lude the possibility that the small enhancement of the po-
by the A area law. However, at distances larger than aboutential above the area law which we observe is simply

0.7 fm, the three-quark potential appears enhanced as corﬁ@used by a failure to filter out all excited states in our varia-

pared to the sum of the two-body potentials. This enhancetional search for the ground state. Taking the results in both

ment can be explained by a smalil admixture of a three-body U3 and SU4) at face value the conclusion that can be
force, although it is so small that it might also reflect imper-drawn is that thel area law provides the closest description

fections in our variational search for the ground state. to the baryonic potential up to distances of 1.2 fm. More
In SU(4) we studied three different geometries chosen S(geflned tech_nlques for noise reduction for the I_arge loops will
that the difference between tlleand analog of they law is be needed n order to clarify whe_ther a genuine many-body
maximal. In what we call geometry 1 the quarks are place®mPonent is present at larger distances.
symmetrically on a plane distandefrom the origin. The
energy difference between the twmsdzeis 20.0%. In ge-
ometries 2 and 3, three quarks have coordindte®0), We thank E. Follana and H. Panagopoulos for discussions.
(01,0, and(0,0)) whereas the fourth is at (0;0)) for ge-  A.T. wishes to thank the University of Cyprus for extended
ometry 2 and at the origin for geometry 3. The energy dif-hospitality and financial support during stages of this re-
ferences between the andY laws are 20.1% for geometry 2 search.

V. CONCLUSIONS
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