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Effects of nonperturbatively improved dynamical fermions in QCD at fixed lattice spacing
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We present results for the static interquark potential, lightest glueballs, light hadron spectrum, and topologi-
cal susceptibility using a nonperturbatively improved action on%B® lattice at a set of values of the bare
gauge coupling and bare dynamical quark mass chosen to keep the lattice size fixed in physi¢al lunits
fm). By comparing these measurements with a matched quenched ensemble, we study the effects due to two
degenerate flavors of dynamical quarks. With the greater control over residual lattice spacing effects which
these methods afford, we find some evidence of charge screening and some minor effects on the light hadron
spectrum over the range of quark masses stufi¢ds/M,=0.58, where PS denotes pseudoscalar ¥nd
denotes vectgr More substantial differences between quenched and unquenched simulations are observed in
measurements of topological quantities.
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[. INTRODUCTION In this paper, we present the results of further simulations
over a range of sea quark masses. For these simulations, we

Over recent years, considerable effort has gone into pro have used the final published values of @) improve-

ing QCD beyond the quenched approximation. For recenrtnent coeﬁ|C|enpSW [7] gnd hg ve attempted to req uce varia-
. ) . . tions due to residual discretization errors and finite volume
reviews se¢1—4], and for results using a different improve-

ment scheme sdé]. Because of the impressive agreementeﬁe.C ts by working at fixed lattice spacjng. n o_rder to
of the quenched approximatidsee, e.g.[6]) with experi- achieve the latter, we have used matching techniques de-

ment for the spectrum and other easily accessible quantitiegcnb.ed In an earlier wor!glO] to help obtain gnsembles of
configurations whose lattice spacings, as defined by the scale

the effects of dynamical quarks in these are expected to bre are as closely matched as practicable. We present results
quite small. It is difficult to isolate physical effects which are ,°’ y P j P

unambiguously due to their inclusion, in part because of th(lOr the spectrum and potential on, or close to, a single fixed

need for high statistics. On currently available machines thid© trajectory n the_: (B,x) plane, Wh'Ch extends_ from
requires coarse lattices. The use®@fa) nonperturbatively quenched configurations €& 0) to the lightest accessible sea

improved fermions has been suggested as a means of coglglark mass. IlNe ch?psr? to set;he jcsle s_lncc;e t;t haf’ no
trolling and reducing discretization errofg]. In an earlier valence guark complications and 1S determined by interme-
paper[8], the first results of the UKQCD Collaboration using diate scale properties of the static potential. These properties
a prelimi’nary value of the improvement coefficieny, were are expected 1o be less sensitive to charge scredaigt-
presented. It was found that the effective lattice spacing, fange and string-breakinglong-rangg effects arising from

dbvs . di | aaynamical light quarks.
measured by Sommer’s intermediate scale paramgted], We interpret our results in the spirit of partial quenching.

depended quite strongly on the bare quark mass at fixe@hat is we study chiral extrapolation in the valence quark
gauge coupling. However, the effect of dynamical quarks Onnasses of light hadron masses using both quenched and par-
easily accessible physical observables was very weak anghjly unquenched configurations. We find that, with the
difficult to disentangle from those induced by other changesgyaijlable statistics, the quality of these valence extrapola-
in the simulation parameters. Eventually, one might hope tajons is uniformly good. By studying the spectra so obtained,
perform detailed studies over the full space of parameterge search for evidence of the influence of light dynamical
including bare gauge coupling, quark m@ss and lattice  quarks. We also study the behavior of the topological suscep-
volume. In the meantime, less ambitious studies may stiltibility in the presence of dynamical quarks. Our data sample
serve as a guide to those regions of parameter space whereludes measurements made with equal valence and sea
physical effects may be found. quark masses.
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The plan of the rest of the paper is as follows. Section llturbatively by the Alpha Collaboration and summarized by
contains brief details of the simulation methods and paraman interpolation formuld7]. For example, a{3=5.20 we
eters. In Sec. IIl, we review the matching techniques used thave useticg,=2.0171.
set up simulations at similar lattice spacings. We present re- We have used two degenerate flavors of dynamical quarks
sults in Sec. IV for the static potential in QCD and use it toin these simulations. The bare quark mass is controlled by
define a lattice scale. In Sec. V, we present results for théhe hopping parameter. Restoration ofspontaneously bro-
light hadron spectrum including some measurements of thken) chiral symmetry requires extrapolation into the criti-
lightest glueball masses. Section VI contains results frontal value . at which the pion is effectively massless. As
topological charge and susceptibility measurements. Finallyliscussed above, we will often discuss the situation encoun-

our conclusions are summarized in Sec. VILI. tered in the quenched approximation, where the dynamical
Some preliminary results from these analyses have bee@ea quark mass paramete{d is fixed (at 0 in the
presented elsewhefé1-1§. quenched cagavhile the chiral extrapolation is performed in
the valence mass parametat'{) only. This is often referred
Il. SIMULATIONS WITH IMPROVED WILSON to as a partially quencheq approximation._ It i_s particularly
FERMIONS relevant where the dynamical quark mass is still quite heavy

and where there is no realistic prospect of approaching the
Details of our implementation of the hybrid Monte Carlo (degeneratelight quark chiral limit in both parameters.

simulation algorithn{17] and its performance can be found
in our earlier papef8]. Here, we summarize for convenience A. Simulation parameters
some key features. For the lattice action we used a standard Since these simulations were the first to be done on a
Wilson action for the gauge fields together with the
Sheikholeslami-Wohlert (SW) O(a)-improved Wilson
gauge-fermion actioh18]:

reasonably large lattice (38 32) using the fully improved
value of cgy, there was little guidance available on the
choice of simulation parameters. We chg@e 5.20 as the
_ _ lowest value at which a reliable value of,, was available
SLU, ¢, ¢p]=Scl U]+ Se[U, ¢, 4], (1) [7]. The aim was to obtain as large a physical volume as
practicable with the available computing resource. The use
where of an improved action was expected to off¢at least par-
tially) the relatively coarse lattice spacing which this im-
N plied. Equilibration was carried out through a sequence of
SG[U]:BWD:ﬁg (1-3ReTrUp) (2 dynamical quark masses®®=0.130 00, 0.133 50, 0.134 00,
0.134 50, to 0.13500. The first production run was then car-
ried out at x°°3=0.13500 starting at trajectory number

and 10010, where trajectories were of unit length. Configurations
— W were stored after every 10 trajectories, although a larger
Se[U, ¢, ]1=SeTU, 4, 4] separation was used for most operator measureneats
; below).
+CSV\,I?K E E(X)UWFW(XW(X)- ©) Further simulations at higher qgark mass¢gs©?
X v =0.13450 and 0.13400and slightly shiftedg were then

performed. The shifts i were estimated using the methods
Here, Up is the usual directed product of gauge link vari- described in Sec. Il and were designed to maintain a con-
ables ancS‘é" is the standard Wilson fermion action, stant lattice spacing as defined hy.
To complete the comparison of unquenching effects, we
W — — R performed pure gauge simulations using a standard update
Sr :; P(X) p(X) = KXE L0 (r =y, )U () (X + 1) algorithm, heat bath with overrelaxation. Again, tBealue
i was chosen to keap at the value measured on the ensemble
+FP(x+ ) (r+y,) UL $(x)] (4  obtained at B,x>*)=(5.20,0.13500). The only exceptional
configuration found was within the quenched configurations,
and this was only apparent for one of tk&' studied. This
configuration was excluded from further analyses.
An additional substantial, but unmatched, simulation was
then performed atg, «*¢9 =(5.20,0.135 50). This ensemble

with the Wilson parameter chosenras 1. The spin matrix is
0,,=(112)[y,,7,], andF ,,(x) is the field strength tensor

Fuu()=8f,,00—f1,,(0], (5)
where . f/w(x) = qu(x) +_UV,—M(X) + U_Vv_ﬂ(x) 1although the effect 0fO(a) improvement is not expected to be
+U_, u(x) is the sum of four similarly orientedopen g sensitive as the quoted number of significant figures suggests, the
plaguettes around a site, action and lattice observables do depend quite strongly on this pa-

Be_yond tree level, the improvementzcoefficiem,\, iS_a rameter. For reasons of reproducibility we have therefore used a
function of the gauge coupling (=6/g°). In the studies four-decimal place representation of tbg, formula in generating
reported here, we have used those values determined nonpeenfigurations.
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TABLE I. Summary of simulation parameters and statistics used in the computation of the static potential
and light hadron spectrum.

B Csw No. of Conf. K582 KV

5.20 2.0171 244 0.13565 0.13565

5.20 2.0171 832 0.1355 0.1355 0.1350 0.1345 0.1340

5.20 2.0171 600 0.1350 0.1350 0.1345 0.1340 0.1335

5.26 1.9497 404 0.1345 0.1350 0.1345 0.1340 0.1335

5.29 1.9192 404 0.1340 0.1350 0.1345 0.1340 0.1335

5.93 1.82 623 0 0.1339 0.1337 0.1334 0.1332 0.1327

of configurations was analyzed along with the matched enscalar gluebal(Sec. V G. At the lightest quark mass«f®?
sembles providing further information on behavior at light =0.135 65), autocorrelations were estimated from effective-
quark mass. A simulation at even lighter quark mas®{  mass(potential-energymeasurements made every 20 trajec-
=0.13565) was begun. Where relevant, some preliminaryories at various lattice distances'4=1-5) and Euclidean
results are presented here. Table | contains a summary of thignes ¢/a=3-5). The measured integrated autocorrelation
run parameters for each ensemble. times varied from 10 to 20 trajectories with large errors
The bulk of the simulations were carried out in double (typically +8). For the scalar glueball, the integrated auto-
precision. This followed initial concerns over the effect of correlation time for effective masses was in the range 25-30
rounding errors on reversibility. Detailed analyses of theseyt 52 0.135 00 and 0.135 50.
and related effects have been carried out and have been re- |t js noteworthy that the autocorrelation is significantly
ported elsewhergl9]. This work shows that, at least for the |essin the current simulations than in our previous r{i@kat
present volumes and step lengths, the algorithm is reversiblgomparable quark masses but differengy,. The current
and stable for all practical purposes, even when implementegimulations use the fully nonperturbatively improved value
in single precision. of csw. It is further noted that'™ appears tadecrease if
anything, with decreasing quark mass. This is contrary to the
B. Autocorrelations simple expectation that, as the lattice correlation lerttyibi-

We made autocorrelation measurements from the avera Ilyﬁ“’fn by t?e. Inverse pion ma_)smcreage.f,l, theﬁn SO
plaguette value measurements on every trajectory. The metfji'ould the correlation in computer time. A similar effect is

ods used were those described in detail in our earlier pap&vident in the decorrelation properties of the topological

[8]. As shown in Table II, the observable autocorrelationCharge(see Sec. VL Itis possible to reproduce such behav-

(from the plaquettgis of order 20 and so we have adopted alor in simple models. The integrated autocorrelation time,

separation of 40 trajectories as standard in the analysis whicfjlich determines the size of the errors, can decrease even in

follows. Nevertheless, we keep in mind that subtle longer!N€ Presence of increasingly long correlation modes simply

term autocorrelations, not directly measurable, may still p&lue to increased noise induced by dominant short correlation
present and so we have done additional checks on our stati&10des- L o o
tical error estimates by rebinning the measurements. In the 10 illustrate this point, consider first the following simple
present data sample, we have not found any evidence of SU&BOdeI consisting of a single Markov chaim(t), t
correlations. il

Further measurements of the integrated autocorrelation x(t)=ax(t—1)+z(t), x(0)=0, (6)

time have been attempted for the potentiéc. IV) and the

TABLE Il. Comparison of integrated autocorrelation time®  where thez(t) are uncorrelated Gaussian noise of unit vari-
for the average plaquette measured in the present simulations witince and 6ca<1. It is simple to show that, for sufficiently

those in previous simulations g=5.20,cgy=1.76. long chains,
L3.T B Csw Pl Traj. no. Lnt px(t) gl e_t/Texp(X) (7)
16%.32 520 2.0171  0.13565 2400 (B3

520 2.0171  0.13550 8000 W and so

5.20 2.0171 0.13500 6000 165}

5.26 1.9497 0.13450 6000 @B ) 11+a

529 19192 013400 5000 OB A0 =~Ina,  2N)=5—. 8)
16%.24 520 1.76 0.1390 3800 @&

520 1.76 0.1395 3200 yuares) Herep,(t) is the normalized autocorrelation function for the

520 1.76 0.1398 3000 2 observablex. The corresponding results for finite length

chains are also calculable, so one can study the effects of
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using limited statistics to estimate autocorrelation times. TABLE Ill. Measures of finite volume effects in simulations.
Here we stick to the infinite chain approximation. Foe 1

[i.e., for larger®A(x)], (B.x) L/ro LM
int/ o\ _ ex n ex n expy ~37 (5.20,0.13565 3.07(3) 4.18(5)
70 =700+ MO0 OL(A™H) 71 9 0 6 Tassp 3.17(3) 4.70(6)
Real hybrid Monte CarldHMC) data for p(t) do not, of ~ (5:20,0.1350D 3.37(3 6.48(8)
course, show a simple exponential behavior and so it is usé®-26,0.1345p 3.40(4) 8.14(3)
ful to consider the next simplest model, which contains two(5.29,0.1340D 3.32(3 9.23(4)
independent correlation modes with relative coupling
strengthr:
1. MATCHING SIMULATION PARAMETERS
X(t) =x4(t) +rx5(t), In a previous papef10], we have described techniques
_ which allow one to use unbiased stochastic estimates of the
Xi()=ax(t—=1)+z(t) (i=12. logarithm of the fermion determinant to determine, approxi-

(10 mately, curves of constant observable in the space of simu-

. ) ) o lation parameters.
The integrated autocorrelation time f4(t) is given by

A. Determination of fixed observable curves

7(X) = 71 7™(Xq) + 727™(X2), (11
The approximate character of the formalism arises from
where two sources. First, the log of the fermion determinant is only
determined stochastically on each configuration and the cor-
2 2 . . . .
re(l—aj) responding fluctuations are proportional to the lattice vol-
mt =1, TS 12 (12 ume. Second, a linear approximation is used when dealing

with small changes so that these curves may only be deter-
Thus the relation between the integrated autocorrelation tim@ined locally. In the present application, the parameter space
and the actual correlations presentinis no longer straight- ©f interest is the3,«) plane and the observable of interest is
forward. There may be quite long correlations present® QCD static potential scale parametgr(see Sec. 1.
[ 7%%(x,)>7"(x,)] but, depending on the relative strength of _To_ first ord_er in small parameter chang@s$B,dx), the
the modeggiven byr), the “weighted average” represented Shift in the lattice operatoF is given by[10]

by the above formula can give a result bearing no relation to 57 57

either 7xy) or 75%x;). (8F)= ( (FWo) + < ﬁ—> Cow| OB+ < ﬁ—> Sk.
The possibility of such behavior makes it essential to dCsw JK

check decorrelation for individual observables explicitly us- (14

ing binning techniques. The quantity

C. Finite-size effects dcsy

In retrospect, the value 0f°¢3=0.135 00 turned out to be Csw dsp
somewhat conservative, in that the corresponding ratio of . . o
Mps/My (Where PS denotes pseudoscalar ahdienotes 1S well determined7] and so the identification of constalat
vecto) is quite large(0.70, see Sec. M The choice was CUrves
based on preliminary estimates of the limiting algorithm per- ~
formance and on measurements of the effective lattice spac- (oF)=0 (15
ing as described in Sec. IV. It was felt that decreasing the . .
quark mass further would decrease the effective lattice sizE2duces to measuring correlations of the form
to a point where finite-size effects would become a problem. ~~ -~ =~
In our earlier analysis of finite-size effediat least as far as (FWg) and (FoT). (16)
they affect the potential and light hadron spectrum for

Mps/My=0.7), we found that such effects were negligible Here.(A) denotes the connected pg#t—(A)) of the opera-
provided tor A. We refer readers tdL0] for a detailed discussion of the

stochastic evaluation of=TrLnMTM. Here,M is the fer-
L/rg=3.2. (13 mion matrix including theO(a) improvement term. The
methods are based on ariczos implementation of Gaussian
This corresponds to a spatial extent of around 1.6 fm and iguadraturd20]. Recent progress in understanding the nature
satisfied by all but our lightest quark mass dataset, as showaf roundoff errors in the finite arithmetic bazos process
in Table lll. Further investigations may be called for, given assures us that this application of thencaos process, unlike
the concerns over the baryon mass spectrum notgdl iisee  the basic algorithm itself, is highly stable with respect to
Sec. VQ. roundoff[21].
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B. Matching rg IV. THE QCD STATIC POTENTIAL

Detailed tests of the matching procedures have been car- \We have determined the static interquark poteniié)
ried out using the average plaquette, which is very accuratelysing standard methods and used it to search for signs of

measured, and a variety of Wilson loof0]. Some tests charge screening and string breaking, as well as to determine
usingr, were also carried out successfully on modest-sizedhe physical scale.

lattices. The present work represents the first application, in
earnest, to production-size lattices. Since the fluctuations in A. Extraction of the potential

T are extensive quantities, we expect there will be a limit on o ]
the size of lattices where usefully accurate matching esti- 1he methods follow those originally proposed by Michael

mates may be made with a given amount of work. The workand collaborator$23,24. A variational basis of generalized

required has been analyzed in some detajlLiy. Wilson loops is constructed from gauge links which are
The correlationg16) require measurements Bfon each fuzzed” in the spatial direction$25]. The spatial paths be-

configuration. These are available for operators such as Wilveen the static sources include a limited number of off-axis

son loops but not for physical quantities such as hadrofirections as well as those along the lattice af®ee the
masses and,. Rather than determine the fixeq curve lower half of Table IVj. A transfer-matrix formalism is then

directly using Eq.(15), we use Eq(14) to estimate the re- Used to extract the Euclidean time energy eigenstates which
quired gauge correlators at nearby points in parameter spac@€ related to solutions of the generalized eigenvalue equa-
We then extract the potential, and hemgéa, at the nearby ton
parameter values from these “shifted correlators.” This al-
lows estimates of the partial derivatives with respegs s;md

x and hence the shiig, required to compensate for a par-
ticular change inc®8

Wi (1,0 (1)1 = N9 (r;t,t0) Wi (1r,t0) (1),
i,j,k=0,1. (18)

JF pr= Here, we have used tvyo levels of “fuzzing” thus giving a
5/3‘(:?&/ — SKsea (17)  2X2 eigenvalue equation. We used leve(uhfuzzed and
JK B level 16, which means 16 transformations of the spatial links.
The link/staple weighting used was 2.5. This choice of fuzz-
where, in the present applicatidrk =f=r,/a. ing parameters was made so as to give a satisf_actory varia-
Using an ensemble of 100 configurations a8, ) t|qnal ba§|s with a modest amount of (;omputatlonal effort.
=(5.2,0.1350) for all correlator measurements, we estimatelf!itial tuning experiments were made using 20 configurations
that a shift of at (8,x%°9=(5.2,0.13500) and repeated on a corresponding
matched ensemble of quenched configurations. Expanding
the basis to three levels of fuzzing did not significantly im-
6p=0.057+0.033 prove the resulting effective-mass plateaus extracted as de-
scribed below.

would be required so as to match the valuefgfat (5.2 0'” principle, one could use the largest eigenvalue
4 54,0.1345) with that at £,x)= (5.2,0.1350). A simula- AO(r:t,t,) for larget,t, to estimate the potential. In prac-
tion run at (8,x)=(5.26,0.1345) confirms that,, and tice, however, the eigenvalue system becomes unstable at

hence the effective lattice spacing, is indeed well matchedf"9€t particularly when modest numbers of configurations
(see Table V. are used, as is often the case in dynamical fermion studies.

However, it is clear from the size of the statistical errors/nstead, we uosed the leading elgenvectﬂn(q)(o), corre-
that estimates 08 obtained on these configurations cannotSPonding toA©(r;t,to) at t=1t,=0, to project onto the
be relied upon, in general, to predict matched parameterdPProximate ground statgd,26]. The resulting correlator
with great accuracy without further checks. The level of suc-W(t) was then used to form effective-mass estimates for the
cess in achieving, matching can be gauged from Table V. approximate ground state,
The above methods for matching parameters are only ap-
plicable for small shifts. To obtain the shift for matching ~
quenched simulationsdk= — k), we have used tabulated Eo(r,t)=ln(
values[22] of F (lattice spacinga) to provide an initial
estimate. Since there are systematic differences arising fro
slightly differing methods for extracting the potentials dgd
(see Sec. IV, we used this only as an initial guide. Follow- R, o=\ V(r;1,0/7(r;1,0), (20)
ing direct measurement @f, with our own techniques, we '
then made a further small shift j. The results are shown in was used to help obtain improved estimates of the ground-
the next section. state energy with reduced contamination from the first ex-
cited state. To do this, the correlatdt,(t) was modelled as
a sum of two exponential terms,

Wo(r,t) ) 19

Wo(r,t+1)

Hhe ratio of the first two transfer-matrix eigenvalues,

’Here, and in what follows, we use the notatidnto denote a ~
physical quantityA expressed in lattice units. Wo(r,t)<[AO(r;1,0]'+ e, INV(r; 1,0 (21
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TABLE IV. The static potentialV(r) in lattice units. For the preliminary data af**=0.13565, the
configurations were measured every 10 trajectories and analyzed in bins of two.

(B,x>%)
r (5.20,0.1350 (5.26,0.1345 (5.29,0.134D (5.93,0  (5.2,0.1355 (5.2,0.1356%

(1,00 0482302  0.473904)  0.470703)  0.425301) 0.476202) 0.474902)
(2,00  0.697q08)  0.683911)  0.678210)  0.626803) 0.683208) 0.679406)
(3,00  0.825317)  0.810415  0.802717)  0.743905) 0.799914) 0.795412)
(400 00919322  0.900127)  0.892G28)  0.830706) 0.883918)  0.874514)
(50,0 009945300  0.977736)  0.965436)  0.907G07) 0.950428)  0.93902)
(6,00  1.062843  1.04206) 1.034243)  0.978009) 1.016829)  1.00202)
(7,00  1.13006) 1.10506) 1.09807) 1.048413) 1.082839)  1.06104)
(8,00  1.18309 1.17509) 1.17011) 1.111716) 1.13505  1.11404)
(9,00  1.26311) 1.24411) 1.24411) 1.180226) 1.18607)  1.16505)
(10,00  1.32%17) 1.28521) 1.31Q15) 1.2434)  1.24609)  1.22107)
(11,0,0  1.39821) 1.41423) 1.36716) 1.3045)  1.29810)  1.27711)
(12,00  1.467249) 1.3688)  1.33017)  1.28725)

(11,0 0627605  0.615606)  0.610307)  0.55142) 0.617305)  0.614G04)
(2,1,0  0.749509)  0.731513)  0.728811)  0.66714) 0.731G09) 0.726207)
(2,20 0816314  0.800117)  0.794G15  0.73195 0.794410) 0.788410)
(31,0  0.848315  0.829616)  0.822616)  0.76166) 0.821515  0.813§11)
(32,0 0.887318)  0.868727)  0.863623)  0.80097) 0.859915  0.849714)
(3,30  0.938724)  0.923526)  0.912222)  0.85179) 0.905117) 0.893918)

No. of Conf. 150 101 101 623 208 244
traj. spac. 40 40 40 40 202

One _can eagily show that, _provided the contamination from=|r| and hence to extract the Sommer scale parangter
the first excited stateef g is small, the true ground-state Thijs is a characteristic scale at which one may match the

energy in such a model is given by interquark force with phenomenological potential models de-
Eo(r,t) —R rt—1
Eo(r)=—IN\O(Ry g~ o) 1_1252( )- 1.60
(22 -

1.50 | 5
Rather than search for plateaus in this quantity, we used r=ta
weighted mean of values frofy,, to t,,.x Where the weight- 140 ¢ E
ing was inversely proportional to the statistical erfesti-
mated via simple jackknife To obtain the final quoted val- ~ 180 ¢ T 1
ues, we usedtfn,tnad=(4,5). In all cases, the difference ~ 120 b B % f

due to increasing or decreasing the cutoffs by 1 was less th&
the statistical errors quoted. Overall statistical errors werc | ¢ ]
estimated by bootstrap sampling. ' -

We also studied double exponential fits to the effective 44

massEq(r,t) using time slices up té=8 and exponential
fits to the full 2<2 matrix correlator. The fits, where stable, 0.0 ¢ E
yielded results compatible with those obtained by the abow
methods. 0.80 o ‘ 3

In Fig. 1, we show examples of the effective mass anc X
corresponding extrapolated ener(@2) used to determine

V(r). The lattice potential values are collected in Table IV.  FIG. 1. Effective potential energies as a function of Euclidean
time t (open symbols The asymptotic estimates described in

the text are shown as full symbols. The final estimated potential
V(r) is indicated by the lines with error bands. The data correspond

The potentialV(r) can be used to determine the forceto (B8,«%3=(5.20,0.1350) andr=(4a,0,0) (circles and r
between a static quark-antiquark pair separated by a distanee(8a,0,0) (diamonds.

r=4a

B. Determination of ry/a
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TABLE V. Sommer scale, and other parameters deduced from the lattice potential.

(B, k%% rola a (fm) e Jo (MeV)

(5.2,0.1356% 5.21(05)(0—8) 0.09418)(+13-0)  0.31%7)(+18-11)  465(1)19—3)
(5.2,0.1355D 5.041(40)(-0—10)  0.09728)(+7—-0) 0.3076)(+17-1)  467(1)(+17-3)

(5.20,0.135D 4.754(40)(-2—90)  0.1031(09)¢-20—1)  0.326(07)¢32-12) 463(2)(+2—6)

(5.26,0.1345 4.708(52)(-45-50) 0.1041(12)¢11—10) 0.298(09)¢ 100-8) 468(2)(2— 18)
(5.29,0.134D 4.813(45)(-35-84) 0.1018(10)¢-20—7) 0.310(10)¢-0—61)  466(2)(+10-0)
(5.93,0 4.714(13)¢-0—18)  0.1040(03)f4—0)  0.276(03)¢17—2)  471(1)(+21—3)

scribing quarkonid9]. Specifically, it is defined by the solu- Both on- and off-axis measurements of the potential were
tion of the relation used(see Table IV. We confirm the observatidr22] that the
value ofr, extracted in this way is remarkably insensitive to
changes in the fit range used. The individual parameters such
as e and f are, however, quite sensitive. The point rat
=(a,0,0) was omitted from all fits since its inclusion was

Physically,r,~0.49 fm, and we adopt this latter value when found to give an unacceptably high contributi(_)nx;%l The
physical units are required. This definition of the physicalinclusion of data at the largest (>8a) played little role in
scale has the advantage that one needs to know the potenttf determination of,. Since a limited range afis used to
only at intermediate distances. An extrapolation of the potendetermine the parameters of E@4), one should treat the
tial to large separation, which is conventionally performed tovalue of o with some caution. It does not represent a careful
extract the string tension, is thus avoided. Hence, the procél€termination of the string tension, which of course is a large
dure is well suited to the case of full QCD for which the distance property and, strictly speaking, only meaningful in
definition of a string tension, as the limiting value of the the heavy sea-quark limit. .
force, is not applicable. The string is, of course, expected to We present a summary of the results fgrin Table V.
break at some characteristic distamge The systematic error estimatgéshown as ¢x—y)] were
Our determination of ,/a follows the procedures origi- determined by variations in the f|t_t|ng range usedrfand in
nally described in[27] and recently adapted to provide a the number of parameters used in the fit. The central values
comprehensive study of the scale parameter in quenchedioted were obtained using all potential data satisfyjiag

QCD[22]. That is, we perform fits to the parametrization, <r=8. As described in the next subsection, a term propor-
tional to 1f? was tried. The systematic error estimates also

include the effects of varying,,, by one unit in the evalua-

dv,
rga =1.65. (23

"o

r

r

V(r)=Vo+or—el—|+f

r

) (24) tion of the potentialsee abovg It is seen that, for the en-
sembles at(5.20,0.1350 (5.26,0.1345 and (5.93,0, the
where[ 1/r] is the tree-level lattice Coulomb term matching inf, (and hence in effective lattice spacjrig very
good (well within statistical errors while that at
1 = d3k cogk-r) (5.29,0.1340Dis only slightly off (just over one standard de-
[7 :47Tf_w(277)3 3 . (25  viation). The unmatched simulation at the lightest quark
4> sirP(k;/2) mass has a significantly smaller lattice spacisgven stan-
j=1 dard deviations
It is worth noting (Table IV) that the absolute values of
The parametef is introduced so as to model further lattice the potential are not matched even whgnis. The same is
corrections beyond tree level. We find that, for the coarsgrye for the average p|aquette and the genera”zed Wilson
lattice spacings considered in this work, a tree-level parampops themselves, which go into the potential determination.
etrization gives a poor description of the data ffetr. All of these loop operators have large ultraviolet-sensitive
Following [22], we use fits of the fornt24) to provide a  contributions. In Sec. V, we will comment further on the
good description of the intermediate range potential. We thegxtent to which matching is observed in other physical quan-
identify the fitted parameters as reliable estimdteg to tities.
O(a?)] of the corresponding continuum version which, from  The valuef ,=4.714(13) for the quenched measurements

the definition ofr, satisfies at 8=5.93 may be compared to previous high statistics mea-
) surements in quenched simulations. The interpolating param-
orpte=c=1.65 (26)  etrizations of[22] and[28], respectively, suggest 4.757 and
. 4.74118), in fair agreement with, but slightly larger than,
and hence we extract our estimatergfas our determination of this quantity at this particular value of
B. The slight discrepancy of our result with that of Rgf7]
N (27y ~ amounts to about one standard deviation.
0 o’ The JLQCD Collaboration has presented preliminary re-
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FIG. 2. The static QCD potential expressed in units of The FIG. 3. The difference between the static QCD potential ex-
dashed curve is a string model described in the text. pressed in physical units and the prediction of the string model

_ _ described in the text. For clarity, only data from the matched en-
sults from anN¢=2 simulation using the same action as thesembles are shown.

present work aiB=5.2, cgy=2.02, andx=0.1350,0.1355
[29]. The values of in this case are slightly smaller than Of course, the fact that the scaled potential measurements all
those presented in Table V. Note that the valuegf used have the same value and sloperatr, simply reflects the
by JLQCD is very slightly different from ours. The methods definition ofrg. In Fig. 3, we show the deviations from this
used to extract the potential afiglapparently have much in model potential. Here= 7/12 [30]. We note the following
common with those described above, but we have not begpoints: (i) At the shortest distancesee the points where
able to check all the details. In particular, the errors so fatr|<0.5r,) there are indeed deviations from the string model;
presented by JLQCD are statistical only. (ii) the large fluctuations as a functionméf ; indicate strong

As mentioned above, we have used both on-axis and offviolations of rotational symmetrysee Table IV for a list of
axis Wilson loops in our determination &f. However, dif- separations used(iii) there is some slight evidence that the
ferent spatial orientations of Wilson loops differ by lattice deviations depend systematically on the quark mass—
artifacts of ordem?. Thus, if on-axis loops are used exclu- compare the quenched points with those for the lightest val-
sively to extractf,, then the result may not be consistent ues of«*3 (iv) the matching of the data ensembles allows a
with a determination using other orientations, provided thatlean comparison of the data at different quark masses; and
the statistical accuracy is large enough to expose these dié#) there are no indications of string breaking, but we note
crepancies. For oud;=2 simulations, the level of precision that the distance probed at light quarks masses is not large
is about 1%, so that any significant discrepancygjrdue to  (r<<1.3 fm at the lightest quark masses used
different orientations will be hard to detect. In future high-  As discussed above, the parametrizati@d) is not par-
statistics simulations with dynamical quarks, a cleaner proticularly efficient at describing the short-range interactions
cedure might be to defing, consistently for one particular on the lattice. This is the case even though it allows, in a
orientation and to extradt, from local interpolations of the model-dependent wayf0), for lattice artifacts beyond
force between static quarks. This is the approach used ithose expected at tree level. The fits for the effective charge
Refs.[9,25,27,8. It has also been used for some of the en-e and associated paramefeare therefore sensitive to the fit
sembles presented here, and fgritself it makes little dif- range and any variation in the parametrization. For example,
ference(within the statistical errods we also considered allowing a term proportionalo 2 in
an attempt to describe better the short distance potential.
However, the coarseness of the lattice and crudeness of the
parametrization prevented reliable fits. In the continuum

In Fig. 2, we plot the static potential in units of. The jimit, one would expect the short-range potential to behave
zero of the potential has been set atr,. Overall, the pres- gs

ence of dynamical fermions makes little difference when

plotted in physical units. The data are apparently well de- 4 ag(m)
scribed by the universal bosonic string model potern8l, V(n=- 3 0
which predicts

C. Charge screening

(29

where u is some scale. Lowest-order perturbation theory
r_o_l) then suggests an enhancement of some 14%.imrising
r ' from the change in the factor 332N; when unquenching
(28 the theory(at fixed scalg Using the above parametrization

[V(r)—V(ro)]r0=(1.65—e)<rr—0—1) —-e
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(24), we can see if such an effect is reflected in a correspondarising from different choices of fitting procedure are similar
ing increase of 18% in the parameter in size to the statistical errors.

We have performed correlated fits to the potential with a In the following, we review the main fitting procedures
constant choice of parametrization and fit ranges. Some reavhich were used to obtain the light hadron spectrum results.
sonable variation in the latter was then used to give an estiFurther details of the fitting procedure can be foundi3a].
mate of systematic errors. The fits for the central values of
parameters included all data from Table IV satisfyirg) A. Fitting procedure
<|r|/a<9. The statistical errors were produced via an over-
all bootstrap of the full analysiSwith 500 bootstrap
samples The results are included in Table V. The coupling
parametee does seem to show an increase due to unquenc
ing. For the matched ensembles, the increase IS8 in
going from quenched t@**®=0.135 00.

Similar findings in the case of two flavors of Wilson fer-
mions have been reported by the SESAMETCollaboration
[31], where an increase of 16—33 % was found.

For comparison with other scale determinations, we hav

We used the fuzzing procedures|86] to generate corr-
elators of the type LL, FL, and FF, where F denotes fuzzed
Iffgnd L is local operators. Conforming to our usual conven-
tion, FL means fuzzed at the source and local at the sink. The
fuzzing radius was set tBy,,,= 2.

Effective-mass plots for the three types of fuzzed correla-
tors (LL, FL, and FPB are shown in Fig. 4 for thes
=5.2k%% 3=0.13500 dataset. Note that all the
effective-mass plots approach their asymptote from above.
. . : . The FF correlator exhibits the fastest approach. This behav-
included the fit paramete\;/E expressed in units of MeV as ior is universal throughout all the datasets. For technical rea-

deduced fromr,=0.49 fm. We repeat the cavgat offered sons, the fuzzing procedures used in practice for the hadron
above that the parametefo reflects the medium-range cqrrelators introduced some unbiased stochastic noise. We
shape of the potential and does not represent a definitive,ye checked that this has indeed had no significant effect on
determination of the asymptotic string tension. Phenomenoq,e hadronic quantities presented here but has resulted in
logical models for the hadronic string suggest a value ofncreased error estimates at the level of less than 10% for the
around 440 MeV. The energy scale determination based Oﬂion and less than 20% for the nucleon.

ro/a is therefore some 67 9% higher than that based on the  cqyglated fits were used throughout the fitting analysis of
string tension. In the next section we compare the abovge correlation functions, and the eigenvalue smoothing tech-

scale determination with values deduced from the vector meﬁique of [37] was employed. Ensembles of 500 bootstrap

S0n Mass. , samples were used to estimate the erf68j.
Recently, the MILC Collaboratiofi32,33 has presented \ye performed dactorizing fitwhich we now describe for

results of a comparison of the quenched static potential withhe paryonic case. The three fuzzed correlators LL, FL, and

that due to three flavors of staggered fermions. As in the-F gre fitted together, where the fitting function used for, say,
present analysis, the authors have noted the strong influenggs F| channel is

of the dynamical quarks on the effective lattice spacing and
have compared the shapes of the potential measured on Z(L)zge—mohrz&zfe—mlt,
matched ensembles.
and the LL and FF fitting functions are similarly defingse:e,
V. LIGHT HADRON SPECTRUM e.g.,[39]). Note that both the coefficienZ, ; and the masses
mp,, are common to all the channels, and that jffecom-
Throughout this section, one of our main aims will be to prises the individualy? of the three channels and includes
uncover any unquenching effects in the light hadron specthe correlation between different times and channels.
trum. Because we haveraatcheddata set, any differences For the mesonic case, we modify the above as usual by
can more directly be attributed to unquenching effects. Howincluding the backward-propagating state, i.ee; ™
ever, the task of identifying differences is likely to be hard _,g=m(T=t '\yhereT is the temporal extent of the lattice.
for those quantities which are primarily sensitive to physics  jthin these three different fitting typesstiding window
at the same scale as that used to define the matching trajegnalysis was used to determine the optimal fitting range
tory in the (8,«°*) parameter space, in this case Thisis (¢ . —t_ 3 [40]. In this analysis, fits for variout, were
expected to be the case for the hadron spectrum con&der@,@'{ained witht .., fixed generally to 15. Stability require-
here where the quark masses are still relatively heavy. ments in the baryonic sector forcég.,=14 in some cases.

Two-point hadronic correlation functions were producedThe masses so obtained are displayed in Tables VI-IX.
for each of the datasets appearing in Table I. The interpolat-

ing operators for pseudoscalar, vector, nucleon, and delta
: ) B. PCAC mass
channels were those described[8#]. Mesonic correlators ) ) .
were constructed using both degenerate and nondegenerateThe PCAC(partial conservation of axial vector currgnt
valence quarks, whereas only degenerate valence quark¥ass can be defined using the relation
were used for the baryonic correlators.
The hadronic masses are presented in Tables VI-IX.

These are expressed in both lattice unité£Ma) and in  where P(x) and A(x) are pseudoscalar and axial current
the dimensionless formyM. Note that the errors displayed densities. On the lattice, the following expression can be
are statistical only. We estimate that the systematic error@sed to obtain an estimate ofocac [41]:

3, AL (X) =2MpcacP(X),
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TABLE VI. Pseudoscalar meson masses for all datasets. TABLE VII. Vector meson masses for all datasets.

B (Sea K;al K\l;al o M bs aM bs B (e K;al K\éal r OM v aM v

52000  0.1355 0.1340 0.1340 2.39'3 04733 52000 0.1355 0.1340 0.1340 3.0'5  0.596'%
52000  0.1355 0.1345 0.1340 2.25'3 04473 52000 0.1355 0.1345 0.1340 2.92°; 0.578¢
52000  0.1355 0.1345 0.1345 2.12'3  0.420'2 52000 0.1355 0.1345 0.1345 2.82°;  0.560°]
52000  0.1355 0.1350 0.1340 2.12°3  0.420°3 52000 0.1355 0.1350 0.1340 2.84"3  0.563"]
52000  0.1355 0.1350 0.1345 1.97'3 0.3913 52000 0.1355 0.1350 0.1345 2.75'§  0.546%
52000  0.1355 01350 0.1350 1.82'  0.3623 52000 0.1355 1350  0.1350 2.68';, 0.531°%°
52000 0.1355 0.1355 0.1340 1983 03923 52000 0.1355 0.1355 0.1340 2.79'S  0.553°%°
52000  0.1355 0.1355 0.1345 1.82°7 03623 52000 0.1355 0.1355 0.1345 2.71°;  0.537'3
52000  0.1355 0.1355 0.1350 1.66'3 0.329° 52000 0.1355 0.1355 0.1350 2.63'¢ 0.522°%°
52000  0.1355 0.1355 0.1355 1.483  0.294°% 52000 01355 0.1355 0.1355 2.56'3° 0.508°18

52000  0.1350 0.1335 0.1335 2.68'3  0.5633 52000 01350 0.1335 0.1335 331}  0.695%
52000 0.1350 0.1340 0.1335 2.56'3  0.539°; 52000  0.1350 0.1340 0.1335 322"  0677:
52000  0.1350 0.1340 0.1340 2.45'5  0.514} 52000 01350 0.1340 0.1340 3.13'; 065832
52000  0.1350 0.1345 0.1335 2443 0514 52000 01350 0.1345 0.1335 3.13'7  0.658:
52000  0.1350 0.1345 0.1340 2.32'3  0.489'} 52000 01350 0.1345 0.1340 3.04;  0.638;
52000  0.1350 0.1345 0.1345 22053  0.462°¢ 52000 01350 0.1345 0.1345 2947 06198
52000  0.1350 0.1350 0.1335 2.32'3 0488 52000 0.1350 0.1350 0.1335 3.03';  0.63832
52000  0.1350 0.1350 0.1340 2.20'3  0.462°¢ 52000 01350 0.1350  0.1340 2.94°7 0618
52000  0.1350 0.1350 0.1345 2.06'3  0.434% 52000 0.1350 0.1350 0.1345 2.85"%  0.599%
52000  0.1350 0.1350 0.1350 1.93'3  0.405'¢ 52000 01350 0.1350 0.1350 2.75'%  0.579°]

52600  0.1345 0.1335 0.1335 2.852  0.60332 52600  0.1345 0.1335 0.1335 341  0.721°%
52600  0.1345 0.1340 0.1335 274’2 0580'2 52600 0.1345 0.1340 0.1335 3.32°}  0.703%
52600  0.1345 0.1340 0.1340 2.63'2  0.557'2 52600 01345 0.1340 0.1340 3.24 0685
52600  0.1345 0.1345 0.1335 2632 05572 52600 0.1345 0.1345 0.1335 3.24°  0.685
52600  0.1345 0.1345 0.1340 252"  0.5333 52600  0.1345 0.1345 0.1340 3.16'%  0.668
52600  0.1345 0.1345 0.1345 241'2 05093 52600 0.1345 0.1345 0.1345 3.07'  0.650%
52600  0.1345 0.1350 0.1335 2.52'7  0.5333 52600  0.1345 0.1350 0.1335 3.16'%  0.668¢
52600  0.1345 0.1350 0.1340 2.41'2 05093 52600 0.1345 0.1350 0.1340 3.08'!  0.651'¢
52600  0.1345 0.1350 0.1345 229'2  0.484'3 52600 0.1345 0.1350 0.1345 2.99'!  0.633:
52600  0.1345 0.1350 0.1350 2.16'3 04583 52600 0.1345 0.1350 0.1350 2.91°¢  0.614°2

52900  0.1340 0.1335 0.1335 2.99°;  0.621°3 52900  0.1340 0.1335 0.1335 3.49'%  0.725:
52900  0.1340 0.1340 0.1335 2.88'2  0.599'3 52900 01340 0.1340 0.1335 341}  0.708¢
52900  0.1340 0.1340 0.1340 2.78';  0.577°3 52900  0.1340 0.1340 0.1340 3.32"2  0.691°%
52900  0.1340 0.1345 0.1335 2.78'2  0.577'3 52900 01340 0.1345 0.1335 3.32°)  0.691°§
52900  0.1340 0.1345 0.1340 2675  0.554'3 52900  0.1340 0.1345 0.1340 3.24'¢  0.674°%
52900  0.1340 0.1345 0.1345 2552  0.530°3 52900 0.1340 0.1345 0.1345 3.16'F  0.656'7
52900  0.1340 0.1350 0.1335 2.67°';  0.5543 52900  0.1340 0.1350 0.1335 3.24°¢  0.674°7
52900  0.1340 0.1350 0.1340 255’3  0.530°% 52900  0.1340 0.1350 0.1340 3.16'¢  0.656'7
52900  0.1340 0.1350 0.1345 243’2  0.506'3 52900  0.1340 0.1350 0.1345 3.08'¢  0.639'%
52900  0.1340 0.1350 0.1350 2.31'3  0.480°3 52900  0.1340 0.1350 0.1350 3.00'¢  0.623'5

5.9300  0.0000 0.1327 0.1327 2.334°%, 0.495'} 5.9300  0.0000 0.1327 0.1327 3.05'}  0.646'3
59300  0.0000 0.1332 0.1327 2.211'S 0.469] 59300 0.0000 0.1332 0.1327 297"}  0.6293
5.9300  0.0000 0.1332 0.1332 2.081'5 04427 59300 0.0000 0.1332 0.1332 2.88'2 0.6123
59300  0.0000 0.1334 0.1327 2.159'S 0.4581 59300 0.0000 0.1334 0.1327 2932  0.6223
5.9300  0.0000 0.1334 0.1332 2.028'5 0.430°] 59300 0.0000 0.1334 0.1332 2.85%  0.6053
59300  0.0000 0.1334 0.1334 19735 0419} 59300 0.0000 0.1334 0.1334 2.82°2  0.5983
5.9300  0.0000 0.1337 0.1337 1.800°§  0.382'} 59300  0.0000 0.1337 0.1337 2.72'2 0577
59300  0.0000 0.1339 0.1337 1.739°S 0.369'} 59300 0.0000 0.1339 0.1337 2.69°2  0.570°
5.9300  0.0000 0.1339 0.1339 1.676'§  0.356'} 59300  0.0000 0.1339  0.1339 2663 05633
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TABLE VIII. Nucleon masses for all datasets. TABLE IX. Delta masses for all datasets.
ﬁ Ksea KVaI roM N aMN ﬁ Ksea KvaI roMA aMA
5.2000 0.1355 0.1340  4.757] 0.942" 1% 5.2000 0.1355 0.1340 512 1.015'33
5.2000 0.1355 0.1345  4.42°3 0.876' 12  5.2000 0.1355 0.1345  4.87°% 0.967 ¢
5.2000 0.1355 0.1350  4.09'%° 0.81"3 5.2000 0.1355 0.1350  4.64'1* 0.92"2
5.2000 0.1355 0.1355  3.86°/ 0.766' 11 5.2000 0.1355 0.1355  4.30'1 0.85°3
5.2000 0.1350 0.1335  5.167 1.086'§ 5.2000 0.1350 0.1335  5.57§ 1.172°1%
5.2000 0.1350 0.1340  4.877: 1.024°8 5.2000 0.1350 0.1340  5.31°§ 1.116°13
5.2000 0.1350 0.1345  4.54'5 0.954'% 5.2000 0.1350 0.1345  5.02%} 1.055 12
5.2000 0.1350 0.1350  4.203 0.883 13 5.2000 0.1350 0.1350  4.75'%; 1.00'3
5.2600 0.1345 0.1335  5.323 1.125'§ 5.2600 0.1345 0.1335  5.61°3 1.186 1}
5.2600 0.1345 0.1340  5.05°3 1.068 3 5.2600 0.1345 0.1340  5.3673 113411
5.2600 0.1345 0.1345  4.78°3 1.011°3° 5.2600 0.1345 0.1345 511§ 1.080'12
5.2600 0.1345 0.1350  4.50°§ 0.95119 5.2600 0.1345 0.1350  4.83'1, 1.02213
5.2900 0.1340 0.1335 55073 1.143°8 5.2900 0.1340 0.1335  5.80'% 1.205'13
5.2900 0.1340 0.1340  5.23° 1.086 3 5.2900 0.1340 0.1340  5.56'%, 1.155 12
5.2900 0.1340 0.1345  4.947§ 1.027°19  5.2900 0.1340 0.1345  5.33%, 1.107°33
5.2900 0.1340 0.1350  4.66'; 0.968 13 5.2900 0.1340 0.1350  5.09; 1.057°33
5.9300 0.0000 0.1327  4.56'3 0.968°2 5.9300 0.000 0.1327  5.09° 1.079°;
5.9300 0.0000 0.1332  4.2573 0.902°3 5.9300 0.000 0.1332  4.84°¢ 1.026°§
5.9300 0.0000 0.1334  4.137 0.876'5 5.9300 0.000 0.1334  4.74°% 1.005°3
5.9300 0.0000 0.1337  3.9473 0.836'{ 5.9300 0.000 0.1337 458 0.972° 11
5.9300 0.0000 0.1339  3.867; 0.818°] 5.9300 0.000 0.1339 447§ 0.949'12
794CA4PT(5,t)+aCA(7§{ (94Cppf(6,t) C. The J parameter
Mpcac™ = In Figs. 5 and 6, the vector meson masses and hyperfine
2Cppt(0,1) splittings are plotted against the corresponding pseudoscalar
masses for all the datasets. It is difficult to identify an un-
=(r(t))+ca(s(t)), (30) quenching signal from these plots, as the data seem to over-

lay each other. Note that i8], it was reported that there was
_ a tendency for the vector massitwreaseas the sea quark
whered, is the temporal lattice derivative averaged over themassdecreasesfor fixed pseudoscalar mashe observa-
forward, 4, and backwardg*, directions, and ) represents tions for the presenmatcheddataset imply that this may
averaging over times,, where the asymptotic state domi- have been due to either @(a) effect (since the dataset in
nates. The corre[atm@ are defined if34]. The value of the [8] was not fully improved at this levebr a finite volume
coefficient used is effect. The conclusion, therefore, is that it is important to run
at a fixeda in order to disentangle unquenching effects from
c,=—0.007 562, (31 lattice artifacts or finite volume effects. _ _
A possible explanation as to why there is no signal of
unquenching in our meson spectrum is the following. Our
with g5=6/g (the bare coupling This is the one-loop, dy- matched ensembles are defined to have a cormgonlue,
namical value[42], and hence Eq(30) suffers fromO(a) so any physical quantity that is sensitive to this distance
errors. Table X shows the results fonpcac for all the  scale(and the static quark potential itselill also, by defi-
datasets wittt, defined as in Eq(31). nition, be matched. Our mesons, because they are composed
There has been some recent debate in the literature ref relatively heavy quarks, are examples of such quantities,
garding the most suitable nonperturbatively improved and this is a possible reason why there is no significant evi-
value (see, e.g.[43-45) and a reliable value may not yet dence of unquenching effects in the meson spectrum.
have been determined. In the absence of a nonperturbatively When comparing the experimental data points with the
improved value ot (for Ny=2), we choose to display also lattice data in Figs. 5 and 6, we note that the lattice data are
in Table XI the values forr(t)) and (s(t)). With these high. This could be due to an incorrect value gbeing used
numbers, the reader can readily obtain the valuesnigftac  (ry=0.49 fm) and that the true value of, is somewhat
with any choice ofcy . higher. This possibility is discussed again in the next section.
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TABLE X. The quark massnpcac as defined in Eq(30) for all TABLE XI. The values of(r(t)) and (s(t)) used to define

datasets. Mpcac, See Eq(30).

B K2 K Ky oMpcac aMpcac B K2 K Ky r(t) s(t)
520 0.1355 0.1340 0.1340 0.329°; 0.0652 3 520 01355 0.1340 0.1340 0.06623%  0.1179]
520  0.1355 0.1345 0.1340 0.292°3  0.05802 520  0.1355 0.1345 0.1340 0.0589%  0.1050°)
520 0.1355 0.1345 0.1345 0.2563 0.0508 3 520 0.1355 0.1345 0.1345 0.05163  0.0923 3
520 0.1355 0.1350 0.1340 0.256'3 0.05083 520 0.1355 0.1350 0.1340 0.05163  0.0924 3
520 01355 0.1350 0.1345 0.221"3 0.04383 520 0.1355 0.1350 0.1345 0.04453  0.0799 3°
520 01355 0.1350 0.1350 0.1853  0.03683 520 0.1355 0.1350 0.1350 0.0374%  0.06783
520 01355 0.1355 0.1340 0.221"3 0.04383 520 0.1355 0.1355 0.1340 0.04453  0.0801 3
520 0.1355 0.1355 0.1345 0.186'3 0.0368 3 520 0.1355 0.1355 0.1345 0.03743  0.06783
520 0.355 0.1355 0.1350 0.151'2  0.02993% 520 0.1355 0.1355 0.1350 0.03043%  0.05583
520 0.1355 0.1355 0.1355 0.116'3 0.0231°3 520 0.1355 0.1355 0.1355 0.02353  0.0441°
520 01350 0.1335 0.1335 0.424"3 0.093'3 520 01350 0.1335 0.1335 0.09073  0.1682 3
520 01350 0.1340 0.1335 0.389°  0.08193 520 01350 0.1340 0.1335 0.0832%  0.1538%°
520 0.1350 0.1340 0.1340 0.355'2  0.074632 520  0.1350 0.1340 0.1340 0.07582%  0.1397 19
520 01350 0.1345 0.1335 0.355'3  0.07462 520 01350 0.1345 0.1335 0.07583  0.139719
520 0.1350 0.1345 0.1340 0.320°2  0.06742 520  0.1350 0.1345 0.1340 0.0685%  0.1258°
520 01350 0.1345 0.1345 0.287°'2  0.06022 520 01350 0.1345 0.1345 0.06123%  0.11233°
520 0.1350 0.1350 0.1335 0.320°'2  0.06742 520 0.1350 0.1350 0.1335 0.0685%  0.1260 1
520 0.1350 0.1350 0.1340 0.286% 0.0602 3 520 0.1350 0.1350 0.1340 0.0612%  0.11231§
520 01350 0.1350 0.1345 0.2533  0.05323 520  0.1350 0.1350 0.1345 0.054T'%  0.0990'})
520 01350 0.1350 0.1350 0.220°2  0.04622 520 01350 0.1350 0.1350 0.0469%  0.08593°
526 01345 0.1335 0.1335 04917  0.10383 526  0.1345 0.1335 0.1335 0.10553  0.1924%'
526  0.1345 01340 0.1335 04553  0.09633 526  0.1345 0.1340 0.1335 0.09783% 0.1779°
526  0.1345 0.1340 0.1340 0.420°  0.08883 526  0.1345 0.1340 0.1340 0.0903%  0.16363°
526  0.1345 0.1345 0.1335 04200  0.08883 526  0.1345 0.1345 0.1335 0.090Z%  0.16373°
526  0.1345 0.1345 0.1340 0.385; 0.08153 526  0.1345 0.1345 0.1340 0.08283  0.1496 3
526  0.1345 0.1345 0.1345 0.351°!  0.0742% 526  0.1345 0.1345 0.1345 0.0754%  0.13593
526 01345 0.1350 0.1335 0.385F  0.08143 526 01345 0.1350 0.1335 0.08273  0.14983°
526  0.1345 0.1350 0.1340 0.351°!  0.07423 526  0.1345 0.1350 0.1340 0.0753%  0.1360°)
526 01345 0.1350 0.1345 0.317°2 0.0670°3 526 01345 0.1350 0.1345 0.0680°  0.122573
526  0.1345 0.1350 0.1350 0.2832  0.05993 526  0.1345 0.1350 0.1350 0.06083%  0.1093 )
529  0.1340 0.1335 0.1335 0.530°% 0.1101°3 529 01340 0.1335 0.1335 0.11193  0.2005 }?
529  0.1340 0.1340 0.1335 0.494%  0.10263 529  0.1340 0.1340 0.1335 0.104Z% 0.1862 12
529 01340 0.1340 0.1340 0.458¢ 0.0952°3 529  0.1340 0.1340 0.1340 0.09673  0.1721}
529  0.1340 0.1345 0.1335 0.458'¢; 0.0951"3 529  0.1340 0.1345 0.1335 0.09663  0.1721}3
529 01340 0.1345 0.1340 0.423% 0.08783 529 01340 0.1345 0.1340 0.089Z23  0.1583 1
529 01340 0.1345 0.1345 0.387'  0.08053 529  0.1340 0.1345 0.1345 0.08183  0.1447 12
529  0.1340 01350 0.1335 0.422'¢  0.08773 529  0.1340 0.1350 0.1335 0.089T%  0.1583 12
529 01340 0.1350 0.1340 0.387'  0.08053 529  0.1340 0.1350 0.1340 0.08173  0.1447 12
529  0.1340 01350 0.1345 0.353'¢  0.07333 529  0.1340 0.1350 0.1345 0.0744% 0.1314}2
529 01340 0.1350 0.1350 0.318%  0.06613 529  0.1340 0.1350 0.1350 0.06713% 0.118212

593  0.0000 0.1327 0.1327 0.3530°}9 0.07488 1} 593  0.0000 0.1327 0.1327 0.07584} 0.126Q°%
593  0.0000 0.1332 0.1327 0.31623, 0.06709}} 593  0.0000 0.1332 0.1327 0.06795}5 0.1127 ¢
593  0.0000 0.1332 0.1332 0.2799°%, 0.0593g 1} 593  0.0000 0.1332 0.1332 0.06014 1  0.0997 ¢
593  0.0000 0.1334 0.1327 0.3016'}, 0.06398 1} 593  0.0000 0.1334 0.1327 0.06480}; 0.1075%¢
593  0.0000 0.1334 0.1332 0.2653%, 0.05629 1} 593  0.0000 0.1334 0.1332 0.0570Z}  0.0945¢
593  0.0000 0.1334 0.1334 0.2508%, 0.053221% 593  0.0000 0.1334 0.1334 0.05390715 0.0894¢
593  0.0000 0.1337 0.1337 0.2077}  0.04406 1 5.93  0.0000 0.1337 0.1337 0.04464} 0.0754 %
593  0.0000 0.1339 0.1337 0.1931°}  0.04097 2 593  0.0000 0.1339 0.1337 0.04151}% 0.0703;
593  0.0000 0.1339 0.1339 0.1786'; 0.3788 13 593  0.0000 0.1339 0.1339 0.038381 0.0653
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A further point regarding hyperfine splitting in Fig. 6 is we will term the “unitary” trajectory, i.e., alonge®®%= "2\
that the lattice data for theatchedensembles tend to flatten |n Table XIl, the results from both methods are given. These
as the sea quark mass decreagkise quenched data have a values ofJ are around 25% lower than the experimental
distinctly negative slope, whereas tké&%=0.1350 data are vyglue’ Jexp=0.482).
flat) Thus the lattice data are tending toward the same be- Finally, we note that the physical value df[i.e., that
havior as the experimental data, which lie on a line withwhich most closely follows the procedure used to determine
positive slope (independent of the value used fog). This  the experimental value df,,=0.48(2)] should be obtained
behavior is apparently spoiled by the unmatched run witifrom extrapolating the results from the first approach to the
«>%%=0.1355(see Fig. 6, which has a cleanegativeslope.  physical sea quark masses. We call this the third approach. In
However, thex*®*=0.1355 data do not satisfy the finite vol- order to perform this extrapolation, we extrapolate the three
ume bound of(8] (see Sec. VE One would expect that matched dynamical values obtained from the first approach

these finite volume effects would squeeze the vector mesofhearly in (M gnsitar 210 (Mggj‘afv:o. Mgnsitary is the pseu-

state more than the pseudoscalar sttte p is an extended doscalar meson mass at the unitary pding., where the
objec). Furthermore, the more the valence quark mass wagalence and sea quark masses are all degeneTéte value
decreased, the more the vector mass would be raised by finitgr J from the third approach is presented in Table XII, and
volume systematics. These considerations match with the ole note that it is approaching the experimental valueJfor
served behavior of thec***=0.1355 data in Fig. 6. The  The results from all three approaches are plotted in Fig. 7,
JLQCD Collaboratior{29] has recently reported on a finite together with the experimental result. There is some promis-
volume analysis with the same action as used in this working evidence that the lattice estimate bfncreases toward
For 8=5.2k°%%=0.1350, they found no evidence of finite-

volume effects in their 1%data for either the pseudoscalar or ~ TABLE XII. J values from the various approaches as described
vector meson. It would be interesting to extend this analysis the text.

to their 8=5.2 k%= 0.1355 dataset.

The J parameter is defineld6] as B K€ J
dMmy First approach
J= MVM : (32 5.2000 0.1355 0.32"2
K,K*

5.2000 0.1350 0.3933°
In the context of dynamical fermion simulations, this pa-

6
rameter can be calculated in two ways. The first is to defin@-2600 0.1345 0.365'g
a partially quenched for each value of the sea quark mass. g 2909 0.1340 0.349'7
In this case, the derivative in Eq32) is with respect to .
variations in the valence quark maésith the sea quark 5.9300 0.000 0.376'7,

mass fixefl The second approach is to defih@long what Second approach
0.35"2

3Note, however, that the experimental valueJafoes depend on Third approach

assumptions regarding the mixing of the strange and nonstrange o,43f§

quark states.
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the experimental point as the sea quark mass decrésses planation for this discrepancy is that the potential and me-
the J value from approaches 1 and. Fhis effect will move  sonic spectrum are contaminated with differéxta?) errors,
the lattice estimates of th& parameter towards the experi- or that the value ;=0.49 fm is 10—15 % too small, and that
mental value as simulations are performed at more physicahe true value is ,~0.55 fm.
values of quark mass. It is interesting to study the lattice spacing determinations
Recently, there has been a proposed ansatz for the funin more detail since they are a measure of unquenching ef-
tional form of My, as a function ofM E,S [47]. However, all  fects in dynamical simulations. Specifically, it is often as-
our data haveM p5/M\,=0.6, and for this region, the ansatz sumed that the reason the various quenched determinations
of [47] is linear to a good approximation. Therefore, we of a from, e.g., the meson spectrum differ from thatr gfor
choose to interpolate our data with a simple linear functiorthe string tension is due to dynamical quark effects. An ob-
and await more chiral data before using the ansa{zéf. vious quantity to monitor the merging of the varicaisleter-
Two groups have recently reported results ondiparam-  minations can be defined as
eter from dynamical simulations. The CP-PACS Collabora-
tion results ala~0.11 fm foundJdynamicak, jauenchedging g . ai(B,Msed
clover action[5]. Furthermore, they found that this discrep- 5 j(B:Msed =1 .
. ’ . .. . a;(B,Msed
ancy increased as the continuum limit was taken. A similar !
result was found by the MILC Collaboration, who used an ) i ) i )
improved staggered action with~0.13 fm [33]. Both of wherea; is the lattice spacing determined from the physical

these groups’ results match those found in this work. quantityi={M,,M,f,,...}. Obviously, if §;=0, then
the lattice prediction for quantitiyusing the scale determined

_ ) fromj (or vice versais in exact agreement with experiment.
D. Lattice spacing Since our simulations are improved @(a?), we expect
In Sec. IV, the lattice spacing was determined from the that 6—0(a%) asMgeaa—m; (Wherem, is the average ud
intermediate range properties of the static quark potential. lquark masps Thus a plot ofs against (152 ~2 would be
this subsection, we present a complementary determlnathﬂsightfuL whereM gréitary is the pseudoscalar mass at the uni-
of a from the meson spectrum.
A common method of determlnlng from .the meson TABLE XIII. Lattice spacing determined from the mesonic sec-
spectrum uses the mass. However, this requires the chiral ;. using the method di48].
extrapolation of the vector meson mass dowiaionos} the

(33

chiral limit. This extrapolation is often performed using a g e a (Ferm)
linear function. However, as was discussed in the previous
subsection, a linear chiral extrapolation may not be appropris.2000 0.1355 0.110°3

ate for M,,=0.8 GeV. An alternative method of extracting 5.2000
the lattice spacing using the vector meson mass asithe- '

lated data pointg(i.e., without any chiral extrapolatioprwas  5.2600 0.1345 0.1183
given in[48]. Using this method, we obtain the lattice spac- 3
ing values as shown in Table Xlll. Note that these are in>-2900 0.1340 0.11673
general 10—15 % larger than the values from Sec. IV, wherg_ 9300 quenched 0.1186'17
the lattice spacing was determined fra A possible ex-

0.1350 0.115°3
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tary point, i.e., for degenerate valence and sea quéstis coefficient of theO(a") lattice systematic. The functional
MpeeY=co for the quenched dataHere, we work with form for a(g?) was originally applied for the quenched
(MUt =2 rather than Ihee,for thex coordinate since itis theory, but let us assume that it can also be applied in the
equivalent to, but easier to define thanid, It is impor-  uUnquenched case. Using H@4), we see that a mismatch in
tant to note that the coordinate in this plot is the “control /# ©f A8 would lead to a relative error ia of

parameter” for the study of unquenching effects, i.e., when S(B+AB)— 8(B)
we vary this parameter from its quenched value towards its ~—3Ap. (35
experimental value, we hope to see the data plotted iry the 5(B)

coordinate move towards its appropriate experimental value,

Thus it is easier to interpret unquenching effects directIyThiS shows that even an error i of as much asAg

. .~ ~0.01 introduces a relative error i#3) of only 3%, ruling
2
I/rgrriT(])SZIr; plot than from, e.g., plots d#ly againstMps for out any possible mismatching as leading to a significant
sear

- distortion in é.

In Fig. 8, 8 is plotted against NIpE®%)~2 for the
matched datasets. In this plot, we have petry and the
various physical quantitiesare Vo and the hadronic mass _ )
pairs (MK* 1MK) and (Mp ’Mﬂ_)_ The method that was used In Table )(IIV, the ratiosM ps/M\/ are dISplayed 'fOI’ the
to determine the scala; from these mass pairs is that of casex***=«"®. The average andd quark mass is fixed by
[48]. It is worth noting that the experimental point on this "eéquiringMps/My=0.18. As can been seen, the simulations
same plot would occur at ancoordinate of (/IW)‘2~200. are ?t much larger Siynammal quark masses. Figure 9 shows

Figure 8 does not show signs of unquenching for quanti—the Edinburgh plot (M_N/MV versusM_PS/M_V)_for allthe
ties involving the hadronic spectrum, i.e., the mass pairéiatasets. There is no 5|gn|f|cant_var|at|on within the dynam!-
(Mys ;M) and M, ,M..). (Future work will studys, for cal data as the sea quark mass is changed, but the dyne}m|cal
the matrix element’aua;\Ttitiei?fqT andfy .) However, there data do tend to lie ab.OV‘? t“ﬁ‘a‘Ch‘?d.q“e”Ched data. Th|s
is evidence of unquenching effects when comparing the scall tter feature may be indicative o'f finite volume effects since
from r, with that from yo. The quenched value of - is these are expected to be larger in fu_II QCD compared_ to the
distinct from the dynamical values, though we note that thequenched casgpl]. In [8], an analysis of dynamical finite
method used to obtaior was optimized for the extraction of
ro rather thano itself (see Sec. IV R

One may wonder if the values may have been distorted
by not choosing the simulation parameteff.) exactly

E. Edinburgh plot

TABLE XIV. The ratio M 2@y MUY for the dynamical data
sets(i.e., with k= x5%%= V2,

K M
on the matched trajectory. In order to obtain a rough estimate Petly
of the effect of a mismatched value g8f we use the renor- 5.2000 0.1355 0.578 13
malization group inspired ansatz fay [49,50: 5.2000 0.1350 0.700 22
: . : 10
ai(95)=A"Mpr(g0) X[ 1+ X;fpr(g§) "], (34 52600 0.1345 0.7832
where fpr(g?) is the usual asymptotic scaling function ob- 52900 0.1340 0.835'7

tained from integrating th@ function of QCD andX; is the
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volume effects concluded that they were statistically insig-and therefore we choose to use naive linear chiral extrapola-
nificant for spatial extents oL =1.6 fm and sea quark tions in the following.

masses corresponding tdl,s/M,,=0.67 with about 100

configurations. This bound is satisfied for the matched en- 1. Partially quenched chiral extrapolations

sembles, but not for thex®*=0.1355 case, wherd. A partially quenched chiral extrapolation was performed

—1.60 fm andM pg/My=0.58. ; ~ . - >
Note also that for heavy valence quark masses, the dJorthe hadronic massdd =My, My, andM ; againstMs

namical data lie close to the phenomenological cys4, l.e., the following ansatz was used:
whereas they tend to drift higher than the curve for small
valence quark masses. Tlmmatched quenched data agree M (B, k%2 k") = A+BMpd B, k52 V22, (36)
well with the curve.

Dynamical results for baryons have recently been re- ) .
ported by two groups. CP-PAC@sing a clover actionfind We have introduced the following nomenclature. In
good agreement with experiment for strange baryons, buvi(B,«%«"®), the first two arguments refer to the sea pa-
their light baryong(in the continuum limit are around 10% rameters: the gauge couplifgyand the sea quark mags®2
higher than experimensee Sec. V C ii5]). They discuss The third argument refers to the valence quark me$%
the possibility that this is caused by finite volume effects.The results for these partially quenched extrapolations ap-
The MILC Collaboration(using an improved staggered ac- pear in Table XV. Note that there is no convincing sign of
tion) find their dynamical and quenched Edinburgh plotsunquenching effects in that th& and B values for the

overlay each other33]. matched datasets tend to overlay each other, and there is no
clear trend for these values as a functiomag,,
F. Chiral extrapolations Although we choose to extrapolate with respect to

There are a number of different “chiral extrapolations” Mp<(B:<>% «"*)2, we also show, for completeness, the val-
that one can perform in the case of dynamical fermiond!€S ofAKC,itm Table XVI. These were obtained from the usual
where there is a two-dimensional quark mass parametdit of Mpg 8, k%3 k*¥)? versus 14Y%— 1/k .
space, Mge,,Mya). We describe three such extrapolations of
the data. The first usespartially quenchedanalysis where 2. Unitary chiral extrapolations
each of themy, datasets is extrapolated entirely separately. . . ~ A -
The second uses only thenitary subset withmge:=m, . An extrapolation of the hadronic masskés=My, My,
The third does @ombinedit of ail the matched data using a andM, againstViZgwas performed for the unitary subset of
fitting ansatz to model the variation between the differentdata, i.e., the following ansatz was used:

Mo, Values.

Note that there have been recent proposals for the func-
tional form of My, and M\, as a function ofM 3¢ which go
beyond the usual chiral linear ansatz normally used in ex-
trapolations of lattice datfs3,47. However, as reported in
Sec. V C, the nonlinearity of these functional forms becomedNote that only the matched, dynamical datasets were in-
relevant only for lattice data lighter than in our simulations, cluded in these fits. The results appear in Table XVII.

|\7| (,By KSezf Kseaj — Aunitary+ Bunitaryl\‘ﬂ P§,Br Kseat Kseazl

(37
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TABLE XV. The fitting parameters for the partially quenched fit
of Eq. (36) for the hadronic masses.

PHYSICAL REVIEW D 65 054502

TABLE XVII. The fitting parameters for the “unitary” dataset
fit of Eq. (37) for the hadronic masses.

Hadron B K5ed A B Hadron Aunitary gunitary
Vector meson Vector meson 0.476" 13 0.66"2
5.2000 0.1355 44921 655
04495 0655 Nucleon 0.69'3 1.20'3
2 1 45713 763
5.2000 0.1350  0.457'13 0.76"3 Delta 0.84°3 09412
5.2600 0.1345 0.472; 0.69f§
15 3
52900 01340 0.47Q 45 0.66"3 One advantage of such a fitting procedure is that in total, to
5.9300 0.0000 0.475'2 0.70'2 fit the entire matched dataset, there are fewer fitting param-
eters than are required in the partially guenched analysis. The
Nucleon s . functional form in Eq.(38) is the simplest functional form
5.2000 0.1355  0.65337 1.28', which allows for a variation ofA and B with the sea quark
5.2000 0.1350 0.672 1.32'6 mass, and which is finite for all the datasets studjéthte
. . 675 3272 >
5 . that M pq 8, k*%4 k3¢9 =0 for the quenched dataThe other
5.2600 0.1345 0.72°3 1.12% advantage is that the parametérsandB, are a direct mea-
5.2900 0.1340 0.71°2 1,134 sure of unquenching effects.
212 ’j The results for the fitting parametefs, ; and By, are
5.9300 0.0000  0.653'3; 1.287 displayed in Table XVIII for the hadronic masskk,, M,
Delta andM, . The parameterd; andB; for all the hadrons are
5.2000 0.1355 0.77°5 1.12°3% compatible with zero at thea2level, underlining again the
s ; fact that we have not unambiguously uncovered unquenching
52000  0.1350  0.817; 11877 effects in the meson and baryon spectra.
5.2600 0.1345  0.80'3 1.06'2
G. Glueballs and torelons
5.2900 0.1340  0.84°2 0.95'% . u
5.9300 0.0000 0.81'2 1088 Experiment has not so far detected glueball states unam-

3. Combined chiral fits

biguously in the light hadron spectrum. This failure is usu-
ally believed to be a consequence of mixing between the
light glueballs andqq states(“quarkonia”) with the same
quantum numbers and similar masses. We lack, however, a

It is instructive to perform a combined chiral fit to the clear understanding of the mixing matrix elements that lead
entire matched dataset. In order to achieve this, we considgg {he sirong interaction eigenstates that would be observed,
the following fitting ansatz for the fiting of the hadronic 4. thus phenomenological attempts to describe the content
massM, where

,\7' (B, sea Kval) — Acombined;. Bcombinecm Pgﬁa Sea KvaI)Z

=AotAiMpg B, k53 k%89 2

+[Bo+BiMpd B, k%3 k59 2]

X Mpd B, k5% k)2,

(38)

TABLE XVI. Values of «;; obtained for all the datasets.

5 sea
5.20 0.1355 0.136453
5.20 0.1350 0.136633
5.26 0.1345 0.137093
5.29 0.1340 0.137303
5.93 quenched 0.135207 11

(gluonic or quarkoniumof the scalar sector glueball candi-
dates have led to widely differing resu(ts4,55.

Lattice QCD can in principle predict these mixing param-
eters, and in the quenched approximation precise values are
known for the continuum gluodynamidgjuenched QCD
glueball massessee[56,57] for reviews. Attempts to mea-
sure the mixing matrix have been ma@me[57] for a re-
view of quenched measurements, a68] for first determi-
nations in the presence of sea quarad are in progress
using the current UKQCD field configuratiof§9]. Simul-
taneously, the validity of such a simple mixing scenario can
also be addressdé0].

TABLE XVIII. The fitting parameters for the combined fit of
Eq. (38) for the hadronic masses.

Hadron Ao A Bg B,

Vector meson  0.492°3;° —0.0043 0617 0.015°9
Nucleon 0.6631: 0.0063 1.23% —o0.001}
Delta 0.8432 —000Z2 091'% 0023
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Quenched glueball calculations require large ensembleservables. This ensured statistically uncorrelated averages for
and, until recently, it had been assumed that a similar level ofieighboring bins.
statistical noise would preclude accurate measurements in To reduce statistical errors on mass estimates, operators
simulations with dynamical fermions. We find, however, in Should have a good overlap onto the ground-state excitation
common with other recent studi¢31] that statistical errors With the specified quantum numbers. This was achieved in
are, somewhat surprisingly, reduced in dynamical simulatioAW0 ways.
estimates of glueball masses at present parameter values, atEach operator is based on a traced, closed contour of

least compared to similarly sized quenched ensembles. ~ 9@uge links, which is gauge-invariant. We may improve the
Before continuing with a discussion of our calculations,ove”ap of these operators onto the ground-state excitations

we need to be a little more specific about what we mearpy 'SmMearing” and *blocking” the links. The former is com-

when we talk of “glueballs” in QCD. The point is that the pL_Jtat|0naIIy cheap, but the latter has the _advantag_e of _dou-
presence of quarks will change the vacuum and there is n Img the spatial extent of the operator W'th each lteration.
fundamental reason to think that the mass spectrum of QC his proves especially useful for measuring wave functions

b imatelv d bed st f the aluebal at are not spherically symmetric, such as the tensor. The
can be approximately described as consisting otthe giuebaliga ;s of this procedure will be discussed furthef60)].

of the pure gauge theory, Fhe usual quarkonia, anq, where A suite of four glueball operators was constructed in each
these are close in mass, mixtures of the two. There is, hOwgg gjice of the gauge field configurations by summing simi-
ever, a collection of phenomena—the Okubo-Zweig-lizukayyrly improved contours in the appropriate symmetry combi-
(OZI) rule, small sea quark effects, etc.—that creates a re&ations[61]. Overall this gave 28 operators per symmetry
sonable prejudice that this might be so. This question will be;hannel. These were cross-correlated and”acher-Wolff
examined more explicitly elsewhef60]. Here we shall fol-  variational analysi§62] (for details of the exact procedure,
low the usual view and assume it to be so. In that case, weee Sec. 3.2 0f63]) used to extract the ground states for
expect that if there are no nearby quarkonia, then the statesach of the lowest momentum combinations of the operators
most readily visible using purely gluonic operators similar to(labeled a-P=0,1, . . . ,whereP=p=pa). All scalar op-
those used in pure gauge theories will be almost entirelerators A *), for example, were found to have a good
glueball-like. This is(probably the case for the scalar “glue- overlap (typically greater than 0)7onto the ground state.
ball” state we discuss herein. The fact that the overlap of thisThe robustness of the variational analysis was checked by
state onto these purely gluonic operators is similar to that irexamining the behavior of individual correlation functions,
the pure gauge theory reinforces our prejudice. Thus we wilhnd of subsets of the full operator basis. In each case, the
refer to this state as the scalar glueball during the remaindehass estimates were found to be consistent as expected given
of our analysis. the good overlap of all operators onto the ground state.

If we then assume that the glueball spectrum of the dy- From correlation functions we may define an effective
namical theory is not radically different from that of the pure energy as a function of the Euclidean timelike separation
gauge gluodynamics, we expect the lightest states to be theh lattice unit$ of the creation and annihilation operators:
scalar and tensor ground states. In terms of the reduced sym-

metries of the space-time lattice, these correspond to the E )= (O'(t+1)0(0)) 39
A" and T, " representations of the appropriate cubic erl(t)=—log (OT(1Ho(0)) - (39)

group. In the continuum where full rotational symmetry is

restored, these match onto tB&°=0" *,2"* states. Given The effective energies of the nonzero momentum states were
the size of our ensembles, we find it difficult to resolve lat-conyerted to effective masses assuming the lattice dispersion
tice masses much beyord;~1.2. In gluodynamics, the relation

heavier tensor state has(eontinuum extrapolatgdnass in

units of the Sommer scale aroungM ;=6. Thef, values 3
tabulated for our ensembles in Table V thus suggest that the E(P)2=M2+ >, sin2(
scalar and tensor are the states we will most likely be able to u=1
study.

Using a full arsenal of noise reduction techniques, it isThe signal from theé?-P=1 channel was found to be par-
now possible to make good estimates of the masses of thesieularly useful. The mass of the ground-state excitation was
lightest glueball masses using existing ensembles. In thistill small enough for reliable effective energy plateaus to be
section, we present, as an example, the scalar and tensalbserved, and statistical noise was observed to be only of a
states extracted from one ensemble, that @&, ] similar magnitude to the®?-P=0 channel. ForP-P=2,
=(5.20,0.13550). Full results for all couplings, and giving however, the energies of the states were too large to be con-
greater details of methodology, will be reported &@]. Pre-  fidently assessed. Where they could be extracted, they
liminary results have appeared [ib4]. showed effective-mass plateaus consistent with lower mo-

Measurements were made after every téhtMC) trajec-  mentum channels. Since they did not improve the quality of
tory giving an ensemble of 830 configurations, which maythe fits, however, they were not included. Correlated and
not be uncorrelated. A jack-knife error analysis was per-uncorrelated plateau fits were then carried out udhd
formed using ten bins, each 830 trajectories in size, which=0,1 together. As the former fits differed only within errors,
were much larger than the autocorrelation times of the obfor robustness we quote uncorrelated results in this summary.

ZWPM). (40)
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FIG. 10. Effective masses for tha; © ground state on the Improvement level

(B.x)=(5.20,0.135 50) ensemble. FIG. 11. Vacuum expectation values for Polyakov loops at vari-

ous blocking levels on thed, k) =(5.20,0.13550) ensemble.

In Fig. 10, we plot the effective masses for the various
momentum channels of the scalar glueball. A clear plateau ithe spatial extent of the lattice multiplied by the energy per
seen in each of the momentum channels. Since these plgnit length of the flux tubéthe string tension In the infinite
teaux are compatible, indicating a restoration of the convolume limit, such states become very massive and decouple
tinuum Lorentz symmetry, we can combine the lowest mofrom the observed spectrum.
mentum channels to estimate the pure scalar glueball mass The vacuum expectation valu&/EV) of the Polyakov
M =0.628(30) in lattice units, or yMg=3.17(15) in units  OPerator that couples to such a torelon loop is zero in the

of the Sommer scale. We note here that the interpolate@onfined phase of gluodynamics, as the loop cannot be bro-
quenched glueball mass at this lattice spacingrj# g ken when no sources in the fundamental representation exist.

=3.79(16) [60], which is significantly above the scalar mass 11US. only a combination of at least two torelons with the

measured here. There would thus appear to be strong eiPPropriate symmetries can couple to the particle states in
dence for a quenching effect in the scalar glueball channel df'¢ theory. On lattices small enough that the mass of the
QCD. We should temper this statement slightly, as there arightest torelon pair is comparable to the scalar glueball

other possible sources of suppression of the scalar gluebdl}ass: we will see significant finite volume effects.

mass. First, there are finite volume effects which are known When light dynamical quarks are present, the torelon be-

to suppress the scalar glueball mass. In quenched QCD, tf9Mes unstable to decay. In this case, the Polyakov loop

principle source of this suppression is the mixing of the g|ue_operator gains a nonzero expectation value. This is an effect

ball with torelon pair states, e.g64], but we shall demon- 2nalogous to the string breaking seen in the static quark po-
strate below that in the present case our lattices are larg€ntial measured using Wilson loops, and is another explicit
enough for any such effects to be very small. signal for the presence of light dynamical quarks in these
More seriously, we do not know the size of this effect in simulations. In addition, it becomes possible for torelon
the continuum limit. In the quenched theory, there are knowrptates t mix with glueballs. Such states are, of course,
to be large scaling violations in tha; * channel for the lighter than the pairs of torelons that mix in the quenched
Wilson action[65] with the “scalar dip” tending to suppress theory, and so we might expect to see finite volume effects

the mass below the continuum value even at relatively smaﬁ)n_:_?]rgir Ilattllfes Im the prestenge doffdyndamlct?]l qtuarkz. d
lattice spacings. Without a continuum limit extrapolation of € rolyakov loop operator s defined as the traced prod-

the glueball mass, we cannot speculate here as to the size ¢t of links in a line through the periodic spatial boundary:
the corresponding effect in the presence of dynamical fermi- L

ons, but preliminary work suggests the scalar dip may indeed _ N
be enhanced in the ensemble considered [G6E pﬂ(n)—Trkll Uu(n+ki) (41)

A similar analysis yields a tensor mass estimateVhf
=1.28(9) in lattice units, omryM ;=6.43(42) in units of the  for u=1,...,3. Inorder to improve statistics, we create a
Sommer scale. This is compatible with the interpolated masbasis of operators using improved spatial links as before.
in the pure glue theoryoM¢=5.91(23). In Fig. 11, we plot the vacuum expectation value of the

Color flux tubes, analogous to that between a static quarlP-P=0,1,2 Polyakov loop operators. From momentum con-
and antiquark pair but without source or sink, can exist on aervation, we expect the VEVs of the nonzero momentum
periodic volume. Rather, the flux tube closes on itselfoperators to be zero. This is seen to be satisfied within fewer
through a spatial boundariassuming it to be in the “con- than two standard deviations in all cases, indicating that the
fined” phase, forming what is usually termed a torelon. To a statistical errors are under control. It also adds significance to
first approximation, the mass of the lightest such state equatbe fact that the®- P=0 operators have a vacuum expecta-
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tion value that deviates substantially from zero. This is clearvolumes, and the various measurement algorithms employed.
evidence of flux tube breaking by dynamical quark pair pro-Attempts to measure the microscopic topological structure of
duction. the vacuum are also well advancédr a recent review, see
Fitting effective masses froR-P=0,1 after a Lscher- [68]). The inclusion of sea quarks in lattice simulations, even
Wolff analysis as before, we estimate the torelon mass aat the relatively large quark masses currently employed, is

Mp=0.77 (5). Including the leading-order universal string Numerically extremely expensive, and to avoid significant
correction[67], we expect the loop mass to vary with the finite volume contamination of the results, the lattice must be

lattice size inD dimensions as relatively coarse, with a spaciray=0.1 fm as in this study.
Compared to quenched lattice studies at least, this is a sig-
R m(D-2) nificant fraction of the mean instanton radius, and has so far
Mp=ol——F¢—- (42)  precluded a robust, detailed study of the local topological

features of the vacuum in the presence of sea quarks. The

From this, we estimate the string tension tode 0.052(3) topological susceptibility, on the other hand, may be calcu-

or, using the Sommer scale to set physical uniis=462 lated with some confidence and provides one of the first
(13 MeV, in good agreement with the value quoted in Table@Pportunities to test some of the more interesting predlct|(_)ns
v for QCD. Indeed, it is in these measurements that we find

The mass of the lightest torelon pair, around twice theSOme of the most striking evidence for the effects of sea

torelon mass, is thus clearly too heavy to induce finite VO|_ﬁu§1rks(c_)r, allte_rnati\éely, f%r ‘3 §trorr11_g quenching effeict the
ume effects. Likewise, finite volume effects from meson ex-atice simulations described In this paper. _

change through the boundary should be small, although we we f|_nd clear evu_je_r_]ce_ for the e_xpeg:te_d suppression of the
do not consider this process here. The mass of the torelon, 5Hpolog|cal susceptibility in the chiral limit, despite our rela-

the other hand, is not much larger than that of the scalzﬁ‘ve'y Iarge quark Masses. From this behgvior, we can di-
glueball, and there is a possibility of mixing occurring be- rectly estimate the pion decay constant without needing to

tween the two which would lead to a finite volume contami-know the lattice operator renormalization factors that arise in

: ot ; tional calculations.
nation. We thus perform a variational analysis where wdnore conven
cross-correlate a basis of eight of the “best” scalar glueballc T?ese resmljltis\/vere dpresentedhat the IO|I_3 Z.DIE’ }he
operators with the two “best” torelon operators. We find the hon '”eme”}ggf 2]' an f N a muc Smore Ere 'm'narhy orm,
matrix to be block-diagonal within errors, and the two lowest{N® Lattice '99[12] conferences. Since then, we have in-

eigenstates match closely the original glueball and torelon il;;reasedt the ?IZ\(/EV of lseVﬁraI ensembles ar:d 'nCIL:tdeS a ”tﬁw
mass and operator overlap. Thus this finite volume contamiPar@meter SeL. We also have more accurate results from the

L ., ; : hed theory with which to compare. Related results
nation is negligible, something which could have been andY€Nn¢
ticipated from the small size of the Polyakov line VEV. have .been presented b%/ the CP-PACS Ccl)llleLbor@ﬁ@nﬂ],

In summary, we have presented measurements of the scil€ Pisa Group72,73, the SESAM-HL Collaboration[74],

lar and tensor glueball and torelon masses on an ensemble [Pd the Bou!der Gr_ouQ?S]. A detailed an'aIyS|s' of our
configurations at 8, ) =(5.20,0.13550). We find clear sig- . ataset, and its relation to these other studies, will be given
nals for the presence of light sea quarks, both in a scaldP [76]. . .

glueball mass that is significantly suppressed below the The topological charge is
guenched value at a comparable lattice spacing, and in the
breaking of the confining flux tube as demonstrated by a 0= 1
nonzero expectation value for the spatial Polyakov loop op- 3272
erator. Although nonzero, the smallness of these VEVs to-

gether with the fact that the torelon and torelon pair masse$he topological susceptibility is the squared expectation
are significantly larger than the scalar glueball mass lead ugalue of the topological charge, normalized by the volume,
to believe that the suppression of the scalar glueball mass is

not a finite volume effect, a conclusion which is reinforced (Q?%

by an explicit mixing analysis. The dependence of these ef- X=— (44)
fects on the sea quark mass, and whether this effect persists

in the continuum limit, is not, however, resolved here.

[ axde, Fr0FL00. @9

Sea quarks induce an instanton—anti-instanton attraction
which in the chiral limit becomes stronger, suppressing
VI. THE TOPOLOGICAL SUSCEPTIBILITY AND f_ and y [77],

The ability to access the nonperturbative sectors, and to
vary parameters fixed in Nature, has made lattice Monte x=3
Carlo simulation a valuable tool for investigating the role of
topological excitations in QCD and related theories, and it is
these that we now consider. where
In quenched lattice calculations, the continuum topologi-
cal susceptibility now appears to be relatively free of the S=— lim Iim<0|E</;|0> (46)

systematic errors arising from the discretization, the finite my—0V—0

-1
, (45

1 1
_+_
my My
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is the chiral condensatd78]. We assume(0|y|0) 0.08 ' '
=(0|uu|0)=(0|dd|0) and neglect contributions of heavier
qguarks. The Gell-Mann—Oakes—Renner relation
0.06 - ]
f2M2=2(m,+my)3 +O(mj) (47) )
implies ps P P
<2004 | ,/1?/// Af :
2)12 = P
=" Tio(Mm? 48 Se o dynamical x
X 4Nf ( ﬂ-) ( ) XXI“) _ B=593
0.02 - — — - fit iii) ]
for Ny degenerate light flavors, in a convention where the , - fitiv)
experimental value of the pion decay constarft, 7
=132 MeV. Equation(48) holds in the limitf2M2Vv>1, J/
which is satisfied by all our lattices. The higher-order terms 099 ; 4 6 8

ensure thay— x%, the quenched value, ag,,M ,—x=. We

find, however, that our measured values are not very much

smaller thany®, so we must consider two possibilities.
First, there are phenomenological reaspr,8Q for be-

FIG. 12. The measured topological susceptibility, with interpo-
lated quenched points at the safige The radius of the dynamical

lieving that QCD is “close” toN.=, and in the case of Plotting points is proportional té, '. The fits, independent of the

gluodynamics even SQ) is demonstrably close to )
[64,56,8]1. Fermion effects are nonleading My, so we ex-

guenched points, an@i) Eqg. (53) and(iv) Eq. (54).

pect y— x% for any fixed value ofm, as the number of sured from the gauge fields after cooling to remove the UV

colorsN.—o. For smallm,, we expect

noise. Further details of the procedure may be found in

[13,76].
X“Mi We plot data for the ensembles presented in this paper in
X= W (49 Figs. 12 and 13, as well as for preliminary results for two
+M2 further  datasets at [ «)=(5.20,0.13565) and
f (5.25,0.135 2 Also shown, as a band, is the interpolated

x% at an equivalent lattice spacing. Due to the systematic

with x*,f.. the quantities at leading order M. [78]. Alter-

differences in the methods for determiniiig (which can

natively, ourmg=mMgange@Nd perhaps higher-order terms are 5 nt to a 20% difference i$), the value chosen is for the

important. In the absence of a QCD prediction,

= ———M?2 arctan —— y™
X 2’7TNf m ’6 fﬂ_ X m

2 27Ny 1 )
(50

guenched couplingg=5.93, taken froni81], where we have
an estimate of, determined in a consistent manner. The
variation in the equivalent quenched susceptibility over the

interpolates between E¢8) and the quenched limitMea-
surements ofy were made on a number of ensembles of
N;=2 lattice field configurations. We reiterate here that
these ensembles have two notable features. The improvemel
is fully nonperturbative, with discretization errors being qua-
dratic rather than linear in the lattice spacing. Second, the
couplings are chosen to maintain an approximately constan"é"
lattice spacing (as defined by the Sommer scaleg 2

=0.49 fm[9]) as the quark mass is varied. This is important,

0.03

0.02

as the susceptibility in gluodynamics varies considerably  ggq L
with the lattice spacind56,81], in competition with the
variation with my. The topological susceptibility is mea-

0.00

ofit (i)
Afit (ii)
V fit (iii)
it (iv)
* physical value

“N.B. there is a common alternative convention, used in earlier
presentations of these ddtE3,15, where a factor of 2 is absorbed
into ffT in Eq. (48), and wheref , is a factor ofv2 smaller, around
93 MeV.

(roM)’

FIG. 13. The measured topological susceptibility. The radius of

SNote that, in describing chiral extrapolations, we adopt the comthe dynamical plotting points is proportional ﬁ@l. The fits, inde-
mon convention of usingr to label quantities associated with the pendent of the quenched points, @eEq. (51), (i) Eq. (52), (iii)

pseudoscalar channel irrespective of the quark mass.
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range inf, spanned by our data is much smaller than the VII. CONCLUSIONS
error on theB=5.93 point shown, a useful consequence of

the matching .progr?[n. e A o . ous published reports on lattice simulations of QCD with
The behavior of g with (FoM ) is qualitatively as ex-  qunamical fermions. It represents the first presentation of a

pected and, more quantitatively, we attempt fits motivated by, range of results using the fully nonperturbatively im-

Egs.(48), (49), and(50). The leading-order chiral behavior o,eq wilson action. It also demonstrates the value of a

Two particular features distinguish this work from previ-

will be new strategy of using so-called “matched ensembles” which
224 allows a more controlled study of unquenching effects than
foX Id otherwise b ibl finite latti i
—5 =¢y, (51)  would otherwise be possible at finite lattice spacing. .
M7 We have presented detailed measurements of the static

interquark potential, light hadron spectrum, scalar and tensor

with the first correction term generically being glueballs, torelon states, and the topological charge and sus-

fz)A( ceptibility.
O_zzco+ cy(FoM )2 (52) From the analysis of these quantities, we have presented
M7 significant evidence of effects attributable to dynamical ef-

fects (two flavors of light quarks on the static interquark
potential, particularly at short rang8ec. IV O, and the to-
pological susceptibilitySec. V).

Attempting to include data further from the chiral limit,
largeN. theory suggests a functional form

J2A We have also seen some evidence of dynamical quark
rO_X: Gtz (53) effects in the effective string tensidBec. V D, the nucleon
M2 cotco(Fol )2 mass(Sec. V B, and the scalar glueball mag3ec. V G.
For the present range of light quark massés (M,
while a more general interpolation is provided by =0.58), there is no convincing evidence of effects on the

light meson spectrum, nor do we see evidence of string
breaking, save indirectly in the small, but nonzero, VEV of
: 54 the winding gluonic flux tubétorelon operator.
Further analyses of these ensembles and complementary
nes being produced by the QCDSF Collabora{ig,83
are underway.

f%j\( 2C0 ’< 7TC3
2¢o(FoM )2

In each case, the intercept is related to the decay constant

c0=(f0fw)2/8. The corresponding fits are shown in Figs. 12
and 13. The extent of the curves indicates which points were
included in fit. We include progressively fewer chiral points
until the x%/d.o.f. of the fit becomes unacceptably bad. We
note the wide range fitted simply by including &, term, We acknowledge the support of the U.K. Particle Physics
and the consistency of our data with lafyg-predictions.  and Astronomy Research Council under grants GR/L22744,
The stability and similarity of the fits motivate us to us¢  GR/L29927, GR/L56374, PPA/G/0/1998/00621, and PPA/G/
from Eq. (52) to estimatef ,.=149+8"23 MeV at a lattice ~ 0/1998/00518. A.H. wishes to thank the Aspen Center for
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