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Effects of nonperturbatively improved dynamical fermions in QCD at fixed lattice spacing
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We present results for the static interquark potential, lightest glueballs, light hadron spectrum, and topologi-
cal susceptibility using a nonperturbatively improved action on a 163332 lattice at a set of values of the bare
gauge coupling and bare dynamical quark mass chosen to keep the lattice size fixed in physical units~;1.7
fm!. By comparing these measurements with a matched quenched ensemble, we study the effects due to two
degenerate flavors of dynamical quarks. With the greater control over residual lattice spacing effects which
these methods afford, we find some evidence of charge screening and some minor effects on the light hadron
spectrum over the range of quark masses studied~MPS/MV>0.58, where PS denotes pseudoscalar andV
denotes vector!. More substantial differences between quenched and unquenched simulations are observed in
measurements of topological quantities.
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I. INTRODUCTION

Over recent years, considerable effort has gone into p
ing QCD beyond the quenched approximation. For rec
reviews see@1–4#, and for results using a different improve
ment scheme see@5#. Because of the impressive agreeme
of the quenched approximation~see, e.g.,@6#! with experi-
ment for the spectrum and other easily accessible quanti
the effects of dynamical quarks in these are expected to
quite small. It is difficult to isolate physical effects which a
unambiguously due to their inclusion, in part because of
need for high statistics. On currently available machines
requires coarse lattices. The use ofO(a) nonperturbatively
improved fermions has been suggested as a means of
trolling and reducing discretization errors@7#. In an earlier
paper@8#, the first results of the UKQCD Collaboration usin
a preliminary value of the improvement coefficientcSW were
presented. It was found that the effective lattice spacing
measured by Sommer’s intermediate scale parameterr 0 @9#,
depended quite strongly on the bare quark mass at fi
gauge coupling. However, the effect of dynamical quarks
easily accessible physical observables was very weak
difficult to disentangle from those induced by other chan
in the simulation parameters. Eventually, one might hope
perform detailed studies over the full space of parame
including bare gauge coupling, quark mass~es!, and lattice
volume. In the meantime, less ambitious studies may
serve as a guide to those regions of parameter space w
physical effects may be found.
0556-2821/2002/65~5!/054502~24!/$20.00 65 0545
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In this paper, we present the results of further simulatio
over a range of sea quark masses. For these simulations
have used the final published values of theO(a) improve-
ment coefficientcSW @7# and have attempted to reduce vari
tions due to residual discretization errors and finite volu
effects by working at fixed lattice spacing. In order
achieve the latter, we have used matching techniques
scribed in an earlier work@10# to help obtain ensembles o
configurations whose lattice spacings, as defined by the s
r 0 , are as closely matched as practicable. We present re
for the spectrum and potential on, or close to, a single fix
r 0 trajectory in the ~b,k! plane, which extends from
quenched configurations (k50) to the lightest accessible se
quark mass. We chooser 0 to set the scale since it has n
valence quark complications and is determined by interm
diate scale properties of the static potential. These prope
are expected to be less sensitive to charge screening~short-
range! and string-breaking~long-range! effects arising from
dynamical light quarks.

We interpret our results in the spirit of partial quenchin
That is, we study chiral extrapolation in the valence qua
masses of light hadron masses using both quenched and
tially unquenched configurations. We find that, with t
available statistics, the quality of these valence extrapo
tions is uniformly good. By studying the spectra so obtain
we search for evidence of the influence of light dynami
quarks. We also study the behavior of the topological susc
tibility in the presence of dynamical quarks. Our data sam
includes measurements made with equal valence and
quark masses.
©2002 The American Physical Society02-1
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The plan of the rest of the paper is as follows. Section
contains brief details of the simulation methods and para
eters. In Sec. III, we review the matching techniques use
set up simulations at similar lattice spacings. We present
sults in Sec. IV for the static potential in QCD and use it
define a lattice scale. In Sec. V, we present results for
light hadron spectrum including some measurements of
lightest glueball masses. Section VI contains results fr
topological charge and susceptibility measurements. Fin
our conclusions are summarized in Sec. VII.

Some preliminary results from these analyses have b
presented elsewhere@11–16#.

II. SIMULATIONS WITH IMPROVED WILSON
FERMIONS

Details of our implementation of the hybrid Monte Car
simulation algorithm@17# and its performance can be foun
in our earlier paper@8#. Here, we summarize for convenienc
some key features. For the lattice action we used a stan
Wilson action for the gauge fields together with t
Sheikholeslami-Wohlert ~SW! O(a)-improved Wilson
gauge-fermion action@18#:

S@U,c̄,c#5SG@U#1SF@U,c̄,c#, ~1!

where

SG@U#5bWh5b(
P

~12 1
3 Re TrUP! ~2!

and

SF@U,c̄,c#5SF
W@U,c̄,c#

1cSW

ik

2 (
x,m,n

c̄~x!smnFmn~x!c~x!. ~3!

Here, UP is the usual directed product of gauge link va
ables andSF

W is the standard Wilson fermion action,

SF
W5(

x
c̄~x!c~x!2k(

x,m
@c̄~x!~r 2gm!Um~x!c~x1m̂ !

1c̄~x1m̂ !~r 1gm!Um
† ~x!c~x!# ~4!

with the Wilson parameter chosen asr 51. The spin matrix is
smn5( i /2)@gm ,gn#, andFmn(x) is the field strength tensor

Fmn~x!5 1
8 @ f mn~x!2 f mn

† ~x!#, ~5!

where f mn(x)5Umn(x)1Un,2m(x)1U2n,2m(x)
1U2n,m(x) is the sum of four similarly oriented~open!
plaquettes around a site,x.

Beyond tree level, the improvement coefficientcSW is a
function of the gauge couplingb ([6/g2). In the studies
reported here, we have used those values determined no
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turbatively by the Alpha Collaboration and summarized
an interpolation formula@7#. For example, atb55.20 we
have used1 cSW52.0171.

We have used two degenerate flavors of dynamical qua
in these simulations. The bare quark mass is controlled
the hopping parameterk. Restoration of~spontaneously bro-
ken! chiral symmetry requires extrapolation ink to the criti-
cal valuekcrit at which the pion is effectively massless. A
discussed above, we will often discuss the situation enco
tered in the quenched approximation, where the dynam
~sea! quark mass parameter (ksea) is fixed ~at 0 in the
quenched case! while the chiral extrapolation is performed i
the valence mass parameter (kval) only. This is often referred
to as a partially quenched approximation. It is particula
relevant where the dynamical quark mass is still quite he
and where there is no realistic prospect of approaching
~degenerate! light quark chiral limit in both parameters.

A. Simulation parameters

Since these simulations were the first to be done o
reasonably large lattice (163332) using the fully improved
value of cSW, there was little guidance available on th
choice of simulation parameters. We choseb55.20 as the
lowest value at which a reliable value ofcSW was available
@7#. The aim was to obtain as large a physical volume
practicable with the available computing resource. The
of an improved action was expected to offset~at least par-
tially! the relatively coarse lattice spacing which this im
plied. Equilibration was carried out through a sequence
dynamical quark masses:ksea50.130 00, 0.133 50, 0.134 00
0.134 50, to 0.135 00. The first production run was then c
ried out at ksea50.135 00 starting at trajectory numbe
10010, where trajectories were of unit length. Configuratio
were stored after every 10 trajectories, although a lar
separation was used for most operator measurements~see
below!.

Further simulations at higher quark masses~ksea

50.134 50 and 0.134 00! and slightly shiftedb were then
performed. The shifts inb were estimated using the method
described in Sec. III and were designed to maintain a c
stant lattice spacing as defined byr 0 .

To complete the comparison of unquenching effects,
performed pure gauge simulations using a standard up
algorithm, heat bath with overrelaxation. Again, theb value
was chosen to keepr 0 at the value measured on the ensem
obtained at (b,ksea)5(5.20,0.135 00). The only exceptiona
configuration found was within the quenched configuratio
and this was only apparent for one of thekval studied. This
configuration was excluded from further analyses.

An additional substantial, but unmatched, simulation w
then performed at (b,ksea)5(5.20,0.135 50). This ensembl

1Although the effect ofO(a) improvement is not expected to b
as sensitive as the quoted number of significant figures suggest
action and lattice observables do depend quite strongly on this
rameter. For reasons of reproducibility we have therefore use
four-decimal place representation of thecSW formula in generating
configurations.
2-2
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TABLE I. Summary of simulation parameters and statistics used in the computation of the static po
and light hadron spectrum.

b cSW No. of Conf. ksea kval

5.20 2.0171 244 0.13565 0.13565
5.20 2.0171 832 0.1355 0.1355 0.1350 0.1345 0.1340

5.20 2.0171 600 0.1350 0.1350 0.1345 0.1340 0.1335
5.26 1.9497 404 0.1345 0.1350 0.1345 0.1340 0.1335
5.29 1.9192 404 0.1340 0.1350 0.1345 0.1340 0.1335

5.93 1.82 623 0 0.1339 0.1337 0.1334 0.1332 0.132
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of configurations was analyzed along with the matched
sembles providing further information on behavior at lig
quark mass. A simulation at even lighter quark mass (ksea

50.135 65) was begun. Where relevant, some prelimin
results are presented here. Table I contains a summary o
run parameters for each ensemble.

The bulk of the simulations were carried out in doub
precision. This followed initial concerns over the effect
rounding errors on reversibility. Detailed analyses of the
and related effects have been carried out and have bee
ported elsewhere@19#. This work shows that, at least for th
present volumes and step lengths, the algorithm is revers
and stable for all practical purposes, even when implemen
in single precision.

B. Autocorrelations

We made autocorrelation measurements from the ave
plaquette value measurements on every trajectory. The m
ods used were those described in detail in our earlier pa
@8#. As shown in Table II, the observable autocorrelati
~from the plaquette! is of order 20 and so we have adopted
separation of 40 trajectories as standard in the analysis w
follows. Nevertheless, we keep in mind that subtle long
term autocorrelations, not directly measurable, may still
present and so we have done additional checks on our s
tical error estimates by rebinning the measurements. In
present data sample, we have not found any evidence of
correlations.

Further measurements of the integrated autocorrela
time have been attempted for the potential~Sec. IV! and the

TABLE II. Comparison of integrated autocorrelation timest int

for the average plaquette measured in the present simulations
those in previous simulations atb55.20,cSW51.76.

L3
•T b cSW ksea Traj. no. t int

163
•32 5.20 2.0171 0.13565 2400 13~5!

5.20 2.0171 0.13550 8000 14~1!

5.20 2.0171 0.13500 6000 16~3!

5.26 1.9497 0.13450 6000 18~3!

5.29 1.9192 0.13400 5000 25~7!

163
•24 5.20 1.76 0.1390 3800 37~3!

5.20 1.76 0.1395 3200 27~18!

5.20 1.76 0.1398 3000 32~8!
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scalar glueball~Sec. V G!. At the lightest quark mass (ksea

50.135 65), autocorrelations were estimated from effecti
mass~potential-energy! measurements made every 20 traje
tories at various lattice distances (r /a51 – 5) and Euclidean
times (t/a53 – 5). The measured integrated autocorrelat
times varied from 10 to 20 trajectories with large erro
~typically 68!. For the scalar glueball, the integrated au
correlation time for effective masses was in the range 25
at ksea50.135 00 and 0.135 50.

It is noteworthy that the autocorrelation is significant
lessin the current simulations than in our previous runs@8# at
comparable quark masses but differentcSW. The current
simulations use the fully nonperturbatively improved val
of cSW. It is further noted thatt int appears todecrease, if
anything, with decreasing quark mass. This is contrary to
simple expectation that, as the lattice correlation length~typi-
cally given by the inverse pion mass! increases, then so
should the correlation in computer time. A similar effect
evident in the decorrelation properties of the topologi
charge~see Sec. VI!. It is possible to reproduce such beha
ior in simple models. The integrated autocorrelation tim
which determines the size of the errors, can decrease eve
the presence of increasingly long correlation modes sim
due to increased noise induced by dominant short correla
modes.

To illustrate this point, consider first the following simp
model consisting of a single Markov chainx(t), t
50,1,2, . . . :

x~ t !5ax~ t21!1z~ t !, x~0!50, ~6!

where thez(t) are uncorrelated Gaussian noise of unit va
ance and 0,a,1. It is simple to show that, for sufficiently
long chains,

rx~ t !5at[e2t/texp~x! ~7!

and so

texp~x!52 ln a, t int~x!5
1

2

11a

12a
. ~8!

Hererx(t) is the normalized autocorrelation function for th
observablex. The corresponding results for finite leng
chains are also calculable, so one can study the effect

ith
2-3
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C. R. ALLTON et al. PHYSICAL REVIEW D 65 054502
using limited statistics to estimate autocorrelation tim
Here we stick to the infinite chain approximation. Fora&1
@i.e., for largetexp(x)#,

t int~x!5texp~x!11/@12texp~x!#1O@~texp!23#. ~9!

Real hybrid Monte Carlo~HMC! data for r(t) do not, of
course, show a simple exponential behavior and so it is u
ful to consider the next simplest model, which contains t
independent correlation modes with relative coupli
strengthr:

X~ t !5x1~ t !1rx2~ t !,

x1~ t !5aixi~ t21!1zi~ t ! ~ i 51,2!.
~10!

The integrated autocorrelation time forX(t) is given by

t int~X!5h1t int~x1!1h2t int~x2!, ~11!

where

h11h251, h25
r 2~12a1

2!

12a2
21r 2~12a1

2!
. ~12!

Thus the relation between the integrated autocorrelation t
and the actual correlations present inXt is no longer straight-
forward. There may be quite long correlations pres
@texp(x2)@texp(x1)# but, depending on the relative strength
the modes~given byr!, the ‘‘weighted average’’ represente
by the above formula can give a result bearing no relation
eithertexp(x1) or texp(x2).

The possibility of such behavior makes it essential
check decorrelation for individual observables explicitly u
ing binning techniques.

C. Finite-size effects

In retrospect, the value ofksea50.135 00 turned out to be
somewhat conservative, in that the corresponding ratio
MPS/MV ~where PS denotes pseudoscalar andV denotes
vector! is quite large~0.70, see Sec. V!. The choice was
based on preliminary estimates of the limiting algorithm p
formance and on measurements of the effective lattice s
ing as described in Sec. IV. It was felt that decreasing
quark mass further would decrease the effective lattice
to a point where finite-size effects would become a proble
In our earlier analysis of finite-size effects~at least as far as
they affect the potential and light hadron spectrum
MPS/MV*0.7!, we found that such effects were negligib
provided

L/r 0*3.2. ~13!

This corresponds to a spatial extent of around 1.6 fm an
satisfied by all but our lightest quark mass dataset, as sh
in Table III. Further investigations may be called for, giv
the concerns over the baryon mass spectrum noted in@5# ~see
Sec. V C!.
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III. MATCHING SIMULATION PARAMETERS

In a previous paper@10#, we have described technique
which allow one to use unbiased stochastic estimates of
logarithm of the fermion determinant to determine, appro
mately, curves of constant observable in the space of si
lation parameters.

A. Determination of fixed observable curves

The approximate character of the formalism arises fr
two sources. First, the log of the fermion determinant is o
determined stochastically on each configuration and the
responding fluctuations are proportional to the lattice v
ume. Second, a linear approximation is used when dea
with small changes so that these curves may only be de
mined locally. In the present application, the parameter sp
of interest is the~b,k! plane and the observable of interest
the QCD static potential scale parameterr 0 ~see Sec. IV!.

To first order in small parameter changes~db,dk!, the
shift in the lattice operatorF is given by@10#

^dF&5S ^F̃W̃h&1K F̃
]T̃

]cSW
L ċSWD db1K F̃

]T̃

]k L dk.

~14!

The quantity

ċSW5
dcSW

db

is well determined@7# and so the identification of constantF
curves

^dF̃&50 ~15!

reduces to measuring correlations of the form

^F̃W̃h& and ^F̃dT̃&. ~16!

Here,^Ã& denotes the connected partŠA2^A&‹ of the opera-
tor A. We refer readers to@10# for a detailed discussion of th
stochastic evaluation ofT[Tr Ln M†M . Here,M is the fer-
mion matrix including theO(a) improvement term. The
methods are based on a La´nczos implementation of Gaussia
quadrature@20#. Recent progress in understanding the nat
of roundoff errors in the finite arithmetic La´nczos process
assures us that this application of the La´nczos process, unlike
the basic algorithm itself, is highly stable with respect
roundoff @21#.

TABLE III. Measures of finite volume effects in simulations.

~b,k! L/r 0 LMp

~5.20,0.13565! 3.07 ~3! 4.18 ~5!

~5.20,0.13550! 3.17 ~3! 4.70 ~6!

~5.20,0.13500! 3.37 ~3! 6.48 ~8!

~5.26,0.13450! 3.40 ~4! 8.14 ~3!

~5.29,0.13400! 3.32 ~3! 9.23 ~4!
2-4
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B. Matching r 0

Detailed tests of the matching procedures have been
ried out using the average plaquette, which is very accura
measured, and a variety of Wilson loops@10#. Some tests
using r 0 were also carried out successfully on modest-si
lattices. The present work represents the first application
earnest, to production-size lattices. Since the fluctuation
T are extensive quantities, we expect there will be a limit
the size of lattices where usefully accurate matching e
mates may be made with a given amount of work. The w
required has been analyzed in some detail in@10#.

The correlations~16! require measurements ofF on each
configuration. These are available for operators such as
son loops but not for physical quantities such as had
masses andr 0 . Rather than determine the fixedr 0 curve
directly using Eq.~15!, we use Eq.~14! to estimate the re-
quired gauge correlators at nearby points in parameter sp
We then extract the potential, and hencer 0 /a, at the nearby
parameter values from these ‘‘shifted correlators.’’ This
lows estimates of the partial derivatives with respect tob and
k and hence the shiftdbk required to compensate for a pa
ticular change inksea,

dbk5
]F

]kseaY ]F

]b
dksea, ~17!

where, in the present application,2 F5 r̂ 0[r 0 /a.
Using an ensemble of 100 configurations at (b,k)

5(5.2,0.1350) for all correlator measurements, we estima
that a shift of

db50.05760.033

would be required so as to match the value ofr̂ 0 at (5.2
1db,0.1345) with that at (b,k)5(5.2,0.1350). A simula-
tion run at (b,k)5(5.26,0.1345) confirms thatr 0 , and
hence the effective lattice spacing, is indeed well matc
~see Table V!.

However, it is clear from the size of the statistical erro
that estimates ofdb obtained on these configurations cann
be relied upon, in general, to predict matched parame
with great accuracy without further checks. The level of s
cess in achievingr̂ 0 matching can be gauged from Table V

The above methods for matching parameters are only
plicable for small shifts. To obtain the shift for matchin
quenched simulations (dk52k), we have used tabulate
values @22# of r̂ 0 ~lattice spacinga! to provide an initial
estimate. Since there are systematic differences arising f
slightly differing methods for extracting the potentials andr̂ 0
~see Sec. IV!, we used this only as an initial guide. Follow
ing direct measurement ofr̂ 0 with our own techniques, we
then made a further small shift inb. The results are shown in
the next section.

2Here, and in what follows, we use the notationÂ to denote a
physical quantityA expressed in lattice units.
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IV. THE QCD STATIC POTENTIAL

We have determined the static interquark potentialV(r )
using standard methods and used it to search for sign
charge screening and string breaking, as well as to determ
the physical scale.

A. Extraction of the potential

The methods follow those originally proposed by Micha
and collaborators@23,24#. A variational basis of generalize
Wilson loops is constructed from gauge links which a
‘‘fuzzed’’ in the spatial directions@25#. The spatial paths be
tween the static sources include a limited number of off-a
directions as well as those along the lattice axes~see the
lower half of Table IV!. A transfer-matrix formalism is then
used to extract the Euclidean time energy eigenstates w
are related to solutions of the generalized eigenvalue eq
tion

Wi j ~r,t !f~r! j
~k!5l~k!~r;t,t0!Wi j ~r,t0!f~r! j

~k! ,

i , j ,k50,1. ~18!

Here, we have used two levels of ‘‘fuzzing’’ thus giving
232 eigenvalue equation. We used level 0~unfuzzed! and
level 16, which means 16 transformations of the spatial lin
The link/staple weighting used was 2.5. This choice of fu
ing parameters was made so as to give a satisfactory v
tional basis with a modest amount of computational effo
Initial tuning experiments were made using 20 configuratio
at (b,ksea)5(5.2,0.135 00) and repeated on a correspond
matched ensemble of quenched configurations. Expan
the basis to three levels of fuzzing did not significantly im
prove the resulting effective-mass plateaus extracted as
scribed below.

In principle, one could use the largest eigenval
l (0)(r;t,t0) for large t,t0 to estimate the potential. In prac
tice, however, the eigenvalue system becomes unstab
large t, particularly when modest numbers of configuratio
are used, as is often the case in dynamical fermion stud
Instead, we used the leading eigenvectorf(r)(0), corre-
sponding tol (0)(r;t,t0) at t51,t050, to project onto the
approximate ground state@9,26#. The resulting correlator
W̃0(t) was then used to form effective-mass estimates for
approximate ground state,

Ẽ0~r,t !5 lnS W̃0~r,t !

W̃0~r,t11!
D . ~19!

The ratio of the first two transfer-matrix eigenvalues,

R1,05l~1!~r;1,0!/l~0!~r;1,0!, ~20!

was used to help obtain improved estimates of the grou
state energy with reduced contamination from the first
cited state. To do this, the correlatorW̃0(t) was modelled as
a sum of two exponential terms,

W̃0~r,t !}@l~0!~r;1,0!# t1e1,0@l~1!~r;1,0!# t. ~21!
2-5



C. R. ALLTON et al. PHYSICAL REVIEW D 65 054502
TABLE IV. The static potentialV(r) in lattice units. For the preliminary data atksea50.135 65, the
configurations were measured every 10 trajectories and analyzed in bins of two.

(b,ksea)
r ~5.20,0.1350! ~5.26,0.1345! ~5.29,0.1340! ~5.93,0! ~5.2,0.1355! ~5.2,0.13565!

~1,0,0! 0.4823~02! 0.4739~04! 0.4707~03! 0.4259~01! 0.4762~02! 0.4749~02!

~2,0,0! 0.6970~08! 0.6839~11! 0.6782~10! 0.6268~03! 0.6832~08! 0.6794~06!

~3,0,0! 0.8253~17! 0.8100~15! 0.8027~17! 0.7439~05! 0.7999~14! 0.7954~12!

~4,0,0! 0.9193~22! 0.9001~27! 0.8920~28! 0.8307~06! 0.8839~18! 0.8745~14!

~5,0,0! 0.9945~30! 0.9777~36! 0.9654~36! 0.9070~07! 0.9504~28! 0.939~02!

~6,0,0! 1.0628~43! 1.042~06! 1.0342~43! 0.9780~09! 1.0168~29! 1.002~02!

~7,0,0! 1.130~06! 1.105~06! 1.098~07! 1.0484~13! 1.0828~39! 1.061~04!

~8,0,0! 1.183~08! 1.175~09! 1.170~11! 1.1117~16! 1.135~05! 1.114~04!

~9,0,0! 1.262~11! 1.244~11! 1.244~11! 1.1802~26! 1.186~07! 1.165~05!

~10,0,0! 1.321~17! 1.285~21! 1.310~15! 1.243~4! 1.246~08! 1.221~07!

~11,0,0! 1.398~21! 1.414~23! 1.367~16! 1.301~5! 1.298~10! 1.277~11!

~12,0,0! 1.467~24! 1.365~8! 1.330~17! 1.287~25!

~1,1,0! 0.6276~05! 0.6156~06! 0.6103~07! 0.5514~2! 0.6173~05! 0.6140~04!

~2,1,0! 0.7495~09! 0.7315~13! 0.7288~11! 0.6671~4! 0.7310~09! 0.7262~07!

~2,2,0! 0.8163~14! 0.8001~17! 0.7940~15! 0.7319~5! 0.7944~10! 0.7884~10!

~3,1,0! 0.8483~15! 0.8296~16! 0.8226~16! 0.7616~6! 0.8215~15! 0.8138~11!

~3,2,0! 0.8873~18! 0.8687~27! 0.8636~23! 0.8009~7! 0.8599~15! 0.8497~14!

~3,3,0! 0.9387~24! 0.9235~26! 0.9122~22! 0.8517~9! 0.9051~17! 0.8939~18!

No. of Conf. 150 101 101 623 208 244
traj. spac. 40 40 40 40 1032
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One can easily show that, provided the contamination fr
the first excited state (e1,0) is small, the true ground-stat
energy in such a model is given by

E0~r!52 ln l~0!~R1,0!'
Ẽ0~r,t !2R1,0Ẽ0~r,t21!

12R1,0
.

~22!

Rather than search for plateaus in this quantity, we use
weighted mean of values fromtmin to tmax where the weight-
ing was inversely proportional to the statistical error~esti-
mated via simple jackknife!. To obtain the final quoted val
ues, we used (tmin ,tmax)5(4,5). In all cases, the differenc
due to increasing or decreasing the cutoffs by 1 was less
the statistical errors quoted. Overall statistical errors w
estimated by bootstrap sampling.

We also studied double exponential fits to the effect
massẼ0(r,t) using time slices up tot58 and exponentia
fits to the full 232 matrix correlator. The fits, where stabl
yielded results compatible with those obtained by the ab
methods.

In Fig. 1, we show examples of the effective mass a
corresponding extrapolated energy~22! used to determine
V(r). The lattice potential values are collected in Table I

B. Determination of r 0 Õa

The potentialV(r) can be used to determine the for
between a static quark-antiquark pair separated by a dist
05450
a

an
e

e

e

d

ce

r 5uru and hence to extract the Sommer scale parameterr 0 .
This is a characteristic scale at which one may match
interquark force with phenomenological potential models

FIG. 1. Effective potential energies as a function of Euclide
time t ~open symbols!. The asymptotic estimates described
the text are shown as full symbols. The final estimated poten
V(r ) is indicated by the lines with error bands. The data corresp
to (b,ksea)5(5.20,0.1350) and r5(4a,0,0) ~circles! and r
5(8a,0,0) ~diamonds!.
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TABLE V. Sommer scaler 0 and other parameters deduced from the lattice potential.

(b,ksea) r 0 /a a ~fm! e As ~MeV!

~5.2,0.13565! 5.21(05)(1028) 0.0941(8)(11320) 0.315(7)(118211) 465(1)(11923)
~5.2,0.13550! 5.041(40)(10210) 0.0972(8)(1720) 0.307(6)(11721) 467(1)(11723)

~5.20,0.1350! 4.754(40)(12290) 0.1031(09)(12021) 0.326(07)(132212) 463(2)(1226)
~5.26,0.1345! 4.708(52)(145250) 0.1041(12)(111210) 0.298(09)(110028) 468(2)(12218)
~5.29,0.1340! 4.813(45)(135284) 0.1018(10)(12027) 0.310(10)(10261) 466(2)(11020)
~5.93,0! 4.714(13)(10218) 0.1040(03)(1420) 0.276(03)(11722) 471(1)(12123)
-
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scribing quarkonia@9#. Specifically, it is defined by the solu
tion of the relation

r 0
2 dV

dr U
r 0

51.65. ~23!

Physically,r 0.0.49 fm, and we adopt this latter value whe
physical units are required. This definition of the physic
scale has the advantage that one needs to know the pote
only at intermediate distances. An extrapolation of the pot
tial to large separation, which is conventionally performed
extract the string tension, is thus avoided. Hence, the pro
dure is well suited to the case of full QCD for which th
definition of a string tension, as the limiting value of th
force, is not applicable. The string is, of course, expected
break at some characteristic distancer b .

Our determination ofr 0 /a follows the procedures origi
nally described in@27# and recently adapted to provide
comprehensive study of the scale parameter in quenc
QCD @22#. That is, we perform fits to the parametrization

V~r!5V01sr 2eF1

r G1 f S F1

r G2
1

r D , ~24!

where@1/r# is the tree-level lattice Coulomb term

F1

r G54pE
2p

p d3k

~2p!3

cos~k•r!

4(
j 51

3

sin2~kj /2!

. ~25!

The parameterf is introduced so as to model further lattic
corrections beyond tree level. We find that, for the coa
lattice spacings considered in this work, a tree-level para
etrization gives a poor description of the data forr !r 0 .

Following @22#, we use fits of the form~24! to provide a
good description of the intermediate range potential. We t
identify the fitted parameters as reliable estimates@up to
O(a2)# of the corresponding continuum version which, fro
the definition ofr 0 , satisfies

sr 0
21e5c[1.65 ~26!

and hence we extract our estimate ofr 0 as

r 05Ac2e

s
. ~27!
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Both on- and off-axis measurements of the potential w
used~see Table IV!. We confirm the observation@22# that the
value ofr 0 extracted in this way is remarkably insensitive
changes in the fit range used. The individual parameters s
as e and f are, however, quite sensitive. The point atr
5(a,0,0) was omitted from all fits since its inclusion wa
found to give an unacceptably high contribution tox2. The
inclusion of data at the largesturu (.8a) played little role in
the determination ofr 0 . Since a limited range ofr is used to
determine the parameters of Eq.~24!, one should treat the
value ofs with some caution. It does not represent a care
determination of the string tension, which of course is a la
distance property and, strictly speaking, only meaningful
the heavy sea-quark limit.

We present a summary of the results forr 0 in Table V.
The systematic error estimates@shown as (1x2y)# were
determined by variations in the fitting range used forr and in
the number of parameters used in the fit. The central va
quoted were obtained using all potential data satisfyingA2
<r<8. As described in the next subsection, a term prop
tional to 1/r 2 was tried. The systematic error estimates a
include the effects of varyingtmin by one unit in the evalua-
tion of the potential~see above!. It is seen that, for the en
sembles at~5.20,0.1350!, ~5.26,0.1345!, and ~5.93,0!, the
matching inr̂ 0 ~and hence in effective lattice spacing! is very
good ~well within statistical errors! while that at
~5.29,0.1340! is only slightly off ~just over one standard de
viation!. The unmatched simulation at the lightest qua
mass has a significantly smaller lattice spacing~seven stan-
dard deviations!.

It is worth noting ~Table IV! that the absolute values o
the potential are not matched even whenr 0 is. The same is
true for the average plaquette and the generalized Wil
loops themselves, which go into the potential determinati
All of these loop operators have large ultraviolet-sensit
contributions. In Sec. V, we will comment further on th
extent to which matching is observed in other physical qu
tities.

The valuer̂ 054.714(13) for the quenched measureme
at b55.93 may be compared to previous high statistics m
surements in quenched simulations. The interpolating par
etrizations of@22# and @28#, respectively, suggest 4.757 an
4.741~18!, in fair agreement with, but slightly larger than
our determination of this quantity at this particular value
b. The slight discrepancy of our result with that of Ref.@27#
amounts to about one standard deviation.

The JLQCD Collaboration has presented preliminary
2-7
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sults from anNf52 simulation using the same action as t
present work atb55.2, cSW52.02, andk50.1350,0.1355
@29#. The values ofr̂ 0 in this case are slightly smaller tha
those presented in Table V. Note that the value ofcSW used
by JLQCD is very slightly different from ours. The method
used to extract the potential andr̂ 0 apparently have much in
common with those described above, but we have not b
able to check all the details. In particular, the errors so
presented by JLQCD are statistical only.

As mentioned above, we have used both on-axis and
axis Wilson loops in our determination ofr̂ 0 . However, dif-
ferent spatial orientations of Wilson loops differ by lattic
artifacts of ordera2. Thus, if on-axis loops are used excl
sively to extractr̂ 0 , then the result may not be consiste
with a determination using other orientations, provided t
the statistical accuracy is large enough to expose these
crepancies. For ourNf52 simulations, the level of precisio
is about 1%, so that any significant discrepancy inr̂ 0 due to
different orientations will be hard to detect. In future hig
statistics simulations with dynamical quarks, a cleaner p
cedure might be to definer̂ 0 consistently for one particula
orientation and to extractr̂ 0 from local interpolations of the
force between static quarks. This is the approach use
Refs. @9,25,27,8#. It has also been used for some of the e
sembles presented here, and forr 0 itself it makes little dif-
ference~within the statistical errors!.

C. Charge screening

In Fig. 2, we plot the static potential in units ofr 0 . The
zero of the potential has been set atr 5r 0 . Overall, the pres-
ence of dynamical fermions makes little difference wh
plotted in physical units. The data are apparently well
scribed by the universal bosonic string model potential@30#,
which predicts

@V~r !2V~r 0!#r 05~1.652e!S r

r 0
21D2eS r 0

r
21D .

~28!

FIG. 2. The static QCD potential expressed in units ofr 0 . The
dashed curve is a string model described in the text.
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Of course, the fact that the scaled potential measurement
have the same value and slope atr 5r 0 simply reflects the
definition of r 0 . In Fig. 3, we show the deviations from thi
model potential. Heree5p/12 @30#. We note the following
points: ~i! At the shortest distances~see the points where
uru,0.5r 0! there are indeed deviations from the string mod
~ii ! the large fluctuations as a function ofr/r 0 indicate strong
violations of rotational symmetry~see Table IV for a list of
separations used!; ~iii ! there is some slight evidence that th
deviations depend systematically on the quark mas
compare the quenched points with those for the lightest
ues ofksea; ~iv! the matching of the data ensembles allows
clean comparison of the data at different quark masses;
~v! there are no indications of string breaking, but we no
that the distance probed at light quarks masses is not l
~r,1.3 fm at the lightest quark masses used!.

As discussed above, the parametrization~24! is not par-
ticularly efficient at describing the short-range interactio
on the lattice. This is the case even though it allows, in
model-dependent way (f Þ0), for lattice artifacts beyond
those expected at tree level. The fits for the effective cha
e and associated parameterf are therefore sensitive to the fi
range and any variation in the parametrization. For exam
we also considered allowing a term proportional touru22 in
an attempt to describe better the short distance poten
However, the coarseness of the lattice and crudeness o
parametrization prevented reliable fits. In the continuu
limit, one would expect the short-range potential to beha
as

V~r!52
4

3

as~m!

uru
, ~29!

where m is some scale. Lowest-order perturbation theo
then suggests an enhancement of some 14% inas arising
from the change in the factor 3322Nf when unquenching
the theory~at fixed scale!. Using the above parametrizatio

FIG. 3. The difference between the static QCD potential
pressed in physical units and the prediction of the string mo
described in the text. For clarity, only data from the matched
sembles are shown.
2-8
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~24!, we can see if such an effect is reflected in a correspo
ing increase of 18% in the parametere.

We have performed correlated fits to the potential with
constant choice of parametrization and fit ranges. Some
sonable variation in the latter was then used to give an e
mate of systematic errors. The fits for the central values
parameters included all data from Table IV satisfying&
<uru/a<9. The statistical errors were produced via an ov
all bootstrap of the full analysis~with 500 bootstrap
samples!. The results are included in Table V. The coupli
parametere does seem to show an increase due to unque
ing. For the matched ensembles, the increase is 18210

113% in
going from quenched toksea50.135 00.

Similar findings in the case of two flavors of Wilson fe
mions have been reported by the SESAM-TxL Collaboration
@31#, where an increase of 16–33 % was found.

For comparison with other scale determinations, we h
included the fit parameterAs expressed in units of MeV a
deduced fromr 050.49 fm. We repeat the caveat offere
above that the parameterAs reflects the medium-rang
shape of the potential and does not represent a defin
determination of the asymptotic string tension. Phenome
logical models for the hadronic string suggest a value
around 440 MeV. The energy scale determination based
r 0 /a is therefore some 6–7 % higher than that based on
string tension. In the next section we compare the ab
scale determination with values deduced from the vector
son mass.

Recently, the MILC Collaboration@32,33# has presented
results of a comparison of the quenched static potential w
that due to three flavors of staggered fermions. As in
present analysis, the authors have noted the strong influ
of the dynamical quarks on the effective lattice spacing a
have compared the shapes of the potential measured
matched ensembles.

V. LIGHT HADRON SPECTRUM

Throughout this section, one of our main aims will be
uncover any unquenching effects in the light hadron sp
trum. Because we have amatcheddata set, any difference
can more directly be attributed to unquenching effects. Ho
ever, the task of identifying differences is likely to be ha
for those quantities which are primarily sensitive to phys
at the same scale as that used to define the matching tr
tory in the (b,ksea) parameter space~r 0 in this case!. This is
expected to be the case for the hadron spectrum consid
here where the quark masses are still relatively heavy.

Two-point hadronic correlation functions were produc
for each of the datasets appearing in Table I. The interpo
ing operators for pseudoscalar, vector, nucleon, and d
channels were those described in@34#. Mesonic correlators
were constructed using both degenerate and nondegen
valence quarks, whereas only degenerate valence qu
were used for the baryonic correlators.

The hadronic masses are presented in Tables VI–
These are expressed in both lattice units (M̂[Ma) and in
the dimensionless formr 0M . Note that the errors displaye
are statistical only. We estimate that the systematic er
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arising from different choices of fitting procedure are simi
in size to the statistical errors.

In the following, we review the main fitting procedure
which were used to obtain the light hadron spectrum resu
Further details of the fitting procedure can be found in@35#.

A. Fitting procedure

We used the fuzzing procedures of@36# to generate corr-
elators of the type LL, FL, and FF, where F denotes fuzz
and L is local operators. Conforming to our usual conve
tion, FL means fuzzed at the source and local at the sink.
fuzzing radius was set toRfuzz52.

Effective-mass plots for the three types of fuzzed corre
tors ~LL, FL, and FF! are shown in Fig. 4 for theb
55.2,ksea5kval50.135 00 dataset. Note that all th
effective-mass plots approach their asymptote from abo
The FF correlator exhibits the fastest approach. This beh
ior is universal throughout all the datasets. For technical r
sons, the fuzzing procedures used in practice for the had
correlators introduced some unbiased stochastic noise.
have checked that this has indeed had no significant effec
the hadronic quantities presented here but has resulte
increased error estimates at the level of less than 10% for
pion and less than 20% for the nucleon.

Correlated fits were used throughout the fitting analysis
the correlation functions, and the eigenvalue smoothing te
nique of @37# was employed. Ensembles of 500 bootstr
samples were used to estimate the errors@38#.

We performed afactorizing fitwhich we now describe for
the baryonic case. The three fuzzed correlators LL, FL, a
FF are fitted together, where the fitting function used for, s
the FL channel is

Z0
LZ0

Fe2m0t1Z1
LZ1

Fe2m1t,

and the LL and FF fitting functions are similarly defined~see,
e.g.,@39#!. Note that both the coefficientsZ0,1 and the masses
m0,1 are common to all the channels, and that thex2 com-
prises the individualx2 of the three channels and include
the correlation between different times and channels.

For the mesonic case, we modify the above as usua
including the backward-propagating state, i.e.,e2mt

→e2m(T2t), whereT is the temporal extent of the lattice.
Within these three different fitting types, asliding window

analysis was used to determine the optimal fitting ran
(tmin2tmax) @40#. In this analysis, fits for varioustmin were
obtained withtmax fixed generally to 15. Stability require
ments in the baryonic sector forcedtmax514 in some cases
The masses so obtained are displayed in Tables VI–IX.

B. PCAC mass

The PCAC~partial conservation of axial vector curren!
mass can be defined using the relation

]mAm~x!52mPCACP~x!,

where P(x) and A(x) are pseudoscalar and axial curre
densities. On the lattice, the following expression can
used to obtain an estimate ofmPCAC @41#:
2-9
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TABLE VI. Pseudoscalar meson masses for all datasets.

b ksea ka
val kb

val r 0MPS aMPS

5.2000 0.1355 0.1340 0.1340 2.3922
13 0.47322

12

5.2000 0.1355 0.1345 0.1340 2.2522
13 0.44722

12

5.2000 0.1355 0.1345 0.1345 2.1222
13 0.42022

12

5.2000 0.1355 0.1350 0.1340 2.1222
13 0.42022

12

5.2000 0.1355 0.1350 0.1345 1.9722
13 0.39122

13

5.2000 0.1355 0.1350 0.1350 1.8221
13 0.36223

13

5.2000 0.1355 0.1355 0.1340 1.9821
13 0.39222

13

5.2000 0.1355 0.1355 0.1345 1.8221
13 0.36223

13

5.2000 0.1355 0.1355 0.1350 1.6621
13 0.32923

13

5.2000 0.1355 0.1355 0.1355 1.4822
13 0.29423

14

5.2000 0.1350 0.1335 0.1335 2.6823
12 0.56323

13

5.2000 0.1350 0.1340 0.1335 2.5623
12 0.53924

13

5.2000 0.1350 0.1340 0.1340 2.4523
12 0.51424

13

5.2000 0.1350 0.1345 0.1335 2.4423
12 0.51424

13

5.2000 0.1350 0.1345 0.1340 2.3223
12 0.48924

13

5.2000 0.1350 0.1345 0.1345 2.2023
12 0.46225

14

5.2000 0.1350 0.1350 0.1335 2.3223
12 0.48824

13

5.2000 0.1350 0.1350 0.1340 2.2023
12 0.46225

14

5.2000 0.1350 0.1350 0.1345 2.0623
12 0.43425

14

5.2000 0.1350 0.1350 0.1350 1.9323
12 0.40525

14

5.2600 0.1345 0.1335 0.1335 2.8524
12 0.60322

12

5.2600 0.1345 0.1340 0.1335 2.7424
12 0.58022

12

5.2600 0.1345 0.1340 0.1340 2.6324
12 0.55722

12

5.2600 0.1345 0.1345 0.1335 2.6324
12 0.55722

12

5.2600 0.1345 0.1345 0.1340 2.5224
12 0.53322

12

5.2600 0.1345 0.1345 0.1345 2.4124
12 0.50922

12

5.2600 0.1345 0.1350 0.1335 2.5224
12 0.53322

12

5.2600 0.1345 0.1350 0.1340 2.4124
12 0.50922

12

5.2600 0.1345 0.1350 0.1345 2.2924
12 0.48422

12

5.2600 0.1345 0.1350 0.1350 2.1623
12 0.45822

12

5.2900 0.1340 0.1335 0.1335 2.9924
12 0.62122

12

5.2900 0.1340 0.1340 0.1335 2.8824
12 0.59922

12

5.2900 0.1340 0.1340 0.1340 2.7824
12 0.57722

12

5.2900 0.1340 0.1345 0.1335 2.7824
12 0.57722

12

5.2900 0.1340 0.1345 0.1340 2.6724
12 0.55422

12

5.2900 0.1340 0.1345 0.1345 2.5524
12 0.53023

12

5.2900 0.1340 0.1350 0.1335 2.6724
12 0.55422

12

5.2900 0.1340 0.1350 0.1340 2.5524
12 0.53023

12

5.2900 0.1340 0.1350 0.1345 2.4324
12 0.50623

12

5.2900 0.1340 0.1350 0.1350 2.3123
12 0.48023

13

5.9300 0.0000 0.1327 0.1327 2.334210
16 0.49521

11

5.9300 0.0000 0.1332 0.1327 2.21129
16 0.46921

11

5.9300 0.0000 0.1332 0.1332 2.08129
16 0.44221

11

5.9300 0.0000 0.1334 0.1327 2.15929
16 0.45821

11

5.9300 0.0000 0.1334 0.1332 2.02829
16 0.43021

11

5.9300 0.0000 0.1334 0.1334 1.97329
16 0.41921

11

5.9300 0.0000 0.1337 0.1337 1.80029
16 0.38221

11

5.9300 0.0000 0.1339 0.1337 1.73929
16 0.36921

11

5.9300 0.0000 0.1339 0.1339 1.67629
16 0.35621

11
05450
TABLE VII. Vector meson masses for all datasets.

b ksea ka
val kb

val r 0MV aMV

5.2000 0.1355 0.1340 0.1340 3.0122
15 0.59622

16

5.2000 0.1355 0.1345 0.1340 2.9223
15 0.57826

16

5.2000 0.1355 0.1345 0.1345 2.8223
15 0.56026

17

5.2000 0.1355 0.1350 0.1340 2.8423
15 0.56326

17

5.2000 0.1355 0.1350 0.1345 2.7523
16 0.54627

18

5.2000 0.1355 1350 0.1350 2.6824
17 0.53128

110

5.2000 0.1355 0.1355 0.1340 2.7924
16 0.55328

110

5.2000 0.1355 0.1355 0.1345 2.7124
17 0.53729

111

5.2000 0.1355 0.1355 0.1350 2.6325
18 0.52229

113

5.2000 0.1355 0.1355 0.1355 2.5624
110 0.508210

118

5.2000 0.1350 0.1335 0.1335 3.3124
13 0.69524

14

5.2000 0.1350 0.1340 0.1335 3.2224
13 0.67725

14

5.2000 0.1350 0.1340 0.1340 3.1324
13 0.65825

15

5.2000 0.1350 0.1345 0.1335 3.1324
13 0.65825

15

5.2000 0.1350 0.1345 0.1340 3.0424
13 0.63826

15

5.2000 0.1350 0.1345 0.1345 2.9424
13 0.61927

16

5.2000 0.1350 0.1350 0.1335 3.0324
13 0.63825

15

5.2000 0.1350 0.1350 0.1340 2.9424
13 0.61826

16

5.2000 0.1350 0.1350 0.1345 2.8525
13 0.59927

16

5.2000 0.1350 0.1350 0.1350 2.7525
14 0.57929

17

5.2600 0.1345 0.1335 0.1335 3.4125
13 0.72124

14

5.2600 0.1345 0.1340 0.1335 3.3225
13 0.70324

14

5.2600 0.1345 0.1340 0.1340 3.2425
13 0.68524

14

5.2600 0.1345 0.1345 0.1335 3.2425
13 0.68524

14

5.2600 0.1345 0.1345 0.1340 3.1625
13 0.66824

14

5.2600 0.1345 0.1345 0.1345 3.0725
13 0.65024

14

5.2600 0.1345 0.1350 0.1335 3.1625
13 0.66825

14

5.2600 0.1345 0.1350 0.1340 3.0825
13 0.65125

14

5.2600 0.1345 0.1350 0.1345 2.9925
13 0.63325

15

5.2600 0.1345 0.1350 0.1350 2.9125
13 0.61425

15

5.2900 0.1340 0.1335 0.1335 3.4926
13 0.72525

15

5.2900 0.1340 0.1340 0.1335 3.4126
13 0.70826

16

5.2900 0.1340 0.1340 0.1340 3.3226
13 0.69126

16

5.2900 0.1340 0.1345 0.1335 3.3226
13 0.69126

16

5.2900 0.1340 0.1345 0.1340 3.2426
14 0.67426

16

5.2900 0.1340 0.1345 0.1345 3.1626
14 0.65627

17

5.2900 0.1340 0.1350 0.1335 3.2426
14 0.67427

17

5.2900 0.1340 0.1350 0.1340 3.1626
14 0.65627

17

5.2900 0.1340 0.1350 0.1345 3.0826
14 0.63928

18

5.2900 0.1340 0.1350 0.1350 3.0026
14 0.62328

18

5.9300 0.0000 0.1327 0.1327 3.0522
11 0.64623

12

5.9300 0.0000 0.1332 0.1327 2.9722
11 0.62923

13

5.9300 0.0000 0.1332 0.1332 2.8822
12 0.61223

13

5.9300 0.0000 0.1334 0.1327 2.9322
12 0.62223

13

5.9300 0.0000 0.1334 0.1332 2.8522
12 0.60523

13

5.9300 0.0000 0.1334 0.1334 2.8222
12 0.59824

13

5.9300 0.0000 0.1337 0.1337 2.7222
12 0.57724

14

5.9300 0.0000 0.1339 0.1337 2.6922
12 0.57024

15

5.9300 0.0000 0.1339 0.1339 2.6623
13 0.56325

15
2-10
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mPCAC5K ]̃4CA4P†~0W ,t !1acA]4* ]4CPP†~0W ,t !

2CPP†~0W ,t !
L

5^r ~ t !&1cA^s~ t !&, ~30!

where]̃4 is the temporal lattice derivative averaged over
forward, ], and backward,]* , directions, and̂ & represents
averaging over times,t, where the asymptotic state dom
nates. The correlatorsC are defined in@34#. The value of the
coefficient used is

c4520.007 56g0
2, ~31!

with g0
256/b ~the bare coupling!. This is the one-loop, dy-

namical value@42#, and hence Eq.~30! suffers fromO(a)
errors. Table X shows the results formPCAC for all the
datasets withcA defined as in Eq.~31!.

There has been some recent debate in the literature
garding the most suitable nonperturbatively improvedcA
value ~see, e.g.,@43–45#! and a reliable value may not ye
have been determined. In the absence of a nonperturbat
improved value ofcA ~for Nf52!, we choose to display als
in Table XI the values for̂ r (t)& and ^s(t)&. With these
numbers, the reader can readily obtain the values formPCAC
with any choice ofcA .

TABLE VIII. Nucleon masses for all datasets.

b ksea kval r 0MN aMN

5.2000 0.1355 0.1340 4.7526
19 0.942213

112

5.2000 0.1355 0.1345 4.4226
19 0.876215

115

5.2000 0.1355 0.1350 4.0927
110 0.8122

12

5.2000 0.1355 0.1355 3.8625
17 0.766211

111

5.2000 0.1350 0.1335 5.1626
15 1.08628

18

5.2000 0.1350 0.1340 4.8726
15 1.02429

18

5.2000 0.1350 0.1345 4.5427
15 0.954211

18

5.2000 0.1350 0.1350 4.2027
15 0.883212

110

5.2600 0.1345 0.1335 5.3229
15 1.12528

18

5.2600 0.1345 0.1340 5.0529
15 1.06828

19

5.2600 0.1345 0.1345 4.7829
15 1.01129

110

5.2600 0.1345 0.1350 4.5029
16 0.951210

110

5.2900 0.1340 0.1335 5.5029
15 1.14328

18

5.2900 0.1340 0.1340 5.2328
15 1.08629

19

5.2900 0.1340 0.1345 4.9429
16 1.027210

110

5.2900 0.1340 0.1350 4.6629
17 0.968212

113

5.9300 0.0000 0.1327 4.5623
12 0.96826

15

5.9300 0.0000 0.1332 4.2524
13 0.90228

15

5.9300 0.0000 0.1334 4.1324
13 0.87628

16

5.9300 0.0000 0.1337 3.9425
13 0.83629

17

5.9300 0.0000 0.1339 3.8624
14 0.81828

17
05450
e

re-

ely

C. The J parameter

In Figs. 5 and 6, the vector meson masses and hype
splittings are plotted against the corresponding pseudosc
masses for all the datasets. It is difficult to identify an u
quenching signal from these plots, as the data seem to o
lay each other. Note that in@8#, it was reported that there wa
a tendency for the vector mass toincreaseas the sea quark
massdecreases~for fixed pseudoscalar mass!. The observa-
tions for the presentmatcheddataset imply that this may
have been due to either anO(a) effect ~since the dataset in
@8# was not fully improved at this level! or a finite volume
effect. The conclusion, therefore, is that it is important to r
at a fixeda in order to disentangle unquenching effects fro
lattice artifacts or finite volume effects.

A possible explanation as to why there is no signal
unquenching in our meson spectrum is the following. O
matched ensembles are defined to have a commonr 0 value,
so any physical quantity that is sensitive to this distan
scale~and the static quark potential itself! will also, by defi-
nition, be matched. Our mesons, because they are comp
of relatively heavy quarks, are examples of such quantit
and this is a possible reason why there is no significant
dence of unquenching effects in the meson spectrum.

When comparing the experimental data points with
lattice data in Figs. 5 and 6, we note that the lattice data
high. This could be due to an incorrect value ofr 0 being used
(r 050.49 fm) and that the true value ofr 0 is somewhat
higher. This possibility is discussed again in the next sect

TABLE IX. Delta masses for all datasets.

b ksea kval r 0MD aMD

5.2000 0.1355 0.1340 5.1225
110 1.015212

115

5.2000 0.1355 0.1345 4.8726
110 0.967215

117

5.2000 0.1355 0.1350 4.6427
111 0.9222

12

5.2000 0.1355 0.1355 4.30211
115 0.8522

13

5.2000 0.1350 0.1335 5.5728
16 1.172211

111

5.2000 0.1350 0.1340 5.3128
16 1.116212

111

5.2000 0.1350 0.1345 5.0228
17 1.055215

113

5.2000 0.1350 0.1350 4.75210
18 1.0022

12

5.2600 0.1345 0.1335 5.6129
15 1.186210

111

5.2600 0.1345 0.1340 5.3629
15 1.134211

111

5.2600 0.1345 0.1345 5.1129
16 1.080211

112

5.2600 0.1345 0.1350 4.83210
17 1.022213

114

5.2900 0.1340 0.1335 5.80210
16 1.205210

111

5.2900 0.1340 0.1340 5.56210
16 1.155211

112

5.2900 0.1340 0.1345 5.33210
16 1.107213

111

5.2900 0.1340 0.1350 5.0929
17 1.057212

113

5.9300 0.000 0.1327 5.0924
13 1.07928

17

5.9300 0.000 0.1332 4.8425
14 1.02629

18

5.9300 0.000 0.1334 4.7425
14 1.00529

19

5.9300 0.000 0.1337 4.5825
15 0.972211

111

5.9300 0.000 0.1339 4.4726
16 0.949211

112
2-11
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FIG. 4. Effective mass plots for the pseudoscalar, vector, nucleon, and delta for theb55.2,ksea50.135 00 data set atkval50.135 00. The
horizontal lines show the fitted value for the mass~with error bars! obtained by the fitting approach described in the text.

FIG. 5. Vector mass plotted against pseud
scalar mass squared in units ofr 0 , together with
the experimental data points.
054502-12
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TABLE X. The quark massmPCAC as defined in Eq.~30! for all
datasets.

b ksea ka
val kb

val r 0mPCAC amPCAC

5.20 0.1355 0.1340 0.1340 0.32922
14 0.065223

12

5.20 0.1355 0.1345 0.1340 0.29222
13 0.058023

12

5.20 0.1355 0.1345 0.1345 0.25622
13 0.050822

12

5.20 0.1355 0.1350 0.1340 0.25622
13 0.050823

12

5.20 0.1355 0.1350 0.1345 0.22122
13 0.043823

12

5.20 0.1355 0.1350 0.1350 0.18522
13 0.036823

12

5.20 0.1355 0.1355 0.1340 0.22122
13 0.043823

12

5.20 0.1355 0.1355 0.1345 0.18622
13 0.036823

12

5.20 0.1355 0.1355 0.1350 0.15122
12 0.029923

13

5.20 0.1355 0.1355 0.1355 0.11622
12 0.023123

13

5.20 0.1350 0.1335 0.1335 0.42424
13 0.09322

12

5.20 0.1350 0.1340 0.1335 0.38924
13 0.081922

12

5.20 0.1350 0.1340 0.1340 0.35524
12 0.074622

12

5.20 0.1350 0.1345 0.1335 0.35524
13 0.074622

12

5.20 0.1350 0.1345 0.1340 0.32023
12 0.067422

12

5.20 0.1350 0.1345 0.1345 0.28723
12 0.060223

12

5.20 0.1350 0.1350 0.1335 0.32023
12 0.067422

12

5.20 0.1350 0.1350 0.1340 0.28623
12 0.060223

12

5.20 0.1350 0.1350 0.1345 0.25323
12 0.053223

12

5.20 0.1350 0.1350 0.1350 0.22022
12 0.046223

12

5.26 0.1345 0.1335 0.1335 0.49128
13 0.103823

13

5.26 0.1345 0.1340 0.1335 0.45527
13 0.096323

13

5.26 0.1345 0.1340 0.1340 0.42026
13 0.088823

13

5.26 0.1345 0.1345 0.1335 0.42026
13 0.088823

13

5.26 0.1345 0.1345 0.1340 0.38526
13 0.081523

13

5.26 0.1345 0.1345 0.1345 0.35126
13 0.074223

13

5.26 0.1345 0.1350 0.1335 0.38526
13 0.081423

13

5.26 0.1345 0.1350 0.1340 0.35126
13 0.074223

13

5.26 0.1345 0.1350 0.1345 0.31725
12 0.067023

13

5.26 0.1345 0.1350 0.1350 0.28325
12 0.059923

13

5.29 0.1340 0.1335 0.1335 0.53027
14 0.110123

13

5.29 0.1340 0.1340 0.1335 0.49427
14 0.102623

13

5.29 0.1340 0.1340 0.1340 0.45826
14 0.095223

13

5.29 0.1340 0.1345 0.1335 0.45826
14 0.095123

13

5.29 0.1340 0.1345 0.1340 0.42326
14 0.087823

13

5.29 0.1340 0.1345 0.1345 0.38725
13 0.080523

13

5.29 0.1340 0.1350 0.1335 0.42226
14 0.087723

13

5.29 0.1340 0.1350 0.1340 0.38725
13 0.080523

13

5.29 0.1340 0.1350 0.1345 0.35325
13 0.073323

13

5.29 0.1340 0.1350 0.1350 0.31825
13 0.066123

13

5.93 0.0000 0.1327 0.1327 0.3530212
110 0.07488211

111

5.93 0.0000 0.1332 0.1327 0.3162211
19 0.06709211

111

5.93 0.0000 0.1332 0.1332 0.2799210
18 0.05938211

111

5.93 0.0000 0.1334 0.1327 0.3016211
19 0.06398212

111

5.93 0.0000 0.1334 0.1332 0.2653210
18 0.05629212

111

5.93 0.0000 0.1334 0.1334 0.2508210
18 0.05322211

112

5.93 0.0000 0.1337 0.1337 0.207728
17 0.04406211

112

5.93 0.0000 0.1339 0.1337 0.193128
17 0.04097211

112

5.93 0.0000 0.1339 0.1339 0.178628
17 0.3788212

113
05450
TABLE XI. The values of ^r (t)& and ^s(t)& used to define
mPCAC, see Eq.~30!.

b ksea ka
val kb

val r (t) s(t)

5.20 0.1355 0.1340 0.1340 0.066223
12 0.117928

19

5.20 0.1355 0.1345 0.1340 0.058923
12 0.105028

19

5.20 0.1355 0.1345 0.1345 0.051623
12 0.092328

19

5.20 0.1355 0.1350 0.1340 0.051622
12 0.092428

19

5.20 0.1355 0.1350 0.1345 0.044523
12 0.079928

110

5.20 0.1355 0.1350 0.1350 0.037423
12 0.067828

19

5.20 0.1355 0.1355 0.1340 0.044523
12 0.080128

19

5.20 0.1355 0.1355 0.1345 0.037423
12 0.067828

19

5.20 0.1355 0.1355 0.1350 0.030423
13 0.055828

19

5.20 0.1355 0.1355 0.1355 0.023523
13 0.044127

19

5.20 0.1350 0.1335 0.1335 0.090722
12 0.168229

111

5.20 0.1350 0.1340 0.1335 0.083222
12 0.153829

110

5.20 0.1350 0.1340 0.1340 0.075822
12 0.1397210

110

5.20 0.1350 0.1345 0.1335 0.075822
13 0.1397210

110

5.20 0.1350 0.1345 0.1340 0.068523
12 0.125829

110

5.20 0.1350 0.1345 0.1345 0.061223
12 0.112329

110

5.20 0.1350 0.1350 0.1335 0.068523
12 0.1260210

110

5.20 0.1350 0.1350 0.1340 0.061223
12 0.1123210

110

5.20 0.1350 0.1350 0.1345 0.054123
12 0.0990210

110

5.20 0.1350 0.1350 0.1350 0.046923
12 0.085929

110

5.26 0.1345 0.1335 0.1335 0.105523
13 0.192429

111

5.26 0.1345 0.1340 0.1335 0.097823
13 0.177929

110

5.26 0.1345 0.1340 0.1340 0.090323
13 0.163628

110

5.26 0.1345 0.1345 0.1335 0.090223
13 0.163728

110

5.26 0.1345 0.1345 0.1340 0.082823
13 0.149628

19

5.26 0.1345 0.1345 0.1345 0.075423
13 0.135928

19

5.26 0.1345 0.1350 0.1335 0.082723
13 0.149828

110

5.26 0.1345 0.1350 0.1340 0.075323
13 0.136028

19

5.26 0.1345 0.1350 0.1345 0.068023
13 0.122528

19

5.26 0.1345 0.1350 0.1350 0.060823
13 0.109328

19

5.29 0.1340 0.1335 0.1335 0.111923
13 0.2005211

112

5.29 0.1340 0.1340 0.1335 0.104223
13 0.1862212

112

5.29 0.1340 0.1340 0.1340 0.096723
13 0.1721211

112

5.29 0.1340 0.1345 0.1335 0.096623
13 0.1721212

112

5.29 0.1340 0.1345 0.1340 0.089223
13 0.1583212

112

5.29 0.1340 0.1345 0.1345 0.081823
13 0.1447211

112

5.29 0.1340 0.1350 0.1335 0.089123
13 0.1583212

112

5.29 0.1340 0.1350 0.1340 0.081723
13 0.1447212

112

5.29 0.1340 0.1350 0.1345 0.074423
13 0.1314211

112

5.29 0.1340 0.1350 0.1350 0.067123
13 0.1182211

112

5.93 0.0000 0.1327 0.1327 0.07584212
111 0.126025

14

5.93 0.0000 0.1332 0.1327 0.06795212
112 0.112725

14

5.93 0.0000 0.1332 0.1332 0.06014212
111 0.099725

14

5.93 0.0000 0.1334 0.1327 0.06480212
111 0.107525

14

5.93 0.0000 0.1334 0.1332 0.05702212
111 0.094525

14

5.93 0.0000 0.1334 0.1334 0.05390212
112 0.089425

14

5.93 0.0000 0.1337 0.1337 0.04464211
112 0.075424

14

5.93 0.0000 0.1339 0.1337 0.04151211
112 0.070324

14

5.93 0.0000 0.1339 0.1339 0.03838212
113 0.065324

14
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FIG. 6. Vector-pseudoscalar hyperfine spl
ting in units of r 0 .
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A further point regarding hyperfine splitting in Fig. 6
that the lattice data for thematchedensembles tend to flatte
as the sea quark mass decreases.~The quenched data have
distinctly negative slope, whereas theksea50.1350 data are
flat.! Thus the lattice data are tending toward the same
havior as the experimental data, which lie on a line w
positiveslope ~independent of the value used forr 0!. This
behavior is apparently spoiled by the unmatched run w
ksea50.1355~see Fig. 6!, which has a clearnegativeslope.
However, theksea50.1355 data do not satisfy the finite vo
ume bound of@8# ~see Sec. V E!. One would expect tha
these finite volume effects would squeeze the vector me
state more than the pseudoscalar state~the r is an extended
object!. Furthermore, the more the valence quark mass
decreased, the more the vector mass would be raised by
volume systematics. These considerations match with the
served behavior of theksea50.1355 data in Fig. 6. The
JLQCD Collaboration@29# has recently reported on a finit
volume analysis with the same action as used in this wo
For b55.2,ksea50.1350, they found no evidence of finite
volume effects in their 163 data for either the pseudoscalar
vector meson. It would be interesting to extend this analy
to their b55.2,ksea50.1355 dataset.

The J parameter is defined@46# as

J5MV

dMV

dMPS
2 U

K,K*

. ~32!

In the context of dynamical fermion simulations, this p
rameter can be calculated in two ways. The first is to de
a partially quenchedJ for each value of the sea quark mas
In this case, the derivative in Eq.~32! is with respect to
variations in the valence quark mass~with the sea quark
mass fixed!. The second approach is to defineJ along what

3Note, however, that the experimental value ofJ does depend on
assumptions regarding the mixing of the strange and nonstra
quark states.
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we will term the ‘‘unitary’’ trajectory, i.e., alongksea5kval.
In Table XII, the results from both methods are given. The
values of J are around 25% lower than the experimen
value3 Jexpt50.48(2).

Finally, we note that the physical value ofJ @i.e., that
which most closely follows the procedure used to determ
the experimental value ofJexpt50.48(2)# should be obtained
from extrapolating the results from the first approach to
physical sea quark masses. We call this the third approac
order to perform this extrapolation, we extrapolate the th
matched dynamicalJ values obtained from the first approac
linearly in (MPS

unitary)2 to (MPS
unitary)250. MPS

unitary is the pseu-
doscalar meson mass at the unitary point~i.e., where the
valence and sea quark masses are all degenerate!. The value
for J from the third approach is presented in Table XII, a
we note that it is approaching the experimental value forJ.

The results from all three approaches are plotted in Fig
together with the experimental result. There is some prom
ing evidence that the lattice estimate ofJ increases toward

ge

TABLE XII. J values from the various approaches as descri
in the text.

b ksea J

First approach
5.2000 0.1355 0.3224

12

5.2000 0.1350 0.39329
110

5.2600 0.1345 0.36526
16

5.2900 0.1340 0.34928
17

5.9300 0.000 0.376212
19

Second approach
0.3522

12

Third approach
0.4322

12
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FIG. 7. J versuskseausing the approaches a
described in the text. Note that the quenched d
points have been plotted atksea50.132 for con-
venience. Approaches 2 and 3 are obtained afte
chiral extrapolation and are shown as banded
gions. The experimental valueJ50.48(2) is also
shown.
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the experimental point as the sea quark mass decreases~see
the J value from approaches 1 and 3!. This effect will move
the lattice estimates of theJ parameter towards the exper
mental value as simulations are performed at more phys
values of quark mass.

Recently, there has been a proposed ansatz for the f
tional form of MV as a function ofMPS

2 @47#. However, all
our data haveMPS/MV*0.6, and for this region, the ansa
of @47# is linear to a good approximation. Therefore, w
choose to interpolate our data with a simple linear funct
and await more chiral data before using the ansatz of@47#.

Two groups have recently reported results on theJ param-
eter from dynamical simulations. The CP-PACS Collabo
tion results ata'0.11 fm foundJdynamical.Jquenchedusing a
clover action@5#. Furthermore, they found that this discre
ancy increased as the continuum limit was taken. A sim
result was found by the MILC Collaboration, who used
improved staggered action witha'0.13 fm @33#. Both of
these groups’ results match those found in this work.

D. Lattice spacing

In Sec. IV, the lattice spacinga was determined from the
intermediate range properties of the static quark potentia
this subsection, we present a complementary determina
of a from the meson spectrum.

A common method of determininga from the meson
spectrum uses ther mass. However, this requires the chir
extrapolation of the vector meson mass down to~almost! the
chiral limit. This extrapolation is often performed using
linear function. However, as was discussed in the previ
subsection, a linear chiral extrapolation may not be appro
ate for MV&0.8 GeV. An alternative method of extractin
the lattice spacing using the vector meson mass at thesimu-
lated data points~i.e., without any chiral extrapolation! was
given in @48#. Using this method, we obtain the lattice spa
ing values as shown in Table XIII. Note that these are
general 10–15 % larger than the values from Sec. IV, wh
the lattice spacing was determined fromr 0 . A possible ex-
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planation for this discrepancy is that the potential and m
sonic spectrum are contaminated with differentO(a2) errors,
or that the valuer 050.49 fm is 10–15 % too small, and tha
the true value isr 0'0.55 fm.

It is interesting to study the lattice spacing determinatio
in more detail since they are a measure of unquenching
fects in dynamical simulations. Specifically, it is often a
sumed that the reason the various quenched determina
of a from, e.g., the meson spectrum differ from that ofr 0 or
the string tension is due to dynamical quark effects. An o
vious quantity to monitor the merging of the variousa deter-
minations can be defined as

d i , j~b,m̂sea!512
ai~b,m̂sea!

aj~b,m̂sea!
, ~33!

whereai is the lattice spacing determined from the physic
quantity i 5$M r ,MK , f p , . . . %. Obviously, if d i , j50, then
the lattice prediction for quantityi using the scale determine
from j ~or vice versa! is in exact agreement with experimen

Since our simulations are improved toO(a2), we expect
that d→O(a2) asmsea5val→ml ~whereml is the average ud
quark mass!. Thus a plot ofd against (M̂PS

unitary)22 would be

insightful, whereM̂PS
unitary is the pseudoscalar mass at the u

TABLE XIII. Lattice spacing determined from the mesonic se
tor using the method of@48#.

b ksea a ~Fermi!

5.2000 0.1355 0.11023
14

5.2000 0.1350 0.11523
13

5.2600 0.1345 0.11822
12

5.2900 0.1340 0.11624
13

5.9300 quenched 0.1186215
117
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FIG. 8. d i as a function of (1/M̂PS
deg)2 for i

5As and the mass pairs (MK* ,MK) and
(M r ,Mp). d i is defined in Eq.~33! with j 5r 0 .
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tary point, i.e., for degenerate valence and sea quarks~so
M̂PS

unitary5` for the quenched data!. Here, we work with

(M̂PS
unitary)22 rather than 1/m̂seafor thex coordinate since it is

equivalent to, but easier to define than, 1/m̂sea. It is impor-
tant to note that thex coordinate in this plot is the ‘‘contro
parameter’’ for the study of unquenching effects, i.e., wh
we vary this parameter from its quenched value towards
experimental value, we hope to see the data plotted in thy
coordinate move towards its appropriate experimental va
Thus it is easier to interpret unquenching effects direc
from this plot than from, e.g., plots ofM̂V againstM̂PS

2 for
variousm̂sea.

In Fig. 8, d i , j is plotted against (M̂PS
unitary)22 for the

matched datasets. In this plot, we have setj 5r 0 and the
various physical quantitiesi areAs and the hadronic mas
pairs (MK* ,MK) and (M r ,Mp). The method that was use
to determine the scaleai from these mass pairs is that o
@48#. It is worth noting that the experimental point on th
same plot would occur at anx coordinate of (M̂p)22'200.

Figure 8 does not show signs of unquenching for qua
ties involving the hadronic spectrum, i.e., the mass p
(MK* ,MK) and (M r ,Mp). ~Future work will studyd i for
the matrix element quantitiesi 5 f p and f K .! However, there
is evidence of unquenching effects when comparing the s
from r 0 with that from As. The quenched value ofdAs is
distinct from the dynamical values, though we note that
method used to obtains was optimized for the extraction o
r 0 rather thans itself ~see Sec. IV B!.

One may wonder if thed values may have been distorte
by not choosing the simulation parameters (b,m̂sea) exactly
on the matched trajectory. In order to obtain a rough estim
of the effect of a mismatched value ofb, we use the renor-
malization group inspired ansatz forai @49,50#:

ai~g0
2!5L21f PT~g0

2!3@11Xi f PT~g0
2!ni#, ~34!

where f PT(g
2) is the usual asymptotic scaling function o

tained from integrating theb function of QCD andXi is the
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coefficient of theO(an) lattice systematic. The functiona
form for a(g0

2) was originally applied for the quenche
theory, but let us assume that it can also be applied in
unquenched case. Using Eq.~34!, we see that a mismatch i
b of Db would lead to a relative error ind of

d~b1Db!2d~b!

d~b!
'23Db. ~35!

This shows that even an error inb of as much asDb
'0.01 introduces a relative error ind~b! of only 3%, ruling
out any possible mismatching inb as leading to a significan
distortion ind.

E. Edinburgh plot

In Table XIV, the ratiosMPS/MV are displayed for the
caseksea5kval. The averageu andd quark mass is fixed by
requiringMPS/MV50.18. As can been seen, the simulatio
are at much larger dynamical quark masses. Figure 9 sh
the ‘‘Edinburgh plot’’ ~MN /MV versusMPS/MV! for all the
datasets. There is no significant variation within the dyna
cal data as the sea quark mass is changed, but the dyna
data do tend to lie above the~matched! quenched data. This
latter feature may be indicative of finite volume effects sin
these are expected to be larger in full QCD compared to
quenched case@51#. In @8#, an analysis of dynamical finite

TABLE XIV. The ratio MPS
unitary/MV

unitary for the dynamical data
sets~i.e., with k[ksea[kval!.

b k MPS/MV

5.2000 0.1355 0.578219
113

5.2000 0.1350 0.700210
112

5.2600 0.1345 0.78325
15

5.2900 0.1340 0.83527
17
2-16
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FIG. 9. The Edinburgh plot for all the dat
sets. All degeneratekval correlators have been in
cluded. The phenomenological curve~from @52#!
has been included as a guide to the eye.
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volume effects concluded that they were statistically ins
nificant for spatial extents ofL*1.6 fm and sea quark
masses corresponding toMPS/MV*0.67 with about 100
configurations. This bound is satisfied for the matched
sembles, but not for theksea50.1355 case, whereL
51.60 fm andMPS/MV50.58.

Note also that for heavy valence quark masses, the
namical data lie close to the phenomenological curve@52#,
whereas they tend to drift higher than the curve for sm
valence quark masses. The~matched! quenched data agre
well with the curve.

Dynamical results for baryons have recently been
ported by two groups. CP-PACS~using a clover action! find
good agreement with experiment for strange baryons,
their light baryons~in the continuum limit! are around 10%
higher than experiment~see Sec. V C in@5#!. They discuss
the possibility that this is caused by finite volume effec
The MILC Collaboration~using an improved staggered a
tion! find their dynamical and quenched Edinburgh plo
overlay each other@33#.

F. Chiral extrapolations

There are a number of different ‘‘chiral extrapolation
that one can perform in the case of dynamical fermio
where there is a two-dimensional quark mass param
space, (msea,mval). We describe three such extrapolations
the data. The first uses apartially quenchedanalysis where
each of themsea datasets is extrapolated entirely separate
The second uses only theunitary subset withmsea[mval .
The third does acombinedfit of all the matched data using
fitting ansatz to model the variation between the differ
mseavalues.

Note that there have been recent proposals for the fu
tional form of MN and MV as a function ofMPS

2 which go
beyond the usual chiral linear ansatz normally used in
trapolations of lattice data@53,47#. However, as reported in
Sec. V C, the nonlinearity of these functional forms becom
relevant only for lattice data lighter than in our simulation
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and therefore we choose to use naive linear chiral extrap
tions in the following.

1. Partially quenched chiral extrapolations

A partially quenched chiral extrapolation was perform
for the hadronic massesM̂5M̂V , M̂N , andM̂D againstM̂PS

2 ,
i.e., the following ansatz was used:

M̂ ~b,ksea;kval!5A1BM̂PS~b,ksea;kval!2. ~36!

We have introduced the following nomenclature.
M̂ (b,ksea;kval), the first two arguments refer to the sea p
rameters: the gauge couplingb and the sea quark massksea.
The third argument refers to the valence quark masskval.
The results for these partially quenched extrapolations
pear in Table XV. Note that there is no convincing sign
unquenching effects in that theA and B values for the
matched datasets tend to overlay each other, and there
clear trend for these values as a function ofmsea.

Although we choose to extrapolate with respect
M̂PS(b,ksea;kval)2, we also show, for completeness, the va
ues ofkcrit in Table XVI. These were obtained from the usu
fit of M̂PS(b,ksea;kval)2 versus 1/kval21/kcrit .

2. Unitary chiral extrapolations

An extrapolation of the hadronic massesM̂5M̂V , M̂N ,
andM̂D againstM̂PS

2 was performed for the unitary subset
data, i.e., the following ansatz was used:

M̂ ~b,ksea;ksea!5Aunitary1BunitaryM̂PS~b,ksea;ksea!2,
~37!

Note that only the matched, dynamical datasets were
cluded in these fits. The results appear in Table XVII.
2-17
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3. Combined chiral fits

It is instructive to perform a combined chiral fit to th
entire matched dataset. In order to achieve this, we cons
the following fitting ansatz for the fitting of the hadron
massM̂ , where

M̂ ~b,ksea;kval!5Acombined1BcombinedM̂PS~b,ksea;kval!2

5A01A1M̂PS~b,ksea;ksea!22

1@B01B1M̂PS~b,ksea;ksea!22#

3M̂PS~b,ksea;kval!2. ~38!

TABLE XVI. Values of kcrit obtained for all the datasets.

b ksea kcrit

5.20 0.1355 0.1364523
13

5.20 0.1350 0.1366326
15

5.26 0.1345 0.1370922
13

5.29 0.1340 0.1373023
13

5.93 quenched 0.135202211
111

TABLE XV. The fitting parameters for the partially quenched
of Eq. ~36! for the hadronic masses.

Hadron b ksea A B

Vector meson
5.2000 0.1355 0.449215

121 0.6528
16

5.2000 0.1350 0.457213
111 0.7623

13

5.2600 0.1345 0.47228
17 0.6922

12

5.2900 0.1340 0.470215
115 0.6623

13

5.9300 0.0000 0.47527
19 0.7023

12

Nucleon
5.2000 0.1355 0.653217

115 1.28210
19

5.2000 0.1350 0.6722
12 1.3225

16

5.2600 0.1345 0.7222
12 1.1224

14

5.2900 0.1340 0.7122
12 1.1324

14

5.9300 0.0000 0.653212
112 1.2824

14

Delta
5.2000 0.1355 0.7723

14 1.12214
114

5.2000 0.1350 0.8123
13 1.1327

17

5.2600 0.1345 0.8022
12 1.0625

15

5.2900 0.1340 0.8422
12 0.9523

14

5.9300 0.0000 0.8122
12 1.0826

15
05450
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One advantage of such a fitting procedure is that in total
fit the entire matched dataset, there are fewer fitting par
eters than are required in the partially quenched analysis.
functional form in Eq.~38! is the simplest functional form
which allows for a variation ofA andB with the sea quark
mass, and which is finite for all the datasets studied.@Note
that M̂PS(b,ksea;ksea)[` for the quenched data.# The other
advantage is that the parametersA1 andB1 are a direct mea-
sure of unquenching effects.

The results for the fitting parametersA0,1 and B0,1 are
displayed in Table XVIII for the hadronic massesM̂V , M̂N ,
and M̂D . The parametersA1 andB1 for all the hadrons are
compatible with zero at the 2s level, underlining again the
fact that we have not unambiguously uncovered unquench
effects in the meson and baryon spectra.

G. Glueballs and torelons

Experiment has not so far detected glueball states un
biguously in the light hadron spectrum. This failure is us
ally believed to be a consequence of mixing between
light glueballs andqq̄ states~‘‘quarkonia’’! with the same
quantum numbers and similar masses. We lack, howeve
clear understanding of the mixing matrix elements that le
to the strong interaction eigenstates that would be obser
and thus phenomenological attempts to describe the con
~gluonic or quarkonium! of the scalar sector glueball cand
dates have led to widely differing results@54,55#.

Lattice QCD can in principle predict these mixing param
eters, and in the quenched approximation precise values
known for the continuum gluodynamics~quenched QCD!
glueball masses~see@56,57# for reviews!. Attempts to mea-
sure the mixing matrix have been made~see@57# for a re-
view of quenched measurements, and@58# for first determi-
nations in the presence of sea quarks! and are in progress
using the current UKQCD field configurations@59#. Simul-
taneously, the validity of such a simple mixing scenario c
also be addressed@60#.

TABLE XVII. The fitting parameters for the ‘‘unitary’’ datase
fit of Eq. ~37! for the hadronic masses.

Hadron Aunitary Bunitary

Vector meson 0.476218
114 0.6625

16

Nucleon 0.6923
12 1.2028

19

Delta 0.8423
13 0.94211

112

TABLE XVIII. The fitting parameters for the combined fit o
Eq. ~38! for the hadronic masses.

Hadron A0 A1 B0 B1

Vector meson 0.49229
110 20.00423

12 0.6124
14 0.01527

19

Nucleon 0.663215
113 0.00624

13 1.2326
16 20.00121

11

Delta 0.8422
12 20.00225

15 0.9129
18 0.0222

12
2-18



bl
l
s
in

tio
s

s
a

e
n

C
a
e

ow
k
re
b

w
at
to

re
-
h
t
w
d

dy
re
t

sy
t
ic
is

at

t
e

i
he
th
n

g

a
er
ic
ob

s for

tors
tion

in

r of
the
ions

ou-
n.
ns

The

ch
i-

bi-
try

,
or
tors

d
.

by
s,
the

given

ve
n
:

ere
sion

r-
as
be
of a

con-
hey

o-
of
nd

s,
ary.

EFFECTS OF NONPERTURBATIVELY IMPROVED . . . PHYSICAL REVIEW D65 054502
Quenched glueball calculations require large ensem
and, until recently, it had been assumed that a similar leve
statistical noise would preclude accurate measurement
simulations with dynamical fermions. We find, however,
common with other recent studies@31# that statistical errors
are, somewhat surprisingly, reduced in dynamical simula
estimates of glueball masses at present parameter value
least compared to similarly sized quenched ensembles.

Before continuing with a discussion of our calculation
we need to be a little more specific about what we me
when we talk of ‘‘glueballs’’ in QCD. The point is that th
presence of quarks will change the vacuum and there is
fundamental reason to think that the mass spectrum of Q
can be approximately described as consisting of the glueb
of the pure gauge theory, the usual quarkonia, and, wh
these are close in mass, mixtures of the two. There is, h
ever, a collection of phenomena—the Okubo-Zweig-Iizu
~OZI! rule, small sea quark effects, etc.—that creates a
sonable prejudice that this might be so. This question will
examined more explicitly elsewhere@60#. Here we shall fol-
low the usual view and assume it to be so. In that case,
expect that if there are no nearby quarkonia, then the st
most readily visible using purely gluonic operators similar
those used in pure gauge theories will be almost enti
glueball-like. This is~probably! the case for the scalar ‘‘glue
ball’’ state we discuss herein. The fact that the overlap of t
state onto these purely gluonic operators is similar to tha
the pure gauge theory reinforces our prejudice. Thus we
refer to this state as the scalar glueball during the remain
of our analysis.

If we then assume that the glueball spectrum of the
namical theory is not radically different from that of the pu
gauge gluodynamics, we expect the lightest states to be
scalar and tensor ground states. In terms of the reduced
metries of the space-time lattice, these correspond to
A1

11 and T2
11 representations of the appropriate cub

group. In the continuum where full rotational symmetry
restored, these match onto theJPC5011,211 states. Given
the size of our ensembles, we find it difficult to resolve l
tice masses much beyondM̂G;1.2. In gluodynamics, the
heavier tensor state has a~continuum extrapolated! mass in
units of the Sommer scale aroundr 0MG.6. The r̂ 0 values
tabulated for our ensembles in Table V thus suggest that
scalar and tensor are the states we will most likely be abl
study.

Using a full arsenal of noise reduction techniques, it
now possible to make good estimates of the masses of t
lightest glueball masses using existing ensembles. In
section, we present, as an example, the scalar and te
states extracted from one ensemble, that at (b,k)
5(5.20,0.135 50). Full results for all couplings, and givin
greater details of methodology, will be reported in@60#. Pre-
liminary results have appeared in@14#.

Measurements were made after every tenth~HMC! trajec-
tory giving an ensemble of 830 configurations, which m
not be uncorrelated. A jack-knife error analysis was p
formed using ten bins, each 830 trajectories in size, wh
were much larger than the autocorrelation times of the
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servables. This ensured statistically uncorrelated average
neighboring bins.

To reduce statistical errors on mass estimates, opera
should have a good overlap onto the ground-state excita
with the specified quantum numbers. This was achieved
two ways.

Each operator is based on a traced, closed contou
gauge links, which is gauge-invariant. We may improve
overlap of these operators onto the ground-state excitat
by ‘‘smearing’’ and ‘‘blocking’’ the links. The former is com-
putationally cheap, but the latter has the advantage of d
bling the spatial extent of the operator with each iteratio
This proves especially useful for measuring wave functio
that are not spherically symmetric, such as the tensor.
details of this procedure will be discussed further in@60#.

A suite of four glueball operators was constructed in ea
time slice of the gauge field configurations by summing sim
larly improved contours in the appropriate symmetry com
nations@61#. Overall this gave 28 operators per symme
channel. These were cross-correlated and a Lu¨scher-Wolff
variational analysis@62# ~for details of the exact procedure
see Sec. 3.2 of@63#! used to extract the ground states f
each of the lowest momentum combinations of the opera
~labeled asP•P50,1, . . . ,whereP[ p̂5pa!. All scalar op-
erators (A1

11), for example, were found to have a goo
overlap ~typically greater than 0.7! onto the ground state
The robustness of the variational analysis was checked
examining the behavior of individual correlation function
and of subsets of the full operator basis. In each case,
mass estimates were found to be consistent as expected
the good overlap of all operators onto the ground state.

From correlation functions we may define an effecti
energy as a function of the Euclidean timelike separatiot
~in lattice units! of the creation and annihilation operators

Êeff~ t ![2 log
^O†~ t11!O~0!&

^O†~ t !O~0!&
. ~39!

The effective energies of the nonzero momentum states w
converted to effective masses assuming the lattice disper
relation

Ê~P!25M̂21 (
m51

3

sin2S 2pPm

L D . ~40!

The signal from theP•P51 channel was found to be pa
ticularly useful. The mass of the ground-state excitation w
still small enough for reliable effective energy plateaus to
observed, and statistical noise was observed to be only
similar magnitude to theP•P50 channel. ForP•P52,
however, the energies of the states were too large to be
fidently assessed. Where they could be extracted, t
showed effective-mass plateaus consistent with lower m
mentum channels. Since they did not improve the quality
the fits, however, they were not included. Correlated a
uncorrelated plateau fits were then carried out usingP•P
50,1 together. As the former fits differed only within error
for robustness we quote uncorrelated results in this summ
2-19
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In Fig. 10, we plot the effective masses for the vario
momentum channels of the scalar glueball. A clear platea
seen in each of the momentum channels. Since these
teaux are compatible, indicating a restoration of the c
tinuum Lorentz symmetry, we can combine the lowest m
mentum channels to estimate the pure scalar glueball m
M̂G50.628~30! in lattice units, orr 0MG53.17~15! in units
of the Sommer scale. We note here that the interpola
quenched glueball mass at this lattice spacing isr 0MG
53.79~16! @60#, which is significantly above the scalar ma
measured here. There would thus appear to be strong
dence for a quenching effect in the scalar glueball channe
QCD. We should temper this statement slightly, as there
other possible sources of suppression of the scalar glue
mass. First, there are finite volume effects which are kno
to suppress the scalar glueball mass. In quenched QCD
principle source of this suppression is the mixing of the gl
ball with torelon pair states, e.g.,@64#, but we shall demon-
strate below that in the present case our lattices are l
enough for any such effects to be very small.

More seriously, we do not know the size of this effect
the continuum limit. In the quenched theory, there are kno
to be large scaling violations in theA1

11 channel for the
Wilson action@65# with the ‘‘scalar dip’’ tending to suppres
the mass below the continuum value even at relatively sm
lattice spacings. Without a continuum limit extrapolation
the glueball mass, we cannot speculate here as to the si
the corresponding effect in the presence of dynamical fer
ons, but preliminary work suggests the scalar dip may ind
be enhanced in the ensemble considered here@66#.

A similar analysis yields a tensor mass estimate ofM̂G
51.28~9! in lattice units, orr 0MG56.43~42! in units of the
Sommer scale. This is compatible with the interpolated m
in the pure glue theoryr 0MG55.91 ~23!.

Color flux tubes, analogous to that between a static qu
and antiquark pair but without source or sink, can exist o
periodic volume. Rather, the flux tube closes on its
through a spatial boundary~assuming it to be in the ‘‘con-
fined’’ phase!, forming what is usually termed a torelon. To
first approximation, the mass of the lightest such state eq

FIG. 10. Effective masses for theA1
11 ground state on the

(b,k)5(5.20,0.135 50) ensemble.
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the spatial extent of the lattice multiplied by the energy p
unit length of the flux tube~the string tension!. In the infinite
volume limit, such states become very massive and deco
from the observed spectrum.

The vacuum expectation value~VEV! of the Polyakov
operator that couples to such a torelon loop is zero in
confined phase of gluodynamics, as the loop cannot be
ken when no sources in the fundamental representation e
Thus, only a combination of at least two torelons with t
appropriate symmetries can couple to the particle state
the theory. On lattices small enough that the mass of
lightest torelon pair is comparable to the scalar glueb
mass, we will see significant finite volume effects.

When light dynamical quarks are present, the torelon
comes unstable to decay. In this case, the Polyakov l
operator gains a nonzero expectation value. This is an e
analogous to the string breaking seen in the static quark
tential measured using Wilson loops, and is another exp
signal for the presence of light dynamical quarks in the
simulations. In addition, it becomes possible for torel
states to mix with glueballs. Such states are, of cou
lighter than the pairs of torelons that mix in the quench
theory, and so we might expect to see finite volume effe
on larger lattices in the presence of dynamical quarks.

The Polyakov loop operator is defined as the traced pr
uct of links in a line through the periodic spatial boundar

pm~n!5Tr)
k51

L

Um~n1km̂ ! ~41!

for m51, . . . ,3. Inorder to improve statistics, we create
basis of operators using improved spatial links as before

In Fig. 11, we plot the vacuum expectation value of t
P•P50,1,2 Polyakov loop operators. From momentum co
servation, we expect the VEVs of the nonzero moment
operators to be zero. This is seen to be satisfied within fe
than two standard deviations in all cases, indicating that
statistical errors are under control. It also adds significanc
the fact that theP•P50 operators have a vacuum expec

FIG. 11. Vacuum expectation values for Polyakov loops at va
ous blocking levels on the (b,k)5(5.20,0.135 50) ensemble.
2-20
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tion value that deviates substantially from zero. This is cl
evidence of flux tube breaking by dynamical quark pair p
duction.

Fitting effective masses fromP•P50,1 after a Lu¨scher-
Wolff analysis as before, we estimate the torelon mass
M̂ P50.77 ~5!. Including the leading-order universal strin
correction@67#, we expect the loop mass to vary with th
lattice size inD dimensions as

M̂ P5sL2
p~D22!

6L
. ~42!

From this, we estimate the string tension to beŝ50.052~3!
or, using the Sommer scale to set physical units,As5462
~13! MeV, in good agreement with the value quoted in Tab
V.

The mass of the lightest torelon pair, around twice
torelon mass, is thus clearly too heavy to induce finite v
ume effects. Likewise, finite volume effects from meson e
change through the boundary should be small, although
do not consider this process here. The mass of the torelon
the other hand, is not much larger than that of the sc
glueball, and there is a possibility of mixing occurring b
tween the two which would lead to a finite volume contam
nation. We thus perform a variational analysis where
cross-correlate a basis of eight of the ‘‘best’’ scalar glueb
operators with the two ‘‘best’’ torelon operators. We find t
matrix to be block-diagonal within errors, and the two lowe
eigenstates match closely the original glueball and torelo
mass and operator overlap. Thus this finite volume conta
nation is negligible, something which could have been
ticipated from the small size of the Polyakov line VEV.

In summary, we have presented measurements of the
lar and tensor glueball and torelon masses on an ensemb
configurations at (b,k)5(5.20,0.135 50). We find clear sig
nals for the presence of light sea quarks, both in a sc
glueball mass that is significantly suppressed below
quenched value at a comparable lattice spacing, and in
breaking of the confining flux tube as demonstrated b
nonzero expectation value for the spatial Polyakov loop
erator. Although nonzero, the smallness of these VEVs
gether with the fact that the torelon and torelon pair mas
are significantly larger than the scalar glueball mass lead
to believe that the suppression of the scalar glueball mas
not a finite volume effect, a conclusion which is reinforc
by an explicit mixing analysis. The dependence of these
fects on the sea quark mass, and whether this effect per
in the continuum limit, is not, however, resolved here.

VI. THE TOPOLOGICAL SUSCEPTIBILITY AND f p

The ability to access the nonperturbative sectors, an
vary parameters fixed in Nature, has made lattice Mo
Carlo simulation a valuable tool for investigating the role
topological excitations in QCD and related theories, and i
these that we now consider.

In quenched lattice calculations, the continuum topolo
cal susceptibility now appears to be relatively free of t
systematic errors arising from the discretization, the fin
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volumes, and the various measurement algorithms emplo
Attempts to measure the microscopic topological structure
the vacuum are also well advanced~for a recent review, see
@68#!. The inclusion of sea quarks in lattice simulations, ev
at the relatively large quark masses currently employed
numerically extremely expensive, and to avoid significa
finite volume contamination of the results, the lattice must
relatively coarse, with a spacinga.0.1 fm as in this study.
Compared to quenched lattice studies at least, this is a
nificant fraction of the mean instanton radius, and has so
precluded a robust, detailed study of the local topologi
features of the vacuum in the presence of sea quarks.
topological susceptibility, on the other hand, may be cal
lated with some confidence and provides one of the fi
opportunities to test some of the more interesting predicti
for QCD. Indeed, it is in these measurements that we fi
some of the most striking evidence for the effects of s
quarks~or, alternatively, for a strong quenching effect! in the
lattice simulations described in this paper.

We find clear evidence for the expected suppression of
topological susceptibility in the chiral limit, despite our rel
tively large quark masses. From this behavior, we can
rectly estimate the pion decay constant without needing
know the lattice operator renormalization factors that arise
more conventional calculations.

These results were presented at the IOP2000@13#, the
Confinement IV@15#, and, in a much more preliminary form
the Lattice ’99 @12# conferences. Since then, we have i
creased the size of several ensembles and included a
parameter set. We also have more accurate results from
quenched theory with which to compare. Related res
have been presented by the CP-PACS Collaboration@69–71#,
the Pisa Group@72,73#, the SESAM-TxL Collaboration@74#,
and the Boulder Group@75#. A detailed analysis of our
dataset, and its relation to these other studies, will be gi
in @76#.

The topological charge is

Q5
1

32p2 E d4x 1
2 «mnstFmn

a ~x!Fst
a ~x!. ~43!

The topological susceptibility is the squared expectat
value of the topological charge, normalized by the volum

x5
^Q2&

V
. ~44!

Sea quarks induce an instanton–anti-instanton attrac
which in the chiral limit becomes stronger, suppressingQ
andx @77#,

x5SS 1

mu
1

1

md
D 21

, ~45!

where

S52 lim
mq→0

lim
V→`

^0uc̄cu0& ~46!
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is the chiral condensate@78#. We assume ^0uc̄cu0&
5^0uūuu0&5^0ud̄du0& and neglect contributions of heavie
quarks. The Gell-Mann–Oakes–Renner relation

f p
2 Mp

2 52~mu1md!S1O~mq
2! ~47!

implies

x5
f p

2 Mp
2

4Nf
1O~Mp

4 ! ~48!

for Nf degenerate light flavors, in a convention where
experimental value of the pion decay constant4 f p

.132 MeV. Equation~48! holds in the limit f p
2 Mp

2 V@1,
which is satisfied by all our lattices. The higher-order ter
ensure thatx→xqu, the quenched value, asmq ,Mp→`. We
find, however, that our measured values are not very m
smaller thanxqu, so we must consider two possibilities.

First, there are phenomenological reasons@79,80# for be-
lieving that QCD is ‘‘close’’ toNc5`, and in the case o
gluodynamics even SU~2! is demonstrably close to SU~`!
@64,56,81#. Fermion effects are nonleading inNc , so we ex-
pect x→xqu for any fixed value ofmq as the number of
colorsNc→`. For smallmq , we expect

x5
x`Mp

2

4Nfx
`

f `
2 1Mp

2

, ~49!

with x`, f ` the quantities at leading order inNc @78#. Alter-
natively, ourmq.mstrangeand perhaps higher-order terms a
important. In the absence of a QCD prediction,

x5
f p

2

2pNf
Mp

2 arctanS 2pNf

f p
2 xqu

1

Mp
2 D ~50!

interpolates between Eq.~48! and the quenched limit.5 Mea-
surements ofx were made on a number of ensembles
Nf52 lattice field configurations. We reiterate here th
these ensembles have two notable features. The improve
is fully nonperturbative, with discretization errors being qu
dratic rather than linear in the lattice spacing. Second,
couplings are chosen to maintain an approximately cons
lattice spacing ~as defined by the Sommer scale,r 0
50.49 fm@9#! as the quark mass is varied. This is importa
as the susceptibility in gluodynamics varies considera
with the lattice spacing@56,81#, in competition with the
variation with mq . The topological susceptibility is mea

4N.B. there is a common alternative convention, used in ear
presentations of these data@13,15#, where a factor of 2 is absorbe
into f p

2 in Eq. ~48!, and wheref p is a factor of& smaller, around
93 MeV.

5Note that, in describing chiral extrapolations, we adopt the co
mon convention of usingp to label quantities associated with th
pseudoscalar channel irrespective of the quark mass.
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sured from the gauge fields after cooling to remove the
noise. Further details of the procedure may be found
@13,76#.

We plot data for the ensembles presented in this pape
Figs. 12 and 13, as well as for preliminary results for tw
further datasets at (b,k)5(5.20,0.135 65) and
~5.25,0.135 20!. Also shown, as a band, is the interpolat
xqu at an equivalent lattice spacing. Due to the system
differences in the methods for determiningr̂ 0 ~which can
amount to a 20% difference inr̂ 0

4!, the value chosen is for the
quenched couplingb55.93, taken from@81#, where we have
an estimate ofr̂ 0 determined in a consistent manner. T
variation in the equivalent quenched susceptibility over

r

-

FIG. 12. The measured topological susceptibility, with interp
lated quenched points at the samer̂ 0 . The radius of the dynamica
plotting points is proportional tor̂ 0

21. The fits, independent of the
quenched points, are~iii ! Eq. ~53! and ~iv! Eq. ~54!.

FIG. 13. The measured topological susceptibility. The radius
the dynamical plotting points is proportional tor̂ 0

21. The fits, inde-
pendent of the quenched points, are~i! Eq. ~51!, ~ii ! Eq. ~52!, ~iii !
Eq. ~53!, and~iv! Eq. ~54!.
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range in r̂ 0 spanned by our data is much smaller than
error on theb55.93 point shown, a useful consequence
the matching program.

The behavior ofr̂ 0
4x̂ with ( r̂ 0M̂p)2 is qualitatively as ex-

pected and, more quantitatively, we attempt fits motivated
Eqs. ~48!, ~49!, and ~50!. The leading-order chiral behavio
will be

r̂ 0
2x̂

Mp
2 5c0 , ~51!

with the first correction term generically being

r̂ 0
2x̂

Mp
2 5c01c1~ r̂ 0M̂p!2. ~52!

Attempting to include data further from the chiral limi
large-Nc theory suggests a functional form

r̂ 0
2x̂

Mp
2

5
c0c3

c31c0~ r̂ 0M̂p!2
, ~53!

while a more general interpolation is provided by

r̂ 0
2x̂

Mp
2

5
2c0

p
arctanS pc3

2c0~ r̂ 0M̂p!2D . ~54!

In each case, the intercept is related to the decay consta
c05( r̂ 0 f̂ p)2/8. The corresponding fits are shown in Figs.
and 13. The extent of the curves indicates which points w
included in fit. We include progressively fewer chiral poin
until the x2/d.o.f. of the fit becomes unacceptably bad. W
note the wide range fitted simply by including anMp

4 term,
and the consistency of our data with large-Nc predictions.
The stability and similarity of the fits motivate us to usec0

from Eq. ~52! to estimatef p514968214
125 MeV at a lattice

spacinga.0.1 fm, with variation between other fits provid
ing the second, systematic error, and in good agreement
the experimental value around 132 MeV.
ys
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VII. CONCLUSIONS

Two particular features distinguish this work from prev
ous published reports on lattice simulations of QCD w
dynamical fermions. It represents the first presentation o
wide range of results using the fully nonperturbatively im
proved Wilson action. It also demonstrates the value o
new strategy of using so-called ‘‘matched ensembles’’ wh
allows a more controlled study of unquenching effects th
would otherwise be possible at finite lattice spacing.

We have presented detailed measurements of the s
interquark potential, light hadron spectrum, scalar and ten
glueballs, torelon states, and the topological charge and
ceptibility.

From the analysis of these quantities, we have prese
significant evidence of effects attributable to dynamical
fects ~two flavors of light quarks! on the static interquark
potential, particularly at short range~Sec. IV C!, and the to-
pological susceptibility~Sec. VI!.

We have also seen some evidence of dynamical qu
effects in the effective string tension~Sec. V D!, the nucleon
mass~Sec. V E!, and the scalar glueball mass~Sec. V G!.

For the present range of light quark masses (Mp /M r

*0.58), there is no convincing evidence of effects on
light meson spectrum, nor do we see evidence of str
breaking, save indirectly in the small, but nonzero, VEV
the winding gluonic flux tube~torelon! operator.

Further analyses of these ensembles and complemen
ones being produced by the QCDSF Collaboration@82,83#
are underway.
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