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Kinetic approach to h8 production from a CP-odd phase
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The production of (h,h8) mesons during the decay of aCP-odd phase is studied within an evolution
operator approach. We derive a quantum kinetic equation starting from the Witten–Di Vecchia–Veneziano
Lagrangian for pseudoscalar mesons containing a UA(1) symmetry breaking term. The nonlinear vacuum mean
field for the flavor singlet pseudoscalar meson is treated as a classical, self-interacting background field with
fluctuations assumed to be small. The numerical solution provides the time evolution of the momentum
distribution function of the producedh8 mesons after a quench at the deconfinement phase transition. We show
that the time evolution of the momentum distribution of the produced mesons depends strongly on the shape of
the effective potential at the end of the quench, exhibiting either parametric or tachyonic resonances. Quantum
statistical effects are essential and lead to a pronounced Bose enhancement of the low-momentum states.
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I. INTRODUCTION

Construction of the Relativistic Heavy Ion Collide
~RHIC! at the Brookhaven National Laboratory is complet
and it is designed to initiate energy densities sufficient
produce a quark-gluon plasma~QGP! @1#. Such a strongly
correlated state of matter has a finite lifetime. Because
rapid collisions, the plasma may reach thermal equilibriu
and at critical values of temperature and density the qua
and gluons form hadronic bound states: a process drive
confinement and chiral symmetry breaking. Many aspect
the plasma’s production and evolution are characterized
nonlinear dynamics. The hadronization process itself as w
as critical phenomena in the vicinity of the phase bound
requires a study with nonequilibrium techniques.

An unsolved problem of conceptual and practical inter
is the precise connection between field theory and kin
theory. Recently a link between the mean field approach
vacuum pair creation in a spatially homogeneous Abe
background field@2# and a kinetic formulation was estab
lished in@3#. The resulting source term for spontaneous p
creation is non-Markovian and retains quantum statistical
fects @4,5#. In many approaches the background field
treated as a time-dependent classical field with feedback
corporated via Maxwell’s equation, e.g.,@6–10#. In these ap-
proaches the production of fermion or gluon pairs was e
ployed to describe the formation of a quark-gluon plasm
Herein we focus on the production of bosonic particles in
hadronic matter in QCD.

Lattice calculations—e.g.,@11#—as well as QCD Green
function approaches—e.g.,@10,12#—indicate that the decon
finement and chiral phase transitions are coincident@10,13–
15#. At present it is an open question whether the restora
of UA(1) symmetry, which is broken in the QCD vacuum
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occurs at the deconfinement transition temperature or ab
In addition parity as well as charge-parity may be sponta
ously broken at the UA(1) restoring transition and metastab
states form. TheseCP-odd metastable states simulate a no
vanishing QCDu angle @16# and can therefore be studie
using the Witten–Di Vecchia–Veneziano model@17#. These
CP-odd bubbles~on aCP-even background! are of particu-
lar interest because they may have experimental signatu
e.g., the enhanced production ofh and h8 mesons@18,19#,
whosee1e2 decays can contribute to the low-mass dilept
enhancement.

Herein we study the production ofh8 particles during the
decay of theCP-odd phase. Complementary to@20# where
the production rate ofh8 mesons was calculated, we stud
the full time evolution of the momentum distribution func
tion using a quantum kinetic equation based on the sa
effective Lagrangian. We start from the Witten–Di Vecchia
Veneziano model@17#; however, different approaches can b
applied—e.g.,@21#.

In this article, the external background field concept
replaced by a potential yielding self-interaction and nonl
earity. This potential dominates the solution of the quant
kinetic equation which is derived using an evolution opera
approach. The technique introduced to link an effective L
grangian and kinetic theory is not restricted to the discus
model calculation ofh8 production. Its application is genera
in quantum field theory.

The article is organized as follows. In Sec. II we introdu
the model Lagrangian and identify the self-interaction pa
In Sec. III we perform the quantization of the evolution o
erator used in Sec. IV to derive a quantum kinetic equati
In Secs. V and VI we discuss the decay of theCP-odd phase
in view of our numerical results.
©2002 The American Physical Society39-1
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II. EFFECTIVE LAGRANGIAN

We start from the effective Lagrangian of the Witten
Di Vecchia–Veneziano model@17#,

Le f f5
f p

2

4 S tr~]mU]mU1!1tr~MU1MU1!

2
a

Nc
Fu2

i

2
tr~ ln U2 ln U1!G2D , ~1!

which describes the low-energy dynamics of the nonet of
pseudoscalar mesons@22# in the large-Nc limit of QCD. The
meson fields are described by theNf3Nf matrix U in Eq.
~1!. Explicit chiral symmetry breaking is realized by the cu
rent quark mass matrixM with the diagonal elements relate
to p- and K-meson masses. With the parametrizationU
5exp(if/fp), the matrixf representing the singlet and oct
meson fields yields the pseudoscalar nonet. The last ter
the effective Lagrangian is related to the UA(1) anomaly: the
singlet is massive also in chiral limit. The parametera
52NflY M / f p

2 contains the topological susceptibilitylY M .
Herein we focus on the singlet state which is the main co
ponent forh8 and obtain the following Lagrangian@20#:

L5
1

2
~]mh!~]mh!1 f 2m2 cosS h

f D2
a

2
h2. ~2!

In Eq. ~2!, f 5A 3
2 f p , where f p592 MeV is the semilep-

tonic pion decay constant, andm25 1
3 (mp

2 12mK
2 ) is a pa-

rameter depending onp- and K-meson masses. For zer
temperatureT50, a5mh

21mh8
2

22mK
2 .0.726 GeV2 and

m2.0.171 GeV2. In response to nonzero temperature a
density mesons have an effective mass—e.g.,@23#: m anda
are functions ofT and hence the potential corresponding
Eq. ~2! has modified properties close to the deconfinem
phase transition@20#.

From Eq.~2! we obtain the following Klein-Gordon-type
equation of motion for the fieldh(xW ,t):

~h1m0
2!h5Js , ~3!

wherem0
2[a1m2. The nonlinear current

Js[2 f m2FsinS h

f D2S h

f D G ~4!

contains ordersh3 and higher and is related to the se
interaction of the fieldh. Note that the linear term of the
total currentJ52m2h1Js is contained in the mass-square
term of the left-hand side of Eq.~3!.

The total Hamiltonian densityH5H01Hs is given by
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H05
1

2
p21

1

2
~¹W h!21

1

2
m0

2h2,

H s52 f 2m2Fsin2S h

2 f D2S h

2 f D
2G , ~5!

where H0 involves only the free field part with the mas
m0 ; Hs includes self-interaction starting at ordersh4 andp
is the momentum canonically conjugate toh:

p~xW ,t !5ḣ~xW ,t !, ~6!

where the overdot denotes the derivative with respect
time.

III. EVOLUTION OPERATOR APPROACH

We introduce the in-fieldh in(xW ,t),1 as a solution of Eq.
~3! in absence of sources and quantize it according to
standard canonical procedure~see Appendix A!. The original
self-interacting field is connected with the in-field by th
unitary transformation:

h~xW ,t !5U21~ t !h in~xW ,t !U~ t !, ~7!

where

U~ t ![T expH 2 i E
2`

t

dt8 Hs
in~ t8!J ~8!

is the time evolution operator with the self-interactio
Hamiltonian written in terms of the in-field operators

Hs
in[E d3x Hs~h5h in ;p5p in!. ~9!

In the limit t→2` we haveU(t)→I , so that

lim
t→2`

h~xW ,t !5h in~xW ,t !. ~10!

The exact meaning of Eq.~10! depends on details of th
current Js which in our model is determined by the sel
interaction taking place atall times. Hence Eq.~10! is a
priori difficult to justify. We assume an adiabatic vanishin
of the interaction fort→2`.

The field h(xW ,t) is given by the space-homogeneo
mean valuef(t)5^h(xW ,t)& and fluctuationsx:

h~xW ,t !5f~ t !1x~xW ,t !, ~11!

with ^x(xW ,t)&50. Assuming thatx! f , quantum fluctuations
can be treated perturbatively. Herein we restrict ourselve
zeroth~0! and first~1! order. Substituting Eq.~11! into Eq.
~3! yields

1The model is defined in a finite volume:V5L3,2L/2<xi

<L/2, i 51,2,3. The continuum limit is (1/V)(kW⇒*d3kW /(2p)3.
9-2
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~h1m0
2!x1f̈1m0

2f5Js
(1) , ~12!

where

Js
(1)[Js

(0)1m2F12cosS f

f D Gx. ~13!

The zeroth order of the current is given by

Js
(0)[2 f m2FsinS f

f D2S f

f D G . ~14!

Taking the mean valuê•••& of Eq. ~12! yields the vacuum
mean field equation

f̈1af1 f m2 sinS f

f D50. ~15!

Equation~15! in concert with Eq.~12! provides the equation
of motion for the quantum fluctuations:

~h1m0
2!x5m2F12cosS f

f D Gx. ~16!

The right-hand side of this equation vanishes in the in-lim
Rewriting Eq. ~16! for the Fourier componentsx(kW ,t), we
obtain a Mathieu-type equation@24,25#

ẍ~kW ,t !1vk
2~ t !x~kW ,t !50, ~17!

where

vk
2~ t ![~vk

0!22m2F12cosS f

f D G ~18!

andvk(t) is the time-dependent frequency of the fluctuatio
with limt→2`vk(t)5vk

05Ak21m0
2.

For a.m2, the frequency squared is positive for all m
mentum modes and at all times. However, ifa,m2, vk

2(t)

can be negative for modes below a critical momentumkW c
indicating a tachyonic regime.

It is important to observe that Eqs.~15! and ~16! are
coupled@20#. Although the fluctuations do not react on th
vacuum mean field, the latter modifies the equation for fl
tuations via a time-dependent frequency.

The self-interaction Hamiltonian density corresponding
Eqs.~15! and ~16! is quadratic inx,

H s
(1)52 f 2m2Fsin2S f

2 f D2S f

2 f D
2G1 f m2FsinS f

f D2S f

f D Gx
1

1

2
m2FcosS f

f D21Gx2, ~19!

and also vanishes whent→2`. Hence in the approximation
of preserving quantum fluctuations in the vacuum mean fi
but neglecting the feedback, the adiabatic hypothesis of v
ishing interactions fort→2` discussed with Eq.~10! is
justified.
05403
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For the Fourier components of the fluctuations, we wr
an ansatz analogous to Eq.~A4!,

x~kW ,t !5GkW~ t !a~kW ,t !1GkW
!
~ t !a†~2kW ,t !, ~20!

where

GkW~ t !5
1

A2vk~ t !
exp$2 iQk~vk ,t !% ~21!

andQk(vk ,t) is a phase which in the in-limit takes the form
vk

0t. In the same limit, GkW(t)→GkW
0(t), while the time-

dependent operatorsa(kW ,t),a†(kW ,t) with limt→2` a(kW ,t)
5ain(kW ) and limt→2` a†(kW ,t)5ain

† (kW ).
In the case when the fluctuations and the frequencyvk

vary adiabatically slowly in time, the dynamical phaseQk
can be chosen as

Qk
ad5E t

vk~ t8!dt8. ~22!

The relations between the Fourier componentsh(kW ,t) and
x(kW ,t) and the corresponding conjugate momenta are gi
by

h~kW ,t !5x~kW ,t !1dkW ,0AVf~ t !, ~23!

p~kW ,t !5px~kW ,t !1dkW ,0AVḟ~ t !. ~24!

The Fourier components of the operatorpx are

px~kW ,t !52 ivk~ t !@GkW~ t !a~2kW ,t !2GkW
!
~ t !a†~kW ,t !#

~25!

and in the limitt→2` this ansatz reduces to Eq.~A5!.
Using Eqs.~20! and ~25!, we obtain the following rela-

tions betweena(kW ,t),a†(kW ,t), and the in-operators:

a~kW ,t !5
1

2GkW~ t !
H U21~ t !Fh in~kW ,t !1

i

vk
p in~2kW ,t !GU~ t !

2dkW ,0AVS f1
i

v0
ḟ D J , ~26!

a†~kW ,t !5
1

2GkW
!
~ t !

H U21~ t !Fh in~2kW ,t !2
i

vk
p in~kW ,t !GU~ t !

2dkW ,0AVS f2
i

v0
ḟ D J , ~27!

where v0[vk50. It is easy to verify that the operator
a(kW ,t),a†(kW ,t) satisfy the same commutation relations as
in-operators, Eqs.~A6!. Hence the transformation defined b
the evolution operator is canonical. Thef-dependent terms
in Eqs.~26! and~27! act like counterterms which cancel th
vacuum mean field contribution of the previous terms,
that Eqs.~26! and ~27! do not depend onf explicitly.
9-3
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IV. KINETIC EQUATION

The number of particles of a given state characterized
the momentumkW at time t is given by

N~kW ,t ![^0ua†~kW ,t !a~kW ,t !u0&. ~28!

In the limit t→2`, N(kW ,t) tends of course towards the o
cupation number density of the in-field:

N~kW ,t !→N~kW ![^0uain
† ~kW !ain~kW !u0&. ~29!

Substituting Eqs.~26! and~27! into Eq.~28! and introducing
the instantaneous statesUu0&[uU&,^0uU21[^Uu, the par-
ticle number can be written as

N~kW ,t !5
vk

2
^Uuh in

† ~kW ,t !h in~kW ,t !1
1

vk
2
p in~kW ,t !p in

† ~kW ,t !uU&

1
i

2
^Uuh in

† ~kW ,t !p in
† ~kW ,t !2p in~kW ,t !h in~kW ,t !uU&

2dkW ,0

v0

2
VS f21

1

v0
2
ḟ2D . ~30!

The number of particles of momentumkW is not equal to that
of momentum (2kW ) for all timest. Therefore it is convenien
to introduce

N6~kW ,t ![
1

2
@N~kW ,t !6N~2kW ,t !#, ~31!

whereN1(kW ,t) is the particle number averaged over the
rectionskW and (2kW ), while N2(kW ,t) measures the degree o
asymmetry. At fixed volume, the occupation number den
ties can change in time for two reasons: either with
change of the number of particles or with the change of
vacuum state. The presence of the background field lead
a restructuring of the vacuum state. Note that in the c
when the background is a constant classical field, the de
tion of the vacuum does not change in time. One consid
excitations with respect to this vacuum and interprets an
crease in the occupation number density as particle pro
tion. The vacuum state itself is ‘‘empty,’’ i.e., without pa
ticles.

In our model, the background fieldf(t) is periodic in
times, i.e., in addition to the quantum fluctuations aroundf
we have oscillations off itself. Therefore the vacuum re
structures itself at each moment in time and consequently
occupation number density has to be redefined as well s
it is assumed to be zero only for the vacuum state. In
time evolution of the densitiesN6(kW ,t), it is therefore nec-
essary to separate the contribution of the real particle p
duction from the one related to the vacuum state redefinit
This is achieved by using the expansion~19! in the evolution
operatorU(t).
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We consider first the time evolution ofN2(kW ,t). Taking
the time derivative ofN2(kW ,t) and taking into account the
relation iU̇ 5Hs

inU we find

Ṅ2~kW ,t !52
1

2
^Uu@Hs

in ,h in
† ~kW ,t !p in

† ~kW ,t !

2p in~kW ,t !h in~kW ,t !#2uU&. ~32!

Using the expansion~19!, the commutator in Eq.~32! is
readily calculated:

Ṅ2~kW ,t !5
1

AV
ImE d3x^0ueikWxWx~kW ,t !Js

(1)~xW ,t !u0&.

~33!

The time evolution of the densityN2(kW ,t) is determined by
the self-interaction of the fieldh(xW ,t). To get an exact for-
mula valid in all orders of perturbations in (x/ f ) it is suffi-
cient to replaceJs

(1) by Js in Eq. ~33!.
In the chosen approximation of small quantum fluctu

tions, the currentJs is considered in first order inx. Using
Eq. ~13!, the integral in Eq.~33! turns out to be real and on
obtainsṄ2(kW ,t)50. In first order inx the number density
N2(kW ,t) is therefore conserved.

Taking the time derivative ofN1(kW ,t) we obtain the evo-
lution equation

Ṅ1~kW ,t !5
v̇k

vk
Re@C~kW ,t !e22iQk#1

1

vk
~vk

22~vk
0!2!

3Im@C~kW ,t !e22iQk#2
1

v0
dkW ,0VJs

(0)ḟ

1
i

2vk
^Uu@Hs

in ,p in~kW ,t !p in
† ~kW ,t !#2uU&,

~34!

where we have defined the time-dependent pair correla
function C(kW ,t)[^0ua(2kW ,t)a(kW ,t)u0&. Calculating the
commutator in the expression forṄ1(kW ,t), we find

i

2vk
^Uu@Hs

in ,p in~kW ,t !p in
† ~kW ,t !#2uU&

5
1

AV

1

vk
ReE d3x^0ueikWxWpx

†~kW ,t !Js
(1)~xW ,t !u0&

1
1

v0
dkW ,0VJs

(0)ḟ. ~35!

With Eq. ~13!, this last expression becomes
9-4



on

r

r-
ed
ot
e

n

e

-

tia
o-
y

m
ni
e-

is
hed.

nge
tic
ta-

eri-
tive

.
the

ob-
ave

f

ible

n
se
-

m
rive

r-

ial
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i

2vk
^Uu@Hs

in ,p in~kW ,t !p in
† ~kW ,t !#2uU&

5
m2

2vk
F12cosS f

f D G Im@C~kW ,t !e22iQk#

1
1

v0
dkW ,0VJs

(0)ḟ, ~36!

so that, in the small quantum fluctuations approximation,

Ṅ1~kW ,t !5
v̇k

vk
Re@C~kW ,t !e22iQk#. ~37!

In the same approximation, the pair correlation functi
C(kW ,t) obeys the equation

Ċ~kW ,t !22i ~Q̇k2vk!C~kW ,t !5
v̇k

2vk
@112N1~kW ,t !#e2iQk.

~38!

Its formal solution is

C~kW ,t !5e2iQkE
2`

t

dt8
v̇k~ t8!

2vk~ t8!
@112N1~kW ,t8!#

3e2i [Qk
ad(t8)2Qk

ad(t)] . ~39!

Substituting it into Eq.~37!, we obtain a closed equation fo
N1(kW ,t) similar to @3#

Ṅ1~kW ,t !5
v̇k

2vk
E

2`

t

dt8
v̇k~ t8!

vk~ t8!
@112N1~kW ,t8!#

3cos@2Qk
ad~ t !22Qk

ad~ t8!#. ~40!

Equation ~40! is a quantum kinetic equation which dete
mines the time evolution of the number of particles of a fix
momentumkW2.kW c

2 . Note that the background field does n
contribute to the kinetic equation directly, but only via th
frequency of the quantum fluctuations. Therefore, the cha
of N1(kW ,t) in time in Eq.~40! is due to particle production
during the fluctuations.

In the regime of the negative frequency squared, wh

kW2,kW c
2 and vk56 ink[6 iAkW c

22kW2, one of the phase fac
tors in the ansatz~20!, GkW(t) or GkW

!(t), grows exponentially
in time. Instead of oscillations we have an exponen
growth of long wavelength quantum fluctuations with m
menta kW2,kW c

2 . This is the so-called tachyonic instabilit
@26–28#.

Such a tachyonic regime is realized for potential para
etersa/m2,1. Whether the system evolves in the tachyo
or nontachyonic regime is dynamically fixed by the tim
dependent critical momentum:

kW c
2~ t !5H m2ucos~f/ f !u2a, m2 cos~f/ f !1a,0,

0, otherwise,
~41!
05403
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plotted in Fig. 1 for different parametersa/m2. For a/m2

.1 the critical momentum is zero since the frequency
always positive and no tachyonic modes can be establis
The critical momentum fora/m2,1 oscillates in tune with
the time dependence of the vacuum mean fieldf. The time
evolution shows that the same momentum state can cha
its nature during the evolution. In that case a different kine
equation must be derived and solved which evolves all
chyonic modes in time. Therefore the analytical and num
cal treatment is a complicated challenge and a quantita
analysis ofa/m2,1 states will be provided elsewhere.

The particle number density of all modes at any timet is
given by

N~ t !5E d3kW

~2p!3
N1~kW ,t !. ~42!

Simple power counting yields that this expression is finite
The kinetic equation derived in this section contains

same level of approximations as discussed in@20#. However,
therein the mode equations are solved directly, while we
tained a quantum kinetic equation. Both approaches h
their merits. An advantage of Eq.~40! is the simple introduc-
tion of further physical limits. Below we will discuss one o
them: the low-density limit which is obtained forN1(kW ,t)
!1 simplifying the right-hand side of Eq.~40!. Furthermore,
the physical interpretation of the results becomes feas
since we explicitly deal with the distribution function ofqua-
siparticlesand their properties. The momentum distributio
function is the key quantity to evaluate the density of the
quasiparticles, Eq.~42!, and the bulk thermodynamical prop
erties.

V. DECAY OF THE CP-ODD PHASE

In the vicinity of the phase transition the QCD vacuu
rearranges: chiral symmetry breaking and confinement d

FIG. 1. The dependence of the critical momentumpc5kc /m,
Eq. ~41!, on timet5tm. A nonvanishing value indicates the appea
ance of tachyonic modes. The time dependence ofpc is due to the
alternatingf field and depends strongly on the choice of the init
values.
9-5
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quark matter into hadronic states. In the QGP phase the
ter is expected to be UA~1! symmetric. This corresponds to
vanishing parametera/m250 ~set IV in Table I!. In the rapid
cooling of the hot QCD matter down to the critical tempe
ture Td , the UA~1! symmetry becomes spontaneously b
ken, i.e.a/m2Þ0; ~sets I, II, III in Table I!. After such a
quench of the effective potential~43!, the system is in the
false vacuum state where parity and charge-parity are s
taneously broken@16#. The decay of thisCP-odd phase is a
time-dependent process and can be studied within the kin
approach introduced in the previous section.

The potential of the effective Lagrangian density~2!,

V~h/ f ![2cosS h

f D1
a

2m2
~h/ f !2, ~43!

is plotted in Fig. 2 for different values of the potential p
rameter,a/m2, according to Table I@20#.

Starting from the quark-gluon plasma phase in wh
a/m2 is suppressed, set IV in Table I, the potential chan
from the cosine shape to a parabolic shape due a su
quench at the deconfinement phase transition. The metas
states located in the local minima of the potential r
smoothly back into the trivial minimum and oscillate arou

FIG. 2. The shape of the potentialV(h/ f ), Eq. ~43!, is plotted
for different values ofa/m2. Local minima characteristic fora/m2

,1 assumed at large temperatures disappear due to an applie
quench.

TABLE I. Different values ofa/m2 as used in the numerica
calculation. (a/m2)vac;4.24 is the vacuum value for which all me
sons have their vacuum masses. Set I assumes a fast quench
which the vacuum value is immediately reached; i.e., theh8 mass
assumes its vacuum value in the vicinity ofTd . This scenario is
compared with slow quenches corresponding to parameters giv
sets II and III. Set IV leads to the appearance of tachyonic mode
value only possible forT.Td .

Set I II III IV

a/m2/(a/m2)vac 1 1/2 1/4 0
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it. This situation is formalized in assumption~11!: The h
field can be decomposed into its vacuum mean valuef(t)
and its quantum fluctuationsx. During the decay, energy i
transferred fromf to x. As a result,f is damped, while the
number of particles in quantum fluctuations increases. I
assumed that during this process the temperature does
change essentially, and particle production proceeds i
fixed potential characterized bya/m2. This process takes
place on a time scale typical for the hadronization proce
1 –10 fm/c. The potential parametera/m2 depends on tem-
perature due to medium-dependent meson masses. How
its exact behavior near the critical temperature is unkno
Lattice calculations as well as QCD models suggest thatp-,
K-, andh-meson properties have only a weak dependence
T. Much less is known about the response ofh8 to increasing
T, and therefore we explore different scenarios summari
in Table I. Set I assumes that the medium dependenc
negligible. Set II~III, IV ! corresponds to an in-medium re
duction of theh8 mass of about 20%~40%, 60%! applying
the simple equations given in connection with Eq.~2! @19#. It
is important to note thatf ; f p can be considered as an ord
parameter for the chiral phase transition and hence
strongly suppressed atTd , i.e., f (T;Td)50.1 f (T50). In
the scenario applied herein, the in-medium-dependent
rametersa/m2 and f change only during the fast quenc
Their time dependence can therefore be neglected.

The solution of the nonlinear equation~B1! for f(t) with
differenta/m2 is plotted in Fig. 3, employing the initial con
ditions f(0)/ f 52p and @df(t)/dt#t5050 throughout the
numerical calculations. We see that the frequency of the
cillations of f(t) vary with the change ofa/m2. The oscil-
lations are not damped since feedback of the fluctuations
the mean field is neglected~see@20# for a discussion of back
reactions!. The fieldf provides the background field for th
solution of the quantum kinetic equation given in Eq.~B3!.

fast

fter

in
, a

FIG. 3. The solution of the vacuum mean field equation as fu
tion of time, Eq.~B1!, is shown for different values ofa/m2 ~cf.

Table I! for the initial conditionsf(0)/ f 52p and ḟ(0)/ f 50.
Note that fora/m250, f(t) would be constant.
9-6
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VI. NUMERICAL RESULTS

The solution of the quantum kinetic equation~40! de-
scribes the production ofh8 particles: the momentum depen
dence and its time evolution. The strong background fieldf
leading to a sizable particle production rate is given by
solution of the nonlinear equation~15!; see Fig. 3.

We perform the numerical calculation using dimensio
less variables and solve the kinetic equation as a system
coupled differential equations,~B8!–~B10! introduced in Ap-
pendix B. The decay starts att50, for which N1(pW ,0)
50; f(0)52p f andḟ(0)50 define the initial conditions

As result we obtain the number of particles produced d
ing the decay of theCP-odd phase in the false vacuum
Herein we restricted ourselves to the study of the nontac
onic regime; i.e., we explore the solution for positive fr
quencies, Eq.~B4!, corresponding toa/m2.1 given in Table
I.

In Fig. 4 we show the complete numerical solution. Tw
features are apparent:~i! the fast increase is characterized
a repeated structure on top of the curve, and~ii ! additional to
the occupation of low-momentum states we observe the
pearance of resonance bands at larger momenta.

In Fig. 5 we plot the time evolution of the particle numb
for zero momentum and compare the solution for sets I
III. We observe a very fast increase of the number of p
duced particles. A maximum occupation of a given mom
tum state at a given time is reached for small values of
potential parameter, i.e., using set III. For larger values of
potential parameter, e.g., set I, fewer particles are produ
in a given time since the source term is suppressed b
larger mass terma/m2 in v(p); see Eq.~B4!.

The most striking feature in this plot is the periodica
repeated spike structure on top of the overall growth~cf.
@29#!. This pattern appears with the same frequency as
background field oscillates; see Fig. 3. When back react
are included this would possibly not be the case. The sp

FIG. 4. The time evolution of the momentum distribution fun
tion for parameter set III. Most of the mesons are produced w
small momenta but additional resonance bands appear for la
momenta; their maximal amplitude is smaller. The time evolution
characterized by an increase of the particle number and a repe
spike structure.
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structure is smoother for set I compared to set III but s
characteristic for the evolution.

Herein we also compare the full solution with the low
density approximation~l.d.!. The low-density approximation
assumes thatN1(pW ,t)!1 and hence suggests that the so
tion of the kinetic equation does not depend on the prehis
of the systems evolution. Any calculation which does n
retain quantum statistical effects necessarily employs this
satz. From Fig. 5 it is plain that the inclusion of the Bo
statistical factor in the kinetic equation leads to Bose
hancement as soon asN1;1, appearing att;1. This effect
becomes more pronounced with increasing time.

The momentum dependence at a given time, Fig. 6, sh

h
er

s
ted

FIG. 5. The time evolution of the particle number for two di
ferenta/m2.1 when the system is in the nontachyonic regime, E
~B3!. The double-spike structure on top of the rapid growth repe
periodically in tune with the mean field’s frequency~cf. Fig. 3!. An
estimate in the low-density approximation shows that inclusion
Bose quantum statistics leads to a pronounced enhancement.

FIG. 6. The particle number as function of momentum,p5upW u,
for two different a/m2.1. Bose enhancement of mainly the low
momentum states is apparent. A characteristic second reson
band appears for large momenta.
9-7
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that most of the particles are produced with small mome
Additional resonance bands appear. The smaller the valu
the potential parameter reached in the quench, the close
second maximum appears to the first one. The reason for
resonance effect is typical for a Mathieu-type equation:
two intrinsic frequencies of the background field and of t
production process are of the same order of magnitude
resonances are likely to appear.

In Fig. 6 we also compare the momentum dependenc
the full non-Markovian solution with a calculation in th
low-density limit. It is apparent that the Bose enhancem
acts naturally on the lower momenta. For the case consid
the occupation number is enhanced by a factor of 4. For la
momenta details of the quantum statistics are suppres
Therefore the higher resonance bands are much less affe
by quantum corrections. It is plain from this study that qua
tum statistical effects cannot be neglected: the low-den
approximation is invalid if the produced number density e
ceeds a critical value at very early times of the evolution

A comparison with@20# shows that the main results a
robust: a fast increase of the particle number and a cha
teristic resonance band structure. Additionally our study
dicates unambiguously that the large value ofN1(pW ;0) is
due to the Bose enhancement factor.

VII. SUMMARY

Starting from the singlet Witten–Di Vecchia–Venezia
effective Lagrangian we have derived a quantum kine
equation describing the production ofh8 mesons from a
CP-odd metastable vacuum state. We have employed a
eral method based on the evolution operator holding also
other model Lagrangians. The vacuum mean field provide
classical, self-interacting strong background field. Quant
fluctuations around the dynamical mean field value are c
sidered but their feedback to the background field is
glected. As a result of these quantum fluctuations, parti
are produced and the time evolution of this process is
scribed by a non-Markovian equation for the distributi
function of the producedh8 mesons.

We find that the details of the decay process dep
strongly on the applied quench. The number of produ
particles is much larger when theh8 mass is suppressed i
the vicinity of the phase boundary. Most of the particles
produced with low momenta; for large momenta additio
resonances appear. Furthermore, we have demonstrated
quantum statistical effects are important and lead to a p
nounced enhancement of the particle occupation numbe
low momenta. In the casea/m2,1, tachyonic instabilities
occur for momenta smaller than a critical value. This regi
has not been considered herein.

The numerical investigation of the tachyonic modes a
the inclusion of back reactions promise further insight in
the decay ofCP-odd metastable states and its realization w
be reported elsewhere.
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APPENDIX A: IN-FIELD QUANTIZATION

The in-field is a solution of the equation

~h1m0
2!h in50. ~A1!

The in-field operators satisfy periodic boundary conditio
and are expanded in Fourier modes,

h in~xW ,t !5
1

AV
(

kW
eikWxWh in~kW ,t !, ~A2!

p in~xW ,t !5
1

AV
(

kW
e2 ikWxWp in~kW ,t !, ~A3!

where the summation is over discrete momentakW

5(2p/L)nW , (n1 ,n2 ,n3) and

h in~kW ,t !5GkW
0
~ t !ain~kW !1GkW

0,!
~ t !ain

† ~2kW !, ~A4!

p in~kW ,t !5ḣ in
† ~kW ,t !

52 ivk
0@GkW

0
~ t !ain~2kW !2GkW

0,!
~ t !ain

† ~kW !#.
~A5!

The time-independent creation and annihilation opera
obey the commutation relations

@ain~kW !,ain
† ~kW8!#25dkW ,kW8 ; ~A6!

all other commutators vanish. The functionGkW
0(t) is given by

GkW
0
~ t !5

1

A2vk
0

exp$2 ivk
0t%, ~A7!

with vk
0[AkW21m0

2. Since the fieldh(xW ,t) is real, we have

h in
† (kW ,t)5h in(2kW ,t) and p in

† (kW ,t)5p in(2kW ,t). The
vacuum stateu0;in&[u0& is defined as vanishing under th
action of the annihilation operatorsain(kW )u0&50.

APPENDIX B: NUMERICAL REALIZATION

The evolution off in the decay is governed by Eq.~15!.
Introducing the dimensionless vacuum mean fieldf/ f and
the dimensionless time variablet[mt, we rewrite Eq.~15!
as

d2

dt2 S f~t!

f D1sinS f~t!

f D1
a

m2 S f~t!

f D50, ~B1!

with the one parametera/m2 characterizing the solution.
9-8



.
q

ar

e

KINETIC APPROACH TOh8 PRODUCTION FROM ACP-ODD PHASE PHYSICAL REVIEW D 65 054039
Note that for smalla/m2'0 one can replace Eq.~B1! by
the sine-Gordon equation

d2

dt2 S f0~t!

f D1sinS f0~t!

f D50, ~B2!

the subscript (0) inf(t) indicating the zero value ofa/m2.
The solution of Eq.~B2! is a Jacobian elliptic function
Herein we do not make this approximation and solve E
~B1! numerically for nonzero values ofa/m2.

For the numerical study we introduce dimensionless v
ables for the kinetic equations and obtain

d

dt
N1~pW ,t!5

v̇̄p

2v̄p
E

0

t

dt8
v̇̄p

v̄p

~t8!@112N1~pW ,t8!#

3cos@2Qp
ad~t!22Qp

ad~t8!#, ~B3!

where the dimensionless frequency is

v̄p
2[

1

m2
vk

25pW 21cosS f~t!

f D1S a

m2D , ~B4!

with pW 2[(kW2/m2).
Equation~B3! is an integro-differential equation. It can b

reexpressed by introducing
.

-

y,
.M

W
ta

05403
.

i-

u~pW ,t![E
0

t

dt8
v̇̄p

v̄p

~t8!@112N1~pW ,t8!#

3sin@2Qp
ad~t!22Qp

ad~t8!#, ~B5!

v~pW ,t![E
0

t

dt8
v̇̄p

v̄p

~t8!@112N1~pW ,t8!# ~B6!

3cos@2Qp
ad~t!22Qp

ad~t8!#, ~B7!

with the initial conditionsu(pW ,0)5v(pW ,0)50, in which case
we have

d

dt
N1~pW ,t!5

v̇̄p

2v̄p

v~pW ,t!, ~B8!

d

dt
v~pW ,t!5

v̇̄p

v̄p

@112N1~pW ,t!#22v̄pu~pW ,t!, ~B9!

d

dt
u~pW ,t!52v̄pv~pW ,t!. ~B10!
e-
e,

ev.
s.
.
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