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The production of §,#’) mesons during the decay of @P-odd phase is studied within an evolution
operator approach. We derive a quantum kinetic equation starting from the Witten—Di Vecchia—Veneziano
Lagrangian for pseudoscalar mesons containing@Ysymmetry breaking term. The nonlinear vacuum mean
field for the flavor singlet pseudoscalar meson is treated as a classical, self-interacting background field with
fluctuations assumed to be small. The numerical solution provides the time evolution of the momentum
distribution function of the produceg’ mesons after a quench at the deconfinement phase transition. We show
that the time evolution of the momentum distribution of the produced mesons depends strongly on the shape of
the effective potential at the end of the quench, exhibiting either parametric or tachyonic resonances. Quantum
statistical effects are essential and lead to a pronounced Bose enhancement of the low-momentum states.

DOI: 10.1103/PhysRevD.65.054039 PACS nunider25.75.Dw, 05.20.Dd, 05.60.Gg, 12.38.Mh

[. INTRODUCTION occurs at the deconfinement transition temperature or above.
In addition parity as well as charge-parity may be spontane-
Construction of the Relativistic Heavy lon Collider ously broken at the k(1) restoring transition and metastable
(RHIC) at the Brookhaven National Laboratory is completedstates form. Thes€ P-odd metastable states simulate a non-
and it is designed to initiate energy densities sufficient tovanishing QCD# angle[16] and can therefore be studied
produce a quark-gluon plasm@®GP [1]. Such a strongly using the Witten—Di Vecchia—Veneziano mod&l]. These
correlated state of matter has a finite lifetime. Because o€ P-odd bubblegon aCP-even backgroundare of particu-
rapid collisions, the plasma may reach thermal equilibriumjar interest because they may have experimental signatures,
and at critical values of temperature and density the quark@_g_, the enhanced production gfand »' mesong 18,19,
and gluons form hadronic bound states: a process driven byhosee*e™ decays can contribute to the low-mass dilepton
confinement and chiral symmetry breaking. Many aspects 0fnnhancement.
the plasma’s production and evolution are characterized by Herein we study the production af particles during the

nonlinear dynamics. The hadronization process itself as Wel!iecay of theCP-odd phase. Complementary [B0] where

as critical phenomena in the vicinity of the phase boundar){he production rate of;' mesons was calculated, we study

requires a study with nonequilibrium technlques._ . he full time evolution of the momentum distribution func-
An unsolved problem of conceptual and practical interest.

is the precise connection between field theory and kinetic o Using a quantum kinetic equation based on the same

theory. Recently a link between the mean field approach offeffectlve Lagrangian. We start from the Witten—Di Vecchia—

vacuum pair creation in a spatially homogeneous Abelian/€n€ziano model17]; however, different approaches can be
background field 2] and a kinetic formulation was estab- aPPlied—e.g.[21]. _ ,
lished in[3]. The resulting source term for spontaneous pair N this article, the external background field concept is
creation is non-Markovian and retains quantum statistical efféPlaced by a potential yielding self-interaction and nonlin-
fects [4,5]. In many approaches the background field isearity. This potential dominates the solution of the quantum
treated as a time-dependent classical field with feedback irkinetic equation which is derived using an evolution operator
corporated via Maxwell’s equation, e.§6—10]. In these ap- approach. The technique introduced to link an effective La-
proaches the production of fermion or gluon pairs was emgrangian and kinetic theory is not restricted to the discussed
ployed to describe the formation of a quark-gluon plasmamodel calculation ofy” production. Its application is general
Herein we focus on the production of bosonic particles in hoin quantum field theory.
hadronic matter in QCD. The article is organized as follows. In Sec. Il we introduce
Lattice calculations—e.g[11]—as well as QCD Green the model Lagrangian and identify the self-interaction parts.
function approaches—e.10,12—indicate that the decon- In Sec. Ill we perform the quantization of the evolution op-
finement and chiral phase transitions are coincid&ft13— erator used in Sec. IV to derive a quantum kinetic equation.
15]. At present it is an open question whether the restoratiomn Secs. V and VI we discuss the decay of @B-odd phase
of Ua(1) symmetry, which is broken in the QCD vacuum, in view of our numerical results.
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Il. EFFECTIVE LAGRANGIAN 1 ) 1 . ) 1 2
. . ) Ho=z7"+ = (Vn)*+zmin,
We start from the effective Lagrangian of the Witten— 0T 27 2( 7) 207
Di Vecchia—Veneziano mod¢l7],

2
— 2822 sirg| 2| = L
; H=2fu sz(zf (Zf) , )
__T + +
Letr=7| 109,00,V )Hr(MU+MUT) where H, involves only the free field part with the mass

. ) mo; Hs includes self-interaction starting at ordey$ and 7

_ Ni o— Iztr(ln U—Inu™) ) 1) is the momentum canonically conjugate %0

C > - s

m(X,t) = n(X,1), (6)

which describes the low-energy dynamics of the nonet of thgvhere the overdot denotes the derivative with respect to
pseudoscalar mesofi22] in the largeN, limit of QCD. The  tjme.
meson fields are described by tNgxXN; matrix U in Eq.

(1). Explicit chiral symmetry breaking is realized by the cur- lIl. EVOLUTION OPERATOR APPROACH
rent quark mass matrikl with the diagonal elements related
to w- and K-meson masses. With the parametrizatidn We introduce the in-fieldy;,(x,t),! as a solution of Eq.

=expl4/f,), the matrixé representing the singlet and octet (3) in absence of sources and quantize it according to the
meson fields yields the pseudoscalar nonet. The last term itandard canonical proceduisee Appendix A The original

the effective Lagrangian is related to thg(Wl) anomaly: the  self-interacting field is connected with the in-field by the
singlet is massive also in chiral limit. The parameter unitary transformation:

=2N\yw/f2 contains the topological susceptibility . R .

Herein we focus on the singlet state which is the main com- 7(x,t)=U"1(t) 75 (x,1)U(1), (7

ponent forz’ and obtain the following Lagrangidr20]:
where

_gnz_ ) U(t)ETexp{—iﬁxdt' HiS”(t’)] (8)

1 7
= _ Iz 2.2 2
L 2((%7})((? n)+fu CO{f

is the time evolution operator with the self-interaction
In Eq. (2), f= \/gfﬂ_' wheref_=92 MeV is the semilep- Hamiltonian written in terms of the in-field operators
tonic pion decay constant, ar;dzz%(miJr 2m§) is a pa- _
rameter depending onr- ande—meson masses. For zero H'S”Ef A3X Ho( 9= min s 7= Tip)). 9
temperatureT=0, a=m>+m, —2mg=0.726 GeV and
u?=0.171 Ge. In response to nonzero temperature andp the limit t— — o we haveU(t)—1, so that
density mesons have an effective mass—&2g): « anda
are functions oﬂ'_ gnd hence _the potential correspon_ding to lim 7(X,t)= 5i,(X,t). (10)
Eqg. (2) has modified properties close to the deconfinement t——c
phase transitiof20]. _ _
From Eq.(2) we obtain the following Klein-Gordon-type The exact meaning of Eq10) depends on details of the
equation of motion for the field(x,t): currentJs which in our model is determined by the self-
interaction taking place all times. Hence Eq(10) is a
priori difficult to justify. We assume an adiabatic vanishing
(O+md) n=1Js, (3)  of the interaction fot— — .
The field 7(x,t) is given by the space-homogeneous

mean valuep(t)=(7(x,t)) and fluctuationsy:

n(X,0) = (1) + x(X,1), (11)

Js=— f:uz

-3

wheremZ=a-+ u2. The nonlinear current
(7 -
sm( ?) —( ” 4 with (x(x,t))=0. Assuming thajy<f, quantum fluctuations
can be treated perturbatively. Herein we restrict ourselves to

zeroth(0) and first(1) order. Substituting Eq(11) into Eq.
contains ordersy® and higher and is related to the self- (3) yields
interaction of the fieldn. Note that the linear term of the
total currentd= — w25+ Jq is contained in the mass-squared
term of the left-hand side of E¢3). The model is defined in a finite volumer=L3,—L/2<x;

The total Hamiltonian densit{="Hy+ H, is given by <L/2,i=1,2,3. The continuum limit is (V) 3= [d3k/(27)°.
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(D+m(2)))(+ 2;'S+m(2)¢=J(51), (12) For the Fourier components of the fluctuations, we write
an ansatz analogous to E@\4),
where . _ . _
x(k,=TgMak,n+Tibal(—kt), (20)
¢
IN=3+ p? 1—co{T) X (13 where
The zeroth order of the current is given by Tt = exp— 10 (w, 1)} (21)
o (& V2aw(t)
JO=—1y2 sin(—) —(—” (14 - b in-limi
f f and® (o ,t) is a phase which in the in-limit takes the form

0. .. N 0 . .
Taking the mean valué- - -) of Eq. (12) yields the vacuum @t In the same “mit'rk(t)jrk(t),' W_h”e the the-
mean field equation dependent operatora(k,t),a’(k,t) with lim._ .. a(kt)
=a;,(K) and lim_ _..a"(k,t)=a] (k).

In the case when the fluctuations and the frequesagy
vary adiabatically slowly in time, the dynamical pha®g
can be chosen as

p+ap+fu? sin( ?) =0. (15

Equation(15) in concert with Eq(12) provides the equation

of motion for the quantum fluctuations:
The relations between the Fourier componeﬁtﬁ,t) and

¢
1_C05<T
) ) ) ) ) ) o X(E,t) and the corresponding conjugate momenta are given
The right-hand side of this equation vanishes in the |n—I|m|t.by

Rewriting Eq.(16) for the Fourier component,s(lz,t), we

t
@adzf w(t)dt’. (22)

(O+mi)x=u? X- (16)

obtain a Mathieu-type equatidi24,25 (K, =x(K,t)+ 8 oWV (1), (23
X(Kt) + ot x(K,t) =0, (17) m(K,t)=m (K1) + SV abl(t). (24)

where The Fourier components of the operatoy are
A= i-wd )| an  mEO-OIOaRo-TivaEol

andw,(t) is the time-dependent frequency of the fluctuationsand in the limitt— — o this ansatz reduces to EGA5).

with lim,_, _wy(t) = 02= JkZ+m2. Using Egs.(20) and (25), we obtain the following rela-
For a>pu?, the frequency squared is positive for all mo- tions betweera(lz,t),a’r(lz,t), and the in-operators:

mentum modes and at all times. Howeveraif u?, wﬁ(t)

can be negative for modes below a critical momentkym R 1 1 o '_ B

indicating a tachyonic regime. atk,t) 2T (1) U0} 7in(k, D+ Wy in(—K DU
It is important to observe that Eq$l5) and (16) are _

coupled[20]. Although the fluctuations do not react on the ) .

vacuum mean field, the latter modifies the equation for fluc- a 5kv0\/v o+ w_0¢ ' (26)

tuations via a time-dependent frequency.

The self-interaction Hamiltonian density correspondingto 1 R i R
Egs.(15) and(16) is quadratic iny, al(k,t)= 2150 [ Ul(t)[ nin(—k,t)—w—mn(k,t)}U(t)
. k
K
K b\? (P [ .
HP=2f242 smz(—)— —) +fu? sin —|—|+ i
s # 2f) | 2f ” £\ F) X —5;,0N(¢— w—cﬁ)], (27)
0
1 2 d) 2
+outcos T —1x% (19 where wy=wy_,. It is easy to verify that the operators

a(IZ,t),aT(IZ,t) satisfy the same commutation relations as the
and also vanishes whénr- — 0. Hence in the approximation in-operators, EqQ9A6). Hence the transformation defined by
of preserving quantum fluctuations in the vacuum mean fieldhe evolution operator is canonical. Tigedependent terms
but neglecting the feedback, the adiabatic hypothesis of varnn Eqgs.(26) and(27) act like counterterms which cancel the
ishing interactions fort— —o discussed with Eq(10) is  vacuum mean field contribution of the previous terms, so
justified. that Eqs.(26) and (27) do not depend orb explicitly.
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IV. KINETIC EQUATION We consider first the time evolution ¢ (k,t). Taking
The number of particles of a given state characterized byhe time derivative ofV_(k,t) and taking into account the
the momentunk at timet is given by relationiu =H{'U we find
MKk,t)=(0|af(k,t)a(k,t)|0). (28)

. N 1 . R R
N-(kit) == S(UIHE 7l (K. i (K.t

In the limit t— — oo, N(Iz,t) tends of course towards the oc- R R
cupation number density of the in-field: = min(K, ) 7in(K,1) ] [U). (32

MK, t)—N(k)=(0|a] (k)aj,(K)|0). (290  Using the expansiorf19), the commutator in Eq(32) is
readily calculated:
Substituting Eqs(26) and(27) into Eg.(28) and introducing
the instantaneous staté§0)=|U),(0|U "~ =(U|, the par- 1 3
ticle number can be written as N_(Kt)= \/__|mf d%x(0]e™*y (K, 1) ID(x, )] 0).
V
> (O t - 1 N toe (33)
Mk,t): ?<U| nin(k!t)nin(krt) + —27T|n(k,t)7T|n(k,t)|U>
(O] N
“ The time evolution of the density_(k,t) is determined by
i . . . -
r top PR (Bt (B the self-interaction of the fieldy(x,t). To get an exact for-
2 (Ul (k O (K, = i (K, ) 710 (K, 1] U) mula valid in all orders of perturbations ine(f) it is suffi-
cient to replacel!Y) by J, in Eq. (33).
b2+ 1 ¢2 (30 In the chosen approximation of small quantum fluctua-
wo ' tions, the currendg is considered in first order iy. Using
Eq. (13), the integral in Eq(33) turns out to be real and one

The number of particles of momentuknis not equal to that obtains A’ (k,t)=0. In first order iny the number density

of momentum ¢ k) for all timest. Therefore it is convenient V- (K.t) is therefore conserved.
to introduce Taking the time derivative o\, (k,t) we obtain the evo-
lution equation

—5k02 v

. 1 . .

Na(kt)= S [MK M=K D], (31 5 1
N (kD= —=REC(Ke 2%+ —(wf~(0D)?)
N k k
where N, (k,t) is the particle number averaged over the di-
rectionsk and (~ k), while V" (k,t) measures the degree of XIm[C(K,t)e 29— iélZ’OVJgO)('ﬁ
asymmetry. At fixed volume, the occupation number densi- o
ties can change in time for two reasons: either with the
change of the number of particles or with the change of the + _<U|[|-|S ,W.n(k,t)ﬂrn(ﬁ,t)]JU),
vacuum state. The presence of the background field leads to
a restructuring of the vacuum state. Note that in the case (34)
when the background is a constant classical field, the defini-
tion of the vacuum does not change in time. One considers Shere we have defined the time-dependent pair correlation
excitations with respect to this vacuum and interprets an in- P pair correfatio
crease in the occupation number density as particle produddnction C(k,t)=(0la(—k t)a(k, 1)]0). Calculating the
tion. The vacuum state itself is “empty,” i.e., without par- commutator in the expression for, (k,t), we find
ticles.

In our model, the background fielé(t) is periodic in i ' ) )
times, i.e., in addition to the quantum fluctuations arognd 2—(U|[H'Sn (K (K D)1 U)
we have oscillations ofp itself. Therefore the vacuum re- “k
structures itself at each moment in time and consequently the

; . . . 11 e -
occupation number density has to be redefined as well since =— —Rej d3x(o|e'kxw;(k,t)ng)(x,t)|0)
it is assumed to be zero only for the vacuum state. In the NAS
time evolution of the densitiesfi(lz,t), it is therefore nec- 1 _
essary to separate the contribution of the real particle pro- + — 5 VIV . (35)
duction from the one related to the vacuum state redefinition. @o

This is achieved by using the expansid®) in the evolution
operatorU(t). With Eq. (13), this last expression becomes
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i . ~ .
5 (UI[H  mn(k )l (kD] |U)
2wy ~ /..\\
'\\ /
2 /
Mg f 1y e— 210k N ;
= 2o 1 cos( - ”Im[C(k,t)e ] /\ \A y,
1 (0) - E R PPty
+ w—5|2,oVJs o, (36) e an’=0
T Y s R B a/ui=0.217
so that, in the small quantum fluctuations approximation, T Ak >l
AL (K= 2R C(K 1) e 29x] 37) I
+ l wk I . - JREp— N
10 15 20

In the same approximation, the pair correlation function

C(k,t) obeys the equation T

FIG. 1. The dependence of the critical momentpgxk./u,

.o oo _ Wy ~ 210 Eq.(41), on timer=tu. A nonvanishing value indicates the appear-
Ck,t) =210k~ w ) C(kt)= Z_wk[1+ 2N (k1) ]e™ ", ance of tachyonic modes. The time dependence.dé due to the
(38) alternating¢ field and depends strongly on the choice of the initial
values.

Its formal solution is o _
plotted in Fig. 1 for different parameteas u2. For a/u?

R ot wi(t") _ >1 the critical momentum is zero since the frequency is
C(k,t):ez'(”’kf dt’—,[1+2N+(k,t’)] always positive and no tachyonic modes can be established.
—e o 20 (1) The critical momentum for/u?<1 oscillates in tune with
2102t -0 (39 the time dependence of the vacuum mean figldrhe time

evolution shows that the same momentum state can change
its nature during the evolution. In that case a different kinetic
equation must be derived and solved which evolves all ta-
chyonic modes in time. Therefore the analytical and numeri-
o [t ot cal tregtment is a complicat_ed challenge and a quantitative
/\/’+(E,t)=—k dt’k—[1+2/\/+(|2,t’)] analysis ofa_/,u2<1 states will be provided elsewhere.
20k) o @yt The particle number density of all modes at any tinie

iven b
X cog202%(t)—20239t")]. (40) g Y

Substituting it into Eq(37), we obtain a closed equation for
N, (k,t) similar to[3]

dk .
Equation (40) is a quantum kinetic equation which deter- /\/(t)zf 3N+(k,t). (42)
mines the time evolution of the number of particles of a fixed (2m)
2 L2 1
mom_e”t“m" >Ke _Not_e that th_e bac_kground field dogs not Simple power counting yields that this expression is finite.
contribute to the kinetic equation directly, but only via the  1h4 kinetic equation derived in this section contains the
frequenﬁcy qf the qu.antum ﬂuc.tuanons. Therefore, the c.hanggame level of approximations as discussef2il. However,
of M, (k,t) in time in Eq.(40) is due to particle production therein the mode equations are solved directly, while we ob-
during the fluctuations. _ tained a quantum kinetic equation. Both approaches have
In the regime of the negative frequency squared, whefheir merits. An advantage of EG40) is the simple introduc-
k?<k? and w,= *iv,=*i\k?—k? one of the phase fac- tion of further physical limits. Below we will discuss one of
tors in the ansat#20), Tg(t) or I';(t), grows exponentially ~them: the low-density limit which is obtained foy’, (k,t)
in time. Instead of oscillations we have an exponential<<1 simplifying the right-hand side of E¢40). Furthermore,
growth of long wavelength quantum fluctuations with mo-the physical interpretation of the results becomes feasible
menta k2<K2. This is the so-called tachyonic instability since we explicitly deal with the distribution function gtia-
[26-28 ¢ siparticlesand their properties. The momentum distribution
Such a tachyonic regime is realized for potential param-funCtion i.S the key quantity to evaluate the dens[ty of these
etersa/ u?<1. Whether the system evolves in the tachyonicquas'part'des’ EqA2), and the bulk thermodynamical prop-

or nontachyonic regime is dynamically fixed by the time- erties.

dependent critical momentum:
V. DECAY OF THE CP-ODD PHASE

(0= w?|cog plf)|—a, u?cog¢/f)+a<o,

In the vicinity of the phase transition the QCD vacuum
¢ 0, otherwise, rearranges: chiral symmetry breaking and confinement drive
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TABLE I. Different values ofa/u? as used in the numerical 12
calculation. &/u?) 5.~ 4.24 is the vacuum value for which all me- — Setl
sons have their vacuum masses. Set | assumes a fast quench afte ———_ Setll
which the vacuum value is immediately reached; i.e., #hanass 8 + - Set lll

assumes its vacuum value in the vicinity Bf. This scenario is

compared with slow quenches corresponding to parameters given in
sets Il and IIl. Set IV leads to the appearance of tachyonic modes, a 4 |
value only possible folT >Tg.

Set I I ] \Y

alu?l(al 1) ,ac 1 1/2 1/4 0

quark matter into hadronic states. In the QGP phase the mat-
ter is expected to be AJ1) symmetric. This corresponds to a
vanishing parametes/ ?=0 (set IV in Table ). In the rapid -8 0
cooling of the hot QCD matter down to the critical tempera-

ture Ty, the Uy(1) symmetry becomes spontaneously bro- FIG. 3. The solution of the vacuum mean field equation as func-
ken, i.e.a/u?+#0; (sets I, Il, Il in Table ). After such a tion of time, Eq.(B1), is shown for different values cd/u? (cf.
quench of the effective potenti&3), the system is in the Taple |) for the initial conditions#(0)/f=27 and ¢(0)/f=0.
false vacuum state where parity and charge-parity are spomote that fora/u?=0, ¢(7) would be constant.

taneously brokefil6]. The decay of thisC P-odd phase is a

time-dependent process and can be studied within the kineti L . . . )
approach introduced in the previous section. it This situation is formalized in assumptiddl): The »

The potential of the effective Lagrangian densi, field can be decomposeq into its. vacuum mean vat(e _
and its quantum fluctuationg. During the decay, energy is
a transferred fromp to x. As a result,¢ is damped, while the
+——(7ylf)? (43 number of particles in quantum fluctuations increases. It is
2u? assumed that during this process the temperature does not
change essentially, and particle production proceeds in a
is plotted in Fig. 2 fqr different values of the potential pa- fixeq potential characterized bg/u2. This process takes
rameter.a/ 1%, according to Table [20]. place on a time scale typical for the hadronization process:

Starting from the quark-gluon plasma phase in which] _10 tme. The potential parameter/ u? depends on tem-
2 . . .
alu* is suppressed, set IV in Table I, the potential change%3

V( 77/1‘)5—(:05(?77

f i . h i bolic sh q dad erature due to medium-dependent meson masses. However,
rom the cosiné shape 1o a parabolic shape due a su exact behavior near the critical temperature is unknown.
guench at the deconfinement phase transition. The metastaq_e : :

. S . attice calculations as well as QCD models suggest that
states located in the local minima of the potential roll

smoothly back into the trivial minimum and oscillate around K-, and»-meson properties have only a weak dependence on
T. Much less is known about the response;ofto increasing

v : T, and therefore we explore different scenarios summarized
s / in Table I. Set | assumes that the medium dependence is
—— Setl / - . .
25+ ____ setll / 1 negligible. Set II(lll, IV) corresponds to an in-medium re-
e St M / duction of then’ mass of about 20%40%, 60% applying
—-=-- SetlV / the simple equations given in connection with E2).[19]. It

is important to note thait~f . can be considered as an order

& 15 parameter for the chiral phase transition and hence is
£ strongly suppressed iy, i.e., f(T~T4)=0.1f(T=0). In
> the scenario applied herein, the in-medium-dependent pa-
""" rametersa/u? and f change only during the fast quench.
5 F

Their time dependence can therefore be neglected.

The solution of the nonlinear equatidBl) for ¢(7) with
differenta/u? is plotted in Fig. 3, employing the initial con-
ditions ¢(0)/f=27 and[d¢(7)/d7],-o=0 throughout the

-5 0 5 /f 4 6 numerical calculations. We see that the frequency of the os-
n cillations of ¢(7) vary with the change of/u?. The oscil-

FIG. 2. The shape of the potentidl 7/f), Eq. (43), is plotted lations are not damped since feedback of the fluctuations on

for different values of/u2. Local minima characteristic faa/u2 ~ the mean field is neglectedee[ 20] for a discussion of back

<1 assumed at large temperatures disappear due to an applied f&&@ctions. The field ¢ provides the background field for the
guench. solution of the quantum kinetic equation given in EB3).
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10
— Setl
sl T Set il
————— Setlll (1.d.)
=)
I}
Q
l-.)
~
P
2 L
_ _ o Au
FIG. 4. The time evolution of the momentum distribution func- 0

tion for parameter set Ill. Most of the mesons are produced with
small momenta but additional resonance bands appear for larger F|G. 5. The time evolution of the particle number for two dif-
momenta; their maximal amplitude is smaller. The time evolution isferenta/2>1 when the system is in the nontachyonic regime, Eq.
characterized by an increase of the particle number and a repeategs). The double-spike structure on top of the rapid growth repeats
spike structure. periodically in tune with the mean field’s frequen@yf. Fig. 3. An

estimate in the low-density approximation shows that inclusion of
VI. NUMERICAL RESULTS Bose quantum statistics leads to a pronounced enhancement.

The solution of the quantum kinetic equatié40) de-  strycture is smoother for set | compared to set Il but still
scribes the production af’ particles: the momentum depen- characteristic for the evolution.
dence and its time evolution. The strong background field  Herein we also compare the full solution with the low-
leading to a sizable particle production rate is given by thedensity approximatioril.d.). The low-density approximation

solution of the nonlinear equatidis); see Fig. 3. ~ assumes that/, (p,t)<1 and hence suggests that the solu-
We perform the numerical calculation using dimension-tion of the kinetic equation does not depend on the prehistory

less variables and solve the kinetic equation as a system @f the systems evolution. Any calculation which does not

coupled differential equationé38)—(B10) introduced in Ap-  retain quantum statistical effects necessarily employs this an-

pendix B. The decay starts at=0, for which A/,(p,0)  satz. From Fig. 5 it is plain that the inclusion of the Bose

=0; ¢(0)=2=f and$(0)=0 define the initial conditions. Statistical factor in the kinetic equation leads to Bose en-
As result we obtain the number of particles produced durhancement as soon &k ~1, appearing at~1. This effect

ing the decay of theCP-odd phase in the false vacuum. Pecomes more pronounced with increasing time.

Herein we restricted ourselves to the study of the nontachy- The momentum dependence at a given time, Fig. 6, shows

onic regime; i.e., we explore the solution for positive fre-

quencies, Eq(B4), corresponding ta/x2>1 given in Table 12 ]
I

i

In Fig. 4 we show the complete numerical solution. Two % — Setl
features are apparerit) the fast increase is characterizedby i Set
a repeated structure on top of the curve, éndadditionalto ~ __ [y _____ Set Il (1.d.)
the occupation of low-momentum states we observe the ap-
pearance of resonance bands at larger momenta. I

In Fig. 5 we plot the time evolution of the particle number
for zero momentum and compare the solution for sets | and ="
[ll. We observe a very fast increase of the number of pro-
duced particles. A maximum occupation of a given momen- 4 [ |
tum state at a given time is reached for small values of the \ A
potential parameter, i.e., using set lll. For larger values of the 5 | \\{ A
potential parameter, e.g., set |, fewer particles are produced \ N
in a given time since the source term is suppressed by a \‘\b&\ ’ A "~
larger mass terr_la{,u2 in w(p) ; see Eq.(B4_). o 0 0 1 P 2 3 2

The most striking feature in this plot is the periodically
repeated spike structure on top of the overall grovh FIG. 6. The particle number as function of momenty |p|,
[29]). This pattern appears with the same frequency as thgr two differenta/u?>1. Bose enhancement of mainly the low-

background field oscillates; see Fig. 3. When back reactionmomentum states is apparent. A characteristic second resonance
are included this would possibly not be the case. The spikéand appears for large momenta.

ey
o

20)

(P,t
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that most of the particles are produced with small momentaprovided by the DAAD(Deutscher Akademischer Austaus-
Additional resonance bands appear. The smaller the value ahdienst allowing him to visit the Universities of Rostock
the potential parameter reached in the quench, the closer tlead Tibingen. This work was supported by Deutsche Fors-
second maximum appears to the first one. The reason for thhungsgemeinschaft under project SCHM 1342/3-1 and AL
resonance effect is typical for a Mathieu-type equation: the279/3-2.
two intrinsic frequencies of the background field and of the
production process are of the same order of magnitude and APPENDIX A: IN-FIELD QUANTIZATION
resonances are likely to appear. o ) )

In Fig. 6 we also compare the momentum dependence of 1he in-field is a solution of the equation
the full non-Markovian solution with a calculation in the 2
low-density limit. It is apparent that the Bose enhancement (L +mg) 7in=0. (A1)
acts naturally on the lower momenta. For the case consideref},o ;p fie|q operators satisfy periodic boundary conditions
the occupauon_number is enhanced byaf_actor of 4. For larg nd are expanded in Fourier modes,
momenta details of the quantum statistics are suppressed.
Therefore the higher resonance bands are much less affected 1 N
by quant_um corrections. It is plain from this study that quan- Din(X,1)=— 2 elkxﬂin(kvt): (A2)
tum statistical effects cannot be neglected: the low-density V ok
approximation is invalid if the produced number density ex-
ceeds a critical value at very early times of the evolution. -

A comparison with[20] shows that the main results are Tin(X,1) =
robust: a fast increase of the particle number and a charac-
teristic resonance band structure. Additionally our study in-

dicat bi I that the | | (9 0) i where the summation is over discrete momerka
icates unambiguously that the large valueNof(p~0) is B >
due to the Bose enhancement factor. =(2m/L)n, (ny,nz,n3) and

ﬁ

> e (K b), (A3)

k

<l

- 0 - 0’* -

VII. SUMMARY nin(k!t)zrﬁ(t)ain(k)_krlz (t)ai-rn(_k): (A4)
Starting from the singlet Witten—Di Vecchia—Veneziano min(K, )= 7 (K1)

effective Lagrangian we have derived a quantum Kkinetic

equation describing the production ef mesons from a = i T e (—K) —T% (O al (K

CP-odd metastable vacuum state. We have employed a gen- lo T(Dain(—k) =T (D (K]- (A5)

eral method based on the evolution operator holding also for

other model Lagrangians. The vacuum mean field provides ghe time-independent creation and annihilation operators

classical, self-interacting strong background field. Quantunypey the commutation relations

fluctuations around the dynamical mean field value are con-

sidered but their feedback to the background field is ne- [ain(K),al (K)]_=68ki; (AB)

glected. As a result of these quantum fluctuations, particles '

are produced and the time evolution of this process is dea| other commutators vanish. The functibfj(t) is given by

scribed by a non-Markovian equation for the distribution

function of the produced;” mesons.

1
We find that the details of the decay process depend Fg(t)=—oexp[—iw8t}, (A7)
strongly on the applied quench. The number of produced V2w

particles is much larger when th&' mass is suppressed in _ R

the vicinity of the phase boundary. Most of the particles arewith wy=Vk?+mj. Since the fieldy(x,t) is real, we have

produced with low momenta; for large momenta additionaly! (k,t)=7;,(—k,t) and =l (Kt)=m,(—kt). The

resonances appear. Furthermore, we have demonstrated thatuum statd0;in)=|0) is defined as vanishing under the

quantum statistical effects are important and lead to @ Proz.ion of the annihilation operatoes, (IZ)|O>=0.

nounced enhancement of the particle occupation number for "

low momenta. In the casa/u?<1, tachyonic instabilities

occur for momenta smaller than a critical value. This regime

has not been considered herein. The evolution of¢ in the decay is governed by E(L5).
The numerical investigation of the tachyonic modes andntroducing the dimensionless vacuum mean figkd and

the inclusion of back reactions promise further insight intothe dimensionless time variable= ut, we rewrite Eq.(15)

the decay ofZ P-odd metastable states and its realization will gs

be reported elsewhere.

APPENDIX B: NUMERICAL REALIZATION

a

PE

d_2(¢(r>>+ | (¢(r)
de f SN f

#0)

i =0, (Bl
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Note that for smalk/u2~0 one can replace E¢gB1) by -

the sine-Gordon equation U(ﬁ,T)EfOTdT,%(T,)[1+2N+(5,T,)]
p
2
%( ¢°f(T) +sin ¢°f(T) =0, (B2) xsin203%1)-203%7')], (B5)

the subscript (0) inp(7) indicating the zero value i/ u?. . . .
The solution of Eq.(B2) is a Jacobian elliptic function. v(p,T)Ef dr'=>(7)[1+2N.(p,7")] (B6)
Herein we do not make this approximation and solve Eg. o wp
(B1) numerically for nonzero values @ff 2.

For the numerical study we introduce dimensionless vari- ><cos{2®gd( r)—2®gd( )], (B7)
ables for the kinetic equations and obtain

- with the initial conditionw(f),O):v(ﬁ,O):O, in which case

d . w7, .
TN B=2 [ ar L aean ()] we have
2wpJ0 wp
ad _ ad, s d R - R
X0od20p (D720 B N (=), (88)
where the dimensionless frequency is 2wp
1 é(7) d Py
2 - - - .
wp=—2wﬁ—pz+C°ﬂ( |tz B9 —u(p. )= 2[1+2N. (5, 1]~ 20,u(p, ), (BY)
© s dr wp

with p?= (k% u?). g
Equation(B3) is an integro-differential equation. It can be R N
reexpressed by introducing dru(p’T) 2wp0 (P, 7). (B10
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