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Superconformal constraints for QCD conformal anomalies
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Anomalous superconformal Ward identities and commutator algebké=d super-Yang-Mills theory give
rise to constraints between the QCD special conformal anomalies of conformal composite operators. We
evaluate the superconformal anomalies that appear in the product of renormalized conformal operators and the
trace anomaly in the supersymmetric spinor current and check the constraints at one-loop order. In this way we
prove the universality of QCD conformal anomalies, which define the nondiagonal part of the anomalous
dimension matrix responsible for scaling violations of exclusive QCD amplitudes at the next-to-leading order.
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[. INTRODUCTION the twist-2 operators do not mix under renormalization at
leading order in the coupling constant, i.e., their anomalous
Supersymmetric model§l], having higher space-time dimension matrix has the diagonal forms;, , it is neces-
symmetry as compared to conventional ones, provide &ary to arrange the operators in such a way that they have a
strong consistency requirement on theoretical predictiongzovariant behavior under conformal transformations. This
For the purposes of testing massless QCD calculations agan be easily done. However, beyond the one-loop approxi-
especially illuminating example isV=1 supersymmetric mation the anomalous dimension matmy develops non-
Yang-Mills theory, since both models have, up to a differ-zero, nondiagonaj,>k, elementsy}’=O(a3).
ence in color representation of fermion fields, the same La- The ordinary conformal algebra provides severe restric-
grangian. Thus, we can map a QCD result to\&a1 super-  tions[6,7] on the nonforward anomalous dimensignesf the
Yang-Mills theory one by identifying the color Casimir conformal operators. In Ref§6,7] we developed a formal-
operators in corresponding representations, i@&=Cr  ism based on the use of the broken conformal Ward identities
=2N;Te=N,. After this procedure a QCD result has to sat- for evaluation of the nondiagonal papt'® of the complete
isfy constraints arising from the supersymmetry that con-anomalous dimensions matrix= 9"+ °. This nondiago-
nects gluonic and quark sectors of the theory. In this way the@al part arises entirely due to the violation of the special
use of supersymmetry has allowed us to find a set of identieonformal symmetry in perturbation theory. The correspond-
ties [2,3] between the entries of the forward anomalous di-ing anomalies have been calculated to one-loop order accu-
mension matrices of leading twist-2 composite operatorstacy in the minimal subtraction scheme using dimensional
They were valuable to clarify subtleties appearing in two-regularization, which implies the two-loop approximation for
loop computations of anomalous dimensions. At the tree\°. To check our results, one can emplgy=1 super-
level both theories are invariant under conformal transforma¥Yang-Mills constraints, valid in a renormalization scheme
tions. Thus, theV'=1 supersymmetric Yang-Mills theory is that respects supersymmetry, for the entries of the nonfor-
also invariant under superconformal transformatipfs],  ward anomalous dimension matrix, derived[8]. Unfortu-
which can give rise to a new set of constraints for certaimately, this is not the case for the dimensionally regularized
conformal quantities that appear in the special conformatheory. Thus, one has to find finite renormalization constants
Ward identities for composite operators, the so-called specidfom the latter to the dimensional reduction scheme, which is
conformal matrix. In addition to the breaking of conformal expected to preserve the supersymmetry. But there arises a
symmetry at the quantum level by the trace anomaly in thesubtlety in the evaluation of this rotation matrix for the glu-
energy-momentum tensor, we also have to deal with a supeenic sectof which prevents it from being unambiguously
conformal anomaly due to the nonvanishing trace in a supeffixed [3]. Nevertheless, our result for two-loop nonforward
symmetric spinor current. Nevertheless, an explicit calculaanomalous dimensions is supported by the fact that the con-
tion of this anomaly will allow us to check the special straints can be satisfied by a finite multiplicative renormal-
conformal anomalies calculated in QCD. ization, which proves the existence of a supersymmetric
Composite operators appear in various QCD applicationsegularization scheme.
by means of operator product expansion and consequently Alternatively, we derive in this paper constraints directly
their hadronic matrix elements contain a nonperturbative infor the special conformal anomalies at one-loop level and
put, which is needed as an initial condition for the solution ofshow that they are indeed satisfied. Our consequent presen-
the evolution equations. In the case of exclusive processdation is organized as follows. In Sec. Il we define conformal
the off-forwardness of hadronic matrix elements, given in
terms of distribution amplitudes and skewed parton distribu-
tions, requires operators with total derivatives. To ensure that'This complication does not show up in the forward kinematics.
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operators, their anomalous dimensions, and the relations afse everywhere the matrix notation and introduce the vector
; i i Q .

tEe Iattgr tof confolrm_al a;’lomdahes.fSecnlon 1 is devo:gd toO:(Gg) of quark and gluon conformal operators, which

the study of translational and conformal superanomalies Oy \ith each other under renormalization. As mentioned in

the Lagrangian level in the dimensional regulanzatlonthe Introduction, the only modification of a given QCD result

scheme. Then in Sec. IV we present the transformation ProRs to identify the color Casimir operators. Since at leading
erties of conformal operators under the relevant superconfor-

L . L ' MO%Grder the conformal anomalies have a unique color strutture
mal variations required for a derivation of the Ward identities

. . . . - =2it presents no difficulty to disentangle the separate compo-
discussed in the same section. In Sec. V we give a derivatio P y 9 P P

. : Rents.
of relations between the scale and special conformal anoma- i introduce as well the fermionic operator which is re-

lies of the conf_ormal operators. Fu_rthe_rmore,_V\_/e s_how thafated to the bosonic ond&) by supersymmetry:
the latter acquire anomalous contributions originating from
the product of the trace anomaly in the spinor current and the

conformal operators. They are explicitly evaluated in Sec. FOl =G (ig )'P(Z'l)( _+> Fiya 3)

VI, where it is demonstrated that indeed the anomalous con- il AR d, wr

straints are satisfied with special conformal anomalies from

[7]. Finally, we conclude. A few Appendixes are devoted toHere P{*® are the Jacobi polynomials and the vertices read
technical details that we found inappropriate to include in the7"*)=(y,,; v, ys). The operators that form a representa-

<

body of the paper. tion of the supersymmetry algebra are defined by linear com-
binations of Eq.(1)
Il. PRELIMINARIES S
— I r —
In this paper we discuss relations between the QCD scale [Pa] —Q“’jaQOil +Gw?Gojl v V= QJFOV’
jl

and special conformal anomalies of conformal operators im-

plied by the N=1 supersymmetry. In'V=1 super-Yang- U =0 FOA @)
Mills theory we introduce the conformal operatdfer the i '
chiral even sector discussed throughout with T'=V/(A) standing for theS (P) operator, and coeffi-

cients Cwi=1, ®w/=6/, %’=—(j+3)/(j+1), o

ol D =6/(j+1), and@;=(j+2)(j +3)/(j+1). Obviously, U=
= Elﬂi(lfﬁ) G 5 r'ys, —ysV. Note that the bosonic and fermionic conformal op-
+

erators form the\V=1 chiral superfield

—

= d=A+20x— 6*F, 5)
i . _ +
GO}|=GT'M(I0+)| 10?/_21 I

7,6, O

with the operatorssj; andPj; (S andP}) being the real
and imaginary parts of thed (F') complex fields, and

{/J-,U identified with the Majorana fermiori)‘;i) constructed
from the Weyl spinory. Transformation between operators
L under supersymmetry arises from the conventional equation
=9 + 9 and D= D— D with the adjoint covariant deriva- [£Q,®]_=[{Q+ QZ,®]_={{r+r}®, with r=i(3/d6)

tive defined byDsz 0#5""b+gfa°bBZ. The + sign as a andr=—i(d/36)+260.

subscript stands for contraction with the lightlike vectgr Now let us briefly point out how the nondiagonal part of
which specifies a direction along the light cone. For the lattethe anomalous dimension matrix is induced by the special
purposes we introduce another vectq'[ such asn?=n*? conformal anomaly matrix. In four-dimensional space-time
=0 andn-n*=1. Obviously, the only difference from QCD the 15-parameter conformal group SO(4,2) is defined by its
arises in the gluino, which we loosely call the quark, sectoralgebra containing the Poincardilatation D, and special
which now belongs to the adjoint representation of the coloconformal C,, generators. The conformal anomalies are de-
group. The factor; in Eq. (1) is related to the Majorana fined by the renormalized Ward identities. The generic form

where C;’ are the Gegenbauer polynomials and the tenso
(V;A) — . 7—(V;A): 1
structures are I’ (y+ 17+75); v (gp,v_g,uv

*

* .t * .
—n,n,—nyn,i€e,,N,n,). We use the conventiom\

nature of the quarks in the model. of the latter, however, written in an unrenormalized cast,
The renormalization group equation for these operatorseads
looks like
_ ([Oj]16X) = = ([ O; 1) —(i[ O} ]5SA), (6)
i
L[(’)H]: — 2 Vil Oul, (2)  whereX=1II;¢(x) is a product of elementary fields appear-
dinu k=0 ing in the classical Lagrangian. He#eis any of the varia-

where the square brackets will denote the renormalized op———

.erat.ors defined b[/ojIJ:EL=on.kok|, with the_rgnormal- 2More precisely, the anomalous dimensions in the gluon-gluon
ization constant matrixZ;, which generate finite Green channel have in addition to the, term also trivialN; dependent
functions with elementary field operatots={,B,}. We  contributions, which arise from the self-energy insertion.
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tions from the symmetry algebra in question. When the transis decomposed into operators that can be easily classified
formation is a symmetry of the theory on the quantum levelaccording to their renormalization properties. Here the
then 6S=0 up to possible BRST exact operators. In (e weight function readsv®=1 andw®=2x_ for scale and
mensionally regularized theory the action no longer special conformal transformations, respectively. We intro-
vanishes for conformal, i.e., both scalingéS¢(x) duced the following set of type A and B operators:
=i[¢(X),D]=—(dy+X%,3,)$(x), and special confor-
mal,  85¢(x)=i[ $(x),K,]=—(2d4X, — X%, +2X,X,d,
—2ix E/“,)QZ')(X) varlatlons wheral, andX. ,, are the ca-
nonical dimension and the spin operator of the figldre-
spectively. Thus, the renormalization of the operator product
i[0;]6S is responsible for the conformal anomalies.
Moreover, the commutat¢™D,_]_=iK_, whereK_ is
the n;-light-cone projection oflC,, provides a connection
between the conformal anomalies. In Rgf] the nondiago-

1 —
Oa(x)= E(GZV)Z, Og(x) = 6°°1(w%9,BY),

Op,.(x)= "R5T(w?BY), (11)

as well as class C equation-of-motion operators

nal elements of the next-to-leading anomalous dimensions oS
? Q60=B} =, Q0= w ‘1’7
PPO=[PO,d(Bo— ") +g]- (7 a
of the QCD quark and gluon conformal operators were found Va0
) ) X QX)) =w?— (12
in terms of the one-loop special conformal anomaly matrix
i (B)Y0=—di (1O = BoP®) + gk - (8)  The renormalization of Eq(10) is straightforward and the

renormalization of the operator products and the resulting
It is constructed out of the leading order anomalous dimenrenormalized conformal Ward identities are given in Réf.
sions of conformal operatorgP®) and the first expansion As a side remark let us note that, in spite of the fact that
coefficient of the QCDB function Bp=35TeN;— 3 C, times  the conformal field transformation laws for the dimension-
aj(B)djx(F)|;>x= — 2(2k+3) with theaj matrix from the  ally reduced[from d=4-2¢ (ande<0) to 4 dimensionk
conformal transformation o®j, [see Eq.(29) below]. The  theory differ from the ones in dimensional regularization by
projectorP®=(3%) in Eq. (8) singles out the gluonic compo- the presence of-scalar contributions, e.4. PPBL=x;G3,
nent. Finally, theg matrix has appeared from the renormal- _ Bﬁ and 3¢ Ba (2X_Xx;—X n~)G —2%x_B% for the

ization of the product of the conformaldoperatdojk] and  gaige covariant variations of four-dimensional fields, never-

the integrated trace anomal” S~ [dx2x_0,,(x) in theless, the final result for the variation of the action takes

the energy-momentum tensor the same form as in E410) but with boson fields being four
dimensional instead.

j
[0;16°S=1 2, Y[On 1]+ -. 9)
k=0 I1Il. SUPERCONFORMAL ANOMALIES

In the dimensionally regularized theory, i.é=4— 2, the In four-dimensional space-time the classical action of the

conformal variations of the QCD action can be calculated inV="1 SUNc) super-Yang-Mills theory in the Wess-Zumino

a straightforward manner. Choosing the scaling dimension§aUge; i-€.,
of the physical fields equal to their canonical values in four
dimension3 (d,=2, dg=1) and setting the scaling dimen- _ 4
_ )3 Se= | d*®Lo(x)
sions of the ghost fields ak,=0 andd_=d—2, the result

— 1
d—4 — 4, _ = a2 agnab b+_ ay2
5Bs=f ddow(x)( — S (OAX)+ 0g(X)+ Q%) f d { (Gun)™* 2‘” LAV
(13

—Qy,(x)—Q +(d—2)9,0 ,

s~ Qo (X)) +(d=2),08,(x) contains the Yang-Mills field strengt?,=d,B3—3,B2
+gfab°BZBﬁ, the Majorana field)? sat|sfy|ng the conven-
tional conditiony"C(") =y, and an auxiliary field?. It is
invariant under transformation of the superconformal group,
which consists besides the conformal group also of the trans-

with B={D,C}, (10)

3This choice is legitimate since the infinitesimal conformal varia-
tion is linear ind, and thus does not affect the Ward identities,
since the anomalous part will show up as a renormalization coun- .
terterm of the product of conformal and equation-of-motion “The indicesu, u, andu refer to the 4-d-, and Z-dimensional
operators. spaces, respectively.
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lational Q and conformalS supertransformations. The latter whereO= [dO(x) and the operator insertions read
two are defined infinitesimally by their action on field opera-

tors as AX)=0,,G5, 42, (19

i _
Fia__ ~a _ipa Fpa _ _ a
O =56t TID sty B =1Ly, 08T (x)=16%%T5%(w?9,B%),

Fhya— ab b
6D g@ ’}/Slﬂ ’ (14) OgRST(X):i5BRST53(wa(9MBZ), (20)
where {={,—i¥X{; is the Grassmann parameter. Fof
=0 (F=Q) we have restricted supertransformations, while
for {,=0 (F=S) these equations define the superconformal Oz4(x) =i gfabc(aay,ﬁﬂb)(ymﬁc).
variations.

The superconformal group is defined by its algebra from
which we will be interested in one particular commutator g o
Ozy(x)= zfa“( PRy °) (ky ), (21)
[QK-]-=7-S, (15
with Q (S) being supexconforma) generators. Note, how- \yith the operatorA being the superconformal anomaly

ever, that for the short supermultiple8 ,4*,D?) this com-  [10,11 in the trace of the supersymmetric current, i@,
mutation relation is modified for action on fermions. To re- — 152 2. We used in Eq(20) the identity

store it one has to use Jackiw’s gauge covariant conformal 22T Yy
transformatiords = 5, + §9*9°[8], where the gauge transfor-
mation is defined with the field-dependent param&t%r
=(2x,x,—xg,,,)B3, instead of the conventiona; varia-
tion defined above. For the action on a space spanned Byote that the three-fermion operatd?s, and O3, vanish in
gauge invariant operators this modification is irrelevant. Thdour dimensions by means of Fierz rearrangement. Moreover,
commutator(15), when applied on a Green function with O3, can be generated by a special conformal variation of the
conformal operator insertion, will provide in the supersym-operatorQs,,, namely, 52(93¢=in(93_¢+ (9(82), where at
metric limit (identifying color factors nontrivial relations one-loop level we can safely neglect the remainder.
between the aforementioned QCD special conformal anoma- Later on we will concentrate on the use of the —3
lies. gauge in the derivation of the constraints, which ensures
To quantize the theory described by the actid8) we  renormalized supersymmetry at one-loop orfi&2]. This
have to add a gauge fixing and a ghost term. We do it via théneans that the quark and gluon anomalous dimensions are

8F 8%RT(w?9,B2) = 26%%T5" (079,B2) + 57 Q.

covariant gauge fixing equal, y4= =7, Furthermore, at one-loop order it was
1 found that the anomalyd does not acquire gauge variant
ng:J d4x[ _ 2—(%52)2”#5&‘732%b . (16 counterterm_i_ll], provided one uses this particular _value of_

& the gauge fixing parameter. Therefore, we can write to this

) o accuracye A in terms of the renormalized operator
Although it explicitly breaks the supersymmetry on the La-

grangian level, it will not affect gauge invariant quantities
since the supersymmetry variationid4) commute with d_—4A= &[A]Jro(az) 22)
BRST transformations on the gauge fixing functione., 2 g s
[67,6°%R°T]_(4,B%)=0.

Translational and conformal supervariation of the actionyjth d-dimensionalg function 8,= —eg+ 3. Finally, we

S=Sy+ Sy regularized by means of the dimensional regu-yyrite the superconformal variation of the action to one-loop
larization 4—d=4—2¢ leads to accuracy as

1698=—(£,04,)—OF*T, (17) 5
1655="2( [ A]+ (105, 0T+ 0(ad). (23
; d—4 — - BRST 9
|5SSZT(§1A)+(§103¢)_OS ; (18)

Let us point out a further consequence of the —3
gauge, which also leads to the equality of the anomalous
®We write for brevity s°RST instead of6®RST/ 8\, i.e., after trans-  dimensions y, and the g function, namely, B/g=1y,
formation the infinitesimal Grassmann variable is canceled from the= — a5 /(47) 3N, . Consequently, the renormalization of the
right. We recall that the BRST transformations are given by the setonformal variation of the action will be simplified and its
of equations °RSTB2 =D wP, §BRSTyA=gfaPc%Pyc, 5°RSTw?  integrand in Eq(10) reads in one-loop approximatidsee,
=(9/2)f**°ww®, and 8°RTw?= (1/£)d,B2 . e.g., Ref[7])
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d—4 B B PO, =—[1+d(Q)1%0;, 820, =ia; ()20 ;.
- T[OA(X)+OB(X)+Qw(x)_ﬂ¢up(x)_ﬂo(x)] (29)
Be -~ d—4 Here d(B)=d(G)=d(Q)=3 and d(F)=% as well as
=g O] B0} = 5 Oa(0)] 2 (B)=a;(Q)=a;(G)=a(j|.11) and a(F)=a(j.l,
2,1) with a(j,l,v,v5) =2( —)(j +1+ v+ v+ 1), where
Q00 = Qp(X)} + 27,0, (x) v,=d4+s,—1 ands, is the spin of the fieldp. Again the
scale dimensioml, is chosen to coincide with its canonical
+(d—=2)3,[Og,(X)], (24 value in four dimensions.

Because of difficulties in preserving the supersymmetry
of the theory with quantization and regularization procedures
our modest goal will be, therefore, a derivation of the con-
IV. SUPERCONFORMAL WARD IDENTITIES straints for the special conformal anomalies of the QCD con-
formal operators stemming from the commutator equation
5}5) at one-loop level only. We will choose the covariant
gauge withé=—3, which gives us the advantages men-
rt]ioned above.

The dilatation and special conformal Ward identities for a
conformal operatof*©, which is either bosonic{ =B) or
fermionic (A =F), look now very simplgcf. Ref.[7]):

with ghost anomalous dimensioyy, .

In order to derive Ward identities we have to know the
change of the conformal operators under the superconform
symmetry. Using the rules in Eq14) one finds that the
translational supersymmetry transformation laws are give
by {here and everywhere;=3[1—(—1)'1}

5QSjl| =a'jZoV,>1| ; 5Q$ﬁ =01Z0VJ-| ,

i
OPji=0jadoh-u,  OPf=0jalolh, ([20318°2)= 2 {[1+d(Q)]1+ D)} Ol )
(25 )

P ireo. (o
5QVJ',1|,1:_’)’,go{Sﬁ‘Fsz,:u}_’}’,’y5§0{7?}|+73j2,1(|;6) +g<|[ O]I(OA Qlﬂlﬂ)]‘)é! (30)

These equations clarify our comment about the formation of i

the conformal operators into the chiral superfield: Egs. ([%0;,16°X)=—i Y {a;(Q)1+ (D)} {[?Og-111)
(25),(25) are in one-to-one correspondence with the super- k=0

symmetric rules for the Wess-Zumino multiplet]. Under B

superconformal variations conformal operators behave as +—<i[9(’)»|((’),§—Q: )1X)

follows: 9 : v

_ —2(i[?0)1Aed ), (31)
88ji==oi(i+1+3)1y+Viu-1,
with & 2X 2 unit matrix1=1p;«[o; . Herey andy* are the
scale and special conformal anomalies. It is well known that
in the scale Ward identity coincides with the Callan-
Symanzik equation. Thugy is the conventional anomalous
557’ﬁ =0y 1(jH1+3) yslh 11, dlmen5|_on maitrix and_ the combinatiom+d)1+ vy is the
scale dimension matrix of conformal operators. Obviously
o Oa(X) = Qyy(X) = —2Ly(X) is the classical Lagrangiai3)
é\Q’Pﬁ =—oj (=) l1y+Uj-1, (270 without auxiliary fields. In Eqs(30),(31) we have also intro-
duced a new convention for the operator insertions weighted
with different functions, i.e., O=[dO(x), O~

858i=—o;(1-DN 1y Vi1,

_ H 1
bﬁvj_ll_l_ -l ~1Sji :fddXZX,O(x) (analogously for equation-of-motion opera-
- _ rqd . L
F(i+142)S2 . A0 =i tors), and A= [d“x2x_d,0g,(X). The precise definition
U Si-u 1= y-sy (=) of the renormalized operator products is given in the next
XPji_y+(j+H1+2)PF g4} (28)  section.

Let us turn to the renormalized supersymmetric Ward
Note that Eqs(25),(27) do not require Fierz rearrangement identities. For definiteness let us consider parity eSeop-
and, therefore, they do not change their form when theerators. From the unrenormalized Ward ident@y, the su-
theory is regularized via dimensional regularization. Finally,perconformal variations of the actidi7),(23) and the op-
let us recall that the transformation laws of conformal operaerators(25),(27) we can immediately derive the renormalized
tors under scaling and special conformal variations are give® andS supersymmetric Ward identities in one-loop approxi-
by mation:
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S216°M) = — ([ RS2 1) + (7O )[S? Now we discuss the consequences of &7). The com-
(Siile™n (l i1+ (L0 S]i10) ponents of the renormalized operatiS;, | are defined in
+([S5108°T), (32)  terms of unrenormalized ones, constructed though from the

renormalized fieldsp by

j
a1eSaA_ Sca = a;V[1] 2
<[Sl|]5 X) ([6 SJ|]?Q+GJ§1?’+I;0 Ik (WVki-11%) [Sﬁ]:gl IZO {abzs}ijEh E|:Z§133f0)= (39)

B, — -
—§<(§1A)[Sﬁ]?f>—<(§103¢)[5ﬁ]?f> where S is expressed in terms of the bare fielg”
=\Z,¢ and couplingg®= x*g/Z,. The anomalous di-

+H([SH10F ). (33)  mension matrix of the vectdrS] is defined as usual:
Here the superconformal anomaiw is the residue of the d i
renormalization constant m[s]“ :kz::O Vil Sl with

_ o, 1 [, (34) 11, 12,8
=l ghe T Y= Vz§+27¢1:(21y$ 22,5/

- o 39
arising from the renormalization of the operator product (39

In our scheme the anomalous dimensions
i
(CLADLSTI=L(GASTT+ 0j8ry: 2 Al Vi -] B
(35) YeT2dInu

and induced by the term of B8, . Note that, since the three- d P
fermion operators vanish in four dimensions, their product Y;:—(—Zs) st=——27 (40)
with the bosonic operators will give a finite contribution at dinw dIng
one-loop order. Similar equations hold f@% with the re-
placement of the inde¥ by A ando; by o ;.

We have neglected infinite terms in the above Ward iden
tities, since they have to cancel each other. It is instructive &
discuss this issue in more detail for the supersymmetric ward/

identity of the two-vectoS=( glz)

are expressed by the residues of the Laurent expansion of the
Z factorsZ=1+Z[/s+O(e~?). The renormalized fermi-
nic operator is defined by the same equati®8); however,
ith the 2X2 matrix Zs replaced by the numbe, .
From Eq.(37) we conclude that

=~

. ) {1128}jk {lzzs}jk) {Zvl}k—l,k’)
S, 18°X) = — (5 8,10 — (i[ S 1(5°S - ,
<[ ]I] X) <5 [ ]I]'X> <|[ ]I]( )')6 (36) kgo o ({2128}jk {Zzzs}jk k {Z;l}kkr [Vk |]

The variation of the “good” component of the fermion field, =finite (41)
i =3%y_vy.y, entering inX may cause a divergency on the '

left-hand side(LHS) since it contains a composite field \here we implied thaZ =0 for k>j. Substituting the Lau-

strengthG,,, . Fortunately, in the light-cone gauge the latter rent series into this result, theslpoles have to cancel. This
can be expressed in terms of the elementary vector potentigd ensured by the relations

B, and, therefore, the LHS is finite by definition. This gauge,
together with the use of dimensional reduction which implies
89S=0, leads to

j j
kZO Mz o Vi1 1+ I(ZO (228 o Vil

. o _ _ =0 2 {ZM} - Val, (42)
Since the renormalization of the composite operators is both k=0
gauge and scheme independent at leading order,(Ef.
holds true also for our choice of scheme. Furthermore, in Eq. j j
(32) the renormalization of the produs;, 105, is finite at 2 A7 o [ Ve 1,1+ 2 227010 o [ V]
leading order becaus®;,~ O(e) and cancels a pole in one- k:0{ s hwod Vi kzo{ s hed M
loop diagrams. Consequently, the producs; 1O J-
=finite, or if divergent it cancels the singularities in — 0 ZIh )
[S;116%% mentioned above. lkzo{ v Vil
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where[V,,] are independent operators. These when com- Before we start, let us argue that the three-fermion opera-
bined together with the analogous results for parity odd optors and BRST-exact operators will not contribute to the con-
erators(replace S—P,V—U, and oj—oj_1) and Z,=Z;,,  straints. As already mentioned, the product of the three-
provide constraints for anomalous dimensiéwéien differ-  fermion operators with composite operators provides in one-

entiated with respect to Iy) [2,3]: loop approximation a finite part, which could possibly
115[1] _ 22901] ol contribute to the constraints. However, its evaluation gives a
U725 Yan+12me 151725 Fan.2m =129 Fan,2m» result that depends on thg, and trl prescriptions. Let us
(17l _(22711)y —_Zl gxplain thi; point in more detail. In calculating the contribu-
P Jf2n,2m S J2n-12m-1 v Jen=12m-1, tions of this operator product one deals with a quark loop

that due to different Wick pairings has three terms; two of
them contain a string of Dirac matrices while the last one is
a trace. Obviously, in four dimensions the sum gives zero
(43) result (recall that©®*” and ©3” vanish by means of Fierz
rearrangemeit However, because of the ! pole in the
Now let us turn to the renormalization of the superconfor-loop momentum integration, we have to keepontributions
mal Ward identities. An important consequence of these confrom the spinor algebra that cancel this pole. Obviously, the
straints is that the operators are multiplicatively renormaliz-¢ part is ambiguous for the axial channel: the result depends
able in the one-loop approximation, e.g4%Z%1};  on the handling ofys in the string of Dirac matrices as well
=2z =0 and {MzWy50500={%2200);=1{Z");. as in the trace. Next, since one of the three contributions is
Thus, in this approximation the classical transformation lawsyiven by a trace of Dirac matrices, the result depends on the
(27) for superconformal variations remain true also for theprescription for the trace of the unit matrixitr One of the
renormalized operators. Consequently, the superconformghoices made in most calculations is to adopt a fiction for
variaFion of the renormalized operator provide finite Greeny.dimensional gamma matrices that stillte 4. However, in
functions those computations the trace appears as a single overall fac-
<5S[SJ-|]X>=<[5SSJ-|])(>=finite. (44) 'Ejor and the above ch_oi_ce is permissible. It results_ in scheme
ependence for the finite part of, e.g., one-loop diagrams. In
Since O3, vanishes in four-dimensional space-time, Our case, since we have an additive trace contribution, we
have to continue the Clifford algebra éhdimensional space

{122?]}2n+ 1.2m+1~ {212%]}2n,2m+2:{Zg;l]}zn,zmﬂ )

{leg]}zm 1.2m+1= {122%]}2n+2,2m: {Zg;l]}zm 1,2m-

((£,03,)[S51X) is finite. Thus also the superconformal e . . .
Ward iaabenti'éy(33) is renormalized up to possible divergen- as well; this result'_s " the rule 1':2[“/2]._Th|s convention

cies on the LHS that are canceled by the renormalizatioff"0duces & term involving In2, reflecting scheme depen-
with BRST-exact operators on the RHS of this Ward identity,d€nce. On the other hand, we certainly know that in leading
Note that in our leading order approximation the anomalougrder the conformal anomalies do not depend on these am-
term proportional to the3 function is given by a tree ap- biguities. So we conclude that the contribution of the opera-

proximation. tor products in questions cannot affect the constraints.
Now we come to the operator products containing un-
V. CONSTRAINT EQUALITIES FOR CONFORMAL physical BRST operators. Of course, one expects that these
ANOMALIES operators do not contribute to the physical sector; however,

they may be responsible for the cancellation of unphysical

Having derived Ward identities we are now able to dis-pjeces appearing in the renormalization of products contain-
cuss consequences of the superconformal algebra. To defjry only gauge invariant operators. Finally, we are interested
onstrate the method, we derive first the set of relati@® i, rejations for physical quantities and as we already know
between the anomalous dimensions arising from the commug,, the constraints on anomalous dimensions these operator

tator of super and scaling variations products have to be canceled out in E45). For the com-

1 mutator (46), we have the superconformal anomaly and the

[69,6°]_==69, (45) only difficulty could be a gauge dependent term that is can-

2 celed by the operator products in questions. From our previ-

L ous experience in Ref§6,7], we expect that such a contri-
which is deduced from the commutator algerg, D] bution is absent, and this will be shown by an explicit

=(i/2) Q. Next we deal in the same conceptual manner with

th tatof15) of q il conf | transf calculation in Sec. VI. So it is justified to neglect the whole
€ commutatof-o) of SUper and special conformal transtor- unphysical sector from the very beginning.
mations, written in a symbolical form as

C — S
[5Q’5‘]‘ =-ly-o~ (46 A. Commutator constraints for anomalous dimensions
This provides us the desired constraints for the special con- First let us demonstrate the derivation of the relatiGt®
formal anomalies of the conformal operators. We mostlyfor anomalous dimensions at leading order from the commu-
concentrate on the even parity sector and just state the resuttstor of scale and supersymmetric variations, given in Eq.
for the odd one. (45), applied to the Green functions of composite operators
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1 j
([Si1([6°6°10) = 5([S;119°). @7 i[OO ]=I[ O]~ 5<d>(x)k20 {Zp i O]
The RHS of this equality is obviously given by the super- i @ ) B
symmetric Ward identity32) times . To calculate the LHS —50+9 (X)kZO {Zabi Owi-1]—- -
of the commutator we employ the Ward identiti®) and -
(32), with BRST-exact operators being omitted, and find the aln X alnX\
following contributions: 975 & E )BM(X)
oy B, 7
<[Sj|]5Q5 X>:__<'[(5Q$j|)(OA_QW)]X>+ H‘E X [O,4] (51)
9 sBA(x)

contains a finite contributiotsecond term on the RHS

_ o .

(GO [81V -0 503, (”z

4 2. =g 2t 71 ozp 71
a0t o) {022z azm,

S Y
] 0 Yik dln X dln X

- 2( g 2¢ >ZPGzl. (52)
><< ( [Vkl])X> | 49 a9 €
[Vl

The constanX is related to the charge and gluon wave func-
tion renormalization constants by the relati®=ZyZg.

([8;16° 5% = — §<i 8 S (Op— Q)10 +(143) For the[ S ](y,, we have to use the identity
: 1)
— — i[O, 1Q4(X)=i[0;Q4(X)] = (X) =——[O;], (53
(05 [Si10 Lo, ok{ (1+3) S e 5p(x)
s s where it is obvious that
X( Sk O )+< My 127jk>] P
0 &/ i i <[oj.n¢<x>]»c>=i<[0,-.]¢<x> %X>' (54)
><< ( [Vk_1,|]> X> . (49)  Thus in Eq.(50) the finite piece appears as a consequence of
M two contributions: the®O part from the[ S ][ Oa] product

. due to the finite part in Eq$51),(52) and the®© part from
To derive the RHS of Eq.(48 we have used for the [S;;1Q7, product by means of Eq53). Similarly, we
((£003,)[8;16°X) the scaling Ward identities with have for the fermion operators a finite contribution
5D(’)3¢= - %Ow and the variatior{29) of the conformal op-

erators. The variation of the action proportionaletas ne- iV ILOAl=i[Vj Oa]+[Vy 1+ O(e™") (55)

glected, since this Green function is already finite at one-

loop order. As was already expected from our previous resuf®” the trace anomaly, and

(43) and discussion about scheme dependence, the three- T 10— —iM O— T—T) —r

fermion operator insertion will not affect the constraints at DV =10V gy = V] + O ) (56

one-loop level. for the equation-of-motion insertion. In both cases one
Now we come to the terms in the above equations proporshould note the factor of 1 in front of the second term on the

tional to theg function. To derive the RHS of Eq#48),(49)  RHS not 2 as for the quark and gluon operators. Although

we have used the equatiémodulo infinite constants which 0,=Q; for Majorana fermions{recall_tha@ayﬂwaz0 due

again do not affect the constraints, since the latter are basj- . . . .
g to the Majorana flip propertiesys and ¢ are treated as inde-

cally relations between finite contributions . X . . .
Y o pendent variables in the functional integral. Finally, we have

(I[Sj(OaA=Qy 1X) = ([ S I([ Ol = Q) X) (189 8)1 (0= Q) 1X) = (i[ (898 (Op— Q) 1),
—2(i[S;14) (50) 6

. . L ) . which is almost a trivial result. To derive it one uses
to get rid of the variation sign in the field monomigf.x. It &0

: ; . and observes that the variation of the last tgfi§; ] X) in it
resglts fr_om the study of th_e differential _vertex op_erator IN-.ancels with the second terms in E€55),(56) so that we are
sertions in the Greeg functioff O;;14) with bosonic con- left with the RHS of Eq(57). All other terms in the commu-
formal OperatorOZ(eg), and one findg7] that the renor- tator of Ward identities are relatively straightforward to
malization constant of the operator prodi€?;; ][ O,], handle. Obviously, with the equalit{p7) the contributions
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proportional to theg function in Eqgs.(48) and (49) cancel c B - B _
each other in the commutator relation. ([8;1658°%) =~ 5(' US04 —Qy,)1%) —ia;(B)
Subtracting Eq.(48) from Eg. (49 and comparing the
difference to the supersymmetric Ward identi82) we get, x<[(§003 1X)
. . . . . - ¥ ]I 1
after extraction of independent combinations and identifying ,
both parity sectors for fermionic operators, the known super- _ S O
symmetric relation$3] (see alsd 2]): —léogo o a1 (B) S
llygn+ 12m+1= 22'}/723n,2m: Vgn,Zm' m=n, ( 117;: S 12y;3k5) ] < ( [Vk_l,l _1]> >
21,¢,S 22.¢S8
Yik Yik [Vii-1]
127§n+1,2m+1 7’2n am+2= 72n om+1,  M=n—1, Ik :
(61)
21,8 _12. P Y = o . .
Yon+12m+1= Y2n+22m= Y2n+12m:  MSN, The conformal variation of the Green function with three-
fermion operator appearing in E¢50) can be calculated at
227§n+1,2m+1 72n+2 am+2= ’)’2n+1 oam+1:  MsN, the tree level:
_ L
12,8 ma=0, P, 0. (59) ([(£003) 81165 X) = —ia; (B[ ({o03,) S i-11%)

C
Obviously, these are the same relations as given in(43). ~([(£05°03) 51
If one relies on a supersymmetry preserving scheme, thesgere we again neglected the BRST-exact operator that arises
equations can be derived in any order of perturbation theorjtom the conformal variation of the action. Takmg into ac-
and they have been checked at two-loop dtdat. count the Ward identity(33) and the relations®Os,
=iy-03,, we observe again that the three-fermion operator
B. Commutator constraints for special conformal anomalies contributions cancel each other in the commutator constraint.

The constraints for the special conformal anomalies of the, Letfus now cokr:s;jer Ejhef opgrgtor product proportional to
conformal operators result from the commutat6) of su- e 8 function, which is defined by7]
persymmetric and special conformal variations applied to the (i[OO x—Q7,)]1X)
Green function: A w

([8;1([6°,6°10))=—iy_([85;15°). (59

=({[O1[(07—05)1H)

S
The derivation runs along the same lines as above up to the —< f ddx2x< = lﬂ )[O,,]l >
appearance of the superconformal anomaly on the RHS, oy
given by the Ward identity(33), and the absence of (62)
finite contributions to the renormalization of the product
[O;1[0A]. Again omitting the BRST-exact operator The supersymmetric variation of this product gives
insertions, the commutator of the LHS is given by the two<I 5Q[SJ-|((9A _QEM/)])‘)

equations
=<i[(6Qs”><<9;—Q§¢,>JX>+i<[(ZJy_A>sj|]X>

e sms

<[sj.](s@a°x>:—§<i[<aQsj.><oA—ﬂ;¢>m

i
+([(£003y) 81165 X) —i0oy¢ Z [au(F) s s
(51 1k 0) Yi-1k 0 oy
0 Six 0 vy Here we have usedQ(O;—in)zgoy_/H ..+, with the
v ellipsis standing for th&);, operator, which again is irrel-
><<([ kv'1]>X> (60) evant in one-loop approximation, since the whole contribu-
V-1l ' tion (63) is multiplied by theg function and thus starts from
as. The first two terms on the RHS of this equation ensure
the cancellation with the same terms appearing in Egs.
®Here we evaluated the rotation matrices from the conventionaf33),(60); however, the remaining equation-of-motion opera-
minimal subtraction scheme, in which all next-to-leading anomators on the RHS will contribute to the constraints for the
lous dimensions are available of the dimensional reduction schemé&pecial conformal anomaly. We can absorb these additional
As mentioned in the Introduction this procedure does not com{ieces by a redefinition of the special conformal anomaly
pletely fix the nondiagonal part of the rotation matrices. matrix. The action of the equation-of-motion operators is
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i tion treats the3 term equivalently for quarks and gluons and
f ddx2x< + = zp) O =2ik§=‘,O bjk(B)QOkJ,l, instead of Eq(9) we have at leading order
2 (B)T(B)=—d( K"~ BoD) +gjc. (69
J dx2x. ‘ﬁ&,p i= 2'2 bjk(F)Vii-1, The new special conformal anomaly matrix
(64) e 12pc
where theb;(B) matrix can be found iri6,7] and the fer- = 21pe 221“0) (66)

mionic one is evaluated in Appendix A. Now we shift the
QQ entry by 99— U=y} +2(B/g)by(B) and for the S; operators can be found from the conventional
set for the remaining channefsBl“fk:AE‘)/JCk This redefini- quark and gluon ones by the transformation

111Fc 1 k+3 6 k+3
E i _6 - —] QQI‘J?k
1 k 6 k
121c -1 — —— — G
K+ 1 1 6 P QCT
1erc - 2k+3 j+3 (k+3)(j+3) 6 k+3 ope 7
Kk j+1 6(G+1)  jr1 j+1 Tk
LZ ¢ E — k(i +3) — 6 K elej pld
k+1 ~ Ik j+1 6(j+1) j+1 j+1 ik
|
An analogous convention is introduced for the special con- i
formal anomaly matrix of the fermionic operat6rs E ZF V(B)oW Via—1]+ 2 21F V(B) o[ Vi 1-1J
T5(F)= ¥i(F) + 25 byl F). (68) =03 2 {TR(F) = ?Ajd V-] =0, (71)

If we now compare both sides of E(9) in terms of and forP; they read
these new conventions we find that in addition to the special
conformal anomaly’® only the superconformal anomaly

i
| | 2 M RAB) oy Uiy - 1]+2 PIRAB) 0y o[ Un 1]
A, =—2%r1, (69) B

j
. c _IpA _
arising from the renormalization ¢t4]S;, in Eq. (35), con- U'Hgo {7 1k(F) = A} Ua-1]1=0, (72)

tributes to the desired constraints:
i
j i > 2PSAB) 0 1[ Uit 1]
ik k+1LUki-1
I(ZO llFfRV(B)O'k[Vk—l,l—l]ﬂLgo 25 (B) o Via-1] k=0

j 1 +2 ZlF A(B)orys 1[U—1)-1]
_UJE {T5_1(F)— A [ Via-11=0, (70

j
—0j41. 2 {TR(F) =AU 110, (73
"Here the fermionic conformal anomaj(F) has the same struc-
ture as the quark one, namely(F)=—b(F) y(F)+w(F), with
the anomalous dimensiop(F) of the quark-gluon operatdr () ~ Where we have implied'j,=0 for k>j. Extracting the in-
and a parw(F) deduced from the renormalization ®f(2/) with dependent components from E§&0)—(73) we finally obtain
the trace of the energy-momentum tensor. four equalities for the nondiagonal elements:
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FIG. 1. One-loop diagrams which give rise to divergences inthe FIG. 2. Same as in Fig. 1 but for the operator product
product of the renormalized operator insertim[w\][QO“]. i[A][GO“].

\%

11c,V
T 2n+1,2m

2n+12m+1

= zzrg'rﬁzm(B) +2A/é\n,zm: 50 2m(F),

¢ and indeed observed its cancellation in the final result. This
shows that the BRST-exact operators cannot contribute to the
constraints. The generic form of the result is

(B)+1A
(74)

221rc,V 2AV
2F2n+1,2m+1(B)+ A2n+1,2m+1

Qi — 1 ag 1 1 o
[ OI](Kl’KZ)(gl[A]):EZNCJO dXJ0 dy@(l—X—y)
= 11thA+2,2m+2(B)+1A§n+2,2m+1:an+1,2m+1(|:)!

(75 XRI(%Y) (L1720 (XK1 + Xz,
S 1 ome1(B) A 1 omes Yr1FYKe) T (K1 ko), (79
= erg',{me”(B) + 2A§n’2m+1= IS ome1(F), (76) where the— (+) sign in the second term corresponds to the
parity even quarks and parity odd gluamsrity even gluons
28 L ome1(B)F2AY 1o and parity odd quarksand we use throughout the convention
x=1—x. Skipping detailg{see Appendix Bwe give the re-
= 12thA+2,2m(B) + 1A9n+2,2m: gn+ 1,2m( F)v (77) sult: PPINg PP g

with n>m, and six equations for the diagonal elements,
which are of no relevance in predicti¢r) for the anomalous
dimension matrix. Equation&4)—(77) are the main results
of this section. The rest of the paper is devoted to a consis-
tency check of our results for the special conformal anoma-
lies by evaluating thé\ anomalies at one-loop order.

ORAX,Y)=RY(x,y),
(80)

—kat ORV(X,y)=— a(x),

1+

o(y) =2+ 4(y) +(1-y)é(x),

SRY(x,y)=—
LAy
VI. EVALUATION OF SUPERCONFORMAL ANOMALY

SRAX,Y)=CRY(x,y) +4y, (81

To simplify the calculation of the renormalization con-
stantsA, it is advantageous to use the light-cone positionii the +
formalism and to this end we introduce the nonlocal light-ray
operators

prescription defined conventionally by
1dy

foy'

We have kept the gluon momentutn, unintegrated, in the
quark sector which stems from the exponential in the Feyn-

Qi _E_a i g, aby b
O(Klsz)—2¢+(K2n)r(D [ K2, k1] (Kk1N),

CO (k1K) =G (kM) T, D% k7, 611G, (k1N),

PO (k1,k2) =G (10 F, D k7, k1105 (k1N).

man rules for the operator insertion vertexexp(—ixiky
—iroko.). We merely substitute it by the corresponding par-
ton momentum fraction when passing to exclusive type ker-

(78 nels(see Appendix € Note that the result for the polarized
The calculations of the mixing kernels for the productduark kernel is the same as for the parity even case. This
[ AJ[ O] with fermionic operators are straightforward and gocould be anticipated, since for divergent parts we can use the
along the lines of Ref.13] (see also Appendix B of Ref7] anticommutativity ofys. However, there is a sign change in
for a recent review of this formalism in the case when thethe contribution of the diagram in Fig(d but it gives the
nonforwardness is essenialhe diagrams are represented contribution x8(1—x—y) with a + (—) sign for even
in Figs. 1 and 2 for quark and gluon operators, respectivelytodd parity and together witixé(1—x—y) from Fig. 1(d)
Since these renormalization constants must be gauge indgives a vanishing result when the symmetry property of the
pendent, we have performed the computation with a generalorresponding quark string operators is used. For gluons the
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difference between the parity even and odd sectors comenformal constraint$74)—(77). Indeed, we find that all of
entirely from the contributions of the graphs in Figgb)2  them are identically satisfied. Thus, the universality of the
2(c), and Ze). The contributions from @) and Zg) annihi-  special conformal anomaly matrix for even and odd parity
late each other, while the remaining diagrams give idefiticalsectors arises from the form of the superconformal anomaly
results for theV and A channels. in A’'=1 Yang-Mills theory.

Evaluation of the conformal moments according to the

method spelled out in Appendix C gives for gluons
VII. CONCLUSIONS

1 (k+1)(k+3)F2

-1G
(&Nc) RIM=26, +(k+2) ~The use ofA’=1 supersymmetry allows us to find non-
27 3 k+1 trivial relations for both scale and special conformal anoma-
X(k+3)q,jk+(_1)j+k(k+2) lies of QCD conformal operators. In the former case, the

constraints, at leading order in the dimensional regularization
scheme as well as to all orders in a supersymmetry preserv-
) (820 ing scheme, involve only anomalous dimensions. There are
six constraints for the diagonal and four for the nondiagonal
with the — (+) sign for the vectofaxial) channel; and for elements of the four entries in the anomalous dimension ma-
quarks trices in the parity even and odd cases. Although in the su-
persymmetric limit the color factors have to be identified, the
constraints also have predictive power beyond the leading
order approximation. As observed in R¢B] there is a
_ subtlety in finding the supersymmetry preserving regulariza-
— (=DM +D(+2) Wy tion scheme in the nonforward case. Standard dimensional
. : reduction[9] does not serve this purpose. However, the ex-
—(J+D(j+2)Z - (83 istence of a supersymmetry preserving scheme was proven

To simplify the presentation we have introduced the matri0Y the al_aility to satisfy the constra_ints by a multiplicative
renormalization of the anomalous dimensions.

ces, depending only on the logarithmic derivative of the Eu- h ot f . for th al f |
ler integral y(x) = (d/dx) In T(x), via There exist four constraints for the special conforma

anomalies. They contain new ingredients due to the su-

X(k+3)EJ‘k

o -1 0 _ K .
(EiNJ QRRL:a£+i)K—lP+Wk+2)—1

j+k+4 . i—k _ perconformal symmetry breaking by the trace anomélin
W= 5 ) —(j+k+4)- l/f( T) + (] —k), the spinor current. The four symmetry violating entries arise
as a counterterm in the product df and the conformal op-
o= (i K+ 4) + g —K)— K+ 4)— (k+ 1), erators. Thus, there is no predictive power in these con-
=¥ )9k~ ¥ )= ) straints; however, they serve for a consistency check of the
S= (k4 + (k) —24(j+2). (84) special conformal anomalies.

Let us mention for completeness the situation with the

The conformal moment®; of the kernelsR(x,y) are re- two further leading twist-2 conformal operators appearing in
lated to those in Eq(69) by a normalization factor and, the definition of the so-called transversity distributions. It is
therefore, the superconformal anomaly is well known that these quark and gluon operators do not mix
with each other under renormalization due to different spin
an — 0,20 G aG i B representations wit.h respect to the Lorentz group. Their for-
LS Q_k( @i “Rjct "0 Ry)  with  a=1,2. ward anomalous dimensions are related in the supersymmet-
(85)  ric limit by one constraint. However, unfortunately, there ex-
ist no constraints for the nondiagonal elements of conformal
We should note that for even and ogle k the ¢ functions  anomalies that do not involve anomalous contributions of
with argument depending on bojhandk enter only in the fermionic operator§14].
particular combination We have evaluated the superconformal anomalies in one-
loop approximation and found that our relations are indeed
. . satisfied with the known results for the special conformal
2= =d(+2)= 1), anomalies from Refd6,7]. In other words, vf/)e can now re-
construct the special conformal anomalies of the gluon-gluon
which also arises in all special conformal anomakéd7]. and gluon-quark sectors from those in the remaining two
The final step is to insert our findings for the supercon-channels, provided the former two are not already known.
formal anomalies given in Eq$82)—(85) and our results for Furthermore, we know that the latter give us the rotation
the eight special conformal anomaly matrices from Réf,  matrix to the conformal scheme in which the conformal op-
rotated to the®°I'® basis by means of E@67), into the four  erator product expansion of two electromagnetic currents is
valid. Since the Wilson coefficients of this expansion in both
of these remaining channels are fixed by the ones of the
8Discarding the fact that contributions witky < x, enter with  forward kinematics and coincide with the explicit calculation
opposite signs. in the minimal subtraction schenjé&5], rotated to the con-

j+k+a
2

i—k
2

A= —¢
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formal schemg 16], we have a complete consistency checkw(x|a”3):(1_X)a(1+x)5,
of all special conformal anomaly matrices evaluated at one-
loop level. Since these conformal anomalies induce, together n,(a,8)=24"£*1
with terms proportional to thgg function, the nondiagonal
elements of the anomalous dimension matrix at two-loop y I'(kta+1)I'(k+B+1)
level, we have also a complete but indirect check on their 2k+a+B+1)I'(k+)I'(k+a+B+1)"
correctness from the superconstraifi8). Of course, in the
flavor nonsinglet sector the anomalous dimensions arisin§/sing Rodriga’s formula for Jacobi polynomials and inte-
from our prediction coincide with the conformal moments of gratingk (andk+1) times by parts we come to integrals that
the evolution kernel calculated at the two-loop le[ET]. can be easily evaluated by means of the result

Altogether, we have a complete list of consistency checks
for _the field _theoretical treatment of conformal anolmalies, f dXW(X|a,y) pj(a,ﬁ)(x)
their evaluation at one-loop order, and next-to-leading pre- -
dictions arising from their use. This also supports our results , ,
for the transversity sectd@ 8], which has been treated in the = (—1)iget yer L@+ DIB—y+ DI (y+1)
same manner. FGg+HrB=—yllaty+tj+2)’

(A3)
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under grant PHY9722101, by the Graduiertenkolleg .
Erlangen-RegensburgA.B.), and by DFG and BMBF 'dentifyinga=2 andB=1 we get the result
(D-M.). o - (k+2)(k+3)
b (F)= (1-K) 6jk—2(—1)! (j_*_—:g)ejfl,k :
APPENDIX A: EVALUATION OF THE FERMIONIC K (A5)

b MATRIX

= if j=k; if j<k}.
The fermionicb matrix is defined by Eq(64). In order to wheredy={1 if j=k; 0 if j<k}

evaluate the matrix it proves convenient to make the Fourier
A ——Kex APPENDIX B: RENORMALIZATION OF THE OPERATOR
transform on the fields, i.e¢(x) = [d%e ¥ *$(k), and in-

troduce a set of new variables of the integraivésk, PRODUCT [AI[©]
+ky, andX=(ky, —kq.)/ (Ko, +kqiy), SO we get For the calculation oZ matrices one uses in the light-ray
formalism the usual momentum space Feynman rules and
vertexx exp(—ikky, —ikoky,,) for the nonlocal operator
g o 4L adL vl-1f A o(21) where “vertex” stands for the Dirac or Lorentz tensor. Intro-
J d sz‘ﬂwvﬂ_z'QJJ d%k,dk Y T H LR (X)) ducing the Feynman parametery for the propagators we
reduce the Feynman integrals to the form

X Gy (k) vy dr(ky) J*R(x,y) X vertex with

i 1 1
2 g— k(2D V1, (A1) J= fodxfodya(l—x—y)

X @ K1+ (1= )y +xrg) —ika (Yra+ (1-)k2)  (BY)

with the differential operato’=1+(1—X)d/dX and Bj,

defined by the integral where the exponential corresponds to the Fourier transform

of the coordinate dependence of the string operator “after
evolution,” O((1—Xx) k1 +Xk5,Yk1+(1—Y) k5)). To calcu-
) late the divergent part of the operator prodiet][ O], we

«.p P{A)(X) LP{*A)(X). have to take in addition the Feynman rule for the anomaly
“!B) : [ A] defined in Eq(19).

(A2) Our calculation has been performed with an arbitrary
gauge fixing parametef, which canceled in the sum of dia-

The weight and normalization factors are given by the stangrams. Therefore, we present the results corresponding to the
dard equations: definition (79) for the separate contributions =1 gauge.

Buep)= | ax
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In the quark parity even and odd sectors we get on a —kys GRE/C)=ykz+—(1+X)k1+,
diagram-by-diagram basis from Fig. 1

1 ko, CRY. 23)k 3(1 x)k +i
_ —[o_ 2 _ 21— —x
—k2+QR(a)=§, 2+ (d) 2y 2+7 5 475
X[(1=y)kay +xky 4]
1
_k2+QR(b)=_§(l_y)5(X), X[yk2++(1_x)k1+]v
1 y i
X —Kyy CRY == (3= X)kyy — 1——)k - =
—k2+QR(C)=i§5(1—x—y), 2+ (e) 2( Ky + 2| "2+ ZK
X[(1=y)kay +xKky 4]
y 1 y 1 B
—kz+QR(d)=§5(1—X—y)—§ 1+ 5|50~ 3, X[ykoy +(1=X)ky ],
GpV 1
o 1 —Kai "R (1) =Ko+ 6(Y){ — X +1-6(x) ¢,
—kay “Rie)= y O(x) = 8(x), +
+
. —Ka OR (i = S = (1= )Kys + 800Kz },
ko MRn=—|=| 8(x)+5(3-y)d(x),
+ 2 - k2+ GRE/Q) = k(23+R2/d) ) (83)
1 1 y with k= k,— k4. The subscriptb (NA) stands for the con-
—kay OR(g=— y o(x)+ 5|1+ 5) o(x), tributions originating from the expansion of the path ordered
+

exponential(non-Abelian part of the field strength tensor
(B2) The axial case differs from the previous one only in the

where the+ (—) sign in the contribution of diagraric) ~ contributions of diagrameb), (c), and(e), which are

stands for the evefodd) case. In these results we dropped

contributions of the type consé(x) 8(y), since they do not Gy A _ 7 3 7 i
enter into the physi)égl part o(f )tht(ay)constrair(tm))/—(ﬁ), —kar "Ry =273y k2+—(§—§y Kio 5 el(1=y)
namely, fork<j. In the sum of Eqs(B2) the term3- 5(1
—x—y) for the vector case andl(1—2x)-8(1—x—vy) for X Koy +xkyy J[yKo s +(1=X)ky ]
the axial one cancels with the; < «, contribution (+ and 1—x
— sign, respectivelyin Eq. (79) and we get the result in Eq. + T(S(y){(l—:%x)kH—Zk2+
(80).
The gluon case is calculated from the graphs in Fig. 2 and —ikx(1=x)kI, —ik(1=x)Ky+ Ko},

reads for the vector channel

—kaoi Ry =—Ykps —(1=X)ky. |

GpV 2
Kot TR a0y =Ko+ Oy || —2F+28(X) 1,

* 3 5 5 i

5 3Y K~ 1=y ke — Sk

X[(L=y)Kos + XKy J[YKoy +(1—X)Kq 4 ].
(B4)

- k2+ GR'(Ae):

3 i
Kot OR fainm = 5(y)(§(l—x2)kl++ E,<x(1—x)2|<§+

3
Summing the separate terms, we have to use the for(eeta
Ref.[7] for a general result

Ko OR ()=

3 3 i
2— —y)k + 75 (1=x)ki 5
2Y) e+ 73 L2k T ke [1=(1=X) 8(y) ]+ Ko [ 1= (1-y) 8() ]} =0

X[(L=y)Ka +xKy 1 [YKo 1 + (1= X0y ] (B5)

1 to reduce the result to its final fort81). Then we use the
+5(1=x)8(Y){(1=3x)kyy = 2ks+ equationkz+§2(k2)=iéi#(kz), valid to leading order in
the coupling, to reconstruct the field strength from the poten-
—ik(1=x)Ky 4 (Xky + Ko i)}, tial.
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APPENDIX C: CONFORMAL MOMENTS OF expression with the derivative acting onzF,. In order to
REGULARIZED KERNELS achieve this let us reexpand the action of Kfederivative

The conformal moments of the transition kernels denveod/d(xy)kff? E; Wit)h respect to the complete set of polyno-

in the body of the text are defined according to

— d —j+k,j+k+3
1 w(2,1t) 1 " 2 e 1tK,]
L= dt P2t f dfox, 21 k+2 X
jk ffl nk(2,1) k ( ) 0 o ( y) dx
([1—x—y]t— - —1,1+2k+3
XCj([1=x=yJt=x+y), (CY) Z i—k12F 1( ki X, (CH
with the weightw(2,1/t)=(1—1)2(1+t) and normalization _ _ o
n(2,1)=8(k+1)/(k+2)(k+3). We have for quarkc?  with expansion coefficients
=C>? and C7=C??, for gluons. From this equation it is e
: =_[1—(=1)"khp.
stralghtforward to evaluate the moments of all parts of the Cj-ki=~[1=(=1) 105 k1+2(21+2k+3)
kernels(along the lines of Ref.7]) except for the ones with I'(1+2k+3) I'(j—k+1)
the + prescription since in this case we obtain the result in I(+1) T(j+k+3) (CH)

terms of derivatives of a hypergeometric function with re-

spect to its indices, which is not easy to handle. In theseasily obtained from the orthogonality of polynomials. Then
cases we have to modify our modus operandi and develop ge get

more efficient machinery which leads to more tractable ex- _

pressions. It can be achieved according to the reexpansion of s (= 1)K (k+2)2(k+3)I'(j+k+3)

the integrand, making use of the orthogonality for Gegen- Mji= 12 T(2k+5)T(j—k+1)

bauer polynomials. To be more specific let us consider the

gluon kernel[ 1/x],; 6(y) which in the momentum fraction d -
formalism translates intgo(t—t’)/(t—t')].. We use the X () = gplk+ 1)+ = go Cj—kil
following regularization of singular distributions: =0
=1, I+2k+3k+1
3 2( 2k+5k+1+e 1)' €6

1 dx 1 dx
| o e00= | = —te0- s,
ol1-x]+ 0(1— o .

(€2 Now the way to handle the derivative offF, is rather

straightforward. First we use the fundamental identity for
Then using the representation of the Gegenbauer polynomiglF, (I € IN)
in terms of the hypergeometric functiosfi,; and using Ro-
driga’s formula for Jacobi polynomials we integrdtéimes . 2( —Llt+a,B 1)

by parts to get v.Bte
oy I'yI'(y—a) —I,I+a,e
o(t—t") . (k+2)(k+3) -
MijE[ (t—t") ] ST e T DT (y—a-D 2 1+a—yp+elt):
j (C7)
—(—1)]  (K+2)(k+3)T'(j +4) d X(1—x)e"1 where we substitutey=a+2—p with p—0. Then the ex-
120()I (k+2) pansion with respect te is easy to construct:
1 d* I+ a,e
X d +1 1— k+2 F ( ! ! 1)
fo yy“i1-y) d(xy)k2 32| p—1 B+e
_'_|_1,'_|_4 |(|+a)
xFl( e xy). 3 ~Lte| T (p= 1| 1+ (- D(1-1)
The first term on the RHS originates from tigg1) contri- < (I+a+1)+ ] JTA+1+a—pI(B) L O(s?)
bution in Eq.(C2). The simplicity of the consequent analysis T(2+a—-B)T(B+]) '
depends on the handling of the derivatives acting,bn. If (c8)
we merely differentiate ik times as it appears and perform a
y integration this gives;F,. Finally, afterx integration Eq.  and together with the identity
(C3) will be proportional to the derivative ofF; with re-
spect to a low indeXsee later, Eq(C12)]. Fortunately, it is I'p—1) L (1=1+p)
possible to avoid this if one notices thiat- 1¢ differentia- r(2—p—1) =(= r(2-p) (€9

tions andy integration lead to aF function with shifted
indices. After the last integration is done one ends up with amwve find
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(—I,I-i—a,,B 1) d - —1,1+2k+3k+1
2 at+2,p8+e 58:0 Z‘o CJ—k"SFZ( 2k+5k+1+e 1)
_ I(a+2) I(1+ a) B 1 (J-k(j+k+3)
“Tvaro || 175 (ot dy) T (krD(k+2)  (k+D(k+2)(k+3)
+8F(|—1)((—1)|+[(|—1)(|+a+1)+B] ez | DY ==

i—k

x¢<j+k+4>—<—1>i+kw(7 1+ (1)K

rd+l+a—B)Irp)
Ir2+a-B)Ir(p+l)

0 o+ (9(82)]. (C10
Xw(i—k)—lﬂ(k+4)—¢(1)]- (C1y
As a by-product we verify the following formula for the

Using the results we have just derived, we perform in the lasglerivative of ,F5, which is difficult to derive by other
step the summation in EC6) according to the formula means:

T(j+k+4) 4
[(j—Kk)T(2k+5) de

—j+k+1,j+k+ak+2k+1
43 2k+5k+3k+1+e¢

e=

i—K)(i+k+3 1 ) i+k+4 . , K
:(J(k+)£;(k+3))_k+l+(_1)l+k¢(1 5 )+[1_(_1)J+k]lﬂ(j+k+4)—(—1)1+k¢(17)

F[1+ (= 1) g —k) — p(k+4) — p(1). (C12

A slightly different procedure holds for quarks. In this with the expansion coefficients
case due to the presence of the momentum frackipn
=[(1-1)/2](k,+ky) + we reexpand the integrand, modified
by adding a constant,

dy=—6 3+ 2k (j—kK)(j+k+3). (C15
2 8- R A |
MJ'QkE[ Tt ]
w-vlJ,
. . Consequent integration and expansion einrequires Eg.
:(_1)k(k+2)(k+3)(1 +1)(] +2)j1y2(1_y) (C10 as well as the following result:
k+1 0
1 (1] 1 —i,j+3
XPS'Z)(zy—l)f dx| —[zFl( ’é xy) —ll+a.pB
0 XY F 1
72 1+a,Bte
_2F1<—J,é+3’0)], c13 _ Tre) [ ) T(1+a-B+)I(B)
TAtath |0 AT+ a— BT (BT
in the following series:
SR R

—k,k+3

- which can be deduced using the same recipe as presented
:kZO djk2F1 2

(€14 above. Final summation gives us the result in B§).

X
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