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Superconformal constraints for QCD conformal anomalies
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Anomalous superconformal Ward identities and commutator algebra inN51 super-Yang-Mills theory give
rise to constraints between the QCD special conformal anomalies of conformal composite operators. We
evaluate the superconformal anomalies that appear in the product of renormalized conformal operators and the
trace anomaly in the supersymmetric spinor current and check the constraints at one-loop order. In this way we
prove the universality of QCD conformal anomalies, which define the nondiagonal part of the anomalous
dimension matrix responsible for scaling violations of exclusive QCD amplitudes at the next-to-leading order.
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I. INTRODUCTION

Supersymmetric models@1#, having higher space-time
symmetry as compared to conventional ones, provid
strong consistency requirement on theoretical predictio
For the purposes of testing massless QCD calculations
especially illuminating example isN51 supersymmetric
Yang-Mills theory, since both models have, up to a diffe
ence in color representation of fermion fields, the same
grangian. Thus, we can map a QCD result to anN51 super-
Yang-Mills theory one by identifying the color Casim
operators in corresponding representations, i.e.,CA5CF
52NfTF[Nc . After this procedure a QCD result has to sa
isfy constraints arising from the supersymmetry that c
nects gluonic and quark sectors of the theory. In this way
use of supersymmetry has allowed us to find a set of ide
ties @2,3# between the entries of the forward anomalous
mension matrices of leading twist-2 composite operato
They were valuable to clarify subtleties appearing in tw
loop computations of anomalous dimensions. At the t
level both theories are invariant under conformal transform
tions. Thus, theN51 supersymmetric Yang-Mills theory i
also invariant under superconformal transformations@4,5#,
which can give rise to a new set of constraints for cert
conformal quantities that appear in the special conform
Ward identities for composite operators, the so-called spe
conformal matrix. In addition to the breaking of conform
symmetry at the quantum level by the trace anomaly in
energy-momentum tensor, we also have to deal with a su
conformal anomaly due to the nonvanishing trace in a su
symmetric spinor current. Nevertheless, an explicit calcu
tion of this anomaly will allow us to check the speci
conformal anomalies calculated in QCD.

Composite operators appear in various QCD applicati
by means of operator product expansion and conseque
their hadronic matrix elements contain a nonperturbative
put, which is needed as an initial condition for the solution
the evolution equations. In the case of exclusive proces
the off-forwardness of hadronic matrix elements, given
terms of distribution amplitudes and skewed parton distri
tions, requires operators with total derivatives. To ensure
0556-2821/2002/65~5!/054037~17!/$20.00 65 0540
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the twist-2 operators do not mix under renormalization
leading order in the coupling constant, i.e., their anomal
dimension matrix has the diagonal formgjd jk , it is neces-
sary to arrange the operators in such a way that they ha
covariant behavior under conformal transformations. T
can be easily done. However, beyond the one-loop appr
mation the anomalous dimension matrixgjk develops non-
zero, nondiagonal,j .k, elementsgjk

ND}O(as
2).

The ordinary conformal algebra provides severe rest
tions@6,7# on the nonforward anomalous dimensionsg of the
conformal operators. In Refs.@6,7# we developed a formal-
ism based on the use of the broken conformal Ward identi
for evaluation of the nondiagonal partgND of the complete
anomalous dimensions matrixg5gD1gND. This nondiago-
nal part arises entirely due to the violation of the spec
conformal symmetry in perturbation theory. The correspo
ing anomalies have been calculated to one-loop order a
racy in the minimal subtraction scheme using dimensio
regularization, which implies the two-loop approximation f
gND. To check our results, one can employN51 super-
Yang-Mills constraints, valid in a renormalization schem
that respects supersymmetry, for the entries of the non
ward anomalous dimension matrix, derived in@3#. Unfortu-
nately, this is not the case for the dimensionally regulariz
theory. Thus, one has to find finite renormalization consta
from the latter to the dimensional reduction scheme, whic
expected to preserve the supersymmetry. But there aris
subtlety in the evaluation of this rotation matrix for the gl
onic sector1 which prevents it from being unambiguous
fixed @3#. Nevertheless, our result for two-loop nonforwa
anomalous dimensions is supported by the fact that the c
straints can be satisfied by a finite multiplicative renorm
ization, which proves the existence of a supersymme
regularization scheme.

Alternatively, we derive in this paper constraints direc
for the special conformal anomalies at one-loop level a
show that they are indeed satisfied. Our consequent pre
tation is organized as follows. In Sec. II we define conform

1This complication does not show up in the forward kinematic
©2002 The American Physical Society37-1
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operators, their anomalous dimensions, and the relation
the latter to conformal anomalies. Section III is devoted
the study of translational and conformal superanomalies
the Lagrangian level in the dimensional regularizati
scheme. Then in Sec. IV we present the transformation p
erties of conformal operators under the relevant supercon
mal variations required for a derivation of the Ward identit
discussed in the same section. In Sec. V we give a deriva
of relations between the scale and special conformal ano
lies of the conformal operators. Furthermore, we show t
the latter acquire anomalous contributions originating fr
the product of the trace anomaly in the spinor current and
conformal operators. They are explicitly evaluated in S
VI, where it is demonstrated that indeed the anomalous c
straints are satisfied with special conformal anomalies fr
@7#. Finally, we conclude. A few Appendixes are devoted
technical details that we found inappropriate to include in
body of the paper.

II. PRELIMINARIES

In this paper we discuss relations between the QCD s
and special conformal anomalies of conformal operators
plied by the N51 supersymmetry. InN51 super-Yang-
Mills theory we introduce the conformal operators~for the
chiral even sector discussed throughout!

QO j l
i 5

1

2
c̄1

a ~ i ]1! lCj
3/2S D↔1

]1

D G ic1
a ,

GO j l
i 5G1m

a' ~ i ]1! l 21Cj 21
5/2 S D↔1

]1

D T mn
i Gn1

a' , ~1!

where Cj
n are the Gegenbauer polynomials and the ten

structures are G (V;A)5(g1 ;g1g5), T mn
(V;A)5(gmn

' [gmn

2nmnn
!2nm

! nn ; i emnrsnr
!ns). We use the convention]l

5 ]
→

1 ]
←

and D↔5 D→2 D← with the adjoint covariant deriva
tive defined byD m

ab5]mdab1g facbBm
c . The 1 sign as a

subscript stands for contraction with the lightlike vectornm
which specifies a direction along the light cone. For the la
purposes we introduce another vectornm

! such asn25n!2

50 andn•n!51. Obviously, the only difference from QCD
arises in the gluino, which we loosely call the quark, sec
which now belongs to the adjoint representation of the co
group. The factor1

2 in Eq. ~1! is related to the Majorana
nature of the quarks in the model.

The renormalization group equation for these opera
looks like

d

d ln m
@Oj l #52 (

k50

j

g jk@Okl#, ~2!

where the square brackets will denote the renormalized
erators defined by@Oj l #5(k50

j ZjkOkl , with the renormal-
ization constant matrixZjk , which generate finite Gree
functions with elementary field operatorsf5$c,Bm%. We
05403
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use everywhere the matrix notation and introduce the ve

O5(GO
QO) of quark and gluon conformal operators, whic

mix with each other under renormalization. As mentioned
the Introduction, the only modification of a given QCD resu
is to identify the color Casimir operators. Since at leadi
order the conformal anomalies have a unique color struct2

it presents no difficulty to disentangle the separate com
nents.

We introduce as well the fermionic operator which is r
lated to the bosonic ones~1! by supersymmetry:

FO j l
i 5G1m

a' ~ i ]1! l Pj
(2,1)S D↔1

]1

DF m
i c1

a . ~3!

HerePj
(a,b) are the Jacobi polynomials and the vertices re

F (V;A)5(gm
' ;gm

'g5). The operators that form a represent
tion of the supersymmetry algebra are defined by linear co
binations of Eq.~1!

H S a

P aJ
j l

5Qv j
aQOj l

G 1Gv j
aGOj l

G , Vj l 5% j
F O V,

Uj l 5% j
F O A, ~4!

with G5V(A) standing for theS (P) operator, and coeffi-
cients Qv j

151, Gv j
156/j , Qv j

252( j 13)/( j 11), Gv j
2

56/( j 11), and% j5( j 12)( j 13)/( j 11). Obviously,U5
2g5V. Note that the bosonic and fermionic conformal o
erators form theN51 chiral superfield

F5A12ux2u2F, ~5!

with the operatorsS j l
1 andP j l

1 (S j l
2 andP j l

2 ) being the real
and imaginary parts of theA (F †) complex fields, and

Vj 21,l identified with the Majorana fermion (x̄ȧ
xa

) constructed
from the Weyl spinorx. Transformation between operato
under supersymmetry arises from the conventional equa

@ z̄Q,F#25@zQ1Q̄z̄,F#25$zr 1 r̄ z̄%F, with r 5 i (]/]u)
and r̄ 52 i (]/]ū)12u]” .

Now let us briefly point out how the nondiagonal part
the anomalous dimension matrix is induced by the spe
conformal anomaly matrix. In four-dimensional space-tim
the 15-parameter conformal group SO(4,2) is defined by
algebra containing the Poincare´, dilatation D, and special
conformalKm generators. The conformal anomalies are d
fined by the renormalized Ward identities. The generic fo
of the latter, however, written in an unrenormalized ca
reads

^@Oj l #dX&52^d@Oj l #X&2^ i @Oj l #dSX&, ~6!

whereX5) lf(xl) is a product of elementary fields appea
ing in the classical Lagrangian. Hered is any of the varia-

2More precisely, the anomalous dimensions in the gluon-glu
channel have in addition to theCA term also trivialNf dependent
contributions, which arise from the self-energy insertion.
7-2
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tions from the symmetry algebra in question. When the tra
formation is a symmetry of the theory on the quantum le
thendS50 up to possible BRST exact operators. In the~di-
mensionally! regularized theory the action no long
vanishes for conformal, i.e., both scaling,dSf(x)
5 i @f(x),D#52(df1xn]n)f(x), and special confor-
mal, dm

Cf(x)5 i @f(x),Km#52(2dfxm2x2]m12xmxn]n

22ixnSmn)f(x), variations, wheredf andSmn are the ca-
nonical dimension and the spin operator of the fieldf, re-
spectively. Thus, the renormalization of the operator prod
i @Oj l #dS is responsible for the conformal anomalies.

Moreover, the commutator@D,K2#25 iK2 , whereK2 is
the nm

! -light-cone projection ofKm , provides a connection
between the conformal anomalies. In Ref.@7# the nondiago-
nal elements of the next-to-leading anomalous dimensio

gND(1)5@gD(0),d~b02gD(0)!1g#2 ~7!

of the QCD quark and gluon conformal operators were fou
in terms of the one-loop special conformal anomaly matr

ajk
21~B!gjk

c(0)[2djk~gk
D(0)2b0PG!1gjk . ~8!

It is constructed out of the leading order anomalous dim
sions of conformal operatorsgD(0) and the first expansion
coefficient of the QCDb functionb05 4

3 TFNf2
11
3 CA times

ajk(B)djk(F)u j .k522(2k13) with theajk matrix from the
conformal transformation ofOjk @see Eq.~29! below#. The
projectorPG5(01

00) in Eq. ~8! singles out the gluonic compo
nent. Finally, theg matrix has appeared from the renorma
ization of the product of the conformal operator@Ojk# and
the integrated trace anomalyd2

C S}2*ddx2x2Qmm(x) in
the energy-momentum tensor

@Oj l #d2
C S5 i (

k50

j

gjk
c @Okl21#1•••. ~9!

In the dimensionally regularized theory, i.e.,d5422«, the
conformal variations of the QCD action can be calculated
a straightforward manner. Choosing the scaling dimensi
of the physical fields equal to their canonical values in fo
dimensions3 (dc5 3

2 , dB51) and setting the scaling dimen
sions of the ghost fields asdv50 anddv̄5d22, the result

dBS5E ddxwB~x!H 2
d24

2
~OA~x!1OB~x!1Vv̄~x!

2Vc̄c~x!2VD~x!!1~d22!]mOBm~x!J ,

with B5$D,C%, ~10!

3This choice is legitimate since the infinitesimal conformal var
tion is linear in df and thus does not affect the Ward identitie
since the anomalous part will show up as a renormalization co
terterm of the product of conformal and equation-of-moti
operators.
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is decomposed into operators that can be easily class
according to their renormalization properties. Here t
weight function readswD51 and wC52x2 for scale and
special conformal transformations, respectively. We int
duced the following set of type A and B operators:

OA~x!5
1

2
~Gmn

a !2, OB~x!5dBRST~v̄a]mBm
a !,

OBm~x!5dBRST~v̄aBm
a !, ~11!

as well as class C equation-of-motion operators

VG~x!5Bm
a dS

dBm
a

, Vc̄c~x!5
dS

dc
c1c̄

dS

dc̄
,

Vv̄~x!5v̄a
dS

dv̄a
, VD~x!5Da

dS

dDa
. ~12!

The renormalization of Eq.~10! is straightforward and the
renormalization of the operator products and the result
renormalized conformal Ward identities are given in Ref.@7#.

As a side remark let us note that, in spite of the fact t
the conformal field transformation laws for the dimensio
ally reduced@from d5422« ~and «,0) to 4 dimensions#
theory differ from the ones in dimensional regularization
the presence of«-scalar contributions, e.g.,4 d̃DBm

a 5xñGmn
a

2Bm̄
a and d̃2

C Bm
a 5(2x2xñ2x2nñ

!)Gmn
a 22x2Bm̄

a for the
gauge covariant variations of four-dimensional fields, nev
theless, the final result for the variation of the action tak
the same form as in Eq.~10! but with boson fields being fou
dimensional instead.

III. SUPERCONFORMAL ANOMALIES

In four-dimensional space-time the classical action of
N51 SU(Nc) super-Yang-Mills theory in the Wess-Zumin
gauge, i.e.,

Scl[E d4xLcl~x!

5E d4xH 2
1

4
~Gmn

a !21
i

2
c̄aD” abcb1

1

2
~Da!2J ,

~13!

contains the Yang-Mills field strengthGmn
a 5]mBn

a2]nBm
a

1g fabcBm
b Bn

c , the Majorana fieldca satisfying the conven-

tional conditioncTC(1)5c̄, and an auxiliary fieldDa. It is
invariant under transformation of the superconformal gro
which consists besides the conformal group also of the tra-

n-
4The indicesm, m̃, andm̄ refer to the 4-,d-, and 2«-dimensional

spaces, respectively.
7-3
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lational Q and conformalS supertransformations. The latte
two are defined infinitesimally by their action on field oper
tors as

dFca5
i

2
Gmn

a smnz2 iD ag5z, dFBm
a 52 i z̄gmca,

dFDa5 z̄D” abg5cb, ~14!

where z[z02 ix”z1 is the Grassmann parameter. Forz1
50 (F5Q) we have restricted supertransformations, wh
for z050 (F5S) these equations define the superconform
variations.

The superconformal group is defined by its algebra fr
which we will be interested in one particular commutator

@Q,K2#25g2S, ~15!

with Q (S) being super~conformal! generators. Note, how
ever, that for the short supermultiplet (Bm

a ,ca,Da) this com-
mutation relation is modified for action on fermions. To r
store it one has to use Jackiw’s gauge covariant confor
transformationd̃m

C[dm
C1dm

gauge@8#, where the gauge transfo
mation is defined with the field-dependent parameterem

a

[(2xmxn2x2gmn)Bn
a , instead of the conventionaldm

C varia-
tion defined above. For the action on a space spanned
gauge invariant operators this modification is irrelevant. T
commutator~15!, when applied on a Green function wit
conformal operator insertion, will provide in the supersy
metric limit ~identifying color factors! nontrivial relations
between the aforementioned QCD special conformal ano
lies.

To quantize the theory described by the action~13! we
have to add a gauge fixing and a ghost term. We do it via
covariant gauge fixing

Sgf5E d4xH 2
1

2j
~]mBm

a !21]mv̄aD m
abvbJ . ~16!

Although it explicitly breaks the supersymmetry on the L
grangian level, it will not affect gauge invariant quantiti
since the supersymmetry variations~14! commute with
BRST transformations on the gauge fixing function,5 i.e.,
@dF,dBRST#2(]mBm

a )50.
Translational and conformal supervariation of the act

S5Scl1Sgf regularized by means of the dimensional reg
larization 4→d5422« leads to

idQS52~ z̄0O3c!2O Q
BRST, ~17!

idSS5
d24

2
~ z̄1A!1~ z̄1O 3c

2 !2O S
BRST, ~18!

5We write for brevitydBRST instead ofdBRST/dl, i.e., after trans-
formation the infinitesimal Grassmann variable is canceled from
right. We recall that the BRST transformations are given by the
of equationsdBRSTBm

a 5D m
abvb, dBRSTca5g fabcvbcc, dBRSTva

5(g/2) f abcvbvc, anddBRSTv̄a5(1/j)]mBm
a .
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whereO[*ddxO(x) and the operator insertions read

A~x!5smnGmn
a ca, ~19!

O Q
BRST~x!5 idBRSTdQ~v̄a]mBm

a !,

O S
BRST~x!5 idBRSTdS~v̄a]mBm

a !, ~20!

O3c~x!5 i
g

2
f abc~ c̄agmcb!~gmcc!,

O 3c
2 ~x!5

g

2
f abc~ c̄agmcb!~x”gmcc!, ~21!

with the operatorA being the superconformal anoma
@10,11# in the trace of the supersymmetric current, i.e.,Qr

5 1
2 Gmn

a smngrca. We used in Eq.~20! the identity

dFdBRST~v̄a]mBm
a !52dBRSTdF~v̄a]mBm

a !1dFVv̄ .

Note that the three-fermion operatorsO3c andO3c
2 vanish in

four dimensions by means of Fierz rearrangement. Moreo
O 3c

2 can be generated by a special conformal variation of
operatorO3c , namely,dm

CO3c5 igmO 3c
2 1O(«2), where at

one-loop level we can safely neglect the remainder.
Later on we will concentrate on the use of thej523

gauge in the derivation of the constraints, which ensu
renormalized supersymmetry at one-loop order@12#. This
means that the quark and gluon anomalous dimensions
equal,gf[gG5gc . Furthermore, at one-loop order it wa
found that the anomalyA does not acquire gauge varia
counterterms@11#, provided one uses this particular value
the gauge fixing parameter. Therefore, we can write to
accuracy«A in terms of the renormalized operator

d24

2
A5

b«

g
@A#1O~as

2!, ~22!

with d-dimensionalb function b«52«g1b. Finally, we
write the superconformal variation of the action to one-lo
accuracy as

idSS5
b«

g
z̄1@A#1 z̄1O 3c

2 2O S
BRST1O~as

2!. ~23!

Let us point out a further consequence of thej523
gauge, which also leads to the equality of the anomal
dimensions gf and the b function, namely, b/g5gf
52as /(4p)3Nc . Consequently, the renormalization of th
conformal variation of the action will be simplified and i
integrand in Eq.~10! reads in one-loop approximation~see,
e.g., Ref.@7#!

e
et
7-4
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2
d24

2
@OA~x!1OB~x!1Vv̄~x!2Vc̄c~x!2VD~x!#

52
b«

g
$@OA~x!#2Vc̄c~x!%2

d24

2
$@OB~x!#

1Vv̄~x!2VD~x!%12gv̄Vv̄~x!

1~d22!]m@OBm~x!#, ~24!

with ghost anomalous dimensiongv̄ .

IV. SUPERCONFORMAL WARD IDENTITIES

In order to derive Ward identities we have to know t
change of the conformal operators under the superconfo
symmetry. Using the rules in Eq.~14! one finds that the
translational supersymmetry transformation laws are gi
by $here and everywheres j5

1
2 @12(21) j #%

dQS j l
1 5s j z̄0Vj 21l , dQS j l

2 5s j z̄0Vj l ,

dQP j l
1 5s j 11z̄0Uj 21l , dQP j l

2 5s j 11z̄0Uj l ,
~25!

dQVj 21l 2152g2z0$S j l
1 1S j 21l

2 %2g2g5z0$P j l
1 1P j 21l

2 %.
~26!

These equations clarify our comment about the formation
the conformal operators into the chiral superfield: E
~25!,~25! are in one-to-one correspondence with the sup
symmetric rules for the Wess-Zumino multiplet@4#. Under
superconformal variations conformal operators behave
follows:

dSS j l
1 52s j~ j 1 l 13!z̄1g1Vj 21l 21 ,

dSS j l
2 52s j~ l 2 j !z̄1g1Vj l 21 ,

dSP j l
1 52s j 11~ j 1 l 13!z̄1g1Uj 21l 21 ,

dSP j l
2 52s j 11~ l 2 j !z̄1g1Uj l 21 , ~27!

dSVj 21l 2152g2g1z1$~ l 2 j !S j l 21
1

1~ j 1 l 12!S j 21l 21
2 %2g2g5g1z1$~ l 2 j !

3P j l 21
1 1~ j 1 l 12!P j 21l 21

2 %. ~28!

Note that Eqs.~25!,~27! do not require Fierz rearrangeme
and, therefore, they do not change their form when
theory is regularized via dimensional regularization. Fina
let us recall that the transformation laws of conformal ope
tors under scaling and special conformal variations are gi
by
05403
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dDVOj l 52@ l 1d~V!#VOj l , d2
C VOj l 5 ia jl ~V!VOj l 21 .

~29!

Here d(B)[d(G)5d(Q)53 and d(F)5 7
2 as well as

ajl (B)[ajl (Q)5ajl (G)5a( j ,l ,1,1) and ajl (F)5a( j ,l ,
2,1) with a( j ,l ,n1 ,n2)52( j 2 l )( j 1 l 1n11n211), where
nf5df1sf21 andsf is the spin of the fieldf. Again the
scale dimensiondf is chosen to coincide with its canonica
value in four dimensions.

Because of difficulties in preserving the supersymme
of the theory with quantization and regularization procedu
our modest goal will be, therefore, a derivation of the co
straints for the special conformal anomalies of the QCD c
formal operators stemming from the commutator equat
~15! at one-loop level only. We will choose the covaria
gauge withj523, which gives us the advantages me
tioned above.

The dilatation and special conformal Ward identities fo
conformal operatorVO, which is either bosonic (V5B) or
fermionic (V5F), look now very simple~cf. Ref. @7#!:

^@VOj l #d
DX&5 (

k50

j

$@ l 1d~V!#11g~V!% jk^@
VOkl#X&

1
b

g
^ i @VOj l ~OA2Vc̄c!#X&, ~30!

^@VOj l #d2
C X&52 i (

k50

j

$ajl ~V!11gc~V!% jk^@
VOkl21#X&

1
b

g
^ i @VOj l ~O A

22Vc̄c
2

!#X&

22^ i @VO j l Dext
2 #X&, ~31!

with a 232 unit matrix1[1[2] 3[2] . Hereg andgc are the
scale and special conformal anomalies. It is well known t
in the scale Ward identity coincides with the Calla
Symanzik equation. Thus,g is the conventional anomalou
dimension matrix and the combination (l 1d)11g is the
scale dimension matrix of conformal operators. Obviou
OA(x)2Vc̄c(x)522Lcl(x) is the classical Lagrangian~13!
without auxiliary fields. In Eqs.~30!,~31! we have also intro-
duced a new convention for the operator insertions weigh
with different functions, i.e., O5*ddxO(x), O 2

5*ddx2x2O(x) ~analogously for equation-of-motion opera
tors!, and Dext

2 5*ddx2x2]mOBm(x). The precise definition
of the renormalized operator products is given in the n
section.

Let us turn to the renormalized supersymmetric Wa
identities. For definiteness let us consider parity evenS op-
erators. From the unrenormalized Ward identity~6!, the su-
perconformal variations of the action~17!,~23! and the op-
erators~25!,~27! we can immediately derive the renormalize
Q andSsupersymmetric Ward identities in one-loop appro
mation:
7-5
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^@S j l
a #dQX&52^@dQS j l

a #X&1^~ z̄0O3c!@S j l
a #X&

1^@S j l
a #O Q

BRSTX&, ~32!

^@S j l
a #dSX&52^@dSS j l

a #X&1s j z̄1g1 (
k50

j

r jk
a;V[1]^@Vkl21#X&

2
b

g
^~ z̄1A!@S j l

a #X&2^~ z̄1O 3c
2 !@S j l

a #X&

1^@S j l
a #O S

BRSTX&. ~33!

Here the superconformal anomalyr jk
[1] is the residue of the

renormalization constant

r jk5r jk
[0]1

1

«
r jk

[1]1•••, ~34!

arising from the renormalization of the operator product

~ z̄1@A# !@S j l
a #5@~ z̄1A!S j l

a #1s j z̄1g1 (
k50

j

ar jk
V @Vk,l 21#

~35!

and induced by the« term ofb« . Note that, since the three
fermion operators vanish in four dimensions, their prod
with the bosonic operators will give a finite contribution
one-loop order. Similar equations hold forPj l with the re-
placement of the indexV by A ands j by s j 11.

We have neglected infinite terms in the above Ward id
tities, since they have to cancel each other. It is instructiv
discuss this issue in more detail for the supersymmetric W

identity of the two-vectorS5( S 2
S1

)

^@Sj l #d
QX&52^dQ@Sj l #X&2^ i @Sj l #~dQS!X&. ~36!

The variation of the ‘‘good’’ component of the fermion field
c1[ 1

2 g2g1c, entering inX may cause a divergency on th
left-hand side~LHS! since it contains a composite fiel
strengthGmn . Fortunately, in the light-cone gauge the latt
can be expressed in terms of the elementary vector pote
Bm and, therefore, the LHS is finite by definition. This gaug
together with the use of dimensional reduction which impl
dQS50, leads to

^dQ@Sj l #X&5finite. ~37!

Since the renormalization of the composite operators is b
gauge and scheme independent at leading order, Eq.~37!
holds true also for our choice of scheme. Furthermore, in
~32! the renormalization of the product@Sj l #O3c is finite at
leading order becauseO3c;O(«) and cancels a pole in one
loop diagrams. Consequently, the product@Sj l #O Q

BRST

5finite, or if divergent it cancels the singularities
@Sj l #d

Qc mentioned above.
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Now we discuss the consequences of Eq.~37!. The com-
ponents of the renormalized operators@Sjk# are defined in
terms of unrenormalized ones, constructed though from
renormalized fieldsf by

@S j l
a #5 (

b51

2

(
k50

j

$abZS% jkS kl
b , S kl

a 5Zf
21S kl

a(0) , ~38!

whereSj l
(0) is expressed in terms of the bare fieldsf (0)

5AZff and couplingg(0)5m«g/AZf. The anomalous di-
mension matrix of the vector@S# is defined as usual:

d

d ln m
@S# j l 5 (

k50

j

gjk
S @S#kl with

gS5gZ
S12gf15S 11gS 12gS

21gS 22gSD .

~39!

In our scheme the anomalous dimensions

gf5
1

2

d

d ln m
ln Zf52

1

2

]

] ln g
Zf

[1] and

gZ
S52S d

d ln m
ZSDZS

215
]

] ln g
ZS

[1] ~40!

are expressed by the residues of the Laurent expansion o
Z factorsZ511Z[1] /«1O(«22). The renormalized fermi-
onic operator is defined by the same equation~38!; however,
with the 232 matrix ZS replaced by the numbersZV .

From Eq.~37! we conclude that

(
k50

j

(
k850

k S $11ZS% jk $12ZS% jk

$21ZS% jk $22ZS% jk
DskS $ZV

21%k21,k8

$ZV
21%kk8

D @Vk8 l #

5finite, ~41!

where we implied thatZjk50 for k. j . Substituting the Lau-
rent series into this result, the 1/« poles have to cancel. Thi
is ensured by the relations

(
k50

j

$11ZS
[1]% jksk@Vk21,l #1 (

k50

j

$12ZS
[1]% jksk@Vkl#

5s j (
k50

j

$ZV
[1]% j 21,k@Vkl#, ~42!

(
k50

j

$21ZS
[1]% jksk@Vk21,l #1 (

k50

j

$22ZS
[1]% jksk@Vkl#

5s j (
k50

j

$ZV
[1]% jk@Vkl#,
7-6
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where @Vkl# are independent operators. These when co
bined together with the analogous results for parity odd
erators~replaceS→P,V→U, and s j→s j 21) and ZV5ZU
provide constraints for anomalous dimensions~when differ-
entiated with respect to lng) @2,3#:

$11ZS
[1]%2n11,2m115$22ZP

[1]%2n,2m5$ZV
[1]%2n,2m ,

$11ZP
[1]%2n,2m5$22ZS

[1]%2n21,2m215$ZV
[1]%2n21,2m21 ,

$12ZS
[1]%2n11,2m115$21ZP

[1]%2n,2m125$ZV
[1]%2n,2m11 ,

$21ZS
[1]%2n11,2m115$12ZP

[1]%2n12,2m5$ZV
[1]%2n11,2m .

~43!

Now let us turn to the renormalization of the superconf
mal Ward identities. An important consequence of these c
straints is that the operators are multiplicatively renorma
able in the one-loop approximation, e.g.,$12ZS

[1]% j j

5$21ZS
[1]% j j 50 and $11ZS

[1]% j 11,j 115$22ZP
[1]% j j 5$ZV

[1]% j j .
Thus, in this approximation the classical transformation la
~27! for superconformal variations remain true also for t
renormalized operators. Consequently, the superconfo
variation of the renormalized operator provide finite Gre
functions

^dS@Sj l #X&5^@dSSj l #X&5finite. ~44!

Since O 3c
2 vanishes in four-dimensional space-tim

^( z̄1O 3c
2 )@S j l

a #X& is finite. Thus also the superconform
Ward identity~33! is renormalized up to possible diverge
cies on the LHS that are canceled by the renormaliza
with BRST-exact operators on the RHS of this Ward ident
Note that in our leading order approximation the anomal
term proportional to theb function is given by a tree ap
proximation.

V. CONSTRAINT EQUALITIES FOR CONFORMAL
ANOMALIES

Having derived Ward identities we are now able to d
cuss consequences of the superconformal algebra. To d
onstrate the method, we derive first the set of relations~43!
between the anomalous dimensions arising from the com
tator of super and scaling variations

@dQ,dD#25
1

2
dQ, ~45!

which is deduced from the commutator algebra@Q,D#2

5( i /2)Q. Next we deal in the same conceptual manner w
the commutator~15! of super and special conformal transfo
mations, written in a symbolical form as

@dQ,d2
C #252 ig2dS. ~46!

This provides us the desired constraints for the special c
formal anomalies of the conformal operators. We mos
concentrate on the even parity sector and just state the re
for the odd one.
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Before we start, let us argue that the three-fermion ope
tors and BRST-exact operators will not contribute to the c
straints. As already mentioned, the product of the thr
fermion operators with composite operators provides in o
loop approximation a finite part, which could possib
contribute to the constraints. However, its evaluation give
result that depends on theg5 and tr1 prescriptions. Let us
explain this point in more detail. In calculating the contrib
tions of this operator product one deals with a quark lo
that due to different Wick pairings has three terms; two
them contain a string of Dirac matrices while the last one
a trace. Obviously, in four dimensions the sum gives z
result ~recall thatO 3c and O 2

3c vanish by means of Fierz
rearrangement!. However, because of the«21 pole in the
loop momentum integration, we have to keep« contributions
from the spinor algebra that cancel this pole. Obviously,
« part is ambiguous for the axial channel: the result depe
on the handling ofg5 in the string of Dirac matrices as we
as in the trace. Next, since one of the three contribution
given by a trace of Dirac matrices, the result depends on
prescription for the trace of the unit matrix tr1. One of the
choices made in most calculations is to adopt a fiction
d-dimensional gamma matrices that still tr154. However, in
those computations the trace appears as a single overall
tor and the above choice is permissible. It results in sche
dependence for the finite part of, e.g., one-loop diagrams
our case, since we have an additive trace contribution,
have to continue the Clifford algebra ind-dimensional space
as well; this results in the rule tr152[d/2]. This convention
produces a term involving ln 2, reflecting scheme dep
dence. On the other hand, we certainly know that in lead
order the conformal anomalies do not depend on these
biguities. So we conclude that the contribution of the ope
tor products in questions cannot affect the constraints.

Now we come to the operator products containing u
physical BRST operators. Of course, one expects that th
operators do not contribute to the physical sector; howe
they may be responsible for the cancellation of unphys
pieces appearing in the renormalization of products cont
ing only gauge invariant operators. Finally, we are interes
in relations for physical quantities and as we already kn
from the constraints on anomalous dimensions these ope
products have to be canceled out in Eq.~45!. For the com-
mutator~46!, we have the superconformal anomaly and t
only difficulty could be a gauge dependent term that is c
celed by the operator products in questions. From our pr
ous experience in Refs.@6,7#, we expect that such a contr
bution is absent, and this will be shown by an expli
calculation in Sec. VI. So it is justified to neglect the who
unphysical sector from the very beginning.

A. Commutator constraints for anomalous dimensions

First let us demonstrate the derivation of the relations~43!
for anomalous dimensions at leading order from the comm
tator of scale and supersymmetric variations, given in
~45!, applied to the Green functions of composite operato
7-7
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^@Sj l #~@dQ,dD#X!&5
1

2
^@Sj l #d

QX&. ~47!

The RHS of this equality is obviously given by the supe
symmetric Ward identity~32! times 1

2 . To calculate the LHS
of the commutator we employ the Ward identities~30! and
~32!, with BRST-exact operators being omitted, and find
following contributions:

^@Sj l #d
QdDX&52

b

g
^ i @~dQSj l !~OA2Vc̄c!#X&1S l 1

7

2D
3^~ z̄0O3c!@Sj l #X&2s j z̄0(

k50

j H S l 1
7

2D
3S d j 21,k 0

0 d jk
D 1S g j 21,k

V 0

0 g jk
V D J

3K S @Vkl#

@Vkl#
DXL , ~48!

^@Sj l #d
DdQX&52

b

g
^ idQ@Sj l ~OA2Vc̄c!#X&1~ l 13!

3^~ z̄0O3c!@Sj l #X&2 z̄0(
k50

j

skH ~ l 13!

3S d jk 0

0 d jk
D 1S 11g jk

S 12g jk
S

21g jk
S 22g jk

S D J
3K S @Vk21,l #

@Vkl#
DXL . ~49!

To derive the RHS of Eq.~48! we have used for

^( z̄0O3c)@Sj l #d
DX& the scaling Ward identities with

dDO3c52 1
2 O3c and the variation~29! of the conformal op-

erators. The variation of the action proportional to« is ne-
glected, since this Green function is already finite at o
loop order. As was already expected from our previous re
~43! and discussion about scheme dependence, the th
fermion operator insertion will not affect the constraints
one-loop level.

Now we come to the terms in the above equations prop
tional to theb function. To derive the RHS of Eqs.~48!,~49!
we have used the equation~modulo infinite constants which
again do not affect the constraints, since the latter are b
cally relations between finite contributions!

^ i @Sj l ~OA2Vc̄c!#X&5^ i @Sj l #~@OA#2Vc̄c!X&

22^ i @Sj l #X& ~50!

to get rid of the variation sign in the field monomialdQX. It
results from the study of the differential vertex operator
sertions in the Green function̂@Oj l #X& with bosonic con-

formal operatorO5( GO
QO), and one finds@7# that the renor-

malization constant of the operator product@Oj l #@OA#,
05403
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i @OA~x!#@Oj l #5 i @OA~x!Oj l #2d (d)~x!(
k50

j

$ZA% jk@Okl#

2
i

2
]1d (d)~x!(

k50

j

$ZA
2% jk@Okl21#2•••

2S g
] ln X

]g
22j

] ln X

]j DBm
a ~x!

3
d

dBm
a ~x!

@Oj l #, ~51!

contains a finite contribution~second term on the RHS!

ZA5S g
]Z

]g
22j

]Z

]j DZ2122ZPGZ21

22S g
] ln X

]g
22j

] ln X

]j DZPGZ21. ~52!

The constantX is related to the charge and gluon wave fun
tion renormalization constants by the relationX5ZgAZG.
For the@Sj l #Vc̄c we have to use the identity

i @Oj l #Vf~x!5 i @Oj l Vf~x!#2f~x!
d

df~x!
@Oj l #, ~53!

where it is obvious that

^@Oj l Vf~x!#X&5 i K @Oj l #f~x!
d

df~x!
XL . ~54!

Thus in Eq.~50! the finite piece appears as a consequenc
two contributions: theGO part from the@Sj l #@OA# product
due to the finite part in Eqs.~51!,~52! and theQO part from
the @Sj l #Vc̄c product by means of Eq.~53!. Similarly, we
have for the fermion operators a finite contribution

i @Vj l #@OA#5 i @Vj l OA#1@Vj l #1O~«2r ! ~55!

for the trace anomaly, and

i @Vj l #Vc̄c5 i @Vj l Vc̄c#2@Vj l #1O~«2r ! ~56!

for the equation-of-motion insertion. In both cases o
should note the factor of 1 in front of the second term on
RHS not 2 as for the quark and gluon operators. Althou
Vc5Vc̄ for Majorana fermions~recall thatc̄agmca50 due
to the Majorana flip properties!, c andc̄ are treated as inde
pendent variables in the functional integral. Finally, we ha

^ idQ@Sj l ~OA2Vc̄c!#X&5^ i @~dQSj l !~OA2Vc̄c!#X&,
~57!

which is almost a trivial result. To derive it one uses Eq.~50!
and observes that the variation of the last term^@Sj l #X& in it
cancels with the second terms in Eqs.~55!,~56! so that we are
left with the RHS of Eq.~57!. All other terms in the commu-
tator of Ward identities are relatively straightforward
handle. Obviously, with the equality~57! the contributions
7-8
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proportional to theb function in Eqs.~48! and ~49! cancel
each other in the commutator relation.

Subtracting Eq.~48! from Eq. ~49! and comparing the
difference to the supersymmetric Ward identity~32! we get,
after extraction of independent combinations and identify
both parity sectors for fermionic operators, the known sup
symmetric relations@3# ~see also@2#!:

11g2n11,2m11
S 522g2n,2m

P 5g2n,2m
V , m<n,

12g2n11,2m11
S 521g2n,2m12

P 5g2n,2m11
V , m<n21,

21g2n11,2m11
S 512g2n12,2m

P 5g2n11,2m
V , m<n,

22g2n11,2m11
S 511g2n12,2m12

P 5g2n11,2m11
V , m<n,

12g2n11,2n11
S 50, 12g2n,2n

P 50. ~58!

Obviously, these are the same relations as given in Eq.~43!.
If one relies on a supersymmetry preserving scheme, th
equations can be derived in any order of perturbation the
and they have been checked at two-loop order6 @3#.

B. Commutator constraints for special conformal anomalies

The constraints for the special conformal anomalies of
conformal operators result from the commutator~46! of su-
persymmetric and special conformal variations applied to
Green function:

^@Sj l #~@dQ,dD#X!&52 ig2^@Sj l #d
SX&. ~59!

The derivation runs along the same lines as above up to
appearance of the superconformal anomaly on the R
given by the Ward identity~33!, and the absence o
finite contributions to the renormalization of the produ
@Oj l #@O A

2#. Again omitting the BRST-exact operato
insertions, the commutator of the LHS is given by the tw
equations

^@Sj l #d
Qd2

C X&52
b

g
^ i @~dQSj l !~O A

22Vc̄c
2

!#X&

1^@~ z̄0O3c!Sj l #d2
C X&2 is j z̄0(

k50

j H ajl ~F !

3S d j 21,k 0

0 d jk
D 1S g j 21,k

c,V 0

0 g jk
c,VD J

3K S @Vk,l 21#

@Vk,l 21#
DXL , ~60!

6Here we evaluated the rotation matrices from the conventio
minimal subtraction scheme, in which all next-to-leading anom
lous dimensions are available of the dimensional reduction sche
As mentioned in the Introduction this procedure does not co
pletely fix the nondiagonal part of the rotation matrices.
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^@Sj l #d2
C dQX&52

b

g
^ idQ@Sj l ~O A

22Vc̄c
2

!#X&2 ia jl ~B!

3^@~ z̄0O3c!Sj ,l 21#X&

2 i z̄0(
k50

j

skH ajl ~B!S d jk 0

0 d jk
D

1S 11g jk
c,S 12g jk

c,S

21g jk
c,S 22g jk

c,SD J K S @Vk21,l 21#

@Vk,l 21#
DXL .

~61!

The conformal variation of the Green function with thre
fermion operator appearing in Eq.~60! can be calculated a
the tree level:

^@~ z̄0O3c!Sj l #d2
C X&52 ia jl ~B!^@~ z̄0O3c!Sj ,l 21#X&

2^@~ z̄0d2
C O3c!Sj l #X&.

Here we again neglected the BRST-exact operator that a
from the conformal variation of the action. Taking into a
count the Ward identity~33! and the relationd2

C O3c

5 ig2O 3c
2 , we observe again that the three-fermion opera

contributions cancel each other in the commutator constra
Let us now consider the operator product proportiona

the b function, which is defined by@7#

^ i @Oj l ~O A
22Vc̄c

2 !#X&

5^ i @Oj l #@~O A
22Vc̄c

2
!#X&

2K F E ddx2x2S c
d

dc
1c̄

d

dc̄
D @Oj l #GXL .

~62!

The supersymmetric variation of this product gives

^ idQ@Sj l ~O A
22Vc̄c

2
!#X&

5^ i @~dQSj l !~O A
22Vc̄c

2
!#X&1 i ^@~ z̄0g2A!Sj l #X&

1 K S E ddx2x2c
d

dc
dQ@Sj l # DXL

2K dQF E ddx2x2S c
d

dc
1c̄

d

dc̄
D @Sj l #GXL . ~63!

Here we have useddQ(O A
22Vc̄c

2 )5 z̄0g2A1•••, with the
ellipsis standing for theO3c operator, which again is irrel-
evant in one-loop approximation, since the whole contrib
tion ~63! is multiplied by theb function and thus starts from
as . The first two terms on the RHS of this equation ensu
the cancellation with the same terms appearing in E
~33!,~60!; however, the remaining equation-of-motion oper
tors on the RHS will contribute to the constraints for t
special conformal anomaly. We can absorb these additio
pieces by a redefinition of the special conformal anom
matrix. The action of the equation-of-motion operators is

al
-
e.
-

7-9
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E ddx2x2S c
d

dc
1c̄

d

dc̄
D QOj l 52i (

k50

j

bjk~B!QOk,l 21 ,

E ddx2x2c
d

dc
Vj l 52i (

k50

j

bjk~F !Vk,l 21 ,

~64!

where thebjk(B) matrix can be found in@6,7# and the fer-
mionic one is evaluated in Appendix A. Now we shift th
QQ entry by QQg jk

c →QQG jk
c [QQg jk

c 12(b/g)bjk(B) and
set for the remaining channelsABG jk

c [ABg jk
c . This redefini-
on

ci

-

05403
tion treats theb term equivalently for quarks and gluons an
instead of Eq.~9! we have at leading order

ajk
21~B!Gjk

c(0)~B![2djk~gk
D(0)2b01!1gjk . ~65!

The new special conformal anomaly matrix

Gc5S 11Gc 12Gc

21Gc 22GcD ~66!

for the Sj l operators can be found from the convention
quark and gluon ones by the transformation
S 1

k
11G jk

c

1

k11
12G jk

c

1

k
21G jk

c

1

k11
22G jk

c

D 5
1

2k13S 1
k13

6

6

j

k13

j

21
k

6
2

6

j

k

j

2
j 13

j 11
2

~k13!~ j 13!

6~ j 11!

6

j 11

k13

j 11

j 13

j 11
2

k~ j 13!

6~ j 11!
2

6

j 11

k

j 11

D 1
QQG jk

c

QGG jk
c

GQG jk
c

GGG jk
c

2 . ~67!
An analogous convention is introduced for the special c
formal anomaly matrix of the fermionic operators7

G jk
c ~F ![g jk

c ~F !12
b

g
bjk~F !. ~68!

If we now compare both sides of Eq.~59! in terms of
these new conventions we find that in addition to the spe
conformal anomalyGc only the superconformal anomaly

aD jk
i [22ar jk

i [1] , ~69!

arising from the renormalization of@A#Sj l in Eq. ~35!, con-
tributes to the desired constraints:

(
k50

j

11G jk
c,V~B!sk@Vk21,l 21#1 (

k50

j

12G jk
c,V~B!sk@Vkl21#

2s j (
k50

j

$G j 21,k
c ~F !21D jk

V %@Vkl21#50, ~70!

7Here the fermionic conformal anomalygc(F) has the same struc
ture as the quark one, namely,gc(F)52b(F)g(F)1w(F), with
the anomalous dimensiong(F) of the quark-gluon operatorV (U)
and a partw(F) deduced from the renormalization ofV (U) with
the trace of the energy-momentum tensor.
-

al

(
k50

j

22G jk
c,V~B!sk@Vkl21#1 (

k50

j

21G jk
c,V~B!sk@Vk21,l 21#

2s j (
k50

j

$G jk
c ~F !22D jk

V %@Vkl21#50, ~71!

and forPj l they read

(
k50

j

11G jk
c,A~B!sk11@Uk21,l 21#1 (

k50

j

12G jk
c,A~B!sk11@Ukl21#

2s j 11(
k50

j

$G j 21,k
c ~F !21D jk

A %@Ukl21#50, ~72!

(
k50

j

22G jk
c,A~B!sk11@Ukl21#

1 (
k50

j

21G jk
c,A~B!sk11@Uk21,l 21#

2s j 11(
k50

j

$G jk
c ~F !22D jk

A %@Ukl21#50, ~73!

where we have impliedG jk
c 50 for k. j . Extracting the in-

dependent components from Eqs.~70!–~73! we finally obtain
four equalities for the nondiagonal elements:
7-10



ts

si
a

n-
io
a

c
go

th
d

el
nd
er

his
the

he

n

yn-

ar-
er-
d
his
the

in

the
the

th ct

SUPERCONFORMAL CONSTRAINTS FOR QCD . . . PHYSICAL REVIEW D65 054037
11G2n11,2m11
c,V ~B!11D2n11,2m

V

522G2n,2m
c,A ~B!12D2n,2m

A 5G2n,2m
c ~F !, ~74!

22G2n11,2m11
c,V ~B!12D2n11,2m11

V

511G2n12,2m12
c,A ~B!11D2n12,2m11

A 5G2n11,2m11
c ~F !,

~75!

12G2n11,2m11
c,V ~B!11D2n11,2m11

V

521G2n,2m12
c,A ~B!12D2n,2m11

A 5G2n,2m11
c ~F !, ~76!

21G2n11,2m11
c,V ~B!12D2n11,2m

V

512G2n12,2m
c,A ~B!11D2n12,2m

A 5G2n11,2m
c ~F !, ~77!

with n.m, and six equations for the diagonal elemen
which are of no relevance in prediction~7! for the anomalous
dimension matrix. Equations~74!–~77! are the main results
of this section. The rest of the paper is devoted to a con
tency check of our results for the special conformal anom
lies by evaluating theD anomalies at one-loop order.

VI. EVALUATION OF SUPERCONFORMAL ANOMALY

To simplify the calculation of the renormalization co
stantsD, it is advantageous to use the light-cone posit
formalism and to this end we introduce the nonlocal light-r
operators

QO i~k1 ,k2!5
1

2
c̄1

a ~k2n!G iFab@k2 ,k1#c1
b ~k1n!,

GO i~k1 ,k2!5G1m
a ~k2n!T mn

i Fab@k2 ,k1#Gn1
b ~k1n!,

FO i~k1 ,k2!5G1m
a ~k2n!F m

i Fab@k2 ,k1#c1
b ~k1n!.

~78!

The calculations of the mixing kernels for the produ
@A#@O# with fermionic operators are straightforward and
along the lines of Ref.@13# ~see also Appendix B of Ref.@7#
for a recent review of this formalism in the case when
nonforwardness is essential!. The diagrams are represente
in Figs. 1 and 2 for quark and gluon operators, respectiv
Since these renormalization constants must be gauge i
pendent, we have performed the computation with a gen

FIG. 1. One-loop diagrams which give rise to divergences in
product of the renormalized operator insertionsi @A#@QOj l #.
05403
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j and indeed observed its cancellation in the final result. T
shows that the BRST-exact operators cannot contribute to
constraints. The generic form of the result is

@VO i #~k1 ,k2!~ z̄1@A# !5
1

«

as

2p
NcE

0

1

dxE
0

1

dyu~12x2y!V

3R i~x,y!~ z̄1g1
F O i !~ x̄k11xk2 ,

yk11 ȳk2!7~k1↔k2!, ~79!

where the2 (1) sign in the second term corresponds to t
parity even quarks and parity odd gluons~parity even gluons
and parity odd quarks! and we use throughout the conventio
x̄[12x. Skipping details~see Appendix B! we give the re-
sult:

2k21
QRV~x,y!52F1

yG
1

d~x!, QR A~x,y!5QR V~x,y!,

~80!

GR V~x,y!52F1

xG
1

d~y!221d~y!1~12y!d~x!,

GR A~x,y!5GR V~x,y!14y, ~81!

with the 1 prescription defined conventionally by

F1

xG
1

5
1

x
2d~x!E

0

1dy

y
.

We have kept the gluon momentumk21 unintegrated, in the
quark sector which stems from the exponential in the Fe
man rules for the operator insertion vertex3 exp(2ik1k11

2ik2k21). We merely substitute it by the corresponding p
ton momentum fraction when passing to exclusive type k
nels ~see Appendix C!. Note that the result for the polarize
quark kernel is the same as for the parity even case. T
could be anticipated, since for divergent parts we can use
anticommutativity ofg5. However, there is a sign change
the contribution of the diagram in Fig. 1~c! but it gives the
contribution 6xd(12x2y) with a 1 (2) sign for even
~odd! parity and together withx̄d(12x2y) from Fig. 1~d!
gives a vanishing result when the symmetry property of
corresponding quark string operators is used. For gluons

e FIG. 2. Same as in Fig. 1 but for the operator produ
i @A#@GOj l #.
7-11
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difference between the parity even and odd sectors co
entirely from the contributions of the graphs in Figs. 2~b!,
2~c!, and 2~e!. The contributions from 2~d! and 2~g! annihi-
late each other, while the remaining diagrams give identic8

results for theV andA channels.
Evaluation of the conformal moments according to t

method spelled out in Appendix C gives for gluons

S as

2p
NcD 21G

R jk
[1]5

1

3
u j 21,kH ~k11!~k13!72

k11
1~k12!

3~k13!C jk1~21! j 1k~k12!

3~k13!J jkJ , ~82!

with the 2 (1) sign for the vector~axial! channel; and for
quarks

S as

2p
NcD 21

QR jk
[1]52

u j 21,k

~k11!
$~21! j 1k~k12!21

2~21! j 1k~ j 11!~ j 12!C jk

2~ j 11!~ j 12!S jk%. ~83!

To simplify the presentation we have introduced the ma
ces, depending only on the logarithmic derivative of the E
ler integralc(x)5(d/dx) ln G(x), via

C jk5cS j 1k14

2 D2c~ j 1k14!2cS j 2k

2 D1c~ j 2k!,

J jk5c~ j 1k14!1c~ j 2k!2c~k14!2c~k11!,

S jk5c~ j 1k14!1c~ j 2k!22c~ j 12!. ~84!

The conformal momentsRjk of the kernelsR(x,y) are re-
lated to those in Eq.~69! by a normalization factor and
therefore, the superconformal anomaly is

aD jk52
2

%k
~Qv j

aQRjk1Gv j
aGRjk! with a51,2.

~85!

We should note that for even and oddj 2k the c functions
with argument depending on bothj and k enter only in the
particular combination

Ajk5cS j 1k14

2 D2cS j 2k

2 D12c~ j 2k!2c~ j 12!2c~1!,

which also arises in all special conformal anomaliesgc @7#.
The final step is to insert our findings for the superco

formal anomalies given in Eqs.~82!–~85! and our results for
the eight special conformal anomaly matrices from Ref.@7#,
rotated to theabGc basis by means of Eq.~67!, into the four

8Discarding the fact that contributions withk1↔k2 enter with
opposite signs.
05403
es

l

i-
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conformal constraints~74!–~77!. Indeed, we find that all of
them are identically satisfied. Thus, the universality of t
special conformal anomaly matrix for even and odd par
sectors arises from the form of the superconformal anom
in N51 Yang-Mills theory.

VII. CONCLUSIONS

The use ofN51 supersymmetry allows us to find non
trivial relations for both scale and special conformal anom
lies of QCD conformal operators. In the former case,
constraints, at leading order in the dimensional regulariza
scheme as well as to all orders in a supersymmetry pres
ing scheme, involve only anomalous dimensions. There
six constraints for the diagonal and four for the nondiago
elements of the four entries in the anomalous dimension
trices in the parity even and odd cases. Although in the
persymmetric limit the color factors have to be identified, t
constraints also have predictive power beyond the lead
order approximation. As observed in Ref.@3# there is a
subtlety in finding the supersymmetry preserving regulari
tion scheme in the nonforward case. Standard dimensio
reduction@9# does not serve this purpose. However, the
istence of a supersymmetry preserving scheme was pro
by the ability to satisfy the constraints by a multiplicativ
renormalization of the anomalous dimensions.

There exist four constraints for the special conform
anomalies. They contain new ingredientsD, due to the su-
perconformal symmetry breaking by the trace anomalyA in
the spinor current. The four symmetry violating entries ar
as a counterterm in the product ofA and the conformal op-
erators. Thus, there is no predictive power in these c
straints; however, they serve for a consistency check of
special conformal anomalies.

Let us mention for completeness the situation with t
two further leading twist-2 conformal operators appearing
the definition of the so-called transversity distributions. It
well known that these quark and gluon operators do not m
with each other under renormalization due to different s
representations with respect to the Lorentz group. Their
ward anomalous dimensions are related in the supersym
ric limit by one constraint. However, unfortunately, there e
ist no constraints for the nondiagonal elements of conform
anomalies that do not involve anomalous contributions
fermionic operators@14#.

We have evaluated the superconformal anomalies in o
loop approximation and found that our relations are inde
satisfied with the known results for the special conform
anomalies from Refs.@6,7#. In other words, we can now re
construct the special conformal anomalies of the gluon-glu
and gluon-quark sectors from those in the remaining t
channels, provided the former two are not already know
Furthermore, we know that the latter give us the rotat
matrix to the conformal scheme in which the conformal o
erator product expansion of two electromagnetic current
valid. Since the Wilson coefficients of this expansion in bo
of these remaining channels are fixed by the ones of
forward kinematics and coincide with the explicit calculatio
in the minimal subtraction scheme@15#, rotated to the con-
7-12
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SUPERCONFORMAL CONSTRAINTS FOR QCD . . . PHYSICAL REVIEW D65 054037
formal scheme@16#, we have a complete consistency che
of all special conformal anomaly matrices evaluated at o
loop level. Since these conformal anomalies induce, toge
with terms proportional to theb function, the nondiagona
elements of the anomalous dimension matrix at two-lo
level, we have also a complete but indirect check on th
correctness from the superconstraints~58!. Of course, in the
flavor nonsinglet sector the anomalous dimensions aris
from our prediction coincide with the conformal moments
the evolution kernel calculated at the two-loop level@17#.

Altogether, we have a complete list of consistency che
for the field theoretical treatment of conformal anomali
their evaluation at one-loop order, and next-to-leading p
dictions arising from their use. This also supports our res
for the transversity sector@18#, which has been treated in th
same manner.
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APPENDIX A: EVALUATION OF THE FERMIONIC
b MATRIX

The fermionicb matrix is defined by Eq.~64!. In order to
evaluate the matrix it proves convenient to make the Fou
transform on the fields, i.e.,f(x)5*ddke2k•xf̃(k), and in-
troduce a set of new variables of the integrand,Y[k21

1k11 andX5(k212k11)/(k211k11), so we get

E ddx2x2c
d

dc
Vj l 52i% jE ddk1ddk2Yl 21$L̂Pj

(2,1)~X!%

3G̃1m~k1!gm
'c̃~k2!

52i (
k50

j
% j

%k
Bjk~2,1!Vkl21 , ~A1!

with the differential operatorL̂[ l 1(12X)d/dX and Bjk
defined by the integral

Bjk~a,b!5E
21

1

dX
w~Xua,b!

nk~a,b!
Pk

(a,b)~X!L̂Pj
(a,b)~X!.

~A2!

The weight and normalization factors are given by the st
dard equations:
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w~Xua,b!5~12X!a~11X!b,

nk~a,b!52a1b11

3
G~k1a11!G~k1b11!

~2k1a1b11!G~k11!G~k1a1b11!
.

Using Rodriga’s formula for Jacobi polynomials and int
gratingk ~andk11) times by parts we come to integrals th
can be easily evaluated by means of the result

E
21

1

dXw~Xua,g!Pj
(a,b)~X!

5~21! j2a1g11
G~a1 j 11!G~b2g1 j !G~g11!

G~ j 11!G~b2g!G~a1g1 j 12!
.

~A3!

So we finally obtain

Bjk~a,b!5~ l 2k!d jk2u j ,k11~21! j 2k~2k1a1b11!

3
G~ j 1a11!G~k1a1b11!

G~k1a11!G~ j 1a1b11!
. ~A4!

Identifying a52 andb51 we get the result

bjk~F ![
% j

%k
H ~ l 2k!d jk22~21! j 2k

~k12!~k13!

~ j 13!
u j 21,kJ ,

~A5!

whereu jk5$1 if j >k; 0 if j ,k%.

APPENDIX B: RENORMALIZATION OF THE OPERATOR
PRODUCT †A‡†O‡

For the calculation ofZ matrices one uses in the light-ra
formalism the usual momentum space Feynman rules
vertex3exp(2ik1k112ik2k21) for the nonlocal operator
where ‘‘vertex’’ stands for the Dirac or Lorentz tensor. Intr
ducing the Feynman parametersx,y for the propagators we
reduce the Feynman integrals to the form

J* R~x,y!3vertex with

J5E
0

1

dxE
0

1

dyu~12x2y!

3e2 ik11((12x)k11xk2)2 ik21(yk11(12y)k2), ~B1!

where the exponential corresponds to the Fourier transf
of the coordinate dependence of the string operator ‘‘a
evolution,’’ O„(12x)k11xk2 ,yk11(12y)k2)…. To calcu-
late the divergent part of the operator product@A#@O#, we
have to take in addition the Feynman rule for the anom
@A# defined in Eq.~19!.

Our calculation has been performed with an arbitra
gauge fixing parameterj, which canceled in the sum of dia
grams. Therefore, we present the results corresponding to
definition ~79! for the separate contributions inj51 gauge.
7-13
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In the quark parity even and odd sectors we get o
diagram-by-diagram basis from Fig. 1

2k21
QR(a)5

1

2
,

2k21
QR(b)52

1

2
~12y!d~x!,

2k21
QR(c)56

x

2
d~12x2y!,

2k21
QR(d)5

y

2
d~12x2y!2

1

2 S 11
y

2D d~x!2
1

2
,

2k21
QR(e)5F1

yG
1

d~x!2d~x!,

2k21
QR( f )52F1

yG
1

d~x!1
1

2
~32y!d~x!,

2k21
QR(g)52F1

yG
1

d~x!1
1

2 S 11
y

2D d~x!,

~B2!

where the1 (2) sign in the contribution of diagram~c!
stands for the even~odd! case. In these results we dropp
contributions of the type const•d(x)d(y), since they do not
enter into the physical part of the constraints~74!–~77!,
namely, fork, j . In the sum of Eqs.~B2! the term 1

2 •d(1
2x2y) for the vector case and12 (122x)•d(12x2y) for
the axial one cancels with thek1↔k2 contribution (1 and
2 sign, respectively! in Eq. ~79! and we get the result in Eq
~80!.

The gluon case is calculated from the graphs in Fig. 2
reads for the vector channel

2k21
GR (auF)

V 5k21d~y!H F2

xG
1

2212d~x!J ,

2k21
GR (auNA)

V 5d~y!H 3

2
~12x2!k111

i

2
kx~12x!2k11

2

2
3

2
d~x!k21J ,

2k21
GR (b)

V 5S 22
3

2
yD k212

3

2
~12x!k111

i

2
k

3@~12y!k211xk11#@yk211~12x!k11#

1
1

2
~12x!d~y!$~123x!k1122k21

2 ik~12x!k11~xk111k21!%,
05403
a

d

2k21
GR (c)

V 5yk212~11x!k11 ,

2k21
GR (d)

V 5S 22
3

2
yD k212

3

2
~12x!k111

i

2
k

3@~12y!k211xk11#

3@yk211~12x!k11#,

2k21
GR (e)

V 5
1

2
~32x!k112S 12

y

2D k212
i

2
k

3@~12y!k211xk11#

3@yk211~12x!k11#,

2k21
GR ( f uF)

V 5k21d~y!H 2F1

xG
1

112d~x!J ,

2k21
GR ( f uNA)

V 5d~y!$2~12x!k111d~x!k21%,

2k21
GR (g)

V 5k21
G R (d)

V , ~B3!

with k[k22k1. The subscriptF (NA) stands for the con-
tributions originating from the expansion of the path order
exponential~non-Abelian part of the field strength tensor!.
The axial case differs from the previous one only in t
contributions of diagrams~b!, ~c!, and~e!, which are

2k21
GR (b)

A 5S 22
7

2
yD k212S 3

2
2

7

2
yD k111

i

2
k@~12y!

3k211xk11#@yk211~12x!k11#

1
12x

2
d~y!$~123x!k1122k21

2 ikx~12x!k11
2 2 ik~12x!k11k21%,

2k21
GR (c)

A 52yk212~12x!k11 ,

2k21
GR (e)

A 5S 3

2
2

5

2
yD k112S 12

5

2
yD k212

i

2
k

3@~12y!k211xk11#@yk211~12x!k11#.

~B4!

Summing the separate terms, we have to use the formula~see
Ref. @7# for a general result!

J* $k11@12~12x!d~y!#1k21@12~12y!d~x!#%50
~B5!

to reduce the result to its final form~81!. Then we use the
equationk21B̃m

a (k2)5 iG̃1m
a (k2), valid to leading order in

the coupling, to reconstruct the field strength from the pot
tial.
7-14
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APPENDIX C: CONFORMAL MOMENTS OF
REGULARIZED KERNELS

The conformal moments of the transition kernels deriv
in the body of the text are defined according to

R jk
i [E

21

1

dt
w~2,1ut !
nk~2,1!

Pk
(2,1)~ t !E

0

1

dxE
0

x̄R~x,y!

3Cj
i ~@12x2y#t2x1y!, ~C1!

with the weightw(2,1ut)[(12t)2(11t) and normalization
nk(2,1)[8(k11)/(k12)(k13). We have for quarksCj

Q

5Cj
3/2 and Cj

G5Cj 21
5/2 for gluons. From this equation it is

straightforward to evaluate the moments of all parts of
kernels~along the lines of Ref.@7#! except for the ones with
the 1 prescription since in this case we obtain the resul
terms of derivatives of a hypergeometric function with r
spect to its indices, which is not easy to handle. In th
cases we have to modify our modus operandi and devel
more efficient machinery which leads to more tractable
pressions. It can be achieved according to the reexpansio
the integrand, making use of the orthogonality for Geg
bauer polynomials. To be more specific let us consider
gluon kernel@1/x#1d(y) which in the momentum fraction
formalism translates into@u(t2t8)/(t2t8)#1 . We use the
following regularization of singular distributions:

E
0

1 dx

@12x#1
f~x![E

0

1 dx

~12x!12«
@f~x!2f~1!#.

~C2!

Then using the representation of the Gegenbauer polyno
in terms of the hypergeometric function2F1 and using Ro-
driga’s formula for Jacobi polynomials we integratek times
by parts to get

M jk
G [H Fu~ t2t8!

~ t2t8!
G

1

J
jk

5~21! j 1k
~k12!~k13!

6«

2~21! j
~k12!~k13!G~ j 14!

12G~ j !G~k12!
E

0

1

dx xk~12x!«21

3E
0

1

dy yk11~12y!k12
dk

d~xy!k2

3F1S 2 j 11,j 14
3 UxyD . ~C3!

The first term on the RHS originates from thef(1) contri-
bution in Eq.~C2!. The simplicity of the consequent analys
depends on the handling of the derivatives acting on2F1. If
we merely differentiate itk times as it appears and perform
y integration this gives3F2. Finally, afterx integration Eq.
~C3! will be proportional to the derivative of4F3 with re-
spect to a low index@see later, Eq.~C12!#. Fortunately, it is
possible to avoid this if one notices thatk21« differentia-
tions andy integration lead to a2F1 function with shifted
indices. After the last integration is done one ends up with
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expression with the« derivative acting on3F2. In order to
achieve this let us reexpand the action of thekth derivative
d/d(xy) on 2F1 with respect to the complete set of polyn
mials Cl

k13/2(2x21):

d

dx 2F1S 2 j 1k, j 1k13
k12 UxD

5(
l 50

`

cj 2k,l2F1S 2 l ,l 12k13
k12 UxD , ~C4!

with expansion coefficients

cj 2k,l52@12~21! j 2k2 l #u j 2k,l 11~2l 12k13!

3
G~ l 12k13!

G~ l 11!

G~ j 2k11!

G~ j 1k13!
~C5!

easily obtained from the orthogonality of polynomials. Th
we get

M jk
G 5

~21! j 1k

12

~k12!2~k13!G~ j 1k13!

G~2k15!G~ j 2k11!

3H c~1!2c~k11!1
]

]«J
«50

(
l 50

`

cj 2k,l

3 3F2S 2 l ,l 12k13,k11
2k15,k111« U1D . ~C6!

Now the way to handle the derivative of3F2 is rather
straightforward. First we use the fundamental identity
3F2 ( l PIN)

3F2S 2 l ,l 1a,b
g ,b1« U1D

5
G~g!G~g2a!

G~g1 l !G~g2a2 l ! 3F2S 2 l ,l 1a,«
11a2g,b1«U1D ,

~C7!

where we substituteg5a122r with r→0. Then the ex-
pansion with respect to« is easy to construct:

3F2S 2 l ,l 1a,«
r21,b1«U1D

511«H l ~ l 1a!

b
1G~r21!S 11~21! l@~ l 21!

3~ l 1a11!1b#
G~11 l 1a2b!G~b!

G~21a2b!G~b1 l ! D J 1O~«2!,

~C8!

and together with the identity

G~r21!

G~22r2 l !
5~21! l

G~ l 211r!

G~22r!
~C9!

we find
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A. V. BELITSKY AND D. MÜ LLER PHYSICAL REVIEW D 65 054037
3F2S 2 l ,l 1a,b
a12,b1«U1D

5
G~a12!

G~ l 1a12! H S 11«
l ~ l 1a!

b D ~d l ,01d l ,1!

1«G~ l 21!S ~21! l1@~ l 21!~ l 1a11!1b#

3
G~11 l 1a2b!G~b!

G~21a2b!G~b1 l ! D u l ,21O~«2!J . ~C10!

Using the results we have just derived, we perform in the
step the summation in Eq.~C6! according to the formula
is

d

05403
st

]

]« U
«50

(
l 50

`

cj 2k,l 3F2S 2 l ,l 12k13,k11
2k15,k111« U1D

5
1

~k11!~k12!
2

~ j 2k!~ j 1k13!

~k11!~k12!~k13!

2
1

k12 H ~21! j 1kcS j 1k14

2 D1@12~21! j 1k#

3c~ j 1k14!2~21! j 1kcS j 2k

2 D1@11~21! j 1k#

3c~ j 2k!2c~k14!2c~1!J . ~C11!

As a by-product we verify the following formula for th
derivative of 4F3, which is difficult to derive by other
means:
G~ j 1k14!

G~ j 2k!G~2k15!

]

]«U
«50

4F3S 2 j 1k11,j 1k14,k12,k11
2k15,k13,k111« U1D

5
~ j 2k!~ j 1k13!

~k11!~k13!
2

1

k11
1~21! j 1kcS j 1k14

2 D1@12~21! j 1k#c~ j 1k14!2~21! j 1kcS j 2k

2 D
1@11~21! j 1k#c~ j 2k!2c~k14!2c~1!. ~C12!
nted
A slightly different procedure holds for quarks. In th
case due to the presence of the momentum fractionk21

5@(12t)/2#(k11k2)1 we reexpand the integrand, modifie
by adding a constant,

M jk
Q [H F 2

12t

u~ t82t !

~ t82t !
G

1

J
jk

5~21!k
~k12!~k13!~ j 11!~ j 12!

k11 E
0

1

y2~12y!

3Pk
(1,2)~2y21!E

0

1

dxF1

xG
1

1

y H 2F1S 2 j , j 13
2 UxyD

22F1S 2 j , j 13
2 U0D J , ~C13!

in the following series:

1

x H 2F1S 2 j , j 13
2 UxD2 2F1S 2 j , j 13

2 U0D J
5 (

k50

`

djk 2F1S 2k,k13
2 UxD ~C14!
with the expansion coefficients

djk52u j 21,k

312k

~ j 11!~ j 12!
~ j 2k!~ j 1k13!. ~C15!

Consequent integration and expansion in« requires Eq.
~C10! as well as the following result:

3F2S 2 l ,l 1a,b
11a,b1«U1D

5
G~11a!

G~11a1 l ! H d l ,01«G~ l !S G~11a2b1 l !G~b!

G~11a2b!G~b1 l !

2~21! l D u l ,1J 1O~«2!, ~C16!

which can be deduced using the same recipe as prese
above. Final summation gives us the result in Eq.~83!.
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