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Complete angular analysis of polarized top quark decay atO„as…
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~Received 31 January 2001; published 20 February 2002!

We calculate the fullO(as) radiative corrections to the three spin independent and five spin dependent
structure functions that describe the angular decay distribution in the decay of a polarized top quark into aW
boson~followed by the decayW1→ l 11n l or by W1→q̄1q! and a bottom quark. The angular decay distri-
bution is described in cascade fashion; i.e., the decayt(↑)→W11Xb is analyzed in the top-quark rest system
while the subsequent decayW1→ l 11n l ~or W1→q̄1q! is analyzed in theW rest frame. Since the structure
function ratios depend on the ratiomW /mt we advocate the use of such angular decay measurements for the
determination of the top quark’s mass. Our results for the eightO(as) integrated structure functions are
presented in analytical form, keeping the mass of the bottom quark finite. In the limitmb→0 the structure
function expressions reduce to rather compact forms. We also present results for themb50 unpolarized and
polarizedO(as) scalar structure functions relevant to the semi-inclusive decay of a polarized top quark into a
charged Higgs bosont(↑)→H11Xb in the two-Higgs-doublet model whenmb50.
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I. INTRODUCTION

In the decay of an unpolarized or polarized top quark
the W-gauge boson and a bottom quark theW1 is strongly
polarized, or, phrased in a different language, theW1 has a
nontrivial spin density matrix. Furthermore, the spin dens
matrix of theW can be tuned by changing the polarization
the top quark. The polarization of theW1 will reveal itself in
the angular decay distribution of its subsequent decaysW1

→ l 11n l ~or W1→q̄1q!.1

In the first stage one will aim to analyze the decay
unpolarized top quarks~or the average over its polarization!.
The decay distribution of unpolarized top-quark decay
governed by three structure functions, which we shall refe
as HU ~unpolarized transverse!, HL ~longitudinal!, and HF
~forward-backward asymmetric!. In fact, the Collider Detec-
tor at Fermilab~CDF! Collaboration has already present
some results on the measurement of the longitudinal com
nent of theW based on the limited run I data@1#. The mea-
surement has confirmed the expected dominance of the
gitudinal mode. The error on this measurement is quite la
~'45%! but is expected to be reduced significantly duri
run II at the Fermilab Tevatron to start in the spring of 200
In run II (5 – 6)3103 top quark pairs will be produced pe
year and detector. This number will be boosted to 107– 108

top quark pairs per year and detector at the CERN La
Hadron Collider~LHC! starting in 2006 or 2007. It is con
ceivable that the errors on the structure function meas
ments can be reduced to the 1–2% level in the next

1From this point on we shall drop explicit reference to theW1

→q̄1q decay channel since it has the same angular decay d
bution asW1→ l 11n l . In fact the branching fraction into the tw

hadronic channels (d̄1u) and (s̄1c) exceeds that of the sum of th
three leptonic channels by a factor of approximately 2 becaus
the color enhancement factor. Although not explicitly mention
further on, the existence of the hadronic decay mode of theW1 is
always implicitly assumed in the following.
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years@2#. If such an accuracy can, in fact, be achieved, a
having in mind that theO(as) corrections to the top-quark
decay rate amount to 8.5%@3–8#, it is quite evident that one
needs to improve on the known theoretical Born level p
dictions for the above three structure functions by calculat
their next-to-leading order radiative corrections.

At a later stage, when the data sample of polarized
quarks has become sufficiently large, one will also be able
analyze the decays of polarized top quarks. The top quar
very short lived and therefore retains its full polarizatio
content when it decays. Polarized top quark decay bring
five additional polarized structure functions which can
measured through an analysis of spin-momentum corr
tions between the polarization vector of the top quark and
momenta of its decay products.

Polarized top quarks will become available at hadron c
liders through single top-quark production, which occurs
the 33% level of the top-quark pair production rate@9#. Fu-
turee1e2 colliders will also be copious sources of polarize
top-quark pairs@10–15#. For example, at the proposed DES
TeV Energy Superconducting Linear Accelerator~TESLA!
one expects rates of (1 – 4)3105 top-quark pairs per year
The polarization of these can easily be tuned through
availability of polarized beams~see, e.g.,@16#!. Further, there
is a high degree of correlation between the polarization
top and quarks and antiquarks produced in pairs eithe
e1e2 colliders @17–20# or at hadron colliders@21#, which
can be probed through the joint decay distributions of the
quark and antiquark.

In this paper we study momentum-momentum and sp
momentum correlations in the cascade decay procest
→W11b followed by W1→ l 11n l . The step-1 decayt
→W11b is analyzed in thet rest frame where we study th
spin-momentum correlation between the spin of the
quark and the momentum of theW. In step 2 we go to the
rest frame of theW and analyze the correlation between t
momentum of the lepton~or antiquark! and the initial mo-
mentum direction of theW. In technical terms this means w
analyze the double density matrix of the decaying top qu

ri-

of
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and theW-gauge boson produced. This must be contras
with thecenter of massanalysis of polarized top-quark deca
where the spin-momentum correlations are all analyzed
the rest system of the top quark@for an O(as) analysis of
this kind, see@22##. Experimentally such a correlation me
surement is easier, but from a theoretical point of view
cascade type of analysis is advantageous because on
then better isolate the contribution of the longitudinal mo
of theW-gauge boson, which is of relevance for understa
ing the electroweak symmetry breaking sector in the st
dard model. The results of the two analyses are of cou
related through a Lorentz boost along theW direction. How-
ever, the azimuthal correlations to be discussed later are
affected by such a Lorentz boost and are thus identica
both types of analysis.

The complete angular decay distribution is governed
altogether eight structure functions which we calculate a
lytically, including their full O(as) radiative corrections.
One of the motivations for calculating theO(as) radiative
corrections is the fact that the radiative QCD correctio
populate helicity configurations that are not accessible at
Born level. Take, for example, unpolarized top-quark dec
where, at the Born level, theW1 cannot be right handed, i.e
it cannot have positive helicity, due to angular moment
conservation whenmb50. This implies that strictly forward
l 1 production does not occur at the Born level. Howev
when radiative corrections are taken into account, rig
handedW’s do occur and strictly forwardl 1 production is
allowed. As we shall see in Sec. IV, technically this mea
that the structure function combination (HU1HF)/2 van-
ishes at the Born term level but becomes nonzero atO(as)
@23#. We shall, however, see that theO(as) population of the
right-handedW is rather small@23#. The same statemen
holds true for the other structure function combinations t
vanish at the Born term level.

In order to retain full control over theb-mass dependence
and having also other applications in mind, we have kep
finite mass value for theb quark in our calculation. This
improves on our earlier calculation of polarized top-qua
decay where theb-quark mass was neglected and where
limited our attention to the six~diagonal! structure functions
that govern the polar angle distribution in cascade de
@16#. The additional two~nondiagonal! structure functions
calculated in this paper describe the azimuthal correlation
the plane of the top quark’s polarization and the plane
fined by the final leptons. In addition, we determine the u
polarized and polarized scalar structure functions, which
of relevance in the analysis of top-quark decay into a bott
quark and a charged Higgs boson@24#. We mention that our
calculations have been done in the zero width approxima
of the W boson. Finite width effects will be addressed in
forthcoming paper@25# ~see also@26#!.

Most of the results in this paper are new. They have b
checked against limiting cases and partial results obtaine
other papers. We have checked our analyticalO(as) result
for the total rate against the corresponding analytical r
result of Denner and Sack, who also kept theb-quark mass
finite @3#. We find agreement. We took the zerob-quark mass
limit of the six diagonal structure functions and obtain
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agreement with our previous results in@16#. These had al-
ready been checked against the analytical results for the
rate obtained in@4–7# and for the longitudinal/transvers
composition obtained in@27#. All six ~mass zero! diagonal
structure functions had also been checked against the c
sponding numerical results given in@27–29#. The unpolar-
ized scalar structure function has been checked agains
results of@24#.

The central topic of this paper is the analysis of polariz
top-quark decay. We therefore mostly limit our attention
results valid in the limitmb→0 in the main part of our paper
This leads to enormous simplifications in the analytical r
formulas. The quality of themb50 approximation may be
judged from the Born term rate which increases by 0.27%
going frommb54.8 GeV tomb50. The fullmbÞ0 structure
is given in Sec. VIII and the Appendixes. Apart from retai
ing full control overmbÞ0 effects the finite mass results a
needed, e.g., in the theoretical analysis of semileptonib
→c decays, where thec-quark mass can certainly not b
neglected.

Our paper is structured as follows. In Sec. II we define
set of three spin independent and five spin dependent s
ture functions through the covariant expansion of the de
tensor resulting from the product of the two relevant curr
matrix elements. The eight invariant structure functions
related to eight helicity structure functions which form th
angular coefficients of the angular decay distribution. In
der to facilitate the calculation of the tree graph contributio
we define a set of five covariant projection operators an
covariant representation of the spin vector of the top qua
These projectors can be used to covariantly project the
uisite helicity structure functions from the hadron tensor. T
advantage is that one thereby obtains the appropriate hel
structure functions and scalarizes the tensor integra
needed for the tree graph integration in one step. In Sec
we derive the explicit form of the angular decay distributi
in terms of the eight helicity structure functions for top qua
decay. We also specify the changes in the angular decay
tribution needed for top antiquark decay. Section IV conta
our Born term results. In Sec. V we list our results for t
mb50 one-loop contributions. In Sec. VI we provide expre
sions for theO(as) tree graph contributions and discu
technical details of how we have handled the necessary
graph integrations. We mention that the infrared divergenc
are regularized by a finite small gluon mass. In Sec. VII
take themb→0 limit of the mbÞ0 results in Sec. VIII and
present rather compact analyticalO(as) formulas for the
various structure functions. Section VII also contains our n
merical results in themb50 approximation. Section VIII
gives our analytical results on the tree graph integrations p
the one-loop contributions formbÞ0. Section IX provides a
summary and our conclusions. In particular, we emphas
that angular measurements as advocated in this paper ca
utilized to measure the mass of the top quark. In Appendix
we provide a complete list ofmbÞ0 basis integrals that ap
pear in the calculation of the tree graph contributions. T
set of basis integrals should also be useful for otherO(as) or
O(a) radiative correction calculations. The requisite coe
cient functions that multiply the basic integrals in the stru
6-2
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ture function expressions are listed in Appendix B. Appen
C, finally, contains the one-loop contribution in thembÞ0
case.

II. INVARIANT AND HELICITY STRUCTURE FUNCTIONS

The dynamics of the current-inducedt→b transition is
embodied in the hadron tensorHmn which is defined by

Hmn~q0 ,q25mW
2 ,st!5~2p!3

X

Xb

dP fd
4~pt2q2pXb

!

3
1

2mt
^t~pt ,st!uJn1uXb&

3^XbuJmut~pt ,st!&, ~1!

wheredP f stands for the Lorentz-invariant phase space f
tor. In the standard model the weak current is given byJm

5q̄bgmPLq̄t with PL5 1
2 (12g5).

We are working in the narrow resonance approximation
theW boson and setq25mW

2 as indicated in the argument o
the hadron tensor. Thus the hadron tensor is a function of
energyq0 of theWalone. Since we are not summing over t
top-quark spin the hadron tensor also depends on the
quark spinst as indicated in Eq.~1!. The structure of the
hadron tensor can be represented by a standard set of in
ant structure functions defined by the expansion

Hmn5~2gmnH11pt
mpt

nH22 i emnrspt,rqsH3!

2~q•st!~2gmnG11pt
mpt

nG22 i emnrspt,rqsG3!

1~st
mpt

n1st
npt

m!G61 i emnrsptrstsG8

1 i emnrsqrstsG9 , ~2!

whereHi ( i 51,2,3) andGi ( i 51,2,3,6,8,9) denote unpola
ized and polarized structure functions, respectively.

In the expansion~2! we have kept only those structur
functions that contribute in the zero lepton mass case.
have thus omitted covariants built fromqm and/or qn. We
have also dropped contributions from invariants that are
by T-odd or imaginary contributions, which are both abse
in the present case.

In the expansion~2! one has still overcounted by one ter
since there is a relationship between the three par
conserving~pc! spin dependent covariants appearing in E
~2! because of the identity of Schouten. The identity betwe
the three covariants reads

q•ste
mnrspt,rqs2q2emnrspt,rsts1q•pte

mnrsqrst,s50.
~3!

We shall, however, keep the overcounted set of nine inv
ant structure functions in Eq.~2! for reasons of computa
tional convenience.

In this paper we shall be concerned with only two types
intermediate state in Eq.~1!, namely,uXb&5ub& @Born term
and O(as) one-loop contributions# and uXb&5ub1g&
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@O(as) tree graph contribution#. The Feynman diagram
contributing to the respective processes are drawn in Fig

The angular decay distribution that we are aiming for
given in terms of a set of angular decay coefficients wh
are linearly related to the set of unpolarized structure fu
tions Hi and polarized structure functionsGi defined in Eq.
~2!. The relevant linear combinations are given by

HU5H111H225H111H22, ~4a!

HL5H005H33, ~4b!

HF5H112H225 i ~H122H21!, ~4c!

HUP5H11~st
l !1H22~st

l !5H11~st
l !1H22~st

l !, ~4d!

HLP5H00~st
l !5H33~st

l !, ~4e!

HFP5H11~st
l !2H22~st

l !5 i @H12~st
l !2H21~st

l !#,
~4f!

HI P5 1
4 @H10~st

tr!1H01~st
tr!2H20~st

tr!2H02~st
tr!#

~4g!

52
1

2&
@H13~st

tr!1H31~st
tr!#, ~4h!

HAP5 1
4 @H10~st

tr!1H01~st
tr!1H20~st

tr!1H02~st
tr!#

~4i!

5
i

2&
@H23~st

tr!2H32~st
tr!#, ~4j!

whereHlW ;l
W8

5Hmne* m(lW)en(lW8 ) are the helicity projec-

tions of the polarized and unpolarized pieces of the struc
functions Hmn. The e* m(lW) and en(lW) are the usual
spherical components of the polarization vector of t
W-gauge boson. In the top-quark rest system withqm

5(q0 ;0,0,uqW u) and uqW u5(q0
22mW

2 )1/2 they read

FIG. 1. Leading order Born term contribution~a! and O(as)
contributions~b!–~d! to t→b1W1.
6-3



m

ta
it
ha

e

th
ne
uc

th

es

o

a

ta
in
c

tri

e

go

the

o-

n
in-

e-
A

Eq.

of
-
f
c.
ee
he-

a-
t to
city
ked

M. FISCHER, S. GROOTE, J. G. KO¨ RNER, AND M. C. MAUSER PHYSICAL REVIEW D65 054036
em~0!5
1

mW
~ uqW u;0,0,q0!, ~5!

em~6 !5
1

&
~0;71,2 i ,0!. ~6!

In Eqs. ~4a!–~4j! we have also included the Cartesian co
ponents of the helicity structure functions in theW-boson
rest frame, which are useful for some applications. For no
tional convenience we shall often refer to the set of helic
structure functions by their generic names. Thus we s
frequently useU for HU andUP for HUP, etc.

The rest frame components of the longitudinal~‘‘ l’’ ! and
transverse~‘‘tr’’ ! polarization vector of the top quark ar
simply given byst

l5(0;0,0,1) andst
tr5(0;1,0,0). For the

unpolarized helicity structure functions one sums over
two diagonal spin configurations of the top quark while o
takes the differences of these for the polarized helicity str
ture functions~in thez basis forst

l and in thex basis forst
tr!.

When computing the polarized structure functions from
relevant Dirac trace expressions one thus has to replacep” t
1mt) in the unpolarized Dirac string by (p” t1mt)(1
1g5s” t). Note that the longitudinal component contribut
only to the diagonal helicity structure functionsU, L, andF
while the transverse component contributes only to the n
diagonal structure functionsI andA. The physics behind this
will become clear when we write down the angular dec
distribution in Sec. III.

It turns out that it is rather convenient from the compu
tional point of view to represent the helicity projections
Eqs.~4a!–~4j! ~defined by the gauge-boson polarization ve
tors and the top-quark polarization vector! in covariant form.
One has

Hi5HmnPi
mn , i 5U,L,F, ~7a!

Hi P5Hmn~st
l !Pi

mn , i 5U,L,F, ~7b!

Hi P5Hmn~st
tr!Pi

mn , i 5I ,A. ~7c!

The covariant projectors onto the diagonal density ma
elements are given by

PL
mn5

mW
2

mt
2

1

uqW u2 S pt
u2

pt•q

mW
2 qmD S pt

n2
pt•q

mW
2 qnD , ~8a!

PU1L
mn 52gmn1

qmqn

MW
2 , ~8b!

PF
mn5

1

mt

1

uqW u
i emnabpt,aqb , ~8c!

wheree0123521. We do not write out the projector for th
unpolarized transverse componentU but note that it can be
obtained from the combinationPU1L

mn 2PL
mn .

The projectors onto the transverse-longitudinal nondia
nal density matrix elements are given by
05403
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mn51

1

2&

mW

mt

1

uqW u H em~x!S pt
n2

pt•q

mW
2 qnD 1m↔nJ ,

~8d!

PA
mn52

1

2&

mW

mt
2

1

uqW u2 H i enmabgea~x!pt,bqg

3S pt
n2

pt•q

mW
2 qnD 2m↔nJ . ~8e!

They involve the the transverse polarization vector of
W-gauge bosonea(x)5(0;1,0,0) pointing in thex direction.

The covariant representation of the longitudinal comp
nent of the polarization vector of the top-quark spin vectorst

l

is given by

st
l ,m5

1

uqW u S qm2
pt•q

mt
2 pt

mD , ~9!

whereas its transverse componentst
tr reads

st
tr,m5~0;1,0,0!. ~10!

Note the inverse powers ofuqW u5Aq0
22mW

2 that enter the
L, T, F, I, andA projectors and the longitudinal polarizatio
vector. They come in for normalization reasons. These
verse powers ofuqW u will make the necessary tree graph int
grations to be dealt with in Sec. VI and in the Appendixes
and B somewhat more complicated than the total (U1L)
rate integration, which has a rather simple projector as
~8b! shows.

As mentioned in the Introduction, the covariant forms
the projection operators~8a!–~8e! and the polarization vec
tors ~9! and ~10! are quite convenient for the calculation o
the O(as) tree graph contributions to be dealt with in Se
VI. The covariant projectors allow one to scalarize the tr
graph tensor integrands and to project onto the requisite
licity structure functions in one step.

Although we shall mostly work in the helicity represent
tion of the structure functions, it is sometimes convenien
have available the set of linear relations between the heli
and invariant structure functions. These can easily be wor
out from the expansion~2!, the projectors~8a!–~8e!, and the
polarization vectors~10!. One has

HU52H1 , ~11a!

mW
2 HL5mW

2 H11uqW u2mt
2H2 , ~11b!

HF52uqW umtH3 , ~11c!

HUP52uqW uG1 , ~11d!

mW
2 HLP5uqW u~mW

2 G11uqW u2mt
2G222q0mtG6!,

~11e!

HFP52uqW u2mtG322mtG822q0G9 , ~11f!
6-4



-
ed
nt
ici
s

o
he

ar

ze
he
st

e
uc

ur

a-

th
h
o
v

ur

e

m-

uc-
i-

the

h

he

l

r’s
nter

r-

COMPLETE ANGULAR ANALYSIS OF POLARIZED TOP . . . PHYSICAL REVIEW D 65 054036
HI P5
1

&

mt

mW
uqW uG6 , ~11g!

HAP52
1

&

mtq0

mW
G82

1

&
mWG9 . ~11h!

Note that the three structure functionsG3 , G8 , and G9

always contribute in the two combinations (mW
2 G31G8) and

(q0m1G32G9), proving again that there are only eight in
dependent combinations of structure functions. If desir
Eqs. ~11a!–~11h! can be inverted such that the invaria
structure functions can be expressed in terms of the hel
structure functions. The inversion has to be done in term
the two above linear combinations ofG3 , G8 , and G9 .
Since our later results will always be presented in terms
the helicity structure functions, we shall not write down t
inverse relations here.

III. ANGULAR DECAY DISTRIBUTION

We are now in the position to write down the full angul
decay distribution of polarized top-quark decay intoW1 and
b followed by the decay of theW1 into (l 11n l). As noted
before, the full angular decay distribution of the decayt(↑)
→W1(→ l 11n l)1Xb , including polarization effects of the
top quark, is completely determined by the three unpolari
and five polarized helicity structure functions. Although t
necessary manipulations to obtain the angular decay di
bution involving Wigner’sDmm8

J (u,f) functions are stan-
dard ~see, e.g.,@30#!, it is quite instructive to reproduce th
results here. To this end, it is useful to define helicity str

ture functionsH
lWl

W8

l tl t8 where the helicity label of the top

quark is made explicit. Put in a different language, the fo

index objectH
lWl

W8

l tl t8 is the unnormalized double density m

trix of the top quark and theW. The double density matrix is
Hermitian; i.e., it satisfies

S H
lWl

W8

l tl t8 D * 5 S H
l

W8 lW

l t8l t D . ~12!

As has been remarked on before, the elements of
double density matrix are real in the present application. T
double density matrix is therefore symmetric. The relation
the components of the double density matrix to the pre
ously defined unpolarized and polarized helicity struct
functions is given by

HU5H11
111H11

221H22
111H22

22 , ~13a!

HL5H00
111H00

22 , ~13b!

HF5H11
111H11

222H22
112H22

22 , ~13c!

HUP5H11
112H11

221H22
112H22

22 , ~13d!

HLP5H00
112H00

22 , ~13e!
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HFP5H11
112H11

222H22
111H22

22 , ~13f!

HI P5 1
4 ~H10

121H01
212H20

212H02
12!

5 1
2 ~H10

122H20
21!, ~13g!

HAP5 1
4 ~H10

121H01
211H20

211H02
12!

5 1
2 ~H10

121H20
21!. ~13h!

For ease of notation we have used~6! labels for both the
helicities of the top quark (l t561/2) and the transvers
helicities of theW-gauge boson (lW561). In the case of
the nondiagonal structure functionsHI P and HAP one can
make use of the fact that the double density matrix is sy
metric ~for real coefficients! to simplify the structure func-
tions as indicated in the last two lines of Eqs.~13g!–~13h!.
From the fact that we are not observing the spin of theXb
system in our semi-inclusive measurement one haslXb

5lXb
8 , leading to the constraintlW2lW8 5l t2l t8 . From

this constraint it is immediately clear that the polarized str
ture functionsU, L, andF are associated with the longitud
nal spin of the top quark and the structure functionsI andA
are associated with the transverse spin of the top quark.

The angular decay distribution can be obtained from
master formula

W~uP ,u,f!} (
lW2lW8 5l t2l t8

ei ~lW2lW8 !fdlW1
1 ~u!

3d
l

W8 1
1

~u!H
lWl

W8

l tl t8 rl tl t8
~uP!, ~14!

whererl tl t8
(uP) is the density matrix of the top quark whic

reads

rl tl t8
~uP!5

1

2 S 11P cosuP P sinuP

P sinuP 12P cosuP
D . ~15!

P is the magnitude of the polarization of the top quark. T
sum in Eq.~14! extends over all values oflW , lW8 , l t , and
l t8 compatible with the constraintlW2lW8 5l t2l t8 . The
second lower index in the small Wignerd(u) function dlW1

1

is fixed atm51 for zero mass leptons because the totam
quantum number of the lepton pair along thel 1 direction is
m51. Because there exist different conventions for Wigne
d functions we explicate the requisite components that e
Eq. ~14!: d11

1 5(11cosu)/2, d01
1 5sinu/&, and d211

1 5(1
2cosu)/2.

Including the appropriate normalization factor the fou
fold decay distribution is given by
6-5
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dG

dq0d cosuPd cosu df

5
1

4p

GFuVtbu2mW
2

&p
uqW u 538 ~HU1P cosuPHUP!

3~11cos2 u!1
3

4
~HL1P cosuPHLP!sin2 u

1
3

4
~HF1P cosuPHLP!cosu

1
3

2&
P sinuPHI P sin 2u cosf

1
3

&
P sinuPHAP sinu cosf D . ~16!

We take the freedom to normalize the differential rate su
that one obtains the totalt→b1W1 rate upon integration
and not the total rate multiplied by the branching ratio of t
correspondingW1 decay channel.

The polar anglesuP andu and the azimuthal anglef that
arise in the full cascade-type description of the two-sta
decay processt(↑)→W1(→ l 11n l)1Xb are defined in Fig.
2. For better visibility we have oriented the lepton plane w
a negative azimuthal angle relative to the hadron plane.
the hadronic decays of theW into a pair of light quarks one
has to replace (l 1,n l) by (q̄,q) in Fig. 2. We mention that
we have checked the signs of the angular decay distribu
Eq. ~16! using covariant techniques.

As Eq. ~16! shows, the nondiagonal structure functio
HI P and HAP are associated with azimuthal measureme
This necessitates the definition of a hadron plane, whic
only possible through the availability of thex component of
the polarization vector of the top~see Fig. 2!. This is the
physical explanation of why the two structure functionsHI P

and HAP are functions of only the transverse component
the polarization vector of the top quark. For similar reaso
the polarization dependent structure functionsHUP, HLP,
andHFP depend only on the longitudinal component of t
polarization vector.

SettingP50 in Eq. ~16! one obtains the decay distribu
tion for unpolarized top-quark decay. If desired, the tra
verse part of the unpolarized angular decay distribution
also be sorted in terms of decays into transverse-plus

FIG. 2. Definition of the polar anglesu and uP and the azi-

muthal anglef. PW is the polarization vector of the top quark.
05403
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transverse-minusW bosons given by the structure functio
combinations (U1F)/2 and (U2F)/2, which multiply the
angular factors (11cosu)2 and (12cosu)2, respectively, as
was done, e.g., in@23#.

If there were an imaginary part in the one-loop contrib
tion one would have two additional contributions to the a
gular decay distribution proportional to sinf. This can be
easily seen with the help of Eq.~14!. We concentrate on
those terms in the angular decay distribution that are prop
tional to the off-diagonal termsr12 in the density matrix of
the top quark. The relevant terms read

H10
12e1 if1H01

21e2 if

52@Re~H10
12!cosf2Im~H10

12!sinf#, ~17a!

H02
12e1 if1H20

21e2 if

52@Re~H02
12!cosf2Im~H02

12!sinf#. ~17b!

The real contributions multiplying the angular fact
cosf have been included in the angular decay distribut
~16! while the imaginary contributions Im(H10

12) and
Im(H02

12) multiplying sinf do not appear in Eq.~16! since
the O(as) contributions calculated in this paper are pure
real. The helicity structure functions Im(H10

12) and Im(H02
12)

are conventionally calledT-odd structure functions and ar
contributed to by the imaginary parts of loop contributio
and/or byCP-violating contributions which, as has been em
phasized before, are not present in this calculation.

Of interest is also the corresponding angular decay dis
bution for polarized top-antiquark decayt̄ (↑)→W2(→ l 2

1 n̄ l)1Xb̄ . The angular decay distribution is changed due
the fact that the totalm quantum number of the lepton pair i
the l 2 direction is nowm521. The relevant components o
the small Wignerd function are nowd121

1 5(12cosu)/2,
d021

1 52sinu/& and d2121
1 5(11cosu)/2. This can be

seen to result in a sign change for the angular factors m
plying theF, FP, andAP terms~and no sign change for th
other terms!. The structure functions of top-antiquark dec
are related to those of top decay byCP invariance. The
parity-violating ~PV! structure functionsF, UP, LP, and I P

will undergo a sign change whereas parity-conserving~PC!
structure functionsU, L, FP, andAP keep their signs. Over-
all this means that the unpolarized terms in Eq.~16! will not
change their signs while the polarized terms will chan
signs when going from top-quark decay to top-antiquark
cay. To be quite explicit, if one wants to use the results
this paper to describe top-antiquark decay, the only requ
effective change is to change the signs of the terms multip
ing the UP, LP, FP, I P, and AP structure functions in the
angular decay distribution Eq.~16!, using, however, the sam
structure functions as written down in this paper.

IV. BORN TERM RESULTS

The Born term tensor is calculated from the square of
Born term amplitude@see Fig. 1~a!# given by
6-6
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Mm5Vtb5
g

&
ūbgm

1

2
~12g5!ut . ~18!

We omit the coupling factorVtbg/&52mWVtb(GF /&)1/2

and write for the Born term tensor~the spin of theb quark is
summed!

Bmn5 1
4 Tr~p” b1mb!gm~12g5!~p” t1mt!

3~11g5s” t!g
n~12g5!. ~19!

Since only even-numberedg-matrix strings survive be-
tween the two (12g5) factors in Eq.~19! one can compactly
write

Bmn52~ p̄t
npb

m1 p̄t
mpb

n2gmnp̄t•pb1 i emnabpb,ap̄t,b!,
~20!

where

p̄t
m5pt

m2mtst
m . ~21!

It is not difficult to obtain the Born term helicity structur
functions from Eq.~20!. This can be done in two ways. On
can read off the invariant structure functions according to
covariant expansion Eq.~2!. The nonvanishing elements a
given by BH1

5mt
2(12x21y2), BH2

522BH3
54 for the

unpolarized invariants and byBG1
5BG6

5BG8
52BG9

5

22mt for the polarized invariants~the notation is self-
explanatory!. These can then be converted to the helic
structure functions using the linear relations~11a!–~11h!. Al-
ternatively one can directly compute the helicity structu
functions from Eq.~20! by using the covariant projector
defined in Sec. II@cf. Eqs.~8a!–~8e!#.

In order to find the relation of the Born term tensorBmn to
the hadron tensorHmn defined in Sec. II one has to insert th
appropriate one-particleb-quark state into Eq.~1! and then
one has to do the requisite one-particle phase space inte
tion. Technically this is done by rewriting the one-partic
phase space as

E dPb5E d3pW b

2Eb
5E d4pbd~pb

22mb
2!. ~22!

One can easily do the four-dimensionald4pb integration in
Eq. ~1! with the help of the four-dimensionald function
d4(pt2q2pb). This convertspb

2 in the argument of thed
function in Eq.~22! into (pt2q)2. Rewriting the argumen
of the d function in terms ofq0 one finally arrives at

Hmn~Born!5
1

4mt
2 dS q02

mt
21mW

2 2mb
2

2mt
DBmn. ~23!

We will present our results in table form where we use
scaled variablesx5mW /mt and y5mb /mt as well as the
abbreviation uqW u5(mt/2)Al with l5l(1,x2,y2)511x4

1y422x2y222x222y2. The first column in Table I con-
tains thembÞ0, or, equivalently,yÞ0 results. In the second
column we have setmb50 (y50). In order to assess th
05403
e

ra-

e

quality of themb50 approximation for the various rate func
tions we have listed the percentage increments when g
from thembÞ0 case to themb50 caseincluding the phase
space factoruqW u that multiplies the helicity structure func
tions in the rate formula Eq.~16!. In this comparison we
have usedmb54.8 GeV @31# together withmt5175 GeV
andmW580.419 GeV. The increment due to the phase sp
factor uqW u alone amounts to 0.15%. Note that one may ha
overestimated the mass effect since a fixed pole mass, ra
than a running mass which is smaller at the high scale of
top-quark mass, is used. For example, taking one-loop r
ning and the same bottom pole mass as above one
m̄b(mt)51.79 GeV. The increment in the total rate on goi
from m̄b(mt)51.79 GeV to mb50 would then be only
0.04% as compared to the 0.26% given in Table I.

In the mb50 case listed in column 3 of Table I one ob
serves the simple patternsBU52BUP52BF5BFP, BL
5BLP, and BI P52BAP. This pattern results from the fac
that a masslessb quark emerging from a (V2A) vertex is
purely left handed. Since from angular momentum conser
tion one hasl t5lW2lb with lb521/2 one has the con
straintl t2lW51/2. This implies that only the helicity con
figurations (l t521/2;lW521) and (l t511/2;lW50)
are nonvanishing. A quick look at the relations~13a!–~13h!
allows one to readily verify themb50 pattern in Table I. For
mbÞ0 there is a leakage into right-handed bottom mes
resulting in a breaking of the above pattern as can be
served in thembÞ0 column of Table I. As noted in the
Introduction these simple patterns are also not valid atO(as)
even for massless bottom mesons because of the addit
gluon emission, including an anomalous spin-flip contrib
tion @32#. When the relevantmb50 Born term helicity struc-
ture functions from Table I are substituted in Eq.~16! we
reproduce the angular decay distribution as written down
@17#.

For completeness we have also included the two B
term scalar helicity structure functionsBS andBSP in Table I.
They are obtained by use of the scalar projectorPS

5qmqn/mW
2 . That they are identical to their longitudina

counterpartsBL and BLP even for mbÞ0 is a dynamical
accident specific to the Born term level and does not h
true in general as, e.g., evidenced by theO(as) contributions
to be discussed later on. These become equal to each
only in the limit mt→` as will be discussed in Sec. VII. Th
mbÞ0 Born term equalitiesBF5BUP and BU5BFP can be
seen to result from the fact that the double density ma
elementsH11

22 andH22
11 vanish at the Born term level due t

angular momentum conservation@see Eq.~13a!#.
In Fig. 3 we present a Lego plot of the twofold (mb50)

Born term angular decay distribution in cosu and cosuP
which results after taking the azimuthal average of Eq.~16!.
We have divided out the total Born term rate from the d
ferential rate, resulting in the careted differential rate dis
bution as defined in Eq.~35!. We have setP51 in Fig. 3.
The Lego plot shows that the cosu and cosuP variation of
the twofold angular decay distribution around its avera
value of 0.25 is quite strong. This will facilitate the expe
mental measurement of the structure functionsGU , GL , GF ,
GUP, GLP, andGFP.
6-7
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TABLE I. Born term helicity structure functionsBi ( i 5U1L,UP1LP,U,UP,L,LP,F,FP,S,SP,I P,AP)
for mbÞ0 andmb50. Fourth column gives the percentage increment when going frommbÞ0 to mb50
including the phase space factoruqW u.

Born
term mbÞ0 mb50 Increment

BU1L mt
2

1

x2 @~12y2!21x2~122x21y2!# mt
2

1

x2 ~12x2!~112x2! 10.27%

BUP1LP mt
2Al

1

x2 ~122x22y2! mt
2

1

x2 ~12x2!~122x2! 10.42%

BU 2mt
2(12x21y2) 2mt

2(12x2) 10.05%
BUP 22mt

2Al 22mt
2(12x2) 10.29%

BL mt
2

1

x2@~12y2!22x2~11y2!# mt
2

1

x2 ~12x2! 10.36%

BLP mt
2Al

1

x2 ~12y2! mt
2

1

x2 ~12x2! 10.37%

BF 22mt
2Al 22mt

2(12x2) 10.29%
BFP 2mt

2(12x21y2) 2mt
2(12x2) 10.05%

BS mt
2

1

x2 @~12y2!22x2~11y2!# mt
2

1

x2 ~12x2! 10.36%

BSP mt
2Al

1

x2 ~12y2! mt
2

1

x2 ~12x2! 10.37%

BI P 2
1

1
&mt

2Al
1

x
2

1

2
&mt

2
1

x
~12x2! 10.29%

BAP
1

2
&mt

2
1

x
~12x22y2!

1

2
&mt

2
1

x
~12x2! 10.24%
rm
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Finally, for the sake of definiteness we list the Born te
rate in terms of the Born term functionBU1L . One has

G05
GFmW

2 uqW u

4&pmt
2

uVtbu2BU1L . ~24!

V. ONE-LOOP CONTRIBUTION

The one-loop contributions to fermionic (V2A) transi-
tions have a long history. Since QED and QCD have

FIG. 3. Born term Lego plot of the twofold angular decay d
tribution dĜ/d cosu d cosuP with P51.
05403
e

same structure at the one-loop level the history even d
back to QED times.

Our reference will be the work of Gounaris and Pascha
@34# ~see also@33#! who used a gluon mass regulator to reg
larize the gluon IR singularity. The one-loop amplitudes a
defined by the covariant expansion (Jm

V5q̄bgmqt ,Jm
A

5q̄bgmg5qt)

^b~pb!uJm
Vut~pt!&5ūb~pb!$gmF1

V1pt,mF2
V1pb,mF3

V%ut~pt!,
~25a!

^b~pb!uJm
Aut~pt!&5ūb~pb!$gmF1

A1pt,mF2
A1pb,mF3

A%

3g5ut~pt!. ~25b!

In the standard model the appropriate current combinatio
given byJm

V2Jm
A .

We shall immediately take the limitmb→0 of the one-
loop expressions given in@34# ~see also Appendix C!.2 Keep-
ing only the finite terms and the relevant mass~M! ~ln y and
ln2 y! and infrared@ ln(L2)# singular logarithmic terms one
obtains the rather simple result

2We have recalculated the one-loop results of Ref.@34# and have
found an acknowledged typo in the scalar form factorsF3(Q2) and
H3(Q2) of @34#. The typo is corrected by replacing the factor (m2

2m1)/Q2 in the last line of Eq.~A.8! of Ref. @34# by (m2

2m1)/(2Q2).
6-8
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F1
V5F1

A512
as~q2!

4p
CFF41

1

x2 ln~12x2!

1 lnS y

12x2

L4

~12x2!2D12 lnS L2

y

1

12x2D
3 lnS y

12x2D12 Li2~x2!G , ~26a!

F2
V52F2

A5
1

mt

as~q2!

4p
CF

2

x2 S 111
12x2

x2 ln~12x2! D ,

~26b!

F3
V52F3

A5
1

mt

as~q2!

4p
CF

2

x2 S 211
2x221

x2 ln~12x2! D ,

~26c!

where we have denoted the scaled gluon mass byL
5mg /mt . The dilogarithmic function Li2(x) is defined by

Li2~x!ª2E
0

x ln~12z!

z
dz. ~27!
p
r

to

er

to

05403
Note that the one-loop contribution is purely real. Th
can be understood from an inspection of the one-loop Fe
man diagram Fig. 1~b!, which does not admit any nonvan
ishing physical two-particle cut. The fact that one hasF1

V

5F1
A and Fi

V52Fi
A for i 52,3 results from setting the

b-quark mass to zero. This can be seen by moving the ch
(12g5) factor in the one-loop integrand numerator to t
left. Becausemb is set to zero the Dirac numerator string w
thus begin withūb(11g5), leading to the above pattern o
relations between the loop amplitudes. We mention that
gluon mass regulator scheme can be converted to the dim
sional reduction scheme by the replacement logL2→1/e
2gE1 log 4pm2/q2 where 2e542N, gE is the Euler-
Mascharoni constantgE50.577 . . . , andm is the QCD scale
parameter.

VI. TREE GRAPH CONTRIBUTION

The tree graph contribution results from the square of
real gluon emission graphs shown in Figs. 1~c! and 1~d!.
Omitting again the weak coupling factorVtbg/& for the
time being the corresponding hadron tensor is given by
Hmn524pasCF

8

~k•pt!~k•pb! S 2
k•pt

k•pb
$~pb•pb!~kmp̄t

n1knp̄t
m2k• p̄tg

mn!1 i @eabmn~pb2k!• p̄t2eabgn~pb2k!mp̄t,g

1eabgm~pb2k!np̄t,g#kapb,b%1
k•pb

k•pt
$~ p̄t•pt!~kmpb

n1knpb
m2k•pbgmn2 i eabmnkapb,b!2~ p̄t•k!@~pt2k!mpb

n

1~pt2k!npb
m2~pt2k!•pbgmn2 i eabmn~pt2k!apb,b#%2~ p̄t•pb!~kmpb

m1knpb
m2k•pbgmn2 i eabmnkapb,b!

1~pt•pb!~kmp̄t
n1knp̄t

m2k• p̄tg
mn!2~k•pb!~pt

mp̄t
n1pt

mp̄t
m2pt• p̄tg

mn!1~k•pt!@~pb1k!mp̄t
n1~pb1k!np̄t

m

1~pb1k!• p̄tg
mn#1~k• p̄t!~2pb

mpb
n2pb•pbgmn!2 i @eabmn~k• p̄t!1eabgmknp̄t,g2eabgnkmp̄t,g#pb,gapt,b

1 i @eabmn~pt• p̄t!1eabgnpt
np̄t,g2eabgnpt

mp̄t,g#kapb,bD1Bmn
•DSGF, ~28!

DSGFª24pasCFS mb
2

~k•pb!2 1
mt

2

~k•pt!
222

pb•pt

~k•pb!~k•pt!
D , ~29!
to
re
is

n

ize

r
en

the

i-
wherek is the four-momentum of the emitted gluon.DSGF
is the IR-divergentsoft gluon functionandp̄t5pt2mtst as in
Sec. IV.3

We have isolated the IR-singular part of the tree gra
contribution by splitting off a universal soft gluon facto
which multiplies the lowest order Born term tensorBmn.
This facilitates the treatment of the soft gluon singularity
be regularized by a~small! gluon massmg . Since the soft
gluon factor is universal in that it multiplies the lowest ord

3Contrary to the Born term case, here the polarization of the
quark cannot be accounted for by replacing allpt momenta by their
barred counterpartsp̄t .
h

Born contribution, the requisite soft gluon integration has
be done only once and is identical for all eight structu
functions. The result for the integrated soft gluon function
given in Sec. VIII. Integrating only the soft gluon functio
DSGF and neglecting the finite part in Eq.~28! amounts to
what is called the soft gluon approximation. We emphas
that we always include the full tree graph contribution~soft
plus finite part! in our calculation. Also, we integrate ove
the full phase space of the gluon, and not only up to a giv
energy cutoff of the gluon.

We have deliberately used a calligraphic notation for
tree graph hadron tensorHmn in Eq. ~28! sinceHmn is not the
hadron tensorHmn defined in Sec. II. In fact, the mass d
mension ofHmn differs from that ofHmn. To relate the two

p
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hadron tensors one has to do the appropriate phase s
integration on the tree graph hadron tensor.

Next one makes use of the covariant projection opera
and the covariant forms of the longitudinal and transve
polarization vectors defined in Sec. II to obtain the contrib
tions to the three unpolarized and five polarized struct
functions. Since we are aiming for a fully inclusive measu
ment regarding theXb system the resulting expressions ha
to be integrated over the full two-dimensional phase spa
As phase space variables we take the gluon energyk0 and the
-
t t

l

pl

rm
ite
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rm
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W energyq0 where thek0 integration is done first. The phas
space limits of the respective integrations are given by

k0,2<k0<k0,1 ~30!

and

mW<q0<
mt

21mW
2 2~mb1mg!2

2mt
, ~31!

where
k0,65
~mt2q0!~M 1

2 22q0mt!6Aq0
22mW

2 A~M 2
2 22q0mt!

224mg
2mb

2

2~mt
21mW

2 22q0mt!
~32!
the
lo-
tial

e

e
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e
ase
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M 6
2
ªmt

21mW
2 2mb

26mg
2. ~33!

It is clear from Eqs.~30!–~33! that the integration bound
aries considerably simplify when the gluon mass is se
zero. In particular, the second square root factor in thek0,6
boundary turns into a polynomial inq0 which is an essentia
simplification for the secondq0 integration. This observation
is at the core of our tree level integration strategy exem
fied by the partitioned form of Eq.~28!. The soft gluon sin-
gularity has been isolated and brought into a simple fo
The remaining part of the tree graph contribution is IR fin
and can be integrated without the gluon mass regulator.

The integration over the gluon energyk0 (k0,2<k0
<k0,1) is simple and the results will not be presented here
explicit analytical form. Instead we present in graphical fo
in Figs. 4 and 5 some representative results for the differ
tial W-boson energy distribution that result from the re
gluon emission graphs Figs. 1~c! and 1~d!. Figure 4 shows
the W-boson energy distribution for the total ra
dGU1L /dq0 . The energy distribution rises sharply from th
lower energy limit, where theW boson is produced at res
then increases rapidly over the intermediate range

FIG. 4. Differential W-boson energy distributiondGU1L /dq0

for the total rate resulting fromO(as) gluon emission (mb

54.8 GeV).
o

i-

.

n

n-
l

f

W-boson energies, and finally rises sharply again toward
end of the spectrum, where the soft gluon singularity is
cated. In Fig. 5 we show the same distribution for the par
rate into positive helicityW bosonsdG1 /dq0 @G15 1

2 (GU
1GF)# for mb50 and formbÞ0. As mentioned before ther
is no Born term contribution todG1 /dq0 for mb50 and
thusdG1 /dq0 possesses no IR singularity in this limit. Th
absence of the IR singularity in themb50 case~dashed line!
is quite apparent in Fig. 5. The distribution rises moderat
fast from the lower end of the spectrum, then turns do
over the intermediate range of energies, and finally tend
zero at the end of the spectrum where the phase space cl
The mb50 ~dashed line! andmbÞ0 ~full line! distributions
lie on top of each other for most of the lower part of th
spectrum. Starting at around 4.8 GeV below the upper ph
space boundary the two distributions begin to diverge fr
each other. Whereas themb50 curve turns down and goes t
zero at the end of the spectrum, thembÞ0 curve starts to rise
again and, in fact, tends to infinity at the end of the spectr
due to its IR-singular behavior. Note the huge differences
scale of thedGU1L /dq0 and the dG1 /dq0 distributions
which will be reflected in big differences in the totalas
corrections for the two corresponding rates.

FIG. 5. DifferentialW-boson energy distributiondG1 /dq0 for
the partial rate into positive helicityW bosons resulting fromO(as)
gluon emission formb54.8 GeV~solid line! and formb50 ~dashed
line!.
6-10
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The second integration over the energy of theW boson is
more difficult. Details can be found in Sec. VIII and in th
Appendixes. As it turns out the analyticalmbÞ0 results are
quite lengthy. We thus chose to present ourmb50 results
first since they are sufficiently simple to be presented
compact form. They have been obtained by taking themb

→0 limit of our mbÞ0 results written down in Sec. VIII
For practical purposes themb50 results are sufficiently ac
curate for top-quark decays sincembÞ0 effects are generally
quite small. This is particularly true if a runningb-quark
mass at the top-quark mass scale is used. Quantitative re
for the as mbÞ0 corrections are given at the end of Se
VIII as well as in @23#.

VII. COMPLETE O„as… RESULTS FOR mbÄ0

We are now in the position to put together ourmb50
results. We add together the Born term results from Sec.
the one-loop results from Sec. V, and themb→0 limit of the
integrated tree graph results according to Sec. VIII. The m
and infrared-singular logarithmic terms cancel among
O(as) one-loop and tree graph contributions as they m
according to the Lee-Nauenberg theorem, and a finite re
remains. We choose to present our results in terms of sc
rate functions defined by Ĝ iªG i /G0 ( i 5U1L,UP

1LP,U,L,F,S,UP,LP,FP,SP,I P,AP) with G0

5GU1L(Born) given by (x5mW /mt)
05403
n

ults
.

V,

ss
e
t

ult
ed

G05GU1L~Born!5
GFmW

2 mt

2&p
uVtbu2

~12x2!2~112x2!

x2 .

~34!

The angular decay distribution reads

dĜ

d cosuPd cosu df

5
1

4p H 3

8
~ ĜU1P cosuPĜUP!~11cos2 u!

1
3

4
~ ĜL1P cosuPĜLP!sin2 u

1
3

4
~ ĜF1P cosuPĜFP!cosu

1
3

2&
Ĝ I PP sinuP sin 2u cosf

1
3

&
ĜAPP sinuP sinu cosf D , ~35!

whereP is the degree of polarization of the top quark. A
mentioned before one recovers the angular decay distribu
written down in@17# when one substitutes themb50 Born
term expressions from Table I in Eq.~35!.

The various reduced ratesĜ i are given by
ĜU1L511
as

2p
CF

x2

~12x2!2~112x2! H ~12x2!~519x226x4!

2x2 2
2~12x2!2~112x2!p2

3x2 2
~12x2!2~514x2!

x2 ln~12x2!

2
4~12x2!2~112x2!

x2 ln~x!ln~12x2!24~11x2!~122x2!ln~x!2
4~12x2!2~112x2!

x2 Li 2~x2!J , ~36!

Ĝ~U1L !P5
122x2

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 2
~12x!2~1512x25x2212x312x4!

2x2 1
~114x2!p2

3x2

2
~12x2!2~124x2!

x2 ln~12x!2
~12x2!~32x2!~114x2!

x2 ln~11x!2
4~12x2!2~122x2!

x2 Li 2~x!

1
4~215x422x6!

x2 Li 2~2x!J , ~37!

ĜU5
2x2

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 2~12x2!~191x2!1
2~515x222x4!p2

3
22

~12x2!2~112x2!

x2 ln~12x2!

24~517x222x4!ln~x!22~12x!2
~517x214x3!

x
ln~x!ln~12x!1

2~12x!2~517x224x3!

x
ln~x!ln~11x!

2
2~12x!2~514x115x218x3!

x
Li2~x!1

2~11x!2~524x115x228x3!

x
Li2~2x!J ~38!
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ĜL5
1

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H ~12x2!~5147x224x4!

2x2 2
2p2

3

~115x212x4!

x2 2
3~12x2!2

x2 ln~12x2!

116~112x2!ln~x!22~12x!2
22x16x21x3

x2 ln~12x!ln~x!2
2~11x!2~21x16x22x3!

x2 ln~x!ln~11x!

2
2~12x!2~413x18x21x3!

x2 Li 2~x!2
2~11x!2~423x18x22x3!

x2 Li 2~2x!J , ~39!

ĜF5
22x2

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 22~12x!2~324x!1
2~21x2!p2

3
1

2~12x2!2~112x2!

x2 ln~12x!

1
2~12x2!~129x212x4!

x2 ln~11x!18~12x2!Li2~x!18~113x22x4!Li2~2x!J , ~40!

ĜS5
1

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 9~12x2!2

2x2 2
2~12x2!2p2

3x2 1
~12x2!2~225x2!

x4 ln~12x2!

24~12x2!ln~x!2
4~12x2!2

x2 ln~x!ln~12x2!2
4~12x2!2

x2 Li 2~x2!J , ~41!

ĜUP5
22x2

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 2
~12x!2~12255x16x22x3!

x
2

10p2

3
~21x2!

1
2~12x2!2~112x2!

x2 ln~12x!1
2~12x2!~7121x212x4!

x2 ln~11x!18~12x2!2Li 2~x!

28~1113x21x4!Li2~2x!J , ~42!

ĜLP5
1

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 2~15222x1105x2224x314x4!
~12x!2

2x2 1
~1124x2110x4!p2

3x2

2
3~12x2!2

x2 ln~12x!2
~12x2!~17153x2!

x2 ln~11x!2
4~12x2!2

x2 Li 2~x!1
4~2122x2111x4!

x2 Li 2~2x!J , ~43!

ĜFP5
2x2

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 2~12x2!~41x2!2
2~11x212x4!p2

3
2

2~12x2!2~112x2!

x2 ln~12x2!

24~225x222x4!ln~x!2 ln~x!ln~12x!
4~12x!2~113x12x212x3!

x

1
4~11x!2~123x12x222x3!

x
ln~x!ln~11x!2

4~12x!2~115x16x214x3!

x
Li2~x!

1
4~11x!2~125x16x224x3!

x
Li2~2x!J , ~44!

ĜSP5
1

112x2 1
as

2p
CF

x2

~12x2!2~112x2! H 2
~12x!2~1126x27x2!

2x2 1
~112x2!p2

3x2 1
~12x2!2~225x2!

x4 ln~12x!

1
~12x2!~229x21x4!

x4 ln~11x!2
4~12x2!

x2 Li 2~x!1
4~21x4!

x2 Li 2~2x!J , ~45!
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Ĝ I P5
2x

&~112x2!
1

as

2p
CF

x2

~12x2!2~112x2! H ~12x!2~1227x112x2!

&x
2

p2

6&

~5119x212x4!

x

1
~12x2!2~115x2!

2&x3
ln~12x!1

~12x2!~1130x2121x4!

2&x3
ln~11x!1

2&~12x2!2

x
Li2~x!

2
&~7115x214x4!

x
Li2~2x!J , ~46!

ĜAP5
x

&~112x2!
1

as

2p
CF

x2

~12x2!2~112x2! H ~12x2!~112x2!

&x
2

p2

6&

~325x216x4!

x
2

~12x2!2~115x2!

2&x3

3 ln~12x2!2
x~5211x2!

&
ln~x!2

~12x!2~317x16x2!

&x
ln~x!ln~12x!2

~11x!2~327x16x2!

&x
ln~x!ln~11x!

2
~12x!2~7115x110x2!

&x
Li2~x!2

~11x!2~7215x110x2!

&
Li2~2x!J . ~47!
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As mentioned in the Introduction the results for the to
rate (U1L) agree with the analytical results given in@4–7#
and in@16#. The six~mass zero! diagonal structure function
U, L, F andUP,LP,FP have already been listed in@16#. They
had been checked against the corresponding numerica
sults given in@27–29#. The results for the nondiagonal stru
ture functionsAP and I P are new. As for the unpolarize
transverse structure functions, explicit expressions for
two linear combinationsT15 1

2 (U1F) and T25 1
2 (U2F)

relevant for the interpretation of the CDF measurement@1#
were given in@23#.

We have also includedO(as) results on the unpolarize
and polarized scalar structure functionsĜS and ĜSP. They
determine themb50 unpolarized and polarized decay of th
top quark into a charged Higgs boson (t→b1H1) as it oc-
curs, e.g., in the two-Higgs-doublet model~2HDM!. This can
be seen as follows. The scalar projection of the stand
model~SM! left-chiral current structuregmPL determines the
coupling of the SM Goldstone boson, i.e.,q”PL→(mtPR
2mbPL). This is the coupling structure of the charged Hig
boson in the 2HDM when the ratio of vacuum expectat
values is taken to be 1. It is then evident that, formb50, the
scalar structure functionsĜS and ĜSP describe the decayt
→b1H1 in the 2HDM, irrespective of the value of the rat
of vacuum expectation values. The unpolarized scalar st
ture functionĜS has been checked against the result of@24#.
The result for the polarized scalar structure functionĜSP is
new.

Before turning to the numerical evaluation of the vario
contributions we would like to discuss the largemt limit of
the various helicity structure functions. As expected from
statements of the Goldstone boson equivalence theorem
longitudinal and scalar contributionsL, LP, S, andSP domi-
nate in this limit. In fact, settingx50 one finds

ĜL5ĜS511
as

2p
CFS 5

2
2

2

3
p2D , ~48!
05403
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ĜLP5ĜSP511
as

2p
CFS 2

15

2
1

1

3
p2D . ~49!

That ĜL5ĜS andĜLP5ĜSP for mt→` can be understood
from the fact that the longitudinal and scalar polarizati
vectorsem(0) andem(S) become equal to each other in th
limit since the longitudinal polarization vector then simp
fies to em(0)5qm/mW1O(mW /q0). The same observation
is also at the heart of the proof of the Goldstone bos
equivalence theorem. As concerns the tree graph contr
tion, the statement thatem(0)5qm/mW1O(mW /q0) is cer-
tainly not true for all of three-body phase space, e.g., clos
the phase space point where theW boson is at rest. The
contribution from this phase space region to the three-b
rate, however, becomes negligibly small whenmt→`.

We now turn to our numerical results. As numerical inp
values we takemt5175 GeV andmW580.419 GeV. The
strong coupling constant is evolved fromas(MZ)50.1175 to
as(mt)50.1070 using two-loop running. The results are p
sented such that the reduced Born term rates are factore
from the reduced rates. This way of presenting the res
allows one to quickly assess the size of the radiative cor
tions. One has

ĜU1L5120.0854, ~50a!

ĜU50.297~120.0624!, ~50b!

ĜL50.703~120.0951!, ~50c!

ĜF520.297~120.0687!, ~50d!
6-13
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Ĝ~U1L !P50.406~120.1162!, ~50e!

ĜUP520.297~120.0689!, ~50f!

ĜLP50.703~120.962!, ~50g!

ĜFP50.297~120.0639!, ~50h!

Ĝ I P520.228~120.0810!, ~50i!

ĜAP50.228~120.0820!, ~50j!

ĜS50.703~120.0895!, ~50k!

ĜSP50.703~120.0922!. ~50l!

The radiative corrections to the unpolarized and polari
rate functions are sizable. They range from26.2% forĜU to
211.6% for Ĝ (U1L)P compared to the rate correction o
28.5%. The radiative corrections to the longitudinal and s
lar contributions are the largest. The radiative corrections
tend to go in the same direction. This is an indication that
bulk of the radiative corrections come from phase space
gions close to the IR/M singular region where the radiativ
corrections are universal. When normalizing the rate fu
tions to the total rate, as is appropriate for the definition
polarization observables, the size of the radiative correcti
to the polarization observables is much reduced. For
ample, theO(as) radiative corrections decrease the ra
GL /GU1L by 1.1% and increase the ratioGU /GU1L and the
magnitude of the ratioGF /GU1L by 2.5% and 1.8%, respec
tively, relative to their Born term ratios. The relative rat
GU /GL is increased by 3.6%. The values of the radiat
corrections to the polarization observables are, howe
large enough that they must be included in a meaning
comparison of future high precision data with the theoreti
predictions of the standard model.

The combination (ĜU1ĜF)/2 determines the decay of a
unpolarized top quark into a right-handedW boson. This
combination vanishes at the Born term level formb50 as
Eqs. ~39! and ~41! show. Adding up the corresponding nu
merical values of theO(as) contributions in Eq.~51! one
finds that the right-handedW boson occurs only with 0.094%
probability. ThembÞ0 effect in the Born term alone alread
amounts to 0.036%~see Table I!.

Altogether theO(as) and the Born termmbÞ0 correc-
tions to the transverse-plus rate occur only at the subper
level. It is safe to say that, if top-quark decays reveal a v
lation of the standard model (V2A) current structure tha
exceeds the 1% level, the violations must have a non-
origin. In this context it is interesting to note that a possib
(V1A) admixture to the SMt→b current is already se
verely bounded indirectly to below 5% by existing data
b→s1→g decays@35–37#.

The rate combination (ĜU1ĜF)/2 is in fact not the only
combination that vanishes at the Born term level formb
50. Considering the fact that one must havelW2l t5
21/2 at the Born term level the only surviving Born ter
05403
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level rate expressions areĜ22
22 , Ĝ00

11 , and Ĝ20
21 as alluded

to before in Sec. IV. The notation employed for the reduc
rates follows the notation used in Eq.~13a!. The remaining
rate expressions vanish at the Born term level but beco
populated atO(as). They are

Ĝ11
115 1

4 ~ ĜU1ĜF1ĜUP1ĜFP!50.000 833,

Ĝ00
225 1

2 ~ ĜL2ĜLP!50.000 289,

Ĝ10
125~ Ĝ I P1ĜAP!520.000 236, ~51!

Ĝ11
225 1

4 ~ ĜU1ĜF2ĜUP2ĜFP!50.000 093,

Ĝ22
115 1

4 ~ ĜU2ĜF1ĜUP2ĜFP!50.000 120.

As remarked on before the last two reduced ratesĜ11
22 and

Ĝ22
11 vanish at the Born term level even formbÞ0 since the

net helicity of these transitionsulW2l tu53/2 exceeds tha
of the b quark ulbu51/2.

The four reduced ratesĜ11
11 , Ĝ00

22 , Ĝ11
22 , and Ĝ22

11 are
positive definite quantities since they result from squares
helicity amplitudes. Contrary to these,Ĝ10

12 is an interfer-
ence contribution and thus can be negative, as it in fact is
Eq. ~51! we have also included the numerical values for t
above five structure function combinations resulting from
~tree graph! as corrections. They are all very small at th
levels lower than parts per thousand.

In Sec. IV~Fig. 3! we have shown a Lego plot of the Bor
term twofold angular decay distribution in cosu and cosuP .
In order to be able to exhibit the size of theas corrections we
show in Fig. 6 a contour plot of the same twofold angul
decay distribution with and without radiative correction

FIG. 6. Contours of the decay distribution of a fully polarize
(P51) top quark in the cosuP-cosu plane formb50. The full lines
are the distribution including theO(as) corrections.
6-14
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again settingP51. The radiative corrections are not ve
large in the upper two quadrants and become largest in
lower left quadrant of the contour plot when both cosu and
cosuP tend to 1.

Instead of analyzing the threefold or twofold angular d
cay distributions one can also consider single angle de
distributions. They are obtained by integrating over the t
respective complementary decay angles. For the cosu distri-
bution one obtains

dĜ

d cosu
5 3

8 ~ ĜU12ĜL!~12au cosu1bu cos2 u!, ~52!

where

au52
ĜF

ĜU12ĜL
S 52

2x2

11x2
520.349D , ~53!

bu5
ĜU22ĜL

ĜU12ĜL
S 52

12x2

11x2
520.651D . ~54!

We have added the analytical and numerical Born term
sults for the asymmetry parameters in parentheses usinx2

50.211. TheO(as) values for the asymmetry parameters a
au520.357 andbu520.641, i.e., theas corrections raise
the magnitude ofau by 2.3% and lower the magnitude ofbu
by 1.5%. In Fig. 7 we show the cosu distribution for both the
Born term case and the radiatively corrected case. There
pronounced forward-backward asymmetry. In the forward
rection the differential Born term rate drops to zero. As d
cussed before theO(as) rate does not vanish in the forwar
direction due to real gluon emission. However, the radiat
corrections are so small that the nonvanishing of theO(as)
rate in the forward direction cannot be discerned at the s
of the plot. In absolute terms the radiative corrections
largest for cosu'0 because of the large size of the radiati

FIG. 7. Charged lepton polar angular distribution in theW rest
frame for mb50 @Born term, full line;O(as), dashed line#. Also
shown are average values of the decay distribution.
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corrections to the longitudinal rateĜL . Note thatau is not
the conventional forward-backward asymmetry parame
which is defined by

aFB5
dG~0>u>p/2!2dG~p/2>u>p!

dG~0>u>p/2!1dG~p/2>u>p!

5
3

4

ĜF

ĜU1L
S 52

3

2

x2

112x2
520.223D . ~55!

The as corrections raiseaFB by 1.7% in magnitude.
For the cosuP distribution one obtains

dĜ

d cosuP
5

1

2
~ ĜU1L!~11PauP

cosuP!, ~56!

where

auP
5

Ĝ~U1L !P

ĜU1L
S 5

122x2

112x2
50.406D . ~57!

The as corrections lowerauP
by 3.4%.

Finally, thef distribution reads

dĜ

df
5

1

2p
~11Pgf cosf!, ~58!

where

gf5
3p2

8&

ĜAP

ĜU1L
S 5

3p2

16

x

112x2
50.597D . ~59!

The cosf dependent contribution fromĜ I P
has dropped out

because of having integrated over the full range of cosu. If
desired, the contribution ofĜ I P

to thef distribution can be

retained if one integrates only over half the range of cou.
The as corrections raisegf by the small amount of 0.32%
In Fig. 8 we show thef distribution for both the Born term
case and the radiatively corrected case, settingP51.

VIII. COMPLETE O„as… RESULTS FOR mbÅ0

Differing from the presentation of ourmb50 results in
Sec. VII, we shall present ourmbÞ0 results in a form where
each of the separate contributions to the rate remains ide
fied. In particular, we do not explicitly cancel the IR term
coming from the one-loop and tree graph contributions.
thus write
6-15
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G i
QCD5G i~Born!1

mt
3uVtbu2GF

8&p
H(

t
k i ,tFtJ

1
4

Al
G i~Born!S~L!2

as

4p

mt
3uVtbu2GFx2

8&p

3H (
n521,0

r~n!,iR~n!1(
m,n

r~m,n!,iR~m,n!

1 (
n50,1

s~n!,iS~n!1(
m,n

s~m,n!,iS~m,n!J . ~60!

The first term in Eq.~60! represents the Born term con
tribution, which is given by

FIG. 8. Azimuthal distribution of normalized rate formb50
@Born term, full line;O(as), dashed line#. Also shown are average
values of the decay distribution.
05403
G i~Born!5
GFmW

2 uVtbu2

8&pmt

AlBi ~61!

where theBi are the Born term rates listed in Table I. Th
Born term contributionG i(Born) also appears as a factor
the third term where it multiplies the soft gluon factorS(L).
The indexi runs over the various structure function labelsi
5U1L, UP1LP, U, UP, L, LP, F, FP, S, SP, I P, andAP.

The second term in Eq.~60! represents the one-loop con
tribution which is obtained by folding the one-loop amp
tude in Appendix C with the Born term amplitude and th
doing the appropriate projection onto the various struct
functions. The appropriate coefficient functionsk i ,t are
listed in Table II. The coefficient functionsk i ,t multiply the
as one-loop amplitudesFt5F1

V ,F2
V ,F3

V ,F1
A ,F2

A ,F3
A which

are listed in Appendix C. We label the one-loop amplitud
consecutively by the indext51,...,6. Note that Table II con
tains only the vector current coefficient functionsk i ,t (t
51,2,3). The axial vector coefficient functions labeled
t54,5,6, can be easily obtained from the vector current
efficient functions by the substitution

kF
1
A5kF

1
Vuyu→2y , kF

2
A52kF

2
Vuy→2y ,

kF
3
A52kF

3
Vuy→2y . ~62!

The third term in Eq.~60! contains the result of integrat
ing the soft gluon functionDSGF in Eq. ~28!. The result de-
pends on the ~small! IR regularization parameterL
5mg /mt as indicated in the argument of the soft gluon fac
S(L). The universal soft gluon factorS(L) is obtained by
explicit integration and reads
tes
TABLE II. Coefficient functionsk i ,t that determine the contributions of theas vector current one-loop amplitudes to the different ra
G i ~x5mW /mt , y5mb /mt , l511x41y422x2y222x222y2!.

i kF
1
V,i kF

2
V,i kF

3
V,i

U1L Al@(12y)22x2#@(11y)212x2# (1/2)mtAl3(11y) (1/2)mtAl3(11y)
UP1LP l(122x22y2) (1/2)mtl@(11y)22x2#(12y) (1/2)mtl@(11y)22x2#(12y)
U 2Al@(12y)22x2#x2 0 0
UP 2x2l 0 0
L Al@(12y)22x2#(11y)2 (1/2)mtAl3(11y) (1/2)mtAl3(11y)
LP l(12y2) (1/2)mtl@(11y)22x2#2(12y) (1/2)mtl@(11y)22x2#2(12y)
F 22lx2 0 0
FP 2Al@(12y)22x2#x2 0 0
S Al@(11y)22x2#(12y)2 (1/2)mtAl@(11y)22x2#

3(11x22y2)(12y)
(1/2)mtAl@(11y)22x2#

3(12x22y2)(12y)
SP l(12y2) (1/2)mtl(11x22y2)(11y) (1/2)mtl(12x22y2)(11y)
I P 2(1/&)lx (1/4&)mtl@(11y)22x2#x 2(1/4&)mtl@(11y)22x2#x
AP (1/&)Al@(12y)22x2#(11y)x (1/4&)mtAl3x (1/4&)mtAl3x
6-16
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TABLE III. Range of values of powersm, n in the different basic tree graph integrals.

i r (n),i r (m,n),i s (n),i s (m,n),i

U1L — ~22, 21!–~0, 21! — ~0, 0!, ~1, 0!
UP1LP 21, 0 ~22, 0!–~1, 0! 0, 1 ~0, 0!, ~0, 1!–~2, 1!
U — ~22, 1!–~2, 1! — ~0, 2!–~3, 2!
UP 21, 0 ~22, 2!–~3, 2! 0, 1 ~0, 0!, ~0, 3!–~4, 3!
L — ~22, 1!–~2, 1! — ~0, 2!–~3, 2!
LP 21, 0 ~22, 2!–~3, 2! 0, 1 ~0, 0!, ~0, 3!–~4, 3!
F 21, 0 ~22, 0!–~1, 0! 0, 1 ~0, 0!, ~0, 1!–~2, 1!
FP — ~22, 1!–~2, 1! — ~0, 2!–~3, 2!
S — ~22, 21!–~0, 21! — ~0, 0!–~1, 0!
SP 21, 0 ~22, 0!–~1, 0! 0, 1 ~0, 0!, ~0, 1!–~2, 1!
I P 21, 0 ~22, 2!–~2, 2! 0, 1 ~0, 0!, ~0, 3!–~3, 3!
AP — ~22, 1!–~1, 1! — ~0, 2!–~2, 2!
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S~L!52
as

4p
CFX~12x21y2!H 2 Li2~12w1wm!

1Li2~12w1
2!2Li2S 12

w1

wm
D1

1

4
ln2~w1wm!

1 ln~w1wm!F lnS lw1

xyL D1
1

2G J 12AlF lnS l

xyL D22G
1 lnS w1

wm
D22y2 ln~w1! C, ~63!

where as in@3# we have used the abbreviations

w15
x

y
•

12x21y22Al

11x22y21Al
, wm5

x

y
•

12x21y22Al

11x22y22Al
.

~64!

In the limit y→0 one has

S~L!52
as

4p
CFH ~12x2!Fp2

3
241 ln2 y22 lnL

1~112 lnL!lnS 12x2

y D22 lnS x

12x2D
1 ln~12x2!lnS x2

12x2D1Li2~x2!G1 ln x2J .

~65!

In agreement with the Lee-Nauenberg theorem the loga
mic dependence on the IR regularization parameterL can be
seen to cancel between the loop and the soft gluon contr
tions for each of the ten structure functions.

The fourth term in Eq.~60! finally contains the result o
integrating the finite piece in the tree graph contribution E
~28!, again after having done the appropriate projections.
result is given in terms of a set of standard integralsR(n) ,
R(m,n) , S(n) , and S(m,n) which are listed in Appendix A.
Appendix B gives the values of the coefficient functio
r (n),i , r (m,n),i , s (n),i , ands (m,n),i that multiply the standard
05403
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set of integrals in the various helicity structure functions.
Table III we have listed the range of values of the parame
m and n that characterize the different types of tree gra
integrals.

At this point it is perhaps appropriate to offer an excuse
the potential user of ourmbÞ0 results that our results ar
presented in a multiply nested form to be collected from E
~60!–~64!, Table II, and Appendixes A, B, and C. Contrary
the mb50 results where a closed form representation w
possible, a presentation of unnested closed form express
for mbÞ0 would require an extraordinary amount of spa
because of the presence of many different logarithmic
dilogarithmic functions and products thereof. Codes of
relevant expressions can be obtained from the authors
request.

When we evaluated Eq.~60! numerically the IR factors
proportional to lnL in the one-loop and tree graph contrib
tions were set to zero by hand. The numerical evaluation
the remaining part is quite stable numerically. In particul
the limit mb→0 is numerically quite smooth. This is dem
onstrated in Fig. 9 where we plot the bottom-quark ma
dependence of the total rate. Note that theO(as) rate shows
less dependence on the bottom-quark mass than does
Born term rate.

The quality of themb50 approximation has been dis
cussed before at the Born level. For example, at the B
term level the total rate is decreased by 0.27% when go
from mb50 to mb54.8 GeV. Using theO(as) mbÞ0 re-
sults from this section one finds that thembÞ0 corrections to
the totalO(as) rate reduce the rate by 0.16% compared
the Born term reduction of 0.27%, i.e., thembÞ0 corrections
to the as contribution alone tend to counteract thembÞ0
effect in the Born term in the total rate~see also Fig. 9!. The
mbÞ0 corrections from theas contributions alone are sur
prisingly large considering the fact that the factor multipl
ing theas corrections,CFas /(2p)50.023, is a rather smal
number. This can be understood in part by noting that theas
contributions contain terms proportional t
(mb

2/mW
2 )ln(mb

2/mt
2)520.026 which is not a very small num

ber. A further discussion ofmbÞ0 effects for theas contri-
butions can be found in@23#. Noteworthy is a large 20%
6-17
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correction to theO(as) transverse-plus rateĜ1 due tomb
effects@23#. That the bottom-quark mass effect is so large
Ĝ1 can be appreciated in part by looking at the differen
distribution in Fig. 5. We emphasize again that the m
effect may have been overestimated due to using a fixed
mass, rather than a running mass, which is smaller at
top-quark mass scale.

IX. SUMMARY AND CONCLUSION

We have obtained analytical expressions for theO(as)
radiative corrections to the three unpolarized and five po
ized structure functions that govern the decay of a polari
top quark. Although bottom-quark mass effects are qu
small in top-quark decays we have retained the full botto
mass dependence in our calculation. In the limitmb→0 the
analytical results considerably simplify, leading to comp
expressions for the eight structure functions that are liste
the main text. The full mass dependence of our analyt
results is written down in Sec. VIII and in the Appendixes
and B. These finite mass results will prove useful for t
theoretical description ofb→c bottom-meson and bottom
baryon decays~see, e.g.,@38#!.

FIG. 9. Bottom-quark mass dependence of the total rateGU1L

@Born term, full line;O(as), dashed line#.
05403
l
s
le
e

r-
d
e
-

t
in
al

e

For top-quark decays the radiative corrections to
structure functions range from26.2% to211.6% where the
radiative corrections to the unpolarized longitudinal struct
functions ĜL and the polarized structure functionĜ (U1L)P

are largest. These corrections are to be compared with
correction to the total rate, which is28.5%. The radiative
corrections to the structure functions all go in the same
rections indicating that the bulk of the radiative correctio
derive from contributions close to the IR or M region
phase space where the radiative corrections are unive
Nevertheless, the span of values of the radiative correct
exceeds 5% and must be taken into account in a future c
parison with precision experiments. The radiative correctio
to rate combinations that vanish at the Born term level h
been found to be rather small. In particular, theas correction
to the normalized rate of an unpolarized top-quark decay
positive helicity W bosons amounts to only 0.1%. As di
cussed in Sec. VII, the minuteness of theas contribution to
positive helicityW bosons is of relevance when discussing
possible (V1A) admixture to the standard model current.

We have also determined theO(as) corrections to unpo-
larized and polarizedq1→q2 scalar current transitions. Fo
t→b transitions these scalar current transitions are relev
for top-quark decays into a bottom quark and a charg
Higgs boson as they occur in the two-Higgs-doublet mod
For b→c transitions these transition matrix elements a
needed, e.g., for the description of the semi-inclusive dec
of the B mesons and theLb into spin zeroDs mesons
@38,39#.

In this paper we have studied only the first order QC
corrections to the structure functions in polarized top-qu
decays. For the total rate one obtains a correction of28.5%.
Second order QCD corrections to the rate are expecte
amount to22.6% @40# while electroweak corrections ar
known to increase the rate by11.7% @3,41#. For a high
precision comparison of theory and experiment of the str
ture functions it would therefore be desirable to calculate
two-loopO(as

2) and the electroweak one-loop corrections
the eight structure functions. While the two-loop QCD co
rections to the structure functions are very difficult and a
therefore not likely to be done in the next few years, calc
lation of the one-loop electroweak corrections to the ei
structure functions is presently under way@25#. Finite width
corrections will also have to be accounted for. They low
the total width by 1.56%@25,26# and affect the different
partial helicity rates by differing amounts@25#.

We would like to conclude this paper with a speculati
note concerning a possible top-quark mass measurem
from an angular decay analysis using the fact that the st
ture functions are top-quark mass dependent. This sugge
is much in the spirit of the suggestion of Grunberget al.,
who advocated a similar measurement of heavy qu
masses in the context ofe1e2 annihilations@42#. Assume
that the percentage measurement errors on anL/(U1L) and
U/(U1L) measurement aredL and dU , respectively. The
percentage error on the mass measurement will be den
by d, i.e., we writemt5m̄t(16d) wherem̄t is some given
6-18
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central value of the top-quark mass. From the dependenc
the respective Born term ratios on the mass ratiox
5mW /mt ~assuming that theW mass is fixed! one finds that
the percentage error on the top-quark mass measureme
given by d5dL(112x0

2)/(4x0
2) and by d5dU(112x0

2)/2,
respectively, where we writex25x0

2(172d) with x0

5mW /m̄t . If we take mt5175 GeV as the central valu
(x0

250.211) this would imply that a 1% error on the angu
structure function measurement would allow one to de
mine the top-quark mass with 1.7% and 0.7% accuracy,
pending on whether the angular measurement was don
the longitudinal~L! or on the unpolarized transverse~U! @or
for that matter on the~F!# mode. Since the radiative correc
tions change the ratiosGL /GU1L andGU /GU1L by 1.1% and
2.4%, respectively, it is clear that one has to use the
O(as) results for the angular structure functions if such e
perimental accuracies can be reached. This is illustrate
Figs. 10 and 11 where we plot the top-quark mass dep
dence ofGL /GU1L andGU /GU1L for the Born term case an

FIG. 10. Top-quark mass dependence of the rate ratioGL /GU1L

for mb50 @Born term, full line;O(as), dashed line#.

FIG. 11. Top-quark mass dependence of the rate ratioGU /GU1L

for mb50 @Born term, full line;O(as), dashed line#.
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the O(as) case formb50. Note that theO(as) curves are
horizontally displaced from the Born term curves by a
proximately 3 and 3.4 GeV, respectively, meaning that o
would make the corresponding mistakes in the top-qu
mass determination from a measurement of the ang
structure functions if the Born curves were used instead
the radiatively corrected ones. The present Tevatron ru
uncertainties on the top-quark mass are around 4%, whic
anticipated to be improved to 1.7% during the initial stag
of Tevatron run II. It remains to be seen whether a m
determination based on angular measurements as prop
here can compete with the conventional method using inv
ant mass reconstruction.
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APPENDIX A: INTEGRALS

In this appendix we catalog the basic set of tree gra
integrals that are needed in ourmbÞ0 calculation and give
their analytical results.

1. Basic integrals

In the first step of the tree graph integration one integra
over the gluon energyk0 . After having done the integration
on the gluon energy it proves to be convenient to perform
shift in theW energyq0 integration variable by introducing
the variablez511x222q0 /mt . One then encounters th
following set of integrals:

R~m,n!ªE
y21e28

~12x!22e18 zmdz

Aln~1,x2,z!
,

R~n!ªE
y21e28

~12x!22e18 dz

~z2y2!Aln~1,x2,z!
, ~A1a!

S~m,n!ªE
y21e28

~12x!22e18 zmdz

Aln~1,x2,z!

3 lnS 12x21z1Al~1,x2,z!

12x21z2Al~1,x2,z!
D , ~A1b!
6-19
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S~n!ªE
y21e28

~12x!22e18 dz

~z2y2!Aln~1,x2,z!

3 lnS 12x21z1Al~1,x2,z!

12x21z2Al~1,x2,z!
D , ~A1c!

where l(1,x2,z)511x41z222x2z22x222z. The re-
quired ranges of values of the parametersm andn are listed
in Table III. The cutoff parameterse18 ande28 are needed to
account for the spurious singularities that are artificially
troduced by partial fractioning the integrands. The spurio
singularities cancel as they must when all contributions t
particular helicity structure function are summed.

In order to get rid of the square roots the final substitut
zª11x22x(r 11)/r is introduced. The variabler has to be
integrated in the interval@11e1 ,h2e2#, where

h5~11x22y21Al!/2x and l5l~1,x2,y2! ~A2!

as before. The spurious cutoff parameterse1 ande2 replace
the above cutoff parameterse18 ande28 and cancel in all final
expressions.

In order to keep our results at a manageable length
introduce the following set of auxiliary functions:

L1ª lnS h2x

h~12hx! D , L2ª lnS h~h2x!

12hx D ,

~A3a!

L3ª lnS ~12x!22y2

x

~12x!2

e1
2y2 D ,

L4ª lnS ~11x!22y2

x

~12x!2

4y2 D , ~A3b!

L5ª lnS 12x

y D , L6ª lnS h~12x!

h2x D , ~A3c!

N0ªLi2~hx!1Li2S x

h D22 Li2~x!,

~A3d!

N1ªLi2~hx!2Li2S x

h D ,

N2ª2 ln~h!ln~11x!

1 lnS h2x

~h21!~11x! D lnS h2x

h~12hx! D
2Li2S 1

h D1Li2S ~h221!x

h2x D1Li2S 12hx

h2x D ,

~A3e!
05403
-
s
a

n

e

N3ª2 ln~h!ln~12x!

2 lnS ~h11!~12x!

h2x D lnS h2x

h~12hx! D
2Li2S 2

1

h D1Li2S ~h221!x

h2x D1Li2S 2
12hx

h2x D ,

~A3f!

and

b1~n!ª~x21!n1~x11!n,
~A3g!

b2~n!ª~x21!n2~x11!n,

b~n!ª
~x21!n

h21
2

~11x!n

h11
. ~A3h!

In the following we list our analytical results for the var
ous types of integrals that are needed in our calculation.

2. Integrals of typeR
„m,n…

R~22,21!5
l1/2

y2 1
L22L1

2
2

11x2

12x2

L21L1

2
, ~A4a!

R~21,21!52l1/22~11x2!
L22L1

2
1~12x2!

L21L1

2
,

~A4b!

R~0,21!5 1
2 ~11x22y2!l1/22x2~L22L1!,

~A4c!

R~1,21!52 1
3 l3/21~11x2!@ 1

2 ~11x22y2!l1/2

2x2~L22L1!#, ~A4d!

R~22,0!5
1

y22
1

~12x!2 , R~21,0!
0 52L5 , ~A4e!

R~0,0!5~12x!22y2, R~1,0!5
~12x!4

2
2

y4

2
,

~A4f!

R~2,0!5
~12x!6

3
2

y6

3
,

R~22,1!5
1

~12x2!2 S l1/2

y2 1
11x2

12x2

L21L1

2 D ,

~A4g!

R~21,1!5
1

12x2

L21L1

2
,

R~0,1!5
L22L1

2
, R~1,1!52l1/21~11x2!

L22L1

2
,

~A4h!
6-20
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R~2,1!52
1

2
y2l1/22

3

2
~11x2!l1/21~114x21x4!

3
L22L1

2
, ~A4i!

R~3,1!52
1

3
l3/21

3

2
~11x2!~11x22y2!l1/2

2~31x2!~113x2!l1/21~11x2!

3~118x21x4!
L22L1

2
, ~A4j!

R~22,2!5
1

4x

L3

~12x!42
1

4x

L4

~11x!4 1
1

~12x2!2

3S 1

y22
1

~12x!2D , ~A4k!

R~21,2!5
1

4x

L3

~12x!22
1

4x

L4

~11x!2 ,

~A4l!

R~0,2!5
1

4x
~L32L4!,

R~1,2!5
~12x!2

4x
L32

~11x!2

4x
L42

1

2x
b2~2!L5 ,

~A4m!

R~2,2!5
~12x!4

4x
L32

~11x!

4x
L42

1

2x
b2~4!L5

1@~12x!22y2#, ~A4n!

R~3,2!5
~12x!6

4x
L32

~11x!6

4x
L42

1

2x
b2~6!L5

13@~12x!22y2#~11x2!2
1

2
l, ~A4o!

R~4,2!5
~12x!8

4x
L32

~11x!8

4x
L42

1

2x
b2~8!L5

1@~12x2!2y2#S 1

3
~11x1x22y2!2

1~6117x216x4! D22~11x2!l. ~A4p!

3. Integrals of typeR
„n…

R~21!52l1/22~11x22y2!
L22L1

2
1l1/2 lnS l1/2

x

h

e2D ,

~A5a!
05403
R~0!5
1

2
lnS ~12x!22y2

~11x!22y2D1 lnS h

e2
D , ~A5b!

4. Integrals of typeS
„m,n…

S~0,0!5l1/22x2~L22L1!2y2L1 , ~A6a!

S~1,0!5
1

4
~115x21y2!l1/22~21x2!x2

L22L1

2

2y4
L1

2
, ~A6b!

S~0,1!5N0 , S~1,1!5~11x2!N02l1/2L1

12~12x2!L52@~12x!22y2#, ~A6c!

S~2,1!5~114x21x4!N02 1
2 ~313x21y2!l1/2L1

13~12x4!L52 1
4 @~12x!22y2#@~12x!214

18x21y2#, ~A6d!

S~0,2!52
1

2x
~N22N3!, ~A6e!

S~1,2!52
~11x!2

2x
N21

~12x!2

2x
N31N1 , ~A6f!

S~2,2!52
~11x!4

2x
N21

~12x!4

2x
N312~11x2!N1

1l1/22x2~L22L1!2y2L1 , ~A6g!

S~3,2!52
~11x!6

2x
N21

~12x!6

2x
N31~31x2!

3~113x2!N11
1

4
~9113x21y2!l1/2

2~615x2!x2
L22L1

2

2y2@4~11x2!1y2#
L1

2
, ~A6h!

S~0,3!5
1

4x H 2

12x
1

1

12x
L32

1

11x
L42

b~0!

x
L1

1
b1~0!

x
L6J , ~A6i!

S~1,3!5
1

4x H 2~12x!1~12x!L32~11x!3L4

2
b~2!

x
L11

b1~2!

x
L6J , ~A6j!
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S~2,3!5
1

4x H 2~12x!31~12x!3L32~11x!3L4

2
b~4!

x
L11

b1~4!

x
L614xN0J , ~A6k!

S~3,3!5
1

4x H 2~12x!51~12x!5L32~11x!5L4

2
b~6!

x
L11

b1~6!

x
L6112x~11x2!N0

18x~12x2!L524xl1/2L1

24x@~12x!22y2#J , ~A6l!

S~4,3!5
1

4x H 2~12x!71~12x!7L32~11x!7L4

2
b~8!

x
L11

b1~8!

x
L6124x~113x21x4!N0

128x~12x4!L522x~717x21y2!l1/2L1

22x@~12x!22y2#~719x2!1xlJ . ~A6m!

5. Integrals of typeS
„n…

S~0!52
L1

2

2
1L1 lnS l1/2

x

h

e2
D1~L22L1!ln y1Li2~hx!

2Li2S x

h D22 Li2S ~h221!x

h2x D , ~A7a!

S~1!5
1

l1/2 H 2
L1

2

2
1L1 lnS l1/2

x

1

e2
D12 Li2S 2

1

h D
22 Li2S 2

12hx

h2x D J . ~A7b!
05403
Of all the many integrals listed in Secs. A 2–A 5 the to
rate calculation done before in@3–8# requires only the five
basic integralsR(22,21) , R(21,21) , R(0,21) , S(0,0) , and
S(1,0) compared to the 33 basic integrals that are needed
the full calculation. This may serve as a measure of the
ditional labor that is incurred when one calculates the co
plete set of structure functions as is done in this paper.

APPENDIX B: COEFFICIENT FUNCTIONS r
„n… , r

„m,n… ,
s

„n… , and s
„m,n…

In this appendix we list the values of the various coe
cient functionsr (n),i , r (m,n),i , s (n),i , and s (m,n),i ~i 5U
1L, UP1LP, U, UP, L, LP, F, FP, S, SP, I P, andAP! that
multiply the basic set of integrals listed in Appendix A a
spelled out in the rate expression Eq.~60!. The coefficient
functions involve polynomials inx2 andy2 which we sort by
increasing powers ofy2. For reasons of conciseness we dr
the suffixy denoting the particular type of structure functio
in the following listing. The contributions are collected
terms of powers ofy2.

1. Total rate iÄU¿L

r~22,21!52
y2~12x2!~~112x2!1y2!

x2 , ~B1a!

r~21,21!5
~12x2!~112x2!1~423x2!y213y4

x2

~B1b!

r~0,21!52
~322x2!13y2

x2 , ~B1c!

s~0,0!522
y2~~112x2!1y2!

x2 , ~B1d!

s~1,0!52
~112x2!1y2

x2 . ~B1e!
2. Polarized total rate iÄUP¿L P

r~22,0!52
y2~12x2!2@~122x2!2y2#

x2 , ~B2a!

r~21,0!5
~124x215x422x6!1~524x225x4!y222~32x2!y4

x2 , ~B2b!

r~0,0!5
2~12x226x4!23y21y4

x2 , ~B2c!

r~1,0!52
~726x2!27y2

x2 , ~B2d!

r~21!58
Al@~122x2!2y2#

x2 , ~B2e!
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r~0!528
l@~122x2!2y2#

x2 , ~B2f!

s~0,0!524
Al@~122x2!2y2#

x2 , ~B2g!

s~0,1!522
4x2~122x2!~12x2!1~725x226x4!y22~91x2!y412y6

x2 , ~B2h!

s~1,1!52
~32x216x4!2~22x2!y22y4

x2 , ~B2i!

s~2,1!52
~122x2!2y2

x2 , ~B2j!

s~0!54
Al~12x21y2!@~122x2!2y2#

x2 , ~B2k!

s~1!54
l~12x21y2!@~122x2!2y2#

x2 . ~B2l!

3. Longitudinal rate iÄL

r~22,1!52
y2~11y2!~12x2!3

x2 , ~B3a!

r~21,1!5
~12x2!@~12x2!21~61x223x4!y21~513x2!y4#

x2 , ~B3b!

r~0,1!52
~522x227x414x6!1~12233x21x4!y21~71x2!y4

x2 , ~B3c!

r~1,1!5
~7231x214x4!1~101x2!y213y4

x2 , ~B3d!

r~2,1!523
11y2

x2 , ~B3e!

s~0,2!522
y2@~1110x2211x4!1~11x2!y2y2#

x2 , ~B3f!

s~1,2!52
~1110x2211x4!1~324x21x4!y212~11x2!y4

x2 , ~B3g!

s~2,2!522
2~123x2!1~312x2!y21y4

x2 , ~B3h!

s~3,2!52
11y2

x2 . ~B3i!
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4. Polarized longitudinal rate iÄL P

r~22,2!52
y2~12y2!~12x2!4

x2 , ~B4a!

r~21,2!5
~12x2!2@~12x2!21~722x213x4!y224~21x2!y4#

x2 , ~B4b!

r~0,2!52
2x2~32x2!~12x2!22~725x416x6!y21~7218x213x4!y4

x2 , ~B4c!

r~1,2!522
~5110x2113x424x6!2~9148x2111x4!y212~21x2!y4

x2 , ~B4d!

r~2,2!5
~16220x224x4!2~17120x2!y21y4

x2 , ~B4e!

r~3,2!527
12y2

x2 , ~B4f!

s~21!58
Al~12y2!

x2 , ~B4g!

s~0!528
l~12y2!

x2 , ~B4h!

s~0,0!524
Al~12y2!

x2 , ~B4i!

s~0,3!522
~12x2!@4x2~12x2!21~7210x217x424x6!y2#

x2

12
~12x2!@~918x225x4!y422~12x2!y6#

x2 , ~B4j!

s~1,3!52
~325x2117x4215x6!1~1229x2118x4111x6!y2

x2

22
~19114x2111x4!y424~11x2!y6

x2 , ~B4k!

s~2,3!522
~5214x227x4!1~4121x2111x4!y22~1117x2!y412y6

x2 , ~B4l!

s~3,3!52
~113x2!15x2y22y4

x2 , ~B4m!

s~4,3!52
12y2

x2 , ~B4n!

s~0!524
Al~12y2!~12x21y2!

x2 , ~B4o!

s~1!54
l~12y2!~12x21y2!

x2 . ~B4p!
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5. Unpolarized transverse rateiÄU

r~22,1!522y2~12x2!3, ~B5a!

r~21,1!52~12x2@~12x2!22~125x2!y222y4#,
~B5b!

r~0,1!52@~126x215x4!23~52x3!y222y4#,
~B5c!

r~1,1!52@~1725x2!1y2#, ~B5d!

r~2,1!52, ~B5e!

s~0,2!54y@~524x22x4!12u2#, ~A5f!

s~1,2!524@~524x22x4!22~21x2!y2#,
~B5g!

s~2,2!524@~612x2!1y2#, ~B5h!

s~3,2!54. ~B5i!

6. Polarized unpolarized-transverse rateiÄUP

r~22,2!52y2~12x2!4, ~B6a!

r~21,2!522~12x2!2@~12x2!212~113x2!y222y4#,
~B6b!

r~0,2!524@~12x2!2~31x2!22~113x4!y2

22~52x2!y4#, ~B6c!

r~1,2!54@~9110x215x4!2~2715x2!y21y4#,
~B6d!

r~2,2!52@10~12x2!13y2#, ~B6e!

r~3,2!56, ~B6f!

r~21!5216Al, ~B6g!

s~0!516l, ~B6h!

s~0,0!58Al, ~B6i!

s~0,3!54~12x2!@4x2~12x2!21~114x225x4!y2

22~42x2!y4#, ~B6j!

s~1,3!54@~12x4!~3211x2!1~9222x2211x4!y2

22~122x2!y4#, ~B6k!

s~2,3!524@~13111x4!2~1517x2!y212y4#,
~B6l!

s~3,3!524@~125x2!1y2#, ~B6m!

s~4,3!524, ~B6n!
05403
s~0!58Al~12x21y2!, ~B6o!

s~1!528l~12x21y2!. ~B6p!

7. Scalar rate iÄS

r~22,21!252
y2~11y2!~12x2!

x2 , ~B7a!

r~21,21!5
~11y2!@~12x2!13y2#

x2 , ~B7b!

r~0,21!523
~11y2!

x2 , ~B7c!

s~0,0!522
y2~11y2!

x2 , ~B7d!

s~1,0!52
~11y2!

x2 . ~B7e!

8. Polarized scalar rateiÄSP

r~22,0!52
y2~12y2!~12x2!2

x2 , ~B8a!

r~21,0!5
~12y2!@~12x2!212~32x2!y2#

x2 , ~B8b!

r~0,0!5
~12y2!@2~115x2!2y2#

x2 , ~B8c!

r~1,0!527
12y2)

x2 , ~B8d!

r~21!58
Al~12y2!

x2 , ~B8e!

r~0!528
l~12y2!

x2 , ~B8f!

s~0,0!524
Al~12y2!

x2 , ~B8g!

s~0,1!522
~12y2!@4x2~12x2!1~715x2!y222y4#

x2 ,

~B8h!

s~1,1!52
~12y2!@3~12x2!1y2#

x2 , ~B8i!

s~2,1!52
~12y2!

x2 , ~B8j!
6-25



M. FISCHER, S. GROOTE, J. G. KO¨ RNER, AND M. C. MAUSER PHYSICAL REVIEW D65 054036
s~0!524
Al~12y2!@~12x2!1y2#

x2 , ~B8k!

s~1!54
l~12y2!@~12x2!1y2#

x2 . ~B8l!

9. Forward-backward-asymmetric rate iÄF

r~22,0!522y2~12x2!2, ~B9a!

r~21,0!52@~12x2!214x2y2#, ~B9b!

r~0,0!52@4~21x2!27y2#, ~B9c!

r~1,0!522, ~B9d!

r~21!516Al, ~B9e!

r~0!5216l, ~B9f!

s~0,0!528Al, ~B9g!

s~0,1!524@4x2~12x2!1~115x2!y222y4#,
~B9h!

s~1,1!524@3~11x2!2y2#, ~B9i!
05403
s~2,1!54, ~B9j!

s~0!528Al@~12x2!1y2#, ~B9k!

s~1!58l@~12x2!1y2#, ~B9l!

10. Polarized forward-backward-asymmetric rate iÄF P

r~22,1!52y2~12x2!3, ~B10a!

r~21,1!522~12x2!@~12x2!22~125x2!y2#,
~B10b!

r~0,1!522@~126x215x4!2~111x2!y2#,
~B10c!

r~1,1!522@~111x2!15y2#, ~B10d!

r~2,1!510, ~B10e!

r~0,2!524y2~12x2!~51x2!, ~B10f!

s~1,2!54@~12x2!~51x2!22x2y2#, ~B10g!

s~2,2!54~2x21y2!, ~B10h!

s~3,2!524. ~B10i!
11. Polarized longitudinal-transverse-interference rateiÄI P

r~22,2!5
&

2

y2~12x2!4

x
, ~B11a!

r~21,2!52
&

2

~12x2!2@~12x2!21~315x2!y212y4#

x
, ~B11b!

r~0,2!52
&

2

~12x2!2~513x2!2~25238x2129x4!y218~11x2!y4

x
, ~B11c!

r~1,2!5
&

2

~1150x223x4!2~21123x2!y2110y4

x
, ~B11d!

r~2,2!5
&

2

~517x2!22y2

x
, ~B11e!

r~21!524&
Al

x
, ~B11f!

r~0!54&
l

x
, ~B11g!

s~0,0!52&
Al

x
, ~B11h!

s~0,3!5&
~12x2!@4x2~12x2!22~129x218x4!y212~112x2!y4#

x
, ~B11i!
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s~1,3!5&
~5218x215x418x6!22~51x218x4!y212~114x2!y4

x
, ~B11j!

s~2,3!52&
4~113x21x4!2~1118x2!14y4

x
, ~B11k!

s~3,3!52&
1

x
, ~B11l!

s~0!52&
Al@~12x2!1y2#

x
, ~B11m!

s~1!522&
l@~12x2!1y2#

x
. ~B11n!
e

-

all

pli-
s

12. Polarized parity-asymmetric rate iÄAP

r~22,1!5
&

2

y2~12x2!3

x
, ~B12a!

r~21,1!52
&

2

~12x2!@~12x2!214y2#

x
,

~B12b!

r~0,1!5
&

2

4~12x2!1~327x2!y2

x
, ~B12c!

r~1,1!52
&

2

327x2

x
, ~B12d!

s~0,2!5&
y2~12x2!~112x2!

x
, ~B12e!

s~1,2!52&
~12x2!~112x2!1~122x2!y2

x
,

~B12f!

s~2,2!5&
122x2

x
. ~B12g!

APPENDIX C: LOOP INTEGRALS

In this appendix we list thembÞ0 one-loop amplitude
corrections to the processt→b1W1. They are determined
from the vertex correction Fig. 1~b! and the appropriate wav
function renormalization constantsZ2 . We present our re-
sults in terms of the three vector current amplitudesFi

V ( i
51,2,3) and the three axial vector current amplitudesFi

A

( i 51,2,3) defined in Eq.~25a! in Sec. V. Using the abbre
viations in Eq.~64! with q25mW

2 , one has
05403
F1
V511

as

4p
CFH 2

mt
21mb

22q2

mt
2Al

F2 Li2~12w1
2!

22 Li2S 12
w1

wm
D1

1

2
lnS L4

mb
2mt

2D ln~w1wm!

1 lnS w1
3

wm
D lnS wm~12w1

2!

wm2w1
D G2 lnS L4

mb
2mt

2D
2

mt
22mb

2

2q2 lnS mb
2

mt
2D 241 ln~w1wm!

3S mt
2Al

2q2
2

~mt1mb!22q2

mt
2Al

D J , ~C1!

F2
V5

as

4p
CF

mt2mb

q2 H 22S mt12mb

mt2mb

2
mt

22mb
2

q2 D lnS mb
2

mt
2D 2S mt

2Al

q2 2
mb

mt2mb

3
q21~mt2mb!~3mt1mb!

mt
2Al

D ln~w1wm!J , ~C2!

F3
V5F3

V~mt ,mb!5F2
V~mb ,mt!. ~C3!

As before the IR singularity is regularized by a sm
gluon massmg . The axial vector amplitudesFi

A can be ob-
tained from the vector amplitudes by the replacementmt→
2mt , i.e., one hasFi

A(mt)5Fi
V(2mt) ( i 51,2,3). Our one-

loop amplitudes are linearly related to the one-loop am
tudes given in@34#. The two sets of one-loop amplitude
agree with each other after correcting for a typo in@34# men-
tioned in Sec. V.
6-27



t.

.

.

s.

.

J.

in-

v.

M. FISCHER, S. GROOTE, J. G. KO¨ RNER, AND M. C. MAUSER PHYSICAL REVIEW D65 054036
@1# CDF Collaboration, T. Affolderet al., Phys. Rev. Lett.84, 216
~2000!.

@2# S. Willenbrock, Rev. Mod. Phys.72, 1141 ~2000!; M. Narain
~private communication!.

@3# A. Denner and T. Sack, Nucl. Phys.B358, 46 ~1991!.
@4# J. Liu and Y.-P. Yao, Int. J. Mod. Phys. A6, 4925~1991!.
@5# A. Czarnecki, Phys. Lett. B252, 467 ~1990!.
@6# C. S. Li, R. J. Oakes, and T. C. Yuan, Phys. Rev. D43, 3759

~1991!.
@7# M. Jezabek and J. H. Ku¨hn, Nucl. Phys.B314, 1 ~1989!.
@8# A. Ghinculov and Y. P. Yao, Mod. Phys. Lett. A15, 925

~2000!.
@9# G. Mahlon and S. Parke, Phys. Rev. D55, 7249~1997!.
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