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Complete angular analysis of polarized top quark decay aD(«ay)
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We calculate the fullO(«) radiative corrections to the three spin independent and five spin dependent
structure functions that describe the angular decay distribution in the decay of a polarized top quaiW/into a
boson(followed by the decayv" —1*+ v, or by W" —q+q) and a bottom quark. The angular decay distri-
bution is described in cascade fashion; i.e., the detay—W™" + Xy, is analyzed in the top-quark rest system
while the subsequent dec@y™ —|* + v, (or W* —q+q) is analyzed in th&V rest frame. Since the structure
function ratios depend on the rati,, /m; we advocate the use of such angular decay measurements for the
determination of the top quark’s mass. Our results for the e@fw,) integrated structure functions are
presented in analytical form, keeping the mass of the bottom quark finite. In thentignitO the structure
function expressions reduce to rather compact forms. We also present results rigy=tlleunpolarized and
polarizedO(«g) scalar structure functions relevant to the semi-inclusive decay of a polarized top quark into a
charged Higgs bosot(1)—H™* + X, in the two-Higgs-doublet model when,=0.
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[. INTRODUCTION years[2]. If such an accuracy can, in fact, be achieved, and
having in mind that theD(«;) corrections to the top-quark
In the decay of an unpolarized or polarized top quark todecay rate amount to 8.5§8—8], it is quite evident that one
the W-gauge boson and a bottom quark th& is strongly  needs to improve on the known theoretical Born level pre-
polarized, or, phrased in a different language, Wé has a  dictions for the above three structure functions by calculating
nontrivial spin density matrix. Furthermore, the spin densitytheir next-to-leading order radiative corrections.
matrix of theW can be tuned by changing the polarization of At a later stage, when the data sample of polarized top
the top quark. The polarization of the™ will reveal itselfin ~ quarks has become sufficiently large, one will also be able to
the angular decay distribution of its subsequent detslys —analyze the decays of polarized top quarks. The top quark is
—|T+p (or W —q+q).t very short lived and therefore retains its full polarization
In the first stage one will aim to analyze the decay ofcontent when it decays. Polarized top quark decay brings in
unpolarized top quarkr the average over its polarization five additional polarized structure functions which can be
The decay distribution of unpolarized top-quark decay ismeasured through an analysis of spin-momentum correla-
governed by three structure functions, which we shall refer tdions between the polarization vector of the top quark and the
asHy (unpolarized transverseH, (longitudina), andHg ~ momenta of its decay products.
(forward-backward asymmetiicin fact, the Collider Detec- Polarized top quarks will become available at hadron col-
tor at Fermilab(CDF) Collaboration has already presented liders through single top-quark production, which occurs at
some results on the measurement of the longitudinal compdhe 33% level of the top-quark pair production rgeg. Fu-
nent of theW based on the limited run | dafd]. The mea- turee* e colliders will also be copious sources of polarized
surement has confirmed the expected dominance of the lofiop-quark pair$10—-15. For example, at the proposed DESY
gitudinal mode. The error on this measurement is quite largd€V Energy Superconducting Linear AcceleratGESLA)
(~45%) but is expected to be reduced significantly duringone expects rates of (1-%)L0° top-quark pairs per year.
run Il at the Fermilab Tevatron to start in the spring of 2001.The polarization of these can easily be tuned through the
In run Il (5-6)x 10° top quark pairs will be produced per availability of polarized beamee, e.g/[16]). Further, there
year and detector. This number will be boosted t6-1T0°  is a high degree of correlation between the polarization of
top quark pairs per year and detector at the CERN Largéop and quarks and antiquarks produced in pairs either at
Hadron Collider(LHC) starting in 2006 or 2007. It is con- e"e colliders[17-2Q or at hadron collider$21], which
ceivable that the errors on the structure function measurecan be probed through the joint decay distributions of the top

ments can be reduced to the 1-2% level in the next fewjuark and antiquark.
In this paper we study momentum-momentum and spin-

momentum correlations in the cascade decay prodess
IFrom this point on we shall drop explicit reference to twé ~ — W' +b followed by W*—1"+v,. The step-1 decay

—q+q decay channel since it has the same angular decay distri> W + b is analyzed in the rest frame where we study the
bution asW* —|*+ ;. In fact the branching fraction into the two Spin-momentum correlation between the spin of the top
hadronic channelsd(+ u) and &+ c) exceeds that of the sum of the quark and the momentum of th&. In step 2 we go to the
three leptonic channels by a factor of approximately 2 because diest frame of théV and analyze the correlation between the
the color enhancement factor. Although not explicity mentionedmomentum of the leptorfor antiquark and the initial mo-
further on, the existence of the hadronic decay mode ofieis ~ mentum direction of th&V. In technical terms this means we
always implicitly assumed in the following. analyze the double density matrix of the decaying top quark
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and theW-gauge boson produced. This must be contrastedgreement with our previous results [ib6]. These had al-
with the center of masanalysis of polarized top-quark decay ready been checked against the analytical results for the total
where the spin-momentum correlations are all analyzed imate obtained if4-7] and for the longitudinal/transverse
the rest system of the top quaffor an O(a,) analysis of composition obtained ifi27]. All six (mass zerpdiagonal
this kind, sed22]]. Experimentally such a correlation mea- structure functions had also been checked against the corre-
surement is easier, but from a theoretical point of view thesponding numerical results given j27—-29. The unpolar-
cascade type of analysis is advantageous because one daed scalar structure function has been checked against the
then better isolate the contribution of the longitudinal moderesults of{ 24].
of the W-gauge boson, which is of relevance for understand- The central topic of this paper is the analysis of polarized
ing the electroweak symmetry breaking sector in the stantop-quark decay. We therefore mostly limit our attention to
dard model. The results of the two analyses are of courseesults valid in the limiiny,— 0 in the main part of our paper.
related through a Lorentz boost along thedirection. How-  This leads to enormous simplifications in the analytical rate
ever, the azimuthal correlations to be discussed later are nfermulas. The quality of then,=0 approximation may be
affected by such a Lorentz boost and are thus identical ifudged from the Born term rate which increases by 0.27% on
both types of analysis. going frommy,= 4.8 GeV tom,= 0. The fullm,#0 structure

The complete angular decay distribution is governed hyis given in Sec. VIl and the Appendixes. Apart from retain-
altogether eight structure functions which we calculate anaing full control overm,# 0 effects the finite mass results are
lytically, including their full O(«g) radiative corrections. needed, e.g., in the theoretical analysis of semileptnic
One of the motivations for calculating th@(«,) radiative  —c decays, where the-quark mass can certainly not be
corrections is the fact that the radiative QCD correctionsneglected.
populate helicity configurations that are not accessible at the Our paper is structured as follows. In Sec. Il we define a
Born level. Take, for example, unpolarized top-quark decayset of three spin independent and five spin dependent struc-
where, at the Born level, th&/* cannot be right handed, i.e., ture functions through the covariant expansion of the decay
it cannot have positive helicity, due to angular momentuntensor resulting from the product of the two relevant current
conservation whemy,= 0. This implies that strictly forward matrix elements. The eight invariant structure functions are
|" production does not occur at the Born level. However,related to eight helicity structure functions which form the
when radiative corrections are taken into account, rightangular coefficients of the angular decay distribution. In or-
handedwWs do occur and strictly forward® production is  der to facilitate the calculation of the tree graph contributions
allowed. As we shall see in Sec. IV, technically this meansve define a set of five covariant projection operators and a
that the structure function combinatiod(+Hg)/2 van-  covariant representation of the spin vector of the top quark.
ishes at the Born term level but becomes nonzer® @at.) These projectors can be used to covariantly project the reg-
[23]. We shall, however, see that thd «;) population of the  uisite helicity structure functions from the hadron tensor. The
right-handedW is rather small[23]. The same statement advantage is that one thereby obtains the appropriate helicity
holds true for the other structure function combinations thastructure functions and scalarizes the tensor integrands
vanish at the Born term level. needed for the tree graph integration in one step. In Sec. llI

In order to retain full control over the-mass dependence, we derive the explicit form of the angular decay distribution
and having also other applications in mind, we have kept an terms of the eight helicity structure functions for top quark
finite mass value for thé quark in our calculation. This decay. We also specify the changes in the angular decay dis-
improves on our earlier calculation of polarized top-quarktribution needed for top antiquark decay. Section IV contains
decay where th&-quark mass was neglected and where weour Born term results. In Sec. V we list our results for the
limited our attention to the sixdiagonal structure functions m,=0 one-loop contributions. In Sec. VI we provide expres-
that govern the polar angle distribution in cascade decagions for theO(as) tree graph contributions and discuss
[16]. The additional two(nondiagonal structure functions technical details of how we have handled the necessary tree
calculated in this paper describe the azimuthal correlation ofiraph integrations. We mention that the infrared divergencies
the plane of the top quark’s polarization and the plane deare regularized by a finite small gluon mass. In Sec. VII we
fined by the final leptons. In addition, we determine the untake them,—0 limit of the m,#0 results in Sec. VIII and
polarized and polarized scalar structure functions, which argresent rather compact analytic@l(«s) formulas for the
of relevance in the analysis of top-quark decay into a bottonvarious structure functions. Section VIl also contains our nu-
quark and a charged Higgs bosi@]. We mention that our merical results in themy,=0 approximation. Section VIII
calculations have been done in the zero width approximatiogives our analytical results on the tree graph integrations plus
of the W boson. Finite width effects will be addressed in athe one-loop contributions fan,+ 0. Section IX provides a
forthcoming papef25] (see alsd26]). summary and our conclusions. In particular, we emphasize

Most of the results in this paper are new. They have beethat angular measurements as advocated in this paper can be
checked against limiting cases and partial results obtained intilized to measure the mass of the top quark. In Appendix A,
other papers. We have checked our analyt@él,) result  we provide a complete list ah,# 0 basis integrals that ap-
for the total rate against the corresponding analytical rat@ear in the calculation of the tree graph contributions. This
result of Denner and Sack, who also kept thguark mass  set of basis integrals should also be useful for o@éts) or
finite [3]. We find agreement. We took the zdrmuark mass O(«) radiative correction calculations. The requisite coeffi-
limit of the six diagonal structure functions and obtainedcient functions that multiply the basic integrals in the struc-
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ture function expressions are listed in Appendix B. Appendix

C, finally, contains the one-loop contribution in thg+# 0 Wt Wt
case.
(a) (b)
t bt =Y S b
1. INVARIANT AND HELICITY STRUCTURE FUNCTIONS % (&é
The dynamics of the current-inducee-b transition is fwgsg

embodied in the hadron tensbr*” which is defined by

wh wh
HMV(QO!QZZm\leSt):(ZW)gi dIT;8%(pi—a—px,) © @
%o T @o}a\ b Tt @%\ b
X (1P 501" %) “ “
2m g g
X{(Xp|I*[t(py,S0)), (1) FIG. 1. Leading order Born term contributigia) and O(ay)

contributions(b)—(d) to t—b+W™.

wheredIl; stands for the Lorentz-invariant phase space fac-
tor. In the standard model the weak current is givenJby [O(ag) tree graph contribution The Feynman diagrams
=0Qpy*P.q; with P, =3(1—vs). contributing to the respective processes are drawn in Fig. 1.

We are working in the narrow resonance approximation of The angular decay distribution that we are aiming for is
the W boson and sej?= m\ZN as indicated in the argument of given in terms of a set of angular decay coefficients which
the hadron tensor. Thus the hadron tensor is a function of thare linearly related to the set of unpolarized structure func-
energyq, of theW alone. Since we are not summing over thetions H; and polarized structure functioi® defined in Eq.
top-quark spin the hadron tensor also depends on the tof2). The relevant linear combinations are given by
quark spins; as indicated in Eq(1). The structure of the
hadron tensor can be represented by a standard set of invari- Hu=H++H__=Hay;+Hg, (43
ant structure functions defined by the expansion

HL=H002H33, (4b)
H"=(—g*"Hy+p{'pHo—i€*""7p; ,0,H3) _
) . He=H,, —H__=i(Hp—Hyy, (40)
—(9-s)(—g""G1+p{'p G —i€"""7p; ,0,G3)
_ | I\ _ | |
+(s{'py+ s pf)Get+i e PPy ,S,Gag Hyp=H_  (sp)+H__(s)=Hy(s)+Hoisy), (4d)
+ietr7q 5,,Go, (2 Hip=Hods)=Hasy), (49)

whereH; (i=1,2,3) andG; (i=1,2,3,6,8,9) denote unpolar- Hgp=H_ _(s)—H__(sh)=i[Hy(s) —Hp(sh],

ized and polarized structure functions, respectively. (4f)
In the expansion(2) we have kept only those structure

functions that contribute in the zero lepton mass case. We Hp=3[H_ o(s") +Hg. (s!)—H _o(si)—Ho_(s]

have thus omitted covariants built frogt* and/orq”. We (49

have also dropped contributions from invariants that are fed

by T-odd or imaginary contributions, which are both absent

in the present case. =~ —[Hyys) +Ha(s)], (4h)
In the expansiori2) one has still overcounted by one term 2v2

since there is a relationship between the three parity-

conserving(pc) spin dependent covariants appearing in Eq. Hap=2[Ho(S{) +Ho (st) +H_o(s{) +Ho_(s{)]

(2) because of the identity of Schouten. The identity between (4i)

the three covariants reads

— I_ try _ tr .
q-stef”’“’pt,pqo—qze“V"”pt’pstrq-pte’”""qpstygzo(.s) = Z‘Q[st(st) Haa(st) ], (4))

We shall, however, keep the overcounted set of nine invariVnereHy, o, =H..€*“(\w) €"(\y) are the helicity projec-
ant structure functions in Eq2) for reasons of computa- tions of the polarized and unpolarized pieces of the structure
tional convenience. functions H#”. The e*#(\y) and €"(\y) are the usual

In this paper we shall be concerned with only two types ofspherical components of the polarization vector of the
intermediate state in Eq1), namely,|X,)=|b) [Born term  W-gauge boson. In the top-quark rest system wift
and O(ag) one-loop contributions and |X,)=|b+g)  =(qgo;0,0/q|) and|d|=(q5—m3)*? they read
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_1 o , 1 omy1 , Pea
EM(O)_EVHqLO!OQO)- (5) ]P'lu“ =+EHW[6#(X)<pt—m—\2’vq +u—=vy,
L (8d)
K+Y=—(0"F1 —i
e*(*) \Q(O’+1' i,0). (6) 1my 1 [
PR"=— >3 M2 WE{ i€’ P7e,(X) Py, 50,

In Egs.(4a—(4j) we have also included the Cartesian com- !
ponents of the helicity structure functions in theboson Pi-
rest frame, which are useful for some applications. For nota- x| py— Ez\;q” —pev. (8e)

tional convenience we shall often refer to the set of helicity
structure functions by their generic names. Thus we shal
frequently usel for Hy andUP for Hye, etc.

The rest frame components of the longitudiffal’ ) and
transverse(“tr” ) polarization vector of the top quark are
simply given bys't=(0;0,0,1) ands{'=(0;1,0,0). For the
unpolarized helicity structure functions one sums over th
two diagonal spin configurations of the top quark while one 1 pi-q
takes the differences of these for the polarized helicity struc- S{”‘ZT(Q”— > p{‘), (9)
ture functiong(in the z basis fors] and in thex basis fors}"). dl M
When computing the polarized structure functions from the
relevant Dirac trace expressions one thus has to repiace (W
+m,) in the unpolarized Dirac string by p(+m;)(1
+ys%;). Note that the longitudinal component contributes
only to the diagonal helicity structure functioks L, andF )
while the transverse component contributes only to the non- NOte the inverse powers off| = a5 —myy that enter the
diagonal structure functiorisandA. The physics behind this L T. F, I, andA projectors and the longitudinal polarization

will become clear when we write down the angular decayvector. They come i'n for normalization reasons. The§e in-
distribution in Sec. Il verse powers ofq| will make the necessary tree graph inte-

It turns out that it is rather convenient from the computa-9rations to be dealt with in Sec. VI and in the Appendixes A
tional point of view to represent the helicity projections in @d B somewhat more complicated than the totak{L)
Eqs.(4a—(4j) (defined by the gauge-boson polarization vec-Tate integration, which has a rather simple projector as Eq.

tors and the top-quark polarization vedtor covariant form.  (80) shows. _ _ _
One has As mentioned in the Introduction, the covariant forms of

the projection operator8a)—(8e) and the polarization vec-
Hi=H,, P, i=U,L,F, (7a)  tors(9) and(10) are quite convenient for the calculation of
the O(«s) tree graph contributions to be dealt with in Sec.
Hip= HW(SL)P#V, i=U.LF, (7b) VI. The covariant projectors allow one to scalarize the tree
graph tensor integrands and to project onto the requisite he-
_ thopry licity structure functions in one step.
Hip=H ., (sOP, 1=1LA. (79 Although we shall mostly work in the helicity representa-
){ion of the structure functions, it is sometimes convenient to
ave available the set of linear relations between the helicity
and invariant structure functions. These can easily be worked
m\zN 1 Pi-q Pi-q out from the expansiof®), the projectorg8a)—(8e), and the
MY — _ u_ © V— v larization vector$10). One has
PE az‘mz(m ﬁz\;q )(pt —TQ). (88  po

Li’hey involve the the transverse polarization vector of the
W-gauge bosom,,(x) =(0;1,0,0) pointing in the direction.

The covariant representation of the longitudinal compo-
nent of the polarization vector of the top-quark spin vestor
és given by

hereas its transverse componsfireads

si"#=(0;1,0,0. (10)

The covariant projectors onto the diagonal density matri
elements are given by

My
HU: 2Hll (lla)
PEiL=—g*"+ quVy (8b) 2 2 <122
My myH =miH.+|d]“miH,, (11b
11 He=2|Gq/mH3, 110
]Pf:“}: - Tielu,vaprt aqﬁa (8C) F |q| th 13 ( )
m, |q] ' -
Hyr=2/qG|Gy, (110
where €%12%= — 1. We do not write out the projector for the
unpolarized transverse componhtbut note that it can be maH_ p=|G|(m3,G1+|G|°m?G,— 2qom,Gs),
obtained from the combinatioR{’ | — P{*”. (11¢
The projectors onto the transverse-longitudinal nondiago-
nal density matrix elements are given by Her=2|G|?m,G3—2m,Gg— 2q,Go, (119
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1 m Hep=HIT-H; -H " +HIZ, (13f)
Hpr=——|G|Gg, 11
[ ﬁmW|Q| 6 (119
Hip=3(Hig+Hg, —H g —H~
! 1 mdo 1 . un P=17( +0 0+ 0 0 )
AT Ty 8Ty MG (tih =3(H1o—H5), (139

Note that the three structure functio@s, Gg, and Gg
always contribute in the two combination®§,G;+ Gg) and Hap=3(Ho +Ho +H g +Hg )
(qom;G53—Gg), proving again that there are only eight in- —LHICHHo (13h
dependent combinations of structure functions. If desired, 20040 -0
Egs. (1189—(11h can be inverted such that the invariant

structure functions can be expressed in terms of the helicity For ease of notation we have uset) labels for both the
structure functions. The inversion has to be done in terms Oltuelicities of the top quarkX;=+1/2) and the transverse

. . . t_ A
the two above linear combinations @3, Gg, and Ge. elicities of theW-gauge bosonXy=*1). In the case of
Since our later results will always be presented in terms o he nondiagonal structure functiomd> and H,» one can
the helicity structure functions, we shall not write down themake use of the fact that the doublelz densityAmatrix is sym-

inverse relations here. metric (for real coefficientsto simplify the structure func-
tions as indicated in the last two lines of E¢$39—(13h).
From the fact that we are not observing the spin of Xpe

We are now in the position to write down the full angular SyStém in our semi-inclusive measurement one Rgs
decay distribution of polarized top-quark decay ik and =>\§(b, leading to the constrainky—\y=A;—\{. From

b followed by the decay of th&v" into (I"+v|). As noted  this constraint it is immediately clear that the polarized struc-
before, the full angular decay distribution of the de¢@y)  ture functionsU, L, andF are associated with the longitudi-
—W"(=1"+1)+X,, including polarization effects of the nal spin of the top quark and the structure functibrsmd A

top quark, is completely determined by the three unpolarize@re associated with the transverse spin of the top quark.
and five polarized helicity structure functions. Although the = The angular decay distribution can be obtained from the
necessary manipulations to obtain the angular decay distrinaster formula

bution involving Wigner’stnm,(G,qb) functions are stan-

dard (see, e.g.[30]), it is quite instructive to reproduce the
results here. To this end, it is useful to define helicity struc-

IIl. ANGULAR DECAY DISTRIBUTION

W( 0P ,0'¢)0< E ei()\w_}\\llv)('bdg\-wl( 0)

ture functionsHi‘)‘;, where the helicity label of the top M= A=A
Whw
uark is made explicit. Put in a different language, the four- 1 M)
,q , M)\’p, ) 91 ) del(@)H)\t;,pM)\{(Gp), (14
index objectHA ; is the unnormalized double density ma- w Wihw
Whw
trix of the top quark and th&/. The double density matrix is
Hermitian; i.e., it satisfies Wherepxt}\t’(ﬁp) is the density matrix of the top quark which
\ " reads
(H“,)*z(H‘,t). (12
MMy N w
1/1+Pcoséd Psing
As has been remarked on before, the elements of the P (0p)== ) P P . (15
double density matrix are real in the present application. The o 2\ Psinép  1-Pcosbp

double density matrix is therefore symmetric. The relation of

the components of the double density matrix to the previ-

ously defined unpolarized and polarized helicity structure” 'S the magnitude of the polarization of the top quark. The
functions is given by sum in Eq.(14) extends over all values ofy,, Ay, A, and

\{ compatible with the constraint,y—\y=N{—\{. The

Hy=HIT+H T+H T+H__, (1339  second lower index in the small Wigne( ) function diwl
is fixed atm=1 for zero mass leptons because the total
gttt - = . . . .
Hi=Hoo +Hqo . (13D quantum number of the lepton pair along tHedirection is
P m=1. Because there exist different conventions for Wigner’s
Hep=H,  +H,,—H__—H__, (1390 d functions we explicate the requisite components that enter
o o Eq. (14): d},=(1+cos6)/2, di,=sinav2, and d*,,=(1
Hyp=H i—HI +H " —H ", (130 —_cosh)2.
P Including the appropriate normalization factor the four-
Hip=Hgo —Hgo (139 fold decay distribution is given by
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transverse-minu%V bosons given by the structure function
combinations U +F)/2 and U—F)/2, which multiply the
angular factors (*cosé)? and (1- cos#)?, respectively, as
was done, e.g., if23].

If there were an imaginary part in the one-loop contribu-
tion one would have two additional contributions to the an-
gular decay distribution proportional to sfn This can be
easily seen with the help of Eq14). We concentrate on
those terms in the angular decay distribution that are propor-

FIG. 2. Definition of the polar angleg and ¢, and the azi- tional to the off-diagonal terms, _ in the density matrix of
muthal angles. P is the polarization vector of the top quark. the top quark. The relevant terms read

dr Hige"?+Hg e
ddod cosfpd cosd db —2[Re(H 5 )cos¢—Im(H §)sing], (178
1 GelVil’my 13
:ETM g (HutPcostpHyp) Hi eti*+H fe ¢

3 =2[ReH,_ )cosp—Im(Hg)sing]. (170
X (1+cog )+ Z(HL+ P cos@pH p)sir? 0
The real contributions multiplying the angular factor
3 cos¢ have been included in the angular decay distribution
+ 2 (He+P cosfpH p)cose (16) while the imaginary contributions I ,) and
Im(Hg_) multiplying sin¢ do not appear in Eq.16) since
the O(ag) contributions calculated in this paper are purely
real. The helicity structure functions IiH{,) and ImH,_)
are conventionally called-odd structure functions and are
3 contributed to by the imaginary parts of loop contributions
+ —PsinfpHarSiNG COSP |. (16) and/or byCP-violating contributions which, as has been em-
V2 phasized before, are not present in this calculation.

We take the freedom to normalize the differential rate such Of interest is also the correspondingingular decay distri-
that one obtains the total-b+W" rate upon integration bPution for polarized top-antiquark decayT)—W"(—1"

and not the total rate multiplied by the branching ratio of the® »1) + X . The angular decay distribution is changed due to
correspondingV* decay channel. the fact that the totah quantum number of the lepton pair in

The polar angle®p and @ and the azimuthal anglé that thel ™ direction is nowmm= — 1. The relevant components of
arise in the full cascade-type description of the two-stagdhe small Wignerd function are nowd;_,=(1-cos6)/2,
decay proces( ) —W"(—I|"+ )+ X, are defined in Fig. d$,1= —sin6v2 and dl,l,l=(1+cos«9)/2. This can be
2. For better visibility we have oriented the lepton plane withseen to result in a sign change for the angular factors multi-
a negative azimuthal angle relative to the hadron plane. Faplying theF, FP, andAP terms(and no sign change for the
the hadronic decays of th& into a pair of light quarks one other term& The structure functions of top-antiquark decay
has to replacel(",»,) by (q,q) in Fig. 2. We mention that are related to those of top decay IGP invariance. The
we have checked the signs of the angular decay distributioparity-violating (PV) structure functiond=, U, LP, andIP
Eq. (16) using covariant techniques. will undergo a sign change whereas parity-conseryin@)

As Eq. (16) shows, the nondiagonal structure functionsstructure functionsJ, L, FP, andA® keep their signs. Over-
H,r and H,p are associated with azimuthal measurementsall this means that the unpolarized terms in Elgf) will not
This necessitates the definition of a hadron plane, which ishange their signs while the polarized terms will change
only possible through the availability of thecomponent of  signs when going from top-quark decay to top-antiquark de-
the polarization vector of the tofsee Fig. 2 This is the cay. To be quite explicit, if one wants to use the results of
physical explanation of why the two structure functidhg  this paper to describe top-antiquark decay, the only required
andH e are functions of only the transverse component ofeffective change is to change the signs of the terms multiply-
the polarization vector of the top quark. For similar reasondng the UP, LP, FP, I”, and A structure functions in the
the polarization dependent structure functiddge, Hr, angular decay distribution E@L6), using, however, the same
andHgr depend only on the longitudinal component of the structure functions as written down in this paper.
polarization vector.

_ SettingP=0 _in Eqg. (16) one obtains the d_ecay distribu- IV BORN TERM RESULTS

tion for unpolarized top-quark decay. If desired, the trans-

verse part of the unpolarized angular decay distribution can The Born term tensor is calculated from the square of the
also be sorted in terms of decays into transverse-plus angorn term amplitudésee Fig. 1a)] given by

3
+ ——=P sinfpH,r sin 20 cos¢
2v2
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9 1 quality of them,= 0 approximation for the various rate func-
M#=Vip=——Up 75 (1= ys)Uy. (18)  tions we have listed the percentage increments when going
V2 2 from them,# 0 case to then,=0 caseincluding the phase
. . B .y,  Shace factoiq| that multiplies the helicity structure func-
We omit the coupling factoV,g/v2=2myV,(Gg /v2) tions in the rate formula Eq(16). In this comparison we
and write for the Born term tensdthe spin of theb quark is  have usedm,=4.8 GeV [31] together withm,=175 GeV

summed andm,,=80.419 GeV. The increment due to the phase space

w1 u factor|q| alone amounts to 0.15%. Note that one may have
B#"=2Tr(pp+mp) y*(1=ys) (Pr+my) overestimated the mass effect since a fixed pole mass, rather

X (14 ys8) ¥ (1= vs). (19 than a running mass which is smaller at the high scale of the

top-quark mass, is used. For example, taking one-loop run-
Since only even-numberegkmatrix strings survive be- Ning and the same bottom pole mass as above one has
tween the two (* vys) factors in Eq(19) one can compactly Mp(My) =1.79 GeV. The increment in the total rate on going

write from my(m,)=1.79 GeV tom,=0 would then be only
0.04% as compared to the 0.26% given in Table I.
B””=2(ng+ﬁ“pg—g””ﬁ-pb+ieﬂvaﬁpb,aﬁﬁ), In the m,=0 case listed in column 3 of Table | one ob-

(200  serves the simple patternB,;=—Byr=—Br=Bgr, B_
=B, r, and B,r=—Bur. This pattern results from the fact
where that a masslesb quark emerging from a\(—A) vertex is
e w purely left handed. Since from angular momentum conserva-
Pe =P~ MiSp 21 tion one has\;=Ayw—\p With A,=—1/2 one has the con-

. - . . straint\;— A= 1/2. This implies that only the helicity con-
It is not difficult to obtain the Born term helicity structure figurations @,=—1/2\y=—1) and Q(,=+1/2;\,y=0)

functions from Eq(20). This can be done in two ways. One L ) .
can read off the invariant structure functions according to thé'® nonvanishing. A quick look at the relatiofis33—(13h

covariant expansion E@2). The nonvanishing elements are ?Aloq\&lvg ?Q:réoi;ezdllé);zznfey itr?t?bri: ﬁtf)hztﬁijrgénbz?tkgrillrrf:srons
given by By =mi(1-x*+y?), By,=—2By =4 for the b 9 9

} . ) resulting in a breaking of the above pattern as can be ob-
unpolarized invariants and b¥g =Bg ,=Bg,=—Bg,= served in them,#0 column of Table I. As noted in the
—2m, for the polarized invariantgthe notation is self- Introduction these simple patterns are also not valid(at,)
explanatory. These can then be converted to the helicityeven for massless bottom mesons because of the additional
structure functions using the linear relatiqddg—(11h). Al-  gluon emission, including an anomalous spin-flip contribu-
ternatively one can directly compute the helicity structuretion [32]. When the relevar,=0 Born term helicity struc-
functions from Eq.(20) by using the covariant projectors ture functions from Table | are substituted in H46) we
defined in Sec. I[cf. Egs.(8a—(8¢€)]. reproduce the angular decay distribution as written down in
In order to find the relation of the Born term ten®#” to  [17].
the hadron tensdd#” defined in Sec. Il one has to insertthe  For completeness we have also included the two Born
appropriate one-particlb-quark state into Eq(l) and then  term scalar helicity structure functioBs andBgp in Table I.
one has to do the requisite one-particle phase space integrahey are obtained by use of the scalar projeciey
tion. Technically this is done by rewriting the one-particle :quV/m\ZN_ That they are identical to their longitudinal
phase space as counterpartsB, and B, r even form,#0 is a dynamical
&% accident specific to the Born term level and does not hold
J de:f Po :J d4pb5(p§— mﬁ). (22) true in general as, e.g., evidenced by @(gy,) contributions
2E, to be discussed later on. These become equal to each other
_ ) _ ] o only in the limitm— o0 as will be discussed in Sec. VII. The
One can _ea3|ly do the four-dlmensprdflpb_ integration in - m =0 Born term equalitie®;=Br andB,=Bgr can be
Eqg. (1) with the help of the four-dimensionad function  seen to result from the fact that the double density matrix
5*(Pi—d—py). This convertsp in the argument of thé  elementsd ; andH* * vanish at the Born term level due to
function in Eq.(22) into (p;—q)?. Rewriting the argument angular momentum conservatipsee Eq(133].
of the & function in terms ofgy one finally arrives at In Fig. 3 we present a Lego plot of the twofolch{=0)
2 Born term angular decay distribution in césand co%p
b gur (23) which results after taking the azimuthal average of @6).
' We have divided out the total Born term rate from the dif-
ferential rate, resulting in the careted differential rate distri-
We will present our results in table form where we use thepution as defined in Eq:35). We have seP=1 in Fig. 3.
scaled variablesx=m,,/m; andy=m,/m; as well as the The Lego plot shows that the césand cosfp variation of
abbreviation |g|=(m/2)JA with A=X(1x%y?)=1+x* the twofold angular decay distribution around its average
+y*—2x%y2—2x%—2y?. The first column in Table | con- value of 0.25 is quite strong. This will facilitate the experi-
tains them,# 0, or, equivalentlyy# 0 results. In the second mental measurement of the structure functibps I' , I'r,
column we have semn,=0 (y=0). In order to assess the I'e, I\ p, andI'gr.

mZ+ mg,—m
2m

1
H#?*(Born)= 4m25 qo—
1
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TABLE |. Born term helicity structure function; (i=U+L,U”+LP U,UPL,LP,F FP S S" P AP)
for my#0 andm,=0. Fourth column gives the percentage increment when going fmgsa0 to m,=0
including the phase space factdi.

Born
term m,#0 mp=0 Increment
1 1
Buo A=y (124 +y?)] 2 (1=x)(1+2¢) +0.27%
1 ,1 .
Bupsip mf\/XP(l—ZXZ—yZ) 77 (1-x%)(1-2x%) +0.42%
By 2mZ(1—x2+y?) 2mZ(1—x?) +0.05%
Byp —2mZ\ —2m?(1-x?) +0.29%
1 1
B Ay E1+y)] M3 (1) +0.36%
B ! 2 2 1 2 +0.37%
e mE\hsz (1-y?) mfsz (1-x%) 37%
Br —2mZ\ —2m3(1-x?) +0.29%
Ber 2mZ(1—x%+y?) 2mZ(1—x2) +0.05%
1 1
Bs Mo [(1=y?P 3Ly Mo (1-0) +0.36%
B ! 2 21 2 +0.37%
& meyVAz (1Y) M (1-x?) 37%
1 1 1 1
Bp — ZvVImi = — ZV2mi=(1-x?) +0.29%
1 X 2 X
1 1 1 1 .
Bar E\/me;(l—xz—yz) E‘/jmf;(l_)@) +0.24%

Finally, for the sake of definiteness we list the Born termsame structure at the one-loop level the history even dates
rate in terms of the Born term functid®, ., . One has back to QED times.
Our reference will be the work of Gounaris and Paschalis

GFm\lecﬂ ) [34] (see als¢33]) who used a gluon mass regulator to regu-
0~ 41/27-rmt2 Vol “Bu - (24 larize the gluon IR singularity. The one-loop a_mplitudes are
defined by the covariant expansioan(: db Y0t ,Jﬁ
=0pY. Y5t

V. ONE-LOOP CONTRIBUTION

The one-loop contributions to fermionid/A) transi- (b(pb)|JX|t(pt))=Ub(pb){yMF\l’+ pr\z’Jr pb’ﬂFg’}ut(pt),
tions have a long history. Since QED and QCD have the (259

(b(Pp)|I51t(PY) =Up(PL{ V. F 1+ Pe uF5+ Po uF5)
X ysUi(py). (25b)

In the standard model the appropriate current combination is
given byJy—J%.

We shall immediately take the limih,—0 of the one-
loop expressions given [84] (see also Appendix & Keep-
ing only the finite terms and the relevant makb (Iny and
In?y) and infrared[In(A?)] singular logarithmic terms one
obtains the rather simple result

2We have recalculated the one-loop results of [R&4] and have
found an acknowledged typo in the scalar form fact§6Q?) and
H3(Q?) of [34]. The typo is corrected by replacing the factam,(
FIG. 3. Born term Lego plot of the twofold angular decay dis- —m,)/Q? in the last line of Eq.(A.8) of Ref. [34] by (m,
tribution dI'/d cos#d cosép with P=1. -m,)/(2Q?).
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as(q?) Note that the one-loop contribution is purely real. This
Fi=F1=1- 2, CF 4t X—z|n(1—X2) can be understood from an inspection of the one-loop Feyn-

man diagram Fig. (b), which does not admit any nonvan-

y 4 A% 1 ishing physical two-particle cut. The fact that one H%\ié
+In T-x2 (1-x?)?2 +21n TE’Z) =F% and FY=—F" for i=2,3 results from setting the

b-quark mass to zero. This can be seen by moving the chiral

Lo (1—vys) factor in the one-loop integrand numerator to the

X 1—x° +2 L0 |, (263 left. BgcauseentJ is set to zero tﬁe Dirgc numerator string will

thus begin withu,(1+ y5), leading to the above pattern of
1—x? ) relations between the loop amplitudes. We mention that the
+1+ —Xrln(l—x )]s gluon mass regulator scheme can be converted to the dimen-
(26h) sional reduction scheme by the replacement Nég-1/e
— ye+logdmu?l? where 22=4—N, vyg is the Euler-

A_i as(qz) 2

Fy=—Fp=———=

v A 1 as(q?) 2 2%2—1 ) Mascharoni constange=0.577 . . ., andu is the QCD scale
F3:_F3:E 2. Cre| 1tz In(1=x9 ], parameter.
(260
where we have denoted the scaled gluon mass Aby VI. TREE GRAPH CONTRIBUTION
=mg/m,. The dilogarithmic function Li(x) is defined by The tree graph contribution results from the square of the
‘In(1 real gluon emission graphs shown in Figgc)land 1d).
Li(x) :=_f n( _Z)dz. (27 Omitting again the weak coupling factafy,g/v2 for the
0 z time being the corresponding hadron tensor is given by

14 8 kpt A Y n 14 1 « v n a 14 A
M =—4MSCF(k.pt)(k.pb)(— ko p, {(PoPo) (KDY + KDk Pigh”) +iLe*(py k) - Pi— €7 (py= k)P,

K-pp, _ . _
e (oK) Py KaPo gt + 3o A (P PO (K P+ KPRk Pog” =T e kP, g) = (P KIL(PL— k)P
+(pe—K)"Ph— (Pr—K) - ppg”” =i €*PH(py—K) oPp g1} — (Pr- Pu) (KXl + K Pl — K- ppg”” —i€*PL7K Py )
+ (P Pu) (K“py +K"pY — k- pg”") — (K- pp) (P Py + PEPY — Pe- Peg*") + (K- pY[(Pp+ K) “Py + (Pp+ K) P
+(Pp+K) - Pg” ]+ (K- Do) (2PEPE— Pb- Pog™") —i[ €*P# (k- y) + €*PYK P, ,— €“P7'K¥ Dy, 1Pb.gabt. 5

+i[ € PR (P Do)+ € PV P{Pr, — €7 DDy, IKaPb g | + B Ascr, (28)

m m¢ P Py )

K p)? " (kpo? “(K-po)(k-po

ASGF::_47TCYSC|: (29)

wherek is the four-momentum of the emitted gluonAgge  Born contribution, the requisite soft gluon integration has to
is the IR-divergensoft gluon functiorandp,=p;—ms; asin  be done only once and is identical for all eight structure
Sec. V2 functions. The result for the integrated soft gluon function is
We have isolated the IR-singular part of the tree graphgiven in Sec. VIII. Integrating only the soft gluon function
contribution by splitting off a universal soft gluon factor Aggr and neglecting the finite part in E¢28) amounts to
which multiplies the lowest order Born term tensBf*”. what is called the soft gluon approximation. We emphasize
This facilitates the treatment of the soft gluon singularity tothat we always include the full tree graph contributicoft
be regularized by #small gluon massmg. Since the soft plus finite part in our calculation. Also, we integrate over
gluon factor is universal in that it multiplies the lowest order the full phase space of the gluon, and not only up to a given
energy cutoff of the gluon.
We have deliberately used a calligraphic notation for the
3Contrary to the Born term case, here the polarization of the togree graph hadron tensaf*” in Eq. (28) sinceH*” is notthe
quark cannot be accounted for by replacingmlinomenta by their  hadron tensoH#"” defined in Sec. Il. In fact, the mass di-
barred counterpars; . mension of H*" differs from that ofH#”. To relate the two
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hadron tensors one has to do the appropriate phase spadéenergyq, where thek, integration is done first. The phase
integration on the tree graph hadron tensor. space limits of the respective integrations are given by
Next one makes use of the covariant projection operators

and the covariant forms of the longitudinal and transverse Ko~ <ko=ko+ (30
polarization vectors defined in Sec. Il to obtain the contribu-

tions to the three unpolarized and five polarized structure

functions. Since we are aiming for a fully inclusive measure- m?+ma,— (my+ mg)

ment regarding th&,, system the resulting expressions have Mw<0o= 2m, ) (32)

to be integrated over the full two-dimensional phase space.
As phase space variables we take the gluon erleygynd the  where

o (M= o) (M —2Gomo) + g5~ (M — 2q0m,)* — 4mgm; 32
o 2(m; +miy— 2¢omy)

and W-boson energies, and finally rises sharply again toward the
end of the spectrum, where the soft gluon singularity is lo-
M2 :=mZ+mg,—mi+ mé. (33)  cated. In Fig. 5 we show the same distribution for the partial
- rate into positive helicityW bosonsdl', /dq, [T, =3(T"y

It is clear from Eqs(30)—(33) that the integration bound- +1'¢)] for my,=0 and form,# 0. As mentioned before there
aries considerably simplify when the gluon mass is set tds no Born term contribution taI', /dq, for my,=0 and
zero. In particular, the second square root factor inkfle  thusdl', /dgy possesses no IR singularity in this limit. The
boundary turns into a polynomial i, which is an essential absence of the IR singularity in time,= 0 case(dashed ling
simplification for the second, integration. This observation IS quite apparent in Fig. 5. The distribution rises moderately
is at the core of our tree level integration strategy exemplifast from the lower end of the spectrum, then turns down
fied by the partitioned form of Eq28). The soft gluon sin- over the intermediate range of energies, and finally tends to
gularity has been isolated and brought into a simple formzero at the end of the spectrum where the phase space closes.
The remaining part of the tree graph contribution is IR finite The m,=0 (dashed lineandm,# 0 (full line) distributions
and can be integrated without the gluon mass regulator.  lie on top of each other for most of the lower part of the

The integration over the gluon enerdy (ko <k,  SPectrum. Starting at around 4.8 GeV below the upper phase
<ko . ) is simple and the results will not be presented here irsPace boundary the two distributions begin to diverge from
explicit analytical form. Instead we present in graphical formeach other. Whereas the,=0 curve turns down and goes to
in Figs. 4 and 5 some representative results for the differerzero at the end of the spectrum, thg#0 curve starts to rise
tial W-boson energy distribution that result from the real@gain and, in fact, tends to infinity at the end of the spectrum
gluon emission graphs Figs(cl and Xd). Figure 4 shows due to its IR-singular behavior. Note the huge differences in
the W-boson energy distribution for the total rate scale of thedl'y, /dqgy and thedI', /dq, distributions
dI'y./dqy. The energy distribution rises sharply from the Which will be reflected in big differences in the total
lower energy limit, where th&V boson is produced at rest, corrections for the two corresponding rates.
then increases rapidly over the intermediate range of

d rU+L/dq0

10_5_....|....|....|....|....|...._ 80 85 90 95 100 105 110

80 85 90 95 100 105 110 o [GeV]
o [GeV] _ ] o
FIG. 5. DifferentialW-boson energy distributiodI” . /dq, for

FIG. 4. Differential W-boson energy distributionI" ., /dqq the partial rate into positive helicity/ bosons resulting from®(«s)
for the total rate resulting fromO(«s) gluon emission if, gluon emission fom,=4.8 GeV(solid line) and form,=0 (dashed
=4.8 GeV). line).
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The second integration over the energy of Wdoson is

o ; ) : Gemgm; (1—x%)?(1+2x%)
more difficult. Details can be found in Sec. VIIl and in the T'y,=I,, (Born= o |Vip| .
2

2
Appendixes. As it turns out the analytical,# O results are X
quite lengthy. We thus chose to present ogy=0 results (34)
first since they are sufficiently simple to be presented inThe angular decay distribution reads
compact form. They have been obtained by taking riie -
—0 limit of our my#0 results written down in Sec. VIII. dr
For practical purposes the,=0 results are sufficiently ac- d cosfpd cosd d¢
curate for top-quark decays sinog # 0 effects are generally
quite small. This is particularly true if a runninig-quark :i E(f +P cosul p)(1+cog 6)
mass at the top-quark mass scale is used. Quantitative results 4|8 Y Py
for the g my#0 corrections are given at the end of Sec.
: 3 . -
VIl as well as in[23]. + Z(FLJF P cos@pl p)sir? 6
3 . N
VIl. COMPLETE O(as) RESULTS FOR m,=0 + 4 (I'e+ P cosbpl'gr)cosd

We are now in the position to put together aug=0 3 . ) )
results. We add together the Born term results from Sec. 1V, + EDPP sin p sin 26 cos¢
the one-loop results from Sec. V, and ting— 0 limit of the
integrated tree graph results according to Sec. VIII. The mass ~
and infrared-singular logarithmic terms cancel among the + —T ppP sinépsiné cose |, (35
O(as) one-loop and tree graph contributions as they must V2
according to the Lee-Nauenberg theorem, and a finite resW{here P is the degree of polarization of the top quark. As
remains. We choose to present our results in terms of scaleglentioned before one recovers the angular decay distribution
rate functions defined byl ;:==T;/Ty (i=U+L,U”  written down in[17] when one substitutes the,=0 Born
+LP,U,L,F,S,UP LP FP SPIP AP) with I, term expressions from Table | in E(BS).
=TIy (Born) given by &=my,/m,) The various reduced raté are given by

Fgy % NG (1-x2)(5+9x>—6x%)  2(1—x2)%(1+2x%) 72 (1—x2)2(5+4x2)I -
U+L— +E F(l—X2)2(1+2X2) 2X2 3X2 2 n( X)
4(1—x%)%(1+2x2 4(1—x%)2(1+2x2
_A )><2( )In(x)ln(l—xz)—4(1+x2)(1—2x2)ln(x)— ( )Xz( )Liz(xz) , (36)
f C1-2x% a x2 (1—x)2(15+ 2x—5x2— 123+ 2x%)  (1+4x?) 72
U+LP= T3 22 T 27 I 211 2x0) | 22 T
(1-x%)?(1-4x?) (1-x%)(3—x?)(1+4x?) 4(1—x%)%(1—2x%)
- 2 In(1—x)— 2 In(1+x)— 2 Lio(x)
4(2+5x*—2x%)
t———z LiaA=x), (37
P 2x2 as . NG L1042 2(5+5x%—2x*) 72 2(1—x2)2(1+2x2)I 132
VT2 T 2n CFad i axgy | (LX) 3 - X2 n(1=x7)
s s L(5+Tx*+4x%) 2(1—x)%(5+ 7x?>—4x3)
—4(5+7x°—2x")In(x)—2(1—Xx) fhﬁ(X)h’](l—X)-}- ” INn(x)IN(1+x)
2(1—x)2(5+4x+15x2+8x%) 2(1+x)%(5—4x+15x*—8x%)
— Liy(x)+ Liy(—x) (38

X X
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R a NG (1—x?)(5+47x%—4xY) 272 (1+5x2+2x%)  3(1—x?)?
[=—-5+-—C - - In(1—x?)
Lo1+2x2 27 TF(1—-x®)%(1+2%?) 2x° 3 X2 X2

) 2= X+ 6X2+ %3 2(1+%)%(2+x+6x>—x3)
+16(1+2x9)In(x) —2(1—x) Tln(l—x)ln(x)— 2 In(X)In(1+x)

2(1—x)%(4+3x+8x%+x3) 2(1+x)2(4—3x+8x2—x%)

2 Lix(x) 2 Lio(— X)] , (39

X

. —2x2 as . x?
12 2a SR x®)2(11 2xD)

2(2+x%) w2 . 2(1-x2)%(1+2x?)
2

3 In(1—x)

|—2(1—x)2(3—4x)+

2(1—x%)(1—9x%+2x%) . N
+ 2 IN(1+x%)+8(1—x)Liy(x)+8(1+3x“—x")Lis(—X)(, (40

2 22 22,2 L y2\2(9_ Ey2
- 1 ag X ‘9(1 X%)%  2(1—x%)%m +(1 x)(42 5X)In(1—x2)

s
1+2x° 27TCF(1—x2)2(1+2x2) 2x° 3x?

U2\2 u2\2
—4(1—x2)ln(x)—Ll(l)(—zx)ln(x)ln(l—xz)—«lx—zx)Liz(xz)}, (41)

(2+x?)

P —2x°? L% NG (1—x)%(12—55x+ 6x°>—x%) 1072
VP 1+2x2 T 27 TF(1—x3)2(1+2x9) X 3

2(1—x%)?(1+2x?)
+ ( xz( In(1—x) "

2 2 4
+ 2(1-x )(7+221X 2x )In(1+x)+8(1—x2)2Li2(x)

—8(11+ 3x2+x4)Li2(—x)’, (42

2

P 1 L% X (1—x)2+(1+24x2+10x4)w2
L= 142x2 " 27 “F(1—x9)2(1+2x9) 2x2 3x2

3(1—x?)? (1—x%)(17+53%?) 4(1—x%)? 4(2+222+11x%)
——Xz—ln(l—x)— 2 In(l+x)—TL|Z(x)+ 2 Lio(=x) ¢, (43

— (15— 22x+ 105¢*— 24x3+ 4x*)

- 2x2 X2

. L% 2(1+x2+2xH 7% 2(1—x3)%(1+2x?)
P 142 " 27 “F(1—xd)X(1+2%9) - 2

2
3 " In(1—x%)

|2(1—x2)(4+x2)—

(1—x)2(1+3x+2x°+2x3)
X

4
—4(2—-5x%—2xIn(x) — In(x)In(1—x)

4(1+x)2(1—3x+2x°—2x3) 4(1—X)%(1+5x+6x2+4x3)
+ " IN(X)In(1+x)— " Lio(x)

. 4(1+X)%(1—5x+6x2—4x%)
X

Lio(— X)] : (44)

. 1 a X2 ‘ (1-x)2(11-6x—7x%) (1+2x>) 7 (1—x%)?(2-5x%?)
— + + 7 In(1—x)

Te= 12t 22 SF =021+ 20 22 3

(1—x2)(2—9x%+ x4 4(1—-x%) 42+x4
+ v In(1+x)—TL|2(x)+TL|2(—x) , (45)
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. X, as c NG (1-x)%2(12—7x+12%%) 72 (5+19%+ 2x%)
T a1t 2x®) 2w F(1=x®)A(1+2xP) Vax 6v2 X
(1-x%)?(1+5x?) (1—x%)(1+30x%+ 21x%) 2v2(1—x%)?
+ In(1—x)+ IN(1+X)+ ——————LiyX)
2v2x3 2v2x3 X
V2(7+15¢%+4x%)
- Lio(=X)(, (46)
X
Ao X L% NG (1—x?)(1+2x%) 72 (3—5x%+6x*  (1—x%)?(1+5x?)
AT (1 2xd) 2w FA—-xD)A(1+2xP) Vax 6v2 X 2v2x3
X(5—11x?) (1—%)%(3+7x+6x?) (1+x)%(3—7x+6x?)
XIn(1-x%)— ———In(x)— In(x)In(1—x)— In(x)In(1+x)
V2 V2X V2X
(1—x)%(7+15x+ 10x?) L0 (1+x)2(7—15x+ 10x?) L) @
— 15(X)— Io(—X) .
Vax 2 V2 2
[
As mentioned in the Introduction the results for the total . . as 15 1
rate (U+L) agree with the analytical results given[dh—7] I'p=T'ep=1+ ECF( - 74— 5772). (49

and in[16]. The six(mass zerpdiagonal structure functions

U, L, FandUP,LP FP have already been listed jta6]. They

had been checked against the corresponding numerical re-
sults given inf27-29. The results for the nondiagonal struc-
ture functionsA” and 1” are new. As for the unpolarized

transverse structure functions, explicit expressions for the =7 N7 S Lo
two linear combinationd . =(U+F) andT_=(U—F) Imit since the longitudinal polarization vector then simpli-

relevant for the interpretation of the CDF measurenjapt [1€s t0 €#(0)=g*/my,+O(my/qo). The same observation
were given in[23]. is also at the heart of the proof of the Goldstone boson

We have also include®(as) results on the unpolarized equivalence theorem. As concerns the tree graph contribu-
and polarized scalar structure functiohig and T'se. They  tiON, the statement that*(0)=q"/my,+O(my/qo) is cer-
determine them,=0 unpolarized and polarized decay of the tainly not true for all qf three-body phase space, e.g., close to
top quark into a charged Higgs bosan{b+H*) as it oc- the phase space point where tiié boson is at rest. The
curs, e.g., in the two-Higgs-doublet mod2HDM). This can ~ contribution from this phase space region to the three-body
be seen as follows. The scalar projection of the standartgte, however, becomes negligibly small whep- .
model(SM) left-chiral current structure#P, determines the We now turn to our numerical results. As numerical input
coupling of the SM Goldstone boson, i.g|P,—(mPgr  Vvalues we takem=175 GeV andm,,=80.419 GeV. The
—m,P,). This is the coupling structure of the charged Higgsstrong coupling constant is evolved fram(M ;) =0.1175 to
boson in the 2HDM when the ratio of vacuum expectationa(m,)=0.1070 using two-loop running. The results are pre-
values is taken to be 1. It is then evident that,fgy=0, the  sented such that the reduced Born term rates are factored out
scalar structure functionEg andI'sp describe the decay  from the reduced rates. This way of presenting the results
—b+H" in the 2HDM, irrespective of the value of the ratio allows one to quickly assess the size of the radiative correc-
of vacuum expectation values. The unpolarized scalar strugions. One has
ture functionl's has been checked against the resul2df.

The result for the polarized scalar structure functiog is A
new. 'y 1 =1-0.0854, (503

Before turning to the numerical evaluation of the various
contributions we would like to discuss the larmgg limit of -
the various helicity structure functions. As expected from the I'y=0.2971-0.0629, (50b)
statements of the Goldstone boson equivalence theorem the
longitudinal and scalar contributions LP, S, andS® domi-

Thath:fS andep:fSp for my—o can be understood
from the fact that the longitudinal and scalar polarization
ectorse*(0) ande*(S) become equal to each other in this

nate in this limit. In fact, setting=0 one finds I'' =0.7031-0.0951, (500
FLmfom14 2oc 2202 48
LmhsT it o CrlT e ™) (48) ['r=—0.2971-0.0687, (500)
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T(y:1)p=0.4061-0.1162, (508
['yp=—0.2971—0.0689, (50f)
I p=0.7031—-0.962, (509
['r,=0.2971—0.0639, (50h) o
Ip=—0.2281-0.0810, (50i) 8
',p=0.2281—0.0820, (50))
['¢<=0.7031—0.0895, (50K) h
['e»=0.7031—0.0922. (50l) N

The radiative corrections to the unpolarized and polarized -1 —0.5 COSO 0.5 !

rate functions are sizable. They range freri.2% forT'y to

—11.6% for I'iy,y» compared to the rate correction of  FIG. 6. Contours of the decay distribution of a fully polarized
—8.5%. The radiative corrections to the longitudinal and sca{P=1) top quark in the coés-cosé plane form,=0. The full lines
lar contributions are the largest. The radiative corrections alére the distribution including th®(«s) corrections.

tend to go in the same direction. This is an indication that the

bulk of the radiative corrections come from phase space regye| rate expressions afe - fg+ , andfjg as alluded

gions close to the IRA singular region where the radiative to pefore in Sec. IV. The notation employed for the reduced
corrections are universal. When normalizing the rate funcrates follows the notation used in E@.3a. The remaining

tions to the total rate, as is appropriate for the definition ofrate expressions vanish at the Born term level but become
polarization observables, the size of the radiative correctiongopylated aD(«g). They are

to the polarization observables is much reduced. For ex-
ample, theO(as) radiative corrections decrease the ratio
I' /Ty, by 1.1% and increase the rafig, /I" ., and the
magnitude of the ratid’ /T, | by 2.5% and 1.8%, respec-

[ =4 +T+Typ+Tgr)=0.000833,

tively, relative to their Born term ratios. The relative ratio fgo’=%(1:L—lA“Lp)=0.OOO 289,
I'y /T is increased by 3.6%. The values of the radiative
corrections to the polarization observables are, however, f‘igz(ﬁerl:AP):—O.OOO 236, (51)

large enough that they must be included in a meaningful
comparison of future high precision data with the theoretical

predictions of the standard model. r..= %(fu+fF—fUp—pr)=0.OOO 093,
The combination [y +1I'¢)/2 determines the decay of an
unpolarized top quark into a right-hand&d boson. This ff_r:%(fu_fFJrfUp_pr):O_ooo 120.

combination vanishes at the Born term level fop=0 as

Egs. (39) and (41) show. Adding up the corresponding nu- n
merical values of théD(a,) contributions in Eq(51) one AS remarked on before the last two reduced rdtgs and
finds that the right-handed/ boson occurs only with 0.094% ©'~” vanish at the Born term level even for,#0 since the
probability. Themy,# 0 effect in the Born term alone already net helicity of these transitiong.,,—\{/=3/2 exceeds that
amounts to 0.036%see Table)l of the b quark|\y|=1/2. ) ) )

Altogether theO(«,) and the Born ternm,#0 correc- The four reduced rateB} |, 'y , 'y, andl'"7 are
tions to the transverse-plus rate occur only at the subpercepbsitive definite quantities since they result from squares of
level. It is safe to say that, if top-quark decays reveal a viohelicity amplitudes. Contrary to thesE,;, is an interfer-
lation of the standard modeM(-A) current structure that ence contribution and thus can be negative, as it in fact is. In
exceeds the 1% level, the violations must have a non-SMtq. (51) we have also included the numerical values for the
origin. In this context it is interesting to note that a possibleahove five structure function combinations resulting from the
(V+A) admixture to the SMt—b current is already se- (tree graph a, corrections. They are all very small at the
verely bounded indirectly to below 5% by existing data onjevels lower than parts per thousand.
b—s+—y decayq35-37. In Sec. IV(Fig. 3) we have shown a Lego plot of the Born

The rate combinationI{y+I'g)/2 is in fact not the only term twofold angular decay distribution in césind co9p.
combination that vanishes at the Born term level fog  In order to be able to exhibit the size of thg corrections we
=0. Considering the fact that one must haxg—\;= show in Fig 6 a contour plot of the same twofold angular
—1/2 at the Born term level the only surviving Born term decay distribution with and without radiative corrections,
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L L L corrections to the longitudinal ra@L. Note thata, is not
09 E E the conventional forward-backward asymmetry parameter,
: which is defined by
0.8 F 3
07 f 3
] dI'(0= 0= =w/2)—dI'(7/2= 6= )
@ 06 F e 3 Ar=
a . 3 dI'(0=0=w/2)+dI'(7/2= 6= )
S 05 &< . ,
2 3T 3 x
S 04 f —: = F [=== —-0.223]. (59
5 ] 4Ty, 2 1+2x?
0.3 F -
02 3 E The a4 corrections raisergg by 1.7% in magnitude.
01 F 3 For the co%, distribution one obtains
0 E PRI SR SR NN SN SN S WU N ST SR TR S S S S S|
-1 -0.5 ) 0.5 1 A
cos © —dF :}(f‘ )(1+Pay_ cosbp) (56)
S dcoshp 2 YTt Op P
FIG. 7. Charged lepton polar angular distribution in iNerest
frame form,=0 [Born term, full line; O(«,), dashed ling Also
shown are average values of the decay distribution. where
again settingP=1. The radiative corrections are not very .
large in the upper two quadrants and become largest in the Twsoe [ 1—2x2 B
lower left quadrant of the contour plot when both @osnd Xop~ fu . 1422 =0.406) . (57)
+

cosfp tend to 1.

Instead of analyzing the threefold or twofold angular de-
cay distributions one can also consider single angle decayhe a, corrections lower,, by 3.4%.
distributions. They are obtained by integrating over the two Finally, the ¢ distribution reads
respective complementary decay angles. For the) cistri-
bution one obtains

. dar 1
dr . . —=5-(1+Py,cos9¢), (58
Teass = 8(Tut2T)(1-aycoso+B,co8 0), (52 do 2w
where where
I'e 2x2 .
@y=2——m | =— ;=-0349], (53 372 Tpe 372
y+2l, 1+X Yo=—— = =— =0.597|. (59
8v2 'yt 16 1+2x2
Iy—2r, 1—x2
Bpy=r—— | =-— =-0.651. (54 o .
ryg+2r, 1+x? The cosp dependent contribution froi,  has dropped out

) ) because of having integrated over the full range of&dé
We have added the analytical and numerical Born term re -

) ' "“desired, the contribution df,_ to the ¢ distribution can be
sults for the asymmetry parameters in parentheses uging . . : P
—0.211. TheD( ) values for the asymmetry parameters areretauned if one mtegr_ates only over half the range of &:005
a,=—0.357 andB,= —0.641, i.e., thexg corrections raise The.as correctr;ons La'sa’fﬁ b.y the srf‘nall arrr:oEnt of 0.32%.
the magnitude ofr, by 2.3% and lower the magnitude 5§, In Fig. 8 we s ow t. ep distribution for both the Born term
by 1.5%. In Fig. 7 we show the c@distribution for both the case and the radiatively corrected case, sefingl.
Born term case and the radiatively corrected case. There is a
pronounced forward-backward asymmetry. In the forward di-
rection the differential Born term rate drops to zero. As dis-
cussed before th®(as) rate does not vanish in the forward  Differing from the presentation of oun,=0 results in
direction due to real gluon emission. However, the radiativeSec. VII, we shall present oun,# 0 results in a form where
corrections are so small that the nonvanishing of Gt{ex) each of the separate contributions to the rate remains identi-
rate in the forward direction cannot be discerned at the scalfied. In particular, we do not explicitly cancel the IR terms
of the plot. In absolute terms the radiative corrections areoming from the one-loop and tree graph contributions. We
largest for co®~0 because of the large size of the radiativethus write

VIIl. COMPLETE O(ag) RESULTS FOR m,#0
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0.3 —
0.25 F

0.2 |

0.05

FIG. 8. Azimuthal distribution of normalized rate fon,=0
[Born term, full line;O(as), dashed ling Also shown are average

0.1 f

values of the decay distribution.

I'2°P=T(Born)+

The first term in Eq(60) represents the Born term con-

me|Vip| °G
8V2w

|3

4
+ —TI(Born)S(A)— —
3 T(BomISA) — o —

2T

as M| Vi *Gex?

x{ p(n),iR(n)+E Pmn).i Remn
n=-1,0 m,n

+ > (T(n),i5<n)+z T (mn),i Simyn) (-
n=0,1 m,n

tribution, which is given by

(60)

GFm\2N|th|2
I';(Born)= ———— \\B;
i ) - i

PHYSICAL REVIEW D65 054036

(61
27Tmt

where theB; are the Born term rates listed in Table I. The
Born term contributior™;(Born) also appears as a factor in
the third term where it multiplies the soft gluon fact(rA).
The indexi runs over the various structure function labiels
=U+L, UP+LP, U, UP L, LP F FP, S SP IP, andAP.
The second term in Eq60) represents the one-loop con-
tribution which is obtained by folding the one-loop ampli-
tude in Appendix C with the Born term amplitude and then
doing the appropriate projection onto the various structure
functions. The appropriate coefficient functions ., are
listed in Table II. The coefficient functions; . multiply the
as one-loop amplitudes ,=FY ,Fy Fy F7 F5,F5 which
are listed in Appendix C. We label the one-loop amplitudes

consecutively by the index=1,...,6. Note that Table Il con-
tains only the vector current coefficient functiors , (7

=1,2,3). The axial vector coefficient functions labeled by
7=4,5,6, can be easily obtained from the vector current co-
efficient functions by the substitution

KE= KFY'yUH—y! K== KF\2’|yﬂ—yv

(62

The third term in Eq(60) contains the result of integrat-
ing the soft gluon functiom\ sgg in Eq. (28). The result de-

pends on the(smal

IR regularization parameterA

=my/m; as indicated in the argument of the soft gluon factor

S(A). The universal soft gluon factd®(A) is obtained by

explicit integration and reads

TABLE II. Coefficient functionsk; , that determine the contributions of tlg vector current one-loop amplitudes to the different rates
I x=my/my, y=mp/m;, A=1+x*+y*—2x%y?—2x2—2y?).

i K,:\l/,i KF\Z/,i K|:\3/,i

U+L VAL(1=y)2=x2[(1+y)?+2x?] (12)mN3(1+y) (12)m N3 (1+y)

uP+LP M1—2x2—y?) (12)MA[(1+y)%2=x?](1—y) (12)mA[(1+y)?—x?](1-y)

U 2N [(1-y)2—x?]x? 0 0

uP e ay 0 0

L VA[(1-y)2=x?](1+y)? (12)mN3(1+y) (12)m\3(1+y)

LP A(1-Y?) (12)mA[(1+Y)2=x*]*(1~y) (12)mA[(1+y)2=x?1*(1~y)

F —2\X2 0 0

FP 2N [(1—y)2—x2]x? 0 0

S A [(1+Yy)?=x*](1-y)? (L2)mA[(1+Yy)?=x%] (L2 N[ (1+y)2=x?]
X(1+x7=y?)(1-y) X (1=x*=y*)(1-y)

sP AM1-vy?) (12)mA(1+x2—y?)(1+y) (12)mA(1—x2—y?)(1+y)

|P —(IM2)\X (1/4v2)mA (1+Yy)2—x?]x —(14v2)mA[(1+Yy)%—x?]x

AP (IV2) IWN[(1—y)2=x2](1+y)x (1/4v2) /N 3x (1/4v2) m\3x
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TABLE lll. Range of values of powers, nin the different basic tree graph integrals.

i P(n),i P(mn).i T(n),i T (m,n),i
U+L — (=2, -1)—(0, —1) — (0, 0), (1, 0
UP+LP -1,0 (-2, 0—-(1, 0 0,1 0, 0, (0, D—(2, 1)
u — (=2, )-(2, 1) — 0, 2-@3, 2
uP -1,0 (-2, 23, 2 0,1 (0, 0), (0, 3—(4, 3
L — (-2, )-(2, 1 — 0, 2—3, 2
LP -1,0 (-2,2-3, 2 0,1 (0, 0, (0, 3—(4, 3
F -1,0 (-2, 0—(1, 0 0,1 (0, 0, (0, D—(2, 1)
FP — (-2, D-(2, D — 0, 2—(3, 2

S — (=2, -1)—(0, —1) — (0, 0—(1, 0)
sP -1,0 (-2, 0—=(1, 0 0,1 (0, 0, (0, D—(2, 1)
P -1,0 (=2, 2—(2, 2 0,1 (0, 0), (0, 3—(3, 3
AP (-2, D-(1, 1 — 0, 2—-(2, 2

set of integrals in the various helicity structure functions. In
2 Lip(1—wiw,) Table Ill we have listed the range of values of the parameters
m and n that characterize the different types of tree graph
integrals.

At this point it is perhaps appropriate to offer an excuse to
the potential user of oum,+# 0 results that our results are
In(m In(L) _ 2} presented in a multiply nested form to be collected from Eqgs.

XYA XYA (60)—(64), Table Il, and Appendixes A, B, and C. Contrary to

the my=0 results where a closed form representation was
ﬂ) —2y? In(wl)), (63) possible, a presentation of unnested closed form expressions

_ & 2.2
S(A)= 47TCF((1 X“+y*©)

12
+ Zln (Wiw,,)

+2\

. 2 . Wy
+Liy(1—w3)—Liy| 1— W
M

+In(wyw,,)

L
2

+In
W, for m,#0 would require an extraordinary amount of space
) o because of the presence of many different logarithmic and
where as in3] we have used the abbreviations dilogarithmic functions and products thereof. Codes of the
relevant expressions can be obtained from the authors on
X 1=xXPHy? - X 1Py’ =\ request.
W=y 1+x2—y2+ W\ W=y 1+x2—y2— N When we evaluated Eq60) numerically the IR factors

(64) proportional to InA in the one-loop and tree graph contribu-
tions were set to zero by hand. The numerical evaluation of
In the limit y—O0 one has the remaining part is quite stable numerically. In particular,
the limit m,— 0 is numerically quite smooth. This is dem-
onstrated in Fig. 9 where we plot the bottom-quark mass
dependence of the total rate. Note that @(gx,) rate shows
) less dependence on the bottom-quark mass than does the
1-x )_2 In( X ) Born term rate.
1—x2 The quality of them,=0 approximation has been dis-
cussed before at the Born level. For example, at the Born
+Inx2}. term level the total rate is decreased by 0.27% when going
from my=0 to m,=4.8 GeV. Using theD(as) m,#0 re-
(65) sults from this section one finds that timg+ O corrections to
the totalO(«,) rate reduce the rate by 0.16% compared to
In agreement with the Lee-Nauenberg theorem the logariththe Born term reduction of 0.27%, i.e., thg# 0 corrections
mic dependence on the IR regularization paramétean be to the ag contribution alone tend to counteract thg,#0
seen to cancel between the loop and the soft gluon contribieffect in the Born term in the total rateee also Fig. @ The
tions for each of the ten structure functions. mp# 0 corrections from thexg contributions alone are sur-
The fourth term in Eq(60) finally contains the result of prisingly large considering the fact that the factor multiply-
integrating the finite piece in the tree graph contribution Eqing the a4 correctionsCrag/(27)=0.023, is a rather small
(28), again after having done the appropriate projections. Th@aumber. This can be understood in part by noting thatithe
result is given in terms of a set of standard integfals, , contributions contain terms proportional to
Rmny» Sy, and Sgn.ny Which are listed in Appendix A.  (mZ/mg,)In(mg/mf)=—0.026 which is not a very small num-
Appendix B gives the values of the coefficient functionsber. A further discussion ah,# 0 effects for theag contri-
P(n)is P(mn),is O(n),i» @ndo(m )i that multiply the standard butions can be found ifi23]. Noteworthy is a large 20%

772
?—4+In2y—2 InA

ds
S(A)=-— ECF{(I—XZ)

+(1+2InA)In(

2
X
+In(1—x2)ln(m

+Lin(x?)
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SN L R I For top-quark decays the radiative corrections to the
- structure functions range from6.2% to—11.6% where the
1 radiative corrections to the unpolarized longitudinal structure

] functionsT', and the polarized structure functidiyy, p
. are largest. These corrections are to be compared with the
] correction to the total rate, which is8.5%. The radiative
corrections to the structure functions all go in the same di-
rections indicating that the bulk of the radiative corrections
derive from contributions close to the IR or M region of
phase space where the radiative corrections are universal.
Nevertheless, the span of values of the radiative corrections
exceeds 5% and must be taken into account in a future com-
parison with precision experiments. The radiative corrections
to rate combinations that vanish at the Born term level have
m, [GeVl been found to be rather small. In particular, thecorrection
to the normalized rate of an unpolarized top-quark decay into
Lrrrrrrrrrrerr e ] positive helicity W bosons amounts to only 0.1%. As dis-
1.422 - . cussed in Sec. VII, the minuteness of tlg contribution to
- 1 positive helicityW bosons is of relevance when discussing a
r 1 possible ¥+ A) admixture to the standard model current.
1421 - 7 We have also determined ti@(as) corrections to unpo-
""""""""""""""""" 1 larized and polarized);—q, scalar current transitions. For
~~~~~~ ] t—b transitions these scalar current transitions are relevant
1.42 7 for top-quark decays into a bottom quark and a charged
1 Higgs boson as they occur in the two-Higgs-doublet model.
™ ] For b—c transitions these transition matrix elements are
needed, e.g., for the description of the semi-inclusive decays
of the B mesons and the\, into spin zeroDg mesons
1418 b L0 o 0 L [38;39]-
0 1 2 3 4 5 In this paper we have studied only the first order QCD
m, [GeV] corrections to the structure functions in polarized top-quark
decays. For the total rate one obtains a correction ®5%.
FIG. 9. Bottom-quark mass dependence of the total Faje, ~ Second order QCD corrections to the rate are expected to
[Born term, full line;O(«s), dashed ling amount to—2.6% [40] while electroweak corrections are
, A known to increase the rate by1.7% [3,41]. For a high
correction 10 theO(as) transverse-plus ratB.,. due tom,  yrecision comparison of theory and experiment of the struc-
effects[23]. That the bottom-quark mass effect is so large iny o fynctions it would therefore be desirable to calculate the
I, can be appreciated in part by looking at the differentialyq_1o0p 0(22) and the electroweak one-loop corrections to

g'f?ég?lrﬁfnhgvg'gée% ovy:reesrl?gg?::jzzuigt?)”l:stirr:atat?iie?a(s) he eight structure functions. While the two-loop QCD cor-
Y 9 PO ctions to the structure functions are very difficult and are

mass, rather than a running mass, which is smaller at thﬁ'lerefore not likely to be done in the next few years, calcu-

top-quark mass scale. lation of the one-loop electroweak corrections to the eight
structure functions is presently under wa@p]. Finite width
corrections will also have to be accounted for. They lower
We have obtained analytical expressions for @)  the total width by 1.56%425,26 and affect the different
radiative corrections to the three unpolarized and five polarpartial helicity rates by differing amounf&5].
ized structure functions that govern the decay of a polarized We would like to conclude this paper with a speculative
top quark. Although bottom-quark mass effects are quitenote concerning a possible top-quark mass measurement
small in top-quark decays we have retained the full bottomfrom an angular decay analysis using the fact that the struc-
mass dependence in our calculation. In the limjt—0 the ture functions are top-quark mass dependent. This suggestion
analytical results considerably simplify, leading to compactis much in the spirit of the suggestion of Grunbergal,
expressions for the eight structure functions that are listed iwho advocated a similar measurement of heavy quark
the main text. The full mass dependence of our analyticamasses in the context &' e~ annihilations[42]. Assume
results is written down in Sec. VIII and in the Appendixes A that the percentage measurement errors ob/gd +L) and
and B. These finite mass results will prove useful for theU/(U+L) measurement aré, and 6, respectively. The
theoretical description ob—c bottom-meson and bottom- percentage error on the mass measurement will be denoted
baryon decayssee, e.g.[38]). by &, i.e., we writem,=m, (1% ) wherem;, is some given

1.553

1.552

Mya [GeV]

1.551

1.55

1549 Lo b L b L

o
-
N
w
»
(8)]

Mya [GeV]

1.419 + S -

IX. SUMMARY AND CONCLUSION
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the O(ag) case formy,=0. Note that theD(as) curves are
horizontally displaced from the Born term curves by ap-
proximately 3 and 3.4 GeV, respectively, meaning that one
would make the corresponding mistakes in the top-quark
mass determination from a measurement of the angular
structure functions if the Born curves were used instead of
the radiatively corrected ones. The present Tevatron run |
uncertainties on the top-quark mass are around 4%, which is
anticipated to be improved to 1.7% during the initial stages
of Tevatron run Il. It remains to be seen whether a mass
determination based on angular measurements as proposed
here can compete with the conventional method using invari-
ant mass reconstruction.
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’_,—""—6i;s)

0.69
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r_especE/ely, where we_ writex*=x5(1%29) with X, discussions, and A. Arbuzov for checking some of the for-
=my/m,. If we take m=175 GeV as the central value

(x3=0.211) this would imply that a 1% error on the angularmUIas'

structure function measurement would allow one to deter-

mine the top-quark mass with 1.7% and 0.7% accuracy, de-

pending on whether the angular measurement was done on

the longitudinal(L) or on the unpolarized transvergg) [or In this appendix we catalog the basic set of tree graph

for that matter on thé€F)] mode. Since the radiative correc- integrals that are needed in omn,# 0 calculation and give

tions change the ratids, /Ty, andl'y/T"y . by 1.1% and their analytical results.

2.4%, respectively, it is clear that one has to use the full

O(«y) results for the angular structure functions if such ex- o

perimental accuracies can be reached. This is illustrated in 1. Basic integrals

Figs. 10 and 11 where we plot the top-quark mass depen- |n the first step of the tree graph integration one integrates

dence ofl", /"y, andI'y/I'y for the Born term case and over the gluon energl,. After having done the integration
on the gluon energy it proves to be convenient to perform a

APPENDIX A: INTEGRALS

0.32 —— — - I ' - - ' shift in the W energyq, integration variable by introducing
e ] the variablez=1+x2—2q,/m,. One then encounters the
N ] following set of integrals:
> 1 R [
i : T 0(a) ] Ve VA(1X%,2)
S : ]
= o3l 3
E ] (1-x)2-¢ dz
C Born 3 R(ny:f ) a N , (Ala)
- E yHe  (z=y)VN(1x4,2)
0.29 F ]
170 175 180 mn= )2, o N(1x2.2)
m, [GeV]

FIG. 11. Top-quark mass dependence of the rate iJgidl"

(Alb)
for m,=0 [Born term, full line;O(«s), dashed ling

“ 1-x2+z+ VN (1X%,2)
n 1
1-x24+z— W\ (1x%2,2)
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._J(l’x)z’fi dz N3:===In(7)In(1—x)
(n)*— y2+fé (Z_y2) /)\”(1,X2,Z) (77+1)(1—X))| ( —x )

n
1-x2+z4+ W\ (1x%,2) X 7(L=7x)

1 2_ —
1_X2+Z_ /)\(1,)(2,2) —Liz(—l (77 1)X)—|—Li2<—1 nX),

7 —X 7—X
where \(1x%,2)=1+x*+72—2x?z2—2x>—2z. The re- (A3f)
quired ranges of values of the parameterandn are listed
in Table Ill. The cutoff parameters; and e, are needed to and
account for the spurious singularities that are artificially in-

—In

XIn

(Alc)

+Li,

troduced by partial fractioning the integrands. The spurious B+(n):=(x—1)"+(x+1)",
singularities cancel as they must when all contributions to a (A39)
particular helicity structure function are summed. B-(n)=(x—1)"=(x+1)",
In order to get rid of the square roots the final substitution
z:=1+x2—x(r+1)/r is introduced. The variablehas to be (x=1)" (1+x)"
integrated in the intervdll+e;,7—€,], where B(n):= n—1 - 7+l (A3h)
7=(1+x2—y2+\)/2x and A=\(1x2,y2) (A2) In the following we list our analytical results for the vari-

ous types of integrals that are needed in our calculation.

as before. The spurious cutoff parameteysand e, replace

the above cutoff parametees and e} and cancel in all final 2. Integrals of type Rem,n)

expressions. 12 _ 32 [+
In order to keep our results at a manageable length we R, _, , = )\_2+ Lomhy 1 X2 Lot Ly (A4a)
. . o . . (=2-1) y 2 1—x 2
introduce the following set of auxiliary functions:
Lo—L Lo+ L
7—X n(7—X) Ric1-1= N2 (1+x3) 2 (1-x3) 222,
Ly=In| ————|, Ly=In| =], ' 2 2
7(1-=nX) 1- (A4b)
(A3a)
(1-x)?=y? (1-x)? R(0,—1)=3(1+x*—y*)\"*=x*(L,— Ly),
£3::|n X Eiyz ) (A4C)
Riqa :_l)\3/2+ 1+2 ll+ 2_2)\1/2
| (14+%)2—y? (1—x)?2 ’ (1-1) 3 (1+x9)[2(1+x"=y?)
Ly=In X 4y? | (A3D) —X*(Ly=Ly)], (A4d)
1-x (1—x) Ri_20= ! ! R 1 0=2L A4
Ls:=In —) ,c6::|n(77 ) (A3c) (7207 y27 (1 —x)2' (10T SES (Ade)
y 7—X
(1-x)* y*
Nop=Lin(7)+Li X) 2Li Roo=(1=X" % Rug=—7 "7
:=Li,(9X)+ Liy| —| —2 Liy(X),
0 2(7X) 2 o 2(X) (Adf)
(A3d) - C(1=x° y°
_ [ x 20— 3 3’
Ny=Liy(gx)—Lis| —|,
7 1 A2 14+x2 Lo+ L
» S | 2T A
(-2,0) 1—x2)2 21 2 )
Nyi=—In( 7)In(1+ ) (1=x971y X At
7]—X 77—X 1 £2+E1
+ m——
'”((n—1>(1+x>) ”( n(l—nx>) Rew 15 =7
(1 . (772—1)X) .(1—7)X>
—Liy| —|+Liy| — | +Li , Lo— L L= Ly
2 2 n—X 2 7n—X R(O'l):—Z y R(l’l):_)\l/2+(1+x2) 2 s
(A3e) (Adh)
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3. Integrals of type R n,

1 3 1 [(1—-x)%2—y?
R(ZD:—§y2>\1’2—5(1+x2)>\1/2+(1+4x2+x4) Rio)=5In ﬁz_—zz) |n(1) (A5b)
Lo—L .
X 22 : (A4i) 4. Integrals of type Sqm.n
1 3 Si00=N"2=X*(Lo= L1)— 2L, (A6a)
Ry= = gh ¥ S (1) (1+x°—y? )2 1 o
Si10= Z(1+ 5x2+y2))\1/2—(2+x2)x2%
—(3+x)(1+3x*)\ Y2+ (1+x?)
L
Lo—L 4~1
X (1+8x2+x%) % (A4)) AP (ABb)
Son=No,  Sup=(L1+x)HNo—\"2L,

1 L 1 L, 1 01 Y
R<-2v2>_&(1—x)4_&(1+x)4+(1—x2)2 +2(1-x3) Ls—[(1-x)2—y?], (A60)
X(%— —(1_1)()2) , (A4k) 8(2’1): (1+4X2+ X4)No_ %(3+3X2+y2))\1/2£1

+3(1-xMLs— 2[(1-x)2=y?][(1-x)*+4
R :i Ly 1 L +8x%+y?], (A6d)
(T127 4x (1-x)2  4x (1+x)?’
(A4l) 1
1 S02= "~ &(Nz_/\/s), (AGe)
R(o,z):&(ﬁs_ﬁzl),
B (1+x)2N (1—x)2N N .
(l—x)2 (1+X)2 S(l,2)__ 2% 2+ 2% 3+ 15 (AG)
R(l,Z): 4x L3— 4x 54_§,37(2)£5, , ,
Adm 1+x 1-x
( ) 8(2’2):_( 2X) N2+( 2X) N3+2(1+X2)N1
(1—x)% (1+x) 1
Ri229= Ix L3— ax 54—5 (4 Ls N2 X3 (L= L) —Y2L, (A6Q)
+[(1-x)%—y?], (A4n) (1+x)8 (1—x)8
8(3'2):_ 2% N2+ 2% N3+(3+X2)
_(1—x)6£ (1+x)6£ 1 - .
Rea=™ g £om g Fam P01 X (L3N, + 7 (9413 +y2)\ 1
1
+3[(1—x)2—y?](1+Xx%)— =\, (A4o) Lo— L4
2 _(6+5X2)XZT
(1—x)8 (1+x)®8 1 X o oL
Rap= ™ L3— ™ 54_33—(8)55 -y [4(1+x)+y]?, (A6h)
1
+[(1—x2)—y2](—(1+x+x2—y2)2 1] 2 1 1 B
3 8(0'3)_4x 1—x+1—x£3 1+x£4 X L1
+(6+17x2+6x4))—2(1+x2))\. (Adp) +B+(0)£] (A6i)
x 8

1
S13= &[2(1—x)+(1—x)£3—(1+x)3£4

‘CZ_[’l )\1/2 n
— 1/2 2 2 1/2
R(—l)__)\ _(1+X -y )T+)\ In(T? y

L+

B(2) B+(2) .
(A5a) T X X Ce] , (A6))
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S _ 1 2(1—x)3+(1—x)3L;— (1+x)°C
(237 2y 3 4

4 4
P 1 B+)f )£e+4xNo , (ABK)
1 ; ] ]
Saa= 25| 21X (1=X)°Ls= (1+X)°Ly
6 6
—B(X iy B*)f Lot 1261+ XN
+8x(1—x?) Ls—4x\Y2L,
—4X[(1—X)2—y2]], (A6l)
1 , ; ;
Saa= 75| 21—+ (1=X)"La=(1+X) "Ly
_A9 L1+ '8+)£8) Lo+ 24x(1+ 3x2+xH N,

+28(1— x4 Ls— 2x(7+ 7x2+y?)\ 2L,

PHYSICAL REVIEW D65 054036

Of all the many integrals listed in Secs. A2—A5 the total
rate calculation done before [183—8] requires only the five
basic integraISR(,zﬁl), R(,lyfl), R(Q’,]_), S(O,O)v and
S(1,0) compared to the 33 basic integrals that are needed for
the full calculation. This may serve as a measure of the ad-
ditional labor that is incurred when one calculates the com-
plete set of structure functions as is done in this paper.

APPENDIX B: COEFFICIENT FUNCTIONS p(). P(mn) .
T (n), and O (m,n)

In this appendix we list the values of the various coeffi-
cient fUnCtionSp(n)’i v P(mn),is O(n),is and T(m,n),i (l =U
+L, UP+LP, U, UP L, LP F FP, S SP, IP, andAP) that
multiply the basic set of integrals listed in Appendix A as
spelled out in the rate expression EG0). The coefficient
functions involve polynomials in? andy? which we sort by
increasing powers of2. For reasons of conciseness we drop
the suffixy denoting the particular type of structure function
in the following listing. The contributions are collected in
terms of powers of/?.

1. Total rate i=U+L

yA(1=x*)((1+2x%) +y?)
—2X[(1=x)2=y?J(7T+9x*)+X\[.  (A6m) P(-2-1)=~ 2 , (Bla)
5. Integrals of type S, _(1-X%)(1+2x%) + (4 3x)y?+3y*
P(-1-1)~ X2
‘Ci 1/2 . (Blb)
S(o)=—7+£1ln<76—2 +(Ly—Ly)Iny+Liy(7nx)
(1) (3—2x%) +3y? (B19
X —1)x =, C
~ L, —)—2 Liz(—" ) (A7a) PO~y X
n n—X
2((1+2x%) +y?
S= — —E—i+,c In VEL foLiy — = "<°'°>:_2y(( X2 ARR} (B1d)
D)= \12 2 L X €5 2 7
_ 1—7x (1+2x3) +y?
-2 L|2( - 7—X )] (A?b) 01,0~ T (Ble)
2. Polarized total ratei=UP+LP
2 2\ 2 2 2
y(1=x9)T(1-2x%)—y7]
P(-20= "~ 2 ) (B2a)
(1—4x%+5x*—2x%) + (5— 4x?—5x*)y?—2(3—x?)y*
P(-107~ 2 ) (B2b)
2(1-x*—6x")—3y*+y*
P0,0= 2 ) (B20)
(7—6x%)—7y?
PO T (B2d)
VAL(1-2x%) —y?]
p-1=8 2 , (B2¢)
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PO="S— 7z (B2f)
VAL(1-2x%) —y?]
T00~ 2 ) (B2g)
4x%(1—2x%)(1—x2) +(7—5x2—6x*)y2— (9+ x?)y*+2y°®
g0y= "~ 2 , (B2h)
(3—x2+6xH)—(2—x%)y?—y* _
(7(1'1): X2 y (BZ|)
(1—2x?%)—y? .
TeyTeT 2 (B2j)
WA= +yA[(1-2¢7) —y?]
0'(0):4 X2 y (BZk)
MI1=x*+y?)[(1-2x%) —y?]
0'(1): X2 . (BZI)
3. Longitudinal rate i=L
2 2 2,3
y(1+y9)(1-x%)
P(-2p= "~ 2 ' (B3a)
(1—x)[(1—x?)2+ (6+x>—3x*)y2+ (5+3x%)y?]
P-1,0= 2 (B3b)
(5—2x2—Tx*+4x8) + (12— 332+ x*)y?+ (7T+ x?)y*
POH= "~ 2 ) (B30
(7—31x*+4x%) + (10+ x%)y*+3y*
P(1)= 2 , (B3d)
1+y?
Py= S 52 (B3¢
2 2 4 2\\/2\,2
Y (1+10x"— 11x™) + (1 +X°)y“y“]
002~ 2 , (B3f)
(1+10¢°— 12xH) + (3— 4x%+ xH)y?+ 2(1+ x?)y*
o12=2 2 (B39
2(1-3x%) +(3+2x°)y?+y*
022~ "~ 2 , (B3h)
1+y? .
03y=2 7 - (B3i)
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4. Polarized longitudinal rate i=LP

YAy (-

P(-22= 2 ) (B4a)
(1=X2)2[(1—x%)2+(7—2x*+3x")y*— 4(2+x2)y*]
P(-12~ 2 , (B4b)
2x%(3—x2)(1—x?)?— (7—5x*+6x%)y?+ (7—18x*+ 3x*)y*
P2 =2 2 : (B4o)
(5+10x%+ 13x*— 4x5) — (9+ 482+ 11x*)y? + 2(2+ x?) y*
pP12=—2 2 , (B4d)
(16— 20x%— 4x*) — (17+ 20x?) y2 + y*
P22= 2 ) (B4e)
1-y?
pia2a=—1 2 (B4f)
VN(1-y?)
U(_l)ZST, (B4g)
A1-y?)
o= "8z (B4h)
VM (1-y?) :
00,0~ —4—2—X , (B4i)
(1—x?)[4x3(1—x3)?+ (7—10x%+ 7x*— 4x5)y?]
003~ — X2
1—x2)[(9+8x%>—5x*)y*—2(1—x?)y®
+2( )L( X )Yy =2( )y]1 (B4)
X
(3—5x2+ 17x*— 15x®) + (12— 9x?+ 18x*+ 11x%)y?
0’(1,3)=2 X2
19+ 14x%+ 11x*) y*— 4(1+ x?)y®
! ly ( )y , (B4K)
X
(5—14x2— 7x4) + (4+ 21x2+ 11x*)y2 — (114 7x2)y*+ 2y°
023~ v , (B4l)
(1+3x?)+5x%y?—y*
033~ 2 , (B4m)
1—y?
0'(4‘3):27, (B4n)
WN(1-y?)(1-x2+y?)
0=~ X2 s (840)
AM1-y?)(1-Xx2+y?)
o= 2 . (B4p)

X
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5. Unpolarized transverse ratei =U 0(0)=8\/X(1—X2+y2), (B60)
— _9y2(1_y2\3
P(-29= ~2yH(1=Xx7)%, (B53 o(1)=—8N(1—x3+y?). (B6p)
p(—1,n=2(1=X[(1-x?)*~ (1-5x*)y*—2y"],
(B5b) 7. Scalar ratei=S
P01 =2[(1-6x*+5x") —3(5-x3)y*—2y*], L YALHYD)(1-D)
(B5¢) P(-2-12= 2 ; (B7a)
=2[(17-5x%)+y? B
P11 [( 5x%) +y<], (B5d) - (1+y2)[(1—X2)+3y2] -
P2y=2, (B5€) P-1-1 X2 ’
T02=4y[(5—4x3—x*) +2u?], A5f 1+y?
02=4Y[( ) ] (A5f) P(o—1>:_3( zy )’ (870
! X
o(12=—A4[(5—4x*—x") —2(2+x%)y?],
0=~ 4 (6+2x2)+y?], (B5h) 700~ X
g 3,2 :4 (BS|) (1+y2)
32 T10=2—5 (B7¢)
6. Polarized unpolarized-transverse ratei =UP
8. Polarized scalar ratei=SP
p(_2‘2)=2y2(1—X2)4, (B6a) olarized scalar ratei
2 2 2\2
y(1-y9)(1-x9)
p—12=—2(1=x*)[(1-x*)%+2(1+3x?)y*—2y"], P(-20=— v , (B8a)
(B6b)
=—4[(1— 2\2 3+ 2 —2(1+3 4N, ,2 (1_y2)[(1_X2)2+2(3_X2)y2]
Po2= —4[(1=x)%(3+X%x)—2( XMy P-10= v , (B8h)
—2(5—x%)y*], (B60)
1-yH)[2(1+5x) —y?
p(1.2=4[(9+10x*+5x%) — (27+5x?)y?+y*], p(0,0)=( yILA 5 )=y ], (B8o)
(B6d) X
=2[10(1—x2) + 3y?], B6e 1-y?)
p(2,2) [ q ) y ] ( ) p(ly0)=_7 X2 , (B8d)
pP32=6, (B6f)
N (1-y?)
p(—1)=—16y\, (B6Q) P(—1>:8—X2—, (B8e)
0'(0):16)\, (BGh) A(l_yz)
: PO= 88—z (B8f)
T00=8V\, (B6i)
T (0.9= (1~ X2)[4XA(1—x2)2+ (1+ 4x?— 5x4)y? ron=—4 ﬁ(lz—yz), (89
—2(4-x2)y*, (B6)) X
2 201 2 21,2 oy 4
o(1.3=4(1—x*)(3—11x?) + (9—22x*— 11x*)y? U(M):_Z(l y)[4x7(1—x ;r(?+5x )y -2y ].
—2(1-2x)y", (B6K) (B8h)
0(29=—4[(13+11x*) — (15+ 7x?)y?+2y*], (1-y?)[3(1—x3)+y?] ,
(B6I) o1y= 2 , (B8i)
0(33=—4[(1-5x%) +y?], (B6m) (1-y?)
Tuy=—4% (B6N) TeyTeTE (B8)
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M1-yI)[(1—x?)+y? g21=4, (B9j)
=4 W (1-y )[x<2 kel (B8K) 21
o= —8[(1-x?)+y?], (B9K)
MI-yH[(1—x*)+y?
o(1)= y [X2 y ] (BS') 0'(1):8)\[(1_X2)+y2], (Bgl)
) ) 10. Polarized forward-backward-asymmetric ratei=FP
9. Forward-backward-asymmetric rate i=F
o, p=2y%(1—x%)3, (B10a
p(—20=—2Y*(1-x%)?, (B9a) P-23=2Y( )
_1=—2(1-x3)[(1—x?)2—(1-5x?)y?],
p(-10=2[(1—x)%+4x%y?], (B9b) P13 ( ¢ ( vl (B10b
p00=2[4(2+x%)=T7y?], (B9o) poy=—2[(1—6x3+5x*) — (11+x?)y?],
(B109
P10~ —2, (B9d)
py=—2[(11+x%)+5y?], (B10d)
p(-1=16V\, (B9e)
p2=10, (B10e
P02=—4y*(1=x*)(5+x?), (B10f)
00,0~ _8\/X, (ng)
o(1.2=4(1-%x?)(5+x%) —2x%y?], (B10g
o0.n= —A[4x*(1—x%) +(1+5x?)y?—2y*],
(B9h) 0(2.2=42x*+Yy?), (B10h)
O~ _4[3(1+X2)_y2]1 (Bgl) 032~ -4, (BlO|)
11. Polarized longitudinal-transverse-interference rate =1"
V2 y?(1—x?)*4
P22~ 5 5 (Bl11ag
V2 (1-x)7[(1—x%)?+(3+5x%)y?+ 2y*]
P12~ 5 X ) (B11b
V2 (1-x%)2(5+43x%) — (25— 38x%+ 29%*)y?+ 8(1+ x?)y*
P2~ 5 X , (B11o
V2 (1+50x2—3x%) — (21+23x?)y?+ 10y*
Paa= % X ; (B11d
V2 (5+7x%)—2y?
P22~ %5 — (Bl1le
NN
pP-1= —4‘/§7, (B11f)
A
Poy=4v2, (B11g
A
0'(0'0)22\/1\/7—, (Bllh)
1-x3)[4x*(1-x%)%— (1-9x*+8xh)y?+2(1+2x*)y*
0(0'3):‘&( [4x<( ) = ( )y +2( )y ], (B11)

X
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(5—18x2+5x*+8x%) — 2(5+ x?+ 8x*)y2+2(1+4x?)y*

O(13=V2 ” , (B11))
4(1+3x%+ x4 — (11+8x?) + 4y*

023~ "~ X , (B11Kk)
1

(7(3'3): —1/7 ;, (Blll)
A(1—x?)+y?

X

M (1-x?)+y?

X

12. Polarized parity-asymmetric ratei=AP

V2 y?(1—x3)8

P(-2,p= o x (B123

V2 (1—x%)[(1—x3)%+4y?]
P(—1,1):_? )

X
(B12b)
V2 4(1—x%)+ (3= 7x%)y?
POHT S ” : (B129
V2 3—7x?
PADT T 5 T (B12d
y2(1—x2)(1+2x3)
T02=V2 ” : (B12¢
(1—x2)(1+2x%)+ (1—2x?)y?
0(1,2)2 - X ’
(B12f)
1—2x2
0'(22):\& (BlZg)

APPENDIX C: LOOP INTEGRALS

In this appendix we list then,#0 one-loop amplitude
corrections to the process-b+W™". They are determined
from the vertex correction Fig.(fh) and the appropriate wave
function renormalization constani,. We present our re-
sults in terms of the three vector current amplituds (i
=1,2,3) and the three axial vector current amplitudeés
(i=1,2,3) defined in Eq(253 in Sec. V. Using the abbre-
viations in Eq.(64) with g?>= m\ZN, one has

2

Fi=1+

2 2
Ie% m; +mg—
—SCF[ t T M4 {2 Liy(1—w?)

4 B mtz\/x

_ wy| 1 A?
—2 Li, 1_W_M +§In W |H(W1W’u)

+In

Wf) (WM(l—Wi)” ( A* )
L 2 T
w W, — W, mgm;

" M

—MI m_ﬁ —4+In(wqw )
2q2 t2 1IWu
% mtz\/X (mt"‘mb)z_qz c1
q m; VA
v_ Qs Memmp | m;+2my
Fa=7,Cr q? |2 my—m,
_mf—mﬁ) n(mﬁ)_ mtz\/f_ m,
q? m? > m—m,
g%+ (M= my,) (3my+my)
In(w,w , (C2
FY=FY(m,,mp)=FJ(my,,my). (C3

As before the IR singularity is regularized by a small
gluon massn,. The axial vector amplitudeléiA can be ob-
tained from the vector amplitudes by the replacenmapt:
—m, i.e., one ha&(m)=F'(—m,) (i=1,2,3). Our one-
loop amplitudes are linearly related to the one-loop ampli-
tudes given in[34]. The two sets of one-loop amplitudes
agree with each other after correcting for a typ$3d] men-
tioned in Sec. V.
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