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Three-body confinement force in hadron spectroscopy
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Recently it has been argued that a three-body color confinement interaction can affect the stability condition
of a three-quark system and the spectrum of a tetraquark described by any constituent quark model. Here we
discuss the role of a three-body color confinement interaction in a simple quark model and present some of its
implications for the spectra of baryons, tetraquarks and six-quark systems.
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I. INTRODUCTION [10] been added to the usual two-body confinement. Its im-

plications on the spectrum of ordinag? and exoticq®q?

In the strong coupling limit the Sk(3) color gauge group hadrons have been considered. In particular turning on a
leads to a three-body color confinement interaction in barythree-body force with an appropriate strength denoted ity
ons[1]. In SU(3) lattice QCD the static three-quark potential was shown thatl) the threeq® color states, namely, 8, and
can be measured with the help of 3-quark Wilson loop op-10 appear in the correct ordet,being the lowest one, as it
erators(see for examplé2—6)). !n recent lattice calculations ghould be, and2) in the q252 system the three-body inter-
[4-6], the ground state potential of a three-quark system hagction brings distinct contributions to the two possible color
been extracted as a sum of a two-body Coulomb plus a thregjng|et states, by enhancing the binding in one and diminish-
body interaction confinement. These studies lead however g it in the other, depending on the sign ©f
rather contradictory results; one of th¢b gives support to In this study we rederive some of the relations found in

the Y-type flux tube picture of Ref1], while the others favor  Ref. [10] and discuss explicitly the role of confining three-
the A ansatz(where the three-quark potential consists in abody forces ing? qzaz and ¢° systems. In the simple

Sur_Ph%f plﬁz}ggg)éncorgfeonq%?ibta'ned in these calculation framework of a harmonic confinement we show that in the
! ion p : ! ! S vations, s system there is a competition between the three-body
r

corresponds in any case to the colorless ground state onP " o
. ) . . ce and the kinetic energy in rising the energy of the color
and no information from lattice QCD about color octets is 9y 9 gy

available so far. In practice, for simplicity, in quark models OCtét states. By introducing singlet-singlet and octet-agtpt

as e.g. that of1] the confinement is treated approximately asCOUPIed pairs we show that the range of values of the

a two-body color operator. This can be expressed in terms O?rtsrength of the 3-body force giving a correct spectrum for a

the quadratidCasimip invariant operator of S(3). g° system also favorably affects the spectrum of a tetraquark
This three-body color confinement interaction should notq°q”. The results on the role of a 3-body confining force in a

be confused with the three-body forf®8] associated with  q° system, relevant for thBN problem are entirely new.

the instanton 't Hooft's interaction, which in the nonrelativ-

istic limit contains a color operator similar to the one intro-

duced below, but is of short range, in contradistinction to

confinement forces. The instanton-induced three-body force In this section we recall and discuss the findings of Ref.

cancels for three quarks in a color singlet state and is morg-10] in relation with a three-body interaction of type

over only effective if the three particles are in a flavor singlet

state. Another short-range three-body force has also been in- N Y.

. . . V3b Vljk Vljkcljk (1)
troduced in[9] on a purely phenomenological ground. This
force has a simple scalar structure and accounts for a better.
description of the Roper resonance. with

Based on the algebraic argument that-£8) is an exact
symmetry of QCD, which implies that any quark model
Hamiltonian inspired by QCD can be written in terms of
SU(3) invariant operators, a three-quark potential that de-

pends on the cubic invariant operator of 8Uhas recently wherec is a strength parameter a@}; a color operator of
type

Il. THE THREE-BODY FORCE FOR BARYONS

1
Vijkzicmwz[(ri_rj)z"'(rj_rk)2+(rk_ri)z] (2
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where F2= 3\ is the color charge operator of the quark V3, is the 3-body confinement interaction of Edq$)—(3).
and dabc some real constants, symmetric under any permuPerforming integration in the color space and express{ng
tation of indices and defined by the anticommutator of thgp terms of the internal coordinatgs=(r,—r,)/2 andX
a
Gell-Mann matrices\® as = (F1+F,—2r3)/ 6, we have
(N3 NPy =2d7Po\C (4) )

h 3
— _ 2 2 = 2.2 2
These constants satisfy the following orthogonality relation: H=3m 2m(VP+V>\)’L 2 Mo“xi(p™+A% (13

5 .
dabcdabezggce_ (5) with
(5 10 . .
The operator3) can be expressed in terms of the two inde- 3T5C i=1 (singled,
pendent invariant operators of 8) as[10] (for a proof see
i 13 5 .
Appenle A) Xi= { E _ 3_6C’ i=8 (octeb, (14)
1 20
dabCFiaFJbFC:g Cu(iﬁk C|+J+k 3 (6) 8 1
§+§c, i=10 (decuplet.
\

where we slightly changed the notation [df0], by writing
C® instead ofC™™) for the quadratic invariant an@® in- |y the expressions of:(i=1,8 or 10, the first and second

stead ofC(® for the cubic invariant. For a given irrep of terms stem from the color part o, and Vs, respectively.
SU(3) labeled by § 1), the eigenvalues of these invariants  \ve search now for solutions &f. In order to satisfy the

are Pauli principle, in the lowest color-singlet state the quarks
ol should be in &% configuration. This implies that the orbital
(C®)= 3 (M u+Au+3N+3p0) () wave function is symmetric and one can take
and (see for example Ref$11] or [12]) bog= 3/2b3 —exg — (p?+\))/(2b?)] (15)

1
(CB)= TN~ (2A+p+3)(N+2u+3). (9
with b a variational parameter.

Then for ag® system the expectation values of K@) are The expectation value df is then

2o 2 1 for a singlet qu)=(00), octet {u) 342 9

=(11) and decupletNu)=(30) states respectively. These E;=3m+ + —mw?b2y, (16)

are the coefficients appearing in the last term of Egf) 2mp? 2

below.

Turning on a 2-body confining interaction, which ensuresThe minimization with respect tb? gives

stability for aqq pair and adding the 3-body confining inter- b2

action (1)—(3) of strengthc relative to the 2-body one, in bgz 0 (17)

Ref. [10] it was found that the spectrum ofg# system is V3x1

correctly described provided

3 2 with bézﬁ/mw. The energy of the singlet state is thus

— E<C<§. (9) 352

The closerc is to the lower limit, the larger is the gap be- mby

tween the color octet and singlet states. To see this, let us

consider the Hamiltonian The color-octe8 must be combined with asfp configu-

H=T 4Vt Vap (10 ration in order to satisfy the Pauli principle. Indeed, the spin-

- 2 3

flavor part being totally symmetric, as for the nucleon
where T is the kinetic energy andh, a 2-body confinement ground state, the orbital-color part must be antisymmetric,

interaction of the form i.e., itis of the form
V=2, V 2 papa (12) ! N

=g il 1T g T Vo= (4~ 1C") (19
containing an arbitrary constant which we set equal to 1 Where
as in Ref[10] and take

1/2
1 p 2 2 2 2
Vij=§mw2(ri—rj)2. (12) 10— 773_[)8 pZeXF[_(p +A )/(Zb )] (20)
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-
b10=

2 1/2
3—bg) N, exd — (p?+\2)/(2b?)]
ar

(21)
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in choosing/ w. One can take for example=0.437 fm and
m=0.340 GeV, as typical values for a quark modsée
e.g., Ref.[15]), which giveZiw=0.6 GeV. This implies a
gap AE~5.5 GeV. Forc=0 (no three-body forceone

are the mixed orbital symmetry states with one unit of anguWwould haveAE=3.51w~2.1 GeV only.

lar excitation andC?,C* their color counterparts. The corre-
sponding eigenvalue dfl is

2

Eg=3m+ — +6mw?b2ys (22
mb?
and the minimization with respect t’ gives
b
b3= (23)
V3Xxs
which leads to
4h?
m

Accordingly the gapAE between the octet and singlet states

IS
AE=%hw(4y3xg—3V3x1)-

The largest value oAE corresponds tg;=0, i.e., toc=
—1.5, in which casé\E=10.7.w. Forc=0 (no three-body
force) we would haveAE=3.5: w. This means that the gap
is enlarged by a negativeand triples for the limiting value
c=-—15.

(29

Before ending this section we should note that there is
some arbitrariness in fixing the lower limit of the rangecof
as given by the inequality9). This limit is related to the
choice of the arbitrary constan which has been set equal
to 1 in Eq.(11). But taking for examplec; =4/3, which is
another good choice in constituent quark models, one gets
x1=2+%c. The stability condition for the singlet would
then gives

9

—=<C

5 (30

i.e., a different lower limit, slightly more favorable than the
one of inequality(9) because withc=—9/5 and the new
expressions foj1, xg one getAE=11.5 w.

Ill. THE THREE-BODY FORCE FOR TETRAQUARKS

If F2is the color charge operator of a quark, for an anti-
quark we must have

Fa: _ l)\a*

5 (31)

in order thatF2(a=1,2, . .. ,8)satisfy the Lie algebra too.
Then one can write the three-body interaction acting in the

i
The color statel0 requires an antisymmetric orbital state 9”0 Subsystem as

in order to satisfy the Pauli principle. Its form isee e.g.
Ref.[12], Chap. 10

1 1/2
¢§\o=(m) (psh-—p-N)exd — (p®+2\?)/(2b%)]
(26)

with p.=p,*ip,, etc. The subscript 10 means totatL,

M=0 as above. This is the only value of L allowed by an

antisymmetric state built from the configuratiep®. Pro-

Cijie=— d**F R PR (32

and the three-body interaction acting in ﬂn;z subsystem as
Ci=d*FFFL. (33

As a remark, the three-body interaction in an antibaryon
should be

Cijk - — dabCElaE?EE . (34)

ceeding in a similar way as for the two previous cases, 0Ng, Ref. [10] the operator(32) is given in terms of S(B)

gets
b2
=== @7
3X10
and hence
E10:3m+ Sﬁw\ 3)(10. (28)

The gap between the decuplet and the octet state is thus
Eio—Es=fw(5V3x10~4V3xs)- (29

Forc=—1.5, one ha€f,;— Eg=3%w, i.e., this state is lo-

invariants as

— 1 5 5 50
Ci=—5|Cio 3B+ 5 (35
where Ci(i)j L acts on theqza subsystem but the Casimir

operator acts only on the subsystemi &fj quarks(see Ap-
pendix A). If the quark subsystem is in a symmetric state it
gives rise to ag®q [211]¢ state calleds and if it is in an
antisymmetric state to p211]c state calleda. Both these
states have Nu)=(10), which according to Eq(8) gives
(Ci(i)j i) =% But for the subsystem of ttie+ j quarks only,

cated above the octet, as expected, with quite a large gap fthe SU3) representations are different. One hasuj

a limiting value ofc.
Let us now evaluate the octet-singlet g@&®b) by taking

=(20) for thes state and X ) =(01) for thea state. Then
the expectation value of the operat86) is — = for sand3

c=—1.43 as in[10]. There is of course some arbitrarinessfor a, consistent with Table Il of10].
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The operator(33) acting on aqa2 subsystem can be and|612§34). Such states are important asymptotically and

brought to a form similar to Eq.35). This is they are defined by the transformatioisee e.g., Ref.14])
— 1 5 50 1 2
Cijk:g Ci(i)ﬂﬁ ECJ%)T 9 (36) |115100 = \/;|312334>+ \[§|612634>, (39
The difference with respect to qfasubsystem is now that 812820 = — \E|§12334>+ \/§|612€34>. (40)

one has to calculate the expectation valu@i)jjr; for a
[221]c %olor state for which Xu)=(01) so that one has In these states the intermediate coupling in the color space
now(Cf+)T+;>= — . The subsystem of antiquarks gives for takes place between a quarkand an antiquark. This gives

C® the same value as that for the quarks so that the operaolor singletqq pairs in Eq.(39) and color octet ones in Eq.

tors (32) and (33) have the same expectation value which (40). Asymptotically the energy of8,48,4) must become

leads to Eqs(26) and(27) of Ref.[10]: large, as such a state is not expected to be seen. Using the
transformation$39) and(40) one obtains the contribution of

5
Ve=—oCmo?(ri+rigtri,+ra+r3,4+r3)  (37)  the three-body interaction ingég? system as

18
5 (115154 C1od 115150 1( 5)+25 0 (4]
x| = — = ——|Cc=
Va=—§cmw2(ri2+rf3+r§4+r§3+r§4+r§4). (39 a2y I3l 9] 318
and
One can see that the contribution of the fourth particle is also 2 5\ 15 5
included in these equation. To understand this one can for <813824|5123]813824>oc[§( — 5) + 318 c=— 1_8C

example add another antiquarkqéa This leads to the sin-
: . (42)

glet color state[222] appearing from the direct product

[211]X[11]. By construction this singlet has an intermediatewhich shows that with a negatiweone raises the expectation

coupling both between quarks and antiquarks. The twealue of the octet-octet above the singlet-singlet state. This

quarks couple either to a & a 6 state and the antiquarks to IMPlies that the coupling between octet-octet and singlet-
nglet states due to a hyperfine splitting will be diminished,

S ¢ _ i
3ora 6_state. If the particles 1 and 2 are quarks gnd .3 and &/hich amounts to make a ground state tetraquark less stable.
are antiquarksy, andV; are the three-body contribution 10 15 seems to be consistent with the experimental observa-

the Icolorless states denoted [3/,334) and|6,,634) respec-  tion that no stable tetraquark system has been seen so far.
tively.

For a negativec, as required for baryons described by a IV. THE NN INTERACTION
pure const!tuent quarlf modeho gluon components in the The short-range NN interaction can be studied ag®a
wave function as e.g. in Re[fl3]),_the mass of th¢6:63.) problem. First we give a simplified discussion by considering
state is reduced and the mass|8f,334 is enhanced by a that the six quarks are in a totally symmetric orbital state
three-body force. The situation is opposite for a positiven  [6],. In such a case the spin-flavor part of the wave func-
[10_], Vs was associated to the _u_nopserved sextet-sextet staigon has a 33]r5 Symmetry which combined with the color
which would mean that a positiveis preferable. The con-  symmetry{ 222]. state leads to a totally antisymmetric state.
flict can be solved by noting that the relevant states in therhe Jatter is a superposition of five color components given
present problem are in fact linear combinations ®f,334) by the five following Young tableaux:

12 113 i3 112 i1z (43
1/)1= 25, 1,!72— 5, ¢3= 47 'lnz)4= 357 1/)5_ 314
3[6 2[5 516 (6 516

Below we give some details of our calculations of the 1 58
three-body matrix elements for agésystem. In a state of 5 2 > (1//n|dab°Ff‘F}’F§|z//n> (44
orbital symmetry[6]o, i.e., of configuratiors®, all orbital Isi<kaben=1
matrix elements are equal so one has only to calculate the
color matrix element: where the factor 1/5 comes from the normalization of the
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TABLE I Examples of the matrix elements Vun=H(0)—H(x). (48)
<l//n|dabCFiaFJbF§| ) for a few values of the indicedjk) at fixed

(abc)=(146). The successive columns correspond to the SR, this difference only the kinetic energy survives if the NN

1 -+ s the last column gives the sum over the five states. system is in the stat6]o. The contribution of the confine-
ik 55 ment due both to two- and three-body forces cancels out
(ijk) 1 2 i3 I s n=1 because
(123 1/48 —1/384 —1/384 —1/384 —1/384 1/96 cont cont
(145 0 —1/768 1/768  1/768  7/768  1/96 VEr(0) = V() =Vop+ Vgp=—4+20/%. (49

(124 0 7/384 —1/384 —1/384 —1/384 1/96

The two-body confinement force has been discussed for ex-
ample in Ref.[15] where the Hamiltonian also contains a
total wave functior(see e.g.[12], Chap. 10. In Appendix B hyperfine interaction.

we have explicitly proved that However the physical NN state is a combination of three
symmetry states given HyL6]

1 4
INN)= \[§|[6]0[33]Fs>+ \[§|[42]o[33]FS>
We get the same result fors, 4, andyss but not for i, for

which one has 4
- \[§|[42]0[51]Fs>- (50)

2 (Y] d™FIFZFS] ) = 10/9 49

2 (U dOFIFEFG|gr)=—5/36.  (45)

For SI=(01) or (10), one should also consider the physical
i.e., the result for the singléi23), as expected. As shown in AA state:
Table I, the matrix elementsy,|d2*F2FPF{|y,) differ for Z T
different (ijk) but the sum over the five states does not de- _ \ﬁ \ﬁ
pend on the choice oi jk); the table has been calculated for |A4)= 45|[6]O[33]FS>+ 45“42]0[33]':S>
a given value of the color-indicesbc) =(146) but the con-
clusion is also true for the other values of the color indices. n \/Z5|[42] [51]rs) (51)
Then the calculation of the matrix elemeft4) reduces to 45t THOLY SRS/
the calculation of the matrix element of the three-quarks

(123 which has to be multiplied b= 20. The unphysical color octet-octéEC) state has the foriiL6]
Thus we obtain

4 1
L S S S (R ) Ico)= \[5”610[33]“)‘ \[§|[42]°[33]FS>' (52
5i<j< " b )

k a,b,c n=1
20 5 By using 3-body fractional parentage coefficieritsp)
=— D > (¢h|d®PFIFEFS ) (given in Appendix @, we calculated the expectation value
S abcn=1 of the 3-body potential acting on the symmetry states
|[42]0[ 33]¢s) and|[42]o[51]s). For|[6]o[33]¢s), the re-
=4 <¢/fl|dab°Fél‘Fk2’F§|1//l> sult is straightforward as shown above. In short, we have
ab.c found the following expectation values:
+4 e S S 20
o, (WA V) ([61o[33egVarll6lol33e)= g (59
=4(10/9-20/36 L
=20/9. (47 ([42]0[ 33| Vanl[42]0[ 33]ks) = 9¢ (54

Therefore we can see that in the case of a three-body con-

fining force the value of the matrix element of a six-quark ([42]0[51] k¢ Vap|[42] o[ 511k s) = EC_ (55)
system in the symmetry stafté] is equal to two times the 9

value for a single baryon. This situation is similar to the

two-body force where the expectation value of a 2-body opNote that the|[ 42][ 33]rs) and |[42]o[51]ks) states have
eratorV,,«>; - ]-F;"‘F}"l in the symmetry statg6]o is equal to  the same expectation value, consistent with the fact\that
—4 i.e., two times the value of a single baryon. Let us definds spin-isospin independent. Using the transformati&@s—

an adiabatic NN potential as the difference between the in(52) from the symmetry states to the physical states
teraction Hamiltonian at zero separation distance and at ilNN, AA and the hidden coloCC state, we obtain the
finity, i.e., following matrix for Vg, :
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NN AA cC at an early stage of this study and for simplifying the proof
of Eqg. (6) given in Appendix A. Useful discussions with
NN 2§C 38\/§C 38\/36 Jean-Marc Richard and Mitja Rosina are also gratefully ac-
81 405 135 knowledged.
aa |51 76 APPENDIX A
56
405 405 135 8 In this appendix we first prove Eg@6). In order to avoid
cC 38\/§ 76 9 any confusion, we fix the indicesjk) of Eq. (6) to be
135 ¢ 135°¢ 3¢ (123). We rewrite Eq(3) as
3 3
The eigenvalu_es of this matrix afe;=c/9, E;=c/9 and dachinggzl > dachiaF}JFE_3E dachiaFiijc
E;=20c/9. This shows that the effect of the 3-body color 6| Tk i
confinement on NN and A is identical and rather small as 3
compared to that o€ C. In particular for a negative value of 42 abcpapbpe Al
¢, the spectrum oN, AA andCC lowers and shrinks. For Z dTEIEE A1)

a positive c, the situation is the other way round. This means . ) i
that, forc<0, Vg, itself brings some attraction and implies where the second sum in the rlght.—hand side compensates for
a stronger coupling oE C to NN andAA due to a hyperfine the extra terms contained in the first sum, but as we extract

interaction. This will lead to a reduced hard core repulsion iff®® many we add the third term for satisfying the equality
the NN potential. correctly. The first term is precisely the cubic invariant op-

erator acting on the three-quark syst@ft), . , and the last
V. CONCLUSIONS term is 2<3 times the cubic invariant operat@;® acting

on a quark. The latter is replaced by its eigenvaifiso we
We discussed the role of a schematic three-body confingget

ment force in the spectra ofg3 g?g® andq® systems. We 1 3 20
found that a three-body confinement interaction with a nega-  d2P°F3FbFS=— C(13+)2+3—32 daPFAFPEC+ _}
tive strengthc has the following effects(l) it increases the 6 i 3
gap between the physical color singlet state and the unphysi- (A2)

cal colored states in baryong?) it raises the expectation e to the fact that the constard& are symmetric under
value ofqq pairs in color octet-octet states with respect tothe permutation of indices we can modify the second term as
singlet-singlet states in tetraquark systems, which will lead to 3
a smaller binding in a ground state tetraquark when a hyper- dachanFc:E c®._ E 2 dabc{Fa Fp}Fp+ é)
fine interaction is included an@®) it increases the coupling rers *2+3 24 P

6 3
between physical states a@C states inq® systems. While, (A3)
in the first two cases, the gap between the physical color-

singlet state and the non-physical colored states is incret;tse‘rfluj,1
the opposite is true for thegpsystem. The larger coupling {F2,FP}=dabeF! (A4)
between physical an@C states induced by the 3-body in-

teraction has both negative and positive consequences: it wi

d simplify it by using the anticommutat6$) in the form

mnd the orthogonality relatio(b). This leads to

reinforce the undesirable Van der Waals forces but, on the b 1 5 20
+ bri on i - d2PeFeFbFS=—|CP),, ,— =CP@), s+ —=| (A5
other hand, it brings more attraction into the NN potential. 17237 g| ¥1+2+3 o “¥i+2+3 7 3
This may be a desired feature for quark models which give a
too strong hard core repulsion. i.e., Eq.(6).
A three-body force with a positive strengthwill have Next we prove Eq(35). One can rewrite the operat(82)
just opposite effects than the ones mentioned above. as

Our results are valid for any quark model, irrespective of 1
the hyperfine mteraqtl(_)n. It V\_/ould be _useful _to extend this —dabCFi‘FBEg: -5 dabC(Fell+Fg+E§)(F?+ F2+Eg
study to a more realistic confinement interaction.

Note also that our conclusions fqfg? andqg® correspond 2
to a zero separation betwee_:n the interacting g:lus{@rme- X(Fi+F§+E§)—32 dabCF?FibFf
sons and 2 baryons respectivelit may be possible that the ]
contribution of the confinement interaction changes with the
separation distance. This is the aim of a further study.

2 2
+ 22 dachiaFibFic_ 32 dachiaFik)Eg
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TABLE II. Values of the nonvanishing matrix elements TABLE IV. Same as Table 1 but  for
(4| d®®F3F5FS|4h,). The first column gives the color indices Kj([42]p’q’'r'[222]p"q"r"|[214]pqr).
(abc), the second column the corresponding consti#ht, and the

third column the value of the matrix element. pqr=543 332 323 321
abc abcrapbpc 221 \/T27
(abo) d (ol AP FIFF 3| 4) 212 _ @ _ 18l
118 V313 —1/288 211 Ja27 _ /4781 /181
146 112 —1/384 122 V2127 — 281
157 1/2 —1/384 121 2127 _ JalB1 /81
228 V313 —1/288 112 J2727 2127
247 -1/2 —1/384
256 172 —1/384 pqr="541 332 323 321
338 V313 —1/288
344 1/2 ~1/384 221 V5127
355 1/2 ~1/384 212 Va/81
366 ~1/2 —1/384 211 V827 V2/81
377 -1/2 —1/384 122 \J8/81
448 —\/3/6 —1/1152 121 —\Jal27 V4181
558 —/3/6 —1/1152 112 V4127
668 —/3/6 —1/1152
778 — /316 —1/1152 pqr=154 332 323 321
888 —\313 —1/288 122 N
121 —2/5
112 V2/5
TABLE . The 3-body cfp pqr=>i4 332 323 321
K3([42]p’q’r'[222]p"q"r"|[222]pqr). The rows correspond to 212 — 5127
p'q’r’ and the columns tp"q"r”. The value ofpgr is given in the 211 J10/27
upper-left corner of the table. 122 — J/8/135
121 V16/135
pqr=332 332 323 321 112 \/m
221 —\2/112
212 v10/108 . . . . .
211 — /107108 /107108 Th3e pperqtor in the'flrst term of the right-hand side is the
122 _ /57108 C®) invariant associated with the whole system formed of
121 /57108 — J5/108 the quarks 1 and 2 and the_antiquar.kA’s in Eqg.(Al), the
112 5712 extra terms introduced by this operator must be compensated
in order to recover the left-hand side. This is the role of the
other terms.
pqr=323 332 323 321 The first term can be replaced 1322+§and the second
221 V4/54 by 5/2 C{?), where the factor 5/2 has the same explanation
212 V10/108 —\5/162 as in Eq.(A5). The third term is X 2 the invariant operator
211 —1/10/108 —1/20/162 —/5/162 for a single quarkC{®>=10/9. The last term contains only
122 —y5/108 —V10/162 antiquark charge operators and is thus identicalCf’
121 V5/108 —\40/162 —10/162 =—10/9. The sum over the constant terms gives
112 —+/5/108 v5/108
4c®- C:{*’: 50/9 (A7)
pqr=321 332 323 321
221 4754 whereg=1 or 2 andg=3, so we have
212 \20/162 1 5 2
2 -v20108 107162 S —dabCF?th’Fg:—g{Cﬁzﬁ‘ 5Ci— 33 d IR
121 \/5/54 \20/162 2 50
112 —\/5/54 —32, dFAFEFS+ ol (A8)
I
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Due to the fact thatl®®® are symmetric under permutation of

indicesa, b andc we can again use the identity

_ 1 _
PR PRPFS =5 d*PCF T PP} FS (A9)
and
1 _
PR PR 3RS =5 d* F{F3,FS). (A10)
From Egs.(4) and(31) it follows that
{F?FP}=—da*Fy. (ALD)

From Eqs.(A4) and(A11) it follows that the third and fourth
term compensate each other and we get

_ 1 5 50
Co=—5|C, 5 5C0h 5| (A12)
i.e., Eq.(35).

_ 3 1
'/’2—ﬁ (34)9/11_§l/f1

L r(l) b(l) g(1)||r(3) b(3) 9(3)
=m r(2) b(2) g(2)||r(5 b(5) 9(5)

r(4) b(4) g(4)[[r(6) b(6) g(6)

PHYSICAL REVIEW D65 054032

APPENDIX B

In this appendix we give the details leading to E45).
We first present the explicit expressions for the color wave
functions corresponding to the Young tableaux of EB).
In the state/,, the sets of particles (123) and (456) are both
in a totally antisymmetric state. Therefore, one can write

r(1)
r2)
r(3)

b(1)
b(2)
b(3)

g(1)
9(2)
a(3)

r(4)
r(s)
r(6)

b(4)
b(5)
b(6)

9(4)
a(5)
9(6)

_1
lﬂl—g

(B1)

wherer,b,g denotes the different quark colors. By applying
the permutation (34) t@;, one get412]

242

1
(34)¢1:§¢1+ Tlﬂz (B2)

from where one obtains

(B3)

) . (B4)

r(1)

(2)
r(3)

b(1) g(1)
b(2) 9(2)
b(3) g(3)

r(4)
r(5)
r(6)

b(4)
b(5)
b(6)

9(4)
a(5)
a(6)

The states)s, 4, and s can be obtained by a similar procedure. They read

1 ( r(1)

Ya=——=| |1(2)

2\/6 r(5)
r(1)
r(2)

r3)
r(3)

o (
Lt
28\ |1 a)

r(1)
r(2)
r(3)

b(1) g(1)
b(2) 9(2)
b(5) 9(5)
b(1) g(1)
b(2) 9(2)
b(3) g(3)

r(3)
r(4)
r(6)
r(4)
r(5)
r(6)

b(3) 9(3)
b(4) g(4)
b(6) g(6)

b(4) 9(4) )

b(5) 9(5)

b(6) g(6)
b(2) g(2)
b(5) 9(5)
b(6) g(6)

b(4) 9(4) )

3

r(l) b(1) g1
b(3) 9(3)

b(4) g(4)
b(1) 9(1)
b(2) g(2)
b(3) 9(3)

r(2)
r(5)
r(6)
r(4)
r(5)
r(6)

>

b(5) g(5)
b(6) 9(6)

3

r(1)
(2)
r(4)

b(1)
b(2)
b(4)

r(3)
r(5)
r(6)

b(3)
b(5)
b(6)

a(1)
a(2)
a(4)

a(3)
a(5)
a(6)

(B5)

r(1)
(2)
r(4)

b(1)
b(2)
b(4)

g(1)
a(2)
a(4)

r(3)
r(5)
r(6)

b(3)
b(5)
b(6)

a(3)
a(5)
9(6)

(B6)
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r(1) b(1) g(1)||r(2) b(2) g(2) r(1) b(1) g(1)||r(3) b(3) g(3)
111527 r8) b(3) g(3)||r(4) b(4) g4)|-5|r(2) b2) 9(2)]|r(4) b4) g(4)
r(s) b(5) g(5)|[r(6) b(6) g(6) r(s) b(5) g(5)|[r(6) b(6) g(6)
. r(1) b(l) g(1)||r(2) b(2) g(2) . r(1) b(1) g(1)||r(3) b(3) g(3)
—35|"3) b(3) 9(3)||r(5) b(5) g(5) +7|7(2) b(2) g(2)||r(5) b(5) g(5)
r(4) b(4) g(4)|[r(6) b(6) g(6) r(4) b(4) g(4)|[r(6) b(6) g(6)
3 r(1) b(1) g(1)||r(4) b(4) g(4)
R b(2) 9(2)||r(5) b(5) 95| |. (B7)
r(3) b(3) g(3)|r(6) b(6) g(6)

We want now to calculate the expressiB , o ,|d2°F2F5FS| ). This can be done explicitly using E(B4). The non
vanishing terms in this sum are given in Table Il. Taking into account the multiplicity of each term, one can directly check that
the final result is -5/36. Similar calculations can be done for the functi@gnsy,, and ¢ leading to the same answer.

APPENDIX C

In this appendix, we give the values of the 3-body coefficients of fractional pareftfgenecessary to calculate the
expectation value of the 3-body potential and we sketch the method to determine them.
The statd[42]o[33]gs) can be decomposed as

1[2 1{3 1]3
1 1 1
42)0[33]Fs >= 1/ = 3[4 Q1G] I L2150 L Els L1214

5 214[6 5 3l4]6 5 31516

516] o0 Fs 516 00 Fs 416] o0 Fs

_1;2 1]2]4 _1;3 1]2]3
5 3[5]6 5 4]5]6 (Cy
416] o Fs 316 o FS

One has to determine the 3-body cfp associated to the decomposition©@fXtipart of the wave function into its orbital and
color parts, for example,

5]6]
4
oc ¢ [5lel,

kS

(C2

To determine the 3-body cfp we need to write the Clebsch-Gof@8) coefficients ofSg specifying the place of the last
three particlespqr), where p,q,r represent the rows in the Young tableau where the particles 6, 5 and 4 are located. The
position of the remaining particles is denoted shortlyybBy using the factorization properties of the C&/], one gets the
following relations:

n

S(Lf'Ip'a’r "y [F"1p"q"r"y"|[f1pary)=K([f'1p'[f"1p"|[f1p)S(Lf, Ja’r 'y [fa"r"y"|[fplary)
=K Ip' [ 10" |LF 1P KL o 10 TE G A" Lfpda) ST 5 g 0y [ g Iy [ pglry)
=K 0 10" |1 KL Ja T 10 ILE Rl K(LE g I TE G 1 [ pgIr)

XS F e 1Y [ rgren]y " Foarly) ©3

where the quantitiek are isoscalar factors ar8lare CG coefficients. In particular the last factor is the C&GpfWe use the
same notations as in RdfL7]: [f,] corresponds to the partition & obtained after removal of the particle [,,4] to the
partition of S, obtained after removal of the particle 5, etc.

The 3-body cfp is defined as

054032-9
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Ka([f'Ip"a’r ' [F"1p"q"r"|[f1pan) = K([f1p'["1p"I[F1p)K([f, 10 [ ]a"[LFpla) K (LT 5o g Ir [ puge T [[Fpglr).
(C4

The values of th&; can then be calculated by using the corresponding tables of R&f.They are listed in Tables Il and
IV. They give respectively the cfp relevant for the decomposition off #22]oc and[21*]c state. In the calculation of the
expectation values, the CG 8§ are not necessary, as they are added up in the orthogonality relation.
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