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Three-body confinement force in hadron spectroscopy
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Recently it has been argued that a three-body color confinement interaction can affect the stability condition
of a three-quark system and the spectrum of a tetraquark described by any constituent quark model. Here we
discuss the role of a three-body color confinement interaction in a simple quark model and present some of its
implications for the spectra of baryons, tetraquarks and six-quark systems.
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I. INTRODUCTION

In the strong coupling limit the SUC(3) color gauge group
leads to a three-body color confinement interaction in ba
ons@1#. In SU~3! lattice QCD the static three-quark potenti
can be measured with the help of 3-quark Wilson loop
erators~see for example@2–6#!. In recent lattice calculations
@4–6#, the ground state potential of a three-quark system
been extracted as a sum of a two-body Coulomb plus a th
body interaction confinement. These studies lead howeve
rather contradictory results; one of them@5# gives support to
theY-type flux tube picture of Ref.@1#, while the others favor
the D ansatz~where the three-quark potential consists in
sum of two-body components!.

The interaction potential obtained in these calculatio
corresponds in any case to the colorless ground state
and no information from lattice QCD about color octets
available so far. In practice, for simplicity, in quark mode
as e.g. that of@1# the confinement is treated approximately
a two-body color operator. This can be expressed in term
the quadratic~Casimir! invariant operator of SU~3!.

This three-body color confinement interaction should
be confused with the three-body force@7,8# associated with
the instanton ’t Hooft’s interaction, which in the nonrelati
istic limit contains a color operator similar to the one intr
duced below, but is of short range, in contradistinction
confinement forces. The instanton-induced three-body fo
cancels for three quarks in a color singlet state and is m
over only effective if the three particles are in a flavor sing
state. Another short-range three-body force has also bee
troduced in@9# on a purely phenomenological ground. Th
force has a simple scalar structure and accounts for a b
description of the Roper resonance.

Based on the algebraic argument that SUC(3) is an exact
symmetry of QCD, which implies that any quark mod
Hamiltonian inspired by QCD can be written in terms
SU~3! invariant operators, a three-quark potential that
pends on the cubic invariant operator of SU~3! has recently

*Email address: pepin@daniel.mpi-hd.mpg.de
†Email address: fstancu@ulg.ac.be
0556-2821/2002/65~5!/054032~10!/$20.00 65 0540
-

-

as
e-
to

s
ly

of

t

e
e-
t
in-

ter

l

-

@10# been added to the usual two-body confinement. Its
plications on the spectrum of ordinaryq3 and exoticq2q̄2

hadrons have been considered. In particular turning o
three-body force with an appropriate strength denoted byc, it
was shown that~1! the threeq3 color states, namely1, 8, and
10 appear in the correct order,1 being the lowest one, as i
should be, and~2! in the q2q̄2 system the three-body inter
action brings distinct contributions to the two possible co
singlet states, by enhancing the binding in one and dimin
ing it in the other, depending on the sign ofc.

In this study we rederive some of the relations found
Ref. @10# and discuss explicitly the role of confining thre
body forces inq3, q2q̄2, and q6 systems. In the simple
framework of a harmonic confinement we show that in t
q3 system there is a competition between the three-b
force and the kinetic energy in rising the energy of the co
octet states. By introducing singlet-singlet and octet-octetqq̄
coupled pairs we show that the range of values of
strength of the 3-body force giving a correct spectrum fo
q3 system also favorably affects the spectrum of a tetraqu
q2q̄2. The results on the role of a 3-body confining force in
q6 system, relevant for theNN problem are entirely new.

II. THE THREE-BODY FORCE FOR BARYONS

In this section we recall and discuss the findings of R
@10# in relation with a three-body interaction of type

V3b5Vi jk5Vi jkCi jk ~1!

with

Vi jk5
1

2
cmv2@~r i2r j !

21~r j2r k!
21~r k2r i !

2# ~2!

wherec is a strength parameter andCi jk a color operator of
type

Ci jk5dabcFi
aF j

bFk
c , ~3!
©2002 The American Physical Society32-1
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whereFi
a5 1

2 l i
a is the color charge operator of the quarki

and dabc some real constants, symmetric under any perm
tation of indices and defined by the anticommutator of
Gell-Mann matricesla as

$la,lb%52dabclc. ~4!

These constants satisfy the following orthogonality relatio

dabcdabe5
5

3
dce . ~5!

The operator~3! can be expressed in terms of the two ind
pendent invariant operators of SU~3! as@10# ~for a proof see
Appendix A!

dabcFi
aF j

bFk
c5

1

6 FCi 1 j 1k
(3) 2

5

2
Ci 1 j 1k

(2) 1
20

3 G ~6!

where we slightly changed the notation of@10#, by writing
C(2) instead ofC(1) for the quadratic invariant andC(3) in-
stead ofC(2) for the cubic invariant. For a given irrep o
SU~3! labeled by (lm), the eigenvalues of these invarian
are

^C(2)&5
1

3
~l21m21lm13l13m! ~7!

and ~see for example Refs.@11# or @12#!

^C(3)&5
1

18
~l2m!~2l1m13!~l12m13!. ~8!

Then for aq3 system the expectation values of Eq.~6! are
10
9 , 2 5

36 , 1
9 for a singlet (lm)5(00), octet (lm)

5(11) and decuplet (lm)5(30) states respectively. Thes
are the coefficients appearing in the last term of Eq.~14!
below.

Turning on a 2-body confining interaction, which ensur
stability for aqq̄ pair and adding the 3-body confining inte
action ~1!–~3! of strengthc relative to the 2-body one, in
Ref. @10# it was found that the spectrum of aq3 system is
correctly described provided

2
3

2
,c,

2

5
. ~9!

The closerc is to the lower limit, the larger is the gap be
tween the color octet and singlet states. To see this, le
consider the Hamiltonian

H5T1V2b1V3b ~10!

where T is the kinetic energy andV2b a 2-body confinemen
interaction of the form

V2b5(
i , j

Vi j S c11
4

3
1Fi

aF j
aD ~11!

containing an arbitrary constantc1 which we set equal to 1
as in Ref.@10# and take

Vi j 5
1

2
mv2~r i2r j !

2. ~12!
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V3b is the 3-body confinement interaction of Eqs.~1!–~3!.
Performing integration in the color space and expressingH

in terms of the internal coordinatesrW 5(rW12rW2)/A2 andlW

5(rW11rW222rW3)/A6, we have

H53m2
\2

2m
~¹r

21¹l
2!1

3

2
mv2x i~r21l2! ~13!

with

x i55
5

3
1

10

9
c, i 51 ~singlet!,

13

6
2

5

36
c, i 58 ~octet!,

8

3
1

1

9
c, i 510 ~decuplet!.

~14!

In the expressions ofx i( i 51,8 or 10!, the first and second
terms stem from the color part ofV2b andV3b respectively.

We search now for solutions ofH. In order to satisfy the
Pauli principle, in the lowest color-singlet state the qua
should be in as3 configuration. This implies that the orbita
wave function is symmetric and one can take

f005
1

p3/2b3
exp@2~r21l2!/~2b2!# ~15!

with b a variational parameter.
The expectation value ofH is then

E153m1
3\2

2mb2
1

9

2
mv2b2x1 . ~16!

The minimization with respect tob2 gives

b1
25

b0
2

A3x1

~17!

with b0
25\/mv. The energy of the singlet state is thus

E153m1
3\2

mb1
2

53m13\vA3x1. ~18!

The color-octet8 must be combined with ans2p configu-
ration in order to satisfy the Pauli principle. Indeed, the sp
flavor part being totally symmetric, as for the nucleo
ground state, the orbital-color part must be antisymmet
i.e., it is of the form

C85
1

A2
~f10

r Cl2f10
l Cr! ~19!

where

f10
r 5S 2

p3b8D 1/2

rz exp@2~r21l2!/~2b2!# ~20!
2-2
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THREE-BODY CONFINEMENT FORCE IN HADRON . . . PHYSICAL REVIEW D65 054032
f10
l 5S 2

p3b8D 1/2

lz exp@2~r21l2!/~2b2!#

~21!

are the mixed orbital symmetry states with one unit of an
lar excitation andCr,Cl their color counterparts. The corre
sponding eigenvalue ofH is

E853m1
2\2

mb2
16mv2b2x8 ~22!

and the minimization with respect tob2 gives

b8
25

b0
2

A3x8

~23!

which leads to

E853m1
4\2

mb8
2

53m14\vA3x8. ~24!

Accordingly the gapDE between the octet and singlet stat
is

DE5\v~4A3x823A3x1!. ~25!

The largest value ofDE corresponds tox150, i.e., toc5
21.5, in which caseDE.10.7\v. For c50 ~no three-body
force! we would haveDE.3.5\v. This means that the ga
is enlarged by a negativec and triples for the limiting value
c521.5.

The color state10 requires an antisymmetric orbital sta
in order to satisfy the Pauli principle. Its form is~see e.g.
Ref. @12#, Chap. 10!

f10
A 5S 1

2p3b10D 1/2

~r1l22r2l1!exp@2~r21l2!/~2b2!#

~26!

with r65rx6 iry , etc. The subscript 10 means total L51,
M50 as above. This is the only value of L allowed by
antisymmetric state built from the configurationsp2. Pro-
ceeding in a similar way as for the two previous cases,
gets

b10
2 5

b0
2

A3x10

~27!

and hence

E1053m15\vA3x10. ~28!

The gap between the decuplet and the octet state is thu

E102E85\v~5A3x1024A3x8!. ~29!

For c521.5, one hasE102E8.3\v, i.e., this state is lo-
cated above the octet, as expected, with quite a large ga
a limiting value ofc.

Let us now evaluate the octet-singlet gap~25! by taking
c521.43 as in@10#. There is of course some arbitrarine
05403
-
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in choosing\v. One can take for exampleb50.437 fm and
m50.340 GeV, as typical values for a quark model~see
e.g., Ref.@15#!, which give \v50.6 GeV. This implies a
gap DE'5.5 GeV. For c50 ~no three-body force! one
would haveDE53.5\v'2.1 GeV only.

Before ending this section we should note that there
some arbitrariness in fixing the lower limit of the range ofc
as given by the inequality~9!. This limit is related to the
choice of the arbitrary constantc1 which has been set equa
to 1 in Eq. ~11!. But taking for examplec154/3, which is
another good choice in constituent quark models, one g
x1521 10

9 c. The stability condition for the singlet would
then gives

2
9

5
,c ~30!

i.e., a different lower limit, slightly more favorable than th
one of inequality~9! because withc529/5 and the new
expressions forx1 ,x8 one getsDE.11.5\v.

III. THE THREE-BODY FORCE FOR TETRAQUARKS

If Fa is the color charge operator of a quark, for an an
quark we must have

F̄a52
1

2
la* ~31!

in order thatF̄a(a51,2, . . . ,8) satisfy the Lie algebra too
Then one can write the three-body interaction acting in
q2q̄ subsystem as

C̄i jk52dabcFi
aF j

bF̄k
c ~32!

and the three-body interaction acting in theqq̄2 subsystem as

C̄i jk5dabcFi
aF̄ j

bF̄k
c . ~33!

As a remark, the three-body interaction in an antibary
should be

C̄i jk52dabcF̄ i
aF̄ j

bF̄k
c . ~34!

In Ref. @10# the operator~32! is given in terms of SU~3!
invariants as

C̄i jk52
1

6 FCi 1 j 1 k̄
(3)

2
5

2
Ci 1 j

(2) 1
50

9 G ~35!

where Ci 1 j 1 k̄
(3) acts on theq2q̄ subsystem but the Casim

operator acts only on the subsystem ofi 1 j quarks~see Ap-
pendix A!. If the quark subsystem is in a symmetric state
gives rise to aq2q̄ @211#C state calleds and if it is in an
antisymmetric state to a@211#C state calleda. Both these
states have (lm)5(10), which according to Eq.~8! gives
^Ci 1 j 1 k̄

(3)
&5 10

9 . But for the subsystem of thei 1 j quarks only,
the SU~3! representations are different. One has (lm)
5(20) for thes state and (lm)5(01) for thea state. Then
the expectation value of the operator~35! is 2 5

18 for s and 5
9

for a, consistent with Table II of@10#.
2-3
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The operator~33! acting on aqq̄2 subsystem can be
brought to a form similar to Eq.~35!. This is

C̄i jk5
1

6 FCi 1 j̄ 1 k̄
(3)

1
5

2
Cj̄ 1 k̄

(2)
2

50

9 G . ~36!

The difference with respect to aq2q̄ subsystem is now tha
one has to calculate the expectation value ofCi 1 j̄ 1 k̄

(3) for a
@221#C color state for which (lm)5(01) so that one has
now ^Ci 1 j̄ 1 k̄

(3)
&52 10

9 . The subsystem of antiquarks gives f
C(2) the same value as that for the quarks so that the op
tors ~32! and ~33! have the same expectation value whi
leads to Eqs.~26! and ~27! of Ref. @10#:

Vs5
5

18
cmv2~r 12

2 1r 13
2 1r 14

2 1r 23
2 1r 24

2 1r 34
2 ! ~37!

Va52
5

9
cmv2~r 12

2 1r 13
2 1r 14

2 1r 23
2 1r 24

2 1r 34
2 !. ~38!

One can see that the contribution of the fourth particle is a
included in these equation. To understand this one can
example add another antiquark toq2q̄. This leads to the sin-
glet color state@222# appearing from the direct produc
@211#3@11#. By construction this singlet has an intermedia
coupling both between quarks and antiquarks. The
quarks couple either to a 3¯or a 6 state and the antiquarks
3 or a 6̄state. If the particles 1 and 2 are quarks and 3 an
are antiquarks,Va andVs are the three-body contribution t
the colorless states denoted byu3̄12334& and u6126̄34& respec-
tively.

For a negativec, as required for baryons described by
pure constituent quark model~no gluon components in th
wave function as e.g. in Ref.@13#!, the mass of theu6126̄34&
state is reduced and the mass ofu3̄12334& is enhanced by a
three-body force. The situation is opposite for a positivec. In
@10#, Vs was associated to the unobserved sextet-sextet s
which would mean that a positivec is preferable. The con
flict can be solved by noting that the relevant states in
present problem are in fact linear combinations ofu3̄12334&
he
f

t

05403
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and u6126̄34&. Such states are important asymptotically a
they are defined by the transformations~see e.g., Ref.@14#!

u113124&5A1

3
u3̄12334&1A2

3
u6126̄34&, ~39!

u813824&52A2

3
u3̄12334&1A1

3
u6126̄34&. ~40!

In these states the intermediate coupling in the color sp
takes place between a quarkq and an antiquarkq̄. This gives
color singletqq̄ pairs in Eq.~39! and color octet ones in Eq
~40!. Asymptotically the energy ofu813824& must become
large, as such a state is not expected to be seen. Using
transformations~39! and~40! one obtains the contribution o
the three-body interaction in aq2q̄2 system as

^113124uC̄123u113124&}F1

3 S 2
5

9D1
2

3

5

18Gc50 ~41!

and

^813824uC̄123u813824&}F2

3 S 2
5

9D1
1

3

5

18Gc52
5

18
c

~42!

which shows that with a negativec one raises the expectatio
value of the octet-octet above the singlet-singlet state. T
implies that the coupling between octet-octet and sing
singlet states due to a hyperfine splitting will be diminishe
which amounts to make a ground state tetraquark less sta
This seems to be consistent with the experimental obse
tion that no stable tetraquark system has been seen so f

IV. THE NN INTERACTION

The short-range NN interaction can be studied as aq6

problem. First we give a simplified discussion by consider
that the six quarks are in a totally symmetric orbital sta
@6#O . In such a case the spin-flavor part of the wave fun
tion has a@33#FS symmetry which combined with the colo
symmetry@222#C state leads to a totally antisymmetric sta
The latter is a superposition of five color components giv
by the five following Young tableaux:
~43!
he
Below we give some details of our calculations of t
three-body matrix elements for a 6q system. In a state o
orbital symmetry@6#O , i.e., of configurations6, all orbital
matrix elements are equal so one has only to calculate
color matrix element:
he

1

5 (
i , j ,k

6

(
a,b,c

(
n51

5

^cnudabcFi
aF j

bFk
cucn& ~44!

where the factor 1/5 comes from the normalization of t
2-4
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total wave function~see e.g.,@12#, Chap. 10!. In Appendix B
we have explicitly proved that

(
a,b,c

^c2udabcF1
aF2

bF3
cuc2&525/36. ~45!

We get the same result forc3 , c4, andc5 but not forc1, for
which one has

(
a,b,c

^c1udabcF1
aF2

bF3
cuc1&510/9 ~46!

i.e., the result for the singlet~123!, as expected. As shown i
Table I, the matrix elementŝcnudabcFi

aF j
bFk

cucn& differ for
different (i jk ) but the sum over the five states does not
pend on the choice of (i jk ); the table has been calculated f
a given value of the color-indices (abc)5(146) but the con-
clusion is also true for the other values of the color indic
Then the calculation of the matrix element~44! reduces to
the calculation of the matrix element of the three-qua
~123! which has to be multiplied byC6

3520.
Thus we obtain

1

5 (
i , j ,k

6

(
a,b,c

(
n51

5

^cnudabcFi
aF j

bFk
cucn&

5
20

5 (
a,b,c

(
n51

5

^cnudabcF1
aF2

bF3
cucn&

54S (
a,b,c

^c1udabcF1
aF2

bF3
cuc1&

14 (
a,b,c

^c2udabcF1
aF2

bF3
cuc2& D

54~10/9220/36!

520/9. ~47!

Therefore we can see that in the case of a three-body
fining force the value of the matrix element of a six-qua
system in the symmetry state@6#O is equal to two times the
value for a single baryon. This situation is similar to t
two-body force where the expectation value of a 2-body
eratorV2b}( i , jFi

aF j
a in the symmetry state@6#O is equal to

24 i.e., two times the value of a single baryon. Let us defi
an adiabatic NN potential as the difference between the
teraction Hamiltonian at zero separation distance and a
finity, i.e.,

TABLE I. Examples of the matrix element
^cnudabcFi

aF j
bFk

cucn& for a few values of the indices (i jk ) at fixed
(abc)5(146). The successive columns correspond to the st
c1 , . . . ,c5; the last column gives the sum over the five states.

( i jk ) c1 c2 c3 c4 c5 (n51
5

~123! 1/48 21/384 21/384 21/384 21/384 1/96
~145! 0 21/768 1/768 1/768 7/768 1/96
~124! 0 7/384 21/384 21/384 21/384 1/96
05403
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VNN5H~0!2H~`!. ~48!

In this difference only the kinetic energy survives if the N
system is in the state@6#O . The contribution of the confine
ment due both to two- and three-body forces cancels
because

Vcon f~0!5Vcon f~`!5V2b1V3b524120/9c. ~49!

The two-body confinement force has been discussed for
ample in Ref.@15# where the Hamiltonian also contains
hyperfine interaction.

However the physical NN state is a combination of thr
symmetry states given by@16#

uNN&5A1

9
u@6#O@33#FS&1A4

9
u@42#O@33#FS&

2A4

9
u@42#O@51#FS&. ~50!

For SI5~01! or ~10!, one should also consider the physic
DD state:

uDD&5A 4

45
u@6#O@33#FS&1A16

45
u@42#O@33#FS&

1A25

45
u@42#O@51#FS&. ~51!

The unphysical color octet-octet~CC! state has the form@16#

uCC&5A4

5
u@6#O@33#FS&2A1

5
u@42#O@33#FS&. ~52!

By using 3-body fractional parentage coefficients~cfp!
~given in Appendix C!, we calculated the expectation valu
of the 3-body potential acting on the symmetry sta
u@42#O@33#FS& and u@42#O@51#FS&. For u@6#O@33#FS&, the re-
sult is straightforward as shown above. In short, we ha
found the following expectation values:

^@6#O@33#FSuV3bu@6#O@33#FS&5
20

9
c ~53!

^@42#O@33#FSuV3bu@42#O@33#FS&5
1

9
c ~54!

^@42#O@51#FSuV3bu@42#O@51#FS&5
1

9
c. ~55!

Note that theu@42#O@33#FS& and u@42#O@51#FS& states have
the same expectation value, consistent with the fact thatV3b
is spin-isospin independent. Using the transformations~50!–
~52! from the symmetry states to the physical sta
NN, DD and the hidden colorCC state, we obtain the
following matrix for V3b :

es
2-5
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~56!

The eigenvalues of this matrix areE15c/9, E25c/9 and
E3520c/9. This shows that the effect of the 3-body col
confinement on NN andDD is identical and rather small a
compared to that onCC. In particular for a negative value o
c, the spectrum ofNN, DD andCC lowers and shrinks. Fo
a positive c, the situation is the other way round. This me
that, forc,0, V3b itself brings some attraction and implie
a stronger coupling ofCC to NN andDD due to a hyperfine
interaction. This will lead to a reduced hard core repulsion
the NN potential.

V. CONCLUSIONS

We discussed the role of a schematic three-body confi
ment force in the spectra of 3q, q2q̄2 and q6 systems. We
found that a three-body confinement interaction with a ne
tive strengthc has the following effects:~1! it increases the
gap between the physical color singlet state and the unph
cal colored states in baryons;~2! it raises the expectation
value of qq̄ pairs in color octet-octet states with respect
singlet-singlet states in tetraquark systems, which will lead
a smaller binding in a ground state tetraquark when a hy
fine interaction is included and~3! it increases the coupling
between physical states andCC states inq6 systems. While,
in the first two cases, the gap between the physical co
singlet state and the non-physical colored states is increa
the opposite is true for the 6q system. The larger coupling
between physical andCC states induced by the 3-body in
teraction has both negative and positive consequences: it
reinforce the undesirable Van der Waals forces but, on
other hand, it brings more attraction into the NN potent
This may be a desired feature for quark models which giv
too strong hard core repulsion.

A three-body force with a positive strengthc will have
just opposite effects than the ones mentioned above.

Our results are valid for any quark model, irrespective
the hyperfine interaction. It would be useful to extend t
study to a more realistic confinement interaction.

Note also that our conclusions forq2q̄2 andq6 correspond
to a zero separation between the interacting clusters~2 me-
sons and 2 baryons respectively!. It may be possible that the
contribution of the confinement interaction changes with
separation distance. This is the aim of a further study.
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APPENDIX A

In this appendix we first prove Eq.~6!. In order to avoid
any confusion, we fix the indices (i jk ) of Eq. ~6! to be
(123). We rewrite Eq.~3! as

dabcF1
aF2

bF3
c5

1

6 F (
i , j ,k

3

dabcFi
aF j

bFk
c23(

i , j

3

dabcFi
aFi

bF j
c

12(
i

3

dabcFi
aFi

bFi
cG ~A1!

where the second sum in the right-hand side compensate
the extra terms contained in the first sum, but as we ext
too many we add the third term for satisfying the equal
correctly. The first term is precisely the cubic invariant o
erator acting on the three-quark systemC11213

(3) and the last
term is 233 times the cubic invariant operatorC1

(3) acting
on a quark. The latter is replaced by its eigenvalue10

9 so we
get

dabcF1
aF2

bF3
c5

1

6 FC11213
(3) 23(

i , j

3

dabcFi
aFi

bF j
c1

20

3 G .

~A2!

Due to the fact that the constantsdabc are symmetric under
the permutation of indices we can modify the second term

dabcF1
aF2

bF3
c5

1

6 FC11213
(3) 2

3

2 (
i , j

3

dabc$Fi
a ,Fi

b%F j
c1

20

3 G
~A3!

and simplify it by using the anticommutator~4! in the form

$Fi
a ,Fi

b%5dabcFi
c ~A4!

and the orthogonality relation~5!. This leads to

dabcF1
aF2

bF3
c5

1

6 FC11213
(3) 2

5

2
C11213

(2) 1
20

3 G ~A5!

i.e., Eq.~6!.
Next we prove Eq.~35!. One can rewrite the operator~32!

as

2dabcF1
aF2

bF̄3
c52

1

6 Fdabc~F1
a1F2

a1F̄3
a!~F1

b1F2
b1F̄3

b!

3~F1
c1F2

c1F̄3
c!23(

i , j

2

dabcFi
aFi

bF j
c

12(
i

2

dabcFi
aFi

bFi
c23(

i

2

dabcFi
aFi

bF̄3
c

23(
i

2

dabcFi
aF̄3

bF̄3
c2dabcF̄3

aF̄3
bF̄3

cG .

~A6!
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TABLE II. Values of the nonvanishing matrix elemen
^c2udabcF1

aF2
bF3

cuc2&. The first column gives the color indice
(abc), the second column the corresponding constantdabc, and the
third column the value of the matrix element.

(abc) dabc ^c2udabcF1
aF2

bF3
cuc2&

118 A3/3 21/288
146 1/2 21/384
157 1/2 21/384
228 A3/3 21/288
247 21/2 21/384
256 1/2 21/384
338 A3/3 21/288
344 1/2 21/384
355 1/2 21/384
366 21/2 21/384
377 21/2 21/384
448 2A3/6 21/1152
558 2A3/6 21/1152
668 2A3/6 21/1152
778 2A3/6 21/1152
888 2A3/3 21/288

TABLE III. The 3-body cfp
K3(@42#p8q8r 8@222#p9q9r 9u@222#pqr). The rows correspond to
p8q8r 8 and the columns top9q9r 9. The value ofpqr is given in the
upper-left corner of the table.

pqr5332 332 323 321

221 2A2/12
212 A10/108
211 2A10/108 A10/108
122 2A5/108
121 A5/108 2A5/108
112 2A5/12

pqr5323 332 323 321

221 A4/54
212 A10/108 2A5/162
211 2A10/108 2A20/162 2A5/162
122 2A5/108 2A10/162
121 A5/108 2A40/162 2A10/162
112 2A5/108 A5/108

pqr5321 332 323 321

221 A4/54
212 A20/162
211 2A20/108 A10/162
122 A40/162
121 A5/54 A20/162
112 2A5/54
05403
The operator in the first term of the right-hand side is t
C(3) invariant associated with the whole system formed
the quarks 1 and 2 and the antiquark 3.̄ As in Eq. ~A1!, the
extra terms introduced by this operator must be compens
in order to recover the left-hand side. This is the role of t
other terms.

The first term can be replaced byC11213̄
(3) and the second

by 5/2 C112
(2) where the factor 5/2 has the same explanat

as in Eq.~A5!. The third term is 232 the invariant operator
for a single quarkC1

(3)510/9. The last term contains onl
antiquark charge operators and is thus identical toC3̄

(3)

5210/9. The sum over the constant terms gives

4Cq
(3)2Cq̄

(3)
550/9 ~A7!

whereq51 or 2 andq̄53̄, so we have

2dabcF1
aF2

bF̄3
c52

1

6 FC11213̄
(3)

2
5

2
C112

(2) 23(
i

2

dabcFi
aFi

bF̄3
c

23(
i

2

dabcFi
aF̄3

bF̄3
c1

50

9 G . ~A8!

TABLE IV. Same as Table III but for
K3(@42#p8q8r 8@222#p9q9r 9u@214#pqr).

pqr5543 332 323 321

221 A5/27
212 2A4/27 2A1/81
211 A4/27 2A4/81 2A1/81
122 A2/27 2A2/81
121 2A2/27 2A8/81 2A2/81
112 A2/27 2A2/27

pqr5541 332 323 321

221 A5/27
212 A4/81
211 A8/27 A2/81
122 A8/81
121 2A4/27 A4/81
112 A4/27

pqr5154 332 323 321

122 A1/5
121 2A2/5
112 A2/5

pqr5514 332 323 321

212 2A5/27
211 A10/27
122 2A8/135
121 A16/135
112 A4/15
2-7
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Due to the fact thatdabc are symmetric under permutation o
indicesa, b andc we can again use the identity

dabcFi
aFi

bF̄3
c5

1

2
dabc$Fi

a ,Fi
b%F̄3

c ~A9!

and

dabcFi
aF̄3

bF̄3
c5

1

2
dabcFi

a$F̄3
b ,F̄3

c%. ~A10!

From Eqs.~4! and ~31! it follows that

$F̄ i
a ,F̄ i

b%52dabcF̄ i
c . ~A11!

From Eqs.~A4! and~A11! it follows that the third and fourth
term compensate each other and we get

C̄12352
1

6 FC11213̄
(3)

2
5

2
C112

(2) 1
50

9 G ~A12!

i.e., Eq.~35!.
05403
APPENDIX B

In this appendix we give the details leading to Eq.~45!.
We first present the explicit expressions for the color wa
functions corresponding to the Young tableaux of Eq.~43!.
In the statec1, the sets of particles (123) and (456) are bo
in a totally antisymmetric state. Therefore, one can write

c15
1

6U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~3! b~3! g~3!
UU r ~4! b~4! g~4!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U

~B1!

wherer ,b,g denotes the different quark colors. By applyin
the permutation (34) toc1, one gets@12#

~34!c15
1

3
c11

2A2

3
c2 ~B2!

from where one obtains
c25
3

2A2
F ~34!c12

1

3
c1G ~B3!

5
1

4A2 S U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~4! b~4! g~4!
UU r ~3! b~3! g~3!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U2

1

3U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~3! b~3! g~3!
UU r ~4! b~4! g~4!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U D . ~B4!

The statesc3 , c4, andc5 can be obtained by a similar procedure. They read

c35
1

2A6 S U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~5! b~5! g~5!
UU r ~3! b~3! g~3!

r ~4! b~4! g~4!

r ~6! b~6! g~6!
U2

1

2U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~4! b~4! g~4!
UU r ~3! b~3! g~3!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U

1
1

2U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~3! b~3! g~3!
UU r ~4! b~4! g~4!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U D ~B5!

c45
1

2A6 S U r ~1! b~1! g~1!

r ~3! b~3! g~3!

r ~4! b~4! g~4!
UU r ~2! b~2! g~2!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U2

1

2U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~4! b~4! g~4!
UU r ~3! b~3! g~3!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U

1
1

2U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~3! b~3! g~3!
UU r ~4! b~4! g~4!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U D ~B6!
2-8
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c55
1

3A2 S U r ~1! b~1! g~1!

r ~3! b~3! g~3!

r ~5! b~5! g~5!
UU r ~2! b~2! g~2!

r ~4! b~4! g~4!

r ~6! b~6! g~6!
U2

1

2U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~5! b~5! g~5!
UU r ~3! b~3! g~3!

r ~4! b~4! g~4!

r ~6! b~6! g~6!
U

2
1

2U r ~1! b~1! g~1!

r ~3! b~3! g~3!

r ~4! b~4! g~4!
UU r ~2! b~2! g~2!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U1

1

4U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~4! b~4! g~4!
UU r ~3! b~3! g~3!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U

2
3

4U r ~1! b~1! g~1!

r ~2! b~2! g~2!

r ~3! b~3! g~3!
UU r ~4! b~4! g~4!

r ~5! b~5! g~5!

r ~6! b~6! g~6!
U D . ~B7!

We want now to calculate the expression(a,b,c^c2udabcF1
aF2

bF3
cuc2&. This can be done explicitly using Eq.~B4!. The non

vanishing terms in this sum are given in Table II. Taking into account the multiplicity of each term, one can directly che
the final result is -5/36. Similar calculations can be done for the functionsc3 , c4, andc5 leading to the same answer.

APPENDIX C

In this appendix, we give the values of the 3-body coefficients of fractional parentage~cfp! necessary to calculate th
expectation value of the 3-body potential and we sketch the method to determine them.

The stateu@42#O@33#FS& can be decomposed as

~C1!

One has to determine the 3-body cfp associated to the decomposition of theOC part of the wave function into its orbital an
color parts, for example,

~C2!

To determine the 3-body cfp we need to write the Clebsch-Gordan~CG! coefficients ofS6 specifying the place of the las
three particles~pqr!, where p,q,r represent the rows in the Young tableau where the particles 6, 5 and 4 are locat
position of the remaining particles is denoted shortly byy. By using the factorization properties of the CG@17#, one gets the
following relations:

S~@ f 8#p8q8r 8y8@ f 9#p9q9r 9y9u@ f #pqry!5K~@ f 8#p8@ f 9#p9u@ f #p!S~@ f p8
8 #q8r 8y8@ f p9

9 #q9r 9y9u@ f p#qry!

5K~@ f 8#p8@ f 9#p9u@ f #p!K~@ f p8
8 #q8@ f p9

9 #q9u@ f p#q!S~@ f p8q8
8 #r 8y8@ f p9q9

9 #r 9y9u@ f pq#ry !

5K~@ f 8#p8@ f 9#p9u@ f #p!K~@ f p8
8 #q8@ f p9

9 #q9u@ f p#q!K~@ f p8q8
8 #r 8@ f p9q9

9 #r 9u@ f pq#r !

3S~@ f p8q8r 8
8 #y8@ f p9q9r 9

9 #y9u@ f pqr#y! ~C3!

where the quantitiesK are isoscalar factors andSare CG coefficients. In particular the last factor is the CG ofS3. We use the
same notations as in Ref.@17#: @ f p# corresponds to the partition ofS5 obtained after removal of the particle 6,@ f pq# to the
partition of S4 obtained after removal of the particle 5, etc.

The 3-body cfp is defined as
054032-9
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K3~@ f 8#p8q8r 8@ f 9#p9q9r 9u@ f #pqr!5K~@ f 8#p8@ f 9#p9u@ f #p!K~@ f p8
8 #q8@ f p9

9 #q9u@ f p#q!K~@ f p8q8
8 #r 8@ f p9q9

9 #r 9u@ f pq#r !.
~C4!

The values of theK3 can then be calculated by using the corresponding tables of Ref.@17#. They are listed in Tables III and
IV. They give respectively the cfp relevant for the decomposition of the@222#OC and@214#OC state. In the calculation of the
expectation values, the CG ofS3 are not necessary, as they are added up in the orthogonality relation.
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