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Chiral logs in the presence of staggered flavor symmetry breaking
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Chiral logarithms inmp
2 are calculated at one loop, taking into account the leading contributions to flavor

symmetry breaking due to staggered fermions. I treat both the full QCD case (211 light dynamical flavors!
and the quenched case; finite volume corrections are included. My starting point is the effective chiral La-
grangian introduced by Lee and Sharpe. It is necessary to understand the one-loop diagrams in the ‘‘quark
flow’’ picture in order to adjust the calculation to correspond to the desired number of dynamical quarks.
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I. INTRODUCTION

Staggered@Kogut-Susskind~KS!# fermions provide a
competitive method for simulating full QCD, including th
effects of virtualu, d and s pairs. Indeed, recent improve
ments in the action@1# have made it possible to compu
many physical quantities with rather small scaling violatio
in such ‘‘211 flavor’’ simulations@2,3#.

The violation of KS-flavor symmetry, while reduced b
the improved ~‘‘Asqtad’’ ! action, remains however quit
large at the lattice spacing (a'0.13 fm) where most of the
simulations in Refs.@2,3# have been performed. The max
mum splitting in mass squared among the various fla
pions, Dmax, is '(400 MeV)2 at this lattice spacing. Be
cause one can choose the staggered flavor on the va
quark lines, the flavor violations often enter through lo
effects alone, and as such they have a typical size of o
;8% in most quantities. Here, I estimate the size from
‘‘typical’’ chiral logarithm, including flavor violation:

Dmax

16p2f p
2

ln~Dmax/L
2!, ~1!

whereL is the chiral scale~taken, for instance equal tomr

'770 MeV), andf p>131 MeV. Since the leading flavo
violating terms in the improved KS action areO(a2), these
discretization effects can be reduced still more by go
closer to the continuum limit; MILC simulations are cu
rently in progress ata'0.09 fm.

On the other hand, if one focuses directly on chiral lo
and works ata'0.13 fm, the effect of KS-flavor violation
should be large. Indeed, in Ref.@3#, we were unable to fit
mp

2 /ml to the standard continuum chiral-log form@4# for 2
11 flavor QCD.@Here and below,l stands for a generic ligh
(u or d) quark; I neglect isospin violations throughout.# To
test the hypothesis that KS-flavor violations are respons
for this behavior ofmp

2 /ml , one needs to compute the chir
logs in the presence of KS symmetry breaking. That com
tation is the subject of this paper@5#.

The effective chiral Lagrangian that describes KS ferm
ons throughO(m,a2) (m is a generic quark mass! has been
constructed by Lee and Sharpe@6#. Their approach is to
0556-2821/2002/65~5!/054031~10!/$20.00 65 0540
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make a joint expansion inm anda2, which are considered to
be comparably small. That is in fact the case for a simulat
like @3#, where the splittings in mass squared of various K
flavor pions are comparable to the squared masses th
selves. A one-loop calculation using the Lagrangian of R
@6# would give the chiral logs~non-analytic terms! of
O(m2,ma2,a4).

The Lee-Sharpe Lagrangian corresponds to a single la
KS field, which becomes 4 degenerate flavors in the c
tinuum limit. The main subtleties in the current work ari
because I am interested in the more phenomenologically
evant 211 flavor theory being simulated, withmsÞml in
general, not the 4-flavor~continuum degenerate! KS theory. I
follow a three-step procedure:

~i! Generalize~almost trivially! the Lee-Sharpe Lagrang
ian to the 414 case, where one has two lattice KS fiel
with different masses (ml ,ms). This is an SU(8)L
3SU(8)R theory, with mass terms andO(a2) KS-flavor vio-
lating terms breaking the symmetry.

~ii ! Computemp
2 at one loop in the 414 case. I treat only

the case where the pion is theU(1)A Goldstone particle.
~This is the situation most immediately relevant to the fi
attempted in@3#.! The symmetry then implies thatmp

2 van-
ishes whenml→0, allowing one to simplify the calculation

~iii ! Adjust the 414 answer to correspond to the 211
case of interest. This requires identifying the contributio
that correspond tol or s virtual quark loops and multiplying
them by 1/2 or 1/4 respectively.

The subtleties are almost entirely in step 3. To ident
those terms that should be reduced by a factor of 2 or 4,
needs to follow the ‘‘quark flow’’ approach, which was in
troduced by Sharpe@7# to compute quenched chiral loga
rithms. Unfortunately, in the presence of KS-flavor symm
try violation, there does not appear to be an alternat
Lagrangian approach@8,9# that would automatically cance
the effects of the unwanted KS flavors. This corresponds
the fact that, in numerical simulations, the reduction fro
414 to 211 flavors is accomplished by taking the squa
root and fourth root of thel ands determinants, respectively
The procedure reduces each of the four KS flavors in a
tual quark loop equally, by a factor of 2~4!; it does not
cancel specific flavors. There is thus no equivalent~ultra!lo-
©2002 The American Physical Society31-1
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C. BERNARD PHYSICAL REVIEW D 65 054031
cal lattice Lagrangian, and it is not at all clear how
whether one can represent the low energy chiral propertie
this theory with an effective chiral Lagrangian@10#.

Of course, in the continuum limit the KS-flavor symmet
is restored, and one may cancel any 2 of the 4 light qu
flavors ~and any 3 of the 4 strange quark flavors! with 2 ~3!
bosonic pseudo-quarks. The effective chiral theory is th
obvious: an ‘‘8u5’’ partially quenched chiral perturbatio
theory. This is discussed in Ref.@9#. Such a theory is trivially
equivalent to standard 3 flavor chiral perturbation theory
the physical sector where the sea quarks are also the on
the external lines.

The remainder of this paper is organized as follows. S
tion II presents the Lee-Sharpe Lagrangian and generaliz
to the 414 case. The calculation ofmp

2 to one loop is then
described in Sec. III. In Sec. IV, the quark flow picture
applied to computemp

2 in the 211 case. The analytic term
at O(m2,ma2,a4), necessary to perform consistent fits th
include the chiral logs, are also touched upon. The quenc
case follows in Sec. V. Finite volume corrections are th
discussed briefly in Sec. VI. Finally, I make some rema
about the extension of the current approach to other phys
quantities in Sec. VII. That section also contains some co
ments about the fits of MILC data to the chiral forms deriv
here; however, a detailed discussion of such fits and t
consequences will be presented elsewhere@11#.

II. LEE-SHARPE LAGRANGIAN FOR 4 ¿4 FLAVORS

Lee and Sharpe@6# first construct the continuum effectiv
Lagrangian for KS lattice fermions, including all terms
O(a2). The KS-flavor symmetry is broken by 6-quark oper
tors. They then write down the corresponding effective ch
theory to leading order ina2 andm, the quark mass.

For a single KS field~4 continuum flavors! the Lee-
Sharpe chiral Lagrangian describing the pseudo-Golds
bosons has a~nonlinear! SU(4)L3SU(4)R symmetry, bro-
ken by the mass term and by the KS-flavor violating ope
tors. The 434 matrix S is defined by

S~x![exp~ if/ f !, f[ (
a51

16

faTa ~2!

wherefa are real,f is the tree-level pion decay constant~I
use the normalizationf p>131 MeV), and the Hermitian
generatorsTa are chosen as follows:

Ta5$j5 ,i jm5 ,i jmn ,jm ,I %. ~3!

Here jm are the flavor gamma matrices,jm5[jmj5 , jmn

[jmjn @with m,n in Eq. ~3!#, and I is the 434 identity
matrix. S transforms by S→LSR† under SU(4)L
3SU(4)R .

Note that I include the singlet mesonf I , corresponding
to generatorI, in Eqs.~2! and ~3!. The mass of theh8-like
meson~often calledF0, up to overall normalization! gets a
large contribution ([m0) from the anomaly in the Lee
Sharpe case and is not included in their formalism. Bu
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of

rk

n

n
on

c-
it

t
ed
n
s
al
-

ir

-
l

ne

-

I

want to generalize to two KS fields~8 continuum flavors!. In
that case, only theSU(8) flavor singlet is heavy and can b
integrated out.SU(4) singlets, e.g., a singlet ‘‘kaon’’ mad
of one quark from each KS multiplet, can be light. I therefo
leave the singlet as well as them0 term explicit in interme-
diate steps, but will ultimately takem0→`.1

The ~Euclidean! Lee-Sharpe Lagrangian is then

L(4)5
f 2

8
tr~]mS]mS†!2

1

4
mm f2tr~S1S†!1

2m0
2

3
~f I !

2

1a2V, ~4!

wherem is a constant with units of mass, the coefficient
f I is conventional,2 and V is the lowest order KS-flavor
breaking potential:

2V5C1tr~j5Sj5S†!1C2

1

2
@ tr~S2!2tr~j5Sj5S!1H.c.#

1C3

1

2 (
n

@ tr~jnSjnS!1H.c.#

1C4

1

2(n
@ tr~jn5Sj5nS!1H.c.#

1C5

1

2 (
n

@ tr~jnSjnS†!2tr~jn5Sj5nS†!#

1C6 (
m,n

@ tr~jmnSjnmS†!. ~5!

Effects of ordera2m or a4 are neglected in Eq.~4!.
The potentialV has an ‘‘accidental’’SO(4) flavor sym-

metry ~evidenced by the sums overn andm), which is larger
than the lattice symmetry group. The pions fall into 5SO(4)
representations with flavorsj5 , jm5 , jmn , jm , I. Expanding
Eq. ~4! to quadratic order inf, the pion masses are found t
be

mpB

2 52mm1
4m0

2

3
dB,I1a2D~jB!, ~6!

1Sharpe and Shoresh@12# show that integrating out theF0 is
mathematically equivalent to keeping it in the calculations and t
ing the mass parameterm0→` at the end. If that limit is to be
taken, it is unnecessary to includeF0 dependence other than them0

term in the action. However, in the quenched case~Sec. V!, other
F0 dependence will need to be considered.

2m0
2/6 by definition multiplies (f111f221f331•••)2. Here, the

normalizedf I[
1
2 ( i 51

4 f i i . This definition ofm0
2 is independent of

the number of flavors and corresponds to that in Refs.@8,9# ~after
renamingm2→m0

2) and that in Ref.@7# ~after choosingN53 there!.
With the current definition off, the parameterd introduced in@7# is
equal tom0

2/(24p2f 2).
1-2
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CHIRAL LOGS IN THE PRESENCE OF STAGGERED . . . PHYSICAL REVIEW D65 054031
where, in a convenient abuse of notation that will be us
from now on, the indexB takes the 16 values$5,m5,mn(m
,n),m,I % andj I[I . Them0

2 contribution to the mass off I

is shown explicitly, andD(jB) is given by

D~j5!50

D~jm5!5
16

f 2 ~C11C213C31C42C513C6!

D~jmn!5
16

f 2 ~2C312C414C6!

D~jm!5
16

f 2 ~C11C21C313C41C513C6!

D~ I !5
16

f 2 ~4C314C4!. ~7!

D(j5) vanishes because of the staggered-flavor nonsin
UA(1), which is represented in the chiral theory by

S→eiuj5Seiuj5, ~8!

with u theUA(1) angle. Since this symmetry is unbroken
the lattice regulator,p5 is a true Goldstone boson in th
chiral limit.

From simulations such as those in Ref.@3#, one learns that
theC4 term in Eq.~5! is the largest contributor to theO(a2)
flavor violation @6#. This leads to approximately equal spli
ting between the pions, in the orderp5 , pm5 , pmn , pm ,
p I .3 The other operators are not entirely absent, howe
their contributions to the splittings are of order 10% of th
of C4 @11#. The reason for the smallness ofCi , iÞ4, is not
known.4

We now need to generalize to the case of two KS fie
with different massesml and ms , i.e., 414 continuum fla-
vors. The fieldS in Eq. ~2! becomes an 838 matrix, given
by

S~x![exp~ iF/ f !, F[S p K

K† SD , ~9!

where the 434 fields p, K, and S describe ‘‘pions,’’ ‘‘ka-
ons,’’ and ‘‘ss̄’’ mesons, respectively. As in Eqs.~2!,~3!, p
[(a51

16 paTa , with pa real, and similarly forK andS, except

3Omitting the disconnected terms in thep I propagator~as is often
done in simulations—see, e.g.,@3#!, eliminates them0 contribution
to the singlet mass and extends the approximately equal spli
rule to KS flavorI.

4More precisely, the approximately equal splittings imply on
thatC6 , C11C2, and 2C32C5 are small. I thank M. Golterman fo
pointing this out.
05403
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that theKa are complex. TheSU(8) singlet}trp1trS will
be eliminated below by taking them0→` limit.

Defining the 838 mass matrixM,

M[S mlI 0

0 msI
D , ~10!

the SU(8)L3SU(8)R Lagrangian that generalizesL(4) of
Eq. ~4! is then

L(414)5
f 2

8
tr~]mS]mS†!2

1

4
m f 2tr~MS1MS†!

1
2m0

2

3
~p I1SI !

21a2V. ~11!

Generalization of the KS-flavor breaking potentialV in
Eq. ~5! requires a little thought. For a single KS field, th
symmetry breaking 4-quark operators in the effective c
tinuum theory have the generic form

Q̄~gS^ jF!QQ̄~gS8^ jF8!Q, ~12!

wheregS is an arbitrary spin matrix,jF is an arbitrary flavor
matrix, and the indicesS,S8,F,F8 are contracted in various
ways determined by the lattice symmetries. The effect
chiral operators may then be found from the 4-quark ope
tors by treatingjF andjF8 as spurion fields@6#.

With two KS fields on the lattice, there is an exact vec
SU(2) ~broken only bymlÞms) that mixes them.5 The sym-
metry guarantees that the KS-flavor breaking 4-quark op
tors now have either of the two forms:

Q̄i~gS^ jF!QjQ̄j~gS8^ jF8!Qi ,

Q̄i~gS^ jF!QiQ̄j~gS8^ jF8!Qj , ~13!

where i and j (51,2) areSU(2) indices. The operators in
Eq. ~13! are ‘‘flavor mixed’’ and ‘‘flavor unmixed,’’ respec-
tively. By Fierz transformation, the flavor mixed operato
can be brought to the flavor unmixed form, so we may
sume all 4-quark operators are of the latter type.6 But if all
4-quark operators are flavor unmixed, then all spurion fie
areSU(2) singlets. In other words, forV in Eq. ~11! we may
take simply Eq.~5! with the replacement

g

5There are also corresponding axial symmetries, whose gener
are the direct product of theUA(1) generator,g5^ j5, with the
vectorSU(2) generators, but I will not need them here.

6This may be at the expense of mixing the color indices@sup-
pressed in Eqs.~12! and ~13!#, but they are irrelevant in the corre
sponding chiral effective theory because of confinement.
1-3



r-

s
-

th

ing

-
-

ted
loop
s

to

a-

at

ar

he

e

C. BERNARD PHYSICAL REVIEW D 65 054031
jB→S jB 0

0 jB
D . ~14!

The tree level masses of the pions, kaons, andS (ss̄)
mesons are then

mpB

2 52mml1a2D~jB!

mKB

2 5m~ml1ms!1a2D~jB!

mSB

2 52mms1a2D~jB!, ~15!

whereD(jB) are given by Eq.~7!, and them0 terms are not
included because we will treat 2m0

2(p I1SI)
2/3 in Eq.~11! as

a vertex~summed to all orders! below.

III. ONE-LOOP PION MASS FOR 4 ¿4 DYNAMICAL
FLAVORS

The calculation ofmp
2 to one loop in the 414 theory@Eq.

~11!# is now straightforward. I confine my attention to co
rections to the Goldstone pion massmp5

. The cases of the
non-Goldstone pions and the kaons, which will also be u
ful in confronting simulation data, will be left to future pub
lications.

The graphs are all tadpoles, with vertices coming from
kinetic energy term tr(]mS]mS†), the mass term tr(MS
1MS†), and the symmetry violating termV. They are
shown in Figs. 1, 2, and 3, respectively.

I write the one-loopp5 self-energy as7

S~p2!5
1

96p2f 2 ~p2S11S2
con1S2

disc!, ~16!

where I have explicitly separated the contribution com
from a disconnected propagator in the internal loop,S2

disc

@corresponding to Fig. 2~b!#, from the other, connected con
tributions in S2

con. The terms ‘‘connected’’ and ‘‘discon

7The distinction between the field matrixS in the Lagrangian and
the self energyS—both conventional notations—should be cle
from context.

FIG. 1. Chiral perturbation theory graphs contributing to t
pion propagator from kinetic energy vertex~solid triangle!. The
external lines are Goldstone pions, i.e.,p5. The dots represent th
derivatives in the vertex. In~a! they act on the external lines; in~b!,
the internal.
05403
e-

e

nected’’ are applicable at the QCD level: the disconnec
diagrams contain gluon intermediate states in the meson
@Figs. 4~d!, 4~e!, and 4~f!#. TheUA(1) symmetry guarantee
that the sum ofS2

con andS2
disc is proportional tomp5

2 . How-

ever, this is not true for individual diagrams contributing
S2

con, so I do not include themp5

2 factor in the definition.

For the moment, I calculate only the universal chiral log
rithms, and ignore the analytic terms in the diagrams~which
means the divergences are also ignored!. The logarithms
come from the following integrals:

I1[E d4q

~2p!4

1

q21m2 → 1

16p2 m2ln m2 ~17!

I2[E d4q

~2p!4

q2

q21m2 52m2I11E d4q

~2p!4

→2
1

16p2 m4ln m2. ~18!

S1 gets contributions only from Fig. 1~a!. The result is

S1→28mpm5

2 ln mpm5

2 28mpm

2 ln mpm

2 2(
B

mKB

2 ln mKB

2 ,

~19!

where no sum onm is implied, B takes the 16 values
$5,m5,mn(m,n),m,I % as usual, and the arrow means th
only the chiral logarithms are included, as in Eqs.~17! and
~18!. Figure 1~b! contributes only toS2

con:

S2,KE
con →8mpm5

4 ln mpm5

2 18mpm

4 ln mpm

2 1(
B

mKB

4 ln mKB

2 ,

~20!

FIG. 2. Same as Fig. 1, but from the mass vertex~solid square!.
The internal propagator in~a! is the connected propagator only~no
m0

2 insertions!, even when it is neutral (p I). All disconnected con-
tributions are in~b!; i.e., the cross represents oneor moreinsertions
of the m0

2 vertex.

FIG. 3. Same as Fig. 1, but from the flavor breaking vertexV
~solid circle!.
1-4
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again with no sum onm. Note that among the pions, only th
vector and axial vector flavors contribute in Eqs.~19! and
~20!. It is easy to show, using the fact that@j5 ,I #
5@j5 ,jmn#5@j5 ,j5#50, that no terms of the formp5

4,
p5

2pmn
2 , or p5

2p I
2 can be generated by the kinetic ener
ic

s

-
er

n
t

at
d

o
io

s

05403
term. The absence of coupling top I
2 explains why the kinetic

energy term does not contribute toS2
disc.

Figure 2~a! contributes only toS2
con. Couplings ofp5 to

all the other pions are generated by the mass vertex, so t
is no restriction on the terms that can enter. I find
S2,MASS
con →23mp5

4 ln mp5

2 24mp5

2 mpm5

2 ln mpm5

2

218mp5

2 mpmn

2 ln mpmn

2 24mp5

2 mpm

2 ln mpm

2 ~no sum onm,n!

23mp5

2 mp I

2 ln mp I

2 2~mp5

2 1mK5

2 !(
B

mKB

2 ln mKB

2 . ~21!
the
s in

t

ese

r-
ic
rom
Here, the factors ofmp5

2 or mK5

2 in each term come from the

quark masses, which are proportional to Goldstone part
masses squared by Eq.~15! with D(j5)50 @Eq. ~7!#.

The mass vertex also generates the only contribution
the disconnected diagram, Fig. 2~b!. This is the sum of
1,2,3, . . . insertions of the vertex (2m0

2/3)(p I1SI)
2 on the

internalp I line. Thep I line in turn comes from a term pro
portional top5

2p I
2 in the mass vertex; the same term gen

FIG. 4. Quark flow diagrams that could contribute to the~flavor
non-singlet! pion propagator at one loop in the chiral expansio
Diagrams~d!, ~e! and~f! are disconnected graphs that correspond
Fig. 2~b!; ~f! represents the sum over two or more intermedi
virtual quark loops. Note that~d!, ~e! and ~f! each have a secon
version, in which the two sides of the meson loop come fromdif-
ferent valence lines. For the purposes of this paper, one may c
sider the diagrams shown to be generic, subsuming both vers
Diagrams with ‘‘F0 vertices,’’ such as Fig. 3~i! of Ref. @7#, are not
relevant: either because they are eliminated by them0

2→` limit ~the
211 case!, or because they have virtual quark loops~the quenched
case!. Diagrams with odd numbers ofF0 lines at a vertex, such a
Fig. 3~f! of Ref. @7#, can be eliminated by a field redefinition@8#.
le

to

-

ates the connected contribution23mp5

2 mp I

2 ln(mpI

2 ) in Eq.

~21!. A single insertion of them0
2 vertex, which would be the

only contribution in the quenched case, gives

S2
disc,quench53mp5

2 E d4q

p2

4m0
2/3

~q21mp I

2 !2
. ~22!

The standard quenched double pole is evident. Iterating
m0

2 vertex and summing the geometric series then result

S2
disc53mp5

2 E d4q

p2

4m0
2/3

~q21mp I

2 !2S 11
4m0

2/3

q21mp I

2
1

4m0
2/3

q21mSI

2 D .

~23!

There is no here need to take them0
2→` limit or to perform

the integral; the conversion to the 211 flavor case can bes
be done directly from this expression. Note thatp I and SI
intermediate states now enter. As discussed in Sec. IV, th
correspond to virtuall ands quark loop contributions.

Finally, we need to consider the KS-flavor violating ve
tices, Eq.~5!. It is not hard to show that, as in the kinet
energy case, only the vector and axial pions contribute. F
Fig. 3, I obtain~no sum onm)

S2,V
con→28a2D~jm5!mpm5

2 ln mpm5

2 28a2D~jm!mpm

2 ln mpm

2

2(
B

a2D~jB!mKB

2 ln mKB

2 , ~24!

whereD is given in Eq.~7!.
We can now put the results together to find thep5 mass at

one loop. Writing

~mp5

12 loop!25mp5

2 1
1

96p2f 2e5 , ~25!

we have

.
o
e

n-
ns.
1-5



g

r

a

re

nd

s
ha
-
s

.

d
.

m
. 4
il
l

he

l

in
ing
g

ll
r-

ly

rk

or

e-

e
d

is
op
t

rtual

s

ig.
l

lent

on
vor

C. BERNARD PHYSICAL REVIEW D 65 054031
e55S2,KE
con 1S2,MASS

con 1S2,V
con1S2

disc2mp5

2 S1 . ~26!

From Eqs.~19!, ~20!, ~21!, and~24! we then have

e5→mp5

2 ~23mp5

2 ln mp5

2 112mpm5

2 ln mpm5

2 218mpmn

2 ln mpmn

2

112mpm

2 ln mpm

2 23mp I

2 ln mp I

2 !

1S2
disc ~no sum onm,n!, ~27!

where the arrow, as usual, means that only the chiral lo
rithms are kept. Note thate5 is proportional tomp5

2 , as it

must be by Goldstone’s theorem.@S2
disc already has a facto

of mp5

2 in Eq. ~23!.# The term(BmKB

4 ln(mKB

2 ) @Eq. ~20!# com-

bines with 2(Ba2D(jB)mKB

2 ln(mKB

2 ) @Eq. ~24!# to cancel

against2mK5

2 (BmKB

2 ln(mKB

2 ) @Eq. ~21!#. Here I have used

mKB

2 5mK5

2 1a2D~jB!, ~28!

which follows from Eqs.~15! and ~7!. Similarly, the terms
8mpm5

4 ln(mpm5

2 ) and 8mpm

4 ln(mpm

2 ) in Eq. ~21! combine with

corresponding terms in Eq.~24! to produce terms that have
factor of mp5

2 . Indeed, Eq.~24!, the effect of the symmetry

violating vertices, is completely determined by the requi
ment that the full answer go likemp5

2 ~up to logs! in the

chiral limit. This makes it clear, for example, that theCi
coefficients in Eq.~5! must enter Eq.~24! only through the
combinationsD(jB), and that the final answer can depe
only on the various meson masses.

Terms of the formmp5

2 mKB

2 ln(mKB

2 ) also cancel between

Eqs.~19! and~21!. This is ‘‘accidental’’ in the sense that it i
not required by symmetry. It corresponds to the fact t
there happen to be no ln(mK

2) terms in the standard con
tinuum 211 flavor result@4#. For similar quantities, such a
f p or ^0uūuu0&, the ln(mK

2) terms will not cancel@4#.
Finally, note that in the symmetry limit (mp5

5mpm5

5mpmn
5mpm

5mp I
) the entire one-loop correction in Eq

~27! is proportional toS2
disc. This is also true of the standar

result @4#; the reason will be explained in the next section

IV. ONE-LOOP PION MASS FOR 2 ¿1 DYNAMICAL
FLAVORS

To adjust the result in Eq.~27! to the case of 211 dy-
namical flavors, we need to identify the contribution fro
each of the possible quark flow diagrams shown in Fig
Many of the arguments used to identify the quark flows w
be familiar from Ref.@7#. Once the contributions from virtua
quark loops are determined, the adjustment to 211 dynami-
cal flavors is accomplished by multiplying everyl ~i.e., u,d)
quark loop by 1/2 and everys quark loop by 1/4.

First note that Figs. 4~d!, 4~e!, and 4~f! have disconnected
internal meson propagators, and correspond to Fig. 2~b!. Fig-
ure 4~d! has a singlem0

2 insertion and therefore generates t
contribution in Eq.~22!. Figures 4~e! and 4~f! represent the
iteration of them0

2 vertex through the introduction of virtua
05403
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quark loops. Together, Figs. 4~e! and 4~f! change Eq.~22! to
Eq. ~23!.

To identify contributions from the remaining graphs
Fig. 4, we first study the possible 2 into 2 meson scatter
diagrams in the quark flow language, Fig. 5. Lettin
i , j ,k,n51,2, . . . ,8 bequark flavor indices, Fig. 5~a! corre-
sponds to a meson vertex of the formF i j F j i FknFnk , where
F is the meson field in Eq.~9!. Similarly Fig. 5~b! corre-
sponds toF i j F jkFknFni . Now, consider the case where a
four quark flavorsi , j ,k,n are different. Then vertices gene
ated by the kinetic energy or mass terms in Eq.~11! cannot
have the formF i j F j i FknFnk because they are formed on
by a single trace of fields~and the diagonal matrixM).
Since Fig. 5~a! cannot depend on the flavors of the qua
lines to this order~except trivially throughM), this implies
that Fig. 5~a! is not generated at tree level by the kinetic
mass terms for any values ofi , j ,k,n.

The KS-flavor violating vertices behave differently. B
cause at least some of thejB explicitly entering Eq.~5! must
be off-diagonal, it is not hard to see that Fig. 5~a! can in fact
be generated. Note, however, that sincejB are diagonal un-
der the vectorSU(2) that mixes the two KS fields, Fig. 5~a!
still vanishes wheni , j are of l type ~upper 434 block! and
k,n are ofs type ~lower 434 block!.

Now consider Fig. 4~c!. This graph is absent when th
quarks in the virtual loops are ofs type because the neede
vertex vanishes to this order. If we then choosems5ml , it
can make no difference whether a quark in a virtual loopl
or s type, so this graph must also vanish when the lo
quarks are ofl type. A slight generalization of this argumen
shows that the graph again vanishes when there is one vi
quark of each type~i.e., a kaon loop!.8

Once we know that Fig. 4~c! is absent, intermediate kaon
could only be generated by Fig. 4~b!. Since theK contribu-
tion to e5 in fact vanishes to this order, graphs of type F
4~b! with an s type quark in the virtual loop must cance
among themselves. Once more choosingms5ml , this also
implies that Fig. 4~b! cancels for anl type virtual quark loop.

The surviving connected contribution toe5 comes from

8Add a third (s8! KS quark field, plus a pseudoquark KS fields̃8
of the same mass. This partially quenched theory is then equiva
to the original theory in thel ,s sector. The graph Fig. 4~c! then
vanishes when there is ones and ones8 in the loop. Now choose
ms85ml .

FIG. 5. Quark flow diagrams corresponding to 2 into 2 mes
scattering at tree level in the chiral expansion. i,j,k,n are fla
indices.
1-6
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Fig. 4~a!. Furthermore, since the vertex in Fig. 4~a! is of the
type in Fig. 5~a!, which can only be generated by KS-flav
violating terms, such connected contributions must vanis
the symmetry limit. This is in fact the case, as was m
tioned at the end of the last section. Because Fig. 4~a! con-
tains valence quark lines only, these contributions do
change when we go from 414 to 211 dynamical flavors.

The only required adjustment is therefore to the disc
nected contribution,S2

disc. We need to divide every virtua
quark loop contribution in Figs. 4~e! and 4~f! by 2 or 4,
depending on whether it isl or s type, respectively. In Eq
~23! this is easily accomplished by the replaceme
(4m0

2/3)/(q21mp I

2 )→(2m0
2/3)/(q21mp I

2 ) and (4m0
2/3)/(q2

1mSI

2 )→(m0
2/3)/(q21mSI

2 ) in the denominator. In othe

words, we have in the 211 case:

S2
disc53mp5

2 E d4q

p2

4m0
2/3

~q21mp I

2 !2S 11
2m0

2/3

q21mp I

2
1

m0
2/3

q21mSI

2 D .

~29!

We can now take the limitm0
2→` and put Eq.~29! in the

form

S2
disc5mp5

2 E d4q

p2 S 6

~q21mp I

2 !
2

2

~q21mh I

2 !D , ~30!

wheremh I

2 [(2mSI

2 1mp I

2 )/3. Equation~17! then gives

S2
disc→mp5

2 ~6mp I

2 ln mp I

2 22mh I

2 ln mh I

2 !. ~31!

Inserting this into Eq.~27!, we get the 211 result for the
chiral logarithms

e5→mp5

2 ~23mp5

2 ln mp5

2 112mpm5

2 ln mpm5

2 218mpmn

2 ln mpmn

2

112mpm

2 ln mpm

2 13mp I

2 ln mp I

2

22mh I

2 ln mh I

2 ! ~no sum onm,n!. ~32!

In the KS-symmetry limit, this gives the standard result@4#.
As discussed above, the result comes entirely fromS2

disc in
this limit.

What about the analytic terms? These can in general c
from a quite complicated set of operators in the chiral theo
standard O(m2) ~‘‘ p4’’ ! operators @4#, O(ma2) @e.g.,
V tr(MS1MS†)# or O(a4) ~e.g.,V 2) chiral operators gen
erated by the same terms in the continuum effective ac
that led to Eq.~11!, and entirely new chiral operators o
O(ma2) and O(a4) coming for example from terms in th
continuum action that Lee and Sharpe@6# call S6

FF(B) , which
break the symmetries of Eq.~11! down to the lattice symme
tries. However, as a function of quark mass, the anal
terms in (mp5

12 loop)2 of the relevant order can only be propo
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tional to ml , ml
2 or mlms , since they must vanish asml

→0. This means that terms ofO(a4) in the joint m, a2

expansion cannot enter.
Putting Eq.~32! in Eq. ~25!, adding in the analytic terms

just discussed, and writing the overallmp5

2 as 2mml @Eqs.

~15! and~7!#, I arrive at the final result in the 211 case~no
sum onm,n):

~mp5

12 loop!2/ml52mH 11
1

16p2f 2 S 2
1

2
mp5

2 ln
mp5

2

L2

12mpm5

2 ln
mpm5

2

L2
23mpmn

2 ln
mpmn

2

L2

12mpm

2 ln
mpm

2

L2
1

1

2
mp I

2 ln
mp I

2

L2

2
1

3
mh I

2 ln
mh I

2

L2 D 12mlK31~2ml1ms!

3K481a2CJ , ~33!

whereL is the chiral scale andK3 , K48 , andC are indepen-
dent ofm anda to this order. The terma2C may alternatively
be considered as a discretization correction tom. K48 is re-
lated to the parameterK4 of Ref. @4# by

K45~2ml1ms!K48 . ~34!

In the KS-symmetry limit Eq.~33! reduces to the result in
@4#.

Since the terma2C is what absorbs the mass-independe
cutoff dependence in Eq.~33!, we can make a rough estima
of its size by computing the change of the logarithms wh
L changes between two reasonable values, say 0.5
1.0 GeV. For MILC simulations ata'0.13 fm, for which
Dmax'(400 MeV)2 @see the discussion before Eq.~1!#, I
find a2C;0.05. Discretization corrections toK3 and K48
come from higher,O(m2a2), contributions not considered in
Eq. ~33!. I expect that such corrections will be significa
because they can be generated by the same operators
effective QCD Lagrangian that produced the KS-symme
breaking potential,V.

V. ONE-LOOP PION MASS IN THE QUENCHED CASE

Given the understanding of the quark flows in Fig. 4 d
veloped in the previous section, the result in the quenc
case is easy to write down.S2

disc in Eq. ~27! changes to the
quenched version,S2

disc,quench, which corresponds to Fig
4~d! only. The other terms in Eq.~27!, which arise from Fig.
4~a!, are unaffected. We thus have, in the quenched case
1-7
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e5→mp5

2 ~23mp5

2 ln mp5

2 112mpm5

2 ln mpm5

2 218mpmn

2 ln mpmn

2

112mpm

2 ln mpm

2 23mp I

2 ln mp I

2 !

1S2
disc,quench ~no sum onm,n!, ~35!

with S2
disc,quenchgiven by Eq.~22!.

Since m0
2 is not to be taken to infinity in the quenche

case, it is necessary to consider otherf I dependence in the
Lee-Sharpe Lagrangian,9 Eq. ~4!. In Ref. @8# it was shown
that it is sufficient to add in a contribution to thef I kinetic
energy: (2a/3)(]mf I)

2. This merely changesm0
2 in Eq. ~22!

to m0
21aq2.

The non-analytic terms inS2
disc,quenchmay be extracted

using

I3[E d4q

~2p!4

1

~q21m2!2 5
21

2m

]

]m
I1→2

1

16p2 ln m2

~36!

I4[E d4q

~2p!4

q2

~q21m2!2 5
21

2m

]

]m
I25I12m2I 3

→ 1

16p22m2ln m2, ~37!

whereI1 andI2 are defined in Eqs.~17! and ~18!.
Putting the logarithms inS2

disc,quench together with Eq.
~35!, and using Eq.~25!, gives the final quenched answer:

~mp5

12 loop!2/ml52mH 11
1

16p2f 2 S 2
1

2
mp5

2 ln
mp5

2

L2

12mpm5

2 ln
mpm5

2

L2
23mpmn

2 ln
mpmn

2

L2

12mpm

2 ln
mpm

2

L2
2

1

2
mp I

2 ln
mp I

2

L2
2

2

3
m0

2ln
mp I

2

L2

1
4

3
amp I

2 ln
mp I

2

L2 D 12mlK31a2CJ , ~38!

where of course the parametersm, K3 andC may be differ-
ent from those in Eq.~33!. I keep the term multiplyinga
separate from the other lnmpI

2 term, since they arise from

different integrals and therefore will have different finite vo
ume corrections. Analytic terms depending onm0

2 or a are
not included since they can be absorbed inm and L. Note
that the parameterK48 does not appear here because it m
tiplies ms , which cannot enter in the quenched pion mas

In the symmetric limit, Eq.~38! agrees with results in@8#
or @7#. As usual, the power counting in the quenched cas

9In the quenched case, there is no point in going to the 414
Lagrangian, Eq.~11!, sinces type quarks do not couple to the pion
05403
-

is

somewhat problematic; one must assume thatm0
2 anda are

in some sense small to stop at one loop@8,7#.

VI. FINITE VOLUME CORRECTIONS

The technique for computing the finite volume correctio
to the results of Secs. IV and V is standard@13,14#. However,
I will provide enough detail here to allow the reader to i
clude the finite volume corrections numerically in fits to Eq
~33! and~38!. I assume that the Euclidean time dimension,T,
is large enough that it may be taken infinite, and only c
rections from the finite spatial dimensions~lengthL) need be
considered. The generalization to the case whereT is also
finite will be obvious.

The results in finite volume come simply from replacin
the integralsIi ( i 51, . . . ,4) inEqs.~17!, ~18!, ~36! and~37!
by their finite volume counterpartsI i

(L) . We have, for ex-
ample,

I 1
(L)[

1

L3 (
nW
E dq0

~2p!

1

q0
21~qW n!21m2

~39!

qW n52pnW /L; nW 5~nx ,ny ,nz! ~40!

wherenx , ny , andnz are integers, and I am assuming pe
odic boundary conditions.I 2

(L) , I 3
(L) and I 4

(L) are defined
analogously.

Since the integrals of interest are divergent, it is pref
able to work with the differencesI i

(L)2Ii , which are finite
as long as care is taken in introducing a cutoff. Examples
acceptable regulators include multiplying all integrand
summands by@L2/(q21L2)#k ~where k is a large enough
power to render the integrals convergent! @15#, point-splitting
the corresponding position-space propagators, and defi
the theory on a lattice.

Assuming the integrals/sums have been regulated ap
priately, I define the dimensionless finite volume correctio
d i by

I 1
(L)2I15

m2

16p2 d1~mL! ~41!

I 2
(L)2I25

m4

16p2 d2~mL! ~42!

I 3
(L)2I35

1

16p2 d3~mL! ~43!

I 4
(L)2I45

m2

16p2 d4~mL!. ~44!

The correctiond1 can easily be written in terms of th
Euclidean position space propagator, defined in infinite v
ume by

G~x![E d4q

~2p!4

e2 iq•x

q21m2
5

m

4p2uxu
K1~muxu!, ~45!
1-8
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whereK1 is a Bessel function of imaginary argument. T
corresponding finite volume propagator, is given by

G(L)~x![
1

L3 (
nW
E dq0

~2p!

e2 iq•x

q0
21~qW n!21m2

5G~x!1 (
nW Þ0

G~x1LnW ! ~46!

with q5(q0 ,qW n). The last equality follows from the Poisso
resummation formula, or simply by noting that it is th
unique solution of the corresponding differential equat
with the correct~periodic! boundary conditions. Subtractin
Eqs. ~46! and ~45!, settingx50, and putting the result into
Eq. ~41! using Eqs.~39! and ~17! gives

d1~mL!5
4

mL (
nW Þ0

K1~ unW umL!

unW u
. ~47!

For practical values ofmL, d1 can be readily computed t
machine precision with this formula.~One is limited of
course by the accuracy to whichK1 is evaluated.! An alter-
native approach, inspired by Ref.@16#, is to compute the
difference of the~regulated! sum and integral directly in mo
mentum space, treating the sum as an integral by roun
LqW /(2p) to the nearestnW and using a standard numeric
integration program@17#. With a reasonable regulator~e.g.,
the one from@15#, mentioned above!, this method gives re-
sults consistent with Eq.~47!, but it is much slower.

The other finite volume corrections follow from the rel
tions among the integrals given in Eqs.~18!, ~36!, and ~37!
and the standard recursion relationK18(z)52K1(z)/z
2K0(z), where the prime implies differentiation. I find

d2~mL!52d1~mL! ~48!

d3~mL!52d1~mL!2
mL

2
d18~mL!52(

nW Þ0

K0~ unW umL!

~49!

d4~mL!52d1~mL!1
mL

2
d18~mL!5d1~mL!2d3~mL!.

~50!

In deriving Eq.~48!, one must be careful to regulate so th
the difference between the sum and the integral of unity v
ishes in the limit of infinite regulator. The regulator in@15#
works well, for example.

LargemL asymptotic expressions for thed i are obtained
by including only the 6 nearest neighbors in the sums in E
~47! and~49! and using the only leading terms inK1 andK0.
I find

d1~mL!52d2~mL!;
12A2p

~mL!3/2
e2mL ~51!
05403
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d3~mL!;2d4~mL!;6A2p

mL
e2mL. ~52!

While these expressions are useful for estimating the siz
finite size effects, the leading corrections to Eqs.~51! and
~52! have just one higher power of 1/(mL). In the quantita-
tive applications I have in mind@11#, for which mL is in the
range 3 to 9, the full expressions@Eqs. ~47!, ~48!, ~49! and
~50!#—or at least the fullK1 and K0 from the nearest
neighbors—will be needed. It is important to note, howev
that for very small quark masses,mL,1, Eqs.~47!, ~48!,
~49! and ~50! are not applicable, no matter how many term
are included in the sums. In that limit, the zero-mode~the
spatially independent component of the pion field! must be
treated exactly@14#.

Comparing Eqs.~41!–~44! with Eqs.~17!, ~18!, ~36!, and
~37! then gives the rules for including finite volume corre
tions. In the 211 case, one needs merely to make the
placement

ln
m2

L2 → ln
m2

L2 1d1~mL! ~53!

for every logarithm in Eq.~33!. It is interesting to note tha
whenml→0 ~with L and the symmetry violating parameter
Ci , fixed!, the leading finite size correction to Eq.~33! is
negative, due to the2 1

2 mp5

2 ln mp5

2 term. In the standard case

the leading correction is positive, due to the positive sign
mp

2 ln mp
2 .

In the quenched approximation, the replacements in
~38! are

m0
2ln

mp I

2

L2
→m0

2ln
mp I

2

L2
2m0

2d3~mp I
L !

a ln
mp I

2

L2
→a ln

mp I

2

L2
1

1

2
ad4~mp I

L ! ~54!

ln
m2

L2→ ln
m2

L2 1d1~mL! ~all other logarithms!.

VII. REMARKS AND CONCLUSIONS

My main results are given for the 211 flavor case in Eq.
~33! and for the quenched case in Eq.~38!. Finite volume
corrections to these formulas appear in Eqs.~53! and ~54!,
respectively, with the values ofd i given in Eqs.~47!–~50!.

I have computed onlymp5

2 , but a generalization of this

calculation tomK5

2 is straightforward and is in progress@18#.

Slightly more complicated, but also on the list of things
compute@18# are f p , f K , ^C̄C&, and the non-Goldstonep
and K masses. These quantities do not vanish in the ch
limit, so there will be fewer short-cuts available. A furth
complication for a quantity likef p is that there is no acci-
dental cancellation of diagrams corresponding to Fig. 4~b!.
An additional adjustment for the number of flavors in virtu
1-9
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quark loops will therefore be required. However, the adju
ment is not difficult, since lnmK

2 contributions come uniquely
from this diagram. To generate the 211 case, one will
merely have to~i! multiply the lnmK

2 terms by 1/4 to count
the s quarks in the loop correctly, and~ii ! subtract half the
~original! ln mK

2 terms, after puttingms→ml , to count l
quarks in the loop correctly. For quantities such asf K or mK

2 ,
where there will be valence lnmK

2 contributions, the lnmp
2

and lnmS
2 terms~from theconnectedinternal propagator! can

be used to make the adjustment.
Preliminary fits of Eq.~33! to MILC 211 data are en-

couraging: the fits give good confidence levels for reasona
ranges of quark mass@11#. The contrast with the standard fi
that do not take into account KS flavor breaking@3# is espe-
cially striking. I emphasize here that the new fits have
same number of free parameters as the standard ones. T
because the various pion splittings are not left free in
~33! but are determined first by the data for the masses o
the pions.

In the quenched case, one generally treatsm0 @or equiva-
.

o
h
e

05403
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lently d[m0
2/(24p2f 2)# as a free parameter. As such, dece

fits can apparently be performed whether or not one ta
flavor breaking into account. However, the values ofd ob-
tained seem to be considerably closer to the real world va
(d'0.18) when flavor breaking effects are included. In bo
the 211 and quenched cases, we are collecting additio
lattice data at small quark mass@11#, which should signifi-
cantly increase the discrimination between the symme
and flavor-breaking fits.
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