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Chiral logs in the presence of staggered flavor symmetry breaking
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Chiral logarithms inmfT are calculated at one loop, taking into account the leading contributions to flavor
symmetry breaking due to staggered fermions. | treat both the full QCD casé (@ht dynamical flavors
and the quenched case; finite volume corrections are included. My starting point is the effective chiral La-
grangian introduced by Lee and Sharpe. It is necessary to understand the one-loop diagrams in the “quark
flow” picture in order to adjust the calculation to correspond to the desired number of dynamical quarks.
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[. INTRODUCTION make a joint expansion im anda?, which are considered to
be comparably small. That is in fact the case for a simulation

Staggered[Kogut-Susskind (KS)] fermions provide a like [3], where the splittings in mass squared of various KS-
competitive method for simulating full QCD, including the flavor pions are comparable to the squared masses them-
effects of virtualu, d and s pairs. Indeed, recent improve- selves. A one-loop calculation using the Lagrangian of Ref.
ments in the actiori1] have made it possible to compute [6] would give the chiral logs(non-analytic terms of
many physical quantitigs with rather small scaling violationsp(m2 ma? a%).
in such “2+1 flavor” simulations[2,3]. The Lee-Sharpe Lagrangian corresponds to a single lattice

The violation of KS-flavor symmetry, while reduced by ks field, which becomes 4 degenerate flavors in the con-
the improved ("Asqtad”) action, remains however Quite g, m |imit. The main subtleties in the current work arise

large at the lattice spacingi=0.13 fm) where most of the  ac4,se | am interested in the more phenomenologically rel-
simulations in Refs[2,3] have been performed. The maxi- evant 2+1 flavor theory being simulated, with = m; in
mum splitting in mass squared among the various flavogenera| not the 4-flavaontinuum degenera)tt(sstheory.l
pions, A max, IS ~(400 MeV) at this lattice spacing. Be- follow a’ three-step procedure:
cause one can choose Fhe ;taggered flavor on the valence(i) Generalize(almost trivially) the Lee-Sharpe Lagrang-
q;arl: Imles, the gavor wo;a;[;]onshoften etnte_r tf|1ro_ugh fIOOplian to the 4+4 case, where one has two lattice KS fields
effects alone, and as such they have a typical size of only ; P
~8% in most quantities. Here, | estimate the size from aﬁlglu(gl)ﬁ etrﬁgérymﬁ?ﬁ?ag ,t?r?)n.s ;r%?azl)sK;_ ?Ia\s/c?r(si)c;_-
“typical” chiral logarithm, including flavor violation: lating terRms bre:;lking the symmetry.
A (i) Computeme at one loop in the 4 4 case. | treat only
T2 IN(A e/ AD), (1)  the case where the pion is thé(1), Goldstone particle.
1672f2 (This is the situation most immediately relevant to the fits
attempted in3].) The symmetry then implies than? van-
whereA is the chiral scaldtaken, for instance equal t,  jshes wherm,—0, allowing one to simplify the calculation.
~770 MeV), andf,=131 MeV. Since the leading flavor  (jji) Adjust the 4+4 answer to correspond to the+2
violating terms in the improved KS action at¥a®), these  case of interest. This requires identifying the contributions
discretization effects can be reduced still more by goinghat correspond tbor s virtual quark loops and multiplying
closer to the continuum limit; MILC simulations are cur- them by 1/2 or 1/4 respectively.
rently in progress aa~0.09 fm. The subtleties are almost entirely in step 3. To identify
On the other hand, if one focuses directly on chiral logsthose terms that should be reduced by a factor of 2 or 4, one
and works ata~0.13 fm, the effect of KS-flavor ViOlatiOln needs to follow the “quark flow” approach, which was in-
should be Iarge. |ndeed, n RQB], we were unable to fit troduced by Sharpé?] to Compute quenched chiral |Oga-
mZ/m to the standard continuum chiral-log forfd] for 2 rithms. Unfortunately, in the presence of KS-flavor symme-
+ 1 flavor QCD.[Here and belowl, stands for a generic light try violation, there does not appear to be an alternative,
(u or d) quark; | neglect isospin violations throughdufo  Lagrangian approacf8,9] that would automatically cancel
test the hypothesis that KS-flavor violations are responsibléhe effects of the unwanted KS flavors. This corresponds to
for this behavior ofrnf,/m|, one needs to compute the chiral the fact that, in numerical simulations, the reduction from
logs in the presence of KS symmetry breaking. That compu4+4 to 2+ 1 flavors is accomplished by taking the square
tation is the subject of this papgs]. root and fourth root of thé ands determinants, respectively.
The effective chiral Lagrangian that describes KS fermi-The procedure reduces each of the four KS flavors in a vir-
ons through®(m,a?) (m is a generic quark maskas been tual quark loop equally, by a factor of @); it does not
constructed by Lee and Sharpé]. Their approach is to cancel specific flavors. There is thus no equivaleittta)lo-

0556-2821/2002/65)/05403110)/$20.00 65 054031-1 ©2002 The American Physical Society



C. BERNARD PHYSICAL REVIEW D 65 054031

cal lattice Lagrangian, and it is not at all clear how orwant to generalize to two KS field8 continuum flavors In
whether one can represent the low energy chiral properties @hat case, only th&U(8) flavor singlet is heavy and can be
this theory with an effective chiral LagrangiahO]. integrated outSU(4) singlets, e.g., a singlet “kaon” made
Of course, in the continuum limit the KS-flavor symmetry of one quark from each KS multiplet, can be light. | therefore
is restored, and one may cancel any 2 of the 4 light quarkeave the singlet as well as time, term explicit in interme-
flavors (and any 3 of the 4 strange quark flavyovgth 2 (3)  diate steps, but will ultimately take,— .
bosonic pseudo-quarks. The effective chiral theory is then The (Euclidean Lee-Sharpe Lagrangian is then
obvious: an “g5” partially quenched chiral perturbation
theory. This is discussed in R¢@]. Such a theory is trivially
equivalent to standard 3 flavor chiral perturbation theory in _ N ) N mg )
the physical sector where the sea quarks are also the ones o =g 1(7,23,2") = 7 umfr(Z+21)+ —= ()
the external lines.
The remainder of this paper is organized as follows. Sec- +a%, (4)
tion Il presents the Lee-Sharpe Lagrangian and generalizes it
to the 4+ 4 case. The calculation @fi to one loop is then whereu is a constant with units of mass, the coefficient of
described in Sec. lll. In Sec. IV, the quark flow picture is ¢, is conventionaf, and V is the lowest order KS-flavor
applied to computen? in the 2+ 1 case. The analytic terms breaking potential:
at O(m?,ma?,a*), necessary to perform consistent fits that
include the chiral logs, are also touched upon. The quenched 1
case follows in Sec. V. Finite volume corrections are then _ ,_ t = 2y _
discussed briefly in Sec. VI. Finally, | make some remarks V=Catr(£53 €52 HCZZ[U(2 )~ t(€s2€s2) +H.Cl
about the extension of the current approach to other physical 1
quantities in Sec. VII. That section also contains some com- +Caz D [t(E,3€,5)+H.c]
ments about the fits of MILC data to the chiral forms derived 25 e
here; however, a detailed discussion of such fits and their

. 1
consequences will be presented elsewhaig +C4§2 [tr(§,525,2) +H.c]

2 1 2

Il. LEE-SHARPE LAGRANGIAN FOR 4 +4 FLAVORS

1
- Ty _ t
Lee and SharpEs] first construct the continuum effective +Cs5 Ey [tr(&,2 6,57 (€52 65,2 7)]
Lagrangian for KS lattice fermions, including all terms at
O(a?). The KS-flavor symmetry is broken by 6-quark opera- t
tors. They then write down the corresponding effective chiral +Cﬁﬂzy [tr(£u,2 €2 7). ®)
theory to leading order ia? andm, the quark mass.
For a single KS field(4 continuum flavors the Lee- Effects of ordera?m or a* are neglected in E4).
Sharpe chiral Lagranglan describing the pseudo-Goldstone The potential)’ has an “accidental’sO(4) flavor sym-
bosons has gnonlinea) SU(4), X SW(4)x symmetry, bro- metry (evidenced by the sums overand ), which is larger
ken by the mass term and by the KS-flavor violating operay,,,‘ihe Jattice symmetry group. The pions fall intS6(4)
tors. The 4<4 matrix % is defined by representations with flavoi, §,s5, £,,, £, |. Expanding
Eq. (4) to quadratic order irb, the pion masses are found to

16 be
S(o=expiglf), ¢=2 ¢aTa 2)
. . 4m3
where ¢, are realf is the tree-level pion decay constdght miBZZMmJF TO5B,|+a2A(§B), 6)

use the normalizatiorf ;=131 MeV), and the Hermitian
generatorsl, are chosen as follows:

. ) Isharpe and Shoregii2] show that integrating out thé, is
Ta={&s)i §M5" g;w *gu A} ©) mathematically equivalent to keeping it in the calculations and tak-
. . ing the mass parameten,—c at the end. If that limit is to be
Here ¢, a_re the f"'?“’or gamma mat_rlcesm-,:gﬂg_g,, gl_“ taken, it is unnecessary to includg, dependence other than thg
=£,€, [with u<w in Eq. (3)], and| is the 4x4 identity o/, i the action. However, in the quenched céec. \J, other
matrix. 3 transforms by X —LXR" under SU(4), ®, dependence will need to be considered.

XSU(4)r. _ . 2mZ/6 by definition multiplies (1,+ ¢+ da3t - - -)2. Here, the

Note that | include the singlet mesafy , corresponding  normalizedg, =134 ,¢; . This definition ofm is independent of
to generatod, in Egs.(2) and(3). The mass of they'-like  the number of flavors and corresponds to that in Rig€] (after
meson(often called®,, up to overall normalizationgets a  renamingu?—m2) and that in Ref[7] (after choosindN=3 therg.
large contribution £m,) from the anomaly in the Lee- With the current definition of, the parametes introduced in7] is
Sharpe case and is not included in their formalism. But lequal tom3/(24m?f?).
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where, in a convenient abuse of notation that will be usedhat theK, are complex. Th&U(8) singletoctrar+trS will
from now on, the indexB takes the 16 valuef5,u5.uv(n  pe eliminated below by taking th@g— o limit.

<w),u,1} and&=I. Them; contribution to the mass a, Defining the 8<8 mass matrix\,
is shown explicitly, and\ (&g) is given by

A(&)=0 _(mb 0
L0 md)’ (10
16
A(§M5)=f—z(Cl+C2+3C3+C4—CS+3C6) the SU(8), X SU(8)r Lagrangian that generalize§,, of
Eqg. (4) is then
16
A€ = 72(2C3+2C,4+4C,) f2 R T +
£(4+4):§ tr(aMEﬁ#E )—Z,uf tr(M=E+ M3
16 2mj
A(€,)= £2(CyFCaot Cat3C4+Cs+3C) +T(7T|+S,)2+azv. (11

16 Generalization of the KS-flavor breaking potentialin
A(D)=12(4C5+4Cy). () Eq. (5) requires a little thought. For a single KS field, the
symmetry breaking 4-quark operators in the effective con-
A(&s) vanishes because of the staggered-flavor nonsingldthuum theory have the generic form
U(1), which is represented in the chiral theory by

S _ citkss aiths ® Q(ys® £)QQ(vs ® &:1)Q, (12)
whereyg is an arbitrary spin matrix¢g is an arbitrary flavor
matrix, and the indice§,S’,F,F’ are contracted in various
ways determined by the lattice symmetries. The effective
chiral operators may then be found from the 4-quark opera-
tors by treatingég and &z, as spurion field$6].

With two KS fields on the lattice, there is an exact vector

with 6 theU (1) angle. Since this symmetry is unbroken by
the lattice regulatorsrs is a true Goldstone boson in the
chiral limit.

From simulations such as those in R&], one learns that
the C, term in Eq.(5) is the largest contributor to th@(a?)

fl iolation[6]. This leads t imatel | split-
avor violation[6]. This leads to approximately equal spl SU(2) (broken only bym, #m,) that mixes theni.The sym-

ting between the pions, in the ordefs, 7,5, 7,,, 7,, )
.2 The other operators are not entirely absent, howeverr;netry guarantees that the KS-flavor breaking 4-quark opera-

their contributions to the splittings are of order 10% of that!©'S NOW have either of the two forms:
of C, [11]. The reason for the smallness ©f, i #4, is not
known? _ _
We now need to generalize to the case of two KS fields Qi(rs®&r)QjQj(vs @ &) Qi
with different massesn, andmg, i.e., 4+4 continuum fla-
vors. The fieldX in Eq. (2) becomes an 8 8 matrix, given

by Qi(ys®&r)QiQ(vs ®&:1)Q; (13

- K whe(re i) and | f(|=1,2) aredSU(Zd) ifrlldices. The %perators in
_ . _ Eq. (13) are “flavor mixed” and “flavor unmixed,” respec-
Z()=expie/h), q)_( KT S)’ © tively. By Fierz transformation, the flavor mixed operators
can be brought to the flavor unmixed form, so we may as-
where the &4 fields 7, K, and S describe “pions,” “ka-  sume all 4-quark operators are of the latter t§Rut if all
ons,” and “ss’ mesons, respectively. As in Eq$2),(3), 7 4-quark operators are flavor unmixed, then all spurion fields
=316 7,T., with m, real, and similarly fo andS, except ~areSU(2) singlets. In other words, fa7 in Eq. (11) we may
take simply Eq.5) with the replacement

30Omitting the disconnected terms in the propagatofas is often

done in simulations—see, e.§3]), eliminates then, contribution SThere are also corresponding axial symmetries, whose generators
to the singlet mass and extends the approximately equal splittingre the direct product of th&l,(1) generator,ys® &5, with the
rule to KS flavorl. vectorSU(2) generators, but | will not need them here.

“More precisely, the approximately equal splittings imply only ®This may be at the expense of mixing the color indigssp-
thatCg, C;+ C,, and Z25— Cy are small. | thank M. Golterman for pressed in Eq912) and(13)], but they are irrelevant in the corre-
pointing this out. sponding chiral effective theory because of confinement.
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(@) (b)

FIG. 1. Chiral perturbation theory graphs contributing to the

pion propagator from kinetic energy vertégolid triangle. The
external lines are Goldstone pions, i.es. The dots represent the
derivatives in the vertex. Ita) they act on the external lines; ib),
the internal.

és 0)
0 &g/

The tree level masses of the pions, kaons, Sn@sg)
mesons are then

§B—>( 14

m?,=2pm;+a%A(&)
mg_ = p(my+mg) +a?A(&p)

mg =2ume+a?A(ép), (15
whereA (&g) are given by Eq(7), and them, terms are not
included because we will trean%(rr, +S))?%/3in Eq.(11) as
a vertex(summed to all ordejsbelow.

IlI. ONE-LOOP PION MASS FOR 4 +4 DYNAMICAL
FLAVORS

The calculation ofnf, to one loop in the 4-4 theory[Eq.
(11)] is now straightforward. | confine my attention to cor-
rections to the Goldstone pion mass, . The cases of the

non-Goldstone pions and the kaons, which will also be use-

ful in confronting simulation data, will be left to future pub-
lications.

PHYSICAL REVIEW D 65 054031

(@ (b)

FIG. 2. Same as Fig. 1, but from the mass vefsolid squarg
The internal propagator ie) is the connected propagator orilyo
mé insertions, even when it is neutral#,). All disconnected con-
tributions are inb); i.e., the cross represents omemoreinsertions
of the m3 vertex.

nected” are applicable at the QCD level: the disconnected
diagrams contain gluon intermediate states in the meson loop
[Figs. 4d), 4(e), and 4f)]. TheU (1) symmetry guarantees
that the sum o 5" and 39 is proportional tomis. How-

ever, this is not true for individual diagrams contributing to
25°", so | do not include theanfT5 factor in the definition.

For the moment, | calculate only the universal chiral loga-
rithms, and ignore the analytic terms in the diagrambich
means the divergences are also ignorethe logarithms
come from the following integrals:

. d*q 1 1 2 2 L
=) ent i 16 (17
d4q qZ d4q
= | -+ 1T __ 2 T
I?‘J (2m)* o+ m? mzﬁf 2
— =152 m*ln m?. (18

2., gets contributions only from Fig.(4). The result is

a2 2 a2 2 2 2
Si——8m; Inm? —8m7 Inm7 % mg_Inmg_,

(19

The graphs are all tadpoles, with vertices coming from the

kinetic energy term tr&MEaMET), the mass term t/{13
+M3"), and the symmetry violating terry. They are
shown in Figs. 1, 2, and 3, respectively.

| write the one-loopms self-energy as

3(p?)= (p?3 1+ 3P+ 3.9%9, (16)

96m°f?

where no sum onu is implied, B takes the 16 values
{5u5,uv(u<v),u,l} as usual, and the arrow means that
only the chiral logarithms are included, as in E¢k7) and
(18). Figure 1b) contributes only ta5°":

con

4 2 4 2 4 2
—8m_ InmZz +8m> InmZ + my Inm
2,KE 8 5 5 8 Ty Ty EB: Kg Kg’

(20

where | have explicitly separated the contribution coming

from a disconnected propagator in the internal IoEQ‘,SC
[corresponding to Fig.(®)], from the other, connected con-
tributions in 5°". The terms “connected” and “discon-

"The distinction between the field mati¥in the Lagrangian and

the self energy®—both conventional notations—should be clear

from context.

FIG. 3. Same as Fig. 1, but from the flavor breaking veitex
(solid circle.
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again with no sum om. Note that among the pions, only the term. The absence of couplingﬂf explains why the kinetic
vector and axial vector flavors contribute in Eq$9) and  energy term does not contribute ¥§'°.

(20). It is easy to show, using the fact thats,|] Figure Za) contributes only t&5°". Couplings ofs to
=[&5,£,,]=[£5,65]=0, that no terms of the formrg,  all the other pions are generated by the mass vertex, so there
MET s OF mem? can be generated by the kinetic energyis no restriction on the terms that can enter. | find

2
T

con 4 2 2 2

2Mass— —3mz Inm7_— 4m775m7,#5|n me

_ 2 2 2
18m7. m Wln m:

m

2 2 2
V—4m75mmln m;  (no sum onu,v)

© “

a2 2 2 _m? 2 2 2
3mz mz Inm7 (m75+mK5)§ mic Inmic . (22)

Here, the factors orfnf75 or mﬁs in each term come from the ates the connected contributioﬁ3mismilln(rrﬁl) in EqQ.
quark masses, which are proportional to Goldstone particle21). A single insertion of then3 vertex, which would be the

masses squared by E@5) with A(&5)=0 [Eq. (7)]. only contribution in the quenched case, gives
The mass vertex also generates the only contributions to
the disconnected diagram, Fig(b2 This is the sum of ' d*q  4m2/3
1,2,3 ... insertions of the vertex (22/3)(m +S)? on the 3, disc.quench, g2 f — ﬁ. (22)
internal 7r; line. The, line in turn comes from a term pro- °) ™ (q +mﬂ,)

portional t07r§7r,2 in the mass vertex; the same term gener-
The standard quenched double pole is evident. Iterating the

m(z) vertex and summing the geometric series then results in
4 2
@ @ 3 disc_ 31,2 d'q 4mg/3
2 g 77_2
(a)

am3/3  4mii3 |\

( 2+ m2 )2 1+
(a+mz) q’+ mil q*+mg
(23)
There is no here need to take t— o limit or to perform
the integral; the conversion to thet2l flavor case can best

be done directly from this expression. Note thgtand S,

b)
d)
. .Q

®

© ( intermediate states now enter. As discussed in Sec. IV, these
correspond to virtual ands quark loop contributions.
Finally, we need to consider the KS-flavor violating ver-
P i tices, Eq.(5). It is not hard to show that, as in the kinetic
U U energy case, only the vector and axial pions contribute. From
Fig. 3, | obtain(no sum onu)
e con

S — 8a2A(§M5)mf,M5In mf,ﬂs— 8a2A(§M)m,27#In miﬂ
FIG. 4. Quark flow diagrams that could contribute to (fiavor
non-singlel pion propagator at one loop in the chiral expansion.
Diagrams(d), (e) and(f) are disconnected graphs that correspond to
Fig. 2(b); (f) represents the sum over two or more intermediate
virtual quark loops. Note thaid), (e) and (f) each have a second whereA is given in Eq.(7).

version, in which the two sides of the meson loop come fidifn We can now put the results together to find themass at
ferentvalence lines. For the purposes of this paper, one may con-

i . ) ) “~one loop. Writin
sider the diagrams shown to be generic, subsuming both versions. P 9

Diagrams with ‘D vertices,” such as Fig.(® of Ref.[7], are not 1
relevant: either because they are eliminated bymﬁe»oo limit (the (ml*|00p)2: m2 + ———e
2+1 casg, or because they have virtual quark lodfiee quenched 5 ™ 96mfe >
casg. Diagrams with odd numbers df, lines at a vertex, such as

Fig. 3(f) of Ref.[7], can be eliminated by a field redefinitia]. we have

— % azA(gB)mﬁBln mﬁB, (24)

(25
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=350t Soasst 253 m2 3, (26) ’ = i\
From Egs.(19), (20), (21), and(24) we then have J&
es—m; (—3m7 Inm? _+ 12mfm5ln m72m5_ 18meWIn meW i N ﬁ
+12m2 Inm2 —3mZInm?) ! k ol
S - (@) (®)

FIG. 5. Quark flow diagrams corresponding to 2 into 2 meson
gScattering at tree level in the chiral expansion. ijk,n are flavor
indices.

=

+39s¢ (nosumongu,v), (27)

where the arrow, as usual, means that only the chiral log
rithms are kept. Note tha¢s is proportional tomis, as it

must be by Goldstone’s theorefi®, 3¢ already has a factor ,
of meS in Eq. (23).] The term=gmy In(mﬁB) [Eq.(20)] com- gl;ag;om Together, Figs(e} and 4f) change Eq(22) to
bines with —3ga’A(&g)my In(my) [Eq. (24)] to cancel To identify contributions from the remaining graphs in
against—mg Sgmg In(m¢ ) [Eq. (21)]. Here | have used  Fig. 4, we first study the possible 2 into 2 meson scattering
diagrams in the quark flow language, Fig. 5. Letting
mg, = Mg +a”A(ég), (28)  i,j,k,n=1,2,...,8 bequark flavor indices, Fig.®) corre-
sponds to a meson vertex of the forby, @;; P, ® ., Wwhere
which follows from Egs.(15) and (7). Similarly, the terms @ is the meson field in Ec(9). Similarly Fig. 5b) corre-
Smi 5|n(m§T 5) and gni |n(m§7) in Eq. (21) combine with ~ sponds tcbijCDjkq?kpdDm. Nowz consider the case where all
corrgspondrng terms inuE(Q4)ﬂto produce terms that have a four quark flayorg ,J.K,n are different. Then vertices gener-
factor of m2 . Indeed, Eq(24), the effect of the symmetry ated by the kinetic energy or mass terms in Bd) cannot
T 5" ) . ~_have the formd;; ®;;®, P, because they are formed only
violating vertices, is completely deztermlned by thg require-py 4 single trace of fieldéand the diagonal matrix\1).
ment that the full answer go liken7_ (up to logs in the  since Fig. %a) cannot depend on the flavors of the quark
chiral limit. This makes it clear, for example, that tliy  lines to this ordefexcept trivially throughM), this implies
coefficients in Eq(5) must enter Eq(24) only through the that Fig. 5a) is not generated at tree level by the kinetic or
combinationsA(£g), and that the final answer can dependmass terms for any values ofj,k,n.
only on the various meson masses. The KS-flavor violating vertices behave differently. Be-
Terms of the formm,zTSmﬁBIn(miB) also cancel between cause at least some of tiig explicitly entering Eq(5) must
Egs.(19) and(21). This is “accidental” in the sense that itis Pe off-diagonal, it is not hard to see that Figajcan in fact
not required by symmetry. It corresponds to the fact thaP® generated. Note, however, that sidgeare diagonal un-
there happen to be no mf) terms in the standard con- der the vectoSU(2) that mixes the two KS fields, Fig(&
tinuum 2+ 1 flavor resulf4]. For similar quantities, such as Still vanishes when, j are ofl type (upper 4x<4 block and

— . k,n are ofs type (lower 4Xx 4 block).
f . or (Oluu|0), the Ingrg) terms will not cance[4]. . : : _
Finally, note that in the symmetry limitn,, = m Now consider Fig. &). This graph is absent when the

i s 7us  quarks in the virtual loops are sftype because the needed
=m, =m, =m.) the entire one-loop correction in EQ. vertex vanishes to this order. If we then choosg=m,, it
(27) is proportional to> 3¢, This is also true of the standard can make no difference whether a quark in a virtual loop is
result[4]; the reason will be explained in the next section. or s type, so this graph must also vanish when the loop
quarks are of type. A slight generalization of this argument
IV. ONE-LOOP PION MASS FOR 2 +1 DYNAMICAL shows that the graph again vanishes when there is one virtual
FLAVORS quark of each typéi.e., a kaon loop®
Once we know that Fig.(4) is absent, intermediate kaons
To adjust the result in Eq27) to the case of 21 dy-  could only be generated by Fig(b. Since theK contribu-
namical flavors, we need to identify the contribution fromtion to €5 in fact vanishes to this order, graphs of type Fig.
each of the possible quark flow diagrams shown in Fig. 44(b) with an s type quark in the virtual loop must cancel
Many of the arguments used to identify the quark flows willamong themselves. Once more choosing=m,, this also
be familiar from Ref[7]. Once the contributions from virtual implies that Fig. 4b) cancels for at type virtual quark loop.
quark loops are determined, the adjustment tol2dynami- The surviving connected contribution & comes from
cal flavors is accomplished by multiplying evdryi.e., u,d)
quark loop by 1/2 and everyquark loop by 1/4. —_—
~ First note that Figs. @), 4(e), and 4f) have disconnected 8 4 third ') KS quark field, plus a pseudoquark KS fild
internal meson propagators, and correspond to RlY. Big-  of the same mass. This partially quenched theory is then equivalent
ure 4d) has a singlen] insertion and therefore generates theto the original theory in the,s sector. The graph Fig.(é then
contribution in Eq.(22). Figures 4e) and 4f) represent the vanishes when there is orseand ones’ in the loop. Now choose
iteration of them? vertex through the introduction of virtual mg=m,.
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Fig. 4(a). Furthermore, since the vertex in Figajtis of the  tional to m;, m? or mmg, since they must vanish as,
type in Fig. %a), which can only be generated by KS-flavor —0. This means that terms aP(a*) in the joint m, a?
violating terms, such connected contributions must vanish irxpansion cannot enter.

the symmetry limit. This is in fact the case, as was men- Putting Eq.(32) in Eq. (25), adding in the analytic terms
tioned at the end of the last section. Because Hig. éon-  just discussed, and writing the OVGW'ETS as 2um, [Egs.

tains valence quark lines only, these contributions do no 15 ; - -
. and(7)], I arrive at the final result in the-21 case(no
change when we go from-#44 to 2+ 1 dynamical flavors. E ) (0] &

The only required adjustment is therefore to the discon—sum ong,v):
nected contributionE 3. We need to divide every virtual
quark loop contribution in Figs. (4) and 4f) by 2 or 4, | 1 1, is
depending on whether it isor s type, respectively. In Eq. (Mg °P)2/m=2p 1+ 1622 | ~ 3Mngin—7
(23) this is easily accomplished by the replacements A
(4m3/3)/(g?+m3 )—(2mg/3)/(g*+m3 ) and (4mg/3)/(q? 2 2
+mg)—(mg/3)/(q°+mg) in the denominator. In other +2m2 In 2 _3m? In -
iz my
words, we have in the 21 case:
2 1 2
g g2 f dq 4m3/3 +2ml In—+ Emfn'”A_zl
2 ) , 2m¥3  m3
(Q*+m2 )% 1+ ———+ ——— 2
! gQ°+m; g tmg ) 7
I (|29) —§m7]llnﬁ +2mK3+(2m;+myg)
We can now take the Iimimg—mo and put Eq.(29) in the
form xXK,+a’C{, (33
4

. d*q 6
29%= mf,sj P\ T ey GO
(@*+mz)  (q°+m3)
wherem? =(2mg +m? )/3. Equation(17) then gives
35%—m2 (6m7 InmZ —2m? Inm? ). (31)

Inserting this into Eq(27), we get the 2-1 result for the
chiral logarithms
2

2 (_am? 2 2 2 _qgn?
es—mz (—3mZ Inm7 _+ lZm,T#SIn me 18mwlwln mz

2 2 2 2
+ 12m7TﬂIn my + 3mz InmZ,

—me“ln mfyl) (no sum on w, v). (32
In the KS-symmetry limit, this gives the standard regdlt
As discussed above, the result comes entirely f@$fi° in

this limit.

whereA is the chiral scale anH{;, K;, andC are indepen-
dent ofm anda to this order. The terra>C may alternatively
be considered as a discretization correctionutoK} is re-

lated to the parametéf, of Ref.[4] by

Ka=(2m+mgKy. (34)

In the KS-symmetry limit Eq(33) reduces to the result in
[4].

Since the terma®C is what absorbs the mass-independent
cutoff dependence in E¢33), we can make a rough estimate
of its size by computing the change of the logarithms when
A changes between two reasonable values, say 0.5 and
1.0 GeV. For MILC simulations aa~0.13 fm, for which
Amax=(400 MeVY [see the discussion before E()], |
find a?C~0.05. Discretization corrections ti; and K}
come from higher(?(m?a?), contributions not considered in
Eqg. (33). | expect that such corrections will be significant
because they can be generated by the same operators in the

What about the analytic terms? These can in general conféffective QCD Lagrangian that produced the KS-symmetry

from a quite complicated set of operators in the chiral theoryPréaking potentialy.
standard O(m?) (“p*’) operators [4], O(m&?) [e.g.,
Vir(MS+ M3 ] or O(a?) (e.g.,V?) chiral operators gen-
erated by the same terms in the continuum effective action
that led to Eq.(11), and entirely new chiral operators of  Given the understanding of the quark flows in Fig. 4 de-
O(ma®) and O(a*) coming for example from terms in the veloped in the previous section, the result in the quenched
continuum action that Lee and Shai@d call S;™®, which  case is easy to write dow.5*°in Eq. (27) changes to the
break the symmetries of E¢L1) down to the lattice symme- quenched versiony 354U \which corresponds to Fig.
tries. However, as a function of quark mass, the analytiei(d) only. The other terms in Eq27), which arise from Fig.

terms in (m,lT;""’p)2 of the relevant order can only be propor- 4(a), are unaffected. We thus have, in the quenched case

V. ONE-LOOP PION MASS IN THE QUENCHED CASE
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2 2 2 2 2 2 2
es—mz (—3mZ Inm7 + 12mwﬂ5ln me . 18mwwln me,
2 2 2 2
+ 12m,T#In me — 3mz InmZ.)
+ 3 giseauench (no sum on u, v), (35)

with 3 gscauenchgiven by Eq.(22).

Since m% is not to be taken to infinity in the quenched
case, it is necessary to consider otkigrdependence in the
Lee-Sharpe LagrangiahEq. (4). In Ref.[8] it was shown
that it is sufficient to add in a contribution to th#y kinetic
energy: (2z/3)(aﬂ¢|)2. This merely changes in Eq. (22)
to m3+ ag?.

The non-analytic terms iE3s°%*"“"may be extracted
using

d“q

1 -1 9

= [ - 2
5= 2m)* (g°+m?)?2  2m M T T2
(36)
d*q q° -1 4
= - — _ 2
I“_f 2m* (g’+m?)2 "~ 2m om2=TimM1s
- 167TZZmZIn m?, (37

whereZ,; andZ, are defined in Eqg17) and(18).
Putting the logarithms irS 35U together with Eq.
(35), and using Eq(25), gives the final quenched answer:

m
(mi=1ooPy2/m =2 1+—1 —Em2 In—2
g | M 16’772f2 2 '7s 2
2 2
2 Tu5 2 v
+2mﬂM5In > —3my In—
2 2 2
m7T l w 2 T
2 Ly I A ey Tl
+2m7 In—; 2mq,llnA2 3mOInAZ
4 m;,
+§am§TI|nF +2mKs+a?C{, (39

where of course the parameters K53 andC may be differ-
ent from those in Eq(33). | keep the term multiplyingy
separate from the other hﬁ,l term, since they arise from

different integrals and therefore will have different finite vol-

ume corrections. Analytic terms depending m§ or « are

not included since they can be absorbeduirand A. Note

that the paramete, does not appear here because it mul-

tiplies mg, which cannot enter in the quenched pion mass.
In the symmetric limit, Eq(38) agrees with results i8]

or [7]. As usual, the power counting in the quenched case

°In the quenched case, there is no point in going to the44
Lagrangian, Eq(11), sinces type quarks do not couple to the pion.

PHYSICAL REVIEW D 65 054031

somewhat problematic; one must assume thaand o are
in some sense small to stop at one 1¢8p7].

VI. FINITE VOLUME CORRECTIONS

The technique for computing the finite volume corrections
to the results of Secs. IV and V is standft3,14]. However,
I will provide enough detail here to allow the reader to in-
clude the finite volume corrections numerically in fits to Egs.
(33) and(38). | assume that the Euclidean time dimension,
is large enough that it may be taken infinite, and only cor-
rections from the finite spatial dimensiofiengthL) need be
considered. The generalization to the case wfieis also
finite will be obvious.

The results in finite volume come simply from replacing
the integral<Z; (i=1, ... ,4) inEgs.(17), (18), (36) and(37)
by their finite volume counterparts("). We have, for ex-
ample,

1 dqo 1
I(L)E— f = 39
elemganm
d,=2mn/L; n=(n,,ny,n,) (40)

wheren,, n,, andn, are integers, and | am assuming peri-
odic boundary conditionsz$"), 7{") andZ{") are defined
analogously.

Since the integrals of interest are divergent, it is prefer-
able to work with the differences(")—Z;, which are finite
as long as care is taken in introducing a cutoff. Examples of
acceptable regulators include multiplying all integrands/
summands by A%/(g?+A?)]* (wherek is a large enough
power to render the integrals convergdis], point-splitting
the corresponding position-space propagators, and defining
the theory on a lattice.

Assuming the integrals/sums have been regulated appro-
priately, | define the dimensionless finite volume corrections
5i by

2

©_7- "
Il —Il—mzél(ml_) (41)
4
78— Tp= 152 82(mL) (42)
(L) !
137~ 1= 752 %(mL) (43)
2
T4~ 14= 15,2 0a(mb). (44

The correctionsd; can easily be written in terms of the
Euclidean position space propagator, defined in infinite vol-

Tme by

d4q efiq~x

m
CXO= ] a rme a7

Ki(mlx), (45
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whereK; is a Bessel function of imaginary argument. The
corresponding finite volume propagator, is given by

ddgo e

27) g3+ (qy) 2+ m?

1
G(L)(X)EFZ f(

=G(x)+ > G(x+Ln)
n#0

(46)

with q=(q0,ﬁn). The last equality follows from the Poisson
resummation formula, or simply by noting that it is the

PHYSICAL REVIEW @& 054031

Sy(ML)~ — Sy(mL)~6 | ~e-mL
s(mL) 4(mL) me .

While these expressions are useful for estimating the size of
finite size effects, the leading corrections to E(&l) and

(52) have just one higher power of Iil). In the quantita-
tive applications | have in minfll1], for whichmL is in the
range 3 to 9, the full expressiofEgs.(47), (48), (49) and
(50)]—or at least the fullK; and K, from the nearest
neighbors—will be needed. It is important to note, however,
that for very small quark massesiL<1, Egs.(47), (48),

(49) and (50) are not applicable, no matter how many terms

(52

unique solution of the corresponding differential equationgre included in the sums. In that limit, the zero-mdtiee

with the correct(periodig boundary conditions. Subtracting
Egs. (46) and (45), settingx=0, and putting the result into
Eq. (41) using Egs.(39) and(17) gives

4 < Ky(InjmL)
51(m|_)—m = T

(47)

For practical values oL, §; can be readily computed to
machine precision with this formulaOne is limited of
course by the accuracy to whidy is evaluated.An alter-
native approach, inspired by Rdfl6], is to compute the
difference of thgregulated sum and integral directly in mo-

spatially independent component of the pion fieldust be
treated exactly14].

Comparing Eqs(41)—(44) with Egs.(17), (18), (36), and
(37) then gives the rules for including finite volume correc-
tions. In the 2+1 case, one needs merely to make the re-
placement

2 2
InP—>InP+ 51(m|_) (53)
for every logarithm in Eq(33). It is interesting to note that
whenm,—0 (with L and the symmetry violating parameters,
C;, fixed), the leading finite size correction to E(3) is

mentum space, treating the sum as an integral by rou”dinﬁegative, due to the%mi In mi term. In the standard case,
5 5

Lg/(27) to the nearesh and using a standard numerical
integration progranjl17]. With a reasonable regulatée.g.,
the one from[15], mentioned above this method gives re-
sults consistent with Eq47), but it is much slower.

The other finite volume corrections follow from the rela-
tions among the integrals given in Eq48), (36), and(37)
and the standard recursion relatiok;(z)=—K,(2)/z
—Ky(2), where the prime implies differentiation. | find

dp(mL)=—1(mL) (48

mL -
S3(mL)=—6,(mL)— 751(mL):22 Ko(|n|mL)
n#0
(49

mL

64(mL)=2681(mL) + 5

S1(mL)=8;(mL)— S3(mL).
(50)

In deriving Eq.(48), one must be careful to regulate so that

the leading correction is positive, due to the positive sign of
2
m2Inne.
In the quenched approximation, the replacements in Eq.
(38) are

m2 2

2, 2 M 2
mOInF—> mOInF —mgés(m, L)

m2

7|

I
aln——aln
A2

m2

7|

1
[
A—+ §a54(mWIL)

- (54)

2 m2
InP—> InP +6,(mL) (all other logarithmg.

VIl. REMARKS AND CONCLUSIONS

My main results are given for the+21 flavor case in Eq.
(33) and for the quenched case in E§8). Finite volume
corrections to these formulas appear in EGS) and (54),

the difference between the sum and the integral of unity vanrespectively, with the values af given in Eqs.(47)—(50).

ishes in the limit of infinite regulator. The regulator [ih5]
works well, for example.

LargemL asymptotic expressions for th® are obtained
by including only the 6 nearest neighbors in the sums in Eq
(47) and(49) and using the only leading termskfy, andK,.
| find

1227 _
(mL)S/Ze

d1(mL)=—&(mL)~ (51)

S.

| have computed onlynfrs, but a generalization of this
calculation tomﬁ5 is straightforward and is in progregs8|.
Slightly more complicated, but also on the list of things to
compute[18] aref ., fx, (¥¥), and the non-Goldstone
and K masses. These quantities do not vanish in the chiral
limit, so there will be fewer short-cuts available. A further
complication for a quantity likef . is that there is no acci-
dental cancellation of diagrams corresponding to Fidp).4
An additional adjustment for the number of flavors in virtual
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quark loops will therefore be required. However, the adjustiently 5=m3/(247%f2)] as a free parameter. As such, decent
ment is not difficult, since Im2 contributions come uniquely fits can apparently be performed whether or not one takes
from this diagram. To generate the+4 case, one will flavor breaking into account. However, the valuessobb-
merely have tqi) multiply the Inmg terms by 1/4 to count tained seem to be considerably closer to the real world values
the s quarks in the loop correctly, an@) subtract half the (6~0.18) when flavor breaking effects are included. In both
(original) Inmi terms, after puttingmg—m;, to countl the 2+ 1 and quenched cases, we are collecting additional
quarks in the loop correctly. For quantities sucifaormz,  lattice data at small quark mags1], which should signifi-
where there will be valence g contributions, the Im? cantly increase the discrimination between the symmetric

and Inmé terms(from theconnectednternal propagatorcan ~ @nd flavor-breaking fits.
be used to make the adjustment.

Preliminary fits of Eq.(33) to MILC 2+1 data are en-
couraging: the fits give good confidence levels for reasonable | am grateful to M. Golterman, P. Hasenfratz, K. Orginos,
ranges of quark mag41]. The contrast with the standard fits S. Sharpe, and D. Toussaint, as well as my other colleagues
that do not take into account KS flavor breakird is espe- in MILC, for very useful discussions. M. Golterman, S.
cially striking. | emphasize here that the new fits have theSharpe, and D. Toussaint also provided helpful comments on
same number of free parameters as the standard ones. Thisais earlier draft of this manuscript. Some of this work was
because the various pion splittings are not left free in Eqcompleted during the program “Lattice QCD and Hadron
(33) but are determined first by the data for the masses of alPhenomenology” at the Institute for Nuclear Theory, Univer-
the pions. sity of Washington. | thank the INT staff and organizers M.

In the quenched case, one generally treagdor equiva-  Golterman and S. Sharpe for a productive stay.
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