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Information on B— #r#r provided by the semileptonic proces8— =l v
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Analysis of the present data on the semileptonic proBessrl v indicates that they have not yet reached the
precision to provide adequate information on Bre- 7+ form factorF , (g2), which forg?= mfr is known to be
related to the factorized color-favorétiT,” or “tree” ) contribution toB®— 7" 7. It is shown here that with
around 50— =l v events in which rate and spectrum are measured one can improve the accurany af
significant amount. A recent CLEO determination of (€D 7 coupling constant is compared with an earlier
prediction, and its role in the description of tBe- 7 form factors is noted. When combined with an estimate
of the penguin amplitudé' P") obtained using flavor S(3) symmetry fromB— K decays, information on
T allows one to gauge the effects of the penguin amplitude on extraction of the weakgphasefrom the
time-dependen€ P-violating rate asymmetry iB°— " 7. The constraint orx implied by a recent experi-
mental result on this asymmetry is described.
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I. INTRODUCTION other process is interfering destructively with the tree ampli-
tude to reduce thB°— 7" 7~ decay rate. A prime candidate
The semileptonic proces8— =l v is known to provide for this amplitude is the “penguin,” oP amplitude in the
information on theB— = form factor F,(g?), which for  notation of[2]. If this amplitude were sufficiently important
q2=m,2T is related to the factorized color-favorétiT,” or to reduce the expecté8®— 7+ 7~ rate by roughly a factor
“tree” ) contribution toB®— 7" 7~ . In the present paper we of 2.3, it could have important effects on the extraction of
show that while present semileptonic data have not yethe weak phaser= ¢, entering the Cabibbo-Kobayashi-
reached adequate precision, with around Be8 v events  Maskawa(CKM) matrix[9]. This question has now acquired
in which rate and spectrum are measured one can improvgarticular urgency as a result of the first report of results on
the accuracy off by a significz_;\nt _amount. We then discuss CP-violating parameters iB°— 7+ 7~ [10].
the benefits of such a determination. . o Many attempts have been made to use data to estimate the
A connection between the deca@d—m | " and B “penguin pollution” of theB®— 7" 7~ amplitude, including
—m @ was noted some time ago by Voloshibl, who 5 isospin analysis requiring the measurement B

derived the relation —a%7°% and B — 7" w0 decays[11] (we assume charge-
(B 7 e’ v, M2 conjugate processes are measured when requineethods
- B _137 (f, =131 MeV), which use only a partial subset of the above information
F(B°—nt7™) 12722 [12], and numerous methods based on flavor(32,13.
(1) Earlier data hinted that the penguin amplitude was interfer-
ing destructively with the tree iB°— 7" 7~ [14,15.
In the present paper we describe measurementBCof

using a pole model for thB— 7 form factorF_ (g?). This
relation assumes the dominance of a tf€econtribution to . e" v, decays which can significantly improve informa-

B°— 7" 7 in the notation of Ref[2]. The CLEO[3] and . - 0
Belle [4] Collaborations have measured the branching ratic’)[Ion +on the magnitude of the tref) contribution 0B

. . . . - — "o . Such an improvement is needed to tell whether
for the semileptonic process. Averaging their results yields : : . .
tree and penguin amplitudes are really interfering destruc-

B(B®—me*vg)=(1.4-0.3 X 1074, 2) tively in B— 7" 7r~. We discuss the role of th@* pole in
this process, whose contribution is related through heavy
while an average of CLE(5], Belle[6], and BaBaf7] (B°- qliark symm_etry to a recent CLEO measurem_ent of the
and B-averagei branching ratiog8] gives D D7 coupling constanE'16]. We then show hoyv mforma-
tion on T helps to determine the weak phaseusing limits
B(B°— 7t 7™ )=(4.4+0.9)x 10" . (3) onCP violation in BO—amta.
Our approach differs from that advocated in Refs.
The experimental ratio of these two branching ratios igf14,17,18, in which the tree amplitude is estimated from the
[(B'— 7 e v)/[(B—n" 7" )=32+9, a factor of 2.3 rate forB*— =" 7P In that process, there is an additional
above Eq.(1), which indicates either that the tree contribu- color-suppressed amplitudealledC in the language of Ref.
tion is substantially overestimated in E(), or that some [2]), whose magnitude and phase with respedt tannot be
independently estimated using present data but must be cal-
culated. One then ha&(B* — 7" 7% =—(T+C)/2, and
*Email address: zuminluo@midway.uchicago.edu with C=0.1T, one arrives at estimates rather similar to those
TEmail address: rosner@hep.uchicago.edu in the present pape(The C amplitude was neglected alto-

0556-2821/2002/65)/0540278)/$20.00 65 054027-1 ©2002 The American Physical Society



ZUMIN LUO AND JONATHAN L. ROSNER PHYSICAL REVIEW D65 054027

® iy ® d In the limit of smallm_, the two diagrams in Fig. 1 are
W W related by the Bjorken relatiof20]
v u
b

=2 ]

Uired BO—nm'7)

dg}\a dg)—\\ﬁ ’
dl'(B— 71 y)
=672Vl Yay|® ( )

do?

|2
FIG. 1. Feynman diagrams for semileptonic and nonleptonic My
tree decays of 8° meson. (6)

gether in Ref[14].) The semileptonic process avoids depen-where|a,| is the QCD correction. We shall take,|=1.0,
dence on the theoretical calculation©fT. which is a sufficiently good approximation for our present
In Sec. Il we give some basic expressions for 8%  purpose.
— 7 e'v, andB°— 7" 7~ decays. Information on thB
—qr form factors is reviewed in Sec. lll. THB* D7 mea-
surement and its implications for tf8& B coupling and the
B* pole in theB— & form factor are described in Sec. IV. In the absence of a spectrum measurement, one cannot
We then bracket the possible magnitudes of the tree ampldirectly employ Eq(6) to calculateT. Present extraction of
tude T depending on measurements of the spectrurBin using this relation relies on assumptions of particular form
— e v, (Sec. V). The extraction of the penguin ampli- factor shapes. One can test such assumptions using data on
tude fromB— K decays with the help of flavor SB) al-  the B*Bar coupling extracted using heavy quark symmetry
lows us to determine the extent to whiBhand T are inter-  from the correspondin®* D # coupling, and using present
fering destructively inBB°— 7" 7, and hence to determine information from lattice gauge theories. Form factors param-
the correction to the weak phasewhich is needed when etrized in a manner consistent with such constraints can then
extracting it fromC P-violating asymmetries in that process be used to anticipate the number of events necessary to ex-

lll. H—7 FORM FACTORS

(Sec. V). We summarize in Sec. VILI. tractT from Eq. (6) in a model-independent way.
Lacking experimental measurements of the form factors
Il. SEMILEPTONIC AND NONLEPTONIC TREE DECAYS F(a%) andF(g?), people have propos¢d1] several mod-

els to describe their behavior, among which is the single-pole
For a generic heavy-to-light deca— m, the non- model
perturbative matrix element is parametrized by two indepen-

dent form factors: f
H* OH*H

F.(g)= , 7
. m2 —m?2 , +(@) 2mys 1—q%/m7, 7
(m(P)|uy,QH(p+a)=| 2p+a-q———| F.(a)
q w where we adopt the following convention:
m2 — m2
+qﬂ¥|:0(q2)' (4) <O|VM|H*(p,e)>=fH*mH*eM, (8)
q
(H=(p) 7 (@)|H*(p+0,€))=0xn(q-€). 9

whereQ=b or candH is aB or D pseudoscalar meson. The
subscriptH has been suppressed in the two form factors. |
the case of massless leptofehich is an excellent approxi-
mation forl =e, 1), only F (g?) contributes to the differen-
tial decay rate

r1—|owever, this form factor gives total widths ob°

— a1y andB%— 71" v, which are both larger than the
experimental values, as will be shown in Sec. IV. So the
monopole form factors are not enough to describe the phys-
ics involved in theH— 7r decays.

212, (5) Multipole form factors naturally become our next choice.
On the basis of lattice gauge theory calculations, Becirevic
and Kaidalov{22] proposed a simple parametrization which

whereVq is the relevant CKM matrix element. We will take is essentially a dipole foF . (9%),

|Vcql=0.224+0.016 and|V,,=0.0036+0.0010 from Ref.

dr - GE[Vqal? -
—— (H'— 7 1Ty =—22 5. 3F, (q

dg?

7_[_3

[19]. To obtain the total width, one should integrate ES). cu(l—ay)
over the entire physical region<0g’<(my—m,)?, which F.(g%)= T TRV (10)
requires the precise knowledge of the normalizatioa., (1=ami ) (1= anq/mi)
F_(0)] andg? dependence of the form factor.

The lepton pair can be replaced with a pion, as shown in cu(l—ay)
Fig. 1 for the decay of 8° meson. The resulting diagram is Fo(g?) = 5 5. (11
the tree contribution to the nonleptonic ded®$— =" 7. 1-a7(Bumix)
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TABLE I. Vector meson decay constar{tgleV) from different 200_- SN LN UL LN RN Y
calculations. i i
fD* fB* B 1

150 [— —

Becirevicet al. [25] 245+20°3 196+24+3° = i ]
UKQCD [26] 268" 2 236" 42 > I - ]
Hwang and Kim[27] 327+13 252+10 ,ﬁ, 100 [ R
Wang and Wy 28] 354+90 206+ 39 + L i
Huang and Lud29] 190+ 30 b - .
farl i i

50 — —

In the infinite quark mass limit, the quantiti€s,\my, (1 1
—ay)My,(By—1)my] should scale as constants, is re- [ i
lated to the coupling constagy+y, as N S U U I P R

00 05 10 15 20 25 3.0
B(D*" » D" ) (%)

CHsz;QH*Hw. (12)

M= FIG. 2. Prediction of Refl31] for I'(D**) as a function of the

This parametrization has enough freedom to describe latticR@nching ratio foD* "Dy, including leading S(B)-breaking

results, which typically are obtained for valuesqff above effects. Lines show predicted bounds. The plotted point shows cur-

about 13 Ge¥ [22-24. We shall employ it to judge the rent datg(16,19.

statistical accuracy needed in extrapolating e lv

spectrum tog?=m?, where the Bjorken factorization rela- [30]. Other predictions of30] are compared with the current

tion (6) provides an estimate df. A similar problem arises €xperimental situatiofil9] in Table Il. The agreement is not

when one wishes to extrapolate to the zero-recoil limit inbad, and can be improved by assuming about a 30% increase

estimating the CKM matrix element,| from the exclusive in the absolute square of the matrix element for the magnetic

processB— D )|y, since both the normalization and shapedipole transition®* — D y with respect to the value in Refs.

of the spectrum have to be determined. [30]. The experimental branching ratios at the time of these
It should be pointed out thdtyx, fg+ andgg«g, are far predictions differed from them much more significantly.

from being determined, thoughp«p, has been measured A more detailed set of calculations was performed on the

[16]. Very different values offp« and fg« have been ob- basis of chiral and heavy quark symmefB4], taking into

tained on the lattice and in various modédee Table [25—  account SUB) violating contributions of ordem;. The ex-
29]). We will discussggsg,, in Sec. IV. perimental values are consistent with the predicted correla-
tion betweer3(D* " —D ™ y) andI'(D* ™), as shown in Fig.
2.

IV. IMPLICATIONS OF gp*p, MEASUREMENT b . .
The observed* ™ width can be related to a dimension-

We now describe the CLEO measurement of EieD = lessD*D Coupling Constanﬁ by the expressiomly:ga
coupling constantl6] and review its significance in the light
of earlier predictiond30—-32. The observed value of the
total D* * width isT'(D* *) = (96=4+22) keV, in satisfac- e
tory agreement with a prediction of 84 keV made some time [(D**—=D% %)= >
ago by comparison wittK* =Kz and K* —K+y decays 6y

[ (13)

TABLE Il. Predictions for decay®* —D= and D*—Dy based on comparison witK* —K= and
K* — Ky decays.

Predicted Experimental
Partial width Branching ratio Branching ratio
Decay (keV) (%) (%)
D**—D*n° 25.9 30.9 30.20.5
—DO7" 56.9 67.8 67.720.5
—D"y 11 1.3 1.6+0.4
83.9
D*%—DO7° 39.7 70.6 61.92.9
—DO% 16.5 29.4 38.12.9
56.2
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where f_=131 MeV and |p,|=39 MeV/c. Using the
branching ratio in Table Il we find'(D**—D%*)=65

+15 keV andg=0.59+0.07. Therefore

S
2mp

Op*pr= f—§=17.8t 2.1, (14)

where mj=1973 MeV is the spin-averaged mass of the
D®*) meson. Taking this value ofgpsp, and fp«
=200 MeV (which is more than & smaller than any deter-
mination in Table ), we getB(D°— 7w~ et v.)=(4.9+1.2)
X 1073, still larger than the experimental value (3.0.6)
x 103 [19]. Higher values of o« yield even larger branch-
ing ratios.

Heavy quark symmetryHQYS) predicts

S
2mg

Optpr= f—Ej;:47.9_F 5.7. (15)

Again, even if we take a comparatively small value of
fgx (=160 MeV) and assume a lardge.g., 40% violation

of HQS (so thatgg+g, can be as small as 29,Qve will get

a branching ratio B(B’— 7 e*v.)=(2.6-1.4)x10"*
which is still larger than Eq(2). Thus we are justified to
suspect the single pole form factof).

V. INFORMATION ON T FROM SEMILEPTONIC DECAYS

The Bjorken relation(6) establishes a useful connection
between the semileptonic decays and the nonleptonic tr
decays. Ideallydl’(B°— 71" »))/dqg? at g>=m? provides
the tree contribution to the branching ratio Bf— 7+ 7~

PHYSICAL REVIEW D65 054027
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FIG. 3. The dependence of, on ag for given values of3(B°
—m e'v,). Sold line: B(B°—m e'v,)=1.4x10"% upper
dashed line: B(B’— 7 e v)=1.7x10*; lower dashed line:
B(B’—m etr)=1.1x10"%

<26 Ge\ should be useful in determinings .

A recent lattice calculatior23] obtains values ofag
ranging from about 0.2 to 0.€z from about 0.3 to 0.6, and
F . (0) around 0.27 with a 25% error. A more recent analysis
[34] from QCD sum rules on the light-cone obtaifs (0)
=0.26+0.08, in good agreement with the lattice result. This
implies that parameters are within the ranges quoted in Figs.

e§—5, and leads to values ,.{B°— 7" 7~) ranging be-

tween about 4510 ° and 11x 10 ¢, as in Fig. 4.
Given the central value d$(B— lv), Fig. 4 implies that

(aside from QCD corrections, which have been found to be @n errorA ag=0.1 will correspond to an error it Byed B°

few percent in related procesgeblowever, in practice one

—a*t77) of about 10%, or an error ifi of about 5%. An

must measure the semileptonic decay spectrum over a ranggditional error will be associated with the statistical error
of g° in order to accumulate a sufficient number of events gssociated with3(B— i v) itself. We shall determine the

and therefore must model the spectrum shape, as in extract-
ing |V.p from the spectrum foB—D ™) v,

The dipole form factor has enough parameters to allow
modeling both a normalization and a spectrum shape. We use
it to gain an idea of the statistical requirements for a useful
spectrum measurement. The experimental branching (@tio
for the semileptonic decaB®— 7~ e* v, puts a strong con-
straint on the dipole parametesg andag, as shown in Fig.

3. Accordingly, the tree branching ratio f@&°— 7" 7 is
constrained to lie in a certain rand€ig. 4). It should be
noted that Fig. 4 does not depend|dfy,|, though Fig. 3 can
be altered by any change j¥,,|. We can always combine
|Vl with cg and view|V,,|cg as a single parameter. This
observation plays an important role in estimatinffom Fig.
4.

To determine ag and hence cg and Byed B®
—a "), one can measure the normalized spectrum
[(1)(dl'/dg?)] for B°—m 1'wy. Note that (1/
I')(dI'/dg?) is independent ofg and|V,,,|. Thus measuring
its dependence on? will give us very clean information

—~~

1.0-1079

4.0-1078

0.3 0.4

&g

0.5

0.6

FIG. 4. The dependence #,.{B°— 7' 7~) on ag for given
values of B(B’—xe'v,). Solid line: B(B°— =7 e"v,)=1.4

aboutag. Figure 5 shows us that a comparison of the specx 10~*; upper dashed lineB(B°— 7 e*v,)=1.7<10"*; lower

trum in the interval 6=g?<11 Ge\? with that for 11=<q?
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BN flavor SU3) [2] to obtain information orP from the mainly
ag = 0.20 ] penguin procesB ™ — K%z In this manner we shall end up
with an estimatgP/T|=0.26=0.08, to be compared to the
value of 0.259-0.043+0.052 quoted by Beneket al. [35]
on the basis of a theoretical calculatigithe inclusion of
weak annihilation contributions ifi35] raises this value to
0.285+0.051+0.057) Improved input data will potentially
reduce the error on this ratio considerably, allowing for an
estimate of direcC P-violating effects inB®— 7" 7~ with
less recourse to theory. Furthermore|Tf turns out to be
incompatible with the experimental magnitude of the ampli-
tude A(B>—xw* 7~ )=—(T+P), we shall obtain a con-
straint on the product cascoss, wherea is the CKM phase
discussed previously andl is the relative strong phase be-
Py | ARV IFEVENINE SFUE I S tween tree and penguin amplitudes. Our discussion will be
0 5 102 15 2 20 R5 an updated version of that presented 1i)].
q (GeV ) We shall quote all rates in units oBf branching ratio

. . x 10P). Thus, the averagé) of B— "7~ branching ra-
FIG. 5. Normalized spectrum oB°—x~|*y, for various tios implies

values of ag. At low g% the curves correspond targ
=0.20,0.30,0.40,0.50,0.60, from top to bottom. |T|2+ | P|2—2|TP|COSa c0sé=4.4+0.9 (16)

I (dr/dq®) (Gev™?)

number of events required to achieve an erroAef;=0.1, in these units. With By.dB°— 7" 7~) ranging from
and estimate the corresponding total errofin (4.5t0 11)X10°° we then estimat¢T|=2.7+0.6. This is

In Table Il we show the fractiohof B~ 71 », events  identical to the value obtainef@6] from B* — 7" 7% with
belowg?=11 Ge\? as a function ofvg . In order to obtain  additional assumptions about the color-suppressed ampli-
an error ofAag=0.1, one has to determirfeto a precision tude.
of Af=0.023. For a total olN events in the spectrum, the  The penguin amplitude can be estimated fraBi
error inf is Af=f(1—f)/N, which is about 0.5/N for f =~ —K%z". The average of CLE(b], Belle[6], and BaBaf7]
near 0.5. Thus, one needs about (0.5/0.62%)70 B branching ratio$8] gives
—arl v events to achieve this accuracy. Such a sample will
be associated with an error in the overBl- 7l v rate of B(B* —K%7")=(17.2+2.4x10"°, 17

1/J470=4.6%. When added in quadrature with the 10% er-
° in quacratre wi * ®Mleading to |P!|2=(17.2£2.4) (% ), |P'|=4.020.28,

ror in Byed B’— 7+ 7r7) associated with the spectrum shape, N /

this Ieatgg( to an over;II error of 11% |i|? 035.5% inT. **'where we use the lfetime ratiy + / 750=1.068+ 0.016[37].
One will need considerably more than 4B(B— mlv) Here.P’ refers_ to .the strgngeness-changhg»s penguin.
~3.4x 10P B decays to obtain a sample of this size, since theamplitude, which is dominated by the CKM combination
efficiency of reconstructing the semileptonic decay is smalVisVip - o

(e.g., slightly under 2% at Bellgt]). The Belle Collabora- We now estimate the strangeness-preserbingd ampli-
tion has reported a signal of 107 events on the basis ofude by assuming it to be dominated by the CKM combina-
21.2 fb~*, but the backgroundL48 eventsis larger than the  tion V4V, . This may induce some uncertainty if the lighter
signal, and the branching ratio is dominated by systematiintermediate quarks also play a r¢&8]. (A slightly different
error. Thus a sample of about 4.4 times the present sizgefinition of P is used by[(35,39 and avoids this problem.
would be the minimum needed to achieve the stated goalye find

with a larger sample required if background levels are to be

reduced. )
=\|1—-p—in/=0.220.80+0.15),

Vi
PIP!|=|
| | Ve

V1. INFORMATION ON P AND ITS INTERFERENCE
WITH T |P|=0.71+0.14, (18

We shall use present and anticipated informationTon \herex, p, and 7 are parameterg10] describing the hier-

based on the methods described in the preceding section, aggthy of CKM matrix elements. Combining these results, we
find only that—0.1<cosa cosé<1, so that destructive inter-

TABLE lIl. Dependence of the fractiohof B®— | v events  ference is possible but not established. Reduced errgf&|on
belowq?=11 GeV on the parametens . and|P| will be needed for a more definitive conclusion. In
particular, given the present central values, reduction of the
%8 02 0.3 04 0.5 06 error on|T|? to 11%, as achievable with 4®— =l v events,
f 0.618 0.595 0.568 0.538 0503 Wwould allow one to infer the presence of destructive interfer-
ence at about the 2o8level.

054027-5



ZUMIN LUO AND JONATHAN L. ROSNER PHYSICAL REVIEW D65 054027

T T T T | T T T T | T T T T T T T T
i 2] 0.50 —
A
150 — P — C
L 7 4
7 L
r 7 T 0.25 —
L N7/ ] i
. ,//' L i .
________ 7, L - <.
o 100 s — e L8
s 7 1 € 000
o . : | (@) Lol
L W4 i
_____ i | F g
B .2 h F
- ‘//'l, | i L
50 |— s | | -025—
- '//; ‘ | | - -
- '/,4'.‘ I | i L
e [ : ] —0.50 —
0 1 1 1 1 | |I 1 1 1 I| 1 1 1 1 I 1 1 L 1
0 50 100 150
o
FIG. 6. Relation betweena.; as measured usings,, FIG. 7. Relation betweefs,, andC . for fixed values ofa

=sin(2y) and the weak phase for |P/T|=0.26 and5=0 (solid  (solid curveg and s (dashed curvésThe values ofr range in steps
curve). Dot-dashed curves correspondtd o errors onP/T|. The  of 10° from 50° (right) to 100° (left); those oféd range in steps of
dotted line corresponds ®=0. The solid and dashed lines corre- 15° from —45° (botton) to 45° (top). Here|P/T|=0.26 has been
spond to the central andt 1o values ofS_,. recently reported by assumed.

the BaBar Collaboratiorallowing also for error in|P/T|). We
show only the range associated with the region of CKM parameters

RO Foom Ve i6ra—iy i 0pai B
consistent with other measurements. A(B =7 ™) (|T|e € +|P|e e, (@2

i . i where 61 and §p are strong phases of the tree and penguin
With our present estimates oP| and|T|, we then find  ampiitudes. To first order ifP/T|, using 5+ y=—a and
|P/T|=0.26+0.08. Errors on this quantity can be decreaseqjefining 5= 5p— 7, we then have

by improving the measurements of the branching ratio for

B— wlv, by measuring its spectrum, and by reducing the " _ 5
error on|1— p—i 7|, which we have taken to be greater than N =€ 1+2i T e'’sina]. (23
in some other determinatiofd1].
The presence of the amplitude can affect the determi- | the limit of small|P/T| and vanishing final-state phase

nation of the weak phase usingC P-violating asymmetries 5 theS__ term is just sin(2.q), where
in B~ 7" 7~ decays. The BaBar Collaboratidi0] has

recently reported the first results for this process. The decay Pl

distributionsf_. (f_) in an asymmetri@* e~ collider at the Qeff= 0+ ||SINa. (24

Y (4S) when the tagging particléopposite to the one pro-

duced is aB® (B°) are given by[11] A plot of this relation for|P/T|=0.26+0.08 is shown in
Fig. 6. The BaBar Collaboratiofil0] has reportedS, .

f.(At)=e 2VT1+S__si(AmgAt)FC,, cog AmyAt)], =0.03"323+0.11 on the basis of 30.4 . The corre-

(19 sponding central anct 1o values ofat anda are shown as
the solid and dashed lines on the figure.
where To first order in|P/T|, the C .. term may be written

2 Im(\ ) 11—\, 0 C,»=2|PI/T|sindsina. (25
1+ [N, )2 The BaBar Collaboration’s valug¢l0] C,.=—0.253%
+0.47 is consistent with zero, as one might expect for a
and small final-state phas& This measurement in the future will
serve mainly to constraif, given the limited range expected
ARt ) for |P/T| and sina. Such a constrained value éfwill then
= e‘z'ﬂﬁ. (21 be useful in interpreting the flavor-averaged branching ratio
AB =7 7" (3) in terms of the tree-penguin interference discussed previ-
ously. The combined measurements of the flavor-averaged
Here B°— "7~ branching ratio and the coefficiens,, and
o _ _ C.~, when combined with independent determinations of
AB— 7 77)=—(|T|e'’Te' 7+ |P|e'Pe'F), |T| and |P|, should allow us to dispense with the assump-

T T

BT

A
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have estimated that at least 4B0- «l v events(about 4.4
times the present sample size at Beliee needed to reduce

An example is shown in Fig. 7 of ho®,, andC_,.  the error onT to 5.5%. Fora near 90° we predicty.4— «
measurements can be used to consteaind 8. Values ex- =(15+5)°. Destructive tree-penguin interference B
tracted from such plots can then be checked for consistency> 7" 7~ could be significant ifx were closer to the lower
with Eq. (16) to check our assumption that the phase andimit of about 56° allowed by the present analysis. The form
magnitude ofP is dominated by the top quark. factor F, (%) measured irB— 7l v, also can be helpful in
estimating the “wrong-sign” amplitude i8— D* 7w decays
[42].

tions that the final-state phageis small and that the weak
phase ofP is dominated by the top quark in the loop.

VII. CONCLUSIONS

We have discussed rate and spectrum requiremens in

. . ACKNOWLEDGMENT
—arlv; decays needed to reduce errors in the tree-amplitude CKNO S

contributionT to B’— 7" 7. Better knowledge of can be
combined with an estimate of the penguin amplitéi® see
if destructive tree-penguin interference is occurringBh
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