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Influence of an external chromomagnetic field on color superconductivity
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We study the competition of quark-antiquark and diquark condensates under the influence of an external
chromomagnetic field modeling the gluon condensate and its dependence on the chemical potential and tem-
perature. As our results indicate, an external chromomagnetic field might produce remarkable qualitative
changes in the picture of the color superconducti@§C phase formation. This concerns, in particular, the
possibility of a transition to the CSC phase and diquark condensation at finite temperature.
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I. INTRODUCTION As an effective theory for low energy QCD, the NJL
model does not contain any dynamical gluon fields. Such a
Low energy(large distanceeffects in QCD can only be nonperturbative feature of the real QCD vacuum, as the non-
studied by approximaténonperturbative methods in the zero gluon condensaig=? F**")=(FF) can, however, be
framework of various effective models or in terms of lattice mimicked in the framework of NJL models with the help of
calculations. At the present time, one of the most populaexternal chromomagnetic fields. In particular, for a QCD-
QCD-like effective theories is the well-known Nambu—Jona-motivated NJL model with gluon condensatiee., in the
Lasinio (NJL) model [1], which is a relativistic quantum presence of an external chromomagnetic jiedthd finite
field theory with four-fermion interactions. The physics of temperature, it was shown that a weak gluon condensate
light mesons(see e.g[2] and references thergindiquarks plays a stabilizing role for the behavior of the constituent
[3,4] and meson-baryon interactiofs—7] based on dynami- quark mass, the quark condensate, meson masses and cou-
cal chiral symmetry breaking can be effectively described bypling constants for varying temperatyrg8]. Then, in a se-
NJL chiral quark models. Moreover, NJL models are widelyries of papers, devoted to the NJL model with gluon conden-
used in nuclear physics and astrophydgiesutron stansfor  sate, it was shown that an external chromomagnetic field,
the investigation of quark matt¢8] to construct alternative similar to the ordinary magnetic field, serves as a catalyzing
models of electroweak interactiofi8] and in cosmological factor in the fermion mass generation and dynamical break-
applications[10]. Moreover, its (2+1)-dimensional ana- ing of chiral symmetry as well19]. The basis for this phe-
logue serves as a satisfactory microscopic theory for severalomenon is the effective reduction of the space dimension-
effects in the physics of high-temperature superconductorslity in the presence of external chromomagnetic fi¢R{H.
[11]. There exists the exciting idea proposed more than twenty
The NJL model displays the same symmetries as QCD. Sgears ago21-23 that at high baryon densities a colored
it can be successfully used for simulating some of the QCDdiquark condensatéqqg) might appear. In analogy with or-
vacuum properties under the influence of external conditionslinary superconductivity, this effect was called color super-
such as temperatur€ and chemical potentigh [12]. The  conductivity(CSQO. The CSC phenomenon was investigated
role of such considerations significantly increases especiallin the framework of the one-gluon exchange approximation
in the cases where numerical lattice calculations are not adn QCD [24], where the colored Cooper pair formation is
missible in QCD, i.e. at nonzero density and in the presenceredicted self-consistently at extremely high values of the
of external electromagnetic field43,14. Recently, it was chemical potentialu=10° MeV [25]. Unfortunately, such
shown in the framework of a (21)-dimensional NJL model baryon densities are not observable in nature and not acces-
that an arbitrary small external magnetic field induces sponsible in experimentsthe typical densities inside the neutron
taneous chiral symmetry breaking$B) even under condi- stars or in the future heavy ion experiments correspond to
tions when the interaction between fermions is arbitrarilyw~500 MeV). The possibility for the existence of the CSC
weak[15]. Later it was shown that this phenomen@alled phase in the region of moderate densities was proved quite
the magnetic catalysis effgdtas a rather universal character recently (see, e.g., the papers [86—29 as well as the re-
and gets its explanation on the basis of the dimensional resiew articles in[30] and references thergirin these papers
duction mechanisni16]. (The recent review$l7] consider it was shown on the basis of different effective theories for
the modern status of the magnetic catalysis effect and itlow energy QCD(instanton model, NJL model, ef¢hat the
applications in different branches of physjcs. diquark condensat@qg) can appear already at a rather mod-
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erate baryon density{~400 MeV), which can possibly be effective potential € thermodynamic potentialat nonzero

detected in the future experiments on ion-ion collisions.€xternal chromomagnetic field, chemical potential and tem-
Since quark Cooper pairing occurs in the color antitripletPerature is obtained in the one-loop approximation. This
channel, the nonzero value ¢fig) means that, apart from guantity contains all the necessary information about the
the electromagnetidJ(1) symmetry, the colorSUy(3) quark and diquark condensates of the theory. In Sec. IV the

should be spontaneously broken down inside the CSC phawase_strqcture_of Fhe model is discus_sgd on th_e basis of
numerical investigations of the global minimum point of the

as well. In the framework of NJL models the CSC phase . . . o
formation has generally be considered as a dynamical Come_ffectlve potential. As our-main resu_lt, it is shown th.at the

. ) . external chromomagnetic field can induce the transition to
petition be.tw§=.n diquarkqa) and usual quark-anpquark the CSC phase and diquark condensation even at finite tem-
condensatiofqq). However, the real QCD vacuum is char- perature. Thereby, the characteristics of the CSC phase can
acterized in addition by the appearance of a gluon conderxijgnificantly change in dependence on the strength of the
sate(FF) as well, which might change the generally ac-chromomagnetic field. Finally, Sec. V contains a summary
cepted conditions for the CSC observation. In particular, onend discussion of the results. Some details of the effective
would expect that, similarly to the case of quark-antiquarkpotential calculation are relegated to an Appendix.

condensation, the process of diquark condensation might be

induced by external chromomagnetic fields. For a Il. THE MODEL
(2+1)-dimensional quark model, this was recently demon- ) ) o
strated in[31]. There, aSU(2), X SU(2)x chirally symmet- Let us first give severalvery approximativg arguments

ric (2+ 1)-dimensional NJL model with three colored quarks Motivating the chosen structure of our QCD-motivated ex-
of two flavors was considered at zeFou. It was shown that tended NJL model_ introduced belovy. For this aim, consider
in this case for arbitrary fixed values of coupling constantdWo-flavor QCD with nonzero chemical po_tenatllal and color
there exists a critical value of the external chromomagneti@OUPSU:(N.) and decompose the gluon fiekf,(x) into a
field at which a CSC second order phase transition is inducegondensate backgroun@external”) field A7(x) and the

in the systent.Since the two-flavored QCPand the consid- quantum fluctuationa%(x) around it, i.e. A5(x)=A%(x)
ered NJL model are not in the same universality class oft-a’(x). By integrating in the generating functional of QCD
theories[ QCD; with N¢=2 has a higher flavor symmetry over the quantum field’(x) and further “approximating”
SU(4)], the obtained results are intrinsic to real QQMther  the nonperturbative gluon propagator byS&unction, one
than to QCR. Indeed, our recent investigations on the basisarrives at an effective local chiral four-quark interaction of
of a (3+ 1)-dimensional NJL moddB2,33 andu=0 show the NJL type describing low energy hadron physics in the
that some types of sufficiently strong external chromomagpresence of a gluon condensate. Finally, by performing a
netic fields may catalyze the diquark condensation. Fierz transformation of the interaction term, one obtains a

As argued above, CSC might occur inside neutron stargy,r-fermionic model with aq) and (qq) interactions and

and possibly become observable in ion-ion collisions, i.e., a4, external condensate field?(x) of the color group
o

nonzero baryon densities. Taking into account the fact that aky (N,) given by the following Lagrangiaf:
finite chemical potential the magnetic generation of dynami- ©* © '
cal ySB qualitatively differs from theu=0 case[14], one A{

al v’

a

A
19, +gAYX) o ;

might expect analogous effects for CSC, too. For this reason| = q+G— (qq)?
the investigation of the chromomagnetic generation of CSC 2N,
under the influence of a finite chemical potentifahite par- L G, — .
Iticle density is a very interesting and actual physical prob- +(qiy°rq)?]+ N—[iqca(i)\gs) yoqllige(in29)1°qc].

em. ¢

The aim of the present paper is to study the influence of 1)
external conditions such as chemical potential, temperature
and especially of the gluon condenséts modeled by ex- It is necessary to note that in order to obtain realistic esti-
ternal color gauge fieldson the phase structure of quark mates for masses of vector—axial-vector mesons and di-
matter with particular emphasis on its CSC phase. To thigjuarks in extended NJL-type modé€R3], we have to allow
end, we shall extend our earlier analysis of the chromomagfor independent coupling constan®,,G,, rather than to
netic generation of CSC ai=0 [31-33 to the case of a consider them related by a Fierz transformation of a current-
(3+1)-dimensional NJL type model with finite chromomag- current interaction via gluon exchange. Clearly, such a pro-
netic field, temperature and chemical potential presenting aedure does not spoil chiral symmetry.
generalization of the free field model 9.
The paper is organized as follows. In Secs. Il and Il the
extended NJL model under consideration is presented, and it€The most general four-fermion interaction would include addi-
tional vector and axial-vectoﬂ(q) as well as pseudoscalar, vector
and axial-vector-like ¢q) interactions. For our goal of studying the

IStrictly speaking, the CSC is induced by those components oéffect of chromomagnetic catalysis for the competition of quark and
external chromomagnetic fields which can stay massless inside ttdiquark condensates, the interaction structure of(Eqgs, however,
CSC phase. sufficiently general.

+py°
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In Eqg. (1) g denotes the gluon coupling constaatjs the _ . ) _
quark chemical potentialg.=Cdf, q.=q'C are charge- expliSeq( o, m, A A* P AT))=N J [dq][dq]
conjugated spinors, ar@=iy?y° is the charge conjugation
matrix (t denotes the transposition operajiom what fol- xexp{iJ'Ed"'x
lows we assum@&l.=3 and replace the antisymmetric color ’

matrices\ 2 (with a factori) by the antisymmetrie® opera-
tor. Moreover, summation over repeated color indi@es
=1,...,8;b=1,2,3 and Lorentz indices=0,1,2,3 is im- o2+ 72 ADA*D
plied. The quark fieldy=q;, is a flavor doublet and color S (o, A" A* b,AZ): —ch d*x +
triplet as well as a four-component Dirac spinor, where 2G,y G,
=1,2; «=1,2,3.(Latin and Greek indices refer to flavor and )
color indices, respectively; spinor indices are omiftéelr- N is a normalization constant. The quark contribution to the
thermore, we use the notation&/2 for the generators of the partition function is here given by
color SU,(3) group appearing in the covariant derivative as
well as7=(7%,72,7%) for Pauli matrices in the flavor space; Z,=exp(iS)
(e)*=g'k, (?)*P=¢*F" are totally antisymmetric tensors
in the flavor and color spaces, respectively. Clearly, the La- :Nrf [da][dq]ex;{if [aDq+aME+qt/\_/lq]d4x .
grangian(1) is invariant under the chirabU(2), X SU(2)g
and colorSU,(3) groups. (5)

Next, let us for a moment suppose that in EQ.AZ(X) is
an arbitrary classical gauge field of the color gr@ig,(3).  In Ed. (5 we have used the following notations:
(The following investigations do not require the explicit in-
clusion of the gauge field part of the Lagrangjafbhe de- D=D+y*gA(X) =; D=iy*d,—o—iy’mr+uy°,
tailed structure oﬂi(x) corresponding to a constant chro- w2 a
momagnetic gluon condensate will be given below. _

The linearized version of the modél) with auxiliary =~ M= —iA*PCee®y®, M=—iAPe€e’y°C, (6)
bosonic fields has the following form:

where

+S,

a

whereD is the Dirac operator in the coordinate, spinor and
flavor spaces, whered3, M and M are in addition opera-

~ e a Na 0 — g tors in the color space, too. Let us next assume that in the
L=a Y| 19,79A00 5 |+ pyTla=a(otiy’rm)g ground state of our moddIAt)=(A?)=(7)=0 and (o),
3 3 (A®)#0.23 Obviously, the residual symmetry group of such a
D (24 72— D A*DAD_ A*brigt b.5 vacuum isSU.(2) whose generators are the first three gen-
ZGl(U ™) G, lig'Ceeryal erators of the initiaBU;(3). Now suppose that in this frame

b= b 5T the constant external chromomagnetic field, simulating the
—A%ligee’y’Cq. (2)  presence of a gluon condens4kes ) =2H?2, has the follow-
ing formH3=(H% H? H3,0, ... ,0).Furthermore, due to the

) _ residualSU,(2) invariance of the vacuum, one can pit
The Lagrangiangl) and(2) are equivalent, as can be seen — 42— gndH3=H.

by using the equations of motion for bosonic fields, from  gome remarks about the structure of the external chromo-
which it follows that magnetic fieldsA%(x) used in Eq(1) are needed. From this
moment on, we assum&S(x) in such a form that the only
nonvanishing components of the corresponding field strength
tensorF%, are F$,= —F3,=H=const. The above homoge-
neous chromomagnetic field can be generated by the follow-
ing vector-potential:

AP~ig'Cee®y®q, o~qq, m~igy®rq. (3

Clearly, theo and fields are color singlets. Besides, the
(bosonig diquark fieldAP is a color antitriplet and &isos- Afj(x)z(0,0Hxl,O); A%(x)=0 (a#3), (7
cala) singlet under the chirégdU(2), X SU(2)g group. Note
further that theo, AP, are scalars, but the are pseudo- which defines the well known Matinyan-Savvidy model of
scalar fields. Hence, ifr+0, then chiral symmetry of the the gluon condensate in QC34]. .
model is spontaneously broken, wheréds 0 indicates the In QCD the physical vacuum may be interpreted as a
dynamical breaking of both the color and electromagnetid®dion split into an infinite number of domains with mac-
symmetries of the theory.

In the one-loop approximation, the effective action for the
boson fields which is invariant under the chikflvor) as 3If (7)#0 then one would have spontaneous breaking of parity.
well as color and Lorentz groups is expressed through th&or strong interactions parity is, however, a conserved quantum
path integral over quark fields: number, justifying the assumptidnr)=0.
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roscopic extensiofi35]. Inside each such domain there can oM. —-Dt
be excited a homogeneous background chromomagnetic z=| _ ' ,
field, which generates a nonzero gluon condeng&E) D, 2M

#0. (Averaging over all domains results in a zero back- o _ _ _
ground chromomagnetic field, hence color as well as Lorentthe Gaussian integral ov€y andQ in (10) can be rewritten

symmetries are not brokef. in compact matrix notation and evaluated as

In order to find nonvanishing condensate$ and(A3),
we should calculate the effective potential, whose global j [d\y]e(ilz)f\lftZ\I'd“x: det2z. (12)
minimum point provides us with these quantities. Suppose

that [apart from the external vector-potenti&f,(x) (7)] all

boson fields inSq (4) do not depend on space-time. In this

case, by definitionS,s= — Vg d*x, where A B
o|e<<§ K)=de[—§|3+§A§1K]=o|e[KA—KBK1§],

Then, by using in Eq(12) the general formula

v _3(a2+%2)+3AbA*b
eff 2G, G,

- . S
+V; V=——, vzfd“x.
v ®) one obtains the result

Due to our assumption on the vacuum structure, we put expiS(c,A))=N'det(D)det’T4MM +MD'M D]

A'2=0, as well asT=0. Then, taking into account the form
of the vector-potential7), one can easily see that the func- =N'def(id— o+ uy°)]det?

~ . . . 4|A|?
tional integral forS in Eq. (5) is factorized

Z=expliS(e,4)) + —i??—cr+,uy°—gA3%)

- | [dﬁsltdqs]exp(i | Eaﬁqsd“x) ©)

~ PN
X ir9—0'+,u,yo+gA3?3) . (13
xf [d6][dQ]exp<if [QDQ Recall that the operator under the first det-symbol in(Eg)
acts only in the flavor, coordinate and spinor spaces, whereas
o the operator under the second det-symbol acts in the two-
+QMQ'+Q'MQ]d™x|, (100 dimensional color subspace, too.
where A=A3, q; is the quark field of color 3 and Ill. THE GENERAL CASE u#0, T#0,H#0

=(0,,0,)" is the doublet, composed from quark fields of the

colors 1,2. Moreove =D|;_, [D is presented in Eq6)] ) ) )

and First of all, let us calculate the effective action from Eq.
(13) at zero temperatur@. It is convenient to rewrite the

o3 — - second determinant in E¢L3) in the form
> M=—iA*Ceey®,

A. The effective potential

D=D+y*gAl(x) B

def4MM + MDY (M) *D]=def4|A|?+ u?— pi+ o2
M=—idcey*C. an ~ (V)220 + V)]

In Eq. (11) o5, € are matrices in the two-dimensional color (14

subspace, corresponding to t8&J.(2) group: 0 ) S
where the p”-momentum space representation an¥

1 0 ~ 0 1 =yk(iak+gAE(73/2), (k=1,2,3) have been used. Similarly
03= ( 0 — 1), €=< 1 0)- to quantum elitrodynamics, it is easily seen that the opera-
tor H=9°(o+ vyV) is the Hamiltonian for quarks with color
indicesa=1,2 and flavori =1,2 in the background vector-
potential (7). Its eigenvalues arexe,, where ey,
=\o?+p3+gH(n+1/2)—gH{/2, and  corresponding
eigenstates are denoted 'th}pzia- The set of quark quan-
tum numbers in the background field are defined as follows:

“Strictly speaking, our following calculations refer to some given{n}={n=0,1,2...; —w<pz<+o; {=*1}, i,a=12,
macroscopic domain. The obtained results turn out to depend orr ®<<p,<<cc. Each of the eigenvalues e, for H is evi-
color and rotationalLorent invariant quantities only, and are in- dently fourfold degenerate with respect to flavor and color
dependent of the concrete domain. guantum numbers, «. It is also degenerate with respect to

Clearly, the integration ovey; in Eq. (9) yields detD.

Defining W= (Q!,Q) and introducing the matrix-valued
operator
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the quantum numbey,, which quasiclassically characterizes

the charged particle center of orbit position in an external

uniform magnetic field. Since
HHP fy,i0a=L0° = (Y2 1P oy i 0= ey Plrppyias

one can easily conclude that in the ba@ig.,}pzm the opera-

tor in the determinantl4) is diagonal. Moreover, its diago-
nal matrix elements are equal tdM2—pj+(u*e)s

Upon multiplying these quantities, one can find the determi-

nant from Eq.(14). In a similar way, it is possible to calcu-
late the first determinant from E@l3). Hence, taking into
account the relation De&d = exp(TrInO), and following the
standard proceduresee, e.9.[36]), the following expression
for V is obtained from Eqs(13) and (14) (omitting an infi-
nite o- and A-independent constant

- S dpo
V=-— —|N f 277({

+A{§+ In(4]A[?— pg+(8{n}iﬂ)2)],

> IN((Ep=p)?-pd)

Pho.*

(19

where{p}, denotes the set of quark quantum numbers for

vanishing background field {p}o={—°<p;,ps,ps<
+o0}), andE,= Vp?+o?. The factorN; in front of the in-
tegral in Eq.(15) is the result of summation over flavor in-
dices i=1,... N¢, whereas the degeneracy factdx
=gH/(872) is due to the integration over the momentpm
and summation over the color indices=1,2. Moreover,
E{p}OEfdsp/(Z'iT)3, Si=ldps/(2m)Zp .

In the case of finite temperatufB=1/8>0 the corre-
sponding expression faf can be obtained from Eq15) by
means of the following replacements:

f dpo )—>|T2

Po—iw=2mT(1+1/2); 1=0+1+2, ...,

wherew, is the Matsubara frequency. Hence,

2

g
VH/.LT(O-lA):NC<2_Gl

|A?]

+G_2

d®p
)—2fo —(277)3(NC

PHYSICAL REVIEW D65 054024

> IN((Epx p)?+ o))

{pto. =

+A{; IN(4[A[2+ wi+ (em+m)d . (16)
n}, =

In order to transform Eq(16), let us first perform the
summation over the Matsubara frequencies. It is evident that

2 In(w?+Q?)
2 1
| 1/;;2 w| Z+a? | ,3
17
where () stands, according to Eq16), for (E,=u)“ or

VA|A[?+ (8 * 1), i.e.Q=0. Note that we can neglect the
contribution from the last term in E¢17), since it does not
depend onr and A. The first term in Eq(17) can be pre-
sented in the following forntsee Appendix

0% 2

2
E j da
T J1p?

752 In ch(Q B/2) + const

=QB+2In(1+e ) +const.
(18)

Performing the summation over Matsubara frequencies in
the second term in Eq16), and taking into account the
degeneracy of the quark spectremin the chromomagnetic
field with respect to combination of quantum numbesnd
£, we can use the following expression for the energy spec-
trum: e,=+gHN+ p32+ a?, wheren=0,1,2 . .. is theLan-
dau quantum number, ané o <<ps<ewc., Then, summing
over the spin quantum numbér =1, we have to account
for the fact that for the ground state with=0 only one spin
projection{=—1 is possible. Hence, a factar,,=2— 6,
should be included in the final expression. As for the sum-
mation over Matsubara frequencies in the first term in Eq.
(16), it is necessary to take into account the fact that the
function (18) is even with respect to the varialfe. Finally,
we thus arrive at the following result for the thermodynamic
potential:

—2){Ep+TIn[(1+e Ao m)(1+e AETH) ]}

~NiA Y dpsan{\(en—

+2T IN[(1+e AVlen—m +alal%) (1 4 o= A(ent w +alA1H 1.

)2+ A[AIP+V(en+ p) 2+ 4[A]?

(19
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For convenience, expressions are again written in terms ofthich have to be included in the energy spectra by a corre-
N¢ and N, even though in the following we will be con- sponding multiplication of ther, A fields:

cerned only withN;=2 andN.=3.
E:): Vp2+ p?o?, e, =+gHn+ pg—l— ¢§0'2,

B. Regularization
|42 g7 A7, (2D

First of all, let us subtract from Ed19) an infinite con-

stant in order that the effective potential obeys the constrain{ote that with the choice of simple form factof20) our
Vi, 1(0,0)=0. After this subtraction the effective potential expression for the thermodynamic potential Hit=0 for-
still remains UV divergent. This divergency could evidently majly coincides with the corresponding expression of Ref.
be removed by introducing a simple momentum cutpff  [28] obtained for an NJL type model with instanton-induced
<A. Instead of doing this, we find it convenient to use an-four-fermion interactions. In particular, by a suitable choice
other regularization procedure. To this end, let us recall thagt coupling constant§; ,G,, we will later “normalize” our

all uv diVergent contributions to the subtracted potentialphase portraits foH =0 to the curves of this paper in order
Vir(o,A) = Vy,7(0,0) are proportional to powers of me- tg jllustrate the influence of a nonvanishing chromomagnetic
son and/or diquark fields, A. So, one can insert some fie|d.’

momentum-dependent form factors in front of composite As a result, instead of Eq19) we shall deal with the
andA fields in order to regularize the UV behavior of inte- following regularized potentiaV,(o,A):

grals and sums.

It is clear by now that we are going to study the effects of 3 d®p
an external chromomagnetic condensate field in the frame- Vi(0,4)=Vo—2N¢(Nc— 2)f Vi—
work of the NJL-type mode(1), which in addition to two - (2m)
independent coupling constaris ,G, includes regularizing gHN (= &
meson(diquark form factors. Of course, it would be a very — f apV,dp;, (22)
hard task to study the competition 6B and CSC for ar- 8m? J—= n=0

bitrary values of coupling constants;,G, and any form 5 5
factors. Thus, in order to restrict this arbitrariness and to bé‘"hereVO: Ne(0/2G; +|A%/Gy),
able to compare our resultat least roughlywith other ap- , et T

. . . ; . = B(E,+w) B(E )
proaches, we find it convenient to investigate the phase V1= Ept TINL(1+e =" )(1+e 75 )],
structures of the modéll) atH=0 andH +# 0 only for some

fixed values ofG; ,G, and some simple expressions for me- Vo= (en—w)?+ 4 AP g+ V(e + 1)’ +4A 7 ¢

form factors are chosen 10 be equalet s choose the form +2TIn[(L+ e #Veh W7 AP

factor$ (14 o BT ARER) 3
¢ A o A (200 andE,, &, are given in Eq(21). Despite theA modifica-

(A%+p?)? (A%+p3+gHn)? tion, the expressiof22) contains yet UV-divergent integrals.
However, as it was pointed out from the very beginning, we
shall numerically study the subtracted effective potential,

SA suitable physical motivation for such form factors follows in i.e., the quantityV,(o,A)—V,(0,0), which has no diver-
the framework of nonlocal NJL type models based on the onegences.
gluon-exchange approximation to QCD with nontrivial gluon  In the next section the dependency of the global minimum
propagator. In particular, in Ref37] it was shown that the arising point of the regularized potenti&22) on the external param-
exponential form factors for composite mesons, as obtained frOf@tersH,,u,T will be investigated.
the solution of thenonloca) Bethe-Salpete(BS) equation, make
the quark loop expansion including mesiquark vertices con-
vergent. In this case, there is no need for introducing a sharp mo-

mentum cutoff as in the local NJL model. Hence, the introduction h . . h h he f f
of smoothing form factors in our expressions of an approximate Inthe previous section we have chosen the form factors as

local NJL model may be interpreted as a regularization proceduré Ed. (20) in order to roughly normalize our numerical cal-
taking some effects of the originally nonlocal current-current inter-culations atH#0 on the results obtained &t=0 in [28].
action afterwards into account. Comparing the effective potenti#2) at gH=0 with the
5The application of the smooth meson form fact(#) leads in a
natural way to a suppression of higher Landau levels, which is of
particular use here. Hence, this regularization scheme is particularly ‘It is necessary to underline that in our case the meson-diquark
suitable for the manifestation of tiehromgmagnetic catalysis ef- form factors(20) mimick solutions of the BS equation for some
fect of dynamical symmetry breaking. Indeed, ttthromomag-  nonlocal four-fermion interaction arising from the one-gluon ex-
netic catalysis effect and the underlying mechanism of dimensionathange approach to QCD. Contrary to this, the instantonlike form
reduction are closely related to the infrared dominance of the lowedfactor used iff 28] has another physical nature. It appears as quark
Landau level withn=0 [17,20. zero mode wave function in the presence of instan{@6s

IV. NUMERICAL DISCUSSIONS
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corresponding one from that papeenoting their respective . GeV e

diquark field and coupling constants by a tildee see that
these quantities coincide if 2&=A, G,=2N.G; and G,
=N.G,. Using further the numerical ratio of coupling con-

stants from Ref[28], we obtain in our case the following
relation;

3
GZZ—G]_. (24)
8
Now, let us perform the numerical investigation of the global o 02 04 06 o, GeV?
minimum point(GMP) of the potential22) for form factors
and values of coupling constants as given by Eg6) and FIG. 2. Phase portrait of the model in terms of variables

(24), respectively. It was supposed earlier in some paperés,gH) at T=0.15 GeV for three cutoff values A
(see e.g[38)) that quantitative features of the color super- =0.6,0.8,1 GeV. The included phase | is the symmetrical ane (
conducting phase transition might indeed depend on th&0A=0).
value of the form factor parametdr. So, in order to check
the A dependence of our results, we perform the investiga- First of all, it should be remarked that, as in paf8] at
tions for three different values of the cutoff,=0.6 GeV, gH=0, a mixed phase of the model was not found Ifbr
0.8 GeV and 1 GeV. For each value &f the corresponding +#0, i.e., for a wide range of parameteusH,T we did not
value ofG; is selected from the requirement that the GMP offind a global minimum point of the potenti&22), at which
the functionVrHlL(o-,A) at T=pu=H=0 is at the pointe  o#0, A#0. The results of our numerical investigations of
=0.4 GeV,A=0 in agreement with phenomenological re- the GMP ofV,(a,A) are graphically represented in the set of
sults and 28]. Then, the value 06, is fixed by the relation Figs. 1-6, where the notations I, Il and IIl are used for the
(24). This yields, for example,G;A?=2N®6.47 at A symmetric phase, for the phase with chiral symmetry break-
=0.8 GeV,G;A?=2N6.16 atA=1 GeV, etc. ing and for the CSC phase, respectively. For the points from
Note further that in the case of zero temperature we havéegion | the GMP of the potential lies at=0, A=0. In
region Il we have a phase with broken chiral symmetry, cor-
Vilto0= E:JH“_EL) O(— E[)), responding to the GMP of the potential @0, A=0. Fi-
nally, the color superconducting phase with the GMP of the
_ T_ 2 2,2 potential ato=0, A#0, corresponds to the points from re-
Valr-o=V(eh— )"+ 411" ¢, gion lIl of these figures.
+ (" + )2+ 4|A[2 g2 In Fig. 1, one can see the phase portrait of the model in
terms of u,gH at T=0 for each of the above mentioned

In order to study the phase structure of the model using nut@lues of the cutoff\.. The boundary between phases Il and

merical methods, the summation ovein Eq. (22) is limited !l is practicgl]y A-independent apd represents a first order
by a maximum value,, .= (2.50)%/gH, where other terms Phase transition curvg(gH). It is necessary to note also

of the series can be neglected due to their smallness. that for each value oA and a fixed value ogH there is a
critical chemical potentigl.(H), at which the GMP is trans-
W, GeV formed from a point of type Il to a symmetric point of type
1.4 T, GeV

1.2

1 A=0.8 0.4 1

0.8

0.3 1

0.6 gH = 04 GeV?

0.4

0.2 1
0.2 sH=0
0 0.2 0.4 0.6 gH, GeV? 0.19
FIG. 1. Phase portrait of the model in terms of variables 11
(u,gH) at T=0 for three values of the cutoff parametédr 0.5 10 p,GeV
=0.6,0.8,1 GeV. Regions lI, lll describe the phase with broken
chiral symmetry ¢+ 0,A=0) and the color superconducting phase  FIG. 3. Phase portrait of the model in terms of variablEgu)
(c=0,A+#0), respectively. atgH=0 andgH=0.4 GeV for A=0.8 GeV.
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gH, GeV? A, GeV
0.8 4
] 0.6
0.6 4 0.5
T 0.4
0.4
0.3
1 I
0.2- 027
. 11 I 0.17
1 T T T . y r r r r r T T
0.1 0.2 T,GeV 0 01 02 03 04 05 06 07 08 gH, GeV?
FIG. 4. Phase portrait of the model in terms of variablgsi (T) FIG. 5. Diquark condensate as a function of an external chro-
atu=0.4 GeVandA=0.8 GeV. momagnetic field fou=0.4 GeV,A=0.8 GeV and three values

of the temperatureT=0, T=0.1 andT=0.15 GeV.
I. However, this phase transition is remarkallydependent.
Indeed, even in the simplest case with=0 we have eterA=0.6 GeV, 0.8 GeV, and 1 GeV. One can see that the

7%(0)=1 GeV at A=0.6 GeV, n(0)=1.3 GeV atA boundary between _II and Il phasés critical curve of gfirst
—0.8 GeV %(0)=165 GeV atA—1 GeV. It i I order phase transitigronly slowly changes with varying .

o eV, uc(0)=1. ev atA= ev. it is we The second order phase transition from the CSC phase Il to
known from the one-gluon exchange approximation in QCD,

[24,25 that CSC can exist even at enormously high values ofhe symmetric phase I, which for finite T is now supposed to

. . eally exist, also has a wealh dependence forgH
the chemical potentiau=10° MeV. So the above men- <
tioned NJL framed transition from phase 1l to phase | looks 0.2 GeV:. At greater values ofH the boundary between

) - . A . Il and | phases has, however, a strongedependence. The
in the casel =0, rather like an artifact of the regularlzanonephase diagrams in theT(u) plane for gH=0 and gH
proceduré. Thus, since this phase transition turns out to b —04 Ge\ are schematically represented in Eia. 3. The
unphysical, it is not shown in Fig. 1. The critical curves of ha.se diagram in theT(gH) I)z:me Ff)or —04 GeV%é re’ i
this figure are obtained by interpolation in the most simplep 9 . gt p = P
manner, i.e., by a second order polynomial, of numericafesemed in Fig. 4. For both figures we choose

. T 2 . ' =0.8 GeV, for simplicity. It is necessary to point out that at
points lying atgH>0.2 GeV (for technical reasons, such = . . B . .

. -~ Lo L gH=0 the numerical results of Figs. 1-4 coincide with
points are explicitly shown in Fig. 2, rather than in Fig. 1 h btained i Ao it should
Earlier, in the papergl4] the model(1) at G,=0 and in the those obtained 28] at 0.8 GeV. Moreover, it shou

' 2 be emphasized that in all the above mentioned figures, a

presence of an external magnetic field was considered. Aésecond order phase transition takes place at the boundary of

shown there, for small values of the magnetic field strengt he region |. At the boundary between regions Il and Il a
the critical curves, as well as various thermodynamical and. 9 ) " y 9
irst order phase transition takes place.

dynamical parameters of the system, demonstrate oscillating Let us for a moment fix the value of the chemical poten-

behavior. In order to make more accurate interpolations anaIal and temperature at varying valuesgi. In this case, in
to ascertain whether or not analogous oscillations appear i P ying ' '

the present casg.e., for the critical curves in Figs. 1) &s A, GeV
well, one should make an enormous amount of numerical
calculations, which proved to be rather difficult to accom-
plish. Due to this, we can make only a conjecture of an
oscillating behavior of the critical curves judging from the 0.5
positions of the points we have really calculated. Note fur-
ther that in the region of low chromomagnetic fieldgl
<0.2 GeV, we have extrapolated the critical curves to the 0.3
known points agH=0.

In Fig. 2, the phase portrait of the model in terms of
m,gH atT=0.15 GeV is presented for each value of param- 0.1

A=038

0.6

0.4

0.2

0 02 0.4 0.6 08 gH,GeV?
8Note that in[38] it was also claimed that in the NJL model at
high enoughu the diquark condensate vanishes, which is the con- FIG. 6. Diquark condensate as a function of an external chro-
sequence of the regularization by a form factor. In this region, itmomagnetic field fou=0.8 GeV and two values of the tempera-
might be necessary to use another approximation for the CSC irture, T=0, and T=0.15 GeV and for two values of the cutoff
vestigation. parameterA =0.8,1 GeV.
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Figs. 1 and 2, one will have a straight line parallel togit¢  takesT=0.15 GeV andu=0.6 GeV, then at sufficiently
axis. In particular, ifu=0.4 GeV andT=0, in Fig. 1 this  small values ofyH there is a symmetric phase of the theory,

line originates agH=0 in thg CSC phase IIT. At sonieriti-  \yhere both(qq) and(qq) condensates are zefsee Fig. 2
cal value @H)c~0.1 GeV* it crosses the lin@..,(gH) and  powever, at the poingH=0.3 Ge\? there is a second order
then, at yet greater values gH, it passes through th_e phase phase transition to the CSC phase, where oftjg)+0.

Il. Accordingly, atgH<(gH). the GMP of the effective po-  Hence, in some cases the gluon condensate can induce the
tential lies at the point¢=0,A #0), whereA is equal to the  csc(the so-called chromomagnetic catalysis effect of €SC
diquark condensate in the true stable vacuum, whereas at This effect is further illustrated in Fig. 6, where the di-
gH>(gH). the point (0A #0) ceases to be a GMP. In this qark condensate \gH is depicted ajz=0.8 GeV for two
case it is only a local minimum point, so thAt=0 corre- temperaturesT=0, T=0.15 GeV and two values of\
sponds to a metastable ground state of the systemthe  _(g Gev andA=1 GeV. One can easily see that the
stable ground state gH>(gH). the GMP is of the form  a1ye of A(gH) for T=0.15 GeV is identically zero for
o#0A=0]. Thus, the valuedH). is the so-called evapo- gH=<0.44 GeV# with A=0.8 GeV, and for gH

ration point for the diquark condensate. <0.52 Ge\ with A=1 GeV, i.e., for each value oA,

tior|1n ;:g. |5_| t?()er d,'[ﬂlrj:ék \(/:;r&iesniﬁﬁedetg:gegr;iifunc- there exists a critical value @fH at which the nonzero di-
9 P pt quark condensate is generated.

=04 GeVandi=0.8 GeV(in this figure, due to problems Finally, let us make some additional remarks concerning

with distinguishing cIo_ser positioned pomts_for different the diquark condensate at=0.8 GeV. As it follows from
cutoff values, we restricted ourselves to plotting curves for . : = .
a ) our numerical analysis af=0 (see Figs. 1,6 for u
only one cutoff valueA=0.8 GeV). Thick curves corre- - ) :
) . . =0.8 GeV,gH=0, the GMP of the effective potential cor-

spond to a stable diquark condensfatee point (0A#0) is . .

o : ; responds to the CSC phase with a stable diquark condensate
the global minimum of the effective potenfjaland thin .

. . . A<0.1 GeV. However, assuming that the value of the gluon

curves correspond to a quasistable diquark conderiase
is a local minimun condensatgH~0.4 Ge\* would hold for the above nonva-

Here we should note that recent investigations yield thenIShIng chemical potential, one would get a value of the

following value of the QCD gluon condensate Tt = 0: diquark condensateA=0.2 GeV, which is significantly

. . larger in magnitude, than gH=0. It follows from Fig. 6
gH~0.6 GeV? [39]. It was shown if40] that in the frame- . .
work of a quark-meson model at ordinary nuclear density that the diquark condensate noticeably depends\o®ne

the gluon condensate decreases by no more than six perceﬁ?md suppose that this is due to the rather high value of the

o . - considered chemical potentigly=0.8 GeV. However, as
compared with its value at zero density. At densitigg te ur calculations show, a similax dependence of the diquark
value of(FF) decreases by fifteen percent. This means tha? ' P q
for values of the chemical potentigl<1 GeV the gluon condensate occurs for smaller valuesofas well. These

condensate is a slowly decreasing functionusTaking in results confirm the conclusions of the pap@8] obtained at

. ; . . H=0 that the value of the diquark condensate varies With
mind this fact, one can draw an important conclusion from. AL .

. - - - _ if the form factor regularization is used in the NJL model. In
our numerical analysis: AH=0, T=0 and ©u=0.4 GeV

there should exist the CSC phasee[28]). However, if the contrast, the points of the boundary between I and lll phases
. . do not show a remarkablé dependencésee Figs. 1,2

condensate valugH~0.5 GeV is taken into account at A | lusi h King i

u=0.4 GeV, then our model consideration concludes thag s a gelnerr]a conclusion, vf\{elg‘ee |t at t_a 'Eg ]lnto account

the CSC phase does not existTat O for such a large value n external chromomagnetic field at least In the form as con-

; 9 . sidered in the model above, might, in principle, lead to re-
of the gluon condensateef. Figs. 4.5. Assuming that our markable qualitative and quantitative changes in the picture

fields, this would seemingly render it difficult to observe a%f the diquark condensate formation, obtained in the frame-
’ gy work of NJL models atH=0. This concerns, in particular,

Csﬁoﬁzgsﬁgvzz:e? ‘;ﬁ fﬁ?)gf‘:egu?t\é.change At finite temperat-he possibility of a transition to the CSC phase and diquark
ture. First, if one take =0.1 GeV andu=0.4 GeV, then condensation at finite temperature. Clearly, a detailed quan-

t sufficientl Il val H there | tric oh titative discussion would, however, require having additional
at sufficiently small values o Ere IS a Symmetric phase .tqrmation on the gluon condensate as a function of the

of the theory, where botiiqq) and (qq) condensates are temperature and chemical potential and on a posgibind
zero(see Fig. 5 However, at the poingH~0.1 GeVthere g1 dependence of the cutoff parametert® A further inter-

is a second order phase transition to the CSC pliaeee  esting generalization could be to extend this kind of ap-
only (qg)+0), and at the poingH~0.2 GeV? the external  proach to inhomogeneous background field configurations
field destroys the CSC in favor of the chiral phase, wherg42]. This concerns, in particular, the non-Abelian conden-
(gg)#0 and{gqg)=0. A similar behavior is observed @ sate fields of the stochastic vacuum model of QCD realizing
=0.15 GeV andu=0.4 GeV(see Fig. 5 Secondly, if one Wilson’s area law of confinemef43].

Recently, a similar prediction, namely that nonperturbative gluon °Such a dependence might, for example, arise, if one identifies
fluctuations might be strong enough to destroy the CSC, was donthe cutoff in the local 4-fermion model with the effective gluon
in [41], but in a rather qualitative form. mass in the gluon propagator.
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V. SUMMARY AND CONCLUSIONS sideration. One can see that phase transitions between the

In the present paper the influence of different phy:sicalChlrally broken and CSC phases have rather w&atkepen-

factors on the phase structure of the two-flavor NJL modeﬂgggg(as;e zgséié%\xh(es r:js;he dli?ua)‘ék condensate values
(1) with two independent structures of four-quark interac- y dep » €9, F0.

. . . . The main conclusion of our investigations is that the in-
tions has been considered. This model is adequate for the . I S

o . clusion of an external chromomagnetic field can significantly
description of the low energy physics of two-flavor QCD

- _ change the phase portrait, obtainedHat 0. Indeed, atH
both in gq and qq channels. In the papef27-29 it was

: ) h =T=0 the values of the chemical potential corresponding to
shown that in QCD-motivated type of modegl$) with H

. \ the CSC phase approximately lie in the interval
=0 the new color superconductigSQ phase can existfor -~ g 3 Gev(see Fig. 1 If the external chromomagnetic field

moderate \_/alu_es of the chemi_cal potentia@ryon density. of the type(7) is switched on au=0.4 GeV, then agH,
As generalization of the “free field” NJL model of Re29],  ~.1 Ge\? there is a transition of the system from CSC to
we have, in particular, taken into account such nonperturbay phase, where only chiral symmetry is broken down. Thus,
tive features of the real QCD vacuum as the nonzero 9|U0'&tnghyS~0.6 GeV, u=0.4 GeV andlr=0 the CSC can-
chromomagnetic condensae;, F***)=2H?, which in the  not be observed at all. However, Ti=0 and the chemical
framework of a NJL model can be simulated by an externapotential is fixed ajx=0.8 GeV, then at least for all values
chromomagpnetic field. The recent estimates give the followo<gH=<0.6 Ge\? one can observe the CSC phase in which
ing fixed valuegHpp,¢~0.6 GeV [39] for the gluon con- the diquark condensat&(H) is nonzero. It is worth men-
densate in QCD at, T=0. Despite this fact, we considered tioning that in this case the functiah(H) is monotonically
it useful to treatH as a free external parameter of the model.increasing(see Fig. 6 and the value of the diquark conden-
Since in the CSC phase the origir@lU,(3) symmetry of ~sate algH,ysturns out to be significantly greater in magni-
the theory is spontaneously broken downStJ,(2), five tude than at vanishingl.**
color gauge bosons acquire masses. The corresponding ex- Finally, one should note that at#0,T#0 the external
ternal fields are expelled from the CSC phébteissner ef-  chromomagnetic field can induce the CSC phase transition.
fect). However, the other three “color isospin” gauge bosonsFor example, al’=0.15 GeV andu—=0.8 GeV there is a
remain massless, in accordance with the residhig(2)  SYmmetric phase of the theory in whieh=A=0 (both chi-
symmetry of the vacuum. Clearly, the corresponding externdi@l and diquark condensates are zefar sufficiently small
fields may then penetrate into the CSC phase. It is just thy2lues ofgH (see Fig. 2 However, at some critical point

influence of these types of external chromomagnetic fieldd Te: @ phase transition qf t_he second order from the sym-
on the formation of CSC which was studied in our previousmetrlc fo the CSC phase is induced by the external chromo-

paper[31] in the framework of a (2 1)-dimensional NJL magnetic field. Notice that the CSC induction by some types

S . : of external chromomagnetic fields was observed in the
model for vanishing chemical potential and temperature
. e . framework of a NJL model at zera, T (see[31-33). The
There it was shown that chromomagnetic fields may induce

the CSC phase transition. In the present paper, the Chrom(;;)_resent analysis shows that this effect takes place at some

magnetic generation of CSC has been studied in the framaro"4€ro values oft, T, too, which in principle could be im-

work of a (3+ 1)-dimensional NJL model for finite chemical portant for heavy ion-ion collisions taking place at nonzero

. . temperature. Clearly, a somewhat unpleasant feature of the
potential and temperature. The vector-potential of the eXterébove NJL aporoach. which requires some caution. is\the
nal chromomagnetic field was chosen to be of the Matinyan- PP ' q ’ .
Sawidy form (7) and lies in the algebra of the residual dependence of some of the results. Nevertheless, we believe

SUL(2) group, too. that the above results are interesting and may serve as a

The coupling constants, ,G, of our model(1) are con- starting point for further investigations of this issue.
sidered as free independent parameters. In our numerical es-
timates, we found it convenient to use the relati@d) in
order to “normalize” our calculations dtl # 0 on the known ACKNOWLEDGMENTS

results atH =0 [28]. However, we hope that our qualitative  \we wish to thank V.P. Gusynin, V.A. Miransky, Y. Nambu
conclusions remain also valid for values @f,G, in some  and H. Toki for fruitful discussions. D.E. gratefully acknowl-
neighborhood of Eq(24). The results of numerical investi- edges the support provided to him by the Ministry of Edu-
gations of the effective potentié22) are presented in a set of ¢ation and Science and Technology of Jafidonkasho for
Figs. 1-6, where phase diagrams for the extended NJhjs work at RCNP of Osaka University. This work is sup-

model (1) in terms Of,lL,T,H as well as the behavior of ported in part by DFG_Project 436 RUS 113/477/4.
diquark condensates versgsl are shown.

First of all we should note that the form factor regulariza-
tion of the NJL mpde(l)_ is u_sed throughout in the present 11, roughly suppose throughout the present paper that at
paper. As shown ih38], in this case even @i =0 the fea-  (, T)=0 the real gluon condensate is the same asualY=0.
tures of CSC depend on the value of the form factor paramgowever, using a givep, T dependency of the gluon condensate, it
eterA. So, in order to clarify the corresponding situation atwould be possible to extract physical information about the CSC
H+#0, we have used three different values/of 0.6 GeV, phase using our phase diagrams in Figs. 1—4 and plots(bf)
0.8 GeV, and 1 GeV in the regularization scheme under confunctions in Figs. 5,6.
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FIG. 7. Integration patiC, used in Eq.(Al) of the Appen-
dix.
FIG. 8. Integration pati€ used in Eq(A3) of the Appendix.

APPENDIX _ _ _
The integral ovelCy is equal to the integral along the con-

Let us sketch the calculation of the integral in E&8) of  tour C (Fig. 8), and hence
the text. Evidently, it can be rewritten as a contour integral

J f da? B ,Bw
0 , 1 02 f do 1 o2 ) yp2a?+ o2 297
f da®—; 5= f a 5 T2
T Jug? wjta ug Jc2m w?+a fnz zf do B( 1 1
® B 182 c2m 2 \w—ia w+ia
Etgﬁ : (A1)
2 1 PBo
. . . tg—-
where tgBw/2) has poles inside the integration p&k (see 2'3 2
Fig. 7): Ba Bala=? g
=B dath——2|nch7 =2Inch7
Bw T e a=1/8
—=*+=(21+1 1=0,1,2.... A2
2 2( ), 0.1.2 (A2) +const. (A3)
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