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Soft-collinear factorization in effective field theory
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The factorization of soft and ultrasoft gluons from collinear particles is shown at the level of operators in an
effective field theory. Exclusive hadronic factorization and inclusive partonic factorization follow as special
cases. The leading-order Lagrangian is derived using power counting and gauge invariance in the effective
theory. Several species of gluons are required, and softer gluons appear as background fields to gluons with
harder momenta. Two examples are given: the factorization of soft gluons inB→Dp and the soft-collinear
convolution for theB→Xsg spectrum.
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I. INTRODUCTION

Many processes that can be examined at current and
ture colliders involve hadrons with energy much larger th
their mass. For such processes the large energyQ@LQCD
defines a scale that can be described by perturbative QC
is convenient to use light-cone coordinatespm

5(p1,p2,p'), where p15n•p and p25n̄•p, and the
light-cone unit vectors satisfyn25n̄250 andn•n̄52. For an
energetic hadron, the relevant momentum scales are the
n̄•p componentQ, the transverse momentump' , and the
n•p component of orderp'

2 /Q. The dynamics of these had
rons can be described in a systematic way by constructin
soft-collinear effective theory~SCET! @1–3#. Fluctuations
with momentap2*Q2 are integrated out and appear in W
son coefficients, while fluctuations with momentap2!Q2

appear in time-ordered products of effective theory fiel
The effective theory is organized as an expansion in pow
of a small parameterl, where in typical processes eitherl
5LQCD/Q or l5ALQCD/Q.

Traditionally, energetic processes in QCD are descri
with the help of factorization theorems, which separate
different scales from one another@4,5#. In general, for inclu-
sive processes the leading twist cross section is a convolu
of a hard scattering kernelH, a jet functionJ, and a soft
function S:

s;H ^ J^ S. ~1!

The functionH encodes the short-distance physics, the
function describes the propagation of energetic particles
collimated jets, and the soft function contains nonpertur
tive long-distance physics. Examples of processes which
be described with Eq.~1! include Drell-Yan and largex deep
inelastic scattering@5#, as well as inclusiveB decays in cer-
tain regions of phase space@6–9#. A similar type of factor-
ization also occurs for exclusive processes such ase2g
→e2p, p1p→p1p, g* g* →pp @10,11#, and decays in-
volving heavy quarks such asB→Dp @12–14#. Here cross
sections or decay rates are written as convolutions of h
scattering kernelsT, light-cone hadron wave functionsF,
and soft form factorsF,

G;T^ F ^ F, ~2!
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where the hard scattering kernels describe the short-dist
part of the process, the light-cone wave functions desc
the collinear dynamics of the energetic mesons, and the f
factors encode soft interactions of the hadrons. To prove
torization formulas, momentum regions that give rise to
frared divergences via pinch surfaces are identified with
help of the Coleman-Norton theorem and Landau equati
@5#. These pinch surfaces are reproduced by reduced gr
where all off-shell lines are shrunk to a point. Finally, the s
of reduced graphs that contribute at leading power are
tained by a power counting for the strength of the infrar
divergence. Despite its many strengths, the fact that
power counting occurs only at the end is a complication
this approach. An alternative is to identify infrared dive
gences using the method of regions or threshold expan
@15#. In this case, the complete expansion of a diagram
QCD is reproduced by adding diagrams that are homo
neous in the expansion parameter. These diagrams are
fined by a particular scaling for their loop momenta. T
main advantages of this approach are in fixed order com
tations. In this case, complications occur due to the fact
many momentum regions, both on-shell and off-shell, m
be considered. In many ways, the power of the effect
theory we discuss is that it synthesizes the advantage
these two approaches.

There are several reasons why an effective theory for
ergetic processes may simplify their description. The ba
idea is to focus solely on the physical infrared degrees
freedom in such a way that the power counting is pres
from the start. Symmetries which emerge in the large ene
limit are then explicit in the effective action, power corre
tions are simply given by matrix elements of operators t
are higher order in the power counting, and Sudakov dou
logarithms are summed by solving renormalization-gro
equations in the effective theory. In this paper, we pres
some details of the structure of the effective theory focus
on interactions involving the softer gluons. In particular, w
wish to explain how soft-collinear factorization can be a
dressed in a simple universal way in the SCET at lead
order in the power counting.

Reproducing the infrared physics for interactions betwe
energetic and nonenergetic massless particles in QCD
quires three classes of effective theory fields: colline
modes with (p1,p2,p');Q(l2,1,l), soft modes with
©2002 The American Physical Society22-1
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pm;Ql, and ultrasoft~usoft! modes1 with pm;Ql2. Fluc-
tuations dominated by other regions of momenta are in
grated out. For heavy quarks, the large mass is factored
as in the heavy quark effective theory~HQET! @16#. Depend-
ing on the value ofl, heavy quarks with residual momentu
;LQCD are then included in either the soft or usoft catego

Since the SCET involves more than one distinct glu
field, the nature of gauge symmetry is richer than in f
QCD. In particular, it is necessary to use the idea of ba
ground fields@17# to give well-defined meaning to sever
distinct gluon fields. Technically, this occurs due to the n
cessity of defining each gluon as the gauge particle ass
ated with a local non-Abelian symmetry. However, phy
cally the necessity of a background field treatment is evid
For instance, usoft gluons withp2.(Ql2)2 fluctuate over
much larger distance scales than collinear fields with o
shellnessp2.(Ql)2. Thus, the picture is simply that uso
gluons produce a smooth non-Abelian background thro
which collinear particles propagate. For Drell-Yan, it w
noted long ago by Tucci@18# that the proof of usoft-collinea
factorization is simplified by using background field Fey
man gauge. In constructing the SCET, certain backgro
fields are a necessity, not simply a tool. We will see t
background fields also play a role in understanding factor
tion and deriving Feynman rules for soft gluons.

At lowest order in the SCET, onlyn•As soft andn•Aus
usoft gluons interact with collinear quarks@19# and collinear
gluons@14#. Furthermore, a consistent power counting inl
requires that the interactions of~u!soft gluons with collinear
fields are multipole-expanded@1,2#.2 As a result, only the
n•p momenta of a collinear particle can be changed by
teraction with an usoft gluon. We will show that these fa
lead to simplifications in the structure of SCET matrix e
ments, traditionally referred to as the factorization of us
gluons from collinear jets@21#. A transformation is given for
the collinear fields which decouples all usoft gluons from
collinear Lagrangian, at the expense of complicating
form of the operators responsible for production and dec
Similar results are found for soft gluons once off-shell flu
tuations with momentapm;Q(l,1,l) are integrated out
The benefit of the effective theory is that the above res
are very general, and can be applied in a universal wa
many processes. Since the coupling of all~u!soft particles
appears only in the operators responsible for the proc
cancellations and simplifications that appear at leading o
in l are easier to see.

We begin in Sec. II by discussing HQET in the langua
of Wilson lines. This allows us to introduce in a simple co
text some of the techniques we will need for~u!soft gluons.
In Sec. III, we explain how the leading~u!soft and collinear
Lagrangians follow from invariance under gauge symmet

1Often for a specific physical process only soft or usoft gluons
relevant, and the generic term ‘‘soft’’ may be adopted. For the s
of generality, we will describe soft and usoft particles separatel

2This is similar to the multipole expansion for ultrasoft gluons
nonrelativistic QCD@20#, which is also necessary for a consiste
power counting.
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in the effective theory. In Sec. IV, we discuss how usoft a
soft gluons factor from collinear particles in the effectiv
theory. In Sec. V, we give two examples of the effecti
theory formalism, followed by conclusions in Sec. VI. I
Appendix A, we show how gauge-invariant soft-collinear o
erators are obtained by integrating out off-shell fluctuatio

In Sec. V A, we take as an example the decaysB2

→D0p2 andB0→D1p2 at leading order inl5LQCD/Q.
These exclusive decays are mediated by four-quark opera
for which a generalized factorization formula was propos
in Refs.@12,13#. In this example, soft interactions factor b
do not cancel. Also a nontrivial convolution occurs betwe
the hard Wilson coefficient and the collinear degrees of fr
dom which give the light-cone pion wave function. In Re
@22#, the generalized factorization formula was shown to
valid at two-loop order. In Ref.@14#, a proof of this formula
was given to all orders in perturbation theory. In this secti
we give a more detailed explanation of the part of the pr
involving the decoupling of~u!soft gluons from collinear
fields. At leading order, we show explicitly that~u!soft gluon
interactions cancel in the sum of all Feynman diagrams
volving color singlet four-quark operators. For the color o
tet operators we show that~u!soft gluons leave a color struc
ture which vanishes between the physical singlet states.

In Sec. V B, we discussB→Xsg as an example of factor
ization in an inclusive decay. In this case, the interest
region of phase space isEg*mB/22LQCD.2.2 GeV, giving
l5ALQCD/Q. At leading order, the rate near the photon e
point can be factored into a hard coefficient multiplying
nontrivial convolution of a purely collinear function with
purely soft function. This was first shown in Ref.@7#. In this
section, we reproduce the proof of this result to all orders
perturbation theory using the effective theory. The nonper
bative soft function is the light-cone structure function of t
B meson@6#, S(k1). Since the collinear particles have of
shellnessp2.QLQCD, the collinear function can be calcu
lated perturbatively with a light-cone operator product e
pansion. At leading order, the decay rate is then given b
calculable function convoluted withS(k1).

II. WILSON LINES IN HQET

Constructing and understanding the SCET requires the
troduction of Wilson lines along various lightlike paths.
this section, we introduce some of the concepts using
well-known example of heavy quark effective theory. T
physics for heavy quarks such as bottom and charm can
described in a systematic way by expanding about the i
nite mass limit,mb ,mc→`. The standard leading HQET
Lagrangian and heavy-to-heavy current are@16#

LHQET5(
v

b̄viv•Dbv1(
v8

c̄v8iv8•Dcv8 ,

Jv,v85 c̄v8Gbv , ~3!

whereG is the spin structure. Herebv andcv8 are effective
theory fields labeled by their velocity, and the covariant d
rivative iD m5 i ]m1gAm involves only soft gluons. This
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theory of static quarks is related to a theory of Wilson lin
along directions specified byv @23#:

Sv~x!5P expS igE
2`

x

dsv•A~vs! D . ~4!

The covariant derivative along the path of a Wilson line
zero, v•DSv50, which is why Eq.~4! is referred to as a
static Wilson line. Now consider defining new heavy qua
fields bv

(0) andcv8
(0) by

bv~x!5Sv~x!bv
~0!~x!, cv8~x!5Sv8~x!cv8

~0!
~x!. ~5!

Using v•DSvbv
(0)5Svv•]bv

(0) and the unitarity condition
Sv

†Sv51, the Lagrangian and current are then

LHQET5(
v

b̄v
~0!iv•]bv

~0!1(
v8

c̄v8
~0!iv8•]cv8

~0! ,

Jv,v85 c̄v8
~0!Sv8

† GSvbv
~0! . ~6!

The new fieldsbv
(0) and cv8

(0) still annihilate heavy quarks
however they no longer interact with soft gluons.3 All soft
gluon interactions are explicit in the Wilson lines which a
pear in the heavy-to-heavy current.

Since Eq.~3! and Eq.~6! are simply related by a field
redefinition, the new Lagrangian and current describe
same physics as the original ones. For example, it is w
known that the matrix element ofJv,v8 betweenB and D
states is the universal Isgur-Wise function@24#,

^Dv8uJv,v8uB̄v&5TrF ~11v” 8!

2
G

~11v” !

2 Gj~v•v8!, ~7!

which is normalized at zero recoil,j(1)51. For v85v, we
see that all soft gluon interactions inJv,v in Eq. ~6! cancel
sinceSv

†Sv51. This shows explicitly that withv8•v51 and
mb,c→`, the ‘‘brown muck’’ in theB and D does not ob-
serve theb→c transition.

In the remainder of the paper, we will use the stand
Lagrangian in Eq.~3! to describe heavy quark fields. How
ever, the manipulations in this section allow us to dr
simple parallels with our discussion of the SCET. In Sec.
we will introduce the analog of the effective Lagrangian
Eq. ~3! for interactions between usoft and collinear field
Then in Sec. IV we will show that collinear fields analogo
to bv

(0) can be defined which do not couple to usoft gluo
Many statements about soft-collinear factorization in Sec
then simply follow from the unitarity condition which i
analogous toSv

†Sv51.

3Note thatL in Eq. ~6! is still gauge invariant since under a so
QCD gauge transformation,V(x)5exp@iaB(x)TB#, the fields bv

(0)

andcv8
(0) do not transform. The current is gauge invariant sinceSv

→VSv @with aB(`)50#. UsingV†V51 then givesJv,v8→Jv,v8 .
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III. SOFT-COLLINEAR EFFECTIVE THEORY

We begin in Sec. III A by recalling some basic ideas th
go into the construction of the SCET@1–3#. After describing
the degrees of freedom and power counting, we summa
the general result for the structure of Wilson coefficients t
can arise from integrating out hard fluctuations. Finally,
review why a collinear Wilson line appears in the effecti
theory. In Sec. III B, the collinear, soft, and usoft gauge sy
metries of the effective theory are discussed. In Sec. II
the leading-order gauge-invariant actions for collinear a
~u!soft quarks and gluons are given.

A. Basics

The goal of the SCET is to describe interactions betwe
energetic and nonenergetic particles in a common frame
reference. The relevant momentum scales areQ, Ql, and
Ql2. Collinear modes are needed to describe fluctuati
about the collinear momentaQ(l2,1,l), while soft and usoft
modes are needed to describe fluctuations about theQl and
Ql2 scales, respectively. Other possible momenta such
pm;Q(1,1,1) andpm;Q(l,1,l) are integrated out since
they describe off-shell fluctuations. In Table I, the effecti
theory quark and gluon fields are given along with th
power counting inl. The power counting is assigned suc
that in the action the kinetic terms for these fields are or
l0. For instance, for an usoft gluon setting*d4xusAus]

2Aus

;l0 and usingd4xus;l28 and]2;l4 givesAus
m ;l2.

In constructing the effective theory, a separation of m
mentum scales is achieved by decomposing the full mom
tum as Pm5pm1km, where pm is a label containing mo-
menta of orderQ andQl, while the residual momentumkm

scales asQl2. In the fields, the large phases depending op
are removed, and this momentum becomes a label on
effective theory field@2,3#. For instance, for the collinea
gluon fieldAn,p

m one takes

Am~x!→(
p

e2 ip•xAn,p
m ~x!. ~8!

Similarly, the collinear quark fieldsjn,p(x) have a momen-

TABLE I. Power counting for the effective theory quarks an
gluons. The Wilson linesW, S, andY are defined in Eqs.~13!–~15!.

Type Momenta
pm5(p1,p2,p')

Fields Field scaling

Collinear pm;(l2,1,l) jn,p l

(An,p
1 ,An,p

2 ,An,p
' ) (l2,1,l)

W@ n̄•An,p# 1

Soft pm;(l,l,l) qs,p l3/2

As,p
m l

S@n•As,p# 1

Usoft km;(l2,l2,l2) qus l3

Aus
m l2

Y@n•Aus# 1
2-3
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tum labelp, and furthermore satisfyn” jn,p50. It is conve-
nient to define an operatorPm which acts on fields with
labels,

Pm~fq1

†
¯fqm

† fp1
¯fpn

!5~p1
m1¯1pn

m2q1
m2¯2qm

m !

3~fq1

†
¯fqm

† fp1
¯fpn

!. ~9!

This operator enables us to writei ]me2 ip•xfp(x)
5e2 ip•x (Pm1 i ]m)fp(x). Thus, all large phases can b
pulled to the front of any operator, and the remaining deri
tives give only the residual;Ql2 momentum. Label sums
and phases can be suppressed if we simply remembe
conserve label momenta in interactions. For convenience
define the operatorP̄ to pick out only the orderl0 labels
n̄•p on collinear effective theory fields, and the operatorPm

to pick out only the orderl labels. Thus, for soft fieldsPm

gives the full momentum of the field,Pmqs,p5pmqs,p .
In the effective theory, hard fluctuations are integrated

and appear in Wilson coefficients. Beyond tree level, th
Wilson coefficients are nontrivial functionsC(n̄•pi) of the
large collinear momenta. However, collinear gauge inva
ance restricts these coefficients to only depend on the lin
combination picked out by the operatorP̄ @3#. Thus, in gen-
eral Wilson coefficients are functionsC(P̄,P̄†) which must
be inserted between gauge-invariant products of collin
fields.

From Table I, we notice that then̄•An,p collinear gluon
field is orderl0 in the power counting. These gluons play
special role in the effective theory, since at a given order il
any number of them can appear. However, as describe
Ref. @3#, collinear gauge symmetry restricts them to on
appear in the Wilson line functional,

W5F (
perms

expS 2g
1

P̄
n̄•An,qD G . ~10!

Thus, in the effective theoryW should simply be treated as
basic building block for constructing operators. Gaug
invariant combinations ofn̄•An,q can be written entirely in
terms ofW since

f ~P̄1gn̄•An,q!5W f~P̄!W†. ~11!

Alternatively, we can view factors ofW as arising from hav-
ing integrated out off-shell propagators@2#, as in Fig. 1. The
figure illustrates that the inability of collinear gluons to i

FIG. 1. A matching calculation which shows howW appears.
On the left, collinearn̄•An,q gluons hit an incoming soft quark
Integrating out the off-shell quark propagators gives the effec
theory operator on the right, which contains a factor ofW.
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teract with softer particles in a local manner is what leads
the appearance ofW. Written out explicitly, the Wilson line
in Eq. ~10! is

W5 (
m50

(
perms

~2g!m

m!

3
n̄•An,q1

a1
¯n̄•An,qm

am

n̄•q1n̄•~q11q2!¯n̄•S (
i 51

m

qi D Tam
¯Ta1. ~12!

In the power countingW;l0. If we drop the dependence o
x ~i.e., the residual momenta! in Eq. ~12! and take the Fourier
transform of then̄•qi labels, we obtain a Wilson line in
position space,

Wn,y5P expS igE
2`

y

ds n̄•An~sn̄! D . ~13!

Here the position space fieldAn
m(z) is the Fourier transform

of An,p
m (0) with respect ton̄•p.

In Table I, two more eikonal lines appear which will b
used later in the paper. The functionalS is built out of soft
fields,

S~x!5P expS igE
2`

x

ds n•As~sn! D , ~14!

which vary over scales of orderQl, andY is the analogous
functional built out of usoft fields

Y~x!5P expS igE
2`

x

ds n•Aus~sn! D , ~15!

which vary over scales of orderQl2. Unlike W, neitherS
nor Y are necessary to construct the Lagrangian for~u!soft or
collinear fields. However, both turn out to be useful in u
derstanding how~u!soft-collinear factorization arises as
property of the effective theory at lowest order.

B. Gauge symmetries in the SCET

The presence of several gluon modes raises the que
of how each is related to local transformations from t
gauge group SU~3!. Of the possible QCD gauge transform
tions, the ones that are relevant to constructing the effec
theory have support over collinear, soft, or usoft momen
An usoft gauge transformationVus(x)5exp@ibus

A (x)TA# is
defined as the subset of gauge transformations wh
]mVus(x);Ql2. A soft gauge transformationVs(x)
5exp@ibs

A(x)TA# satisfies ]mVs(x);Ql. Finally, collinear
gauge transformationsU(x)5exp@iaA(x)TA# are the subse
where ]mU(x);Q(l2,1,l). The usoft, soft, and collinea
gluon fields are then the gauge fields associated with th
transformations. The gauge transformations for the effec
theory fields are shown in Table II. The physics that restri
the transformations of fields from one momentum reg

e

2-4
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TABLE II. Gauge transformations for the collinear, soft, and usoft fields and the Wilson linesW, S, and
Y. Thep labels on collinear fields are fixed, whileQ andR are summed over. For simplicity, labels on the s
fields are suppressed here.

Fields CollinearUR

Gauge transformations
Soft Vs Usoft Vus

jn,p Up2Qjn,Q jn,p Vusjn,p

An,p
m UQAn,R

m UQ1R2p
† 1

1

g
UQ@ iDmUQ2p

† # An,p
m VusAn,p

m Vus
†

qs qs Vsqs Vusqs

As
m As

m
VsSAs

m1
1

g
PmDVs

† VusAs
mVus

†

qus qus qus Vusqus

Aus
m Aus

m Aus
m

VusS Aus
m 1

i

g
]mDVus

†

Wilson lines

W UQW W VusWVus
†

S S Vs S VusSVus
†

Y Y Y VusY
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with respect to the gauge symmetry of another region
discussed below. We discuss the usoft, soft, and collin
transformations in turn.

Invariance under usoft gauge transformations constr
the self-interactions of usoft gluons as well as their coupl
to collinear fields. The slowly varying usoft gluon field ac
like a classical background field in which the collinear a
soft particles propagate. Under a usoft gauge transforma
Vus(x), the usoft quarks and gluons transform the same a
QCD. The collinear and soft particles have larger mome
so they see the usoft gauge transformation as a sm
change in the background, and transform similar to a glo
color rotation. For soft fields, all momentum components
larger than the usoft momenta so the transformations are
fectively global. For collinear quarks and gluons, the us
transformations are local at each point of the residualx de-
pendence.

Soft gauge transformations have support over a regio
momenta which leave neither usoft nor collinear partic
near their mass shell. The usoft and collinear fields do
transform since they cannot resolve the local change indu
by Vs(x). Therefore, soft gluons do not appear in t
Lagrangians for collinear or usoft particles. On the oth
hand, soft fields transform withVs like fields in QCD. We
will see in Sec. IV B that the gauge invariance of operat
with soft and collinear fields requires factors ofS to appear.

For a collinear gauge transformationU(x), we factor out
the large momenta just as was done for collinear fields,

U~x!5(
R

e2 iR•xUR~x!, ~16!

where]mUR;l2. As explained above, the usoft gluons a
like a background field for the collinear particles. Thus,
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the presence of usoft gluons the collinear gluon field tra
forms like a quantum field in a background color field. T
covariant derivative appearing in the transformation of
collinear gluon in Table II is therefore4

iDm[
nm

2
P̄1P'

m1
n̄m

2
in•D. ~17!

HereDm contains only the usoft field

iD m5 i ]m1gAus
m , ~18!

and by power counting only then•Aus gluons can appear in
Eq. ~17! at leading order inl ~since they are the same ord
as n•An,p). Under a collinear gauge transformation, t
~u!soft quarks and gluons do not transform since they fl
tuate over wavelengths which cannot resolve the fast lo
change induced byU(x).

C. The effective Lagrangian

In this section, the gauge properties discussed in Sec.
are used to construct the SCET Lagrangian. The full L
grangian can be broken up into terms involving soft fie
Ls , terms involving collinear fieldsLc , and terms with nei-
ther soft nor collinear fieldsLus,

L5Ls1Lc1Lus. ~19!

4If UR is independent ofx, the collinear transformations are give
in Ref. @3# and with iDm→Pm are equal to those in Table II. Thi
global reparametrization invariance fixes the collinear action,
cept for the way in whichin•D appears.
2-5
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Invariance under usoft gauge transformations forces allAus
m

fields to appear through the covariant derivativeiD m defined
in Eq. ~18!. Invariance under soft gauge transformations c
strains the appearance of the soft gauge field. Finally, fr
invariance under collinear gauge transformations, the co
ear gluon fields can only appear in factors ofW and

iDm1gAn,q
m , ~20!

where Dm is defined in Eq.~17!. Under a collinear gauge
transformation, this operator transforms as

iDm1gAn,q
m →UQgAn,R

m UQ1R2q
† 1UQiDmUQ2q

† . ~21!

The purely usoft and soft Lagrangians for gluons a
massless quarks are the same as those in QCD and ar
termined uniquely by power counting and invariance un
~u!soft gauge transformations,

Lus5q̄usiD” qus2
1
2 tr$GmnGmn%,

~22!
Ls5q̄s,p8~P”1gA” s,q!qs,p2 1

2 tr$Gs
mnGmn

s %,

where Gmn5 i @Dm,Dn#/g and iGs
mn5@Pm1gAs,q

m ,Pn

1gAs,q8
n

#/g. The traces are normalized such that tr@TATB#
5dAB/2. Gauge-fixing terms for the usoft and soft gluons a
not specified, and can be freely chosen without affecting
couplings of other modes. For heavy quarks, we have
leading-order HQET Lagrangian

LHQET5(
v

h̄viv•Dhv . ~23!

Herehv is defined as the flavor doublet of the fields (bv ,cv)
used in Sec. II. For the Lagrangians in Eqs.~22! and~23!, no
additional information is gained from collinear gauge inva
ance since the~u!soft fields do not transform.

For collinear gluons, the gauge-fixing terms are nontriv
since they affect how collinear gluons interact with the ba
ground usoft gluons. For simplicity, we will use a gene
covariant gauge, which causes collinear ghosts fieldscn,q to
appear. At orderl0, the Lagrangian for collinear gluons an
ghosts is then

Lc
~g!5

1

2g2 tr$@ iDm1gAn,q
m ,iDn1gAn,q8

n
#%2

12 tr$c̄n,p8†iDm ,@ iDm1gAn,q
m ,cn,p#‡%

1
1

a
tr$@ iDm ,An,q

m #%2, ~24!

whereDm is defined in Eq.~17!. Note thatAus
' andn̄•Aus do

not appear until higher order since they are suppressed c
pared to the collinear gluon fields. Then•Aus component can
appear since it is the same order asn•An,q . The first two
terms in Eq.~24! are invariant under collinear gauge tran
formations, while the last is the gauge-fixing term with p
rametera. Furthermore, the complete collinear Lagrangian
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invariant under usoft gauge transformations, including
1/a gauge-fixing term. This complies with the notion of th
usoft gluon as a background field. In fact, Eq.~24! is identi-
cal to the action obtained by expanding the covariant ba
ground field action in QCD with quantum fieldAn,q

m and
background fieldAus

m to leading order inl. The Feynman
rules for collinear gluon self-interactions are the same
those in QCD except that the residualk' and n̄•k momenta
do not appear. The mixed usoft-collinear Feynman rules
follow from Eq. ~24! are more interesting and are shown
Fig. 2.

For completeness, we also give the collinear quark
grangian@2,3#, which is derived in a similar manner,5

Lc
~q!5 j̄n,p8H in•D1gn•An,q1~P”'1gA” n,q

' !W
1

P̄
W†~P”'

1gA” n,q8
'

!J n”̄

2
jn,p . ~25!

The terms involving gluons in Eq.~25! are simply compo-
nents ofiDm1gAn,q

m , as required by gauge invariance.Lc
(q)

is the unique orderl0 collinear quark Lagrangian that i
invariant under both collinear and usoft gauge transform
tions.

IV. COLLINEAR FIELDS INTERACTING WITH „U…SOFT
GLUONS

In this section, we present a way of organizing the co
plings of ~u!soft gluons to collinear particles which make
factorization properties more transparent by moving inter
tion vertices into operators. The traditional method of pro
ing the factorization of~u!soft gluons uses reduced grap
and eikonal Ward identities@5#. While our approach make
use of similar physical observations, we believe that
SCET organizes these properties in a simpler way. For
ample, in the effective theory the multipole expansion
usoft couplings and appearance of onlyn•Aus gluons is ex-
plicit in the collinear Lagrangian. We start by discussi
usoft gluon couplings to collinear fields in Sec. IV A. A
lowest order inl, the couplings of usoft gluons to collinea
quarks and gluons can be summed into Wilson lines wh
act like field-valued gauge rotations. Similar to thebv

(0)

heavy quarks in Sec. II, the new collinear fieldsjn,p
(0) and

An,p
(0)m no longer couple to usoft gluons. In Sec. IV B an

Appendix A, we discuss the factorization for soft modes.

5Apart from the coupling to usoft gluons and the treatment
residual momenta, the collinear quark action is similar to the ac
for a quark in light-cone quantization@25#. Given the equivalence
@26# of QCD quantized on the light cone and QCD in the infin
momentum frame, this is not too surprising.
2-6
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FIG. 2. Collinear gluon propagator with label momentumq and residual momentumk, and the orderl0 interactions of collinear gluons
with the usoft gluon field. Here usoft gluons are springs, collinear gluons are springs with a line, anda is the covariant gauge-fixing
parameter in Eq.~24!.
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A. Ultrasoft couplings to collinear quarks and gluons

Consider the interaction of the collinear fields with
usoft background gluon field. The relevant diagrams
shown in Figs. 3 and 4. Matching on-shell, the sum of
diagrams which couple usoft gluons to the collinear qu
gives

jn,p5Yjn,p
~0! , ~26!

where

Y511 (
m51

`

(
perms

~2g!m

m!

3
n•Aus

a1
¯n•Aus

am

n•k1n•~k11k2!¯n•S (
i 51

m

ki D Tan
¯Ta1. ~27!

FIG. 3. The attachments of usoft gluons to a collinear quark
which are summed up into a path-ordered exponential.
05402
e
e
k

Y is related to the Fourier transform of the path-ordered
ponential given in Eq.~15!,

Y~x!5P expS igE
2`

x

ds n•Aus
a ~ns!TaD . ~28!

In Eq. ~26!, the new collinear quark fieldjn,p
(0) does not inter-

act with usoft gluons. Thus, all interactions with usoft gluo
have been summed into the Wilson line. Although Eq.~26!
was derived at tree level, the presence of soft or collin
loops does not change this result. We will prove this at
level of the action near the end of this section.

In a similar manner, we can compute the sum of the d
grams which couple usoft gluons to a collinear gluon sho
in Fig. 4. Using the Feynman rules in Fig. 2 in Feynm
gauge (a51) gives6

An,p
a,m5YabAn,p

~0!b,m , ~29!

where

6In other gauges, the derivation is complicated by the presenc
the four-gluon vertex and the need to usep•An,p50 for the collin-
ear gluon field.

e

2-7
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Yab5dab1 (
m51

`

(
perms

~ ig !m

m!

3
n•Aus

a1
¯n•Aus

am

n•k1n•~k11k2!¯n•S (
i 51

m

ki D
3 f amaxm21

¯ f a2x2x1f a1x1b. ~30!

Similar to the quark field,An,p
(0) denotes a collinear gluon

which does not couple to usoft gluons. The result in Eq.~29!
is gauge-invariant with respect to the usoft gluons becaus
the usoft invariance of the collinear gluon Lagrangian. Th
in deriving this result it is crucial that the derivative in th
1/a gauge-fixing term in Eq.~24! is covariant with respect to
the usoft n•Aus background field. TheYab in Eq. ~30! is
related to the Fourier transform of the Wilson lineY(x) in
the adjoint representation,

Y ab~x!5FP expS igE
2`

x

ds n•Aus
e ~ns!T eD Gab

, ~31!

FIG. 4. The attachments of usoft gluons to a collinear glu
which are also summed up into a path-ordered exponential.
05402
of
,

where (T e)ab52 i f eab. The adjoint representation can b
defined in terms of the fundamental representation by

YTaY†5Y baTb. ~32!

From this result we immediately obtain that

An,p
m 5An,p

b,mTb5An,p
~0!a,mYbaTb5An,p

~0!a,mYTaY†5YAn,p
~0!mY†.

~33!

Repeating the above calculation for the collinear ghost fie
we find

cn,p5cn,p
a Ta5cn,p

~0!bYabTa5Ycn,p
~0!Y†. ~34!

Recalling thatAn,p and henceW are local with respect to
their residual momentum, they are therefore local with
spect to the coordinatex of Y(x). Thus,

W5F (
perms

expS 2g
1

P̄
Yn̄•An,q

~0!Y†D G5YW~0!Y†, ~35!

which shows how usoft gluons couple to the collinear Wils
line.

Finally, we return to the claim that the field redefinition
in Eqs. ~27! and ~29! which definejn,p

(0) andAn,p
(0) , decouple

usoft gluons at the level of the Lagrangian. Starting with t
collinear quark Lagrangian in Eq.~25!, we obtain

n

Lc
~q!5 j̄n,p8

~0! Y†H in•D1gYn•An,q
~0!Y†1~P”'1YgA” n,q

~0!'Y†!YW~0!Y†
1

P̄
YW~0!†Y†~P”'1YgA” n,q8

~0!'Y†!J n̄”

2
Yjn,p

~0! J
5 j̄n,p8

~0! H Y†in•DY1gn•An,q
~0!1(P”'1gA” n,q

~0!')W~0!
1

P̄
W~0!†~P”'1gA” n,q8

~0!'
!J n̄”

2
jn,p

~0! , ~36!
In
s

sinceY commutes withP”' . Usingn•D Y50, it then follows
that

Y†n•DY5n•]. ~37!

Therefore, the collinear quark Lagrangian becomes

Lc
~q!5 j̄n,p8

~0! H in•]1gn•An,q
~0!1~P”'

1gA” n,q
~0!'!W~0!

1

P̄
W~0!†~P”'1gA” n,q8

~0!'
!J n̄”

2
jn,p

~0! ,

~38!
which is completely independent of the usoft gluon field.
a similar fashion, the collinear gluon Lagrangian become

Lc
~q!5

1

2g2 tr$@ iD~0!
m 1gAn,q

~0!m ,iD~0!
n 1gAn,q8

~0!n
#%2

1
1

a
tr$@ iDm

~0! ,An,q
~0!m#%212 tr$c̄n,p8

~0!
†iDm

~0! ,@ iD~0!
m

1gAn,q
~0!m ,cn,p

~0! #‡%, ~39!

where

iD~0!
m 5

nm

2
P̄1P'

m1
n̄m

2
in•]. ~40!
2-8
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Equation ~39! is derived using iDm1gAn,q
m 5Y( iD(0)

m

1gAn,q
(0)m)Y†. The result in Eq.~39! shows that the new col

linear gluon and ghost fieldsAn,q
(0) and cn,p

(0) also decouple
from usoft gluons.

To summarize, we have shown that making the field
definitions

jn,p5Yjn,p
~0! , An,p

m 5YAn,p
~0!mY†, cn,p5Ycn,p

~0!Y†,

~41!

the new collinear fields no longer couple to usoft gluo
through their kinetic term. This gives the important res
that all couplings of usoft gluons to collinear particles can
absorbed into Wilson linesY along the direction of the col
linear particles. With these field redefinitions, factors ofY
only appear in external operators or currents which con
collinear fields. We hasten to add that this is a property of
SCET only at leading order inl. Beyond leading order, sub
leading couplings of usoft gluons appear in the collinear
grangian which cannot be reproduced solely by factors oY.

B. Soft couplings to collinear quarks and gluons

For processes with soft gluon degrees of freedom,
situation is quite different from the usoft case. This is b
cause soft gluons cannot couple to collinear particles with
taking them off their mass shell. Together with soft gau
invariance, this ensures that soft gluons do not appear in
collinear Lagrangian, and must therefore be explicit in o
erators. When a soft particle interacts with a collinear p
ticle, it produces an off-shell particle with momentump
;Q(l,1,l). For example, a triple gluon vertex with a so
and collinear gluon has an off-shell gluon with momentu
Q(l,1,l) as shown in Fig. 5. These off-shell modes ha
p2;Q2l@(Ql)2 and can therefore be integrated out of t
theory.

There are several important properties that soft glu
obey. At lowest order inl, soft interactions with collinear
fields only involve then•As component. Furthermore, inte
grating out all off-shell fluctuations simply builds up facto
of the Wilson lineS,

S5F (
perms

expS 2g
1

n•P n•As,qD G , ~42!

where dp,n•P S is the Fourier transform of Eq.~14!. Thus,
much like W, Sturns out to be a fundamental object in th

FIG. 5. The interaction of a soft and collinear gluon with m
mentak;Q(l,l,l) and q;Q(l2,1,l), respectively, to produce
an off-shell gluon with momentumk1q;Q(l,1,l).
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SCET. Finally, soft gauge invariance severely restricts
most general allowed operators involvingS.

In this section, we give an explicit example of the abo
properties and discuss how gauge invariance restricts the
pearance of factors ofS. In Appendix A, we show in genera
that only n•As gluons appear at orderl0. There we also
show to all orders in perturbation theory how gaug
invariant soft-collinear operators are obtained from integr
ing out off-shell quarks and gluons. The proof is reduced
solving a classical two-dimensional QCD action in the pr
ence of adjoint and fundamental sources.

Consider the example of a soft-collinear heavy-to-lig
current. Under soft and collinear gauge transformations~sup-
pressing the soft field labels!, the fermions transform as

hv→Vshv , jn,p→jn,p soft,

hv→hv , jn,p→Up2Qjn,Q collinear.
~43!

Thus, the simplest currentJ5 j̄n,pGhv ~whereG is the spin
structure! is not invariant under the gauge symmetries.
construct a gauge-invariant current requires the addition
soft and collinear Wilson lines. Using the transformati
properties

W→UQW, S→VsS, ~44!

it is easy to see that the gauge-invariant current is

J5 j̄n,pWGS†hv . ~45!

Thus, we see that soft gauge invariance determines hoS
appears.

It is also possible to obtain this current by matching, sta
ing with the QCD currentq̄Gb, and using background field
gauge for the external gluons. There are three propertie
Eq. ~45! that need to be reproduced by this calculatio
namely that onlyn̄•An,q gluons appear to giveW, that only
then•As component of the soft gluons appear to build upS†,
and thatW andS† appear in the gauge-invariant combinatio
shown. The calculation is similar to producingW by attach-
ing collinear gluons to heavy quarks and integrating out
resulting off-shell fluctuations as discussed in Sec. III A. N
ively, attaching collinear gluons to theb and soft gluons to
theq, one might expect to build up the currentj̄n,pS†GWhv ,
and in the non-Abelian theoryS† and W do not commute.
However, adding diagrams involving non-Abelian gluo
couplings reverses the order of the two Wilson lines.

For example, consider the orderg2 graphs which match
onto Eq.~45! and which contain one soft and one colline
gluon. The necessary graphs are shown in Fig. 6.7 Expanding
the diagram in Fig. 6~a! to leading order gives

Fig. 6~a!52g2
nm

n•qs

n̄n

n̄•qc
j̄n,pTaGTbhv . ~46!

7Note that only graphs in which all propagators are off-shell ne
to be considered for this matching.
2-9
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FIG. 6. QCD graphs for the currentq̄Gb with off-shell propagators induced by a soft gluon with momentumqs and a collinear gluon with
momentumqc .
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We see that the leading contribution contains only
n̄•An,q;l0 collinear gluon by power counting, and only th
n•As gluon because thegn for this vertex is sandwiched
between aj̄n,p and ann” from the off-shell light quark propa
gator. Finally, the color factors in Eq.~46! correspond to
expandingj̄n,pS†GWhv , or in other words are in exactly th
opposite order to those in Eq.~45!. At leading order, the
remaining two non-Abelian graphs are equal and give

Fig. 6~b!5Fig. 6~c!5
g2

2
i f abcTc

nm

n•qs

n̄n

n̄•qc
j̄n,pGhv .

~47!

Adding the three graphs together reverses the order of
color matrices in Eq.~46! to give

Fig. 6~a!16~b!16~c!52g2
nm

n•qs

n̄n

n̄•qc
j̄n,pTbGTahv .

~48!

This is the desired result and is in agreement with Eq.~45!.
In Appendix A, we extend this matching calculation to a
orders in perturbation theory.

V. APPLICATIONS

In this section, we give two applications of our resul
The factorization of soft and collinear modes has implic
tions for the exclusive decaysB2→D0p2 and B0

→D1p2, and is discussed in Sec. V A. The SCET can
used to give a simple proof of the cancellation of nonfact
izable ~u!soft gluon effects at leading order inLQCD/mb
@14#, and this result is discussed using the notation int
duced in Sec. III. The cancellation follows from gauge
variance and the unitarity of the Wilson line operatorsS and
Y.

In Sec. V B, we give a simple proof of the factorizatio
formula for the photon spectrum in the end-point region
the inclusive decayB→Xsg. This formula was first derived
in Ref. @7#. In this region, the photon spectrum can be writt
as a product of hard, usoft, and collinear factors, each
which have field-theoretical interpretations in the effect
theory. In this case, the nontrivial part is the factorization
usoft gluons. When the field redefinition for collinear fiel
is made in the time-ordered product, factors of the usoft W
son line Y appear at different space-time points and th
cancellation is incomplete. They leave behind a finite Wils
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line, which gives the light-cone structure function of theB
meson.

A. B\Dp

In this section, we make use of the results in Sec. IV
explain in detail why~u!soft gluons factor from the collinea
particles in the pion forB→Dp. The proof is simplified by
the fact that the cancellation of~u!soft gluons appears at th
level of the operators and the Lagrangian in the SCET.

At leading order, the decayB→Dp is mediated by the
four-quark operators

HW5
4GF

&
Vud* Vcb@C0

F~ c̄gmPLb!~ d̄gmPLu!

1C8
F~ c̄gmPLTab!~ d̄gmPLTau!#, ~49!

wherePL5 1
2 (12g5) and the coefficientsC0,8

F are obtained
by running down from the weak scale. At the scalemb , the
operators in Eq.~49! can be matched onto operators in t
SCET. The four linearly independent gauge-invariant ope
tors are@3,14#

Q0
1,55~ c̄v8Gh

1,5bv!~ j̄n,p8
~d! WC0

1,5~P̄,P̄†!G l W†jn,p
~u! !,

~50!
Q8

1,55~ c̄v8STaS†Gh
1,5bv!

3~ j̄n,p8
~d! WC8

1,5~P̄,P̄†!TaG l W†jn,p
~u! !,

whereGh
1,55n” /2, n”g5/2 andG l 5n̄”PL/2. Note that the hard

Wilson coefficientsC0,8
j (P̄,P̄†) are functions of the label op

erator and appear between gauge-invariant combination
collinear fields.

In Eqs. ~50!, cv8 and bv are the usual HQET fields with
the Lagrangian in Eq.~3!. For the color singlet operator
Q0

1,5, the productc̄v8Gbv is invariant under soft gauge trans
formations and factors ofSdo not appear. Equivalently, if we
integrate out off-shell fluctuations induced by coupling t
soft gluons and collinear particles as in Appendix A, then
obtain j̄n,p8WS†C0SW†jn,p and the soft gluon couplings
cancel since they commute withC0 and S†S51. Thus, no
soft gluons appear in the color singlet case and the ma
element of the effective theory operator factors. In the co
octet case,c̄v8T

abv is not gauge-invariant, but invariance o
S†bv and c̄v8S implies thatc̄v8STaS†bv and henceQ8

1,5 are
2-10
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SOFT-COLLINEAR FACTORIZATION IN EFFECTIVE . . . PHYSICAL REVIEW D 65 054022
gauge-invariant. In this case, factors ofS appear in the op-
erator, but they do so in a way that preserves the color o
structure of the matrix between the heavy quarks. Theref
the effective theory matrix element ofQ8

1,5 is zero between
physical color singlet states.

For completeness, we note that the coupling of all us
gluons to collinear fields in theB→Dp matrix element also
factor.8 Following Sec. III A, we redefine the collinear field
by jn,p5Yjn,p

(0) and W5YW(0)Y†. For the color-singlet op-
erator, the identityYY†51, together with the cancellation o
the usoft couplings in the collinear Lagrangian, implies th
the usoft gluons factor from the collinear part of the opera
For the color octet operator the same conclusion follo
once we use the color identityTa

^ Y†TaY5YTaY†
^ Ta.

This identity is easily derived by noting thatYTaY†

5YbaTb and using the properties ofY in the adjoint repre-
sentation.

Since the~u!soft and collinear particles decouple inQ0
1,5,

the matrix element forB→Dp factors into a soft matrix
element for B→D and a collinear matrix element fo
vacuum top. In Ref. @14#, it was also shown that the depe
dence of the Wilson coefficientsC0

1,5(m,P̄1) on P̄15P̄
1P̄† leads to a nontrivial convolution of this hard coefficie
with the light-cone pion wave function described by the m
trix element of collinear fields. The only gluons giving no
canceling contributions to theB→Dp matrix element ap-
pear as in the example in Fig. 7. This resulted in the fi
proof @14# of theB→Dp factorization formula~proposed in
Refs.@12#, @13#!,

^Dv8pnuQ0
1uBv&5NFB→D~0!E

0

1

dx T~x,m!fp~x,m!,

~51!

to all orders inas and leading order inLQCD/Q, whereQ
5mb , mc , or Ep . Here N5 imBEp f p/2, FB→D(q2) is the

8For soft heavy quarks this proof is not really necessary, since
coupling of a usoft gluon to a soft heavy quark is of orderl, i.e.,
power-suppressed.

FIG. 7. Example illustrating how the soft and collinear gluo
factor in theB→Dp matrix element in the soft-collinear effectiv
theory. The^ denotes an insertion ofQ0

1, the double lines are for
bv or cv8 , the springs with a line are collinear gluons, the dash
lines are collinear quarks, the springs without a line are soft gluo
and the normal solid lines are soft quarks.
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soft B→D form factor ~Isgur-Wise function!, T(x,m)
5C0

1
„m,(4x22)Ep… is the hard Wilson coefficient, and

fp(x,m) is the nonperturbative light-cone pion wave fun
tion determined by a matrix element of collinear fields.

B. Factorization in inclusive B\Xsg decays

The weak radiative decayB→Xsg is mediated by the
effective Hamiltonian

H52
4GF

&
VtbVts* C7O7 , O75

e

16p2 mbs̄smnFmnPRb,

~52!

with Fmn the electromagnetic field tensor andPR5 1
2 (1

1g5). ~The contributions from operators other thanO7 are
neglected here.! We define the kinematics of the decay su
that the photon momentumq is along the light-conen̄ direc-
tion, qm5Egn̄m . HereEg5v•q is the photon energy in the
rest frame of theB meson (pB5mBv).

The inclusive photon energy spectrum can be written
ing the optical theorem as

1

G0

dG

dEg
5

4Eg

mb
3 S 2

1

p D Im T~Eg!, ~53!

where the forward scattering amplitudeT(Eg) is

T~Eg!5
i

mB
E d4x e2 iq•x^B̄uTJm

† ~x!Jm~0!uB̄&, ~54!

with relativistic normalization for theuB̄& states. Here the
currentJm5 s̄ismnqnPRb, and

G05
GF

2mb
5

32p4 uVtbVts* u2aemuC7
F~mb!u2 ~55!

is the parton level decay rate forb→sg with the Wilson
coefficient C7

F obtained by running down from the wea
scale.

In the end-point regionmB/22Eg&LQCD, the spectrum
cannot be described by a completely local operator prod
expansion. However, it can be described by a twist exp
sion. For this region of phase space, the time-ordered pro
in Eq. ~54! becomes simpler once we match onto effect
theory fields and drop power corrections. At leading order
l, we will show thatdG/dEg can be written in the factorized
form @7#

1

G0

dG

dEg
5H~mb ,m!E

2Eg2mb

L̄
dk1S~k1,m!

3J~k11mb22Eg ,m!. ~56!

The different factors account for the contributions of diffe
ent distance scales, and theirm dependence cancels. Th

e

d
s,
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factor H(mb ,m) arises from hard gluons and is calculab
perturbatively as an expansion inas(mb). The jet factorJ
contains the contributions from the collinear particles, wh
the usoft matrix elementS describes the nonperturbative d
namics of the usoft modes.

We start by matching the weak current onto an operato
the soft-collinear effective theory. At leading order inl, this
gives

Jm52Egei @P̄~n/2!1P'2mbv#•x$@2Cq~P̄,m!1C12~P̄,m!#Jm
eff

2C10~P̄,m!J̃m
eff%, ~57!

where

Jm
eff5 j̄n,pWgm

'PLbv , J̃m
eff5n̄mj̄n,pWPRbv . ~58!

The SCET Wilson coefficientsC9,10,12(P̄,m) are given at one
loop in Eq.~33! of Ref. @2#. Thex dependence of the curren
will lead to conservation of both label and residual mome
separately. For example, for label momentap, p8 and re-
sidual momentak, k8

E d4x ei ~p2p81k2k8!•x 5dp,p8~2p!4d4~k2k8!

5dp,p8E d4 x ei ~k2k8!•x. ~59!

In Eq. ~57! label conservation setsP̄5mb andP'50 and the
remaining momenta in the time-ordered product will
purely residual. The currentJ̃m

eff does not contribute for rea
transversely polarized photons, and will be omitted from
future discussion. Inserting Eq.~57! into Eq. ~54!, we can
write to leading order

4Eg

mb
3 T~Eg![H~mb ,m!Teff~Eg ,m!. ~60!

HereTeff is the forward scattering amplitude in the effecti
theory

Teff5 i E d4x ei @mb~ n̄/2!2q#•x^B̄vuTJm
eff†~x!Jeffm~0!uB̄v&,

~61!

with HQET normalization for the states@16#, and in terms of
the SCET Wilson coefficients the hard amplitude is

H~mb ,m!5
16Eg

3

mb
3 uC9~mb ,m!1 1

2 C12~mb ,m!u2. ~62!

Next the usoft gluons inTeff can be decoupled from th
collinear fields as explained in Sec. III, by making the su
stitutions

jn,p→Yjn,p
~0! , W→YW~0!Y†. ~63!

This results in
05402
in

a

e

-

Jm
eff5 j̄n,p

~0!W~0!gm
'PLY†bv , ~64!

where the collinear fields in this current do not interact w
usoft fields. With this current, an example of the type
SCET graph contributing toTeff is shown in Fig. 8. Thus, the
time-ordered product of the effective theory currents is9

Teff5 i E d4x ei @mb~ n̄/2!2q#•x^B̄vuTJm
eff†~x!Jeff,m~0!uB̄v&

5 i E d4x ei @mb~ n̄/2!2q#•x^B̄vuT@ b̄vY PRgm
'W~0!†jn,p

~0! #~x!

3@ j̄n,p
~0!W~0!g'

mPLY†bv#~0!uB̄v&

52E d4xE d4k

~2p!4 ei @mb~ n̄/2!2q2k#•x^B̄vuT@ b̄vY#~x!

3PRgm
'

n”

2
g'

mPL@Y†bv#~0!uB̄v&JP~k!

5 1
2 E d4xE d4k

~2p!4 ei @mb~ n̄/2!2q2k#•x^B̄vuT@ b̄vY#~x!

3@Y†bv#~0!uB̄v&JP~k!. ~65!

In the third line, we used the fact that theB̄ meson state
contains no collinear particles, and we definedJP(k) as the
contraction of all collinear fields,

^0uT@W~0!†jn,p
~0! #~x!@ j̄n,p

~0!W~0!#~0!u0&

[ i E d4k

~2p!4 e2 ik•xJP~k!
n”

2
, ~66!

where the labelP equals the sum of the label momenta ca

9Even though the usoft and collinear fields factor in the curre
the samem must be used when renormalizing loops involving us
or collinear gluons.

FIG. 8. Example of the type of graph that contributes toB
→Xsg in the soft-collinear effective theory. Thê denotes an in-
sertion of the current in Eq.~64!, the double lines arebv quarks, the
springs with a line are collinear gluons, and the springs withou
line are usoft gluons.
2-12
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ried by the collinear fields in both@W(0)†jn,p
(0) # and

@ j̄n,p
(0)W(0)#. In the fourth line of Eq.~65!, the spin structure

was simplified using the fact thatv”bv5bv and that theB
meson is a pseudoscalar. To proceed further, we can m
use of the fact thatJP only depends on the componentk1
i
-

um

o

fo
on
es

05402
ke

5n•k of the residual momentumk. This follows from the
collinear Lagrangians in Eqs.~24! and ~25!, which contain
only then•] derivative. This simplification allows us to pe
form thek2 ,k' integrations in Eq.~66!, which putsx on the
light cone,
Teff5 1
2 E d4x ei @mb~ n̄/2!2q#•xd~x1!d~xW'!E dk1

2p
e2~ i /2!k1x2^B̄vuT@ b̄vY#~x!@Y†bv#~0!uB̄v&JP~k1!

5 1
2 E dk1JP~k1!E dx2

4p
e2 i /2~2Eg2mb1k1!x2

^B̄vuT@ b̄vY#„~n/2!x2
…@Y†bv#~0!uB̄v&. ~67!
-
n
e

s.
of

po-
the

t
t,

nc-

-
on

ar,
e

Note that the typical off-shellness of the collinear particles
p2;mbLQCD so the functionJP can be calculated perturba
tively. At lowest order inas(AmbLQCD), JP(k1) is deter-
mined by the collinear quark propagator carrying moment
(P1k),

JP~k1!5
n̄•P

~P1k!21 i e
5

1

n•k1P'
2 /~ n̄•P!1 i e

. ~68!

Finally, the remaining matrix element in Eq.~67! is purely
usoft,

S~ l 1![
1

2 E dx2

4p
e2~ i /2!l 1x2

^B̄uT@ b̄vY#„~n/2!x2
…

3@Y†bv#~0!uB̄&

5
1

2 E dx2

4p
e2~ i /2!l 1x2

^B̄uTb̄v„~n/2!x2
…

3P expS igE
0

x2/2
dl n•A~nl! D bv~0!uB̄&. ~69!

In the second line, we have used the multiplicative nature
the Wilson linesY(x2/2)Y†(0) illustrated in Fig. 9. If we
usehv

(0) and Sv from Sec. II, then Eq.~67! reproduces the

FIG. 9. Wilson lines that appear in the time-ordered product
B→Xsg. The vertical double lines represent the heavy quarks al
directionv and the diagonal single lines are the usoft Wilson lin
Y, along directionn. The parts from2` to 0 cancel leavingY(0,x).
s

f

Wilson line contour in Ref.@7#. The universal nonperturba
tive function S(k1) encodes all the relevant informatio
about the usoft dynamics of theB meson, and is the structur
function introduced in Ref.@6#,

S~k1!5 1
2 ^B̄vub̄vd~ in•D2k1!bvuB̄v&, ~70!

where the1
2 accounts for our normalization for the state

Equation ~70! makes clear the physical interpretation
S(k1) as the probability to find theb quark inside theB̄
meson carrying a residual momentum of light-cone com
nentk1. The structure function is real, has support over
infinite range2`<k1<L̄, and peaks aroundk1.0.

Inserting Eq.~69! into Eq. ~67! and taking the imaginary
part gives

1

G0

dG

dEg
5H~mb ,m!E

2Eg2mb

L̄
dk1S~k1!J~k11mb22Eg!

~71!

with the jet function

J~k1![2
1

p
Im JP~k1!. ~72!

The result in Eq.~71! agrees with Ref.@7# and is valid to all
orders inas and leading order inLQCD/Q, whereQ5Eg or
mb . The lower limit of integration is fixed by the fact tha
J(k1) is nonzero only for positive values of its argumen
and the upper limit is fixed by the support of the shape fu
tion S(k1). In summary, at leading order inl the photon
energy spectrum is given by the hard coefficient in Eq.~62!
and the collinear functionJ(k1) both calculable perturba
tively, together with the nonperturbative structure functi
S(k1) of the B meson. Thus, Eq.~71! shows how to match
onto this shape function consistently at any order inas .

VI. CONCLUSIONS

In this paper, we considered the interactions of colline
soft, and ultrasoft~usoft! particles in an effective theory. Th
soft-collinear effective theory~SCET! is organized with a

r
g
,
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power counting inl or equivalentlyLQCD/Q, whereQ de-
notes the large momentum in an energetic process or
large mass of a heavy quark. The lowest-order Lagrangia
determined by power counting together with collinear, so
and usoft gauge invariance. Collinear gauge invariance
like a reparametrization invariance on collinear fields a
constrains Wilson coefficients to depend only on the la
momentum picked out by the label operatorP̄.

In the collinear Lagrangian, the usoft gluons appear
background fields. Power counting and gauge invariance
low only then•] usoft momentum andn•Aus usoft gluons to
appear in the collinear Lagrangian at leading order inl. At
this order, a field redefinition involving a Wilson lineY was
identified under which all usoft gluons are decoupled fro
collinear fields while reappearing explicitly in collinear o
erators. Soft gluons couple in a somewhat different man
Since they cannot interact with a collinear particle witho
taking it far off-shell, they do not show up in the colline
Lagrangian. A collinear-soft interaction produces a parti
with momentaQ(l,1,l), and these are integrated out in co
structing operators in the effective theory. This was done
all orders in Appendix A. As a result, then•As soft gluons
appear in a Wilson lineS which shows up in a way tha
preserves the gauge invariance of operators with soft
collinear fields. This is similar to the appearance of the c
linear Wilson lineW, which is necessary to construct gaug
invariant operators with collinear fields@3#. With the n•A
usoft and soft gluons explicit in operators, the manner
which they factor from collinear fields is readily seen.

Two examples of the simplicity of factorization in th
effective theory were given. As an exclusive example,
discussedB→Dp in Sec. V A. In the limit of infinitely
heavy quarks and pion energy, we discussed how soft
usoft gluons decouple from the collinear quarks and glu
that make up the pion. In Sec. V B, we discussed factor
tion for the inclusive decayB→Xsg in the region of large
photon energy. In this case, usoft gluons factor from theXs
collinear jet function,J(k1), in a way that leaves a non
trivial convolution ofJ(k1) with a usoft light cone structure
function,S(k1), for theB meson.

Throughout this paper, we have focused on results wh
appear at leading order inl in the SCET. However, the rea
advantage of the effective theory approach is that the st
ture of power corrections can be addressed in a system
way. To do so, one must simply extend the effective L
grangian and currents to subleading orders inl. In the lan-
guage we have developed, such an analysis should be
similar to the analysis of 1/m corrections in HQET. In gen-
eral, the resultingO(l) results will be described in terms o
the same~u!soft and collinear degrees of freedom, but w
not necessarily obey factorization formulas. The power
the effective theory language is that it is general enough
describe these corrections in terms of subleading operat
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APPENDIX A: INTEGRATING OUT Q„l,1,l… MODES

In this appendix, we explicitly integrate out the off-she
modes that arise in QCD when soft and collinear partic
couple to one another. In Sec. IV B, an orderg2 matching
calculation was performed in which off-shell modes we
integrated out leaving behind the collinear and soft Wils
lines W andS. This calculation was performed by matchin
directly from QCD onto the effective theory, without speci
cally identifying the off-shell fluctuations. Since the sum
soft and collinear momenta givesp;Q(l,1,l), some off-
shell propagators have off-shellnessp2;Q2l!Q2, and it is
interesting to see how they can be integrated out of
theory reliably to all orders in the coupling.

To facilitate integrating out the off-shell modes to all o
ders, we find it useful to introduce auxiliary fields for the
fluctuations as an intermediate step. First we match on
Lagrangian with couplings between the on-shell and off-sh
fields, and then the off-shell fields are explicitly integrat
out. A simple example illustrating how this works is the a
pearance ofW in the current coupling of an ultrasoft heav
quark and a collinear quark,jn,pWGhv . The full QCD cal-
culation was displayed in Fig. 1. Instead of immediately
tegrating out the off-shell lines, consider first matching on
an action with an auxiliary fieldcH for the off-shell heavy
quark. The vertices then include the initial production of t
cH , its interaction with then̄•An,q gluons, and its annihila-
tion at the current. For the auxiliary Lagrangian and curr
we find

Laux@cH#5c̄Hgn̄•An,qhv1c̄H~ n̄•P1gn̄•An,q!cH ,

J5 j̄n,pG~hv1cH!. ~A1!

The spin structure in the vertices and propagator always m
tiplies to give a projector on the final on-shell fieldv”hv
5hv , so we have simplifiedLaux by suppressing this struc
ture. We also will suppress then•p label on the fieldcH .
Unlike for on-shell fields, the power counting forcH is not
unique. Choosing the measured4x;l22b one finds cH
;lb. However, this arbitraryb dependence cancels betwe
the vertices in whichcH is produced and the current whic
annihilatescH . This makes any graph involving the vertice
in Eq. ~A1! of order l0. Using Eq.~11!, one can solve the
equation of motion for thecH field in terms of the usoft
heavy quark fieldhv ,

cH5~W21!hv . ~A2!

This solution sums the tree-level graphs in Fig. 1. Insert
Eq. ~A2! into J in Eq. ~A1! then gives

J5 j̄n,pWGhv , ~A3!
2-14
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FIG. 10. Mixed gluon vertices
with off-shell AX

m gluons ~spring
with a double line!, soft gluons
~spring!, and collinear gluons
~spring with a single line!. Purely
soft or purely collinear vertices
are not shown.
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which is the expected gauge-invariant current in the effec
theory. This is the same result obtained in Ref.@2# by explicit
matching from QCD.

For the case of off-shell fluctuations induced by so
collinear interactions, the situation is more complicated a
the above auxiliary field approach turns out to be crucial
an all orders matching calculation. In this case, collinear g
ons still knock the soft particles off-shell, but the soft pa
ticles also knock the collinear particles off-shell. Therefo
one needs auxiliary fieldscH , cL , andAX

m for the off-shell
heavy quarks, off-shell collinear quarks, and off-shell gluo
respectively. HerecH is off-shell byp2;Q2, while cL and
AX

m are off-shell byp2;Q2l. Both of these scales are muc
greater than the fluctuation scales for on-shell particles wh
have p2&Q2l2. For simplicity, we will suppress both th
n•p;l labels oncL andAX

m and then̄•p;l0 label onAX
m .

Just likecH , the power counting for thecL andAX
m fields is

not unique, but this dependence again cancels between
duction and annihilation vertices in any graph. Takingd4x
;l22l , one finds cL;l l 21/2 and (n•AX ,n̄•AX ,AX

')
;(l l ,l l 21,l l 21/2).

To ensure gauge invariance under soft and collinear ga
transformations, the gluon fieldsAs,p

m andAn,q
m are included

as background fields. We also include interactions with a
quark,qs , and a collinear quark,jn,p . The Lagrangian for
the interaction of these fields with the off-shell modes can
obtained by expanding the QCD Feynman rules and in e
case keeping only the leading term inl. From these Feyn-
man rules, one can construct the quark and glu
Lagrangians for interactions with the auxiliary field
cH ,cL ,AX . For the auxiliary quark Lagrangian we obtain

Laux
~q!@cH ,cL ,AX#5c̄H~gn̄•AX1gn̄•An,q!hv

1c̄H~P̄1gn̄•AX1gn̄•An,q!cH

1 j̄n,p~gn•AX1gn•As,p!cL

1c̄L~n•P1gn•AX1gn•As,p!cL ,

~A4!

where again the spin structure is suppressed. We see ex
itly that only then̄•An,q andn•As components appear. Thi
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is also true for pure gluon vertices, and expanding we fi
contributions from the graphs shown in Fig. 10. The Fey
man rules for these graphs are reproduced by the auxil
gluon Lagrangian

Laux
~g!@AX#5

1

2g2 tr $@ iD X
m1gAX

m ,iD X
n 1gAX

n #%2

1
1

aL
tr$@ iD Xm ,AX

m#%2, ~A5!

where

iD X
m5

nm

2
~P̄1gn̄•An,q!1

n̄m

2
~n•P1gn•As,p!. ~A6!

Recall thatP̄ picks out only then̄•p component of the mo-
mentum label which is of orderl0 and n•P picks out the
n•p label of orderl. The terms inLaux

(g,q) do not scale homo-
geneously withl, but all graphs with auxiliary fields on only
internal lines are of orderl0. Finally, we note thatLaux

(g) is
symmetric under the interchanges

n̄↔n, P̄↔n•P, n̄•An,q↔n•As,p . ~A7!

A further simplification can be achieved by taking

AX
m5

nm

2
n̄•AX1

n̄m

2
n•AX . ~A8!

This is sufficient since all theAX
' gluons come in pairs, and

can therefore never be produced and subsequently an
lated by coupling to the externaln̄•An,q and n•As,p fields.
Finally, since the auxiliary fields are far off-shell and do n
really propagate, loops involvingcH , cL , or AX

m ~or off-
shell ghosts! do not need to be considered.~Such loops could
contribute to hard corrections, but cannot spoil the infra
structure of the operator generated by eliminating th
modes.! Thus, for our purposes Eqs.~A4! and~A5! reduce to
a classical two-dimensional QCD action coupled to exter
adjoint and fundamental sources.

We begin by integrating outcH and cL , and find solu-
tions similar to the result in Eq.~A2!,
2-15
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FIG. 11. Example of pure glue
graphs which look like they could
induce a four-gluon soft-soft-
collinear-collinear coupling, but
add up to zero.
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cH5~WX21!hv , cL5~SX21!jn,p . ~A9!

HereWX andSX satisfy

~P̄1n̄•AX1n̄•An,q!WX50,

~n•P1n•AX1n•As,p!SX50, ~A10!

and are essentially the Fourier transforms of the Wilson lin

WX~y!5P expH igE
2`

y

ds@ n̄•AX~sn̄!1n̄•Ac~sn̄!#J ,

~A11!

SX~z!5P expH igE
2`

z

ds@n•AX~sn!1n•As~sn!#J ,

where Ac and As are the position space collinear and s
fields. The solutions in Eq.~A9! still contain then•AX and
n̄•AX fields, which must be eliminated by solving the gluo
Lagrangian in Eq.~A5!.

The gluon action in Eq.~A5! contains two terms,Laux
(g1)

1(1/aL)Laux
(g2) . The second is a gauge-fixing term which r

moves the ambiguity associated with finding a definite so
tion for AL

m . The two terms can be solved independen
sinceaL is arbitrary. We begin by solving the equations
motion for Laux

(g1) , which are

†iD X
m1gAX

m ,@ iD X
m1gAX

m ,iD X
n 1gAX

n #‡50. ~A12!

This is the direct analog of the QCD equations of moti
@Dm ,Fmn#50. To proceed, we write Eq.~A12! in terms of
WX andSX using

iD X
m1gAX

m5
nm

2
WXP̄WX

†1
n̄m

2
SXn•PSX

† ~A13!

to give

†WXP̄WX
† ,@SXn•PSX

† ,WXP̄WX
† #‡50,

~A14!

†SXn•PSX
† ,@WXP̄WX

† ,SXn•PSX
† #‡50.

It is sufficient to only solve one of these equations since
second is equal to the first under the symmetry in Eq.~A7!.
Expanding the first equation and usingWX

†WX5SX
†SX51

gives

2WXP̄WX
†SX~n•P!SX

†WXP̄WX
†2WXP̄2WX

†SXn•PSX
†

2SXn•PSX
†WXP̄2WX

†50. ~A15!
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We now make the following ansatz for a solution to th
equation:

SX
†WX5WS†, ~A16!

which satisfies the symmetry in Eq.~A7!. Inserting Eq.
~A16! into Eq. ~A15!, and using@P̄,S#50 and @n•P,W#
50, gives

2WXS~P̄2n•P!S†WX
†2WXS~P̄2n•P!W†SX

†

2SXW~P̄2n•P!S†WX
† . ~A17!

Now the ansatzSX
†WX5WS† implies W†SX

†5S†WX
† and

SXW5WXS so the three terms in Eq.~A17! cancel. Thus,
Eq. ~A16! is indeed a solution of the equations of motion fo
Laux

(g1) .
The solution in Eq.~A16! gives only one equation for the

two unknowns,n̄•AX andn•AX . The remaining redundancy
is removed by demanding the vanishing of the gauge-fixi
term,

2@ iD Xm ,AX
m#5@P̄1gn̄•An,q ,n•AX#

1@n•P1gn•As,p ,n̄•AX#50. ~A18!

In terms ofWX andSX , Eq. ~A18! implies that

@WP̄W†,SXn•PSX
† #1@Sn•PS†,WXP̄WX

† #50. ~A19!

Together Eqs.~A9!, ~A16!, and~A18! solve the Lagrangian
for the auxiliary quark and gluon fields and sum up a
graphs with off-shell lines that involve heavy and light fe
mions coupling to soft and collinear gluons.

It should be emphasized that the Lagrangian in Eq.~A5!
does not induce pure glue operators which couple soft a
collinear gluons. Using Eq.~A13! to write Laux

(g1) in terms of
WX andSX and then substituting in the solution in Eq.~A16!
givesLaux

(g1)50 ~using similar techniques to those used for th
equations of motion!. Furthermore, Eq.~A18! implies that
Laux

(g2)50. Thus, no pure glue soft-collinear couplings are i
duced by integrating out then̄•AX andn•AX fields. This fact
can also be seen perturbatively. As an example, consider
diagrams in Fig. 11. Here we show the three graphs w
vertices from Eq.~A5! that contribute to the four-point func-
tion with two soft and two collinear gluons. Adding the thre
graphs gives zero, so no operator with two soft and tw
collinear gluons is induced.

As a nontrivial example of the above results, consider t
2-16
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heavy-to-light soft-collinear current discussed in Sec. IV
In terms of the auxiliary fields, this current is

J5~ c̄L1 j̄n,p!G~hv1cH!. ~A20!

Inserting intoJ the result in Eq.~A9!, we find

J5 j̄n,pSX
†GWXhv . ~A21!
s

ky

da

05402
.Finally, using Eq.~A16! gives

J5 j̄n,pWGS†hv . ~A22!

Thus, integrating out the off-shell heavy and light quarks a
all the off-shell gluons exactly reproduces the gaug
invariant current in Eq.~45!.
ys.
n,

da,
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