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Three loop estimate of the inclusive semileptonib—c decay rate
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The renormalization-scaleu) dependence of the two-loop inclusive semileptdmie cI’E decay rate is
shown to be significant in the pole mass scheme, and the decay rate is shown to be poorly convergent in the
MS scheme. Three-loop contributions to the decay rate are estimated by developingppeaiémant tech-
niques particularly suited to perturbative calculations in the pole mass scheme. An optimizezsfadee of
the three-loop contributions is obtained by comparison of the Ratimates with the three-loop terms deter-
mined by renormalization-group invariance. The resulting three-loop estimate in the pole-mass scheme exhibits
minimal sensitivity to the renormalization scale nga+1.0 GeV, leading to an estimated decay rate of
1927%T (b—cl~ 1))/ (G2|Vp|?) =992+ 217 GeV inclusive of theoretical uncertainties and nonperturbative
effects.
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[. INTRODUCTION variance, and the strong scale dependence that is found
serves to motivate an estimate of next-or@tbree-loop ef-
The Cabibbo-Kobayashi-MaskawéCKM) matrix ele-  fects.
ment |V, which parametrizes one of the sides of the uni- The scale dependence of the decay rate is an important
tarity triangle, can be extracted from the inclusive semilep-component of the procedure for estimating three-loop correc-
tonic decay rate '(B—X.J 7). From a theoretical 1ONS t0 theb—c semileptonic rate. Using information ob-
perspective, the inclusive process has the advantage that nc}ﬁ‘!ned from' RG invariance, Pawproglmatlon mgthods are
. o i developed in Sec. Il that are appropriate for estimating next-
perturbative contributions are controllable; hence, an accu- o : .
- order terms within pole-mass perturbative calculations. An
rate perturbative determination of the-cl™ » decay rate is  gptimized Padeestimate of the three-loop constant coeffi-
of value in obtainingV,| from data. cient(i.e. the nonlogarithmic terjris obtained by finding the
Complete two-loop calculations of semileptohie>c de-  best agreement between Pagltimates and true values of
cays exist at the end points of the lepton invariant mass spethe RG-accessible three-loop coefficients of logarithms. The
trum (maximal and zero recgil[1] and at an intermediate RG determinations of these latter coefficients in conjunction
kinematic valug2]. From these explicit calculations, the to- with the optimized Padestimate of the constant coefficient
tal semileptonic decay rate at two-loop order has been estiogether constitute a scale-sensitive estimate of the full three-
mated[2]. In this present work, we extend these results toloop contribution to the perturbative rate.
generate an estimate of the three-loop contributions to the This Padeestimate of aggregate three-loop effects allows
b—>c|’7| decay rate via renormalization-group and Radethe renormalizat_ion-scale dependence_oftthecl‘_v[ decay
approximant methods. rate to be studied. In Sec. IV, a region of minimal scale
In Sec. Il we demonstrate that the pole mass scheme us@§nsitivity [4] is found in the resulting decay rate. This
in [2] has better perturbative behavior than the modifiegMinimal-sensitivity scale is founq to .be close to the fastest—
minimal subtractionl(/I_S) scheme for thb— ¢ semileptonic apparent-convergence renqrmallz_ann scale at Wh'Ch the
decay rate, a result which is somewhat surprising since thgree-loop contributions vanish en_tlr_e{ly]. The proximity of
— . o ) ese two scales supports the validity of these scales for ob-
MS scheme is better behaved within calculations of lthe

—u semileptonic decay ratg8]. The renormalization scale taining estimates of the three-loop perturbative cl » de-
dependence of the two-loop—c rate in the pole mass cay rate. Theoretical uncertainties in this estimate are consid-

scheme is extracted using renormalization-gr¢Rg) in- ered in Sec. V.

Il. SCALE DEPENDENCE OF THE TWO-LOOP RATE
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F(r)=1—8r—12r2log(r)+8r3—r* 2) 1300
1200 1
preceding the perturbative seri®@svhose two-loop contribu-
tion at u>=m,m, has been estimated {i2] by combining 1100 1
explicit results at the end and intermediate pojitg] of the 1000 ~
decay spectrurh: 900 |
ag(\ymym ag(\mym o 800
S M,O}=1—1.67S(—b&—(8.9i0.3) S
7T w 8
ag(Jmpme) |? v 2
X| ———=| . 3) 500 -
a
400 A
If we assume central values,(m,)=0.33[6,7] and my, 300
=4.9 GeV([8], and if we follow Ref.[2] in assuming that
m.=0.3m,, we find thata evolves fromu=m_ through 200 1
the four-loop, four-flavar (n;=4) pB-function [9] to 100 A
ag(ympym,)/7m=0.087, in which case §0.087,0=1 0 : : : : : : :
—0.145- (0067'_“0002) It is evident from EQ(3) that 05 15 25 35 45 55 6.5 75 8.5

truncation after two-loop order introduces theoretical uncer-
tainty of order 8.5%+¢ 0.067/0.79).

There are, of course, other sources of theoretical uncer- FIG. 1. Renormalization scalg.) dependence of the two-loop
tainty. Ambiguities concerning the definition of a pole massreduced ratd'/K in the pole mass scheme.
in the presence of nonperturbatif@mnfinementeffects have
led the authors of Ref.2] to reparametrize the ratd) in Sx(w),L()]=1+ (ag+a;L)x+ (bg+b;L+b,L2)x2,
terms of “low-scale” masses obtained through additional (4
phenomenology—we will ultimately compare our results to
the reparametrized rate in Sec. V. In light of more recent ag=—1.67, by=—8.9+0.3,
work [3,8,10,11 specifying accurate pole mass values by
relating pole masses S andY -scheme masses with three- as(p)
loop precision, we take a more empirical approach to the X(p)=
utilization of pole masses within inclusive semileptonic
rates. — . .. The renormalization-scale invariance of the all orders rate

Renormalization-scale dependence provides an addltlom?\rln lies that
source of theoretical uncertainty to any rate calculated via P
the serieq3). If Svaries for different choices of, a value
for I' extracted from any particular choice of (e.g., u? 2£_

: : ; 0 (6)

=mpm,) is compromised. The optimal value pf has been du?
argued to be the choice for whichhas minimal sensitivity
to the renormalization scalf4] i.e., the point at which hence that
dSdu=0. For Eq.(3) to lead to a reliable estimate of the
true semileptonid— c rate, one would not necessarily need I x,L] ) 3 . I x,L]
to establish thag?=m,m is such a “principle of minimal == (BB Bx ) —— (1)
sensitivity” (PMS) point, but rather that the rate calculated at
this value of differs only inconsequentially from the rate \here the normalization of QCIB-function coefficients is
calculated at the true PMS value af Any discrepancy be-  explicitly defined by
tween rates calculated af=m,m, and atupys is a direct
measure of the former rate’s theoretical uncertainty arising

n(Gev)

ks

2
, L(M)E|09( - ) ()

mMpMe

o T X
from renormalization-scale aml:_ngu.l'ues. . M2—2 =—(BoX?+ B3+ Boxt+ - -) 8)
The two-loop order renormalization-scale dependence im- du
plicit in the perturbative series within EL) may be param-
etrized as follows: with n¢=4 values B,=25/12, B,=77/24, and S,

=21943/3456in the MS schemg It is easily seen from Eg.
(7) that the logarithmic coefficients within E¢4) are

The O(a?) coefficient quoted in Eq(3) [A. Czarnecki(personal

communicatiol] has been slightly corrected from the values.4 a;=b,=0, by=a8,=—3.479. 9
+0.4 appearing in Ref2].

2The use of four contributing flavors is necessary siagés ref-  In Fig. 1, we have plotted the mass- and scale-dependent
erenced to four flavors in E3) [2]. portion of the ratg1):
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1600

r 5|:( mﬁ) Six() L] 19273 i
_=mb - X M ] /.L ] =70 y 1
K m; GE[Veul? 1400 -
(10 1300 |
1200 A
as a function ofu. The Fig. 1 curve is obtained by assuming 1100 1

mpy=4.9 GeV[8], m.=0.3my [2], and the central valubg ~ 1000+
= —8.9 from the estimat¢2] given in Eq.(5). Substantial > 900
scale dependence is evident from the figure: the rate in-© 800 -
creases monotonically witje, flattening out somewhat for « 700 -
larger values. Moreover the curve exhibits no PMS point = 600 |

5

(i.e., extremum and atu=ym:m,=2.68 GeV yields a rate 500 1

10% smaller than théstill increasing rate atu=8 GeV, 400 -

the flattest portion of the curve shown in the figure. Thus, the 200

two-loop pole-mass calculation of tihe-cl ™ v, rate exhibits 200 4

at best only poorly-controllable dependence on the choice of 100

renormalization scale. Such scale dependence may compr¢ 0 . . . . . . .

mise any subsequent “low-scale” mass expression devolving 05 15 25 a5 45 55 65 75 85
from the two-loopu = ymym, pole-mass rate. L (GeV)

Similar scale dependence and even worse apparent non-
convergence characterize the two-loop order pole-mass cal- FIG. 2. Renormalization scalgs) dependence of the two-loop
culation of theb— ul~, rate, thereby motivating a recasting reduced ratd'/K in the MS scheme. In théS schememy(x) is
of the calculation in terms of thBIS runningb-quark mass ~©btained from the four-loop;=4 anomalous mass dimensifie]
[3]. For four contributing flavors, the two-loop relationship YSi"9 my(my) =4.2 GeV[8] as a reference value.
between pole an¥IS running quark masses [i40]

I"MS
T=m§(,u)F(O.O9)[1—1.02((,u)+18.2(2(,u)],
4 2
mPe'e=m(u) 1+(§+Iog > )X(M)
m(u) w=0.3my(w). (13)
415 w? _
+110.3919F —> log| —— The convergence of thiglS perturbative series is even more
m*() ill-behaved than its pole-mass versi@8). Moreover, the
37 2 scale dependence of E(L2) is shown in Fig. 2 to be even
+ _|092< H )XZ(M) ] (11 more pronounced than that of the same rate in the pole-mass
24 m*( ) schemgFig. 1)—Fig. 2 displays a rate which decreases with

w with no apparent PMS point.

- . L Thus theMS approach, which substantially improves the
By substituting this relation into Eqsl), (4), and(5), we perturbative series within the semileptoriie—~u rate [3],

find that the fully MS version of the mass- and scale- t5jis 1o improve the pole-mass expressids—(3) for the
dependent portiofl0) of theb—cl™» decay ratdusing the  semileptonicb—c rate. If this latter rate is to be utilized to
central valueny=—8.9) is extract an estimate diV,,| from the inclusiveB— X, v,
branching ratio, there is evident value in having an estimate
of next-order corrections in order to obtain some control over

MS 2 2
F_:mg(lu)p m_g 1+5.00+5 log ;L (1) renor.mallization-scale dependence. Th.is three-loop order
K mg my(u) contribution toS[ x(u«),L(x)] is necessarily of the form
2 2
+ 49.3—1.74Iog{ > +45.4|09( f ASHIX(p),L(m)]=[Co+ CiL(p) +CoL % ()
mel(#) mo(4) + ol ) X3 u). (14
2
+4—25I o ~ x2(w) . (12 The RG equatiori7) implies that
24 ma() a P
0=alx+(bl—aOBO)X2+(2b2—,BOa1)X2L
Note thatF(m2/mZ) remains RG invariant ifm.—mg(u) e 28 b anB [ 26— 28-br — Bras XL
andm,—mp (). If u?=my(u)m.(ux) and if we continue to [€2=2Bobo™a0f:] [262=2B0b1 = Ara]
assume tham,(u)=0.3m,(u), then +[3c3—2Bxb,]x3L2+ O(x%). (15)
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The set of result$9) are evident from the requirement that Ri_ R,
O(x), O(x?), andO(x’L) terms in Eq.(15) separately van- 1+ )x R2
ish. The vanishing of subsequent terms in EEp) implies s, (x)= Rl =1+ Ryx+ Ryx2+ R_2x3+ .
that 2 1
1 Rlx
c1=2boBo+a0B1, Cr=aoB5, C3=0. (16) (22)

For ay andbg as given in Eq(5) and three massless flavors The predicted value for the unknown coefficiéty is

as appropriate to phenomenology devolving frag(m.
EG]), pprop p ay g fra(m,) RUM-RYR, . (29

In general, one can always use pN|M] approximant
(19) to predict the first unknown series coefficidRy , y 4 1
Such predictions have accuracy which increased asd M
increase. For perturbative field-theoretical sefigsaracter-
Ped by asymptotidRy~ N! behavio) the accuracy of such

C,=—42.4+1.3, c,= —7.25, c3=0. (17)

The coefficientcy, however, is RG-inaccessible to these or-
ders of perturbation theory, and requires a direct three-loo
calculation. In the absence of such a calculation, we estimatge jictions has been argued by Ellis, Karliner and Samuel to
Cop in the section which follows via asymptotic Paaeprox- satisfy the relative error formulgL4]

imant methodology, in much the same way as in a prior

estimate [13] of the three-loop contribution to théd
—ul”», decay rate. ARRIN 4 - RRYW: 1~ RS 1 - MIAY
RNYM+1 RN+ 1 (N+M+aM+b)™
(24)

ll. RG-PADE ESTIMATE OF Co

Consider a perturbative field-theoretical series with ~WhereA, a, andb are constants to be determined. Of particu-
+M known terms: lar interest are the relative errors obtained from &4) for
the predictiong21) and(23)

S(X)=1+Ryx+Rox?+ - - - + Ry, yxV M+ ... (18 )
Ri—R, A
. . . =- : (25
The set of known coefficienteR;,R,, . .. ,Ry.m} is suffi- R 1+(a+b)
cient to determine in full thé&d+ M coefficients characteriz-
ing an[N|M] Padeapproximant to the serie® Rﬁ
P R3
2 N Ry A (26)
I+aXx+aXxe+-- - +apyX = :
Sinmy(X) = . (19 Rs 2+(a+b)

1+bx+byx2+ - - +byxM
Denoting the constarda+b=k, we can eliminate the other

The coefficients{ay, ... .,ay,bs, ... by} are obtained by constantA within Egs.(25),(26) and solve forR; algebra-
the requirement that the power-series expansio®gfy; () ically to obtain the improved estimate
recovers theN+M known coefficients within Eq(18), the
seriesS(x). The nextO(xN*M*1) term in this power series (2+k)R3
is a Padeapproximant prediction for the first unknown coef- R3:(1+k)R—3+RR'
ficient Ry v+ 1. FOr example, if only the next-to-leading or- 1rrane
der coefficientR; is known, one can use this coefficient to
construct §0|1] approximant to the serigd8),

(27)

The assumptiokk=0 has been utilized in prior applications
to predict successfully the third subleading contribution to
1 the QCD MS g function [14], the dimensional reduction
Sioj13(¥)= TR~ 1+Rx+R%+ - - -, (200  (DRED) SQCDg function[15], theMS g function for mas-

1 sive scalar field theor16], as well as to obtain estimates of
such contributions for a number of processes calculated in

for which R is the predictedvalue ofR,: the MS scheme: SM17] and minimal supersymmetric stan-
dard model(MSSM) [18] Higgs boson—2 gluon decay
RPM=RS. (21)  ratesp—ul "y [13], W"W~—ZZ[16], and the QCD static
potential function19].
Similarly, if R; and R, are known(corresponding to two The choicek=0, however, is ill suited to pole-mass cal-

subleading orders of perturbation theprpne has enough culations. To see this, consider the seri@saugmented by
information to construct 41/1] approximant to the series (14) within Eq. (1) characterizing the pole-mass expression
(18): for theb—cl™ v, decay rate

054021-4
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x,L]1=1+(ag+a,L)x+(by+biL+b,L?)x? 1
L] (3* @yl )xt (Bo+bal-+b,L%) Nj=(j+2)J0WJ”(CO—cllogw+czlogzw—c3log3w)dw.

+(Co+CiL+ L%+ c5L3)x3 (28) 33
a 2 .
= s(m) ' L=Iog( it ) In particular, we see that
myMe
N_1:CO+ Cl+ 2C2+ 6C3 (34)
We have already seen that,=—-1.67a,=0,bp=—-8.9
+0.3b;=a9By=—3.48b,=0. The above series is in the 1 1 3
form of Eq.(18) with R; andR, respectively identified with No=Co+ 5C1F 5C2+ 7C5 (35
ag+a;L andby+b;L+b,L2 If k=0, we see from Eq27)
that 1 5 5
N1:Co+_cl+_02+ _C3 (36)
2(bg+b,L)3 3 ? 9
3=
ao(a5+bo+bsL) N 1 1 3 3
2b§ 2=Cp*t ch+ §C2+ 3—203. ( 7)

2 2b, 2 0
a—L +a—(2b0—aO)L+O(L ). (29
0 0 If k#—1, such a procedure is seen to lead to a non-zero

) ) ] o value ofcs, in contradiction to the resuti;=0 (16) neces-
Comparing this expression to the forth4) anticipated for  g4rjly following from application of the RG equatiof?)
the third subleading order &[x,L ], we necessarily obtain \ithin the pole mass scheme. For the clise— 1, however,
the following predictions for the RG accessible coefficientsyo result(27) collapses to the naive estima®3), which in

C2,Cy. the pole mass scheme is necessarily a degree-2 polynomial in
% L:

Co,=2—=2a0f5, (30) RZ 1 b2 b.b b2

dp (k=-1)_ 2 _ 2 M1, o 1Mo 0

=—"=—(by+ =—L24+2—L+—.

Ry R, ao(bo b,L) 2 L“+2 ag L 2 (39
by

Cl=2(2b0_ag)a_o=4B0b0_2ﬂoag- (3)  The moment procedure described above then reduces to fit-

ting the degree-3 polynomi&z=czL3+c,L2+c L +cq to
the degree-2 polynomial in E¢38). Such a fit necessarily
reduces to equating the powersloin these two expressions.
We thus find that; must be zero, and that

It is evident from Eqs(16),(17) that these predictions are
quite poor; Eq.(30) is double the true value far,, as ob-
tained in Eq.(17), andc, is also badly overestimatddor

values(9) and the central valuby= —8.9, Eq.(31) implies b2
that c;=—85.8, in contrast to the corre¢RG) value c; Co=— = a3 (39)
=-—424]. do
For a given choice ok, estimates of the coefficients
characterizing the third subleading order have been obtained bibg
for correlation functiong20] and theb— ul~ v, rate[13] by cl—2a—0—2,80b0 (40
moments ofR3, as estimated in Eq27), over the entire
ultraviolet regionfe.g.,u?/(mym.)=1 for the case at hafd b2
These moments are then equated to corresponding moments co=a—0. (41

of Rg=cgy+c;L+c,L2+c3L3 in order to obtain values for
{cg,C1,C5,C3). If we definew=mym,/u? (L=—logw), the

moments Equation(39) is in exact agreement with the resit6) ob-

tained via RG-invariance from Eg7). Equation(40) repre-
1 sents the firstand dominantcontribution to the RG deter-
Nj= (] +2)f Wi IR;(w)dw (32 mination ofc, in Eq. (16). For the central valuby,=—8.9
0 (andn;=4) the (40) predictionc,;=—37.1 is not far from
the true valuec; = —42.4. The accuracy of these results pro-
can be obtained using E€R7) for the integrandR;, which ~ vide some support to the naive estimage= —47.4 obtained
becomes a function of for our pole mass case by virtue of via Eq. (41) for the RG-inaccessible coefficien.
the w-dependence oR,: R;=ag,R,=by—bilogw. After We can further improve our estimate fog by finding the
(numerical computation of the values ®f; , the coefficients  value ofk within Eq. (27) which, when used within the in-
c; are obtained by equating such values to the correspondirtggrand of Eq(32) to match the moments; to Egs.(34)—
integrals (37), most closely reproduces the true valuespéndcy, as

054021-5
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determined by RG methods in Eq46) and(17). In such a
procedure we obtain estimated valuesdgr c,, ¢4, andcg
that depend explicitly ok

1 27 32
Co(k)=— EN—l(k)+4No(k)_ 7N1(k)+ gNz(k)
(42)

3 189
€1(k) =5 N-1(k) = 32No(k) + —=N1(k) = 64N(k)
(43

3 189
ca(k)= = 5N 1(K)+38No(K) ~ —-Ny(K)

176
+_

3 Nalk)

(44)

2 32
C3(k) =3 N-1(k) = 8No(k) + 18Ny (k) = = N(k)

3
(45
where
(2+K)(bo— bylogw)3
(1+k)a3+ag(by—blogw)

1
N,—(k)z(j+2)JowJ+1

(46)

We then use the explicit values fof andc, obtained from

PHYSICAL REVIEW D 65 054021

0.024

0.022

0.020 4

0.018 A

0.016 -

0.014 -

0.012 A

0.010 A

0.008 -

0.006 T T T T T T T

FIG. 3. The quantitA measuring the sum of the squares of the
relative errors in the Padestimate(43),(44) of the RG-accessible
three-loop coefficientgc,,c,} plotted as a function of the error-
formula parametek (27). The location of the curve’s minimum
represents the value &fleading to an optimized Padsstimate.

valuesc;=0, c;=—42.4, andc,= —7.25 as determined by
RG invariance(17) in the previous section. Solving each

Eq. (17) by RG methods to optimize the sum of the squaressquation separately far,, we find that

of the relative error of estimated values@f andc,,
2
E
(47)

with respect tok. For the set of valuesy,=—1.67bg
=—8.9,80=25/128,=77/24, we find a clear minimum of
A(k) at k=—0.94, as evident from Fig. 3, consistent with
the case made in the preceding paragraph for an optimal
value close tdk=—1. Corresponding= —0.94 values for
the moments\; are obtained numerically via E¢6)

co(k)— 22082
28085

C1(k)—(2Bobg—2apB1)
2Bobo—apB1

)2

A(k)z(

N*l: - 1063, NOZ - 7492, Nl: - 6617, N2: —-62.12
(48)

and these values lead via Eq42)—(45) to the following
estimates for the third subleading order coefficients:
c3=2.0x10%, c,=—-7.68, ¢c;=—39.7, c,=—51.2.
(49

CO:N,l_Cl_2C2_6C3:_49.4, (50)
1 1 3
COZNO_ EC]__ §C2_2C3:_50.1, (51)
1 2 2
1 1 3
Co= N2_ ZC]__ §CZ_ 3_2C3: —50.6.
(53

The estimate$50)—(53) are remarkably consistent with each
other and only slightly smaller in magnitude than the esti-
mate in Eq.(49) obtained without RG inputs fdic,,c,,C5}.

In estimating the third subleading order of HEd4), the
series within the ratél), we choose Eq(51) as the most
central of ourcy estimates, in conjunction with the explicit
RG determinations of; andc, (c3=0). This set of values

These values reflect excellent agreement with the RG valuds obtained, as noted earlier, for the central value estifizdte
(17). The above estimate for the RG-inaccessible coefficiendf by:
Co is only 20% larger in magnitude than the naive prediction

(41), indicative of the internal consistency of the methodol-

ogy.

We conclude by noting that four separate estimates,of
can be obtained from Eq$34)—(37) by substituting into
these equations the optimid| values(48) as well as the true

by=—8.9: {cg,c1,Co}={—50.1-42.4~7.25. (54
Precisely the same procedure can be used to obtain corre-
sponding estimates dfcy,cq,C,} for the extremes of the
bo=—8.9+0.3 range obtained if2] (see footnote jt
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1300 minimal sensitivity(PMS) value of u, the successive terms
1200 - of the seriesS[ x,L] exhibit reasonable convergence:
1100 1 /// x(1.0 GeV),L(1.0 GeV)]=1-0.258-0.049+0.020
1000 - (58
900 4
~ 800 Peus 110 GV _ 017 Gev. (59)
% K K
& 7001
~ 600 | Equation(59) corresponds to the minimal-sensitivity value
x for the rate, as discussed in Sec. Il.
5007 Note that the small three-loop contribution to E58) can
400 be tuned to zero by making only a small change in the choice

of the renormalization-scale parameter The value ofu at
which the three-loop term vanishése., the value ofu at
200 1 which the Fig. 1 two-loop and Fig. 4 three-loop curves inter-
100 sec} corresponds to the renormalization scale associated
0 . . . . . . . with the “fastest apparent convergenc@”AC) of the series
05 15 25 35 45 55 65 75 85 S[x,L]. This occurs au=1.18 GeV:

300 A

B (Gev) S[x(1.18 GeV,L(1.18 GeVj]=1—0.226-0.058+0

FIG. 4. Renormalization scale.) dependence of the three-loop (60)

reduced ratd’'/K in the pole mass scheme. The PMS point is rep-
resented by the local minimum of the curve. I'eac _ I'(1.18 Ge\Jz 1051 GeV (61)
K K '

bo=-9.2: {cy,cq,Co}={—-53.6-43.7-7.2 55
0 {Co.C1.Co}={ 3 59 It is striking that the FAC5] and PMS[4] criteria predict

virtually identical rates; moreover, a similar equivalence of
(56) rates obtained via these same two criteria is found for the

estimated three-loop contribution to the-ul ~ v, rate[13].

These estimates are obtained in precisely the same way &% both semileptonic processes, the PMS and FAC momen-
those of Eq.(54): ¢, and ¢, are identified with their RG tum scales are comparably small. The PMS and FAC scales
values via Eq(17), andc, is determined via Eq(51) with (1.0 GeV and 1.18 GeMor b—cl™ v, are respectively 37%
No(k) [see Eq.46)] evaluated at a value & which mini- and 44% of the logarithm reference scalgm,m,

mizes A(k) [see Eq.(47)]. The coefficientcs=0 for all =27 Gev. Forb—ul v, p,, =178 GeV andu_

cases, as evident in the previous section from RG Invariance. 1.84 GeV, numbers which are 42% and 44% respectively

chc: tsr;en?é’_a; 9f£)2bcisiaétge I;T)'Pl'am':Z'E% \éah::e_ ;?n?rﬁula of the logarithm reference scate,(m,)=4.2 GeV(3,13.
alue ofA (k) is foo nd to. o.cc ; ﬁerkz '_(') 93 Although the estimated three-loop rate plotted in Fig. 4
valu IS fod urw e exhibits much less dependence on the renormalization scale
u than the two-loop rate of Fig. 1, we anticipate the exis-
IV. SCALE DEPENDENCE OF THE THREE-LOOP RATE tence of residugl.-dependence as a consequence of the trun-
j— ) ) cation of the serieg57) after three-loop order. A way to
If bo=—8.9, the three-loop—cl " v inclusive estimated  g|iminate much of this residual scale dependence is to “undo

bO: —8.6: {CO ,C1 ,02}5{_ 475,_ 412,_ 723

rate is given by Eq(1) with the truncation” by choosing an appropriate Paaigproxi-
) mant to the serie€57). For example, &2|1] approximant to
Sx(p),L(p)]=1~1.67+(—8.9-3.479)x the serieg57) that reproduces its power series@§x®) is
+(—50.1-42.4. —7.28.2)x3. (57) L Ay(L)xt Ag(L)x2
g2M(x,L)=—t 2 (62)
The coefficients ok® are those of Eq(54), as estimated in 1+By(L)x

the previous section. Figure 4 displays a plot of théscale
dependence of the “reduced” three-loop rat&0) with
S[x,L] given by Eq.(57). The pole massesy, andm, are

where

50.14+42.4 +7.29.2

assumed to ben,=4.9 GeV andm.=0.3m,=1.47 GeV A(L)=—1.67 (63
consistent with values used|il]. Figure 4 clearly displays a 8.9+3.48

much flatteru-dependence than the two-loop rate plotted in 5

Fig. 1. In addition to this diminished dependence on the (L)=—(8.9+3.48)+1 6_,50-1+42-4L+7-25|—
renormalization scalg, the rate plotted in Fig. 4 also exhib- 2 ' ' e 8.9+3.48

its a distinct minimum aju=1.0 GeV. At this principal of (64)
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1250 (3) 2111 as determined via Eq$62)—(65), and
I (4) Sltl21 as determined via Eqg66)—(69).

1200 A The vertical scale of Fig. 5 is magnified compared to that of
Figs. 1 and 4 in order to accentuate the differences between
reduced rates obtained for each of the above scenarios. We
observe from Fig. 5 that both Padpproximant versions of
the rate coincide aftep=1.5 GeV and are considerably
flatter than the rate devolving from the three-loop version of
g x,L]. Indeed, the three-loop reduced rate is itself quite
stable, increasing slowly from 1066 Geb 1180 GeV as

1150

— ——
e

e
———

- w increases from 1.5 GeV to 8 GeV. Nevertheless, the two

/K (GeV?®)

1050 - /':‘.' — Three Loop Padeapproximant versiong o$[x,|7] vary only minimally
l‘; ------ Two Loop over the same range of, increasing from 1058 GeVat
5 — — [l]2] Pade w=15 GeV to 1079 Ge¥ at =8 GeV. Thus Pade
10004 [2]1] Pade

J; improvement of the three-loop rate virtually eliminates the

: residual scale dependence of the naively truncated expres-
sion. Such use of Padapproximants to eliminate residual
scale dependence is also evident in Fig. 3 of RES] for the

b—ul™ v, rate, and has been previously discussed in the con-
text of the Bjorken sum-rulg21] as well as in more general
FIG. 5. Scale dependence of different estimates of the reducet®rms [22]. Of particular interest, however, is the conver-
rate in the pole scheme. The solid curve represents the three-loggence of all four curves in Fig. 5 to virtually the same PMS
estimate presented in Fig. 4, and the dotted curve represents titg FAC point. This convergence lends further support to the
two-loop estimate also presented in Fig. 1. THé2] and[2|1] PMS or FAC estimatets9),(61) for the reduced rate.
Padeapproximants obtained from the three-loop estimated rate are
represented by the dashed curves which overlap almost completely
above =15 GeV. The PMS point is represented by the local
minimum of the three-loop curve, and the FAC point occurs atthe The entire analysis presented in Sec. IV can be repeated
intersection of the two- and three-loop curves. Note the converysing the extreme valuds,= — 8.6 andb,=—9.2, as esti-

950 T T T T T T T
0.5 1.5 2.5 3.5 4.5 5.5 6.5 75 8.5

n(GeV)

V. DISCUSSION

gence ofall the estimates near the FAC-PMS points. mated in[2] (again, see footnote) lutilizing Egs.(55) and
(56) for the appropriate determinations of three-loop coeffi-
BL(L)= 50.1+42.4.+7.29.2 65 cients in conjunction with the known valuesayf andb; (9).
J(L)=—

One finds the uncertainty in, is reflected in a-14 Ge\?
spread in the PMS or FAC value 1050 Gefér the reduced
Similarly, the known series tern{§7) are also reproduced in rate.

8.9+3.48

the power series of thigl|2] approximant Other sources of theoretical uncertainty arise from
ag(m,)=0.33+0.02[6,7], mﬁo'e=(4.9t 0.1) GeV][8], and
(1)2] B 1+Dq(L)x the error that may occur in estimatirng. We estimate that
ST L)= 1+E,(L)X+E,(L)x? (66) Padedeterminations o, are subject to errors comparable to
! 2 those of PadejeterminatFi)ogs ofR éhe RI,?GG-accessible coeffi-
5 cientsc, andc,; e.g.,|(c;2*—c1 ) /ey |=7%. If we are
Ey(L)=— 50.1+424 +7.24. 7+1.648.9+3.48) conservative and estimate the uncertaintggto be double
1.67+8.9+3.44 that of c,,
(67)
6Cq
(8.9+3.48.)%— 1.6750.1+42.4_+7.28.2) ‘C— =14%, (70)
Ey(L)= 0
1.672+8.9+3.48
(68)  the corresponding uncertainty in the reduced rate is
+38 Ge\P. Consequently, our estimate of the purely pertur-
Di(L)=E4(L)—-1.67. (69 bative three-loop ordeb—cl v, rate, as defined by Eq.
In Fig. 5 we have superimposed plots of the reduced rat((alo)' 'S
(10) using [pert
, =(1050+ 14+ 44+ 115+ 38) Ge\P, (71
(1) Egs.(4) and(9), the two-loop version o[ x,L] lead- K

ing to the reduced rate also plotted in Fig. 1,
(2) Eq. (57), the three-loop version d§{x,L] leading to  where the listed theoretical uncertainties respectively de-
the reduced rate plotted in Fig. 4, volve from the uncertainty itbo, ag(m,), mE®'®, andc,.
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Nonperturbative(NP) contributions to the rate may be assessing the magnitude of each such independent source of
extracted from Eq(5.8) of [23], and correspond to the fol- error—the theoretical uncertainty estimated from(taun-

lowing additional contributions to the seri&px,L ] cated two-loop calculation of théo—cl~ v, rate should be
o\ 4 larger than that obtained by us in E¢Z6).
6l 1- Me N Note also that we can compare oufFPeYK
Ai+3N\, mf, 2 =1050 GeV central value estimaté7l) for the reduced
ASNP= > TR (72)  rate (exclusive of NP effecjswith the corresponding esti-
2mj, mﬁF(E) mate one would obtain using low-scale magss
m2
i reert 5 ~§ ag(V ﬁ]brnc)
where the form factoF is given by Eq.(2) and where K~ MeF =2 1-114————-(385+03
b
_ = = — — ~
0.5 GeV¥=\;=<0, \,=0.12 Ge\. (73 X( e m))z} -
This additional NP contribution entails-a6% reduction in T '

the reduced raté€71): N N
pert If we utilize the low-scale mass values,=4.64 GeVm,
r.r (58.5:5.5) GeVP—(992+217) GeVf, =1.25 GeV, as quoted if2] from Ref.[24] and find via
K K devolution fromag(m,)=0.33 thatag(Vmym.)/7=0.091,
(749 e observe that the rate predicted via E7) is
where the independent sources of uncertainty in(Et.and 1097 GeV, an answer in surprisingly good agreement with

in the intermediate step of Eq74) have been combined ©U' 1050 GeV three-loop estimate in the pole-mass renor-
additively. malization scheme.

We conclude by noting that the RG equatidfi(7) may
. ) ) . = be used to determine additional higher-order corrections to
inclusive semileptonic procesB— Xl v [I=e or u, but  the decay ratél). The leading-log corrections to all orders in
not their sum, we can then relate the aggregate theoretical 5re determined by the one-loop-function; next-to-

uncertainty in Eq(74) to the concomitant theoretical uncer- eading-log corrections to all orders inare determined by
tainty in the determination diVy|: the two-loopB-function etc. Although we have made use of

3 — 112 RG invariance t@(x%) in present work, it is in fact possible
1927°h BR(B— Xl ") (75) to incorporate these logarithmic corrections to all subsequent
G,ZZTB[(992t 217) Ge\P] orders. The full exploitation of RG invariance within
perturbative-QCD expressions for physical processes is pres-
To factorize experimental and theoretical uncertainties, wently under study.
employ recent central values for the averdéfetime Ty

[25] and theB— X e~ v, branching ratid26] to rewrite Eq. ACKNOWLEDGMENTS
(75) in the following form:

If we identify the predicted)ﬂcl‘z decay rate with the

|Vcb| =

We are grateful for the hospitality of the KEK Theory

IV = (0 0453 0-006 Group, where this research was conducted with financial
cb ' 0.004 support from the International Opportunity Fund of the Natu-
1.564x 1012 5\ Y2 BR(B— X~ 1) | ral Sciences and Engineering Research Council of Canada
( ) 0 115 (NSERQ and the International Collaboration Program 2001
s 1105 of Enterprise Ireland.

(76)

The first factor in Eq(76) reflects the summed theoretical 3The O(a?) coefficient in Eq.(77) [A. Czarnecki(personal com-
uncertainties in Eq(74), which are separately broken down munication] differs slightly from the value- 2.65+ 0.4 appearing
in Eq. (71). We have been conservative in identifying andin Ref.[2].
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