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Three loop estimate of the inclusive semileptonicb\c decay rate
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The renormalization-scale (m) dependence of the two-loop inclusive semileptonicb→cl2n̄ l decay rate is
shown to be significant in the pole mass scheme, and the decay rate is shown to be poorly convergent in the
MS scheme. Three-loop contributions to the decay rate are estimated by developing Pade´ approximant tech-
niques particularly suited to perturbative calculations in the pole mass scheme. An optimized Pade´ estimate of
the three-loop contributions is obtained by comparison of the Pade´ estimates with the three-loop terms deter-
mined by renormalization-group invariance. The resulting three-loop estimate in the pole-mass scheme exhibits
minimal sensitivity to the renormalization scale nearm51.0 GeV, leading to an estimated decay rate of

192p3G(b→cl2n̄ l)/(GF
2 uVcbu2)59926217 GeV5 inclusive of theoretical uncertainties and nonperturbative

effects.

DOI: 10.1103/PhysRevD.65.054021 PACS number~s!: 13.20.He
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa~CKM! matrix ele-
ment uVcbu, which parametrizes one of the sides of the u
tarity triangle, can be extracted from the inclusive semile

tonic decay rate G(B→Xcl
2n̄ l). From a theoretical

perspective, the inclusive process has the advantage that
perturbative contributions are controllable; hence, an ac

rate perturbative determination of theb→cl2n̄ l decay rate is
of value in obtaininguVcbu from data.

Complete two-loop calculations of semileptonicb→c de-
cays exist at the end points of the lepton invariant mass s
trum ~maximal and zero recoil! @1# and at an intermediate
kinematic value@2#. From these explicit calculations, the to
tal semileptonic decay rate at two-loop order has been e
mated@2#. In this present work, we extend these results
generate an estimate of the three-loop contributions to

b→cl2n̄ l decay rate via renormalization-group and Pa´-
approximant methods.

In Sec. II we demonstrate that the pole mass scheme
in @2# has better perturbative behavior than the modifi
minimal subtraction (MS) scheme for theb→c semileptonic
decay rate, a result which is somewhat surprising since
MS scheme is better behaved within calculations of theb
→u semileptonic decay rate@3#. The renormalization scale
dependence of the two-loopb→c rate in the pole mass
scheme is extracted using renormalization-group~RG! in-
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variance, and the strong scale dependence that is fo
serves to motivate an estimate of next-order~three-loop! ef-
fects.

The scale dependence of the decay rate is an impor
component of the procedure for estimating three-loop corr
tions to theb→c semileptonic rate. Using information ob
tained from RG invariance, Pade´ approximation methods ar
developed in Sec. III that are appropriate for estimating ne
order terms within pole-mass perturbative calculations.
optimized Pade´ estimate of the three-loop constant coef
cient ~i.e. the nonlogarithmic term! is obtained by finding the
best agreement between Pade´ estimates and true values o
the RG-accessible three-loop coefficients of logarithms. T
RG determinations of these latter coefficients in conjunct
with the optimized Pade´ estimate of the constant coefficien
together constitute a scale-sensitive estimate of the full th
loop contribution to the perturbative rate.

This Pade´ estimate of aggregate three-loop effects allo
the renormalization-scale dependence of theb→cl2n̄ l decay
rate to be studied. In Sec. IV, a region of minimal sca
sensitivity @4# is found in the resulting decay rate. Th
minimal-sensitivity scale is found to be close to the faste
apparent-convergence renormalization scale at which
three-loop contributions vanish entirely@5#. The proximity of
these two scales supports the validity of these scales for
taining estimates of the three-loop perturbativeb→cl2n̄ l de-
cay rate. Theoretical uncertainties in this estimate are con
ered in Sec. V.

II. SCALE DEPENDENCE OF THE TWO-LOOP RATE

In Ref. @2#, the inclusive semileptonicb→cl2n̄ l rate is
estimated to two-loop order in terms of renormalizatio
group- ~RG-! invariant pole massesmb andmc . The rateG
can be expressed in the form

G5
GF

2mb
5uVcbu2

192p3
FS mc

2

mb
2D SFas~m!

p
, logS m2

mbmc
D G ~1!

with the RG-invariant form-factor

i-

e

of

a-

s-
2.
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F~r !5128r 212r 2 log~r !18r 32r 4 ~2!

preceding the perturbative seriesSwhose two-loop contribu-
tion at m25mbmc has been estimated in@2# by combining
explicit results at the end and intermediate points@1,2# of the
decay spectrum:1

SFas~Ambmc!

p
,0G5121.67

as~Ambmc!

p
2~8.960.3!

3Fas~Ambmc!

p G2

. ~3!

If we assume central valuesas(mt)50.33 @6,7# and mb
54.9 GeV @8#, and if we follow Ref.@2# in assuming that
mc50.3mb , we find thatas evolves fromm5mt through
the four-loop, four-flavor2 (nf54) b-function @9# to
as(Ambmc)/p50.087, in which case S@0.087,0#51
20.1452(0.06760.002). It is evident from Eq.~3! that
truncation after two-loop order introduces theoretical unc
tainty of order 8.5%(50.067/0.79).

There are, of course, other sources of theoretical un
tainty. Ambiguities concerning the definition of a pole ma
in the presence of nonperturbative~confinement! effects have
led the authors of Ref.@2# to reparametrize the rate~1! in
terms of ‘‘low-scale’’ masses obtained through addition
phenomenology—we will ultimately compare our results
the reparametrized rate in Sec. V. In light of more rec
work @3,8,10,11# specifying accurate pole mass values
relating pole masses toMS andY-scheme masses with thre
loop precision, we take a more empirical approach to
utilization of pole masses within inclusive semilepton
rates.

Renormalization-scale dependence provides an additi
source of theoretical uncertainty to any rate calculated
the series~3!. If S varies for different choices ofm, a value
for G extracted from any particular choice ofm ~e.g., m2

5mbmc) is compromised. The optimal value ofm has been
argued to be the choice for whichS has minimal sensitivity
to the renormalization scale@4# i.e., the point at which
dS/dm50. For Eq.~3! to lead to a reliable estimate of th
true semileptonicb→c rate, one would not necessarily nee
to establish thatm25mbmc is such a ‘‘principle of minimal
sensitivity’’ ~PMS! point, but rather that the rate calculated
this value ofm differs only inconsequentially from the rat
calculated at the true PMS value ofm. Any discrepancy be-
tween rates calculated atm25mbmc and atmPMS is a direct
measure of the former rate’s theoretical uncertainty aris
from renormalization-scale ambiguities.

The two-loop order renormalization-scale dependence
plicit in the perturbative series within Eq.~1! may be param-
etrized as follows:

1TheO(as
2) coefficient quoted in Eq.~3! @A. Czarnecki~personal

communication!# has been slightly corrected from the value28.4
60.4 appearing in Ref.@2#.

2The use of four contributing flavors is necessary sinceas is ref-
erenced to four flavors in Eq.~3! @2#.
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S@x~m!,L~m!#511~a01a1L !x1~b01b1L1b2L2!x2,
~4!

a0521.67, b0528.960.3,

x~m![
as~m!

p
, L~m![ logS m2

mbmc
D . ~5!

The renormalization-scale invariance of the all orders r
implies that

m2
dG

dm2
50 ~6!

hence that

05
]S@x,L#

]L
2~b0x21b1x31b2x41••• !

]S@x,L#

]x
~7!

where the normalization of QCDb-function coefficients is
explicitly defined by

m2
dx

dm2
52~b0x21b1x31b2x41••• ! ~8!

with nf54 values b0525/12, b1577/24, and b2

521943/3456~in theMS scheme!. It is easily seen from Eq
~7! that the logarithmic coefficients within Eq.~4! are

a15b250, b15a0b0523.479. ~9!

In Fig. 1, we have plotted the mass- and scale-depen
portion of the rate~1!:

FIG. 1. Renormalization scale (m) dependence of the two-loop
reduced rateG/K in the pole mass scheme.
1-2
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THREE LOOP ESTIMATE OF THE INCLUSIVE . . . PHYSICAL REVIEW D 65 054021
G

K
5mb

5FS mc
2

mb
2D S@x~m!,L~m!#, S K[

192p3

GF
2 uVcbu2D ,

~10!

as a function ofm. The Fig. 1 curve is obtained by assumin
mb54.9 GeV @8#, mc50.3mb @2#, and the central valueb0
528.9 from the estimate@2# given in Eq.~5!. Substantial
scale dependence is evident from the figure: the rate
creases monotonically withm, flattening out somewhat fo
larger values. Moreover the curve exhibits no PMS po
~i.e., extremum!, and atm5Amcmb52.68 GeV yields a rate
10% smaller than the~still increasing! rate atm58 GeV,
the flattest portion of the curve shown in the figure. Thus,
two-loop pole-mass calculation of theb→cl2n̄ l rate exhibits
at best only poorly-controllable dependence on the choic
renormalization scale. Such scale dependence may com
mise any subsequent ‘‘low-scale’’ mass expression devolv
from the two-loopm5Ambmc pole-mass rate.

Similar scale dependence and even worse apparent
convergence characterize the two-loop order pole-mass
culation of theb→ul2n̄ l rate, thereby motivating a recastin
of the calculation in terms of theMS runningb-quark mass
@3#. For four contributing flavors, the two-loop relationsh
between pole andMS running quark masses is@10#

mpole5m~m!F11X43 1 logS m2

m2~m!
D Cx~m!

1X10.39191
415

72
logS m2

m2~m!
D

1
37

24
log2S m2

m2~m!
D Cx2~m!G . ~11!

By substituting this relation into Eqs.~1!, ~4!, and ~5!, we
find that the fully MS version of the mass- and scal
dependent portion~10! of theb→cl2n̄ l decay rate~using the
central valueb0528.9) is

GMS̄

K
5mb

5~m!FS mc
2

mb
2D H 11X5.0015 logS m2

mb
2~m!

D Cx~m!

1F49.321.74 logS m2

mc
2~m!

D 145.4 logS m2

mb
2~m!

D
1

425

24
log2S m2

mb
2~m!

D Gx2~m!J . ~12!

Note thatF(mc
2/mb

2) remains RG invariant ifmc→mc(m)
andmb→mb(m). If m25mb(m)mc(m) and if we continue to
assume thatmc(m)50.3mb(m), then
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GMS̄

K
5mb

5~m!F~0.09!@121.02x~m!118.2x2~m!#,

m5A0.3mb~m!. ~13!

The convergence of thisMS perturbative series is even mo
ill-behaved than its pole-mass version~3!. Moreover, the
scale dependence of Eq.~12! is shown in Fig. 2 to be even
more pronounced than that of the same rate in the pole-m
scheme~Fig. 1!—Fig. 2 displays a rate which decreases w
m with no apparent PMS point.

Thus theMS approach, which substantially improves th
perturbative series within the semileptonicb→u rate @3#,
fails to improve the pole-mass expressions~1!–~3! for the
semileptonicb→c rate. If this latter rate is to be utilized to
extract an estimate ofuVcbu from the inclusiveB→Xcl

2n̄ l
branching ratio, there is evident value in having an estim
of next-order corrections in order to obtain some control o
renormalization-scale dependence. This three-loop o
contribution toS@x(m),L(m)# is necessarily of the form

DS3L@x~m!,L~m!#5@c01c1L~m!1c2L2~m!

1c3L3~m!#x3~m!. ~14!

The RG equation~7! implies that

05a1x1~b12a0b0!x21~2b22b0a1!x2L

1@c122b0b02a0b1#x31@2c222b0b12b1a1#x3L

1@3c322b0b2#x3L21O~x4!. ~15!

FIG. 2. Renormalization scale (m) dependence of the two-loop
reduced rateG/K in the MS scheme. In theMS scheme,mb(m) is
obtained from the four-loopnf54 anomalous mass dimension@12#
usingmb(mb)54.2 GeV@8# as a reference value.
1-3



at

rs

r
oo
a

io

-

f-
r-
to

s

l to

u-

r

s
to

f
in

-

l-

on
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The set of results~9! are evident from the requirement th
O(x), O(x2), andO(x2L) terms in Eq.~15! separately van-
ish. The vanishing of subsequent terms in Eq.~15! implies
that

c152b0b01a0b1 , c25a0b0
2 , c350. ~16!

For a0 andb0 as given in Eq.~5! and three massless flavo
~as appropriate to phenomenology devolving fromas(mt)
@6#!,

c15242.461.3, c2527.25, c350. ~17!

The coefficientc0, however, is RG-inaccessible to these o
ders of perturbation theory, and requires a direct three-l
calculation. In the absence of such a calculation, we estim
c0 in the section which follows via asymptotic Pade´ approx-
imant methodology, in much the same way as in a pr
estimate @13# of the three-loop contribution to theb
→ul2n̄ l decay rate.

III. RG-PADÉ ESTIMATE OF c0

Consider a perturbative field-theoretical series withN
1M known terms:

S~x!511R1x1R2x21•••1RN1MxN1M1•••. ~18!

The set of known coefficients$R1 ,R2 , . . . ,RN1M% is suffi-
cient to determine in full theN1M coefficients characteriz
ing an @NuM # Padéapproximant to the seriesS:

S[NuM ]~x![
11a1x1a2x21•••1aNxN

11b1x1b2x21•••1bMxM
. ~19!

The coefficients$a1 , . . . ,aN ,b1 , . . . ,bM% are obtained by
the requirement that the power-series expansion ofS[NuM ] (x)
recovers theN1M known coefficients within Eq.~18!, the
seriesS(x). The nextO(xN1M11) term in this power series
is a Pade´ approximant prediction for the first unknown coe
ficient RN1M11. For example, if only the next-to-leading o
der coefficientR1 is known, one can use this coefficient
construct a@0u1# approximant to the series~18!,

S[0u1]~x!5
1

12R1x
511R1x1R1

2x21•••, ~20!

for which R1
2 is thepredictedvalue ofR2:

R2
[0u1]5R1

2 . ~21!

Similarly, if R1 and R2 are known~corresponding to two
subleading orders of perturbation theory!, one has enough
information to construct a@1u1# approximant to the serie
~18!:
05402
-
p
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r

S[1u1]~x!5

11S R1
22R2

R1
D x

12
R2

R1
x

511R1x1R2x21
R2

2

R1
x31•••.

~22!

The predicted value for the unknown coefficientR3 is

R3
[1u1]5R2

2/R1 . ~23!

In general, one can always use an@NuM # approximant
~19! to predict the first unknown series coefficientRN1M11.
Such predictions have accuracy which increases asN andM
increase. For perturbative field-theoretical series~character-
ized by asymptoticRN;N! behavior! the accuracy of such
predictions has been argued by Ellis, Karliner and Samue
satisfy the relative error formula@14#

DRN1M11
[NuM ]

RN1M11
true

5
RN1M11

[NuM ] 2RN1M11
true

RN1M11
true

52
M !AM

~N1M1aM1b!M

~24!

whereA, a, andb are constants to be determined. Of partic
lar interest are the relative errors obtained from Eq.~24! for
the predictions~21! and ~23!

R1
22R2

R2
52

A

11~a1b!
, ~25!

R2
2

R1
2R3

R3
52

A

21~a1b!
. ~26!

Denoting the constanta1b5k, we can eliminate the othe
constantA within Eqs. ~25!,~26! and solve forR3 algebra-
ically to obtain the improved estimate

R35
~21k!R2

3

~11k!R1
31R1R2

. ~27!

The assumptionk50 has been utilized in prior application
to predict successfully the third subleading contribution
the QCD MS b function @14#, the dimensional reduction
~DRED! SQCDb function @15#, theMS b function for mas-
sive scalar field theory@16#, as well as to obtain estimates o
such contributions for a number of processes calculated
theMS scheme: SM@17# and minimal supersymmetric stan
dard model~MSSM! @18# Higgs boson→2 gluon decay
rates,b→ul2n̄ l @13#, W1W2→ZZ @16#, and the QCD static
potential function@19#.

The choicek50, however, is ill suited to pole-mass ca
culations. To see this, consider the series~4! augmented by
~14! within Eq. ~1! characterizing the pole-mass expressi
for the b→cl2n̄ l decay rate
1-4
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S@x,L#511~a01a1L !x1~b01b1L1b2L2!x2

1~c01c1L1c2L21c3L3!x3 ~28!

x5
as~m!

p
, L5 logS m2

mbmc
D .

We have already seen thata0521.67,a150,b0>28.9
60.3,b15a0b0523.48,b250. The above series is in th
form of Eq. ~18! with R1 andR2 respectively identified with
a01a1L andb01b1L1b2L2. If k50, we see from Eq.~27!
that

R35
2~b01b1L !3

a0~a0
21b01b1L !

5
2b1

2

a0
L21

2b1

a0
~2b02a0

2!L1O~L0!. ~29!

Comparing this expression to the form~14! anticipated for
the third subleading order ofS@x,L#, we necessarily obtain
the following predictions for the RG accessible coefficie
c2 ,c1:

c252
b1

2

a0
52a0b0

2 , ~30!

c152~2b02a0
2!

b1

a0
54b0b022b0a0

2. ~31!

It is evident from Eqs.~16!,~17! that these predictions ar
quite poor; Eq.~30! is double the true value forc2, as ob-
tained in Eq.~17!, and c1 is also badly overestimated@for
values~9! and the central valueb0528.9, Eq.~31! implies
that c15285.8, in contrast to the correct~RG! value c1
5242.4#.

For a given choice ofk, estimates of the coefficientsci
characterizing the third subleading order have been obta
for correlation functions@20# and theb→ul2n̄ l rate@13# by
moments ofR3, as estimated in Eq.~27!, over the entire
ultraviolet region@e.g.,m2/(mbmc)>1 for the case at hand#.
These moments are then equated to corresponding mom
of R35c01c1L1c2L21c3L3 in order to obtain values fo
$c0 ,c1 ,c2 ,c3%. If we definew5mbmc /m2 (L52 logw), the
moments

Nj5~ j 12!E
0

1

wj 11R3~w!dw ~32!

can be obtained using Eq.~27! for the integrandR3, which
becomes a function ofw for our pole mass case by virtue o
the w-dependence ofR2 : R15a0 ,R25b02b1logw. After
~numerical! computation of the values ofNj , the coefficients
ci are obtained by equating such values to the correspon
integrals
05402
s
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Nj5~ j 12!E
0

1

wj 11~c02c1logw1c2log2w2c3log3w!dw.

~33!

In particular, we see that

N215c01c112c216c3 ~34!

N05c01
1

2
c11

1

2
c21

3

4
c3 ~35!

N15c01
1

3
c11

2

9
c21

2

9
c3 ~36!

N25c01
1

4
c11

1

8
c21

3

32
c3 . ~37!

If kÞ21, such a procedure is seen to lead to a non-z
value ofc3, in contradiction to the resultc350 ~16! neces-
sarily following from application of the RG equation~7!
within the pole mass scheme. For the casek521, however,
the result~27! collapses to the naive estimate~23!, which in
the pole mass scheme is necessarily a degree-2 polynom
L:

R3
(k521)5

R2
2

R1
5

1

a0
~b01b1L !25

b1
2

a0
L212

b1b0

a0
L1

b0
2

a0
. ~38!

The moment procedure described above then reduces to
ting the degree-3 polynomialR35c3L31c2L21c1L1c0 to
the degree-2 polynomial in Eq.~38!. Such a fit necessarily
reduces to equating the powers ofL in these two expressions
We thus find thatc3 must be zero, and that

c25
b1

2

a0
5a0b0

2 ~39!

c152
b1b0

a0
52b0b0 ~40!

c05
b0

2

a0
. ~41!

Equation~39! is in exact agreement with the result~16! ob-
tained via RG-invariance from Eq.~7!. Equation~40! repre-
sents the first~and dominant! contribution to the RG deter
mination of c1 in Eq. ~16!. For the central valueb0528.9
~and nf54) the ~40! predictionc15237.1 is not far from
the true valuec15242.4. The accuracy of these results pr
vide some support to the naive estimatec05247.4 obtained
via Eq. ~41! for the RG-inaccessible coefficientc0.

We can further improve our estimate forc0 by finding the
value ofk within Eq. ~27! which, when used within the in-
tegrand of Eq.~32! to match the momentsNj to Eqs.~34!–
~37!, most closely reproduces the true values ofc2 andc1, as
1-5
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determined by RG methods in Eqs.~16! and ~17!. In such a
procedure we obtain estimated values forc3 , c2 , c1, andc0
that depend explicitly onk:

c0~k!52
1

6
N21~k!14N0~k!2

27

2
N1~k!1

32

3
N2~k!

~42!

c1~k!5
3

2
N21~k!232N0~k!1

189

2
N1~k!264N2~k!

~43!

c2~k!52
13

6
N21~k!138N0~k!2

189

2
N1~k!

1
176

3
N2~k! ~44!

c3~k!5
2

3
N21~k!28N0~k!118N1~k!2

32

3
N2~k!

~45!

where

Nj~k!5~ j 12!E
0

1

wj 11F ~21k!~b02b1logw!3

~11k!a0
31a0~b02b1logw!

Gdw.

~46!

We then use the explicit values forc1 andc2 obtained from
Eq. ~17! by RG methods to optimize the sum of the squa
of the relative error of estimated values ofc1 andc2,

D~k!5S c2~k!22a0b0
2

2a0b0
2 D 2

1S c1~k!2~2b0b02a0b1!

2b0b02a0b1
D 2

~47!

with respect tok. For the set of valuesa0521.67,b0
528.9,b0525/12,b1577/24, we find a clear minimum o
D(k) at k520.94, as evident from Fig. 3, consistent wi
the case made in the preceding paragraph for an optimk
value close tok521. Correspondingk520.94 values for
the momentsNj are obtained numerically via Eq.~46!

N2152106.3, N05274.92, N15266.17, N25262.12
~48!

and these values lead via Eqs.~42!–~45! to the following
estimates for the third subleading order coefficients:

c352.031024, c2527.68, c15239.7, c05251.2.
~49!

These values reflect excellent agreement with the RG va
~17!. The above estimate for the RG-inaccessible coeffic
c0 is only 20% larger in magnitude than the naive predict
~41!, indicative of the internal consistency of the method
ogy.

We conclude by noting that four separate estimates oc0
can be obtained from Eqs.~34!–~37! by substituting into
these equations the optimalNj values~48! as well as the true
05402
s

l

es
nt

-

valuesc350, c15242.4, andc2527.25 as determined by
RG invariance~17! in the previous section. Solving eac
equation separately forc0, we find that

c05N212c122c226c35249.4, ~50!

c05N02
1

2
c12

1

2
c22

3

4
c35250.1, ~51!

c05N12
1

3
c12

2

9
c22

2

9
c35250.4, ~52!

c05N22
1

4
c12

1

8
c22

3

32
c35250.6.

~53!

The estimates~50!–~53! are remarkably consistent with eac
other and only slightly smaller in magnitude than the es
mate in Eq.~49! obtained without RG inputs for$c1 ,c2 ,c3%.

In estimating the third subleading order of Eq.~14!, the
series within the rate~1!, we choose Eq.~51! as the most
central of ourc0 estimates, in conjunction with the explic
RG determinations ofc1 andc2 (c350). This set of values
is obtained, as noted earlier, for the central value estimate@2#
of b0:

b0528.9: $c0 ,c1 ,c2%>$250.1,242.4,27.25%. ~54!

Precisely the same procedure can be used to obtain c
sponding estimates of$c0 ,c1 ,c2% for the extremes of the
b0528.960.3 range obtained in@2# ~see footnote 1!:

FIG. 3. The quantityD measuring the sum of the squares of t
relative errors in the Pade´ estimate~43!,~44! of the RG-accessible
three-loop coefficients$c1 ,c2% plotted as a function of the error
formula parameterk ~27!. The location of the curve’s minimum
represents the value ofk leading to an optimized Pade´ estimate.
1-6



y

nc

in
th
-

s

e

ice

er-
ted

of
the

en-
ales

ely

. 4
cale
is-
un-

do

p
p

THREE LOOP ESTIMATE OF THE INCLUSIVE . . . PHYSICAL REVIEW D 65 054021
b0529.2: $c0 ,c1 ,c2%>$253.6,243.7,27.25% ~55!

b0528.6: $c0 ,c1 ,c2%>$247.5,241.2,27.25%.
~56!

These estimates are obtained in precisely the same wa
those of Eq.~54!: c1 and c2 are identified with their RG
values via Eq.~17!, andc0 is determined via Eq.~51! with
N0(k) @see Eq.~46!# evaluated at a value ofk which mini-
mizes D(k) @see Eq.~47!#. The coefficientc350 for all
cases, as evident in the previous section from RG invaria
For theb0529.2 case, the minimizing valuek520.94 is
the same as forb0528.9. For b0528.6, the minimum
value ofD(k) is found to occur whenk520.93.

IV. SCALE DEPENDENCE OF THE THREE-LOOP RATE

If b0528.9, the three-loopb→cl2n̄ l inclusive estimated
rate is given by Eq.~1! with

S@x~m!,L~m!#5121.67x1~28.923.479L !x2

1~250.1242.4L27.25L2!x3. ~57!

The coefficients ofx3 are those of Eq.~54!, as estimated in
the previous section. Figure 4 displays a plot of them ~scale!
dependence of the ‘‘reduced’’ three-loop rate~10! with
S@x,L# given by Eq.~57!. The pole massesmb and mc are
assumed to bemb54.9 GeV andmc50.3mb51.47 GeV
consistent with values used in@2#. Figure 4 clearly displays a
much flatterm-dependence than the two-loop rate plotted
Fig. 1. In addition to this diminished dependence on
renormalization scalem, the rate plotted in Fig. 4 also exhib
its a distinct minimum atm51.0 GeV. At this principal of

FIG. 4. Renormalization scale (m) dependence of the three-loo
reduced rateG/K in the pole mass scheme. The PMS point is re
resented by the local minimum of the curve.
05402
as

e.

e

minimal sensitivity~PMS! value ofm, the successive term
of the seriesS@x,L# exhibit reasonable convergence:

S@x~1.0 GeV!,L~1.0 GeV!#5120.25820.04910.020
~58!

GPMS

K
5

G~1.0 GeV!

K
51047 GeV5. ~59!

Equation~59! corresponds to the minimal-sensitivity valu
for the rate, as discussed in Sec. II.

Note that the small three-loop contribution to Eq.~58! can
be tuned to zero by making only a small change in the cho
of the renormalization-scale parameterm. The value ofm at
which the three-loop term vanishes~i.e., the value ofm at
which the Fig. 1 two-loop and Fig. 4 three-loop curves int
sect! corresponds to the renormalization scale associa
with the ‘‘fastest apparent convergence’’~FAC! of the series
S@x,L#. This occurs atm51.18 GeV:

S@x~1.18 GeV!,L~1.18 GeV!#5120.22620.05810
~60!

GFAC

K
5

G~1.18 GeV!

K
51051 GeV5. ~61!

It is striking that the FAC@5# and PMS@4# criteria predict
virtually identical rates; moreover, a similar equivalence
rates obtained via these same two criteria is found for
estimated three-loop contribution to theb→ul2n̄ l rate @13#.
In both semileptonic processes, the PMS and FAC mom
tum scales are comparably small. The PMS and FAC sc
~1.0 GeV and 1.18 GeV! for b→cl2n̄ l are respectively 37%
and 44% of the logarithm reference scaleAmbmc

>2.7 GeV. For b→ul2n̄ l , m
PMS

51.78 GeV andm
FAC

51.84 GeV, numbers which are 42% and 44% respectiv
of the logarithm reference scalemb(mb)54.2 GeV@3,13#.

Although the estimated three-loop rate plotted in Fig
exhibits much less dependence on the renormalization s
m than the two-loop rate of Fig. 1, we anticipate the ex
tence of residualm-dependence as a consequence of the tr
cation of the series~57! after three-loop order. A way to
eliminate much of this residual scale dependence is to ‘‘un
the truncation’’ by choosing an appropriate Pade´ approxi-
mant to the series~57!. For example, a@2u1# approximant to
the series~57! that reproduces its power series toO(x3) is

S[2u1]~x,L !5
11A1~L !x1A2~L !x2

11B1~L !x
~62!

where

A1~L !521.672
50.1142.4L17.25L2

8.913.48L
~63!

A2~L !52~8.913.48L !11.67
50.1142.4L17.25L2

8.913.48L
~64!

-
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B1~L !52
50.1142.4L17.25L2

8.913.48L
. ~65!

Similarly, the known series terms~57! are also reproduced in
the power series of the@1u2# approximant

S[1u2]~x,L !5
11D1~L !x

11E1~L !x1E2~L !x2
~66!

E1~L !52
50.1142.4L17.25L211.67~8.913.48L !

1.67218.913.48L
~67!

E2~L !5
~8.913.48L !221.67~50.1142.4L17.25L2!

1.67218.913.48L
~68!

D1~L !5E1~L !21.67. ~69!

In Fig. 5 we have superimposed plots of the reduced
~10! using

~1! Eqs.~4! and~9!, the two-loop version ofS@x,L# lead-
ing to the reduced rate also plotted in Fig. 1,

~2! Eq. ~57!, the three-loop version ofS@x,L# leading to
the reduced rate plotted in Fig. 4,

FIG. 5. Scale dependence of different estimates of the redu
rate in the pole scheme. The solid curve represents the three
estimate presented in Fig. 4, and the dotted curve represent
two-loop estimate also presented in Fig. 1. The@1u2# and @2u1#
Padéapproximants obtained from the three-loop estimated rate
represented by the dashed curves which overlap almost compl
abovem51.5 GeV. The PMS point is represented by the lo
minimum of the three-loop curve, and the FAC point occurs at
intersection of the two- and three-loop curves. Note the con
gence ofall the estimates near the FAC-PMS points.
05402
te

~3! S[2u1], as determined via Eqs.~62!–~65!, and
~4! S[1u2], as determined via Eqs.~66!–~69!.

The vertical scale of Fig. 5 is magnified compared to that
Figs. 1 and 4 in order to accentuate the differences betw
reduced rates obtained for each of the above scenarios
observe from Fig. 5 that both Pade´-approximant versions o
the rate coincide afterm51.5 GeV and are considerabl
flatter than the rate devolving from the three-loop version
S@x,L#. Indeed, the three-loop reduced rate is itself qu
stable, increasing slowly from 1066 GeV5 to 1180 GeV5 as
m increases from 1.5 GeV to 8 GeV. Nevertheless, the t
Padéapproximant versions ofS@x,L# vary only minimally
over the same range ofm, increasing from 1058 GeV5 at
m51.5 GeV to 1079 GeV5 at m58 GeV. Thus Pade´-
improvement of the three-loop rate virtually eliminates t
residual scale dependence of the naively truncated exp
sion. Such use of Pade´ approximants to eliminate residua
scale dependence is also evident in Fig. 3 of Ref.@13# for the
b→ul2n̄ l rate, and has been previously discussed in the c
text of the Bjorken sum-rule@21# as well as in more genera
terms @22#. Of particular interest, however, is the conve
gence of all four curves in Fig. 5 to virtually the same PM
or FAC point. This convergence lends further support to
PMS or FAC estimates~59!,~61! for the reduced rate.

V. DISCUSSION

The entire analysis presented in Sec. IV can be repe
using the extreme valuesb0528.6 andb0529.2, as esti-
mated in@2# ~again, see footnote 1!, utilizing Eqs.~55! and
~56! for the appropriate determinations of three-loop coe
cients in conjunction with the known values ofa0 andb1 ~9!.
One finds the uncertainty inb0 is reflected in a614 GeV5

spread in the PMS or FAC value 1050 GeV5 for the reduced
rate.

Other sources of theoretical uncertainty arise fro
as(mt)50.3360.02 @6,7#, mb

pole5(4.960.1) GeV@8#, and
the error that may occur in estimatingc0. We estimate that
Padédeterminations ofc0 are subject to errors comparable
those of Pade´ determinations of the RG-accessible coef
cientsc1 and c2; e.g., u(c1

Pade2c1
RG)/c1

RGu>7%. If we are
conservative and estimate the uncertainty ofc0 to be double
that of c1,

Udc0

c0
U>14%, ~70!

the corresponding uncertainty in the reduced rate
638 GeV5. Consequently, our estimate of the purely pert
bative three-loop orderb→cl2n̄ l rate, as defined by Eq
~10!, is

Gpert

K
5~10506146446115638! GeV5, ~71!

where the listed theoretical uncertainties respectively
volve from the uncertainty inb0 , as(mt), mb

pole , andc0.
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Nonperturbative~NP! contributions to the rate may b
extracted from Eq.~5.8! of @23#, and correspond to the fol
lowing additional contributions to the seriesS@x,L#:

DSNP5
l113l2

2mb
2

2

6S 12
mc

2

mb
2D 4

l2

mb
2FS mc

2

mb
2D , ~72!

where the form factorF is given by Eq.~2! and where

20.5 GeV2<l1<0, l250.12 GeV2. ~73!

This additional NP contribution entails a;6% reduction in
the reduced rate~71!:

G

K
5

Gpert

K
2~58.565.5! GeV55~9926217! GeV5,

~74!

where the independent sources of uncertainty in Eq.~71! and
in the intermediate step of Eq.~74! have been combined
additively.

If we identify the predictedb→cl2n̄ l decay rate with the
inclusive semileptonic processB→Xcl

2n̄ l @l 5e or m, but
not their sum#, we can then relate the aggregate theoret
uncertainty in Eq.~74! to the concomitant theoretical unce
tainty in the determination ofuVcbu:

uVcbu5F 192p3\ BR~B→Xcl
2n̄ l !

GF
2t

B
@~9926217! GeV5#G

1/2

. ~75!

To factorize experimental and theoretical uncertainties,
employ recent central values for the averageB lifetime t

B

@25# and theB→Xce
2n̄e branching ratio@26# to rewrite Eq.

~75! in the following form:

uVcbu5~0.045320.0043
10.0060!

3S 1.564310212 s

t
B

D 1/2S BR~B→Xcl
2n̄ l !

0.1105
D 1/2

.

~76!

The first factor in Eq.~76! reflects the summed theoretic
uncertainties in Eq.~74!, which are separately broken dow
in Eq. ~71!. We have been conservative in identifying a
05402
l

e

assessing the magnitude of each such independent sour
error—the theoretical uncertainty estimated from a~trun-
cated! two-loop calculation of theb→cl2n̄ l rate should be
larger than that obtained by us in Eq.~76!.

Note also that we can compare ourGpert/K
51050 GeV5 central value estimate~71! for the reduced
rate ~exclusive of NP effects! with the corresponding esti
mate one would obtain using low-scale masses@2#:3

Gpert

K
5m̃b

5FS m̃c
2

m̃b
2D F121.14

as~Am̃bm̃c!

p
2~3.560.3!

3S as~Am̃bm̃c!

p
D 2G . ~77!

If we utilize the low-scale mass valuesm̃b54.64 GeV,m̃c
51.25 GeV, as quoted in@2# from Ref. @24# and find via

devolution fromas(mt)50.33 thatas(Am̃bm̃c)/p50.091,
we observe that the rate predicted via Eq.~77! is
1097 GeV5, an answer in surprisingly good agreement w
our 1050 GeV5 three-loop estimate in the pole-mass ren
malization scheme.

We conclude by noting that the RG equations~6!,~7! may
be used to determine additional higher-order corrections
the decay rate~1!. The leading-log corrections to all orders
x are determined by the one-loopb-function; next-to-
leading-log corrections to all orders inx are determined by
the two-loopb-function etc. Although we have made use
RG invariance toO(x3) in present work, it is in fact possible
to incorporate these logarithmic corrections to all subsequ
orders. The full exploitation of RG invariance withi
perturbative-QCD expressions for physical processes is p
ently under study.
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