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Perturbative QCD potential, renormalon cancellation, and phenomenological potentials
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We examine the total energyEtot(r )52mpole1VQCD(r ) of the bb̄ system within perturbative QCD up to
O(aS

3). We extend a previous analysis by incorporating effects of the nonzero charm-quark mass in loops. We
find that, once the renormalon cancellation is performed,Etot(r ) agrees well with typical phenomenological
potentials for heavy quarkonia at distances 0.5 GeV21&r &3 GeV21. We also examine the perturbative
predictions forEtot(r ) of other heavy quarkonium systems. Whenever stable predictions are obtained, they
agree with each other up to anr-independent constant.
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I. INTRODUCTION

Heavy quarkonium systems, such as bottomonium
charmonium, provide an important testing ground for the
retical studies on the dynamics of QCD bound states.
decades, theoretical methods for investigating these sys
have followed paths different from those used for study
the QED boundstates such as positronium or the hydro
atom. The reason is that the nonrelativistic bound s
theory based on perturbative QCD, by itself, was not s
cessful for describing the heavy quarkonium states. The m
serious problem has been the fact that perturbative Q
does not reproduce the shape of the static QCD pote
VQCD(r ), which is considered to dictate a dominant part
the dynamics of these systems, in the relevant reg
0.5 GeV21&r &5 GeV21.

The theoretical method which has been widely used
analyses of the heavy quarkonium states is the phenom
logical potential-model approach. In this method, one
sumes some simple form for an effective~nonrelativistic!
Hamiltonian of the quarkonium system. A phenomenologi
potential, which is close to the above QCD potential conc
tually, is introduced in the Hamiltonian. One parametriz
the potential and determines the parameters such that va
physical observables of the quarkonia are reproduced in
model. It turned out that phenomenological potentials de
mined in this way have more or less similar shapes in
region 0.5 GeV21&r &5 GeV21, which may be repre-
sented typically by a Coulomb-plus-linear potential. See e
Ref. @1# for a recent analysis based on potential models.

On the other hand, theoretical approaches, which h
foundations in first principles, have been developed. Wit
the framework of nonrelativistic QCD~NRQCD! or
potential-NRQCD, the Lagrangian of a heavy quarkoniu
system is given in a series expansion of some small par
eter ~typically the quark velocityv;as). The Wilson coef-
ficients of the effective theory are determined by match
the theory to the full QCD theory either perturbatively
non-perturbatively. The QCD potential, as well as other~sub-
leading! potentials which enter the effective theory, are d
0556-2821/2002/65~5!/054018~9!/$20.00 65 0540
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termined from the results of lattice calculations or fro
model calculations; see@2# and references therein. The lattic
results, being first principles calculations, turn out to be c
sistent with phenomenologically determined potentials,
at the present stage they are still not precise enough.

Computations of the QCD potential within perturbativ
QCD also made progress over time. The full two-loop c
rections with massless quark loops@3#, as well as non-zero
mass effects in quark loops up to the same order@4–6#, have
been computed. The perturbative expansion atr
*0.2 GeV21 revealed to be very poorly convergent, an
also its shape deviates qualitatively from an expec
Coulomb-plus-linear form in the relevant range. The po
convergence is considered to reflect a non-trivial structure
the QCD vacuum. Also, within the context of perturbati
QCD, this behavior has been understood using the renor
lon language@7#.

Recently, there have been significant developments in
nonrelativistic bound state theory based on perturba
QCD. Thanks to the calculations of higher-order correctio
@8–11# and the understanding of the leading renormalon c
cellation@12,13#, it became possible to predict accurately t
physical observables of the heavy quarkonium states~in par-
ticular, the bottomonium states! within perturbative QCD
@5,10,14–19#. An essential feature is that the prediction f
the QCD potential, after incorporating these developme
has become accurate, and that it has reproduced a rea
shape of the potential in the relevant range. Reference@17#
investigated this feature in particular. There, the followi
aspects have been shown:

~1! When the leading renormalon cancellation is incorp
rated, convergence property of the total energy of the bo
monium systemEtot(r )52mb,pole1VQCD(r ) improves dras-
tically.

~2! For simplicity, two hypothetical cases,mc→0 and
mc→mb , have been examined; a reliable theoretical pred
tion for Etot(r ) is obtained atr &3 GeV21, and the predic-
tion agrees with typical phenomenological potentials in
range 0.5 GeV21&r &3 GeV21 within theoretical uncer-
tainties.

~3! The qualitative behavior ofEtot(r ) in the above range
can be understood as originating from an increase of
©2002 The American Physical Society18-1
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interquark force due to the running of the coupling consta
In this paper we extend the analysis of@17#. First, we

incorporate the realistic value of the charm mass in the
culation ofEtot(r ). Since we are interested in the range or
not very different from the charm-mass scale 1/mc , we
should properly take into account the dependence onmc
which enters through loop corrections. In this way we c
compare predictions of perturbative QCD in the realistic c
with phenomenological potentials. Secondly, we compute
total energies for quark-antiquark systems other than thebb̄
system and compare them. In@17# the part ofEtot(r ) inde-
pendent of the external quark masses has been exam
using the interquark force. Here we examine it in a differe
way. Our purpose is to compare the QCD potential~or the
corresponding potential in the effective Hamiltonian of t
quarkonium system!, which has been studied in various a
proaches so far, with the prediction of perturbative QCD.
anticipate that, by combining our results with the conve
tional studies, we would be able to obtain a better und
standing on the dynamics of the heavy quarkonia from fi
principles.

In Sec. II we compute the total energy of thebb̄ system,
incorporating non-zero charm mass effects: in Sec. II A
set up our formulas; in Sec. II B numerical analyses
given; in Sec. II C we discuss uncertainties of our pred
tions. In Sec. III the total energies of other systems are
amined. Conclusions are given in Sec. IV. Appendices col
some formulas.

II. TOTAL ENERGY OF THE bb̄ SYSTEM

A. Definitions

In the modified minimal subtraction (MS̄) scheme, it is
appropriate to compute the total energy of thebb̄ system in
the theory which contains 5 flavors. We are, however, in
ested in the total energy when the distance betweenb and b̄
is much larger than their Compton wavelength,r @1/mb .
Therefore, we will rewrite the total energy in terms of th
4-flavor couplingaS

(4)(m) in order to realize decoupling o
the b-quark to all orders.

When we neglect the charm quark mass, the total ene
is given by

Etot,mc50
bb̄ ~r !52mb,pole1VQCD,4~r !. ~1!

The relation between the pole mass and the MSm̄ass has
been computed up to 3 loops in a full theory, which conta
nh heavy flavors andnl massless flavors@20#. ~The same
relation was obtained numerically in@21# in a certain ap-
proximation.! Setting nh51 and rewriting the relation in
terms of the coupling of the theory withnl54 massless fla-
vors only, we find1

1This relation coincides with Eq.~14! of @20#, which is given
numerically~indirectly throughb0 andb1). Note that, in the other
formulas of@20#, the coupling of the full theory is used.
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mb,pole5m̄bH 11
4

3

aS
(4)~m̄b!

p
1S aS

(4)~m̄b!

p
D 2

d1
(4)

1S aS
(4)~m̄b!

p
D 3

d2
(4)J , ~2!

wherem̄i[mi
MS̄(mi

MS̄) denotes the MS̄mass renormalized a

the MS̄-mass scale. The QCD potential of the theory withnl

massless flavors only2 is given, up toO(aS
3), by

VQCD,nl
~r !52

4

3

aS
(nl )~m!

r
F11S aS

(nl )~m!

4p
D ~2b0

(nl )l 1a1
(nl )!

1S aS
(nl )~m!

4p
D 2H ~b0

(nl )!2S 4l 21
p2

3 D
12~b1

(nl )12b0
(nl )a1

(nl )!l 1a2
(nl )J G , ~3!

wherel 5 log(mr)1gE , andb i denote the coefficients of th
beta function

b0
(nl )5112

2

3
nl , b1

(nl )51022
38

3
nl . ~4!

The constantsai anddi are given in Appendix A.
When we include the effects of the non-zero charm-qu

mass, the above formula is modified as follows:

Etot
bb̄~r !5Etot,mc50

bb̄ ~r !12 dmb,pole1dVQCD~r !. ~5!

At O(aS
2) the non-zero charm mass correction to the p

mass,dmb,pole, reads@22#

dmb,pole
[2] 5

m̄b

3
S aS

(4)~m̄b!

p
D 2F log2~j!1

p2

6
2S log~j!1

3

2D j2

1~11j!~11j3!S Li2~2j!2
1

2
log2~j!

1 log~j!log~11j!1
p2

6 D1~12j!~12j3!

3S Li2~j!2
1

2
log2~j!1 log~j!log~12j!2

p2

3 D G ,
~6!

2Because of the decoupling theorem, the perturbative QCD po
tial of the theory which contains one heavy flavor~with massm)
andnl massless flavors coincides with the potential in Eq.~3! up to
O(aS

3) if we count 1/r 5O(aSm) and if we rewrite the coupling by
the coupling of the theory withnl massless flavors only.
8-2
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wherej5m̄c /m̄b . Its leading term in the limitmc→0 ~linear
approximation! is given by

dmb,pole
[2] umc→05

@aS
(4)~m̄b!#2

6
m̄c . ~7!

At O(aS
3), the complete expression ofdmb,pole is not known;

it has been computed only in the linear approximation@5#:

dmb,pole
[3] umc→05

@aS
(4)~m̄b!#3

p
m̄cH 2

9
1

b0
(4)

12 S 22 log~j!

24 log 21
14

3 D2
1

9 S 59

15
12 log 2D

1
19

9p
~ f 1f 21b1b2!J , ~8!

where f 250.47060.005, b251.12060.010, f 15(logA
2logb2)/(logf22logb2), b15(logA2logf2)/(logb22logf2)
and logA5161/228113z3/192 log2. In @5# it has been ar-
gued that the use of the linear approximation in bothdmb,pole

[2]

and dmb,pole
[3] is a slightly better approximation of the fu

result than to use the exactdmb,pole
[2] and the linear approxi-

mation of dmb,pole
[3] . It has been conjectured that the form

approximation accounts for the full correctiondmb,pole
[2]

1dmb,pole
[3] with about 10% accuracy, while the latter approx

mation accounts for the full result with about 20% accura
In @19#, the theoretical predictions for the bottomonium e
ergy levels turned out to be more stable when we u
(dmb,pole

[2] umc→0)1(dmb,pole
[3] umc→0) as compared todmb,pole

[2]

1(dmb,pole
[3] umc→0).

At O(aS
2) the non-zero charm mass correction to t

QCD potential,dVQCD, is given in one-parameter integra
form as

dVQCD
[2] ~r !52

4

3

aS
(4)~m!

r S aS
(4)~m!

3p D F E
1

`

dx f~x!e22m̄crx

1S log~m̄cr !1gE1
5

6D G ~9!

with

f ~x!5
Ax221

x2 S 11
1

2x2D . ~10!

At O(aS
3), the correction was computed first in momentu

space in@4#. The Fourier transform was performed3 and

3The coordinate-space potential was studied using different i
gral representations in@4#.
05401
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dVQCD
[3] (r ) was obtained also in one-parameter integral fo

in @5,6#. Both of the latter references contain misprints, ho
ever; for completeness, we give a corrected formula
dVQCD

[3] (r ) in Appendix B.4

Since the renormalon cancellation at each order of
perturbative expansion is realized only when we use
same coupling constant in expandingmb,pole andVQCD,4(r ),
we rewrite aS(m̄b) in terms of aS(m) using the
renormalization-group evolution of the coupling constant:

aS
(nl )~m̄i !5aS

(nl )~m!H 11
aS

(nl )~m!

p

b0
(nl )

2
logS m

m̄i
D

1S aS
(nl )~m!

p
D 2Fb0

(nl )2

4
log2S m

m̄i
D

1
b1

(nl )

8
logS m

m̄i
D G J . ~11!

Furthermore, we also examine the total energy after
expressing it in terms of the 3-flavor coupling and compar
with the 4-flavor coupling case. This is because we are in
ested in the total energy in the range 0.5 GeV21&r
&5 GeV21, where the charm quark may decouple as w
We insert the relation@23#

aS
(4)~m!5aS

(3)~m!H 11
aS

(3)~m!

3p
logS m

m̄c
D

1S aS
(3)~m!

p D 2F1

9
log2S m

m̄c
D

1
19

12
logS m

m̄c
D 2

11

72G J ~12!

into the aboveEtot
bb̄(r ) and re-expand inaS

(3)(m). Thus,
we will examine the series expansion

Etot
bb̄
„r ;m̄b ,m̄c ,aS

(nl )(m)… in aS
(nl )(m) up to O„(aS

(nl ))3
… for

nl53 and 4.
The obtained total energy depends on the scalem due to

truncation of the series at a finite order. Following the p
scriptions of@17#, we will fix the scalem in the two different
ways described below:

~1! We fix the scalem5m1(r ) by demanding stability of
Etot(r ) against variation of the scale:

m
d

dm
Etot@r ;m̄i ,aS~m!#U

m5m1(r )

50. ~13!

e- 4The corrected formula has been acknowledged by the autho
@5#.
8-3
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~2! We fix the scalem5m2(r ) on the minimum of the abso
lute value of the last known term@O(aS

3) term# of Etot(r ):

m
d

dm
†Etot

[3]@r ;m̄i ,aS~m!#‡2U
m5m2(r )

50. ~14!

B. Numerical analyses

In this subsection we take the input value for the coupl
constant asaS

(5)(MZ)50.118160.0020@24#. We evolve the
coupling by solving the 3-loop renormalization-group equ
tion numerically and match it to the 4- and 3-flavor co
plings successively through the matching condition@23#.5

For the bottom- and charm-quark masses, we use the va
m̄b54.190119

220 GeV @19# andm̄c51.243 GeV@16#, respec-

tively. @For simplicity we do not change the value ofm̄c as a
function ofaS

(5)(MZ). This is justified, since the dependen
of Etot(r ) on it is much smaller than other theoretical unc
tainties; see Sec. II C.# We compute bothdmb,pole

[2] and
dmb,pole

[3] in the linear approximation in this subsection.
First we examine the scale dependences ofEtot and

@Etot
[3]
„r ;m̄i ,aS(m)…#2 in Eqs.~13! and~14!. In the first scale-

fixing prescription, the minimal sensitivity scalem1(r ) exists
only in the ranger &3 GeV21. In the second prescription
m5m2(r ), the minimum value ofuEtot

[3] (r )u is zero in the
range r &3 GeV21, whereasuEtot

[3] (r )u.0 in the ranger
*3 GeV21. These features indicate an instability of the p
turbative prediction forEtot(r ) at r *3 GeV21. Qualitative
features of the scale dependences are similar for the ex
sions in the 3-flavor and the 4-flavor couplings.~They are
also similar to the results of the analysis formc→0 or mc
→mb @17#.! The range where the prediction is stable exten
to slightly longer distances for the 3-flavor case, in acc
with our naive expectation. The scale-dependence is dem
strated in Fig. 1 forr 52 GeV21 and for the expansion in
the 3-flavor coupling. We compare the total energy de

5The matching scales are taken asm̄b andm̄c , respectively.

FIG. 1. Determination of the scale: Total energy andas
3 term of

the total energy, the scales determined with the respective pres
tion are marked with a short vertical line.@We do not take the scale
which are located close to the infrared singularity ofaS

(3)(m).# The
distancer is fixed to 2 GeV21; aS

(5)(MZ)50.1181.
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mined in the four different prescriptions~scale-fixing pre-
scriptions 1 and 2, and expansions inaS

(3) andaS
(4)) in Fig. 2.

All four curves agree well in the range where both sca
fixing prescriptions exist. The numerical values of the to
energy and the scale are listed in Table I. We observ
strong cancellation of the leading renormalon between
pole mass and the QCD potential: the expansion ofEtot(r ) is
much more convergent than the expansions of the individ
terms. This is demonstrated in Table II.

Since the new aspect of our analysis is the inclusion of
charm-mass effects, we compare our result with those of
analysis done in the two hypothetical casesmc→0 andmc
→mb . This is shown in Fig. 3. Our curve lies between tho
of the two hypothetical cases, which is consistent with o
expectation.

Now we compare the total energyEtot(r ), as obtained
above, with typical phenomenological potentials in the lite
ture:

~i! A Coulomb-plus-linear potential~Cornell potential!
@25#:

V~r !52
k

r
1

r

a2
~15!

with k50.52 anda52.34 GeV21.
~ii ! A power-law potential@26#:

V~r !528.064 GeV1~6.898 GeV!~r 31 GeV!0.1.
~16!

~iii ! A logarithmic potential@27#:

V~r !520.6635 GeV1~0.733 GeV!log~r 31 GeV!.
~17!

In Fig. 4 we compare these potentials with the perturbat
computation of Etot(r ) for the input valuesaS

(5)(MZ)
50.118160.0020. An arbitrary constant is added to ea
potential, as well as toEtot(r ), such that it coincides with

ip-
FIG. 2. Total energy for 3-flavor (m5m1: solid; m5m2: dashed!

and 4-flavor (m5m1: dotted;m5m2: dash-dotted! case. For the 3-
~4-! flavor case prescription 1 breaks down atr
'3.2 (2.75) GeV21. Where both scale prescriptions exist, th
curves coincide.aS

(5)(MZ)50.1181.
8-4



e
th
n

o

m
al
en

a
th
-

is

te

di

n-

t

l-

sti-

-

to-

om-

sti-
ing

the

ific
CD
to
on-

ls
ects
we

to

tia
iti
m-

ies

PERTURBATIVE QCD POTENTIAL, RENORMALON . . . PHYSICAL REVIEW D65 054018
Etot(r ) for aS
(5)(MZ)50.1181 atr 51 GeV21.6 This is be-

cause the constant part (r -independent part! of each phenom-
enological potential is not determined well. As can be se
Etot(r ) and the phenomenological potentials agree inside
errors estimated from the next-to-leading renormalo
6 1

2 LQCD(LQCD•r )2 ~taking LQCD5300 MeV, indicated by
error bars!, and the agreement is better for a larger value
the input parameteraS

(5)(MZ).
In order to quantify the differences between the pheno

enological potentials and the QCD potential for different v
ues of aS(MZ), we define a weighted difference betwe
Etot(r ) and a potentialV(r ) as

Dn@Etot~r !2V~r !#5min
c
E

r 0

r 1
dr r nuEtot~r !2V~r !2cu2.

~18!

The minimum value of the integral is taken as we vary
arbitrary constant added to the potential. We examined
differenceDn betweenEtot(r ) and each of the phenomeno
logical potentials, as well asDn betweenEtot(r ) and the
average of the three phenomenological potentials, forn5
21, 0 and11. We found similar qualitative features:Dn

becomes small for a larger value ofaS
(5)(MZ), inside the

present error, around 0.1191–0.1201. We demonstrate th
Fig. 5: Dn50 with r 051 GeV21 and r 154 GeV21 is
shown for each of the potentials and for the averaged po
tial, varying the value ofaS(MZ).

C. Error estimates

There are several uncertainties in our theoretical pre

tion for the total energyEtot
bb̄(r ).

~i! Errors of the input parametersaS
(5)(MZ), m̄b and m̄c.

In Fig. 4 the dependence ofEtot(r ) on aS(MZ) is shown. As
aS(MZ) increases,Etot(r ) becomes steeper due to an i
crease of the interquark force@17#. Variation of Etot at r

6The choice ofr, where the potentials are made to coincide, is
some extent arbitrary.@Our choicer 51 GeV21 corresponds ap-
proximately to the root-mean-square radius of theY(1S) state, the
heaviest state used to determine the phenomenological poten#
The important point here is that we can indeed choose an add
constant such thatEtot(r ) can be made to agree with the pheno
enological potentials inside the estimated errors.

TABLE I. Comparison of the total energies and scales for thebb̄
system@3-flavor prescription,m5m2 , aS

(5)(MZ)50.1181#.

r @GeV21# Etot(r )@GeV# m2(r )@GeV#

0.5 8.75 1.99
1.0 9.25 1.52
1.5 9.49 1.28
2.0 9.66 1.12
2.5 9.79 0.98
3.0 9.92 0.79
05401
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53 GeV21 is about690 MeV with respect to its value a
r 51 GeV21, corresponding to a variationaS

(5)(MZ)
50.118160.0020. The present uncertainties of theb-quark
and c-quark MS̄ masses are about630 MeV @19# and
6100 MeV @16,28#, respectively, and also their central va
ues are correlated with the value ofaS(MZ). The depen-
dence ofEtot(r ) on m̄b for small variations ofm̄b is practi-
cally a shift ofEtot(r ) by 2Dm̄b ~independent ofr ). We have
confirmed this feature up to a larger variation ofDm̄b5
660 MeV, corresponding to more conservative error e
mates in the literature. The dependence ofEtot(r ) on m̄c is
weak and negligible (uDEtot(r )u&10 MeV for Dm̄c5
6100 MeV), since the charm mass effects areO(aS

2) and
beyond. Hence, of these only the dependence onaS(MZ)
matters in the comparison ofEtot(r ) and the phenomenologi
cal potentials.

~ii ! Unknown higher-order corrections. We may estimate
the higher-order uncertainties from the size of the next-
leading renormalon@7,17#. We show its typical size
6 1

2 LQCD(LQCD•r )2 by error bars in Fig. 4 takingLQCD
5300 MeV. We have also checked these estimates by c
puting theO(aS

4) correction toEtot(r ) in the large-b0 ap-
proximation. The corrections from theO(aS

4) term are 7, 47,
68 MeV at r 51, 2, 3 GeV21, respectively.

~iii ! Approximations indmb,pole. In Sec. II B the charm
mass corrections to the pole mass,dmb,pole

[2] and dmb,pole
[3] ,

have been computed in the linear approximation. We e
mate uncertainties induced by this approximation by us
the full correction Eq.~6! for dmb,pole

[2] instead, while keeping
dmb,pole

[3] in the linear approximation. We find thatEtot(r )
varies by27, 210, 217 MeV at r 51, 2, 3 GeV21, re-
spectively.

~iv! Non perturbative effects. Up to now there exists no
reliable way to estimate entire nonperturbative effects on
QCD potential accurately@2#. Moreover, in principle, the
size of nonperturbative effects will depend on the spec
perturbative scheme used in the computation of the Q
potential or the total energy. Here, we do not attempt
compute nonperturbative effects separately, but rather c
sider the differences between our predictions~with respec-
tive perturbative errors! and the phenomenological potentia
as orders of magnitude estimates of nonperturbative eff
in our computational scheme. From our present results,

ls.
ve

TABLE II. Renormalon cancellation in thebb̄ system @r
51 GeV21, m5m1, 3-flavor prescription,aS

(5)(MZ)50.1181#:
The aS expansion ofEtot has much better convergence propert
than the expansions of the individual terms.X[n] represents the
order@aS

(3)(m)#n term ofX. mb,pole andVQCD do not contain themc

effects, these are given asdmb,pole anddVQCD. The units are GeV.

n mb,pole
[n] dmb,pole

[n] VQCD
[n] dVQCD

[n] Etot
[n]

0 4.190 0 0 0 8.380
1 0.657 0 20.493 0 0.822
2 0.175 0.028 20.298 20.032 0.076
3 0.182 0.044 20.391 20.084 20.024
8-5
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may consider that non-perturbative effects would be
sorbed into perturbative uncertainties of our predictions. T
is consistent with the observation of@19#.

Besides, when we compare our theoretical predicti
with phenomenological potentials, we should take into
count the following uncertainty:

~v! Phenomenological potentials vs Etot
bb̄(r). Our ultimate

goal would be to compare the exact QCD potential with
perturbative prediction~after subtracting renormalons!. The
phenomenological potentials are not direct physical obs
ables but are determined under certain model assumpt
Since separation of the QCD potential from the rest of
interactions~e.g. 1/r 2 potential, relativistic corrections! is not
absolutely clear in the phenomenological approaches, t
may be substantial corrections between the phenomeno
cal potentials and the QCD potential or the total ene

Etot
bb̄(r ). The relation can only be clarified by detailed com

parisons of the predictions of perturbative QCD with t
experimental data for various physical observables of
bottomonium states, such as the energy spectrum, d
rates, level-transition rates, etc.~Studies on the energy leve
have been initiated in@16,19#.! These detailed comparison
however, are beyond the scope of the present paper.

FIG. 3. Charm mass effects: Comparison of the QCD poten
for realisticmc with the two limiting casesmc→0 ~1 heavy flavor,
4 light flavors! and mc→mb ~2 heavy flavors, 3 light flavors! for
aS

(5)(MZ)50.1181.

FIG. 4. Comparison of the QCD potential to various mode
The QCD potential is given for three values ofaS

(5)(MZ); constants
are added to make all curves coincide with the QCD poten
@aS

(5)(MZ)50.1181# at r 51 GeV21.
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III. OTHER SYSTEMS

Let us also examine the total energies of other qua
antiquark systems. Theoretically we may expect that a li
of the potential energy exists when we send the masse
quark and antiquark to infinity. Empirically both the botto
monium and charmonium spectra can be reproduced
with the same phenomenological potential. Thus, it would
interesting to examine whether the total energies for differ
systems coincide up to an additive constant.

For thebc̄ system, we consider

Etot
bc̄~r !5mb,pole1dmb,pole1mc,pole1VQCD,4~r !1dVQCD~r !,

~19!

where

mc,pole5m̄cH 11
4

3

aS
(3)~m̄c!

p
1S aS

(3)~m̄c!

p
D 2

d1
(3)

1S aS
(3)~m̄c!

p
D 3

d2
(3)J . ~20!

We examine the expansions ofEtot
bc̄(r ) both in the 4-flavor

and 3-flavor couplings, and in the two scale-fixing prescr
tions Eqs. ~13! and ~14!. We find that, at distance
0.5 GeV21&r &1.8 GeV21, m1(r ) exists in the first pre-
scription and the minimim value ofuEtot

[3] u is zero in the sec-
ond prescription, indicating that stable theoretical predictio
for the total energy are obtained in this region. A comparis
in Fig. 6 shows that the predictions for the total energies
the bc̄ system andbb̄ system agree within the uncertaintie
of the predictions. We also note that, even atr
*1.8 GeV21, where only the second scale-fixing prescri
tion exists, the curves for thebc̄ system in the 4-flavor and
3-flavor couplings agree with each other and they are a
consistent with that of thebb̄ system. See also Tables III an
IV for numerical values.

l

.

l

FIG. 5. A comparison of the QCD potential for differen
aS

(5)(MZ) to various models. The height of the bars indicate t
minimized differenceDn50 between the QCD potential and th
model when varying the constant term. The four bars in each gr
correspond to~from left to right!: Cornell potential, power-law po-
tential, log potential and the average of the former three.
8-6
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Furthermore we examined the total energy of thecc̄ sys-
tem,

Etot
cc̄~r !52mc,pole1VQCD,3~r !, ~21!

in a similar way. We, however, obtained stable predictio
only in the very narrow vicinity ofr .1 GeV21 and conse-
quently we could not compare the shape ofEtot(r ) with that
of thebb̄ or bc̄ system. We believe that this is caused by t
typical scales for thecc̄ system being too low to give reliabl
perturbative expansions.~We may compare this feature wit
that of the perturbative calculation of the energy levels
charmonium@16#: only the 1S levels can be computed rel
ably.!

Conversely we examined the total energy of thebb̄ sys-
tem as we increase the bottom quark mass artificially. W
we do this, we find that the region ofr, where we can make
a stable prediction ofEtot(r ), shifts to shorter distances. I
other words, we can still make a stable prediction of
shape of the potential from the distancer .1/m̄b up to the
region which is relevant to the formation of the~hypotheti-
cally heavy! bottomonium states. This is reasonable, sinc
heavier quarkonium has a smaller radius, and the predic

FIG. 6. Total energy of theBc system for 3-flavor (m5m1:
solid; m5m2: dashed! and 4-flavor (m5m1: dotted;m5m2: dash-
dotted! prescription. For comparison the energy of theY system~3
flavors! is shown~shifted so that it coincides with theBc energy at
r 51 GeV21). For all curvesaS

(5)(MZ)50.1181. Error bars indi-
cate6

1
2 LQCD(LQCD•r )2 with LQCD5300 MeV.

TABLE III. Comparison of the total energies and scales for t

bc̄ system~3-flavor prescription,m2). The predictions are stable i
the range 0.5 GeV21&r &1.8 GeV21.

r @GeV21# Etot(r ) @GeV# m2(r ) @GeV#

0.5 5.35 4.08
1.0 5.85 1.31
1.5 6.12 0.97
2.0 6.34 0.76
2.5 6.48 0.83
3.0 6.55 0.93
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should be stable for this smaller radius. On the other ha
we do not always have stable predictions forEtot(r ) in the
region of our interest, 0.5 GeV21&r &5 GeV21. We may
understand this property as a manifestation of a multi-sc

problem. The pole mass contains powers of log(m/m̄b), while

the QCD potential contains powers of log(mr). Whenm̄b and
r 21 are very different, it generally becomes more difficult
cancel two different types of logarithms, so it becomes d
ficult to find a scalem which stabilizes the theoretical pre

diction. For a ~hypothetical! value of m̄b below about
23 GeV, we still have an overlap between the region
stable predictions for the total energy and the above regio
our interest. Where both scale-fixing prescriptions exist,
predictions coincide.@The distancer where the minimum of
uEtot

[3] u deviates from zero in the second prescription is clo
to the distance beyond which the first scalem1(r ) does not
exist.# In the region where both prescriptions exist, the p

dictions agree withEtot
bb̄(r ) computed with the realistic

b-quark mass, up to an additive constant.7 At larger r the
larger mass produces a smaller total energy. This tenden
expected from the higher-order analysis in the large-b0 ap-
proximation@17#. Also this agrees qualitatively with our re
sults for thebc̄ againstbb̄ system: from the point where th

curves split,Etot
bc̄ is larger thanEtot

bb̄ , although the curves late
cross ~Fig. 6!. These features are demonstrated in Fig.
where the total energy form̄b515 GeV is shown and com
pared with the one with the realisticb-quark mass.

7Of course, the agreement is better at shorter distances, wher
perturbative predictions tend to be more reliable. Atr
&1.5 GeV21 the expansion in the 4-flavor coupling tends to
more stable than the expansion in the 3-flavor coupling.

FIG. 7. Total energy of the bound stateỸ of a hypothetical
heavyb quark with a mass of 15 GeV in 3-flavor (m5m1 @breaks
down at r'0.6 GeV21#: solid; m5m2: dashed! and 4-flavor (m
5m1 @breaks down atr'0.8 GeV21#: dotted;m5m2: dash-dotted!
prescription. Where both scale prescriptions exist, the curves c
cide. For comparison the energy for theY system~3 flavors! is

shown ~shifted so that it coincides with theỸ energy at r
50.5 GeV21!. For all curvesaS

(5)(MZ)50.1181.
8-7
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IV. CONCLUSIONS

We have analyzed the total energy of thebb̄ system in-
corporating the non-zero charm-quark mass effects. We
served an improvement of convergence of the perturba
expansion, once we perform the cancellation of the lead
renormalons; we obtained stable theoretical predictions

the total energyEtot
bb̄(r ) at r &3 GeV21. These features ar

qualitatively the same as those observed in@17#. We com-
pared the total energy with typical phenomenological pot
tials. They agree in the range 0.5 GeV21&r &3 GeV21

within the estimated theoretical uncertainties. The agreem
becomes very good when the value of the input param
aS

(5)(MZ) is large ~inside the error bands!, 0.1191–0.1201.
From these results, we may conclude that, in analyzing
nature of the bottomonium states, using the perturbative

diction for Etot
bb̄(r ) is, at least, as good as using phenome

logical potentials. We may compare our result with the co
prehensive analysis of the bottomonium spectrum wh
includes full corrections up toO(1/c2) @19#. There, a smaller
value around 0.1161 foraS

(5)(MZ) was favored. Therefore
we see that the interactions other thanEtot(r ) play non-
negligible roles for the predictions of the bottomonium e
ergy levels, with respect to the present theoretical accur
of perturbative QCD.

We also examined the perturbative predictions forEtot(r )
of other systems. For thebc̄ system, stable predictions ar
obtained~at least! in the ranger &1.8 GeV21. In this range,
the total energy agrees with that of thebb̄ system inside
theoretical uncertainties. For thecc̄ system, we could barely
obtain stable theoretical predictions for the shape ofEtot(r ),
since the relevant scales are very low. We also found that
a heavier~hypothetical! quarkonium system, the range whe
Etot(r ) can be predicted reliably, shifts to shorter distanc
At any event, whenever we may obtain stable theoret
predictions for Etot(r ) at r *0.5 GeV21, the predictions
agree with the phenomenological potentials within pres
theoretical uncertainties.
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TABLE IV. Renormalon cancellation in thebc̄ system (r
51 GeV21, m5m1, 3-flavor prescription!. Notations are same a
in Table II.

n mb,pole
[n] dmb,pole

[n] mc,pole
[n] VQCD

[n] dVQCD
[n] Etot

[n]

0 4.190 0 1.243 0 0 5.433

1 0.730 0 0.217 20.547 0 0.399

2 0.153 0.035 0.211 20.321 20.039 0.038

3 0.203 0.054 0.304 20.466 20.109 20.014
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APPENDIX A: PARAMETERS

The constants used in Eqs.~2! and ~3! are given by@3#

a1
(nl )5

31

3
2

10

9
nl , ~A1!

a2
(nl )5

4343

18
136p2166z32

9 p4

4

2nl S 1229

27
1

52z3

3 D1
100

81
nl

2 , ~A2!

and

d1
(nl )5

307

32
1

p2

3
1

p2log2

9
2

z3

6
1nl S 2

71

144
2

p2

18D
.13.443421.04137nl , ~A3!

d2
(nl )5

8462917

93312
1

652841p2

38880
2

695p4

7776
2

575p2log2

162

2
22p2log22

81
2

55log42

162
2

220Li4S 1

2D
27

1
58z3

27

2
1439p2z3

432
1

1975z5

216
1nl

S 2
231847

23328
2

991p2

648

1
61p4

1944
2

11p2log2

81
1

2p2log22

81
1

log42

81
1

8Li4S 1

2D
27

2
241z3

72
D 1nl

2S 2353

23328
1

13p2

324
1

7z3

54 D
.190.391226.6551nl10.652691nl

2 . ~A4!

APPENDIX B: dVQCD
†3‡

„r …

After correcting misprints in@5,6#, the charm-mass cor
rection to the QCD potential atO(aS

3) reads8

8The last line stems from our use ofm̄c instead of the pole mass
and it is not due to the misprint.
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dVQCD
[3] ~r !52

4

3

aS
(4)~m!

r S aS
(4)~m!

3p D 2F H 2
3

2E1

`

dx f~x!e22m̄crxS b0
(4)S log

4m̄c
2x2

m2
2Ei~2m̄crx !

2e4m̄crxEi~22m̄crx !D 2a1
(4)D 13S log~m̄cr !1gE1

5

6D S b0
(4)l 1

a1
(4)

2 D 1b0
(4) p2

4 J 2H E
1

`

dx f~x!

3e22m̄crxS 1

x2
1x f~x!log

x2Ax221

x1Ax221
D 1E

1

`

dx f~x!e22m̄crx
„log 4x22Ei~2m̄crx !2e4m̄crx Ei~22m̄crx !…

2S log~m̄cr !1gE1
5

6D 2

2
p2

12J 1H 57

4 S f 1G~0,2f 2m̄cr !1b1G~0,2b2m̄cr !1 log~m̄cr !1gE1
161

228
1

13

19
z3D J

1H E
1

`

dx f~x!e22m̄crx~28m̄crx !14J G . ~B1!
s.
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