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Perturbative QCD potential, renormalon cancellation, and phenomenological potentials
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We examine the total enerdgi,(r)=2myqet Vocp(r) of the bb system within perturbative QCD up to
(’)(a?s’). We extend a previous analysis by incorporating effects of the nonzero charm-quark mass in loops. We
find that, once the renormalon cancellation is perforniggl(r) agrees well with typical phenomenological
potentials for heavy quarkonia at distances 0.5 Ge¥r=3 GeV !. We also examine the perturbative
predictions forE,y(r) of other heavy quarkonium systems. Whenever stable predictions are obtained, they
agree with each other up to arindependent constant.

DOI: 10.1103/PhysRevD.65.054018 PACS nunider12.38.Bx, 12.39.Pn

[. INTRODUCTION termined from the results of lattice calculations or from
model calculations; s€&] and references therein. The lattice
Hea\/y quarkonium Systems, such as bottomonium an@SU'tS, being first principles calculations, turn out to be con-
charmonium, provide an important testing ground for theo-Sistent with phenomenologically determined potentials, but
retical studies on the dynamics of QCD bound states. Foft the present stage they are still not precise enough.

decades, theoretical methods for investigating these systems Computations of the QCD potential within perturbative
have followed paths different from those used for studying@CD also made progress over time. The full two-loop cor-
fections with massless quark loof#), as well as non-zero

the QED boundstates such as positronium or the hydroge .
atom. The reason is that the nonrelativistic bound statd'2SS effects in quark loops up to the_ same ofde 6.]' have
een computed. The perturbative expansion &t

theory based on perturbative QCD, by itself, was not SUCZ 55 Gev ! revealed to be very poorly convergent, and

ces_sful for dt()alscrlbrl]ng tge hei\r/]y qfua;k;)hnutjm sttat%s.tThe mC(:) so its shape deviates qualitatively from an expected
serious problem has been the fact that perturbative Q oulomb-plus-linear form in the relevant range. The poor

does not reproduce th_e shape Of_ the static Q_CD potent onvergence is considered to reflect a non-trivial structure of
Vqco(r), which is considered to dictate a dominant part ofihe QCD vacuum. Also, within the context of perturbative
the dynamics of these systems, in the relevant regiogycp, this behavior has been understood using the renorma-
0.5 Ge\flerS Ge\fl. lon |anguagq7]_

The theoretical method which has been widely used for Recently, there have been significant developments in the
analyses of the heavy quarkonium states is the phenomengonrelativistic bound state theory based on perturbative
logical potential-model approach. In this method, one asQCD. Thanks to the calculations of higher-order corrections
sumes some simple form for an effectigeonrelativisti¢ ~ [8—11] and the understanding of the leading renormalon can-
Hamiltonian of the quarkonium system. A phenomenologicakellation[12,13, it became possible to predict accurately the
potential, which is close to the above QCD potential concepphysical observables of the heavy quarkonium stérepar-
tually, is introduced in the Hamiltonian. One parametrizesticular, the bottomonium statesvithin perturbative QCD
the potential and determines the parameters such that variols,10,14—19. An essential feature is that the prediction for
physical observables of the quarkonia are reproduced in thighe QCD potential, after incorporating these developments,
model. It turned out that phenomenological potentials deterbas become accurate, and that it has reproduced a realistic
mined in this way have more or less similar shapes in théhape of the potential in the relevant range. Refer¢ncg

region 0.5 GeVl=r=5 GeV !, which may be repre- investigated this feature in particular. There, the following

sented typically by a Coulomb-plus-linear potential. See e.g@si’f)cb?”?:r‘]’?hzelig OT}?];V\:giwormalon cancellation is incorpo-

Ref.[1] for a recent analysis based on potential models. Eate d, convergence property of the total energy of the botto-

On the other hand, theoretical approaches, which havmonium SystenE(r)=2m +Voco(r) improves dras-
foundations in first principles, have been developed. Withmtically Y tot b.pole ™ ¥ QCD P

the framework of nonrelativistic QCD(NRQCD) or 2) Lo .

) ; . For simplicity, two hypothetical casesn.—0 and
potentla]—NRQCD, the L.agrang|an .Of a heavy quarkomummc_) my,, have been examined; a reliable theo(r:etical predic-
system is given in a series expansion of some small paramy,, or E,(r) is obtained at<3 GeV %, and the predic-

eter (typically the quark velocity ~ as). The Wilson coef-  ion agrees with typical phenomenological potentials in the
ficients of the effective theory are determined by matchlngrange 05 GeVl=r=3 GeV ! within theoretical uncer-

the theory to the full QCD theory either perturbatively or tginties.
non-perturbatively. The QCD potential, as well as otfsetb- (3) The qualitative behavior d(r) in the above range
leading potentials which enter the effective theory, are de-can be understood as originating from an increase of the
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mterque_lrk force due to the running of the couplmg constant. . 4 a(s4)(mb) a(s4)(mb) 2 .
In this paper we extend the analysis [df7]. First, we M, pole=Mp| 1+ = di®

incorporate the realistic value of the charm mass in the cal- 3 77

culation of E;y(r). Since we are interested in the ranger of (4), ==\ 3

not very different from the charm-mass scalenl/ we (as (mb)) (4)] )

should properly take into account the dependencengn ™

which enters through loop corrections. In this way we can S
compare predictions of perturbative QCD in the realistic casavherem;=m"S(m"S) denotes the M$nass renormalized at
with phenomenological potentials. Secondly, we compute théhe MSmass scale. The QCD potential of the theory with
total energies for quark-antiquark systems other tharbthe massless flavors orflys given, up toO(ag), by

system and compare them. [Ih7] the part ofE,(r) inde-

pendent of the external quark masses has been examined )
using the interquark force. Here we examine it in a different 4 ag"(p)
way. Our purpose is to compare the QCD potental the Ve, n|(r) 3 7
corresponding potential in the effective Hamiltonian of the

guarkonium system which has been studied in various ap- ("')(,u)
proaches so far, with the prediction of perturbative QCD. We an
anticipate that, by combining our results with the conven-

tional studies, we would be able to obtain a better under-

standing on the dynamics of the heavy quarkonia from first +2(,8(”')+2,8(”') (”')) +a(”')
principles.

In Sec. Il we compute the total energy of thb system, \yhere| =log(ur)+ v, and 8, denote the coefficients of the
incorporating non-zero charm mass effects: in Sec. Il A Weyet function

set up our formulas; in Sec. IIB numerical analyses are

given; in Sec. IIC we discuss uncertainties of our predic-

tions. In Sec. Il the total energies of other systems are ex- ) )

amined. Conclusions are given in Sec. IV. Appendices collect o —1l=gzm, B"=102-=n;. (4)
some formulas.

(2,8(n|)| + a(nl))

L[asw
4

2

(n)y2 77_
[(B ") (4|2+ 3

()

The constants; andd; are given in Appendix A.
Il. TOTAL ENERGY OF THE bb SYSTEM When we include the effects of the non-zero charm-quark

mass, the above formula is modified as follows:
A. Definitions

In the modified minimal subtraction (MSscheme, it is

appropriate to compute the total energy of tﬁsystem in
the theory which contains 5 flavors. We are, however, inter-

ested in the total energy when the distance betweandb

is much larger than their Compton wavelengtbs 1/m, .
Therefore, we will rewrite the total energy in terms of the

EPR(r)= Etotm () +2 8my poiet NVocp(r). ()

At O(«a S) the non-zero charm mass correction to the pole
mass,émy, e, reads22]

4-flavor couplinga®(w) in order to realize decoupling of o®(my) |2 2 3
S [2] mb my 5 w 2
the b-quark to all orders. oMy pole™ = 3 log=(&) + 5 log(¢) + > &
When we neglect the charm quark mass, the total energy
is given by ol 1,
+(A+H(1+E)| Lix(— )~ 5log™(£)
Etotm O(r)zzmb,pole+VQCD,4(r)- (1)

7T2
, - +Iog(§)log(1+§)+F)Jr(l—é)(l—éS)
The relation between the pole mass and the M&ss has
been computed up to 3 loops in a full theory, which contains
n, heavy flavors andh, massless flavor§20]. (The same
relation was obtained numerically i21] in a certain ap-
proximation) Settingn,=1 and rewriting the relation in (6)
terms of the coupling of the theory withh =4 massless fla-
vors only, we find

_ 1, 7
X le(f)—glog(é)+log(§)log(1—§)—? ,

%Because of the decoupling theorem, the perturbative QCD poten-
tial of the theory which contains one heavy fla@rith massm)
This relation coincides with Eq(14) of [20], which is given  andn, massless flavors coincides with the potential in Gjup to
numerically(indirectly throughB, and 8;). Note that, in the other O(ag) if we count 1f = O(agm) and if we rewrite the coupling by
formulas of[20], the coupling of the full theory is used. the coupling of the theory witin; massless flavors only.
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whereg¢=m,/m, . Its leading term in the limitn,— 0 (linear
approximation is given by

[a8)(my) 12—

- ™

5mb polé mg —0—

At O(a%), the complete expression 6y, e is Not known;
it has been computed only in the linear approximafidh

2

[P (mp)]°—
a9

5m{3?,’2)o|4 m,—0— c

ﬂ(4)
+ %( —2 log(§)

)

59
—+2log 2)

4log2+ 22| -
—4l0g2+ =175l 15

3

19

+ g (fafat blbz)}a tS)
where f,=0.470+0.005, b,=1.120+0.010, f;=(logA
—logb,)/(logf,—loghy,), b, = (logA—logf,)/(logb,—logf,)
and logA=161/228+13;5/19—1log2. In [5] it has been ar-
gued that the use of the linear approximation in b&rnh{fpme
and 5mb pole 1S @ slightly better approximation of the full
result than to use the exaf)‘tnb pole @Nd the linear approxi-
mation of 5mb pole- It has been conjectured that the former
apprOX|mat|on accounts for the full correctmﬁmb pole

+ 5mb pole With about 10% accuracy, while the latter approxi-

mation accounts for the full result with about 20% accuracy.

In [19], the theoretical predictions for the bottomonium en-

PHYSICAL REVIEW 55 054018

QCD(r) was obtained also in one-parameter integral form
in [5,6]. Both of the latter references contain misprints, how-
ever; for completeness, we give a corrected formula for

SVELK(r) in Appendix B?

Since the renormalon cancellation at each order of the
perturbative expansion is realized only when we use the
same coupling constant in expanding ;e andVocp A1),
we rewrite ag(my) in terms of ag(u) using the
renormalization-group evolution of the coupling constant:

o (”|) )ﬁ(m) “
a;”')<mi>=ag”')<m[1 —5log| =
. ( a(snl)(/_,L) 2 (()n|)2 I , P
T 4 09 m
(ny)
B
+L|Og(i) ] (11)
8 m,

Furthermore, we also examine the total energy after re-
expressing it in terms of the 3-flavor coupling and compare it
with the 4-flavor coupling case. This is because we are inter-
ested in the total energy in the range 0.5 Gé¥r

<5 GeV !, where the charm quark may decouple as well.
We insert the relatioh23]

a(w)

ergy levels turned out to be more stable when we used

(5mb poIeJm ﬂo) + (5mb polém HO) as Compared tCﬁmb pole
+ (5mb poItJ me —>0)

At O(ad) the non-zero charm mass correction to the

QCD potential, 6Vqcp, is given in one-parameter integral
form as

4 af(p) (e
r

SVQCD )= f dx f(x)e~ 2merx

+| log(mcr) + 'yE+g 9
with
f(x)= 2_1(1+i2>. (10
X 2Xx

At O(ag), the correction was computed first in momentum-
space in[4]. The Fourier transform was perform”ednd

a
a<54><u>=a<s3><m[1+ log| —
C
®3) 2
a 1
+( S (M)) Log?| &
9 M
19 () 11

into the aboveER’(r) and re-expand ina$(w). Thus,

we will examine the series expansion

ERR(rimy M, al" (1) in al™ (1) up to O((al")?) for
! ! 'S S S

n,=3 and 4.

The obtained total energy depends on the sgaliue to
truncation of the series at a finite order. Following the pre-
scriptions off 17], we will fix the scaleu in the two different
ways described below:

(1) We fix the scaleu= w4(r) by demanding stability of
Ei(r) against variation of the scale:

of

0. (13

Eoll;mi,as(u)]
m=pq(r)

d
Hdu

3The coordinate-space potential was studied using different inte- “The corrected formula has been acknowledged by the author of

gral representations ift].

[5].
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FIG. 1. Determination of the scale: Total energy aridterm of
the total energy, the scales determined with the respective prescri%-n
tion are marked with a short vertical lindVe do not take the scales
which are located close to the infrared singularityad?(u).] The
distancer is fixed to 2 GeV'!; a$)(M,)=0.1181.

FIG. 2. Total energy for 3-flavorg= w: solid; u= u,: dashed

d 4-flavor fu= u4: dotted; u= u,: dash-dotteficase. For the 3-
(4-) flavor case prescription 1 breaks down at
~3.2(2.75) GeV!. Where both scale prescriptions exist, the
curves coincidea)(M;)=0.1181.

(2) We fix the scalew= u,(r) on the minimum of the abso-

lute value of the last known ten[r(?(ag) term] of Ey(r): mined in the four different prescriptionscale-fixing pre-

scriptions 1 and 2, and expansion&u’ﬁ) anda(s4)) in Fig. 2.

All four curves agree well in the range where both scale-
fixing prescriptions exist. The numerical values of the total
energy and the scale are listed in Table I. We observe a
strong cancellation of the leading renormalon between the
pole mass and the QCD potential: the expansioBg(r) is
much more convergent than the expansions of the individual

In this subsection we take the input value for the couplingterms. This is demonstrated in Table .

constant asag?)(Mz) =0.1181+0.0020[24]. We evolve the Since the new aspect of our analysis is the inclusion of the
coupling by solving the 3-loop renormalization-group equa-charm-mass effects, we compare our result with those of the
tion numerically and match it to the 4- and 3-flavor cou-analysis done in the two hypothetical cases—0 andm,
plings successively through the matching conditi@8].>°  —m,. This is shown in Fig. 3. Our curve lies between those
For the bottom- and charm-quark masses, we use the value$ the two hypothetical cases, which is consistent with our

m,=4.190,% GeV[19] andm,=1.243 GeV[16], respec- €xpectation.

tively. [For simplicity we do not change the vaIueE@ as a bNOW V‘;ﬁ tcompielri the totall en.eriﬁtotgr)'t. als .Obtf'nﬁd
function ofagS)(Mz). This is justified, since the dependencea ove, with typical phenomenalogical potentials i the fitera-

of Ei(r) on it is much smaller than other theoretical uncer- ur?:) A Coulomb-plus-li tentia(C Il potential
tainties; see Sec. Il C.We compute bothém{fg)me and [25][ oulomb-plus-linear potentia(Cornell potenti
smiPl . in the linear approximation in this subsection. '
First we examine the scale dependencesEgf and
[E{it](r;mi ,as(1))]? in Egs.(13) and(14). In the first scale-
fixing prescription, the minimal sensitivity scalg (r) exists
only in the ranger <3 GeV 1. In the second prescription,
w=u(r), the minimum value of EE/(r)| is zero in the
ranger<3 GeV I Whereas|E{§t](r)|>0 in the ranger
=3 GeV ! These features indicate an instability of the per-
turbative prediction folE,(r) atr=3 GeV !. Qualitative
features of the scale dependences are similar for the expan-
sions in the 3-flavor and the 4-flavor coupling¥hey are
also similar to the results of the analysis fop—0 or m;
—my, [17].) The range where the prediction is stable extends
to slightly longer distances for the 3-flavor case, in accord V(r)=-—0.6635 GeW(0.733 GeVlog(r X1 GeV).
with our naive expectation. The scale-dependence is demon- (17
strated in Fig. 1 for=2 GeV ! and for the expansion in
the 3-flavor coupling. We compare the total energy deterin Fig. 4 we compare these potentials with the perturbative
computation of Ei,(r) for the input values ag’)(Mz)
=0.1181+0.0020. An arbitrary constant is added to each
potential, as well as td&,y(r), such that it coincides with

d .= 2
MM[Etot[r;mi yas(u)]] =0. (14

= po(r)

B. Numerical analyses

r

V(r)=—;+; (15)

with k=0.52 anda=2.34 GeV ..
(i) A power-law potentia[26]:

V(r)=—8.064 GeW(6.898 GeV(rx1 GeV)oL
(16)

(iii ) A logarithmic potential 27]:

5The matching scales are takenag; and EC, respectively.
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TABLE |. Comparison of the total energies and scales foithe
system[3-flavor prescriptionu=u,, a$)(M;)=0.1181.

r(Gev 1] Ew(r)[GeV] wa(r)[GeV]
0.5 8.75 1.99
1.0 9.25 1.52
15 9.49 1.28
2.0 9.66 1.12
25 9.79 0.98
3.0 9.92 0.79

Ew(r) for a)(M;)=0.1181 atr=1 GeV *.° This is be-
cause the constant partindependent parbf each phenom-

PHYSICAL REVIEW D55 054018

=3 GeV !is about=90 MeV with respect to its value at
r=1 GeV'!, corresponding to a variationa$)(M5)
=0.1181t0.0020. The present uncertainties of theuark
and c-quark MS masses are about30 MeV [19] and
+100 MeV[16,28, respectively, and also their central val-
ues are correlated with the value ag(M;). The depen-
dence ofEy(r) on Eb for small variations oﬁb is practi-
cally a shift ofE,y(r) by ZAEb (independent of ). We have
confirmed this feature up to a larger variation Mﬂﬁ
+60 MeV, corresponding to more conservative error esti-
mates in the literature. The dependenceEgf(r) on EC is
weak and negligible |AE(r)|<10 MeV for Am.=
+100 MeV), since the charm mass effects é)eug) and

enological potential is not determined well. As can be seenbeyond. Hence, of these only the dependencengfMz)
Ew(r) and the phenomenological potentials agree inside théhatters in the comparison &,(r) and the phenomenologi-
errors estimated from the next-to-leading renormalongal potentials.

+3Agcep(Agep 1)? (taking A gcp=300 MeV, indicated by

(i) Unknown higher-order correctiondVe may estimate

error barg, and the agreement is better for a larger value ofhe higher-order uncertainties from the size of the next-to-

the input parametesS)(M5).

In order to quantify the differences between the phenom—
enological potentials and the QCD potential for different val-

leading renormalon[7,17]. We show its typical size
+%AQCD(AQCD~r)2 by error bars in Fig. 4 taking\ocp
=300 MeV. We have also checked these estimates by com-

ues of ag(M,), we define a weighted difference betweenPuting theO(ag) correction toE(r) in the largeg, ap-

Ei(r) and a potentiaV(r) as

An[Etot(r)_V(r)]:minfrldr r[Eg(r) = V(r)—cl?.
c Jro
(18

The minimum value of the integral is taken as we vary anthe full correction Eq(6) for smj e
arbitrary constant added to the potential. We examined thémg e

differenceA,, betweenE,y(r) and each of the phenomeno-
logical potentials, as well ad, betweenE;y(r) and the
average of the three phenomenological potentials,nfer
—1, 0 and+1. We found similar qualitative featured,,
becomes small for a larger value @@(MZ), inside the
present error, around 0.1191-0.1201. We demonstrate this
Fig. 5: Ap_o with rp=1 GeV ! and r;,=4 GeVv'! is

proximation. The corrections from tr(’é(a“s) term are 7, 47,
68 MeV atr=1, 2, 3 GeV'!, respectively.

(iii) Approximations indmy, ;o In Sec. 1l B the charm
mass corrections to the pole masdnf?),. and smi®l .,
have been computed in the linear approximation. We esti-
mate uncertainties induced by this approximation by using

[2] | instead, while keeping
in the linear approximation. We find thdy(r)
varies by—7, —10, —17 MeV atr=1, 2, 3 GeV'!, re-
spectively.

(iv) Non perturbative effectdJp to now there exists no
reliable way to estimate entire nonperturbative effects on the
QCD potential accurately2]. Moreover, in principle, the
mize of nonperturbative effects will depend on the specific
perturbative scheme used in the computation of the QCD

[3]

shown for each of the potentials and for the averaged poteriotential or the total energy. Here, we do not attempt to

tial, varying the value otxg(M 7).

C. Error estimates

compute nonperturbative effects separately, but rather con-
sider the differences between our predictignsth respec-
tive perturbative errojsand the phenomenological potentials
as orders of magnitude estimates of nonperturbative effects

There are several uncertainties in our theoretical predicin our computational scheme. From our present results, we

tion for the total energyERR(r).

(i) Errors of the input parametera)(My), m, and m.
In Fig. 4 the dependence &, (r) on ag(My) is shown. As
ag(M3) increasesE;,(r) becomes steeper due to an in-
crease of the interquark fordd7]. Variation of E,y; at r

TABLE II. Renormalon cancellation in théb system [r
=1 GeV'!, u=u4, 3-flavor prescription,a(M,)=0.1181:
The ag expansion ofE,,; has much better convergence properties
than the expansions of the individual termg represents the
order[ a§)(1)]" term of X. My, pye @andVocp do ot contain then,
effects, these are given @y, poe and 6Vocep. The units are GeV.

5The choice ofr,_ where the pqtentials are made to coincide, is ton m{féme 5mg,ﬂpo|e v[Q”éD SVEH(]:D E{gtl
some extent arbitranf,Our choicer=1 GeV ! corresponds ap-
proximately to the root-mean-square radius of ¥l S) state, the O 4.190 0 0 0 8.380
heaviest state used to determine the phenomenological potdntials. 0.657 0 —0.493 0 0.822
The important point here is that we can indeed choose an additive 0.175 0.028 —0.298 —0.032 0.076
constant such tha,y(r) can be made to agree with the phenom- 3 0.182 0.044 —0.391 —0.084 —0.024

enological potentials inside the estimated errors.
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riGev™] FIG 5. A comparison of the QCD potential for different

FIG. 3. Charm mass effects: Comparison of the QCD potentlaﬂs (M 2) to various models. The height of the bars indicate the
for realisticm, with the two limiting casesn.—0 (1 heavy flavor, minimized differenceA,_, between the QCD potential and the

4 light flavorg and m,—m, (2 heavy flavors, 3 light flavojsfor model when varying the constant term. The four bars in each group
(5) _ ¢ ' correspond tdfrom left to righd: Cornell potential, power-law po-
ag’(Mz)=0.1181. . .
tential, log potential and the average of the former three.

may consider that non-perturbative effects would be ab- IIl. OTHER SYSTEMS
sorbed into perturbative uncertainties of our predictions. This
is consistent with the observation [df9]. Let us also examine the total energies of other quark-

Besides, when we compare our theoretical predictiong@intiquark systems. Theoretically we may expect that a limit
with phenomenological potentials, we should take into acof the potential energy exists when we send the masses of
count the following uncertainty: quark and antiquark to infinity. Empirically both the botto-

(v) Phenomenological potentials v&4r). Our ultimate monium and charmonium spectra can be reproduced well
goal would be to compare the exact QCD potential with theV with the same phenomenological potential. Thus, it would be
perturbative predictiorafter subtracting renormalonsThe interesting to examine whether the total energies for different
phenomenological potentials are not direct physical obsenSYStéms coincide up to an additive constant.
ables but are determined under certain model assumptions. For thebc system, we consider
Since separation of the QCD potential from the rest of the
interactiong(e.g. 12 potential, relativistic correctionsgs not
absolutely clear in the phenomenological approaches, ther tot(r) My, pole™ SMp, poiet Me, pote™ Vaep A7) + 8Vaen(r),
may be substantial corrections between the phenomenologi- (19
cal potentials and the QCD potential or the total energy

EPB(r). The relation can only be clarified by detailed com- Where

parisons of the predictions of perturbative QCD with the
experimental data for various physical observables of the 4 a@(ﬁ) a@(ﬁ) 2
- C C
Me, pole mc{ Q ( ) df

bottomonium states, such as the energy spectrum, decay +
rates, level-transition rates, etStudies on the energy levels 3 m
have been initiated ih16,19.) These detailed comparisons, ( @)(m ))3

¢ (3)]

™

however, are beyond the scope of the present paper. (20)

10.5 , —
o Power-law potential e We examine the expansions BES(r) both in the 4-flavor
ornell potential et ; - 0 o i
10 Log potential —, =54 K4 L7 a_md 3-flavor couplings, and in the_two scale-flxmg prescrip-
— tions Egs. (13) and (14). We find that, at distances
?,9 5 a,(Mz) = 0.1161 0.5 GeVl=sr =1.8 GeV?, u,(r) exists in the first pre-
= as(Mz) = 0.1181 scription and the minimim value 4€[3]| is zero in the sec-
9 a,(Mz) = 0.1201 ond prescription, indicating that stable theoretical predictions
for the total energy are obtained in this region. A comparison
8.5} 4 in Fig. 6 shows that the predictions for the total energies of
the bc system andb system agree within the uncertainties
oo 1 5 3 1 5 of the predictions. We also note that, even at

7[GeV] =1.8 GeV !, where only the second scale-fixing prescrip-
FIG. 4. Comparison of the QCD potential to various models.tiOn exists, the curves for thiec system in the 4-flavor and

The QCD potential is given for three values@f’(M); constants ~ 3-flavor couplings agree with each other and they are also
are added to make all curves coincide with the QCD potentiaiconsistent with that of thbb system. See also Tables Il and
[a®(M;)=0.1181 atr=1 GeV . IV for numerical values.
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FIG. 6. Total energy of theB, system for 3-flavor = u4: FIG. 7. Total energy of the bound state of a hypothetical

solid; = u,: dashedland 4-flavor 4= uq: dotted; w=u,: dash-  heavyb quark with a mass of 15 GeV in 3-flavopE u, [breaks

dotted prescription. For comparison the energy of teystem(3 down atr~0.6 GeV ']: solid; u=pu,: dashedl and 4-flavor

flavors is shown(shifted so that it coincides with thg, energy at = u, [breaks down at~0.8 GeV ]: dotted; = u,: dash-dottel

r=1 GeV1). For all curveSa(S5)(Mz)=0.1181. Error bars indi- prescription. Where both scale prescriptions exist, the curves coin-

catei%AQCD(AQCD-r)2 with Agcp=300 MeV. cide. For comparison the energy for the system(3 flavorsg is
shown (shifted so that it coincides with th& energy atr
=0.5 GeV %). For all curvesa®)(M;)=0.1181.

Furthermore we examined the total energy of tluesys-
tem,

e should be stable for this smaller radius. On the other hand,
Eiol(1)=2Mc poiet Voo A1), 2D we do not always have stable predictions Eg(r) in the
_ o _ _ . region of our interest, 0.5 Ge\l<r<5 GeV . We may
in a similar way. We, however, obtained St?ble predictions,ngerstand this property as a manifestation of a multi-scale
only in the very narrow vicinity of =1 GeV - and conse- bl Th I i £ 1000). whil
quently we could not compare the shapeEgji(r) with that problem. The pole mass contains powers of ldgt,), while
of thebb or bc system. We believe that this is caused by thet he QCD potential contains powers of lpgj. Whenm, and
r 1 are very different, it generally becomes more difficult to

typical scales for thec system being too low to give reliable cancel two different types of logarithms, o it becomes dif-

perturbative expansiongiWe may compare this feature with
that of the perturbative calculation of the energy levels off icult to find a scaleu which stabilizes the theoretical pre-

charmonium{ 16]: only the 1S levels can be computed reli- diction. For a (hypothetical value of m, below about
ably) 23 GeV, we still have an overlap between the region of
Conversely we examined the total energy of H’msys stable predictions for the total energy and the above region of
tem as we increase the bottom quark mass artificially. WheRUr interest. Where both scale-fixing prescriptions exist, the
we do thIS we find that the reg|0n Of where we can make pred|Ct|0nS CO|nC|de[The distance where the minimum of
a stable prediction oEy(r), shifts to shorter distances. In |Et0t| deviates from zero in the second prescription is close
other words, we can still make a stable prediction of theto the distance beyond which the first scalg(r) does not
shape of the potential from the distance 1/m, up to the exist] In the region where both prescriptions exist, the pre-
region which is relevant to the formation of tifleypotheti-  dictions agree witthokZ(r) computed with the realistic
cally heavy bottomonium states. This is reasonable, since @-quark mass, up to an additive constart larger r the
heavier quarkonium has a smaller radius, and the predictiolarger mass produces a smaller total energy. This tendency is
expected from the higher-order analysis in the IgBgeap-
TABLE lIl. Comparison of the total energies and scales for theprOX|mat|on[17] Also this agrees qualitatively with our re-
bc system(3-flavor prescriptiong,). The predictions are stable in  sults for thebc - againstbb system: from the point where the

i 1
the range 0.5 GeVi=r=1.8 GeV . curves splitERS is larger tharEL?, although the curves later
cross (Fig. 6). These features are demonstrated in Fig. 7,

1
1Gev ] Folr) [GeV] palr) [Gev] where the total energy fan,=15 GeV is shown and com-
0.5 5.35 4.08 pared with the one with the realistizquark mass.
1.0 5.85 131
15 6.12 0.97
2.0 6.34 0.76 Of course, the agreement is better at shorter distances, where the
25 6.48 0.83 perturbative predictions tend to be more reliable. At
3.0 6.55 0.93 =1.5 GeV'! the expansion in the 4-flavor coupling tends to be

more stable than the expansion in the 3-flavor coupling.
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TABLE IV. Renormalon cancellation in théc system ¢ APPENDIX A: PARAMETERS
= 1 = - i i i - -
N %ra(slz\ﬁ , w=uq, 3-flavor prescription Notations are same as The constants used in Eq®) and (3) are given by[3]
n Ln%)ole 5er,]2)ole mE:r,];]Jole Vg](]:D 5\/5](]:0 E'E(r)]t] 31 10
a™m=""_"p (A1)
0 4.190 0 1.243 0 0 5.433 1 3 9 I
1 0.730 0 0.217 —0.547 0 0.399
2 0.153 0.035 0.211 —-0.321 -—-0.039 0.038
3 0.203 0.054 0.304 —-0.466 -—0.109 -—-0.014 (n) 4343+ 367246 9 74
2 = 18 653 4
IV. CONCLUSIONS _ 1229, 5%s) 100, (A2)
W27 " 3 81 !

We have analyzed the total energy of thie system in-
corporating the non-zero charm-quark mass effects. We ob-
served an improvement of convergence of the perturbativend
expansion, once we perform the cancellation of the leading
renormalons; we obtained stable theoretical predictions for

the total energyER2(r) atr<3 GeV !. These features are d(n|) 307+ m*  m?log2 _ & n (_ - 77_2>
qualitatively the same as those observed . We com- 32 3 9 6 '\ 144 18
pared the total energy with typical phenomenological poten-
tials. They agree in the range 0.5 Ge\sr=3 GeV !
within the estimated theoretical uncertainties. The agreement =13.4434-1.0413"M,, (A3)
becomes very good when the value of the input parameter

a$) (M) is large (inside the error bandis0.1191-0.1201.
From these results, we may conclude that, in analyzing th%(nl) 8462917 65284 17° 695774 575772|092
nature of the bottomonium states, using the perturbative pre-2 93312 38880 7776 162

diction for Etot(r) is, at least, as good as using phenomeno- 1
logical potentials. We may compare our result with the com- 220Li (—)
pr%hengive analysis of }[/he b(?ttomonium spectrum which _ 22772|0922_55|0942_ 2 +58§3
includes full corrections up t®(1/c?) [19]. There, a smaller 81 162 27 27
value around 0.1161 for)(M) was favored. Therefore,
we see that the mteractlon.s 'other thig(r) play non- 1439727, 1975 231847 99172
negligible roles for the predictions of the bottomonium en- _ + + _ U/
ergy levels, with respect to the present theoretical accuracy 432 216 ! 23328 648
of perturbative QCD.

We also examined the perturbative predictionsEgqy(r)
of other systems. For thiec system, stable predictions are
obtained(at least in the range <1.8 GeV . In this range,
the total energy agrees with that of tiso system inside
theoretical uncertainties. For tloe system, we could barely 24174 2353 137T e
obtain stable theoretical predictions for the shap&g{r), T +n 23328 324 + )
since the relevant scales are very low. We also found that, for
a heavier(hypothetical quarkonium system, the range where
E.(r) can be predicted reliably, shifts to shorter distances.

. 617" 11m%log2 +2772Iog22 . log*2 . 8L|4(§)
1944 81 81 81 27

At any event, whenever we may obtain stable theoretical =190.39F 26.655]n,+0.65269]n|2. (Ad)
predictions for E,,(r) at r=0.5 GeV !, the predictions

agree with the phenomenological potentials within present

theoretical uncertainties. APPENDIX B: 8Viin(r)

After correcting misprints if5,6], the charm-mass cor-
; ; 3
ACKNOWLEDGMENTS rection to the QCD potential ad(«3) read§
Y.S. is grateful to Y. Kiyo for fruitful discussion. S.R. was B
supported by the Japan Society for the Promotion of Science®The last line stems from our use of; instead of the pole mass,
(JSPS. and it is not due to the misprint.
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(4%/L)<

QCD(r)_ 37 ¢

a(w)\?
3 )

— eMIXEj(— 2m 1) ) - a(14)) +3

x—\2—1
X+ \/xz—l

2 7_[_2

— 2merx i
Xe Me 2+xf(x)|og
X
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