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By adding a small, irrelevant four-Fermi interaction to the action of noncompact lattice quantum electrody-
namics ~QED!, the theory can be simulated with massless quarks in a vacuum free of lattice monopoles.
Simulations directly in the chiral limit of massless quarks are done with high statistics on 124, 164, and 204

lattices at a wide range of couplings with good control over finite size effects, systematic and statistical errors.
The lattice theory possesses a second order chiral phase transition which we show is logarithmically trivial,
with the same systematics as the Nambu–Jona-Lasinio model. The irrelevance of the four-Fermi coupling is
established numerically. Our fits have excellent numerical confidence levels. The widths of the scaling win-
dows are examined in both the coupling constant and bare fermion mass directions in parameter space. For a
vanishing fermion mass we find a broad scaling window in coupling which is essential to the quality of our fits
and conclusions. By adding a small bare fermion mass to the action we find that the width of the scaling
window in the fermion mass direction is very narrow. Only when a subdominant scaling term is added to the
leading term of the equation of state are adequate fits to the data possible. The failure of past studies of lattice
QED to produce equation of state fits with adequate confidence levels to seriously address the question of
triviality is explained. The vacuum state of the lattice model is probed for topological excitations, such as
lattice monopoles and Dirac strings, and these objects are shown to be noncritical along the chiral transition
line as long as the four-Fermi coupling is nonzero. Our results support Landau’s contention that perturbative
QED suffers from complete screening and would have a vanishing fine structure constant in the absence of a
cutoff.

DOI: 10.1103/PhysRevD.65.054015 PACS number~s!: 12.38.Mh, 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

Simulation studies of Nambu–Jona-Lasinio models h
proven to be much more quantitative than those of other fi
theories@1#. In particular, the logarithmic triviality of these
models has been demonstrated, although determining l
rithmic singularities decorating mean field scaling laws is
daunting numerical challenge. The reason for this succ
lies in the fact that when one formulates these four-Fe
models in a fashion suitable for simulations, one introdu
an auxiliary scalar fields in order to write the fermion terms
of the action as a quadratic form. In this formulations then
acts as a chiral order parameter which receives a vac
expectation value, proportional to the chiral condens

^c̄c&, in the chirally broken phase. Most importantly, th
auxiliary scalar fields becomes the dynamical mass term
the quark propagator. The Dirac operator is now not singu
for quarks with vanishing bare mass and its inversion@2,3# is
successful and very fast. The algorithm for Nambu–Jo
Lasinio models is ‘‘smart’’—it incorporates a potential fe
ture of the solution of the field theory, chiral symmet
breaking and a dynamical fermion mass, into the field c
figuration generator.

The good features of the simulation algorithm for t
Nambu–Jona-Lasinio model can be generalized to lat
QCD @4# and QED@5# by incorporating a weak four-Ferm
0556-2821/2002/65~5!/054015~12!/$20.00 65 0540
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term in their actions. These generalized models now dep
on two couplings: the familiar gauge coupling and a n
four-Fermi coupling. By choosing the four-Fermi couplin
small we can be confident that all the dynamics resides in
gauge and Fermi fields and the four-Fermi term just provi
the framework for an improved algorithm which allows us
simulate the chiral limit of massless quarks directly.

We shall find a line of spontaneously broken chiral sy
metry transition points in the two dimensional coupling co
stant parameter space of the U~1!-gauged Nambu–Jona
Lasinio model. By simulating the model at several regio
along the transition line, we will see that the theory is log
rithmically trivial and that the four-Fermi term is irrelevan
in the continuum limit. Our conclusions will be supported b
fits with very high confidence levels. Because of the irr
evance of the pure four-Fermi interaction, this model w
make ‘‘textbook’’ QED accessible and this paper will addre
the classic problem of whether QED suffers from compl
charge screening. Our measurements will show that
theory is logarithmically trivial and the systematics of th
logarithms of triviality follow those of the Nambu–Jona
Lasinio model rather than the scalarf4 model as usually
assumed.

Simulating them50 case directly has substantial adva
tages, both theoretical and practical. Whenm is set to zero,
the theory has the exact chiral symmetry of the interact
©2002 The American Physical Society15-1
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terms in the action and this forbids chiral symmetry break
counterterms from appearing in its effective action. This s
plicity can lead to a large scaling window in the direction
the gauge or four-Fermi coupling in the theory’s parame
space. Our simulation results will support this point. Ho
ever, whenm is not zero, as in most past studies of latti
QED and QCD, the effective action has no protection fro
dangerous symmetry breaking counterterms. In fact we
find that the scaling window of the lattice theory in th
m-direction is very small and this fact is responsible for t
failure of past approaches to lattice QED to address the q
tion of triviality in a straightforward, convincing fashion. I
fact, @6,7# claimed non-triviality for the theory while@8,9#
found triviality and backed up their claim further in@8# by
calculating the sign of the beta function, which is direc
relevant to the question of triviality.

In addition, we shall check that the algorithm used in t
work generates gauge field configurations for couplings n
the chiral transition line which are free of lattice artifac
such as monopoles@10# and Dirac strings, etc.

In this paper we will present data and analyses. Preli
nary results have already appeared in letter form@5#, but this
article will contain new data, analyses and discussions. O
applications of the use of a four-Fermi term to speed lat
gauge theory simulations are also under development and
being applied to QCD@4#. It is important to note that in thes
applications the strength of the four-Fermi term is weak, s
is not responsible for chiral symmetry breaking. It just a
as scaffolding which leads to an algorithm that conver
efficiently in the limit of massless quarks. The dynamics
sides in the gauge and fermion field interactions.

This paper is organized as follows. In the next section
present the formulation of the lattice action and discuss
symmetries and general features. In the third section we
the algorithm and tune its parameters. In the next three
tions we present data and analyses over a range of g
couplings for three choices of the irrelevant four-Fermi co
pling on 164 lattices. The irrelevance of the four-Fermi co
pling is demonstrated explicitly and equation of state fits
presented which show that the theory is logarithmica
trivial with the same systematics as the Nambu–Jona-Las
model. The confidence levels of these fits range from
proximately 35 to 98%. Analyses of the order paramete
susceptibility reinforce our conclusions. In the seventh s
tion we consider simulations at nonzero bare fermion mas
in order to make contact with past work on pure lattice QE
We find that subdominant scaling terms are needed to fit
data. In other words, the usual assumption that the sca
window is wide enough to address the issue of triviality
simulating the model at nonzero fermion masses and fit
to a logarithmically improved mean field form is shown to
incorrect. In Sec. VIII we present data on lattices ranging
size from 124 to 204 to check that our data for the chira
condensate are not influenced significantly by finite size
fects for the range of couplings used in the fits. In Sec. IX
consider measurements of lattice monopole observable
check that they are not critical at the chiral transition poi
as long as the bare four-Fermi coupling is nonzero. In Sec
we discuss the possible role of lattice artifacts in simulatio
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of pure lattice QED and address some concerns in the lit
ture. Finally, in Sec. XI we suggest additional work in th
field.

II. FORMULATION

We considered theU(1)-gauged Nambu–Jona-Lasin
model with four species of fermions. The Lagrangian for t
continuum Nambu–Jona-Lasinio model is

L5c̄~ ig]2egA2m!c2
1

2
G2~ c̄c!22

1

4
F2. ~1!

The symmetries and other properties ofL have been dis-
cussed in@5# and we refer the reader to that and relat
references for details. We will be brief here and just review
few conceptually important points.

The pure Nambu–Jona-Lasinio model@Eq. ~1! with e set
to zero# has been solved at largeN by gap equation method
@11#, and an accurate simulation study of it has been p
sented@1#.

The lattice action for Eq.~1! reads:

S5(
x,y

c̄~x!~Mxy1Dxy!c~y!1
1

2G2 (
x̃

s2~ x̃!

1
1

2e2 (
x,m,n

Fmn
2 ~x! ~2!

where

Fmn~x!5um~x!1un~x1m̂ !1u2m~x1m̂1 n̂ !1u2n~x1 n̂ !
~3!

Mxy5S m1
1

16 (
^x,x̃&

s~ x̃!D dxy ~4!

Dxy5
1

2 (
m

hm~x!~eium(x)dx1m̂,y2e2 ium(y)dx2m̂,y! ~5!

wheres is an auxiliary scalar field defined on the sites of t
dual latticex̃ @12#, and the symbol̂x,x̃& denotes the set o
the 16 lattice sites surrounding the direct sitex. The factors
e6 ium are the gauge connections andhm(x) are the staggered
phases, the lattice analogs of the Dirac matrices.c is a stag-
gered fermion field andm is the bare fermion mass, whic
will be set to 0. Note that the lattice expression forFmn is
non-compact in the lattice fieldum , while the gauge field
couples to the fermion field through compact phase fac
which guarantee local gauge invariance. This point will
discussed further in Sec. X below.

Interesting limiting cases of the above action are the p
Z2 Nambu–Jona-Lasinio model (e50), which has a phase
transition atG2.2 @1# and the pure lattice QED (G50)
limit, whose chiral phase transition is nearbe[1/e25.204
for four flavors @6,13#. The pure QED (G50) model also
has a monopole percolation transition which is probably
incident with its chiral transition atbe5.204@14#. Past simu-
5-2
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lations of this lattice model have led to contradictory resu
@13,8#. Since the gauged Nambu–Jona-Lasinio model can
simulated atm50 for all gauge couplings, the results r
ported here will be much more precise and decisive t
those of the pure lattice QED (G50) limit.

We scanned the 2 dimensional parameter space (be ,G2)
using the hybrid molecular dynamics algorithm tuned
four continuum fermion species@3# and measured the chira
condensate and monopole susceptibility as a function ofbe
andG2. We found that as we increasedG2 and moved off the
G50 axis, the peak of the monopole susceptibility shift
from be5.204 atG50 to be5.244 at largeG. By contrast
the chiral transition point shifted to a largerbe than the
monopole percolation transition for a given value ofG and
became distinct from the monopole percolation point as s
asG became nonzero, as shown in the phase diagram, Fi

III. CONTROLLING SYSTEMATIC dt ERRORS IN THE
ALGORITHM

Before turning to physically interesting measurements,
should address some technical issues concerning the
rithm. Unlike the hybrid Monte Carlo algorithm, the hybr
molecular dynamics algorithm is not exact. The molecu
dynamics equations of motion can be found in the literat
@15#. In order to evolve the noisy equations of motion a
generate an ensemble of field configurations, one m
choose a Monte Carlo time stepdt @3#. The discretization
errors have been exhaustively studied and it has been sh
that systematic errors in observables behave asdt2 @16#.
Therefore, we must choosedt small enough that these sy
tematic errors are no larger than the statistical errors we
encounter.

In Table I and Fig. 2 we show the order parameters
evaluated on a 124 lattice at gauge couplingbe50.25 and
four-Fermi couplingG251/4. ~We write s here as a short
hand for ^s&, the expectation value of the field. This is
standard notational shortcut which, hopefully, should
lead to confusion.! The table shows that as long asdt
,0.03 the systematic error ins is negligible. The figure

FIG. 1. The upper, dashed line labels chiral transitions and
lower, solid line labels monopole percolation transitions.
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shows that the theoretically expected quadratic depende
of the systematic error ondt2 has been confirmed numer
cally. The error bars quoted in the table have been obtai
using the usual binning techniques, so they reflect the co
lations in the measurements. The last column of the ta
gives the number of trajectories in each data set. A trajec
here means an interval of one Monte Carlo time unit of
algorithm ~for dt50.01 a trajectory consists of one hundre
sweeps!. After each trajectory a single measurement ofs
was made.

Most of our production runs were done usingdt50.02.
Particularly close to the critical point where these system
errors are most dangerous, we checked our results with
havingdt50.01. No problems were encountered.

IV. SIMULATIONS AT G2Ä1Õ4 ON A 164 LATTICE

As stated in the Introduction, we made accurate meas
ments on the chiral critical line for many choices of co
plings (be ,G2) and lattice sizes ranging from 124 to 204. In
this section we review our data collected varyingbe50.15
20.30 at fixedG251/4 on a 164 lattice. A discussion and
presentation of these data has appeared in@5#, so we will be
brief.

The data are presented in Table II. The columns list
average values ofs,xs which is the longitudinal susceptibil
ity of the order parameter@17#, M which is the monopole
percolation order parameter andxM which is the susceptibil-
ity of the monopole order parameter@10#. The monopole

e

FIG. 2. s vs dt2.

TABLE I. Dependence ofs on dt for a 124 lattice with four-
Fermi couplingl54.0 and gauge couplingb50.25.

dt s Trajectories

.01 0.1279~6! 1200

.02 0.1280~5! 2000

.03 0.1284~4! 2400

.04 0.1293~4! 2800

.05 0.1301~3! 3500

.06 0.1314~2! 4800
5-3
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observables will be discussed later.
The data for the order parameter were fit to a form wh

could accommodate eitherf4 or Nambu–Jona-Lasinio trivi-
ality: bc2be5as2 lnp(b/s), where the parameterp, the
critical point bc , the amplitudea and the scaleb are deter-
mined by the fitting routine. Recall thatf4 triviality gives
p521 and Nambu–Jona-Lasinio triviality givesp511.
For the scaling window of gauge couplingsbe between .18
and .225, we found the parametersbc5.2350(1), a
534.3(3.9), lnb51.55(10), andp51.00(8) with a confi-
dence level of 34%. The reader should consult the figu
and discussison in@5# for more detail and perspective. A
will be discussed below in Sec. IX, these simulations a
measured topological observables for the system’s vac
and we confirmed that monopoles and related objects w
not critical near the chiral transitionbc5.2350(1), G2

51/4. @We shall see there that the monopole percolat
transition is very narrow and occurs atbe5.2175(25) for
G251/4.#

Are other fitting forms possible for these data? This
certainly true, of course. The point we are making, howev
is that log-improved mean field theory fits the data with ve
high confidence levels and there are compelling theoret
reasons for it. The data and the fits support the ‘‘conventio
wisdom’’ that QED is a trivial field theory and that the log
rithms of triviality follow the systematics of the Nambu
Jona-Lasinio model rather than the scalarf4 model. This last
point is different from that usually assumed. In retrospec
is very plausible that the Nambu–Jona-Lasinio model rep
sents the triviality of QED better thanf4, but the differences

TABLE II. Observables measured on a 164 lattice with four-
Fermi couplingG251/4.

bg s xs M xM Trajectories

.150 0.11980~7! 0.1756~5! 0.97676~1! 0.1245~5! 930

.160 0.11248~8! 0.1843~20! 0.9566~1! 0.261~1! 950

.170 0.10438~8! 0.1993~50! 0.9221~1! 0.552~2! 1030

.180 0.09531~9! 0.2160~50! 0.8644~2! 1.220~5! 1010

.190 0.08520~8! 0.2621~30! 0.7669~3! 3.04~2! 1500

.200 0.0738~1! 0.3230~40! 0.5976~7! 10.3~1! 1310

.205 0.0674~1! 0.3671~30! 0.463~1! 25.3~6! 1012

.210 0.0609~1! 0.4301~30! 0.250~2! 124.0~9! 1130

.215 0.0537~2! 0.4849~40! 0.0812~8! 122.4~9! 2701

.220 0.0456~2! 0.6591~40! 0.0338~5! 69.7~5! 1120

.225 0.0367~2! 0.9356~40! 0.0192~2! 43.5~2! 1670

.230 0.0130~2! 30.2~1! 810

.240 -0.00008~9! 3.360~90! 0.00798~8! 19.57~5! 810

.245 0.0002~5! 1.903~80! 0.00681~4! 16.90~2! 2518

.250 -0.00002~3! 1.316~70! 0.00601~5! 14.87~3! 960

.255 0.0003~4! 0.919~50! 0.00544~2! 13.34~1! 3350

.260 -0.0007~3! 0.786~40! 0.00483~4! 12.07~2! 820

.270 -0.0006~3! 0.625~50! 0.00407~4! 10.28~1! 1010

.280 -0.0003~2! 0.525~10! 0.00303~6! 9.051~9! 1070

.290 -0.0002~2! 0.484~10! 0.00166~6! 8.185~7! 1230

.300 0.0002~2! 0.432~10! 0.00074~5! 7.521~6! 1150
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between the two models have not been emphasized or ap
ciated in the past.

Let us end our discussion ofs with some examples o
other fits. Simple power laws are the first ones to try. F
example, a fit of the forms5a(bc2be)

bmag is expected to
work rather well withbmag slightly larger than 1/2 since the
Nambu–Jona-Lasinio fits have worked so well. If we choo
the range ofbe to extend from .15 to .225, we findbmag

50.530(6), a50.449(3), bc50.23315, but the confi-
dence level is very poor, (x2/d.o.f.'113/8). If we accept
only a smaller range of couplings closer to the critical poi
be extending from .18 to .225, the quality of the fit improve
(x2/d.o.f.'6.8/5, confidence level of 24%! while the critical
index bmag rises to 0.576(12). This is the trend we find
the data: power-law estimates of the critical indexbmag in-
crease as the range of couplings is restricted closer and c
to the critical coupling. This systematic drift in the fittin
results suggests that a simple power is not an adequate
resentation of the full data set, but is simply mocking up t
logarithm of the Nambu–Jona-Lasinio fit, which has a high
confidence level and is stable as different ranges ofbe are
considered.

In @5# we also analyzed the susceptibility associated w
s. In mean field theory, the singular piece of the longitudin
susceptibility x diverges at the critical pointbc as x1

5c1utu2g, t[(bc2be)/bc , as t approaches zero from
above in the broken phase, and asx25c2utu2g in the sym-
metric phase@18#. The critical indexg is exactly unity in
mean field theory.

In logarithmically trivial modelsg remains unity, but the
amplitudesc1 and c2 develop weak logarithmic depen
dences@18#. In the two componentf4 model, c2 /c152
1 2

3 / ln(b/s), while in the Z2 Nambu–Jona-Lasinio mode
c2 /c15221/ln(b/s) @1#, where the scaleb comes from the
order parameter fit. Constrained linear fits to the data@5#
produced the amplitude ratioc2 /c151.74(10). Sinces var-
ies from .0953(1) to .0367(2) over thebe range .18–.225 of
the scaling window in the broken phase, the logarithm in
theoretical prediction of the Nambu–Jona-Lasinio mo
states thatc2 /c1 should range from 1.75 to 1.79. Again, th
agreement between the simulation data and theory is v
good.

We find no support for the approximate analytic schem
discussed in @19# which predicted that gaugedU(1)
Nambu–Jona-Lasinio models with a four-Fermi term w
continuous chiral symmetry are nontrivial and have pow
law critical singularities with indices that vary continuous
with the couplingsbe and G2. Additional simulations in
Secs. V and VI below will give strong evidence for the irre
evance of the four-Fermi term contrary to the results of@19#.
The reader should recall that truncatedU(1) Nambu–Jona-
Lasinio models which account for only restricted sets
Feynman diagrams produce nontrivial ‘‘theories’’ with crit
cal indices that vary continuously asbe and G2 are varied.
For example, this occurs if only ‘‘rainbow graphs’’ of gauge
Nambu–Jona-Lasinio models are summed@20#. Some of
these exercises may be relevant to Technicolor model bu
ing.
5-4
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On the basis of the work here, however, we suspect
when fermion vacuum polarization is accounted for, o
would find complete charge screening and every gau
Nambu–Jona-Lasinio model based on continuum nonc
pactU(1) gauge dynamics would be trivial for all coupling
We suspect that nontriviality and lines of nontrivial fie
theories are aspects of truncation procedures only. We
pect, on the basis of the present work and past trivia
investigations in scalar QED@21#, that only models with dy-
namics beyond continuum noncompactU(1) gauge fields
and fermions can be nontrivial and have a renormaliza
group fixed point at nonzero gauge coupling. An exam
might be afforded byU(1) theories with fundamental mono
poles@22#.

V. SIMULATIONS AT G2Ä1Õ8 ON A 164 LATTICE

In this section we consider new data collected vary
be50.162.25 at fixedG251/8 on a 164 lattice.

The purpose of this series of simulations is~i! to verify
that the four-Fermi coupling is irrelevant, and~ii ! to accumu-
late more evidence that the theory is logarithmically trivial
the sense of the Nambu–Jona-Lasinio model.

The data are presented in Table III in the same forma
Table II.

In Fig. 3 we show the data for the chiral condensates, at
fixed G251/8 and variablebe . We use the same fitting pro
cedures as used in Sec. IV:bc2be5as2 lnp(b/s), where the
parameterp, the critical pointbc , the amplitudea and the
scaleb are determined by the fitting routine. For the scali
window of gauge couplingsbe between .17 and .205, w
found the parametersbc5.21470(5), a512.02(1.18), lnb
50.40(10), andp51.07(8) with a confidence level of 87%

TABLE III. Observables measured on a 164 lattice with four-
Fermi couplingG251/8.

bg s xs M xM Trajectories

.160 0.05201~4! 0.066~2! 0.9479~1! 0.327~1! 730

.165 0.04932~4! 0.068~1! 0.9293~1! 0.487~2! 770

.170 0.04642~5! 0.075~2! 0.9047~2! 0.729~3! 660

.175 0.04332~5! 0.074~2! 0.8729~3! 1.106~5! 600

.180 0.03996~6! 0.082~2! 0.8314~4! 1.72~1! 500

.185 0.03644~6! 0.089~3! 0.7765~5! 2.81~2! 640

.190 0.03267~5! 0.096~3! 0.7054~6! 4.82~3! 960

.195 0.02848~7! 0.110~4! 0.6091~9! 9.35~9! 770

.200 0.02401~9! 0.136~4! 0.4751~16! 24.2~9! 640

.205 0.01872~9! 0.190~5! 0.2677~29! 115~4! 780

.210 0.01250~9! 0.38~1! 0.08801~19! 127~2! 960

.215 -0.00013~64! 1.62~9! 0.03625~95! 74.1~9! 310

.220 -0.00027~38! 0.75~9! 0.02333~52! 51.3~7! 320

.225 0.00009~15! 0.33~4! 0.01576~26! 35.6~2! 490

.230 0.00009~9! 0.23~4! 0.01172~15! 27.9~1! 660

.235 0.00009~9! 0.19~4! 0.00937~12! 22.8~8! 590

.240 0.00010~8! 0.16~2! 0.00779~9! 19.22~6! 640

.245 0.00010~6! 0.145~9! 0.00665~6! 16.63~4! 910

.250 0.00009~6! 0.133~7! 0.00586~5! 14.67~3! 790
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This excellent fit is the one shown in the figure. Note th
eight data points forbe between 0.17 and 0.205 were used
the fit while the figure has two additional points at strong
coupling. Those points lie slightly below the fit, are slight
outside the scaling window and show the extent of the s
ing window.

We plot the eight data points betweenbe of 0.17 and
0.205 and the fit as shown in Fig. 4,ubc2beu/s2 vs ln(1/s)
to illustrate the importance and numerical significance of
logarithm. The dashed line is the previous fit redrawn in t
format, where we have ‘‘zoomed’’ in on the scaling windo
for emphasis. Clearly this fit is stable to further cuts on t
data set since all the data points lie on the fit.

We conclude that Nambu–Jona-Lasinio triviality acco
modates the lattice data atG251/8 with very good confi-
dence levels. This success also shows the irrelevance o
four-Fermi term in the lattice action: the scaling law for th
order parameter is the same as that at the largerG2 value
although the lattice parameters, such as the location of
critical point, have changed.

Next, in Fig. 5 we show the inverse of the longitudin
susceptibility of the auxiliary fields at fixed G251/8 and
variablebe . We follow the same procedures as used in S

FIG. 3. s vs be for G251/8.

FIG. 4. ubc2beu/s2 vs ln(1/s) for G251/8.
5-5
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IV to analyze and plot the data here. The plot picks ou
critical pointbc5.2155(10) and is consistent with the me
field value of the critical indexg51.0. The constrained lin
ear fits determine the amplitude ratio,c2 /c151.65(10).
Since s varies from .04642(5) to .01878(10) over thebe
range .17–.205 of the scaling window in the broken pha
the logarithms in the theoretical prediction of the Namb
Jona-Lasinio model for the amplitude ratio predict th
c2 /c1 should range from 1.75 to 1.79. Again, the agreem
between the simulation data and theory is good, but is
comparable in quality or decisiveness to our other fits.

VI. SIMULATIONS AT G2Ä1Õ2 ON A 164 LATTICE

In this section we consider new data collected vary
be50.172.37 at fixedG251/2 on a 164 lattice. In this case
the four-Fermi coupling is four times stronger than the d
discussed in the previous section, but far too weak to ca
chiral symmetry breaking in the absence of the gauge c
pling.

The analysis and plots here are identical to the previ
discussions ofG251/4 andG251/8, so we will be brief.

The data are presented in Table IV in the same forma
Table I.

In Fig. 6 we show the data for the chiral condensates, at
fixed G251/2 and variablebe . We use the same fitting pro
cedures as used in Sec. III:bc2be5as2 lnp(b/s), where the
parameterp, the critical pointbc , the amplitudea and the
scaleb are determined by the fitting routine. For the scali
window of gauge couplingsbe between .22 and .27, w
found the parametersbc5.29117(5), a520.0(4.1), lnb
51.6(4), andp50.86(18) with a confidence level of 99.9%
This impressive fit is the one shown in the figure.

We plot the data and the fit as shown in Fig. 7,ubc
2beu/s2 vs ln(1/s) to illustrate the importance and numeric
significance of the logarithm. The dashed line is the previ
fit redrawn in this format.

The success of this fit reiterates the irrelevance of
four-Fermi term: the scaling law for the order parameter

FIG. 5. Inverse susceptibility vs couplingbe , G251/8.
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the same as that at theG2 values of 1/8 and 1/4 although th
lattice parameters, such as the location of the critical po
have changed.

Next, in Fig. 8 we show the inverse of the longitudin
susceptibility of the auxiliary fields at fixed G251/2 and
variablebe .

The plot picks out a critical pointbc5.2924(10) and the
constrained linear fits to the data shown in the figure p
duced the amplitude ratioc2 /c151.89(20), which com-
pares well to the theoretical predictionc2 /c151.72(2).
Again, the agreement between the simulation data and th
is good, but is not comparable in quality or decisiveness
our order parameter fits.

FIG. 6. s vs be for G251/2.

TABLE IV. Observables measured on a 164 lattice with four-
Fermi couplingG251/2.

bg s xs Trajectories

.150 0.2525~2! 0.39~5! 1500

.160 0.2434~2! 0.43~2! 1500

.170 0.2339~2! 0.43~5! 1500

.180 0.2237~2! 0.44~5! 1500

.190 0.2129~2! 0.48~3! 1500

.200 0.2012~2! 0.51~4! 1500

.210 0.1885~2! 0.61~3! 1500

.220 0.1751~3! 0.68~3! 1500

.230 0.1606~3! 0.84~2! 1500

.240 0.1450~3! 1.04~5! 1500

.250 0.1281~4! 1.26~4! 1500

.260 0.1095~4! 1.68~4! 1500

.270 0.0881~5! 2.23~5! 1500

.310 0.000~6! 5.66~10! 1500

.320 0.000~7! 3.68~10! 1500

.330 0.000~7! 3.17~10! 1500

.340 0.000~6! 2.61~10! 1500

.350 0.000~4! 2.33~10! 1500

.360 0.000~5! 2.31~7! 1500

.370 0.000~5! 1.80~6! 1500
5-6
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VII. SIMULATIONS AT NONZERO FERMION MASS AND
THE WIDTH OF THE SCALING WINDOW

Past simulations of lattice QED had to be done at nonz
fermion mass@15#. The standard algorithms fail to converg
in the limit m→0 because the lattice Dirac operator becom
singular in the chiral limit@2,3#. This algorithmic problem
has led to indecisive results for lattice QED because of la
statistical and systematic errors. It is interesting to use
algorithm of this paper to discover, assess and clarify
problems in past work in this field.

We chose to do simulations at nonzero fermion mas
the critical couplingbc determined by our fits presented
the previous section. In this way we can look for the width
the scaling window in them-direction in a particularly
simple fashion. Recall that at criticality the order parame
s should scale with the fermion massm, an explicit symme-
try breaking parameter, as

m;sd lnq~1/s! ~6!

where the critical indexd should be 3 in a logarithmically
trivial theory andq, the power of the logarithm should be
21 for a f4 theory and should be11 for a Nambu–Jona

FIG. 7. ubc2beu/s2 vs ln(1/s) for G251/2.

FIG. 8. Inverse susceptibility vs couplingbe , G251/2.
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Lasinio model@17#. By accumulating data over a range
small m values, we can look for the region where Eq.~6!
might apply and determine the width of the scaling windo
It is important to keep the number of variables and para
eters to a minimum in this sort of investigation. This is t
reason we work at criticality.

The critical coupling has been determined to bebc
50.2352 in Sec. IV. The data for the order parameter and
susceptibility are shown in Table V form ranging from 0.003
to 0.20. Note that the statistics for this data set is particula
high as smaller and smallerm values are considered and th
critical point is approached. The error bars ins recorded
there account for critical slowing down which forced us
accumulate such high statistics. The statistics are at leas
order of magnitude greater than those of past studies
produces values with errors ranging from 1/2% to 0.08%

We learned in past studies of the pure Nambu–Jo
Lasinio model that smallm values, typically below 0.01, are
needed to find a scaling window@1#. However, in this case
the dynamics is controlled by the gauge coupling wh
alone is driving chiral symmetry breaking. The four-Ferm
coupling is tiny and is not affecting the dynamics in a n
merically significant fashion. Therefore, the width of th
scaling window must be determined anew from the data
Table V.

In Fig. 9 we plotm/s3 vs m in order to assess visually th
relevance of the leading logarithm result Eq.~6!. The data
clearly pick out the valued53.0 for the dominant power-law
singularity of the scaling law for very smallm values, all less
than 0.01. However, we also see that the deviations from
mean field result are numerically significant over the en
mass range shown. In fact, they are far too large to be
commodated by a weak logarithmic scaling violation as

TABLE V. Criticality runs on a 164 lattice with four-Fermi cou-
pling G251/4 and variable fermion massm.

m s xs Trajectories

.003 0.0286~1! 0.927~9! 3400

.004 0.0315~1! 0.779~2! 3194

.005 0.0340~1! 0.681~4! 3040

.006 0.0361~1! 0.639~5! 3397

.007 0.0380~1! 0.582~8! 3207

.008 0.03944~9! 0.538~5! 2174

.010 0.04247~9! 0.474~5! 1837

.015 0.04890~8! 0.415~5! 2521

.020 0.05357~8! 0.377~4! 1740

.030 0.06110~9! 0.325~8! 1260

.040 0.06688~8! 0.290~7! 1380

.050 0.07160~7! 0.269~7! 1400

.060 0.07571~8! 0.255~6! 960

.070 0.07916~7! 0.240~6! 1020

.080 0.08214~8! 0.231~7! 1000

.090 0.08480~8! 0.217~6! 910

.100 0.08724~7! 0.211~6! 970

.150 0.09636~7! 0.193~3! 970

.200 0.10237~8! 0.177~3! 730
5-7
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pected in Eq.~6!. In fact, a fit of that form to the data rangin
from m50.003 tom50.08 produces a huge value for th
power of the logarithm,q528(1), and avery small confi-
dence level of 0.43% (x2/d.o.f.'28.8/12). Therefore, the
data rule out the applicability of logarithmic improved me
field scaling to describe the data at nonzerom except for the
very smallest values ofm, m,0.01. Unfortunately, mos
data used to study the potential triviality of QED using t
conventional action employedm values considerably large
than m50.01 in order to run efficiently and generate suf
cient statistics. Typical ranges ofm have been between 0.0
and 0.10@8# and are very sensitive to data taken withm
50.02, 0.03, and 0.04. This criticism applies to all past st
ies of noncompact QED, for example,@6,14,15#. It also
means that the methods of analysis introduced in@23# do not
apply to this data set because those methods require data
scaling window, controlled by a single asymptotic form
Higher precision data taken at the smallest values ofm, m
,0.01, are required apparently and, in fact, larger latti
than 164 might be necessary also because of the possib
of significant finite size effects.

Two possible explanations for the data come to mind:~i!
Perhaps the real critical point is significantly different fro
0.2352 as determined by our fits atm50.0, or ~ii ! perhaps
subdominant singularities in the scaling law are numerica
significant over this range ofm.

It is easy to rule out option~i!. Ignoring logarithms, the
mean field equation of state readsm5Ds32C(bc2be)s.
This implies that ifbe were different frombc , thenm/s3

would behave asD2C(bc2be)/s
2, and the correction term

would be large for smalls, which is just the opposite of the
behavior observed in Fig. 9.

Now consider option~ii !. If a subdominant singularity
contributes to the equation of state, then at criticality
relationBs35m should be replaced by,

m5Bsd1Dsds ~7!

whered should be 3 andds should be considerably large
@13#. This hypothesis fits the data beautifully: the curv
dashed line in Fig. 9 shows the fit which has a confide

FIG. 9. m/s3 vs m.
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level of 98.7% percent (x2/d.o.f.'3.78/12). In fact this fit-
ting form can be well approximated in a fashion that is use
for practical purposes,

m/s3'B1D8mds /d. ~8!

Equation~8! approximates Eq.~7! because the correction t
the constancy ofm/s3 is less than 15% over the range ofm
values in the figure. The fit givesB5128.43(58), D8
5795(311), andds54.56(16).

We learn several lessons from this exercise.
Previous simulations of pure QED at nonzerom could not

possibly have detected the logarithms of triviality decorat
mean field singularities. For the present range ofm values
and lattice sizes, data at nonzerom have contributions from
subdominant critical singularities which are larger nume
cally than logarithmic corrections to mean field theory.

VIII. FINITE SIZE EFFECTS

Since we are using a new algorithm which works in t
limit of massless quarks, we should be careful to moni
finite size effects. Some of our data are taken very nea
critical points in order to find critical indices that contro
continuum limits of the lattice models. At these points t
model’s correlation length diverges and there are potenti
dangerous finite size effects which could mimic finite te
perature effects, for example. We need to check that the
tice is large enough to contain correlations larger than
lattice spacing but smaller than the system’s spatial exten
order to work within a scaling window where we can extra
continuum features of the field theory.

In Table VI we show data fors taken for gauge couplings
be ranging from 0.15 to 0.27 at fixed four-Fermi couplin
G251/2 for 124, 164, and 204 lattices. The comparison o
the three data sets shows coincidence everywhere exce
be50.27 between the smallest lattice 124 and the other two.
be50.27 was our closest approach to the critical point in
symmetry broken phase and it appears that our 164 lattice
was sufficient, given our 1/2 percent statistical errors. R

TABLE VI. Chiral condensates on 124, 164, and 204 lattices
with four-Fermi couplingG251/2. Finite size study.

bg s,124 s,164 s,204

.150 0.2525~2!

.160 0.2434~2!

.170 0.2341~4! 0.2339~2!

.180 0.2239~4! 0.2237~2!

.190 0.2130~4! 0.2129~2!

.200 0.2013~5! 0.2012~2!

.210 0.1885~5! 0.1885~2!

.220 0.1747~6! 0.1751~3! 0.1748~4!

.230 0.1606~6! 0.1606~3! 0.1617~5!

.240 0.1451~7! 0.1450~3! 0.1454~3!

.250 0.1281~6! 0.1281~4! 0.1283~4!

.260 0.1089~8! 0.1095~4! 0.1093~4!

.270 0.0866~8! 0.0881~5! 0.0885~4!
5-8
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ance on a 124 lattice would have failed us.
In the next table we show 124 data for a simulation where

the four-Fermi coupling is fixed atG251/4 andbe ranges
from 0.15 to 0.25. The data consist ofs as well as monopole
observables that will be discussed in a later section. Com
ing the s data here to that in Table III, we confirm the a
sence of finite size effects within our statistical errors.

In summary, the 164 data we have used to extract scali
laws from s measurements appear free of significant fin
size effects. The significance of finite size effects depe
strongly on the observable being simulated. We also chec
that the longitudinal susceptibility data that were used
extract the logarithmic violations of scaling in the amplitud
were not distorted by finite size effects. Since these sus
tibilities are determined with much larger statistical err
bars, this test was less demanding. Certainly the finite
effects inxs are much larger than those ins itself. However,
sinces was determined within a fraction of a percent wh
the statistical uncertainty inxs was typically several percen
a 164 lattice was adequate for the range of couplings use
this study.

FIG. 10. Monopole concentration M vs coupling
be , G251/4.

FIG. 11. Monopole percolation susceptibilityM vs coupling
be , G251/4.
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IX. MONOPOLE OBSERVABLES

Noncompact lattice QED was first studied with the go
of simulating the dynamics ofU(1) gauge fields without the
monopoles that accompany compact lattice QED@24#. It was
found, however, that even the noncompact formulation
monopole-like dislocations in its lattice formulation becau
of the space-time cutoff itself@10#. These dislocations can
undergo a percolation transition where long range corre
tions develop@10#. Because of this transition, it is not obv
ous that simulation results in pure noncompact lattice Q
reflect the physics of textook QED in which field configur
tions are smooth and have no topological excitations. T
formulation of noncompact lattice QED with a four-Ferm
term is free of the issues raised in@10#. The point is, as
discussed in Sec. II above, the monopole percolation tra
tion does not coincide with the chiral transition as long as
four-Fermi coupling is nonzero. Therefore the gauge fi
vacuum is free of critical dislocations at the gauge couplin
of interest, so we know that we are studying a model free
topological excitations, as we wish.

Let us find the monopole percolation transition in t
model with a fixed four-Fermi couplingG251/4. The data
for the monopole concentrationM and the associated mono
pole percolation susceptibilityxM , both defined exactly as in
@10#, are given in Table II. In Fig. 10 we plot the monopo
concentration against the gauge coupling and find a perc
tion transition atbc

M5.2104(1).
We determined in Sec. IV that the chiral transition occu

at considerably weaker coupling,bc5.2352, where the
monopole concentration is insignificant, as we read off F
10.

It is also informative to confirm this conclusion by con
sidering the monopole percolation susceptibility,xM . In Fig.
11 we plot this susceptibility against the gauge coupling a
see that it appears to diverge in the vicinity ofbc

M

5.2104(1) ~we also confirmed this impression with powe
law fits!. In addition, in Fig. 12 we plot the longitudina
susceptibility of the chiral transition and confirm that it d
verges nearbc5.2352, as already determined in Sec. IV. T

FIG. 12. Longitudinal chiral susceptibilityM vs coupling
be , G251/4.
5-9
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two susceptibility peaks are cleanly separated:bc
M

5.2104(1) vsbc5.2352.
We end this section with a minor remark about the fin

size effects observed in the monopole observables. Com
ing Table II and Table VII, we see that as the monop
percolation transition’s critical coupling is approached, th
are numerically significant differences between the 124 and
the 164 data sets for both the concentrationM as well as its
associated susceptibilityxM . As expected, the percolatio
susceptibilityxM is strongly suppressed by the lattice si
near the transition. In fact, as we have discussed elsew
@25#, finite size scaling of the peak of the susceptibility is
effective and accurate means to measure the percolation
cal indices. It would take simulations on a series of latt
sizes to carry out such a program for this model. The o
point we wish to make here, however, is that the percola
and chiral transitions are well separated inside the phase
gram Fig. 1. It is interesting~and fortunate for the success
this project! that the finite size effects in the chiral ord
parameters are significantly smaller than those in the mon
pole concentration.

X. FAILURES AND CHALLENGES AT G2Ä0

Although the major topic in this research is the behav
of the gauged Nambu–Jona-Lasinio model forG25” 0, we
will briefly discuss the present confusing state of theory a
simulations at the edge of the phase diagramG250 where
past simulations have been carried out. As we have alre
emphasized, the real problem with studies atG250 is that
they must be done at nonzero fermion mass away from
chiral limit and this has caused several problems.~i! The
simulations become excessively slow for smallm values be-
cause the lattice Dirac operator is singular in that lim
Therefore, at low values ofm where the best statistics ar
required, the statistics of the data sets are typically the p
est.~ii ! The scaling window in them-direction is extremely
narrow, so fitting forms which only account for the leadin
critical behavior are inadequate and misleading. Attempt
to go beyond leading order critical singularities in fits lea
to a vast proliferation of parameters which undermines fi
conclusions.

TABLE VII. Observables measured on a 124 lattice with four-
Fermi couplingG251/4. Finite size study.

bg s M xM Trajectories

.150 0.1203~2! 0.9770~1! 0.123~1! 1000

.160 0.1129~2! 0.9568~2! 0.261~2! 1000

.170 0.1047~2! 0.9223~4! 0.551~5! 1000

.180 0.0956~2! 0.8641~6! 1.21~1! 1000

.190 0.0854~3! 0.7660~10! 3.10~5! 1000

.200 0.0741~3! 0.5954~22! 10.6~3! 1000

.210 0.0610~4! 0.2669~49! 71.5~9! 1000

.220 0.0449~7! 0.0651~16! 51.0~7! 1000

.230 0.0291~5! 26.6~2! 1000

.240 0.0203~6! 18.4~2! 1000

.250 0.0152~4! 14.1~1! 1000
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Another potential problem concerning theG250 edge of
the phase diagram concerns lattice monopoles. Recall
one motivation for inventing and studying noncompact l
tice QED @26# was to make a model free of monopoles
order to understand the relation between chiral symme
breaking and single gluon exchange. However, Hands
Wensley@10# pointed out that even the noncompact mod
has monopole-like lattice dislocations because of gauge
variance of the pure gauge field piece of the action and
cause of the lattice cutoff itself. These authors also poin
out that these lattice monopoles experience a percola
transition as the gauge coupling becomes strong and in
case of quenched simulations, the monopole percola
transition is very close to the chiral transition experienced
light fermions@10#. This led these authors to speculate th
noncompact lattice QED might not be a sound framework
studying ‘‘textbook’’ QED at strong coupling@10#.

What does this possibility mean for this paper? Since
work at G25” 0 where the critical line of monopole percola
tion is distinct from the chiral transition line, these lattic
artifacts are not relevant to our conclusions. We believe t
we have a firm theoretical and numerical grasp of gau
Nambu–Jona-Lasinio models everywhere within the ph
diagram Fig. 1 but not along the edgeG250. How could this
be? Following Hands and Wensley, the gauge field piece
the action Eq.~2! is invariant under local gauge transform
tions defined by the group of real numbersR, while the fer-
mionic piece of the action, which describes the gauge inv
ant hopping of the fermion around the lattice, has a ga
symmetry based on phases,U(1). The cutoff theory de-
scribed by the pure gauge piece of the action has mono
excitations attached by Dirac strings@10#. These are singula
field configurations whose actions diverge when the latt
spacing is taken to be zero. They would be of no concer
it were not for the fact that as the coupling increases th
experience a percolation transition where monopole clus
develop macroscopic dimensions. Since the fermions
sensitive to monopole clusters through theirU(1) phase,
Hands and Wensley speculated that they could affect the
ral transition in the quenched and unquenched model. T
speculation could be wrong for several reasons.~i! The un-
derlying gauge action is just a quadratic form, so it is
perfectly solvable free field theory. A free field theory ca
not have a phase transition, as emphasized in@27#. ~ii ! Per-
colation transitions need not affect the bulk properties of
underlying field theory. Many examples of this sort can
cited. These complaints can be answered in part.~i! The
phase transition of percolation is not in local observab
constructed out of the gauge fields, but rather is in nonlo
matrix elements. It is not unusual in statistical mechanics
make models where non-local matrix elements experie
phase transitions when the underlying local field theory
no transition itself. Condensed matter physics provides m
examples of enormous practical importance including,
example, the localization-delocalization transition of sing
electrons in background fields of varying degrees of disord
The chiral transition is sensitive to loops of theU(1) phase
and is of this type.~ii ! Since fermions flip their chirality in
the presence of monopoles, it is plausible that a percola
5-10
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network of monopole-like excitations can induce chiral sy
metry breaking in the bulk system. There is a possibility t
theG250 pure QED model has qualitatively different phy
ics from that found anywhere within the phase diagram
Fig. 1. Only at the edge of the diagram would the percolat
monopole-like excitations be critical where chiral symme
is broken. Only there are new degrees of freedom, perco
ing monopoles, relevant so only there could there be a n
universality class. It might be that on the edge of the ph
diagram, the chiral condensate is driven by monopole pe
lation and the chiral transition inherits a correlation leng
critical index n'2/3 from the percolating network and be
comes the basis for a nontrivial field theory@7#. It has been
noticed that as the number of fermions is varied, both
chiral and monopole percolation transitions move in unis
@14#. In addition, in unquenched models, such as the f
flavor model on the edge of the phase diagram Fig. 1,
fermions induceU(1) plaquette terms into the theory’s a
tion which can support conventional lattice monopoles@24#.

We have nothing to add to the pros and cons of th
qualitative arguments. We hope that the physics iss
brought up here could be answered by striking out in n
directions and finding approaches or arguments which
more precise and quantitative. The monopole percola
picture may contain only half truths, but some of those id
might be testable in the context of models with real mon
poles, generalizations of compactU(1) lattice QED @24#,
perhaps.

XI. CONCLUSIONS AND DISCUSSION

We presented numerical evidence for the triviality of te
book QED using a new algorithm which converges for ma
less quarks. Past simulations using the action with mas
quarks but no four-Fermi term produced controversial
sults. Recall that@6,7# claimed nontriviality for the theory
while @8,9# found triviality and backed up their claim furthe
in @8# by calculating the sign of the beta function, which
directly relevant to the question of triviality.

It would be worthwhile to continue using the new alg
rithm and pursue several new directions.

One could calculate the theory’s renormalized couplin
and their RG trajectories in the chiral limit, extending t
work of @28# to a two parameter space. Both the gauge a
the four-Fermi couplings should vanish as the reciproca
the logarithm of the ultra-violet cutoff. As discussed in@28#
th
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this calculation has some technical challenges specific to
tices of finite extent which necessitate the extrapolation
raw lattice data to achieve physical results. It would
worthwhile to investigate improved strategies here to av
crude, indecisive results. The high quality of the equation
state fits in Secs. IV–VI should lead to improved determin
tions of the renormalized couplings because the lattice c
cal couplings are determined with excellent precision.

One could also simulate the model with theZ2 chiral
group replaced by a continuous group so the model wo
have Goldstone bosons even on a coarse lattice@19#. It
would then be possible to test the approach and result
@19# more quantitatively.

It would also be interesting to generalize the results
Sec. VII, that a subdominant critical singularity is needed
describe the data at nonzerom, away from the critical cou-
pling. In other words, fit the finitem data points of previous
investigations such as@8,9# to equations of state with both
dominant and subdominant singularity and check that
proved confidence levels are achieved with simple hypo
eses. Unfortunately, there will be a proliferation of fittin
parameters in such a program, so its numerical significa
might be questioned. Nonetheless, it would definitely
worth consideration. Such a program would also influen
the determination of renormalized couplings because th
calculations use critical couplings inferred from equation
state fits@28#.

Finally, it would be interesting to simulate compact QE
with a small four-Fermi term and study the interplay
monopoles, charges and chiral symmetry breaking. Since
G50 limit of the compact model is known to have a fir
order transition@29#, generalizations of the action will be
needed to find a continuous transition where a continu
limit of the lattice theory might exist. Since the parame
space of the generalized model would be at least three
mensional, this interesting problem would be quite challe
ing.

ACKNOWLEDGMENTS

This work was partially supported by NSF under gra
NSF-PHY96-05199. S.K. is supported by the Korea R
search Foundation. M.-P.L. wishes to thank theECT* ,
Trento, for hospitality during the final stages of this proje
The simulations were done at NPACI and NERSC.
R.

r-
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