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By adding a small, irrelevant four-Fermi interaction to the action of noncompact lattice quantum electrody-
namics (QED), the theory can be simulated with massless quarks in a vacuum free of lattice monopoles.
Simulations directly in the chiral limit of massless quarks are done with high statistics*ori@?2 and 20
lattices at a wide range of couplings with good control over finite size effects, systematic and statistical errors.
The lattice theory possesses a second order chiral phase transition which we show is logarithmically trivial,
with the same systematics as the Nambu—Jona-Lasinio model. The irrelevance of the four-Fermi coupling is
established numerically. Our fits have excellent numerical confidence levels. The widths of the scaling win-
dows are examined in both the coupling constant and bare fermion mass directions in parameter space. For a
vanishing fermion mass we find a broad scaling window in coupling which is essential to the quality of our fits
and conclusions. By adding a small bare fermion mass to the action we find that the width of the scaling
window in the fermion mass direction is very narrow. Only when a subdominant scaling term is added to the
leading term of the equation of state are adequate fits to the data possible. The failure of past studies of lattice
QED to produce equation of state fits with adequate confidence levels to seriously address the question of
triviality is explained. The vacuum state of the lattice model is probed for topological excitations, such as
lattice monopoles and Dirac strings, and these objects are shown to be noncritical along the chiral transition
line as long as the four-Fermi coupling is nonzero. Our results support Landau’s contention that perturbative
QED suffers from complete screening and would have a vanishing fine structure constant in the absence of a
cutoff.
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[. INTRODUCTION term in their actions. These generalized models now depend
on two couplings: the familiar gauge coupling and a new
Simulation studies of Nambu—Jona-Lasinio models havdour-Fermi coupling. By choosing the four-Fermi coupling
proven to be much more quantitative than those of other fieldmall we can be confident that all the dynamics resides in the
theories[1]. In particular, the logarithmic triviality of these gauge and Fermi fields and the four-Fermi term just provides
models has been demonstrated, although determining logghe framework for an improved algorithm which allows us to
rithmic singularities decorating mean field scaling laws is asjmulate the chiral limit of massless quarks directly.
daunting numerical challenge. The reason for this success e shall find a line of spontaneously broken chiral sym-
lies in the fact that when one formulates these fOUr'Fermifnetry transition points in the two dimensional Coup"ng con-
models in a fashion suitable for Simulations, one intrOduce%tant parameter space of the(lwgauged Nambu—-Jona-
an auxiliary scalar fieldr in order to write the fermion terms | gsinio model. By simulating the model at several regions
of the action as a quadratiC form. In this formulatierthen a|0ng the transition line, we will see that the theory is |oga-
acts as a chiral order parameter which receives a vacuufthmically trivial and that the four-Fermi term is irrelevant
expectation value, proportional to the chiral condensatgn the continuum limit. Our conclusions will be supported by
(¢ip), in the chirally broken phase. Most importantly, the fits with very high confidence levels. Because of the irrel-
auxiliary scalar fieldr becomes the dynamical mass term in evance of the pure four-Fermi interaction, this model will
the quark propagator. The Dirac operator is now not singulamake “textbook” QED accessible and this paper will address
for quarks with vanishing bare mass and its inver§®@8] is  the classic problem of whether QED suffers from complete
successful and very fast. The algorithm for Nambu—Jonaeharge screening. Our measurements will show that the
Lasinio models is “smart”—it incorporates a potential fea- theory is logarithmically trivial and the systematics of the
ture of the solution of the field theory, chiral symmetry logarithms of triviality follow those of the Nambu-Jona-
breaking and a dynamical fermion mass, into the field coniasinio model rather than the scalg model as usually
figuration generator. assumed.
The good features of the simulation algorithm for the Simulating them=0 case directly has substantial advan-
Nambu—Jona-Lasinio model can be generalized to latticéages, both theoretical and practical. Whans set to zero,
QCD [4] and QED[5] by incorporating a weak four-Fermi the theory has the exact chiral symmetry of the interaction
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terms in the action and this forbids chiral symmetry breakingof pure lattice QED and address some concerns in the litera-
counterterms from appearing in its effective action. This sim-ture. Finally, in Sec. XI we suggest additional work in this
plicity can lead to a large scaling window in the direction of field.

the gauge or four-Fermi coupling in the theory’s parameter

space. Our simulation results will support this point. How- Il. FORMULATION

ever, whenm is not zero, as in most past studies of lattice
QED and QCD, the effective action has no protection from
dangerous symmetry breaking counterterms. In fact we wil
find that the scaling window of the lattice theory in the
m-direction is very small and this fact is responsible for the . 1 1
failure of past approaches to lattice QED to address the ques- L= (i yo—eyA—m) zﬁ—EGz( Yih)°— ZFZ' (1)
tion of triviality in a straightforward, convincing fashion. In

fact, [6,7] claimed non-triviality for the theory whil¢8,9] The symmetries and other propertieslohave been dis-

found triviality and backed up their claim further [B] by ¢, ;sseq in[5] and we refer the reader to that and related
calculating the sign of the beta function, which is directly \oterences for details. We will be brief here and just review a
relevant to the question of triviality. few conceptually important points.

In addition, we shall check that the algorithm used in this The pure Nambu—Jona-Lasinio modEk. (1) with e set
work generates gauge field configurations for couplings N3y zerg has been solved at lardéby gap equation methods

the chiral transition line which are free of lattice artifacts, [11], and an accurate simulation study of it has been pre-
such as monopold4.0] and Dirac strings, etc. seniet{l]

In this paper we will present data and analyses. Prelimi-
nary results have already appeared in letter fiBinbut this
article will contain new data, analyses and discussions. Other o 1
applications of the use of a four-Fermi term to speed lattice S=2 () (M + D) d(y)+— 2 o2(X)
gauge theory simulations are also under development and are Xy 2G* X
being applied to QCD4]. It is important to note that in these
applications the strength of the four-Fermi term is weak, so it i 2
. . . M IS e +t— 2 FL(0) 2
is not responsible for chiral symmetry breaking. It just acts 2e? xmv M
as scaffolding which leads to an algorithm that converges
efficiently in the limit of massless quarks. The dynamics re-where
sides in the gauge and fermion field interactions. R o R

This paper is organized as follows. In the next section we F ,,(X)=6,(X)+ 0,(X+u)+ 0_ ,(X+pu+v)+60_,(Xx+7v)
present the formulation of the lattice action and discuss its 3
symmetries and general features. In the third section we test
the algorithm and tune its parameters. In the next three sec-
tions we present data and analyses over a range of gauge
couplings for three choices of the irrelevant four-Fermi cou-
pling on 16 lattices. The irrelevance of the four-Fermi cou- 1
pling is demon_strated explicitly and equati(_)n of sta}te fi'_cs are DXV:E E nM(x)(ei 0M(X)5x+l“,y—e_i0,u()’) Sy (5)
presented which show that the theory is logarithmically u
trivial with the same systematics as the Nambu—Jona-Lasinio , - ) , )
model. The confidence levels of these fits range from ap\_/vherecr is an auxiliary scalar field de~f|ned on the sites of the
proximately 35 to 98%. Analyses of the order parameter’slual latticex [12], and the symbo{x,x) denotes the set of
susceptibility reinforce our conclusions. In the seventh secthe 16 lattice sites surrounding the direct sitéThe factors
tion we consider simulations at nonzero bare fermion masse®™ ’+ are the gauge connections angl(x) are the staggered
in order to make contact with past work on pure lattice QED.phases, the lattice analogs of the Dirac matriges a stag-

We find that subdominant scaling terms are needed to fit thgered fermion field andn is the bare fermion mass, which
data. In other words, the usual assumption that the scalingill be set to 0. Note that the lattice expression Fy, is
window is wide enough to address the issue of triviality bynon-compact in the lattice field,, while the gauge field
simulating the model at nonzero fermion masses and fittingouples to the fermion field through compact phase factors
to a logarithmically improved mean field form is shown to be which guarantee local gauge invariance. This point will be
incorrect. In Sec. VIII we present data on lattices ranging indiscussed further in Sec. X below.

size from 12 to 20* to check that our data for the chiral Interesting limiting cases of the above action are the pure
condensate are not influenced significantly by finite size efZ, Nambu—Jona-Lasinio modee£0), which has a phase
fects for the range of couplings used in the fits. In Sec. IX wetransition atG?=2 [1] and the pure lattice QEDQ=0)
consider measurements of lattice monopole observables fimit, whose chiral phase transition is ne@g=1/e*=.204
check that they are not critical at the chiral transition pointsfor four flavors[6,13]. The pure QED G=0) model also

as long as the bare four-Fermi coupling is nonzero. In Sec. Xas a monopole percolation transition which is probably co-
we discuss the possible role of lattice artifacts in simulationsncident with its chiral transition g8.=.204[14]. Past simu-

We considered theJ(1)-gauged Nambu-Jona-Lasinio
odel with four species of fermions. The Lagrangian for the
continuum Nambu—Jona-Lasinio model is

The lattice action for Eq(l) reads:

1 ~
m+ 75 %) a'(X)) Suy 4
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Schematic Phase Diagram of Noncompact Lattice QED with a Four Fermi Term TABLE 1. Dependence obr on dt for a :]_Zl |lattice with four-
| Fermi couplingh = 4.0 and gauge coupling=0.25.

08k J dt T Trajectories
.01 0.12796) 1200
05| ] .02 0.12805) 2000
5 / .03 0.12844) 2400
3 .04 0.129%4) 2800
“r 1 .05 0.13013) 3500
.06 0.13142) 4800

02 p== 4

shows that the theoretically expected quadratic dependence
0 s . . s s . s of the systematic error odt? has been confirmed numeri-

are ) " cally. The error bars quoted in the table have been obtained

) _ y using the usual binning techniques, so they reflect the corre-

FIG. 1. The upper, dashed line labels chiral transitions and thg,iinng in the measurements. The last column of the table

lower, solid line labels monopole percolation transitions. gives the number of trajectories in each data set. A trajectory

. . . ) here means an interval of one Monte Carlo time unit of the
lations of this lattice model have led to contradictory results

: S algorithm (for dt=0.01 a trajectory consists of one hundred
[13,8]. Since the gauged Nambu—Jona-Lasinio model can bg Af . :
. . t ht t | toof
simulated atm=0 for all gauge couplings, the results re- wvgienﬁide er each lrajectory a single measurementoo
ported here will be much more precise and decisive than Most of our production runs were done usidg=0.02.

tho\?ve of the p(tjjrehlatztlc(:je; QED;(:OI) limit. 2 Particularly close to the critical point where these systematic
e scanned the imensional parameter spae&”) errors are most dangerous, we checked our results with runs

using the hybrid molecular dynamics algorithm tuned forhavingdtzo 01. No problems were encountered
four continuum fermion specid8] and measured the chiral o '

condensate and monopole susceptibility as a functiofof )
andG2. We found that as we increas&f and moved off the IV. SIMULATIONS AT G*=1/4 ON A 16" LATTICE

G=0 axis, the peak of the monopole susceptibility shifted  as stated in the Introduction, we made accurate measure-
from B.=.204 atG=0 to B.=.244 at largeG. By contrast  ments on the chiral critical line for many choices of cou-
the chiral transition point shifted to a larg¢t, than the plings (8.,G?) and lattice sizes ranging from 4 20*. In
monopole percolation transition for a given value®@fand  this section we review our data collected varyiig=0.15
became distinct from the monopole percolation point as soon_ g 30 at fixedG2=1/4 on a 18 lattice. A discussion and

asG became nonzero, as shown in the phase diagram, Fig. Lresentation of these data has appeard@jinso we will be

brief.
IIl. CONTROLLING SYSTEMATIC dt ERRORS IN THE The data are presented in Table Il. The columns list the
ALGORITHM average values af, y, which is the longitudinal susceptibil-

] ] ] ) ity of the order parametel7], M which is the monopole
Before turning to physically interesting measurements, Wearco|ation order parameter agg, which is the susceptibil-

should address some technical issues concerning the alg%-, of the monopole order parametét0]. The monopole
rithm. Unlike the hybrid Monte Carlo algorithm, the hybrid

molecular dynamics algorithm is not exact. The molecular Order Parameter vs. di"2 on 12%4 Lattice

dynamics equations of motion can be found in the literature  *** ' ' ' ' ' ' .
[15]. In order to evolve the noisy equations of motion and o5 {,
generate an ensemble of field configurations, one mus .|
choose a Monte Carlo time stejt [3]. The discretization

0.1305

errors have been exhaustively studied and it has been show
that systematic errors in observables behaved&s[16]. o {
Therefore, we must choostt small enough that these sys- £ ozt
tematic errors are no larger than the statistical errors we will” il }
encounter. %

In Table | and Fig. 2 we show the order parameter 01285 | }
evaluated on a T2lattice at gauge coupling,=0.25 and 0128 | %
four-Fermi couplingG2=1/4. (We write o here as a short- i

0.1275

hand for (o), the expectation value of the field. This is a
standard notational shortcut which, hopefully, should nNot ®™ ¢ Gows ooor  ooos  oomz o025 o000 o0o0s oot
lead to confusion. The table shows that as long ak e

<0.03 the systematic error i is negligible. The figure FIG. 2. o vs dt?.
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TABLE II. Observables measured on a“llttice with four-  between the two models have not been emphasized or appre-
Fermi couplingG?= 1/4. ciated in the past.
Let us end our discussion af with some examples of

By v Xo M xw  Trajectories  oier fits, Simple power laws are the first ones to try. For
150 0.1198(07) 0.17565) 0.976761) 0.12455 930 example, a fit of the formr=a(8.— B)”mas is expected to
160 0.112483) 0.184320) 0.95661) 0.2611) 950 work rather well withg,,,4 slightly larger than 1/2 since the
170 0.10438) 0.199350) 0.92211) 0.5522) 1030 Nambu—Jona-Lasinio fits have worked so well. If we choose
180 0.0953(9) 0.216G50) 0.86442) 1.2245) 1010 the range ofBe to extend from .15 to .225, we finfaq
190 0.0852(B) 0.262130) 0.76693) 3.042) 1500 =0.5306), a=0.4493), B.=0.23315, but the confi-
.200 0.0738l) 0.323@q40 0.59767) 10.31) 1310 dence level is very poor,)¢/d.o.f~113/8). If we accept
205 0.06741) 0.3671300 0.4631) 25.36) 1012 only a smaller range of couplings closer to the critical point,
210 0.06091) 0.430130) 0.2502) 124.09) 1130 Be extending from .18 to .225, the quality of the fit improves
215 0.0537%2) 0.484940) 0.08128) 122.49) 2701 (x?/d.0.f~6.8/5, confidence level of 24pvhile the critical
220 0.04562) 0.659140) 0.03385) 69.75) 1120 index Bag rises to 0.576(12). This is the trend we find in
225 0.03672) 0.935640) 0.01922) 43.52) 1670 the data: power-law estimates of the critical indgy., in-
.230 0.013®) 30.21) 810 crease as the range of couplings is restricted closer and closer
.240 -0.00008) 3.36090) 0.007988) 19.575) 810 to the critical coupling. This systematic drift in the fitting
.245 0.000%5) 1.90380) 0.006814) 16.902) 2518 results suggests that a simple power is not an adequate rep-
.250 -0.0000B) 1.31670) 0.006015) 14.873) 960 resentation of the full data set, but is simply mocking up the
.255 0.0008) 0.91950) 0.005442) 13.341) 3350 logarithm of the Nambu—Jona-Lasinio fit, which has a higher
.260 -0.00073) 0.78640) 0.004834) 12.072) 820 confidence level and is stable as different rangegofre
.270 -0.00063) 0.62550) 0.004074) 10.281) 1010 considered.

280 -0.00082) 0.52510) 0.003036) 9.0519) 1070 In [5] we also analyzed the susceptibility associated with
290 -0.00022) 0.48410) 0.001666) 8.1857) 1230 o. In mean field theory, the singular piece of the longitudinal
300 0.0002) 0.43210) 0.000745) 7.5216) 1150 susceptibility y diverges at the critical poinf3; as x-

=c,|t|7?, t=(Bcs—B)/B:, ast approaches zero from
above in the broken phase, andyas=c_|t| "7 in the sym-
metric phasg18]. The critical indexvy is exactly unity in
mean field theory.

In logarithmically trivial modelsy remains unity, but the
amplitudesc, and c_ develop weak logarithmic depen-
dences[18]. In the two componeniy* model,c_/c, =2

observables will be discussed later.

The data for the order parameter were fit to a form which
could accommodate either* or Nambu—Jona-Lasinio trivi-
ality: B.—B.=ao?InP(blo), where the parametep, the

cr?tical pointBC_, Fhe amplitudea and the llscqld_a are d_eter- + 2/In(b/o), while in the Z, Nambu—Jona-Lasinio model,
mined by the fitting routine. Rggall tha;t .trlvughty gives ¢_lc,=2—1/n(blo) [1], where the scalb comes from the
p=-1 and_Nam_bu—Jona-Lasmlo trlvu_';lllty gives=+1.  grder parameter fit. Constrained linear fits to the dé&th
For the scaling window of gauge couplingg between .18  roduced the amplitude rate /c., = 1.74(10). Sincer var-
and .225, we found the parametefs;=.2350Q1), a jesfrom .0953(1) to .0367(2) over i range .18—.225 of
=34.3(3.9), Ib=1.55(10), andp=1.00(8) with a confi- the scaling window in the broken phase, the logarithm in the
dence level of 34%. The reader should consult the figuregheoretical prediction of the Nambu-—Jona-Lasinio model
and discussison ifi5] for more detail and perspective. As states that_ /c., should range from 1.75 to 1.79. Again, the
will be discussed below in Sec. IX, these simulations alscagreement between the simulation data and theory is very
measured topological observables for the system’s vacuumood.
and we confirmed that monopoles and related objects were We find no support for the approximate analytic schemes
not critical near the chiral transitiop8,=.235Q1), G2  discussed in[19] which predicted that gaugedJ(1)
=1/4. [We shall see there that the monopole percolatiorNambu—Jona-Lasinio models with a four-Fermi term with
transition is very narrow and occurs gt=.2175(25) for continuous chiral symmetry are nontrivial and have power-
G2=1/4] law critical singularities with indices that vary continuously
Are other fitting forms possible for these data? This iswith the couplingsB. and G2. Additional simulations in
certainly true, of course. The point we are making, howeverSecs. V and VI below will give strong evidence for the irrel-
is that log-improved mean field theory fits the data with veryevance of the four-Fermi term contrary to the resultg18j.
high confidence levels and there are compelling theoreticalrhe reader should recall that truncatddl) Nambu—Jona-
reasons for it. The data and the fits support the “conventionalasinio models which account for only restricted sets of
wisdom” that QED is a trivial field theory and that the loga- Feynman diagrams produce nontrivial “theories” with criti-
rithms of triviality follow the systematics of the Nambu— cal indices that vary continuously @ andG? are varied.
Jona-Lasinio model rather than the scatdrmodel. This last  For example, this occurs if only “rainbow graphs” of gauged
point is different from that usually assumed. In retrospect, iNambu—Jona-Lasinio models are summi@d]. Some of
is very plausible that the Nambu—Jona-Lasinio model reprethese exercises may be relevant to Technicolor model build-
sents the triviality of QED better thap®, but the differences ing.
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TABLE Ill. Observables measured on a*l&ttice with four-
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Order Parameter, 164 lattice, G*2 = 1/8
0.08 T T T T

Fermi couplingG2=1/8.

By o Xo M xu  Trajectories 005 .

160 0.052004) 0.0662) 0.94791) 0.3271) 730 0os L “,

165 0.0493) 0.0681) 0.92931) 0.4872) 770 T

170 0.0464%5) 0.0752) 0.90472) 0.7293) 660  ousl o

175 0.0433%5) 0.0742) 0.87293) 1.1065) 600 K "‘ .

.180 0.03996) 0.0822) 0.83144) 1.721) 500 ol -

.185 0.03644) 0.0893) 0.776%5) 2.81(2) 640 .

.190 0.032675) 0.0963) 0.70546) 4.823) 960

195 0.028487) 0.1104) 0.60919) 9.359) 770 oty

.200 0.024009) 0.1364) 0.475116) 24.29) 640

205 0.01879) 0.1905) 0.267729 1154) 780 9 oo o1 o8 o9 oz o 022

210 0.0125(®) 0.381) 0.0880119) 127(2) 960 e

.215 -0.0001%4) 1.629) 0.0362%95 74.1(9) 310 FIG. 3. o vs B, for G2=1/8.

.220 -0.0002@B8) 0.759) 0.0233352 51.37) 320

.225 0.0000@15 0.334) 0.0157626) 35.62) 490 This excellent fit is the one shown in the figure. Note that
.230 0.0000®) 0.234) 0.0117215 27.91) 660 eight data points foB, between 0.17 and 0.205 were used in
235 0.00000) 0.194) 0.0093712) 22.98) 590 the fit while the figure has two additional points at stronger
240 0.0001(8) 0.162) 0.007799) 19.236) 640 coupling. Those points lie slightly below the fit, are slightly
245 0.000106) 0.1459) 0.0066%6) 16.634) 910 outside the scaling window and show the extent of the scal-
250 0.000066) 0.1337) 0.005865) 14.673) 790 ing window.

We plot the eight data points betwegh of 0.17 and

0.205 and the fit as shown in Fig. [8.— Bel/ o2 vs In(Lio)

On the basis of the work here, however, we suspect thdp illustrate the importance and numerical significance of the
when fermion vacuum polarization is accounted for, onglogarithm. The dashed line is the previous fit redrawn in this
would find complete charge screening and every gaugetPrmat, where we have “zoomed” in on the scaling window
Nambu-Jona-Lasinio model based on continuum nonconfor emphasis. Clearly this fit is stable to further cuts on the

pactU (1) gauge dynamics would be trivial for all couplings. data set since all the data points lie on the fit.

We suspect that nontriviality and lines of nontrivial field ~We conclude that Nambu—Jona-Lasinio triviality accom-

theories are aspects of truncation procedures only. We sugiodates the lattice data &2=1/8 with very good confi-

pect, on the basis of the present work and past trivialitydence levels. This success also shows the irrelevance of the

investigations in scalar QE[21], that only models with dy- four-Fermi term in the lattice action: the scaling law for the

namics beyond continuum noncompdd{l) gauge fields order parameter is the same as that at the la@fevalue

and fermions can be nontrivial and have a renormalizatiorflthough the lattice parameters, such as the location of the

group fixed point at nonzero gauge coupling. An examplecritical point, have changed.

might be afforded byJ (1) theories with fundamental mono- ~ Next, in Fig. 5 we show the inverse of the longitudinal

poles[22]. susceptibility of the auxiliary fieldr at fixed G>=1/8 and
variable 8.. We follow the same procedures as used in Sec.

V. SIMULATIONS AT G2?=1/8 ON A 16" LATTICE

2 logarithmic modification of mean field theory on 16*4 lattice, G*2 = 1/8
T T T T T T T T T

In this section we consider new data collected varying P!
Be=0.16-.25 at fixedG?=1/8 on a 186 lattice. ot s
The purpose of this series of simulations(isto verify
that the four-Fermi coupling is irrelevant, afit) to accumu- I {
late more evidence that the theory is logarithmically trivial in ’
the sense of the Nambu—Jona-Lasinio model.

The data are presented in Table Il in the same format a§ =} 1
Table II.
In Fig. 3 we show the data for the chiral condensatet
fixed G?=1/8 and variable8,. We use the same fitting pro-

cedures as used in Sec. I9;— B.=ac? InP(b/c), where the Pl

parameterp, the critical point3., the amplitudea and the 2} ‘* 8
scaleb are determined by the fitting routine. For the scaling

window of gauge couplingg, between .17 and .205, we By a1 sz 33 aa a5 a6 a7 a8 39 4
found the parameterg.=.2147@5), a=12.02(1.18), Ib
=0.40(10), angp=1.07(8) with a confidence level of 87%.

25 | i

)/sigmair2

{beta_c-be

23 4

3.5
In{1/sigma)

FIG. 4. |B.— Bel/ 02 vs In(1lo) for G2=1/8.
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Inverse Susceptibility on 16°4 lattice, QED with G*2 = 1/8
'y T T T T T

PHYSICAL REVIEW D 65 054015

TABLE IV. Observables measured on a*1lattice with four-

“ i . ' \ ' ' Fermi couplingG?=1/2.

12t 3 - -
¢ ‘;\ By T Xo Trajectories

or 1150 0.2528) 0.395) 1500
§‘\ .160 0.24348) 0.432) 1500
g [ g 2] a0 0.233®@) 0.435) 1500
L g ! 180 0.223%) 0.445) 1500
5 % .190 0.2122) 0.483) 1500
R } .200 0.201®) 0.51(4) 1500
9 210 0.18882) 0.61(3) 1500
. % 220 0.17513) 0.683) 1500
A 230 0.16063) 0.842) 1500
o.|17 o.l1s o.l19 ofz o.I21 . o.I22 o.lza o.|24 o.|25 240 0.1453) 1.045) 1500
beta_e .250 0.12814) 1.264) 1500
FIG. 5. Inverse susceptibility vs coupling,, G*>=1/8. 260 0.10964) 1.684) 1500
.270 0.08815) 2.235) 1500
310 0.0006) 5.6610) 1500
IV to analyze and plot the data here. The plot picks out a320 0.0007) 3.6810) 1500
critical point 8.=.2155(10) and is consistent with the mean -330 0.0007) 3.1710 1500
field value of the critical indexy=1.0. The constrained lin- .340 0.0006) 2.61(10) 1500
ear fits determine the amplitude ratio, /c.=1.65(10). .350 0.0004) 2.3310) 1500
Since o varies from .04642(5) to .01878(10) over tjgg  .360 0.0005) 2.31(7) 1500
range .17-.205 of the scaling window in the broken phase370 0.0005) 1.80(6) 1500

the logarithms in the theoretical prediction of the Nambu
Jona-Lasinio model for the amplitude ratio predict that

c_/c. should range from 1.75 to 1.79. Again, the agreemenine same as that at ti@? values of 1/8 and 1/4 although the

between the simulation data and theory is good, but is NOfice parameters, such as the location of the critical point,
comparable in quality or decisiveness to our other fits. have changed.

Next, in Fig. 8 we show the inverse of the longitudinal
susceptibility of the auxiliary fieldr at fixed G?=1/2 and
variable 8, .

In this section we consider new data collected varying 1h€ Plot picks out a critical poing.=.2924(10) and the
B.=0.17— .37 at fixedG2=1/2 on a 18 lattice. In this case constrained Imeqr fits to'the data shown in thg figure pro-
the four-Fermi coupling is four times stronger than the datgluced the amplitude ratic_/c, =1.89(20), which com-
discussed in the previous section, but far too weak to caug@@'®S Well to the theoretical prediction /c,=1.722).
chiral symmetry breaking in the absence of the gauge Cou_é\gam, the ag_reement between the S|mglat|on daya. and theory
pling. is good, but is not co_mparable in quality or decisiveness to

The analysis and plots here are identical to the previou§Ur order parameter fits.
discussions of2=1/4 andG2=1/8, so we will be brief.

The data are presented in Table 1V in the same format as _ .
Table I. oas T i

In Fig. 6 we show the data for the chiral condensatet T
fixed G?=1/2 and variable8,. We use the same fitting pro- i R
cedures as used in Sec. IB,— B.=ac? InP(b/o), where the T
parameterp, the critical point3,., the amplitudea and the
scaleb are determined by the fitting routine. For the scaling o e 1
window of gauge coupling®,. between .22 and .27, we
found the parameterg.=.291175), a=20.0(4.1), Irb N
=1.6(4), andp=0.86(18) with a confidence level of 99.9%. I
This impressive fit is the one shown in the figure.

We plot the data and the fit as shown in Fig. | B, 005 | N
—Bdld? vs In(Lir) to illustrate the importance and numerical
significance of the logarithm. The dashed line is the previous
fit redrawn in this format. b4 ot o oz o=  oa  om om o3

The success of this fit reiterates the irrelevance of the -
four-Fermi term: the scaling law for the order parameter is

VI. SIMULATIONS AT G?=1/2 ON A 16* LATTICE

Order Parameter vs. Coupling, 16%4, G*2 = 1/2
T T T T T

sigma
¥

FIG. 6. o vs B, for G?=1/2.
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28 . Iogarilhmitlzmodiﬁcatio? ofmeanfielld theoryonl16"4 Iattice.lG"2=1/2 . TABLE V. Cr|t|ca||ty runs on a 16 lattice with four-Fermi cou-
sl pling G?=1/4 and variable fermion mass.
27} % T m T Xo Trajectories
=T 1 003 0.02861) 0.9279) 3400
g Xl % l .004 0.031861) 0.7792) 3194
% 255 1 .005 0.03401) 0.6814) 3040
3 st A ; .006 0.03611) 0.6395) 3397
§ a5 L J .007 0.03801) 0.5828) 3207
2ol e | 008 0.0394) 0.5385) 2174
wes | { | .010 0.04247®) 0.4745) 1837
| ,} .015 0.0489(8B) 0.4155) 2521
aer 1 .020 0.0535() 0.3774) 1740
227 s 1o 2 211 22 25 24 25 030 0.0611(9) 0.3258) 1260
intvisigma) .040 0.066868) 0.2947) 1380
FIG. 7. |Bc— Bdll/ ? vs In(1ir) for G2=1/2. .050 0.0716007) 0.2697) 1400
.060 0.0757(8) 0.2556) 960
VII. SIMULATIONS AT NONZERO FERMION MASS AND .070 0.079167) 0.2406) 1020
THE WIDTH OF THE SCALING WINDOW .080 0.082148) 0.2317) 1000
Past simulations of lattice QED had to be done at nonzero090 0.0848(8) 0.2176) 910
fermion masg15]. The standard algorithms fail to converge 100 0.087247) 0.2116) 970
in the limit m— O because the lattice Dirac operator becomes!®0 0.096367) 0.1933) 970
singular in the chiral limitf2,3]. This algorithmic problem 200 0.1023®) 0.1773) 730

has led to indecisive results for lattice QED because of large
statistical and systematic errors. It is interesting to use the | )

algorithm of this paper to discover, assess and clarify thé-2Sinio model[17]. By accumulating data over a range of
problems in past work in this field. small m values, we can look for_the region wh_ere E,’_a)

We chose to do simulations at nonzero fermion mass afight apply and determine the width of the scaling window.
the critical couplingg, determined by our fits presented in !t IS important to keep the number of variables and param-
the previous section. In this way we can look for the width of€t€rs to a minimum in this sort of investigation. This is the
the scaling window in them-direction in a particularly —r€ason we work at criticality. _
simple fashion. Recall that at criticality the order parameter 1he critical coupling has been determined to Bg

o should scale with the fermion mass an explicit symme- = 0-2352 in Sec. IV. The data for the order parameter and its
try breaking parameter, as susceptibility are shown in Table V fon ranging from 0.003
to 0.20. Note that the statistics for this data set is particularly
m~ o’ In%(1/o) (6)  high as smaller and smallen values are considered and the

critical point is approached. The error bars dnrecorded
where the critical index should be 3 in a logarithmically there account for critical slowing down which forced us to
trivial theory andq, the power of the logarithm should be accumulate such high statistics. The statistics are at least an
—1 for a ¢ theory and should be-1 for a Nambu—Jona- order of magnitude greater than those of past studies and
produceo values with errors ranging from 1/2% to 0.08%.
16— : : : We learned in past studies of the pure Nambu-Jona-
= Lasinio model that smalin values, typically below 0.01, are
1 needed to find a scaling windojt]. However, in this case
the dynamics is controlled by the gauge coupling which
. alone is driving chiral symmetry breaking. The four-Fermi
Wb ] coupling is tiny and is not affecting the dynamics in a nu-
. merically significant fashion. Therefore, the width of the
08| 1 scaling window must be determined anew from the data in
Table V.
. In Fig. 9 we plotm/a3 vs min order to assess visually the
sk T relevance of the leading logarithm result E§). The data
5% clearly pick out the valué= 3.0 for the dominant power-law
o2 o 1 singularity of the scaling law for very smati values, all less
than 0.01. However, we also see that the deviations from the
022 oz oz bgaliae “os 0 o mean field result are numerically significant over the entire
- mass range shown. In fact, they are far too large to be ac-
FIG. 8. Inverse susceptibility vs coupling,, G?>=1/2. commodated by a weak logarithmic scaling violation as ex-

Inverse Susceptibility on 164 lattice, GA2 = 1/2
T T T

1/suscp

06| Y
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150

m/sigma*3 vs. m, 164 lattice, G*2 = 1/4
T T T T

PHYSICAL REVIEW D 65 054015

TABLE VI. Chiral condensater on 12, 16%, and 20 lattices

with four-Fermi couplingG2=1/2. Finite size study.
145 i By o, 12 0,16 a,20"
150 0.25282)
40 A | 160 0.2430)
§ e 170 0.23414) 0.23392)
g F = 180 0.22394) 0.22372)
e % I .190 0.21304) 0.21292)
f 200 0.201%) 0.20122)
130 H ______ 210 0.188%) 0.188%2)
FJIF """ % 220 0.17476) 0.17513) 0.17484)
Tﬁf 230 0.16065) 0.16063) 0.16175)
128 o.;n oﬁoz 0463 o.:)4 o 04;)5 o.:)s 0.2)7 o.:m 0.09 .240 0-14517) 0-145Q3) 0-14543)
250 0.12816) 0.12814) 0.12834)
FIG. 9. m/g® vs m. 260 0.108¢8) 0.10954) 0.10934)
270 0.08668) 0.08815) 0.08854)

pected in Eq(6). In fact, a fit of that form to the data ranging
from m=0.003 tom=0.08 produces a huge value for the
power of the logarithmg= —8(1), and avery small confi- level of 98.7% percenty®/d.o.f~3.78/12). In fact this fit-
dence level of 0.43% x?/d.0.f~28.8/12). Therefore, the ting form can be well approximated in a fashion that is useful
data rule out the applicability of logarithmic improved meanfor practical purposes,

field scaling to describe the data at nonzerexcept for the
very smallest values ofm, m<<0.01. Unfortunately, most
data used to study the potential triviality of QED using the
conventional action employewh values considerably larger
thanm=0.01 in order to run efficiently and generate suffi-
cient statistics. Typical ranges of have been between 0.01
and 0.10[8] and are very sensitive to data taken with
=0.02, 0.03, and 0.04. This criticism applies to all past stud-
ies of noncompact QED, for exampl€6,14,19. It also
means that the methods of analysis introducel@8j do not
apply to this data set because those methods require data i
scaling window, controlled by a single asymptotic form. subdominant critical singularities which are larger numeri-

Higher preC|S|on_data taken at the sm'allest valuempin . cally than logarithmic corrections to mean field theory.
<0.01, are required apparently and, in fact, larger lattices

than 16 might be necessary also because of the possibility
of significant finite size effects.

Two possible explanations for the data come to mifd: Since we are using a new algorithm which works in the
Perhaps the real critical point is significantly different from |imit of massless quarks, we should be careful to monitor
0.2352 as determined by our fits mt=0.0, or (ii) perhaps finite size effects. Some of our data are taken very near to
subdominant singularities in the scaling law are numericallycritical points in order to find critical indices that control
significant over this range ah. continuum limits of the lattice models. At these points the

It is easy to rule out optiorti). Ignoring logarithms, the  model’s correlation length diverges and there are potentially
mean field equation of state reats=Do®~C(B.~Be)o.  dangerous finite size effects which could mimic finite tem-
This implies that if 8, were different fromg., thenm/a®  perature effects, for example. We need to check that the lat-
would behave ab — C(8.— Be)/ 0%, and the correction term tice is large enough to contain correlations larger than the
would be large for smaldr, which is just the opposite of the |attice spacing but smaller than the system’s spatial extent in
behavior observed in Fig. 9. order to work within a scaling window where we can extract

Now consider option(ii). If a subdominant singularity continuum features of the field theory.
contributes to the equation of state, then at criticality the |n Table VI we show data fosr taken for gauge couplings
relationBa®=m should be replaced by, Be ranging from 0.15 to 0.27 at fixed four-Fermi coupling
G2=1/2 for 12, 16* and 20 lattices. The comparison of
the three data sets shows coincidence everywhere except at
Be=0.27 between the smallest lattice*12nd the other two.
where § should be 3 andds should be considerably larger B.=0.27 was our closest approach to the critical point in the
[13]. This hypothesis fits the data beautifully: the curvedsymmetry broken phase and it appears that odr lagiice
dashed line in Fig. 9 shows the fit which has a confidencevas sufficient, given our 1/2 percent statistical errors. Reli-

m/a~B+D’'m?%’?, (8

Equation(8) approximates Eq.7) because the correction to
the constancy ofn/o* is less than 15% over the rangerof
values in the figure. The fit give®=128.43(58), D’
=795(311), andss=4.56(16).

We learn several lessons from this exercise.

Previous simulations of pure QED at nonzeneould not
possibly have detected the logarithms of triviality decorating
mean field singularities. For the present rangerofalues
WAd lattice sizes, data at nonzerchave contributions from

VIII. FINITE SIZE EFFECTS

m=Bo°+ Do’ (7)
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Monopole Number Order Parameter, 1644 Lattice, G*2 = 1/4 Chiral Susceptibility on 164 lattice, QED with G*2 = 1/4
T T T T T T T T

T 3.5 T T T T
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FIG. 10. Monopole concentratonM vs coupling FIG. 12. Longitudinal chiral susceptibiliyM vs coupling
2_
Be, G2=1/4. Be, G2=1/4.

ance on a 12lattice would have failed us.

In the next table we show #2lata for a simulation where
the four-Fermi coupling is fixed &%= 1/4 and g, ranges Noncompact lattice QED was first studied with the goal
from 0.15 to 0.25. The data consist@fas well as monopole of simulating the dynamics df (1) gauge fields without the
observables that will be discussed in a later section. Compamonopoles that accompany compact lattice Q28 . It was
ing the o data here to that in Table Ill, we confirm the ab- found, however, that even the noncompact formulation has
sence of finite size effects within our statistical errors. monopole-like dislocations in its lattice formulation because

In summary, the 16data we have used to extract scaling of the space-time cutoff itseffL0]. These dislocations can
laws from o measurements appear free of significant finiteundergo a percolation transition where long range correla-
size effects. The significance of finite size effects dependfons develod10]. Because of this transition, it is not obvi-
strongly on the observable being simulated. We also checkeous that simulation results in pure noncompact lattice QED
that the longitudinal susceptibility data that were used toeflect the physics of textook QED in which field configura-
extract the logarithmic violations of scaling in the amplitudestions are smooth and have no topological excitations. The
were not distorted by finite size effects. Since these suscepormulation of noncompact lattice QED with a four-Fermi
tibilities are determined with much larger statistical errorterm is free of the issues raised [h0]. The point is, as
bars, this test was less demanding. Certainly the finite sizéiscussed in Sec. Il above, the monopole percolation transi-
effects iny,, are much larger than those énitself. However,  tion does not coincide with the chiral transition as long as the
sinceo was determined within a fraction of a percent while four-Fermi coupling is nonzero. Therefore the gauge field
the statistical uncertainty ig,, was typically several percent, vacuum is free of critical dislocations at the gauge couplings

a 16" lattice was adequate for the range of couplings used i®f interest, so we know that we are studying a model free of
this study. topological excitations, as we wish.

Let us find the monopole percolation transition in the
model with a fixed four-Fermi coupling?=1/4. The data

IX. MONOPOLE OBSERVABLES

Monopole Percolation Susceptibility, 16*4 Lattice, G*2 = 1/4
T T T T T

s ' ' ' for the monopole concentratidl and the associated mono-
10l - | pole percolation susceptibilityy, , both defined exactly as in
[10], are given in Table II. In Fig. 10 we plot the monopole
wo | concentration against the gauge coupling and find a percola-
tion transition at8) =.21041).
g wf . We determined in Sec. IV that the chiral transition occurs
é . at considerably weaker coupling3.=.2352, where the
5 eor 1 monopole concentration is insignificant, as we read off Fig.
10.
40 - ‘ 1 It is also informative to confirm this conclusion by con-
. . sidering the monopole percolation susceptibiligy, . In Fig.
20 - °., 1 11 we plot this susceptibility against the gauge coupling and
. e e ., see that it appears to diverge in the vicinity qﬁg"
%1 ote ot oz oz om oz  om 03 =.2104(1) (we also confirmed this impression with power-

et law fits). In addition, in Fig. 12 we plot the longitudinal

FIG. 11. Monopole percolation susceptibility vs coupling  susceptibility of the chiral transition and confirm that it di-
Be, G?=1/4. verges neaB.=.2352, as already determined in Sec. IV. The
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TABLE VII. Observables measured on a*lattice with four- Another potential problem concerning tE=0 edge of
Fermi couplingG?= 1/4. Finite size study. the phase diagram concerns lattice monopoles. Recall that
i : one motivation for inventing and studying noncompact lat-
Bq d M Xwm Trajectories  tice QED[26] was to make a model free of monopoles in
150 0.120%) 0.977@1) 0.1231) 1000 order to understand the relation between chiral symmetry
160 0.112%) 0.95682) 0.2612) 1000 breaking and single gluon exchange. However, Hands and
170 0.10472) 0.92234) 0.5515) 1000 Wensley[10] pointed out that even the noncompact model
180 0.09562) 0.86416) 1.21(2) 1000 has monopole-like lattice dislocations because of gauge in-
.190 0.0853)  0.766Q10)  3.105) 1000 variance of the pure gauge field piece of the action and be-
200 007413)  0.595422) 10.63) 1000 cause of the Iattlcg cutoff itself. These aythors also pomtgd
210 0.06104)  0.266949) 71.59) 1000 out th_at these lattice monop_oles experience a perco_latlon
220 0.04497)  0.065116) 51.07) 1000 transition as the gauge cou_pllng becomes strong and in _the
230 0.02915) 26.62) 1000 case pf quenched S|mulat|on§, the m.o.nopole percolatlon
240 0.0208) 18.42) 1000 transition is very closg to the chiral transition experienced by
250 0.01524) 14.101) 1000 light ferm|ons[1Q]. This qu these authors to speculate that
) ] ' noncompact lattice QED might not be a sound framework for
studying “textbook” QED at strong couplinffL0].
two susceptibility peaks are cleanly separateg! What dzpes this possibility mean for this paper? Since we
— 2104(1) vsB.=.2352. work at G*#0 where the critical line of monopole percola-

We end this section with a minor remark about the finitetion is distinct from the chiral transition line, these lattice
size effects observed in the monopole observables. Compa@_rtifacts are not relevan_t to our conclus_ions. We believe that
ing Table Il and Table VII, we see that as the monopoleV€ have a firm theoretical and numerical grasp of gauged
percolation transition’s critical coupling is approached, therdNambu—Jona-Lasinio models everywhere within the phase
are numerically significant differences between thé aad  diagram Fig. 1 but not along the edgé=0. How could this
the 16 data sets for both the concentratibhas well as its &7 Following Hands and Wensley, the gauge field piece of
associated susceptibilityy, . As expected, the percolation the action Eq(2) is invariant under local gauge transforma-
susceptibility yy is strongly suppressed by the lattice sizeions defined by the group of real numbétswhile the fer-
near the transition. In fact, as we have discussed elsewhefBionic piece of the action, which describes the gauge invari-
[25], finite size scaling of the peak of the susceptibility is an@Nt hopping of the fermion around the lattice, has a gauge
effective and accurate means to measure the percolation crifyMmetry based on phased(1). The cutoff theory de-
cal indices. It would take simulations on a series of latticeScrioed by the pure gauge piece of the action has monopole
sizes to carry out such a program for this model. The oniygXcitations attached by Dirac strinffE0]. These are singular
point we wish to make here, however, is that the percolatioﬁ'eld _con_ﬂguratlons whose actions diverge when the Iattlc_e
and chiral transitions are well separated inside the phase digPacing is taken to be zero. They would be of no concern if
gram Fig. 1. It is interestingand fortunate for the success of 't Were not for the fact that as the coupling increases they
this projeci that the finite size effects in the chiral order €XPerience a percolation transition where monopole clusters
parameterr are significantly smaller than those in the mono-d€velop macroscopic dimensions. Since the fermions are

pole concentration. sensitive to monopole clusters through thei(1) phase,
Hands and Wensley speculated that they could affect the chi-
X FAILURES AND CHALLENGES AT G2=0 ral transition in the quenched and unquenched model. This

speculation could be wrong for several reasdisThe un-
Although the major topic in this research is the behaviorderlying gauge action is just a quadratic form, so it is a
of the gauged Nambu—Jona-Lasinio model &t#0, we perfectly solvable free field theory. A free field theory can
will briefly discuss the present confusing state of theory andot have a phase transition, as emphasizel®m. (ii) Per-
simulations at the edge of the phase diag@f+=0 where colation transitions need not affect the bulk properties of the
past simulations have been carried out. As we have alreadynderlying field theory. Many examples of this sort can be
emphasized, the real problem with studiesG&t=0 is that cited. These complaints can be answered in p@rtThe
they must be done at nonzero fermion mass away from thphase transition of percolation is not in local observables
chiral limit and this has caused several problefiis.The constructed out of the gauge fields, but rather is in nonlocal
simulations become excessively slow for snmalvalues be- matrix elements. It is not unusual in statistical mechanics to
cause the lattice Dirac operator is singular in that limit. make models where non-local matrix elements experience
Therefore, at low values aih where the best statistics are phase transitions when the underlying local field theory has
required, the statistics of the data sets are typically the poomo transition itself. Condensed matter physics provides many
est.(ii) The scaling window in then-direction is extremely examples of enormous practical importance including, for
narrow, so fitting forms which only account for the leading example, the localization-delocalization transition of single
critical behavior are inadequate and misleading. Attemptingelectrons in background fields of varying degrees of disorder.
to go beyond leading order critical singularities in fits leadsThe chiral transition is sensitive to loops of thi§1) phase
to a vast proliferation of parameters which undermines firmand is of this type(ii) Since fermions flip their chirality in
conclusions. the presence of monopoles, it is plausible that a percolating
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network of monopole-like excitations can induce chiral sym-this calculation has some technical challenges specific to lat-
metry breaking in the bulk system. There is a possibility thattices of finite extent which necessitate the extrapolation of
the G?=0 pure QED model has qualitatively different phys- raw lattice data to achieve physical results. It would be
ics from that found anywhere within the phase diagram inworthwhile to investigate improved strategies here to avoid
Fig. 1. Only at the edge of the diagram would the percolatingcrude, indecisive results. The high quality of the equation of
monopole-like excitations be critical where chiral symmetrystate fits in Secs. IV-VI should lead to improved determina-
is broken. Only there are new degrees of freedom, percolations of the renormalized couplings because the lattice criti-
ing monopoles, relevant so only there could there be a newal couplings are determined with excellent precision.
universality class. It might be that on the edge of the phase One could also simulate the model with t&g chiral
diagram, the chiral condensate is driven by monopole percagroup replaced by a continuous group so the model would
lation and the chiral transition inherits a correlation lengthhave Goldstone bosons even on a coarse lafti®. It
critical index v=~2/3 from the percolating network and be- would then be possible to test the approach and results of
comes the basis for a nontrivial field thedr¥j. It has been [19] more quantitatively.
noticed that as the number of fermions is varied, both the It would also be interesting to generalize the results of
chiral and monopole percolation transitions move in unisorSec. VI, that a subdominant critical singularity is needed to
[14]. In addition, in unquenched models, such as the foudescribe the data at nonzemy away from the critical cou-
flavor model on the edge of the phase diagram Fig. 1, theling. In other words, fit the finiten data points of previous
fermions induceU (1) plaguette terms into the theory’s ac- investigations such g8,9] to equations of state with both a
tion which can support conventional lattice monopdi24). dominant and subdominant singularity and check that im-
We have nothing to add to the pros and cons of thesg@roved confidence levels are achieved with simple hypoth-
qualitative arguments. We hope that the physics issuegses. Unfortunately, there will be a proliferation of fitting
brought up here could be answered by striking out in newparameters in such a program, so its numerical significance
directions and finding approaches or arguments which argight be questioned. Nonetheless, it would definitely be
more precise and quantitative. The monopole percolatioworth consideration. Such a program would also influence
picture may contain only half truths, but some of those ideashe determination of renormalized couplings because these
might be testable in the context of models with real mono-calculations use critical couplings inferred from equation of
poles, generalizations of compadt(1) lattice QED[24], state fits[28].
perhaps. Finally, it would be interesting to simulate compact QED
with a small four-Fermi term and study the interplay of
XI. CONCLUSIONS AND DISCUSSION monopoles, charges and chiral symmetry breaking. Since the
) ] o G=0 limit of the compact model is known to have a first
We presented numerical evidence for the triviality of text-order transition[29], generalizations of the action will be
book QED using a new algorithm which converges for massneeded to find a continuous transition where a continuum
less quarks. Past simulations using the action with massivgmit of the lattice theory might exist. Since the parameter
quarks but no four-Fermi term produced controversial respace of the generalized model would be at least three di-

sults. Recall thaf6,7] claimed nontriviality for the theory mensional, this interesting problem would be quite challeng-
while [8,9] found triviality and backed up their claim further jug.

in [8] by calculating the sign of the beta function, which is

directly relevant to the question of triviality.

_ It would be worthwhile to continug using the new algo- ACKNOWLEDGMENTS
rithm and pursue several new directions.

One could calculate the theory’s renormalized couplings This work was partially supported by NSF under grant
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