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Meson spectrum and analytic confinement
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The basic dynamic properties of two-particle bound states of “quarks” and “gluons” are investigated within
a simple relativistic quantum field model with the Yukawa interaction. Provided with an analytic confinement
of the constituent particles and small coupling constant, this model explains qualitatively the experimental
evidence: the quarks and gluons are confined, the final bound states are stable, massless gluons constitute the
glueballs and the Regge trajectories of “mesonic” orbital excitations are asymptotically linear.
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[. INTRODUCTION is realized by the self-dual homogeneous vacuum gluon field
which is the classical solution of the Yang-Mills equations
At the present time, QCD is commonly regarded as thevas developed if3,4]. According to Leutwyler[5], this
true theory of strong interactions describing all processes igluon configuration is stable over local quantum fluctuations,
the hadron world, including mesonic spectroscfply How-  and can lead to the quark and gluon confinement as well as a
ever, being a nonlinear theory with a local color gauge symnecessary chiral symmetry breaking. Hereby, propagators of
metry, QCD is quite complicated from the computationalquarks and gluons in this field are entire analytic functions in
point of view, and the conventional methods of calculationthe p?-complex plane, i.e., the analytic confinement takes
require great effort in making additional assumptions andlace. The spectrum and weak decays of light mesons, their
ideas. In contrast with QED, simple and reliable methods okxcited states, heavy quarkonia and heavy-light mesons, sev-
calculations are still missing in QCD. From our point of eral regimes for masses and decay constants were found in
view, any acceptable description of quarks and gluons andomplete agreement with experimental data. This approach
their hadronization on large distances, where the confinemeigbntains a minimal set of parameters: the gauge coupling
of quarks and gluons takes place, directly depends on theonstant, the strength of the vacuum field and the quark
structure of the QCD vacuum, and this structure is not welimasses. Thus, the self-dual homogeneous gluon field leading
established yet. In other words, the propagators of quark® the analytic confinement can be considered a good candi-
and gluons on large distances are quite far from those givedate to realize the QCD vacuum. One can say that existing
by standard Dirac and Klein-Gordon equations. Generallymodels with analytic confinement describe satisfactorily the
one may expect that a theoretical description of colorlesgxperimental evidence.
hadrons considered as bound states of quarks and gluons, However, real calculations of different amplitudes in par-
when the confinement is taken into account and an averaginigle physics require to take into account simultaneously the
over all nonobservable color degrees of freedom is pereonfinement as well as some quantum characteristics associ-
formed, can lead to a physical picture, where the quarks andted with color, flavor and spin within a chiral symmetry
gluons are realized in the form of some phenomenologicabreaking. Besides, analytic calculations within these ap-
“bricks.” We suppose that a successful guess of the structur@roaches are quite cumbersome, so that the problem arises
of these “bricks” in the confinement region can result, par-“not to see the forest among trees.” In addition, it is neces-
ticularly, in a qualitatively correct description of the basic sary to note that there exists a prejudice to the idea of the
features of the meson spectrum. Our guess is that the analytamalytic confinementsee, for example[6]). Therefore, it
confinement realizes these “bricks.” seems reasonable to consider simple quantum field models in
In particle physics there exist several models based on therder to investigate qualitatively just “pure” effects due to
idea of analytic confinement. The quark confinement modeanalytic confinement.
[2] treats light hadrons as collective colorless excitations of The present paper is aimed to clarify the role of the ana-
qguark-gluon interactions while the analytic quark confine-lytic confinement in properties of hadrons, the bound states
ment is provided by averaging over gluon backgrounds. Thef quarks and gluons by considering a simple relativistic
analytic form of the form factor providing the quark confine- quantum field model. Particularly, we explain qualitatively
ment is a phenomenological function unique for all processeand semiquantitatively the basic features of experimentally
in the low-energy physics. This model reproduces the low-observed meson spectra analyzed recently7]n
energy relations of chiral theory in the case of zero momen- The hadron spectroscopy as the theory of bound states of
tum and allows one to obtain more sophisticated hadromuarks, and the phenomenology of the Regge trajectories
characteristics such as slope parameters and formfactors. (RTs) are important and interdependent subjects of investiga-
An approach based on the assumption that QCD vacuurion in particle physicgsee, e.9.[8—-10)). The basic charac-
teristics of mesons considered as bound states of quarks and
gluons(in contrast to the relations of tH&U; flavor symme-
*Permanent address: Institute of Physics and Technology, Mongdry) can be roughly listed as follows: quarks and gluons are
lian Academy of Sciences, 210651 Ulaanbaatar, Mongolia. confined (nonobservable glueballs are bound states of
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massless gluons and completely relativistic systems; the RT@der a simple system, a Yukawa model of two interacting
of different families of mesonic orbital excitations are as-scalar fieldsb(x) and ¢(x) described by the following La-
ymptotically linear and their slopes differ insignificantly. grangian in the Euclidean space-time:

Therefore, the slope of RTs may be a universal parameter

dictated by the general nature of quark-gluon interaction. L(X)=—dT(x)S 1(O)D(x)

Obviously, these characteristics are hardly obtained in the
framework of any local quantum field theory, where the con-
stituent particles, the quarks and gluons, are described by the
standard Dirac and Klein-Gordon equations. From common

point of view, the confinement plays the main role in under-yhere coupling constamt is supposed sufficiently small.
standing and explaining this picture. The point is how t0 e postulate that the analytic confinement takes place
realize mathematically the conception of confinement withinhere |t means that the Fourier transforms of propagators of
a specific theoretical formalism? , , confined particlesP and ¢ are entire analytic functions in

The standard QCD calculatllons leading to linear R‘I_'s Ofhe complexp?-plane, s0S 1(p?) and D~1(p?) have no
hadrons are based diy a nonlinear QCD gluon dynamics ,erq at any finite complep?. Hence, the equations for the
with a particular infrared behavior of the gluon propagatorfee fields
and (ii) a three-dimensional reduction of the relativistic
Bethe-Salpeter equation. This results in a linear increasing
potential between quarks in three-dimensional sp@es,
e.g.,[11]). This infrared singular behavior is commonly in- ) o )
terpreted as quark confinement. result _only in the trivial _solutlon@(x)z_o ande(x)=0. We

In reality, the modern picture is more complicatéte, pall thls.propertyanalytm_ conﬂnemem.e., the correspond-
for example[12,13), but we do not discuss the details here.iNg particles exist only in virtual statd®,6]. One can say
Note only that it is necessary to overcome some mathematfhat these fields describe constituent particles, &¢x) and
cal problems caused by the singularity of the gluon kernel(X) represent scalar “quarks” and scalar “gluons,” respec-
and an ambiguously defined choice of particular reduction ofiVely. . - _ _
[14)). confinement.

In the present paper we ShOW that there exists another (1) In the first SimpleSt model we consider pure Gaussian
possible mechanism explaining the above mentioned charagxponents for the “quark” and “gluon” propagators:
teristics of mesonic spectra, particularly, the properties of
RTs. In doing so, we use a simple relativistic quantum-field
model of two scalar particleghe prototypes of constituent ~ S(X1™X2) =S(L)) 8(x1 —xz) = (472
“quarks” and intermediate “gluons) with the analytic con-
finement. Our approach is based on the following assump-

1
- §<P(X)Dfl(D)sD(X)—9<D+(X)<I>(X)<P(X), (€

S HO)P(x)=0, D H)e(x)=0 @

2
o~ (WHAZ(x—xp)

tions: the analytic confinement takes place; the interaction is Y(p?)= izef pZIAZ, 3)
described by a Yukawa-type Lagrangian; the coupling con- A

stant binding the “quarks” with “gluons” is small; final

bound “hadron” states of “quarks” are described by the rela- 2

e—(l/4)A2(x1—x2)2,

tivistic Bethe-Salpeter equation in one-“gluon” exchange D(X;—Xp)=D(O)d(X3—X,)=
mode without using any 3D reduction.

In addition we demonstrate a mathematical sketch of cal-
culations of two-body bound-state spectrum within the B(p2)= i —p2/A2
Bethe-Salpeter equation in the weak-coupling regime. In do- (p9)= A2e '
ing so, we use simple relativistic models based on physically
transparent hypotheses, which can be treated by simple angnere the only parameter A/represents the “radius” or
lytic methods. We believe that the analytic confinement is thgc5je of confinement. From a physical point of view this
basic underlying principle leading to a qualitatively correct jqqe| is important because the eigenfunctions and eigenval-
description of main characteristics of meson spectra. In anyjes of the relativistic Bethe-Salpeter equation within one-
case our models represent certain theoretical interest becalﬁ&rticle exchange approximation can be found explicitly and
they clarify the underlying physical principles of the mesonine ghtained RTs are purely linear. In some sense, this model
spectrum. can be considered a “relativistic oscillator” because the ex-
act solution possesses equidistant spectra resulting in pure
linear RTs. We call this casthe virton mode[15].

(2) The second model implies that there exists a certain
dynamical mechanism generating analytic confinement of

Our aim is to investigate the role of the analytic confine-standard particles with initial massesand 0. So we intro-
ment in the meson spectroscopy by omitting quantum deduce the second parameter, a “quark” masslhe propaga-
grees of freedom such as the spin, color and flavor. We corters are given in more realistic fornj$6]:

(4m)*

II. YUKAWA TYPE MODELS WITH ANALYTIC
CONFINEMENT
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A2 [t de — (MY A%)a—[A%(x; ~ xp) /4] g* +
S(Xy=X2)=| 7= f —¢€ “ 1, L2[<I>]=—j fdxldXZ(D (X1) @ (X1)D(X1—X2)
47 Jo « 2
L XD (%) P(Xz)
S(p?)= (1—e GHrmIns), g’
p*+m® =7f dXJ Jdyldysz(yl)J(x,yl)ﬁ(yl—yz)
D (X~ Xy) = ey~ A1 X% X \D(y2) 3" (x,y2)
(21)°x? ’ o2
:?% fdeQ(x)JQ(x), 8)
~ 1
B(p?)= 7 (1—e P 1Y), (4

with x;=x+y/2, X,=x—y/2 and

In the deconfinement limih — 0 this model allows one to
obtain the conventional propagators of massive and masslessy(x y)— @+
scalar particles. Within this model we can analyze the influ-
ence of the mass parameterm/A on the behavior of the
meson spectrum. We call this cade scalar confinement
model We show that this model describes qualitatively well
dynamic characteristics of meson spectra.

Note that both these models realize the “quark” and “glu- - -
on” confinement only. Other important quanq[um charactgeris- Jo(X)=Jq(x), VQ(‘?):“J dyvD(y1)Ug(y)e??,
tics as color, flavor and spin with an appropriate chiral bro-
ken symmetry are not considered.

L
X 2y

<D<x— %y) — 0 (x)eVDiP(x),

ITY)=3(x,—y), Jo(X) =P (X)Vo(H)P(x), (9

WhereVQ(g) is a nonlocal vertex.

By using the Gaussian functional representation we write
Ill. TWO-PARTICLE BOUND STATES

“Two-quark” bound states can be found in the following elal®] = a(g%/2)2 gl dx Jo(x)Ig(x)
way. Let us consider the partition function

:f H 5BQef(1/2)2Q(BQBQ)+QZQ(BQJQ)_
Z=Jff5@5@+5¢e—(@*3*14:)—(1/2>(¢D*1w)—g(¢*¢¢>_ ¢

©) Substituting this representation into E&) and by inte-
grating over® we obtain
This partition function is written in the quark and gluon vari-
ables. Our aim is to rewrit in terms of “hadron” fields in 1
order to realize so-callequark-hadron duality Z=f II s8Bq exp{ -5 > (BgBo)
Integration overp results in Q Q

—Trin(1—-gBxVeS
Z:ffM)5(1)+e—(qﬁs*1<1:)+(92/2)(c1>+<1>Dc1>+q>)_ (6) ( 95eVe )}

1
= | II sBoexpl — = > (Bo[doo—allpo 1Bor)
Let us introduce a complete orthonormal system jQ ° p{ 2 5o erreq Qe

{UoN)}:
+W|[gB]}. (10)
J dy Ug(y)Uqr(y)=dqq
where
2 Ug(yUar(y)=aly=y"), @ g
Wi[gB]=—Tr|In(1-gBoVoS) + 5 BoVoSBy V'S

whereQ={n,l,{u}} is a set of radiah, orbital | and mag-
netic{u}=(m1, - ..,u) quantum numbers. Then, the term is a functional describing interactions of fielBs,. Polariza-
Ly[®]=(®+*®PDP*d) can be rewritten tion operatoralloq in the one-loop approximation reads
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Minkowski space pzz—Mé). The mass of two-particle
“HQQ’(Z):J’ f dyy dy, Uq(y1)all(z)y1,y2)Uq/(Y2),  bound states are defined by the equation

yl—yz)( Y1_y2) 1=Eq(M%). (15)
S| z—

zZ+ 2 2

aH(ZWl,yz):gZVD(h)S

Formally, Gal(—D) defines the kinetic term of the field
X\D(ya), Bo. To go to its standard form, we expand it in the vicinity

, _ of p?=—M3 as follows:
where z=x;—X, and a=(g/4wA)~“. Its Fourier transform

reads 1-Eq(—p?) =Zo(p?+M3)+O[(p?+M3)?],
aﬁQQ’(p):f fdyldh UQ(yl)aﬁp(ylayZ)UQ’(yZ): Zo=—Ey(—M§)>0.

dk

Il [ e The positive constarg provides the renormalization of the
aHp(yl.y2)=gz\/D(y1)f (2w)4e—nk<yl—y2>s

wave function of the fieldB,. We rewrite the kinetic and
interaction parts in terms of the renormalized fieﬁi@(p)

_ - LUZf .
' VD(y2). 11)  =Zq Bol(p) as follows:

p
o+ 5

X S| k— 5
B+ _ _nA2\R
Suppose, the orthonormal systetdo(y)} diagonalizes (Bo(P)[1—Eq(—p?)]Bqo(P))
g:iblizmel in Eq(11). It means that we solve the eigenvalue =(Z€5(p)[(p2+Mé)+0[(p2+Mé)2]]Eq(p))a
~ _ g
dy’ally(y.y)Uo(y)=Eq(—pAUo(y), (12 W[gB]=Wi[geB], g§=gZg"~———r>
f P Q Q Q [9B]=Wi[gerB], 9o =924 —Eq(—M%)
16)

whereEq(—p?) =E, (- p?), i.e., the eigenvalues are degen-
?r::ttet(rj]eoé(ztgg?sglag?;“ﬁe?rlfglni[gnll‘(nu)mstﬁ?ail Vgﬁ dstsrer?]s_ The functionalW,[ g.«8] describes all “strong interactions”
P ! 42 | Y of the “mesons” By . In addition it should be stressed that

fmurettr::acr ;C:S;c;ir gr’] variational methods can be applied for It%he effective coupling constalgif'gff in Eq. (16), defining the
Then, the polarization operator in EQ.1) reads strength _of_boson mteractmns does not explicitly dgpend
on the initial coupling constangg because of relation
=~ Eo(—M2)~g.
Note that diagonalizatiofil3) is nothing else but the so- IV. THE VIRTON MODEL

lution of the Bethe-Salpeter equation in the one-boson ex- D h G . h £ th .
change approximation. The standard form of the Bethe. DU (O the pure Gaussian character of the propagators in

Salpeter may be obtained, if one introduces in @) new this model, the polarization kernelll) becomes quite

functionsU q(y) = vD(y) ¥ o(y) and goes to the momentum simple:
space(see, for exampld,17]). A2 2
By introducing a Gaussian measure defined by aﬁp(y,y’)z a(%) e_pZ/ZAZK(y’y/)’
Gq'(X1—X2) =[1—-Eq(()]8(x,—%,), p*=—0
"=~ (AZ8)(y*=yy' +y'?)
we rewrite the partition functio10) in the final form Ky.y)=e ' (7
_ ~ Explicit diagonalization of kerneK(y,y’) on{Uq(y)} re-
sz I] 6Bge™ (1123(BoGo B+ WilgBl (14)  sults in the eigenvalues
Q
. . . . 2n+1 2
We stress that this representation is completely equivalent o e = ke 1 _ 87
to the initial one(5). It is a mathematical realization of the QTR0 5L 3 A2+ 3))

guark-hadron duality in the model under consideration. From (18)
physical point of view, we pass on from the world containing

fields ® and ¢ to the world of bound stateBq;. The field  corresponding eigenfunctionsy(y) are given in Appendix
variables{Bq} can be interpreted as fields of particles with A

quantum numberQ={nl} and massedq, if the Green Therefore, the mass spectrum of two-particle bound states
functionGo(p?) =1[1—Eq(—p?)] has a simple pole in the can be found explicitly
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Mé=Mﬁ|=2A2In%+(2n+l)2A2In(2+ V3), fi|{#}(k,a)zi'f dx & D (X)W ,(x,8)
C : 2
=(2+ \/§)2 (19 - (27;_) T|{,u,}(k)f g4+aly eflKYD(Y)efaY ,

Thus, a pure Gaussian form of analytic confinem@ht
leads to the linear and parallel RTs. The slope of RTs isyhere K,YeR**?, k?=K? and the rotational symmetry
defined only by the scale of the confinement regiorand  p(y?)=D(Y?) has been taken into account. Then, one ob-
does not depend oa and other dynamic constants. Bound tains[16]
states exist for<a,. If a<a,, the size of the confinement
region is remarkably larger than the Compton length of any

bound state > EI3|{M}(k,<':1)EI3|{,L}(|<,<’:1)
o
oo~ — > - CHX(1+1)[ (uo 2
conf = A MQ _ | f duu|e,uk2/4 —1,
24+3| 0
In other words, all physical particles described by the fields
Bo(x) and all physical transformations involving them take 4
lace inside the confinement region. L
p g U Ai+a) (22

V. THE SCALAR CONFINEMENT MODEL o .
_ . Substituting Eqs4), (21), and(22) into Eq.(20) and after
In order to solve the eigenvalue problé®?) we will use  some calculations we arrive at

the variational principle because the kerﬁb‘J(y,y’) is real

and symmetric. For further simplicity we consider only the dk P\~ p
orbital excitations, i.en=0 andQ={0,,{u}}. 1=g? max| zm 4Z ., (k,a)S k+ 5|5 k=5
According to Eq.(15), the mass of the bound state is
determined by the following variational equation: =
y 9 q ><(I)|{M}(k,a)
M, m
1=aq|50 1 lex{zﬂ} f fdyldy?wQ(yl) =—max|[4c(1 c)]'*lf f dtds
X ally(y1,Y2)¥a(Y2), -
2 Xe(M'V)(HS)Rl(LS,XO], (23
p?=—M¢f. (20)
Note, the varlatlonal opt|m|zat|on gives an upper bound tyherep=(iM,,0,0,0) and
the massM? because foM?>0
1 2
M, m _ —xf/b I
ae| o, )< (D). Ri(t,s,x1) f fodudve 7P (uw)'Fy (b, xa),

Let us introduce a normalized trial wave function:

W(,(%,8) = C Ty () YD (x) e~ W< (21

! S - |
[(1+2a)'*1 I T
— Al
Ci=a 2(+1)

Fi(bx) = el j dk K k(-9
a

1

21
e X
b2

=20 M M 2= M2(t—s)?
2 J‘dX|\P|{M}(X,a)|2:1, A’ ! 2A° Xi ! !
{m}
where a is a variational parameter. The four-dimensional b=t+s+2c(u+w).

spherical orthogonal harmonids;,,(x) are defined in Ap-
pendix A. We suppose that the test function in E81)  Variational equatiori23) defines the relation between param-
should be a good guess to the exact one because the kermgérsM,, «, v, andl.

(12) is proportional toyD(y) and S(y) is of the Gaussian In the deconfinement limi\ — O our variational estima-
type. tion results in a qualitatively correct behavidor details see
Further we use the following relation: Appendix B of the final bound-state mass
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10.0 1
1 €(0,00=—. (25)
9.0 | Ac
8.0 — It means that there may exist a bound state with
] =0, M;y=0, i.e., massless “gluons” are able to produce a
7.0 3 massless “hadron” bound state.
6.0 (2) If a<a, the mass of the “hadron” bound state obeys
< 3 the inequalityM y=2m for Vm=0. Particularly, fora<a,

S 50 1 there exist states witM,>0 for m=0, i.e., massless “glu-
= ] ons” can produce massive “hadron” bound states—the
4.0 4 “glueballs.” For heavy “quarks” (m>A) one obtains an

E asymptotical behavior
3.0 5
1 5 , A% [m
2.0 7 Mg=4m -+ —In| —| +O(1). (26)
] 2 A
1.0 7 . N
. (3) If the coupling strength exceeds the critical value
0.0 7IIIII\II\\I\\I\\\II|I\\\IIIII\IIIII\\I\\\I\II\\\I >aC the phys]cal COnd|t|o]’Mé>0 results |n the requ]re-
0.0 1.0 2.0 3.0 4.0
m/A mentm=m,, where
FIG. 1. The mass\y=Mg/A of the two-particle ground state O% B E<i )
(I=0) as a function of the mass=m/A of the “constituent” par- YA T & ag’ (27)

ticle. Dashed line corresponds to the case wivg=2m. The
physical picture takes place only for relative weak coupling con-In other words, for a fixedv> «, the mass of the “quark”

stanta<a=1.918.... should exceed the critical valu@, in order to constitute
physically meaningful bound states. Particularly, there exist

a? g \2 massless “hadrons’My=0 constituted of two massive

M0=2m—?mK+O(ag), aoz(m) , “quarks” with m=m.. This kind of “mass annihilation”

does not coincide with conventional physical conception.

Thus, we conclude that the value of the coupling constant
K=0.6438..., a=(gl4wA)? plays a crucial role in formulation of the final
two-particle bound states and there exist two physically dif-
ferent pictures.

If a<a, there exist physically allowed bound states
with massedV>2m. Particularly, glueballs exist as mas-
sive bound states of massless constituent particles.

If a>a., there exists a critical mass of the constituent
A. The lowest state particle m;, so that bound states can exist only for
>m,. Therefore, a massless meson as a bound state of two
massive quarks can exist. But, any glueballs cannot exist at
all because & m>m..

Therefore, we can conclude that a physically reasonable

1 1
eo(/\/lo,v)=ma><{ 40(1_C)f f dtde f du dv picture can be realized within our model only for relatively
c 0 0 small coupling constant< .

i.e., we get the standard nonrelativistice coupling constant
ay is smal) behavior for a bound state under the Coulomb
potential.

Let us consider the lowest state witk-0. The equation
of the bound state becomes

% B. Orbital excitations

e vz(t+s)+/\/l(2)((t+s)(ts)zl[t+s+2c(u+v)])]
[t+s+2c(u+v)]? In general case, formulé23) defines the mass of an or-
1 bital excitationM, as function of input partameters: the cou-
=—. (24)  pling constanty, the mass of constituent “quarkh and the
@ confinement scald at any given orbital quantum numbler
As mentioned above, we believe that the scalar confine-
We have analyzed E@24) at different regimes of param- ment model grasps the basic characteristics of meson spec-
etersa, m, and A and have solved it numerically fok1,.  trum, it especially should be effective in describing the or-
Some of the obtained results are represented in Fig. 1.  bital excitations because the latters are determined mainly by
By analyzing our results we can conclude the followinginteractions on large distances, where detailing of the quark-

remarks: gluon interaction are not so important. Therefore, we are able
(1) There exists a critical coupling constant, to evaluate the confinement scaleand the coupling con-
=1.918 ... obeying the equation stanta by applying Eq.(23) to a set of experimental data on
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20.0 4 ) 8.0
1(g/4mA) ]
18.0 20 3
16.0 ]
] 6.0
14.0 Mz(1.770) o 1
] o ]
] 5.0
12.0 ] g7
] IS
10.0 4.0
] 0] _
] =z ]
8.0 M;(1.270) = 3.0
6.0 ]
] 2.0
4.0 - ]
i Mo(0.495 1.0
20 ] ol ) ]
] ¥'K(0.495)
O‘O_‘v—r—r\\||||||||\\\||||||||\\\||||||||\\\|| 0.0 L B S L AL L AL AL
0 1 2 3 4 5 6

02 03 04 05 06 07 08 09 1.0 .
Orbital momenta

FIG. 2. The dependencA=A () evaluated from the mass FIG. 3. The Regge trajectories of the two-particle bound states

equation for three different two-particle bound states witho, ~ calculated fora=1.7 at different values of\ to compare with
Mo=0.495 GeV:I=1, M,=1.270 GeV: andl=2, M,=1.770 experimental evidencériangles of the K-meson family. Hereby,
GeV. Here we use quark masses,=0.010 GeV and We plot bothK(1.270) andK(1.400) atl=1 because the RPP as-
m=0.100 GeV. signment table list&,z as a mixture of these states.

the RTs. Note, the pion RT is not suitable for our considerfameters is able to fit satisfactorily the experimentally ob-
ation because the lowest-meson has anomalously small Served mesonic Regge trajector(sse Table 2 ifi18]). Note
mass caused by the mechanism of the broken chiral symmédat these curves deform slightly when the initial “quark”
try, which is absent in the model under consideration. So, wéhasses vary in wide rangesn, € (0.010,0.100) andms
choose the K-meson family of orbital excitations € (0.100,0.450).
{K(0.495)K (1.270)K(1.400)K(1.770} with 1={0,1,2\. Further, the RTs or, the dependenceMf=MF(l) on |
Here and below all masses are given in GeV. Sincdor the K-meson family fora=1.7, m,=0.010, andmj
K-mesons consist af(d) ands quarks with different masses =0.100 at different values of < (0.400,0.500) are plotted
m, andmg, we modify formula(23) as follows: in Fig. 3. One can see that the RTs are far not linear for lower
values ofl =0-4, although the linearity occurs asymptoti-
_«a 141 1 cally for sufficiently largel. Besides, the curvature of these
1= ﬁmcax[ [4c(1=-c)] f fo dtds RTs and their slopes depend anconsiderably. The asymp-
totical behavior of the RTs for largecan be obtained ana-

2, 2 2 lytically and coincides with the exact solution of the Virton
xe (V“t+VSS)+(t+S)M'Rl(t*S-XI)}* (28 model (19) as follows:
m, m, MZ~12A%In(2++/3) for |-, (30)
VST VST A recent analysis of experimental data sho{gee[7])

that the RTs of different meson and baryon families are ap-

Thus, we solve the problem by findirgand A for given proximately linear and their slopes slightly deviate around a
m, andmg andM, by using data on thi-meson family. For ~constant value, although the guark _qonfiguration; and quan-
each member of this family we have obtained the depentum numbers of these hadronic families are considerably dif-
dence A=A(a) at fixed “constituent quark’ massem, ferent. Note, th(_a analyzed experimental datf7ihare avail-
=0.010 andm¢=0.100. The obtained curves=A(a) are able for low orbital momenté=0-3 only. Nevertheless, one
plotted in Fig. 2. We see that our input parameterand A €an conclude that the slope of RTs weakly depends on spe-
should be localized in relative short intervals to fit the kaonCific details of hadron internal dynamics and may be consid-

Regge trajectory, namely ered as a universal characteristic which is dictated by the
general properties of quark-gluon interactions. Precisely this
A=0.4-05 GeV, a=1.5-1.9. (29 qualitative picture takes place in our models with analytic

confinement. Thus, we have sufficient grounds to claim that
Our preliminary analyses performed for other meson familieghe analytic confinement realizes these general properties and
(7,K*,p) indicate that this choice of our fundamental pa-leads to the approximate linearity of RTs for meson families.
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In conclusion, the analytic confinement in the weak cou- y
pling regime explains qualitatively the main features of me- T =Tyl ny=ﬂ,
son spectra. The authors understand that these simple models y
do not contain the real quantum degrees of freedom o$atisfy the conditions
quarks and gluongcolor, flavor, spin as well as the mecha- B
nism of the chiral symmetry breaking and, therefore, cannot Mgy M= Ty (),
pretend to describe quantitavely all details of the meson .
spectroscopy. The last remark: the obtained value of the cou- Thsang .. -m}(n)_o*
pling constantx in Eq. (29) is not relatively weak; however, 1
our qualitative analysis shows that the introductioriNoéd- = 1
ditional quark degrees of freedom leads to the substitution {2,}} T iy (n2) ErC| ((nan2)).
a— Nag so that the “effective” value of the input coupling Cl1)=]+1
constantas decreases almost N times. More careful con- (D=l+1,
sideration in this direction is the object of our next inVes“'whereCﬂ(t) are the Gegenbauer polynomials and
gations.

ly|=y?

22
dnT, MTrg,n(N)=3y0 NAT T T A
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i\
—I1
Consider the kernel

K=K(x y):e—ax2+2bxy—ay2 a>b (A1) J(kz):f dy eiiKYF(Yz)y

with K,YeR* 2 Kk2=K2
2(a—b)y? i APPENDIX B
= = —c@-n)y" —____
TrK fdy K(y,y) fdye 4(a_b)2<oo. . o
Let us consider the variational proble23) for the

. . lowest stateif=1=0) in the deconfinement limih —0. We
The eigenvalues with quantum numbe®@={nl{u}} h;Y/e t )| I mi=

={nl{uy...wu}} and eigenfunctions of the problem

f dy K(x,y)Uq(y) = kqUq(X) m\ 2 1
dag X) max c(l—c)f fo dtds

0<c<1

can be solved explicitly. The eigenvalues are
« @ (MP/AZ= M2/4A?)(t+s)

b 2n+| 2
KQ= KnI= Ko ﬁ) L K= My (s
a++a’—b (a+va“—b?) 1 ex 4A% t+s+2c(u+tv)
(A2) X f f du dv 5 =
0 [t+s+2c(u+tv)]
The eigenfunctions are (B1)
(1+1) 2\ A By? HereM, is the mass of the lowest bound state and the effec-
Uo=Unigu(¥) =Nn Ty (y)Ln " (28y7)e " (A3) tive coupling constant is supposed small
2
HereL{"Y)(x) are the Laguerre polynomials and ane| -2 ) <1
O\ 47m
V2'I+1) T(n+1) , .
B=+a’—b?, NnFT(ZB)“”Z e Going to the new variables
2 2 2
The functions = omeXtY) s=ga(Xxmy), e=1pé
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one can rewrite Eq(B1) in the limit A—0 (which exists if 4mao\/T
My<2 foll : C=1, (B2)
0<2m) as follows Mo 1—MZ/am?
U do C= max[gf dxe*
0 o u 0<é<oo 0
2y max f dxe @ Mg/“mz)xf J e 2
“om {5 0 o X+ 26(u0)] i
jfo[x+2§ u+v)]3’2}

X 214002y (2
X f dy e (Mg/am9)(y /[x+2§(u+v)])} =1.
X =0.3193....

By solving Eq.(B2) one obtains the mass of the lowest two-
particle bound state in the deconfinement lithit-0 as fol-
If ap<1 then 1I-My/2m<1 and the main contribution to |[ows:

the integral overdx comes from large, so that the inner
integral overdy can be explicitly taken on the extended in-

ag 4 2
Mo=2m— —mK+O(ay), K=27C°=0.64(8....

terval{—o0,}. Thus, we get 2
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