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Meson spectrum and analytic confinement
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The basic dynamic properties of two-particle bound states of ‘‘quarks’’ and ‘‘gluons’’ are investigated within
a simple relativistic quantum field model with the Yukawa interaction. Provided with an analytic confinement
of the constituent particles and small coupling constant, this model explains qualitatively the experimental
evidence: the quarks and gluons are confined, the final bound states are stable, massless gluons constitute the
glueballs and the Regge trajectories of ‘‘mesonic’’ orbital excitations are asymptotically linear.
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I. INTRODUCTION

At the present time, QCD is commonly regarded as
true theory of strong interactions describing all processe
the hadron world, including mesonic spectroscopy@1#. How-
ever, being a nonlinear theory with a local color gauge sy
metry, QCD is quite complicated from the computation
point of view, and the conventional methods of calculati
require great effort in making additional assumptions a
ideas. In contrast with QED, simple and reliable methods
calculations are still missing in QCD. From our point
view, any acceptable description of quarks and gluons
their hadronization on large distances, where the confinem
of quarks and gluons takes place, directly depends on
structure of the QCD vacuum, and this structure is not w
established yet. In other words, the propagators of qua
and gluons on large distances are quite far from those g
by standard Dirac and Klein-Gordon equations. Genera
one may expect that a theoretical description of colorl
hadrons considered as bound states of quarks and glu
when the confinement is taken into account and an avera
over all nonobservable color degrees of freedom is p
formed, can lead to a physical picture, where the quarks
gluons are realized in the form of some phenomenolog
‘‘bricks.’’ We suppose that a successful guess of the struc
of these ‘‘bricks’’ in the confinement region can result, pa
ticularly, in a qualitatively correct description of the bas
features of the meson spectrum. Our guess is that the ana
confinement realizes these ‘‘bricks.’’

In particle physics there exist several models based on
idea of analytic confinement. The quark confinement mo
@2# treats light hadrons as collective colorless excitations
quark-gluon interactions while the analytic quark confin
ment is provided by averaging over gluon backgrounds. T
analytic form of the form factor providing the quark confin
ment is a phenomenological function unique for all proces
in the low-energy physics. This model reproduces the lo
energy relations of chiral theory in the case of zero mom
tum and allows one to obtain more sophisticated had
characteristics such as slope parameters and formfactor

An approach based on the assumption that QCD vacu
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is realized by the self-dual homogeneous vacuum gluon fi
which is the classical solution of the Yang-Mills equatio
was developed in@3,4#. According to Leutwyler@5#, this
gluon configuration is stable over local quantum fluctuatio
and can lead to the quark and gluon confinement as well
necessary chiral symmetry breaking. Hereby, propagator
quarks and gluons in this field are entire analytic functions
the p2-complex plane, i.e., the analytic confinement tak
place. The spectrum and weak decays of light mesons, t
excited states, heavy quarkonia and heavy-light mesons,
eral regimes for masses and decay constants were foun
complete agreement with experimental data. This appro
contains a minimal set of parameters: the gauge coup
constant, the strength of the vacuum field and the qu
masses. Thus, the self-dual homogeneous gluon field lea
to the analytic confinement can be considered a good ca
date to realize the QCD vacuum. One can say that exis
models with analytic confinement describe satisfactorily
experimental evidence.

However, real calculations of different amplitudes in pa
ticle physics require to take into account simultaneously
confinement as well as some quantum characteristics as
ated with color, flavor and spin within a chiral symmet
breaking. Besides, analytic calculations within these
proaches are quite cumbersome, so that the problem a
‘‘not to see the forest among trees.’’ In addition, it is nece
sary to note that there exists a prejudice to the idea of
analytic confinement~see, for example,@6#!. Therefore, it
seems reasonable to consider simple quantum field mode
order to investigate qualitatively just ‘‘pure’’ effects due
analytic confinement.

The present paper is aimed to clarify the role of the a
lytic confinement in properties of hadrons, the bound sta
of quarks and gluons by considering a simple relativis
quantum field model. Particularly, we explain qualitative
and semiquantitatively the basic features of experiment
observed meson spectra analyzed recently in@7#.

The hadron spectroscopy as the theory of bound state
quarks, and the phenomenology of the Regge trajecto
~RTs! are important and interdependent subjects of invest
tion in particle physics~see, e.g.,@8–10#!. The basic charac-
teristics of mesons considered as bound states of quarks
gluons~in contrast to the relations of theSU3 flavor symme-
try! can be roughly listed as follows: quarks and gluons
confined ~nonobservable!; glueballs are bound states o

o-
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G. V. EFIMOV AND G. GANBOLD PHYSICAL REVIEW D65 054012
massless gluons and completely relativistic systems; the
of different families of mesonic orbital excitations are a
ymptotically linear and their slopes differ insignificantl
Therefore, the slope of RTs may be a universal param
dictated by the general nature of quark-gluon interaction

Obviously, these characteristics are hardly obtained in
framework of any local quantum field theory, where the co
stituent particles, the quarks and gluons, are described by
standard Dirac and Klein-Gordon equations. From comm
point of view, the confinement plays the main role in und
standing and explaining this picture. The point is how
realize mathematically the conception of confinement wit
a specific theoretical formalism?

The standard QCD calculations leading to linear RTs
hadrons are based on~i! a nonlinear QCD gluon dynamic
with a particular infrared behavior of the gluon propaga
and ~ii ! a three-dimensional reduction of the relativis
Bethe-Salpeter equation. This results in a linear increas
potential between quarks in three-dimensional space~see,
e.g., @11#!. This infrared singular behavior is commonly in
terpreted as quark confinement.

In reality, the modern picture is more complicated~see,
for example,@12,13#!, but we do not discuss the details he
Note only that it is necessary to overcome some mathem
cal problems caused by the singularity of the gluon ker
and an ambiguously defined choice of particular reduction
the relativistic two-body Bethe-Salpeter equation~see, e.g.,
@14#!.

In the present paper we show that there exists ano
possible mechanism explaining the above mentioned cha
teristics of mesonic spectra, particularly, the properties
RTs. In doing so, we use a simple relativistic quantum-fi
model of two scalar particles~the prototypes of constituen
‘‘quarks’’ and intermediate ‘‘gluons’’! with the analytic con-
finement. Our approach is based on the following assu
tions: the analytic confinement takes place; the interactio
described by a Yukawa-type Lagrangian; the coupling c
stant binding the ‘‘quarks’’ with ‘‘gluons’’ is small; final
bound ‘‘hadron’’ states of ‘‘quarks’’ are described by the re
tivistic Bethe-Salpeter equation in one-‘‘gluon’’ exchan
mode without using any 3D reduction.

In addition we demonstrate a mathematical sketch of
culations of two-body bound-state spectrum within t
Bethe-Salpeter equation in the weak-coupling regime. In
ing so, we use simple relativistic models based on physic
transparent hypotheses, which can be treated by simple
lytic methods. We believe that the analytic confinement is
basic underlying principle leading to a qualitatively corre
description of main characteristics of meson spectra. In
case our models represent certain theoretical interest bec
they clarify the underlying physical principles of the mes
spectrum.

II. YUKAWA TYPE MODELS WITH ANALYTIC
CONFINEMENT

Our aim is to investigate the role of the analytic confin
ment in the meson spectroscopy by omitting quantum
grees of freedom such as the spin, color and flavor. We c
05401
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sider a simple system, a Yukawa model of two interact
scalar fieldsF(x) andw(x) described by the following La-
grangian in the Euclidean space-time:

L~x!52F1~x!S21~h !F~x!

2
1

2
w~x!D21~h !w~x!2gF1~x!F~x!w~x!, ~1!

where coupling constantg is supposed sufficiently small.
We postulate that the analytic confinement takes pl

here. It means that the Fourier transforms of propagator
confined particlesF and w are entire analytic functions in
the complexp2-plane, soS21(p2) and D21(p2) have no
zero at any finite complexp2. Hence, the equations for th
free fields

S21~h !F~x!50, D21~h !w~x!50 ~2!

result only in the trivial solutionsF(x)[0 andw(x)[0. We
call this propertyanalytic confinement, i.e., the correspond
ing particles exist only in virtual states@2,6#. One can say
that these fields describe constituent particles, i.e.,F(x) and
w(x) represent scalar ‘‘quarks’’ and scalar ‘‘gluons,’’ respe
tively.

Below we deal with two specific versions of the analy
confinement.

~1! In the first simplest model we consider pure Gauss
exponents for the ‘‘quark’’ and ‘‘gluon’’ propagators:

S~x12x2!5S~h !d~x12x2!5
L2

~4p!2 e2(1/4)L2(x12x2)2
,

S̃~p2!5
1

L2 e2p2/L2
, ~3!

D~x12x2!5D~h !d~x12x2!5
L2

~4p!2 e2(1/4)L2(x12x2)2
,

D̃~p2!5
1

L2 e2p2/L2
,

where the only parameter 1/L represents the ‘‘radius’’ or
scale of confinement. From a physical point of view th
model is important because the eigenfunctions and eigen
ues of the relativistic Bethe-Salpeter equation within on
particle exchange approximation can be found explicitly a
the obtained RTs are purely linear. In some sense, this m
can be considered a ‘‘relativistic oscillator’’ because the e
act solution possesses equidistant spectra resulting in
linear RTs. We call this casethe virton model@15#.

~2! The second model implies that there exists a cert
dynamical mechanism generating analytic confinement
standard particles with initial massesm and 0. So we intro-
duce the second parameter, a ‘‘quark’’ massm. The propaga-
tors are given in more realistic forms@16#:
2-2
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MESON SPECTRUM AND ANALYTIC CONFINEMENT PHYSICAL REVIEW D65 054012
S~x12x2!5S L

4p D 2E
0

1 da

a2e2(m2/L2)a2[L2(x12x2)2/4a] ,

S̃~p2!5
1

p21m2~12e2(p21m2)/L2
!,

D~x12x2!5
1

~2p!2x2 e2L2(x12x2)2/4,

D̃~p2!5
1

p2 ~12e2p2/L2
!. ~4!

In the deconfinement limitL→0 this model allows one to
obtain the conventional propagators of massive and mas
scalar particles. Within this model we can analyze the in
ence of the mass parametern5m/L on the behavior of the
meson spectrum. We call this casethe scalar confinemen
model. We show that this model describes qualitatively w
dynamic characteristics of meson spectra.

Note that both these models realize the ‘‘quark’’ and ‘‘gl
on’’ confinement only. Other important quantum characte
tics as color, flavor and spin with an appropriate chiral b
ken symmetry are not considered.

III. TWO-PARTICLE BOUND STATES

‘‘Two-quark’’ bound states can be found in the followin
way. Let us consider the partition function

Z5E E E dFdF1dfe2(F1S21F)2(1/2)(wD21w)2g(F1Fw).

~5!

This partition function is written in the quark and gluon va
ables. Our aim is to rewriteZ in terms of ‘‘hadron’’ fields in
order to realize so-calledquark-hadron duality.

Integration overw results in

Z5E E dFdF1e2(F1S21F)1(g2/2)(F1FDF1F). ~6!

Let us introduce a complete orthonormal syste
$UQ(y)%:

E dy UQ~y!UQ8~y!5dQQ8 ,

(
Q

UQ~y!UQ8~y8!5d~y2y8!, ~7!

whereQ5$n,l ,$m%% is a set of radialn, orbital l and mag-
netic $m%5(m1 , . . . ,m l) quantum numbers. Then, the ter
L2@F#5(F1FDF1F) can be rewritten
05401
ss
-

l

-
-

L2@F#5
g2

2 E E dx1 dx2 F1~x1!F~x1!D~x12x2!

3F1~x2!F~x2!

5
g2

2 E dxE E dy1 dy2AD~y1!J~x,y1!d~y12y2!

3AD~y2!J1~x,y2!

5
g2

2 (
Q

E dx JQ~x!JQ~x!, ~8!

with x15x1y/2, x25x2y/2 and

J~x,y!5F1S x1
1

2
yDFS x2

1

2
yD5F1~x!e(y/2)]JF~x!,

J1~x,y!5J~x,2y!, JQ~x!5F1~x!VQ~ ]J !F~x!, ~9!

JQ
1~x!5JQ~x!, VQ~ ]J !5 i lE dyAD~y1!UQ~y!e~y/2! ]J,

whereVQ( ]J) is a nonlocal vertex.
By using the Gaussian functional representation we w

eL2[F]5e(g2/2)(Q*dx JQ(x)JQ(x)

5E )
Q

dBQe2(1/2)(Q(BQBQ)1g(Q(BQJQ).

Substituting this representation into Eq.~6! and by inte-
grating overF we obtain

Z5E )
Q

dBQ expH 2
1

2 (
Q

~BQBQ!

2Tr ln~12gBQVQS!J
5E )

Q
dBQ expH 2

1

2 (
QQ8

~BQ@dQQ82aPQQ8#BQ8!

1WI@gB#J , ~10!

where

WI@gB#52TrF ln~12gBQVQS!1
g2

2
BQVQSBQ8VQ8SG

is a functional describing interactions of fieldsBQ . Polariza-
tion operatoraPQQ8 in the one-loop approximation reads
2-3
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G. V. EFIMOV AND G. GANBOLD PHYSICAL REVIEW D65 054012
aPQQ8~z!5E E dy1 dy2 UQ~y1!aP~z;y1 ,y2!UQ8~y2!,

aP~z;y1 ,y2!5g2AD~y1!SS z1
y12y2

2 DSS z2
y12y2

2 D
3AD~y2!,

where z5x12x2 and a5(g/4pL)2. Its Fourier transform
reads

aP̃QQ8~p!5E E dy1 dy2 UQ~y1!aP̃p~y1 ,y2!UQ8~y2!,

aP̃p~y1 ,y2!5g2AD~y1!E dk

~2p!4 e2 ik(y12y2)S̃S k1
p

2D
3S̃S k2

p

2DAD~y2!. ~11!

Suppose, the orthonormal system$UQ(y)% diagonalizes
the kernel in Eq.~11!. It means that we solve the eigenvalu
problem

E dy8aP̃p~y,y8!UQ~y!5EQ~2p2!UQ~y!, ~12!

whereEQ(2p2)5Enl(2p2), i.e., the eigenvalues are dege
erated over the magnetic quantum numbers$m%. We stress
that the Bethe-Salpeter kernel in Eq.~12! is real and sym-
metric, therefore, variational methods can be applied for
further evaluation.

Then, the polarization operator in Eq.~11! reads

aP̃QQ8~p!5EQ~2p2!dQQ8 . ~13!

Note that diagonalization~13! is nothing else but the so
lution of the Bethe-Salpeter equation in the one-boson
change approximation. The standard form of the Bet
Salpeter may be obtained, if one introduces in Eq.~12! new
functionsUQ(y)5AD(y)CQ(y) and goes to the momentum
space~see, for example,@17#!.

By introducing a Gaussian measure defined by

GQ
21~x12x2!5@12EQ~h !#d~x12x2!, p252h

we rewrite the partition function~10! in the final form

Z5E )
Q

dB̃Qe2 ~1/2!(Q(BQGQ
21BQ)1WI [gB] . ~14!

We stress that this representation is completely equiva
to the initial one~5!. It is a mathematical realization of th
quark-hadron duality in the model under consideration. Fr
physical point of view, we pass on from the world containi
fields F andf to the world of bound states$BQ%. The field
variables$BQ% can be interpreted as fields of particles w
quantum numbersQ5$nl% and massesMQ , if the Green
functionG̃Q(p2)51/@12EQ(2p2)# has a simple pole in the
05401
s
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Minkowski space (p252MQ
2 ). The mass of two-particle

bound states are defined by the equation

15EQ~MQ
2 !. ~15!

Formally, GQ
21(2h) defines the kinetic term of the field

BQ . To go to its standard form, we expand it in the vicini
of p252MQ

2 as follows:

12EQ~2p2!5ZQ~p21MQ
2 !1O@~p21MQ

2 !2#,

ZQ52EQ8 ~2MQ
2 !.0.

The positive constantZQ provides the renormalization of th
wave function of the fieldBQ . We rewrite the kinetic and
interaction parts in terms of the renormalized fieldsB̃Q(p)
5ZQ

21/2B̃Q(p) as follows:

„B̃Q
1~p!@12EQ~2p2!#B̃Q~p!…

5„B̃Q
1~p!†~p21MQ

2 !1O@~p21MQ
2 !2#‡B̃Q~p!…,

WI@gB#5WI@geffB#, gQ
eff5gZQ

21/25
g

A2EQ8 ~2MQ
2 !

.0.

~16!

The functionalWI@geffB# describes all ‘‘strong interactions’
of the ‘‘mesons’’BQ . In addition it should be stressed th
the effective coupling constantgQ

eff in Eq. ~16!, defining the
strength of boson interactions does not explicitly depe
on the initial coupling constantg because of relation
EQ8 (2MQ

2 );g.

IV. THE VIRTON MODEL

Due to the pure Gaussian character of the propagator
this model, the polarization kernel~11! becomes quite
simple:

aP̃p~y,y8!5aS L2

8p D 2

e2p2/2L2
K~y,y8!,

K~y,y8!5e2(L2/4)(y22yy81y82). ~17!

Explicit diagonalization of kernelK(y,y8) on $UQ(y)% re-
sults in the eigenvalues

kQ5knl5k0S 1

21A3
D 2n1 l

, k05S 8p

L2~21A3!
D 2

.

~18!

Corresponding eigenfunctionsUQ(y) are given in Appendix
A.

Therefore, the mass spectrum of two-particle bound sta
can be found explicitly
2-4



d
t
n

ld
ke

he

is

t

a

e

b-

-

MESON SPECTRUM AND ANALYTIC CONFINEMENT PHYSICAL REVIEW D65 054012
MQ
2 5Mnl

2 52L2 ln
ac

a
1~2n1 l !2L2 ln~21A3!,

ac5~21A3!2. ~19!

Thus, a pure Gaussian form of analytic confinement~3!
leads to the linear and parallel RTs. The slope of RTs
defined only by the scale of the confinement regionL and
does not depend ona and other dynamic constants. Boun
states exist fora,ac . If a!ac , the size of the confinemen
region is remarkably larger than the Compton length of a
bound state

r conf;
1

L
@

1

MQ
; l Q .

In other words, all physical particles described by the fie
BQ(x) and all physical transformations involving them ta
place inside the confinement region.

V. THE SCALAR CONFINEMENT MODEL

In order to solve the eigenvalue problem~12! we will use

the variational principle because the kernelP̃p(y,y8) is real
and symmetric. For further simplicity we consider only t
orbital excitations, i.e.,n50 andQ5$0,l ,$m%%.

According to Eq.~15!, the mass of the bound state
determined by the following variational equation:

15ae l S Ml

2L
,
m

L D5max
CQ

(
$m%

E E dy1 dy2 CQ~y1!

3aPp~y1 ,y2!CQ~y2!,

p252Ml
2 . ~20!

Note, the variational optimization gives an upper bound
the massMl

2 because forMl
2.0

ae l S Ml

2L
,
m

L D<El~Ml
2!.

Let us introduce a normalized trial wave function:

C l $m%~x,a!5ClTl $m%~x!AD~x!e2(L2/4)ax2
, ~21!

Cl5L l 11A~112a! l 11

2l~ l 11!!
,

(
$m%

E dxuC l $m%~x,a!u251,

where a is a variational parameter. The four-dimension
spherical orthogonal harmonicsTl $m%(x) are defined in Ap-
pendix A. We suppose that the test function in Eq.~21!
should be a good guess to the exact one because the k
~11! is proportional toAD(y) and S(y) is of the Gaussian
type.

Further we use the following relation:
05401
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F̃ l $m%~k,a![ i lE dx e2 ikxAD~x!C l $m%~x,a!

5
Cl

~2p! l Tl $m%~k!E d412lY e2 iKYD~Y!e2aY2
,

where K,YPR412l , k25K2 and the rotational symmetry
D(y2)5D(Y2) has been taken into account. Then, one o
tains @16#

(
m

F̃ l $m%~k,a!F̃ l $m%~k,a!

5
Cl

2k2l~ l 11!

2413l F E
0

u0
du ule2uk2/4G2

51,

u05
4

L2~11a!
. ~22!

Substituting Eqs.~4!, ~21!, and~22! into Eq.~20! and after
some calculations we arrive at

15g2 max
a
E dk

~2p!4(
$m%

F̃ l $m%~k,a!S̃S k1
p

2D S̃S k2
p

2D
3F̃ l $m%~k,a!

5
a

l !
max

c
H @4c~12c!# l 11E E

0

1

dt ds

3e(M l
2
2n2)(t1s)Rl~ t,s,x l !J , ~23!

wherep5( iM l ,0,0,0) and

Rl~ t,s,x l !5E E
0

1

du dv e2x l
2/b~uw! lFl~b,x l !,

Fl~b,x l !5
1

p2 ex l
2/bE d4k k2le2k2b2kp(t2s)

5ex l
2/bS 2

]

]bD lF 1

b2 e2x l
2/bG ,

n5
m

L
, Ml5

Ml

2L
, x l

25M l
2~ t2s!2,

b5t1s12c~u1w!.

Variational equation~23! defines the relation between param
etersMl , a, n, and l.

In the deconfinement limitL→0 our variational estima-
tion results in a qualitatively correct behavior~for details see
Appendix B! of the final bound-state mass
2-5
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M052m2
a0

2

2
mK1O~a0

4!, a05S g

4pmD 2

,

K50.6403 . . . ,

i.e., we get the standard nonrelativistic~the coupling constan
a0 is small! behavior for a bound state under the Coulom
potential.

A. The lowest state

Let us consider the lowest state withl 50. The equation
of the bound state becomes

e0~M0 ,n!5max
c

H 4c~12c!E E
0

1

dt dsE E
0

1

du dv

3
e2n2(t1s)1M 0

2
„(t1s)2(t2s)2/[ t1s12c(u1v)] …

@ t1s12c~u1v !#2 J
5

1

a
. ~24!

We have analyzed Eq.~24! at different regimes of param
etersa, m, andL and have solved it numerically forM0.
Some of the obtained results are represented in Fig. 1.

By analyzing our results we can conclude the followi
remarks:

~1! There exists a critical coupling constantac
51.9149 . . . obeying the equation

FIG. 1. The massM05M0 /L of the two-particle ground state
( l 50) as a function of the massn5m/L of the ‘‘constituent’’ par-
ticle. Dashed line corresponds to the case whenM052m. The
physical picture takes place only for relative weak coupling c
stanta,ac51.9149 . . . .
05401
e0~0,0!5
1

ac
. ~25!

It means that there may exist a bound state withm
50, M050, i.e., massless ‘‘gluons’’ are able to produce
massless ‘‘hadron’’ bound state.

~2! If a<ac the mass of the ‘‘hadron’’ bound state obe
the inequalityM0>2m for ;m>0. Particularly, fora,ac
there exist states withM0.0 for m50, i.e., massless ‘‘glu-
ons’’ can produce massive ‘‘hadron’’ bound states—t
‘‘glueballs.’’ For heavy ‘‘quarks’’ (m@L) one obtains an
asymptotical behavior

M0
254m21

L2

2
lnS m

L D1O~1!. ~26!

~3! If the coupling strength exceeds the critical valuea
.ac the physical conditionM0

2>0 results in the require-
mentm>mc , where

e0S 0,
mc

L D5
1

a
,

1

ac
. ~27!

In other words, for a fixeda.ac the mass of the ‘‘quark’’
should exceed the critical valuemc in order to constitute
physically meaningful bound states. Particularly, there e
massless ‘‘hadrons’’M050 constituted of two massive
‘‘quarks’’ with m5mc . This kind of ‘‘mass annihilation’’
does not coincide with conventional physical conception.

Thus, we conclude that the value of the coupling const
a5(g/4pL)2 plays a crucial role in formulation of the fina
two-particle bound states and there exist two physically d
ferent pictures.

If a,ac , there exist physically allowed bound stat
with massesM0.2m. Particularly, glueballs exist as mas
sive bound states of massless constituent particles.

If a.ac , there exists a critical mass of the constitue
particle mc , so that bound states can exist only form
.mc . Therefore, a massless meson as a bound state of
massive quarks can exist. But, any glueballs cannot exis
all because 05” m.mc .

Therefore, we can conclude that a physically reasona
picture can be realized within our model only for relative
small coupling constanta,ac .

B. Orbital excitations

In general case, formula~23! defines the mass of an or
bital excitationMl as function of input partameters: the co
pling constanta, the mass of constituent ‘‘quark’’m and the
confinement scaleL at any given orbital quantum numberl.

As mentioned above, we believe that the scalar confi
ment model grasps the basic characteristics of meson s
trum, it especially should be effective in describing the
bital excitations because the latters are determined mainl
interactions on large distances, where detailing of the qua
gluon interaction are not so important. Therefore, we are a
to evaluate the confinement scaleL and the coupling con-
stanta by applying Eq.~23! to a set of experimental data o

-
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the RTs. Note, the pion RT is not suitable for our consid
ation because the lowestp-meson has anomalously sma
mass caused by the mechanism of the broken chiral sym
try, which is absent in the model under consideration. So,
choose the K-meson family of orbital excitations
$K(0.495),K(1.270)/K(1.400),K(1.770)% with l 5$0,1,2%.
Here and below all masses are given in GeV. Sin
K-mesons consist ofu(d) ands quarks with different masse
mu andms , we modify formula~23! as follows:

15
a

l !
max

c
H @4c~12c!# l 11E E

0

1

dt ds

3e2(nu
2t1ns

2s)1(t1s)M l
2
Rl~ t,s,x l !J , ~28!

nu5
mu

L
, ns5

ms

L
.

Thus, we solve the problem by findinga andL for given
mu andms andMl by using data on theK-meson family. For
each member of this family we have obtained the dep
denceL5L(a) at fixed ‘‘constituent quark’’ massesmu
50.010 andms50.100. The obtained curvesL5L(a) are
plotted in Fig. 2. We see that our input parametersa andL
should be localized in relative short intervals to fit the ka
Regge trajectory, namely

L50.4– 0.5 GeV, a51.5– 1.9. ~29!

Our preliminary analyses performed for other meson fami
(p,K* ,r) indicate that this choice of our fundamental p

FIG. 2. The dependenceL5L(a) evaluated from the mas
equation for three different two-particle bound states withl 50,
M050.495 GeV; l 51, M151.270 GeV; andl 52, M251.770
GeV. Here we use quark massesmu50.010 GeV and
ms50.100 GeV.
05401
-

e-
e

e

-

s

rameters is able to fit satisfactorily the experimentally o
served mesonic Regge trajectories~see Table 2 in@18#!. Note
that these curves deform slightly when the initial ‘‘quark
masses vary in wide ranges:muP(0.010,0.100) andms
P(0.100,0.450).

Further, the RTs or, the dependence ofMl
25Ml

2( l ) on l
for the K-meson family for a51.7, mu50.010, andms
50.100 at different values ofLP(0.400,0.500) are plotted
in Fig. 3. One can see that the RTs are far not linear for low
values of l 50 –4, although the linearity occurs asympto
cally for sufficiently largel. Besides, the curvature of thes
RTs and their slopes depend onL considerably. The asymp
totical behavior of the RTs for largel can be obtained ana
lytically and coincides with the exact solution of the Virto
model ~19! as follows:

Ml
2; l2L2 ln~21A3! for l→`. ~30!

A recent analysis of experimental data shows~see @7#!
that the RTs of different meson and baryon families are
proximately linear and their slopes slightly deviate aroun
constant value, although the quark configurations and qu
tum numbers of these hadronic families are considerably
ferent. Note, the analyzed experimental data in@7# are avail-
able for low orbital momental 50 –3 only. Nevertheless, on
can conclude that the slope of RTs weakly depends on
cific details of hadron internal dynamics and may be cons
ered as a universal characteristic which is dictated by
general properties of quark-gluon interactions. Precisely
qualitative picture takes place in our models with analy
confinement. Thus, we have sufficient grounds to claim t
the analytic confinement realizes these general properties
leads to the approximate linearity of RTs for meson famili

FIG. 3. The Regge trajectories of the two-particle bound sta
calculated fora51.7 at different values ofL to compare with
experimental evidence~triangles! of the K-meson family. Hereby,
we plot bothK(1.270) andK(1.400) atl 51 because the RPP as
signment table listsK1B as a mixture of these states.
2-7
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In conclusion, the analytic confinement in the weak co
pling regime explains qualitatively the main features of m
son spectra. The authors understand that these simple m
do not contain the real quantum degrees of freedom
quarks and gluons~color, flavor, spin! as well as the mecha
nism of the chiral symmetry breaking and, therefore, can
pretend to describe quantitavely all details of the me
spectroscopy. The last remark: the obtained value of the c
pling constanta in Eq. ~29! is not relatively weak; however
our qualitative analysis shows that the introduction ofN ad-
ditional quark degrees of freedom leads to the substitu
a→Nas so that the ‘‘effective’’ value of the input coupling
constantas decreases almost inN times. More careful con-
sideration in this direction is the object of our next inves
gations.
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APPENDIX A

Consider the kernel

K5K~x,y!5e2ax212bxy2ay2
, a.b ~A1!

with

Tr K5E dy K~y,y!5E dy e22(a2b)y2
5

p2

4~a2b!2,`.

The eigenvalues with quantum numbersQ5$nl$m%%
5$nl$m1 . . . m l%% and eigenfunctions of the problem

E dy K~x,y!UQ~y!5kQUQ~x!

can be solved explicitly. The eigenvalues are

kQ5knl5k0S b

a1Aa22b2D 2n1 l

, k05
p2

~a1Aa22b2!2
.

~A2!

The eigenfunctions are

UQ5Unl$m%~y!5NnlTl $m%~y!Ln
( l 11)~2by2!e2by2

.
~A3!

HereLn
( l 11)(x) are the Laguerre polynomials and

b5Aa22b2, Nnl5
A2l~ l 11!

p
~2b!11 l /2A G~n11!

G~n1 l 12!
.

The functions
05401
-
-
els
f

t
n
u-

n

s
.

Tl $m%~y!5Tl $m%~ny!uyu l , ny5
y

uyu
, uyu5Ay2

satisfy the conditions

Tl $m1m2 . . . m l %
~n!5Tl $m2m1 . . . m l %

~n!,

Tl $mmm3 . . . m l %
~n!50,

(
$m%

Tl $m%~n1!Tl $m%~n2!5
1

2l Cl
1
„~n1n2!…,

Cl
1~1!5 l 11,

whereCl
1(t) are the Gegenbauer polynomials and

E dn Tl $m%~n!Tl 8$m8%~n!5d l l 8d$m%$m8%

2p2

2l~ l 11!
.

Besides, the following relation takes place:

E d4y Tl $m%~y!F~y2!e2 iky

5S 2 i

2p D l

Tl $m%~k!J~k2!, ~A4!

J~k2!5E dY e2 iKYF~Y2!,

K,YPR412l , k25K2.

APPENDIX B

Let us consider the variational problem~23! for the
lowest state (n5 l 50) in the deconfinement limitL→0. We
have

4a0S m

L D 2

max
0,c,1

H c~12c!E E
0

1

dt ds

3e2(m2/L22M0
2/4L2)(t1s)

3E E
0

1

du dv
expH 2

M0
2

4L2

~ t2s!2

t1s12c~u1v !J
@ t1s12c~u1v !#2

J 51.

~B1!

HereM0 is the mass of the lowest bound state and the eff
tive coupling constant is supposed small

a05S g

4pmD 2

!1.

Going to the new variables

t5
L2

2m2 ~x1y!, s5
L2

2m2 ~x2y!, c5
L2

m2 j
2-8
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one can rewrite Eq.~B1! in the limit L→0 ~which exists if
M0,2m) as follows:

2a0 max
j

H jE
0

`

dx e2(12M0
2/4m2)xE E

0

1 du dv
@x12j~u1v !#2

3E
2x

x

dy e2(M0
2/4m2)„y2/[x12j(u1v)] …J 51.

If a0!1 then 12M0/2m!1 and the main contribution to
the integral overdx comes from largex, so that the inner
integral overdy can be explicitly taken on the extended i
terval $2`,`%. Thus, we get
t

h

05401
4ma0

M0
A p

12M0
2/4m2C51, ~B2!

C5 max
0,j,`

H jE
0

`

dx e2x

3E E
0

1 du dv

@x12j~u1v !#3/2J
50.31923 . . . .

By solving Eq.~B2! one obtains the mass of the lowest tw
particle bound state in the deconfinement limitL→0 as fol-
lows:

M052m2
a0

2

2
mK1O~a0

4!, K52pC250.6403 . . . .
n-
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