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Meson-meson scattering within one-loop chiral perturbation theory and its unitarization
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We present a complete one-loop calculation of all the two-meson scattering amplitudes within the frame-
work of SU3) chiral perturbation theory, which includes pions, kaons, and the eta. In addition, we have
unitarized these amplitudes with the coupled channel inverse amplitude method, which simultaneously ensures
the good low energy properties of chiral perturbation theory and unitarity. We show how this method provides
a remarkable description of meson-meson scattering data up to 1.2 GeV including the scattering lengths and the
generation of seven light resonances, which is consistent with previous determinations of the chiral parameters.
Particular attention is paid to discussing the differences and similarities of this work with previous analyses in
the literature.
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[. INTRODUCTION mentally. Once these parameters are known, any other calcu-
lation at that order becomes a prediction. Basically, these are
In the last 20 years, chiral perturbation thed@hPT)  the main ideas underlying ChPT, which has proved very suc-
[1-3] has emerged as a powerful tool to describe the intereessful in describing low energy hadron phenomenoldoy
actions of the lightest mesons. These particles are considarviews seg¢4]).
ably lighter than the rest of the hadrons, which is nowadays Despite the success of this approach, it is unfortunately
understood as a consequence of the spontaneous breakingliaited to low energiegusually, less than 500 MeVThat is
the SU(3) X SU(3) chiral symmetry down to SU(3).r,  the reason why, over the last few years, there has been a
which would be present in QCD if the three lightest quarksgrowing interest in extending the applicability range of the
were massless. In such a case, the light mesons would cafhiral expansion to higher energies. Of course, this requires
respond to the massless Goldstone bosons associated WiHe use of nonperturbative methods to improve the high en-
spontaneous chiral symmetry breaking. Of course, quarks a&qy pehavior of ChPT amplitudes. These methods include
not massless, but their masses are so small compared to the expicit introduction of heavier resonant states in the La-
typical hadronic scale®(1 GeV) that their explicit symme- rangian [5], resummation of diagrams in a Lippmann-

r.r yhi)re:ikmg effect ?]l.S?] tkr)anslates Into da sgnall(lj Tass I)or th chwinger or Bethe-Salpeter approdéh or other methods
Ightest mesons, which become pseudo ©0ldstone DOSONg,. itarize the amplitudes like the inverse amplitude

Hence, the three pions correspond to the pseudo Goldstone .
bosons of the S(2) spontaneous breaking that would occurmethOd(IAM) [7,8]. The last method has been generalized to

if only the u andd quarks were massless, which is a remark-aHOW for a coupled channel formalisf9], yielding a suc-

ably good approximation. Similarly, the meson octet formedce(?;;u' dgsirg)g):\/o;n?i ?r?Sangr]:?r?n ;%‘Zﬁ%ﬁ asn;p(lal;]
by the pions, the kaons, and the eta can be identified with th up ) ' veng Ing dy ically sev

eight pseudo Goldstone bosons associated with thes)SU |gf|1:1 rezﬁgiarrge?ﬁese methods recover at low energies the
breaking when the quark is also included. P Pe, 9

The low energy interactions of pions, kaons, and the et ood properties of ChPT, since they use part of the perturba-
can be described in terms of an effec',[ive Laérangian thayVe information. However, it should be noted that, so far, the

follows the SU(3)xSU(3)r—SU(3) .r Spontaneous ull results to one Ioop for a_II the meson-meson scattering
symmetry breaking pattern. If we do not include any addj-Processes are not available in the literature. At present, only
tional field apart from the pseudo Goldstone bosons, thid!€ 77— 7T [10], K7 —Kar [10], 77— 77770[_1(?]’ and the
description will be valid only for energies much below the WO independenK*K™—K*K™ K"K~ —K°K? [11] am-
scale where new states appear. That is, the effective ChPRfitudes have been obtained in the SUChPT framework,
Lagrangian provides just a low energy description. As a condlthough with different procedures a}nd notation. As a conse-
sequence we can organize all the possible terms that respetgence, the IAM has been applied rigorously only to the

the symmetry requirements in a derivatiemd masgexpan- KK final states, whereas for a complete treatment of the
sion. Therefore, any amplitude is obtained as a perturbativeshole low energy meson-meson scattering, additional ap-
expansion in powers of the external momenta and the quarngroximations had to be mad®]. In particular, the lowest
masses. The importance of this formalism is that the theorgrder expansion could not be recovered complete up to
is renormalizable and predictive, in the following sense: allO(p?), thus spoiling the scattering lengths and, in addition,
loop divergences appearing at a given order in the expansiohwas not possible to compare directly with the low energy
can be absorbed by a finite number of counterterms, or lowparameters of standard ChPT in dimensional regularization
energy constants, that appear in the Lagrangian at that vegnd the modified minimal subtractioS— 1 scheme.

same order. Thus, order by order, the theory is finite and In this work, we have calculated all the meson-meson
depends on a few parameters that can be determined expesiattering amplitudes at one loop in ChPT. There are three
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amplitudes that have never appeared published in the litera-
ture: Knp—Kn, nnp—nn, andK7—Kz. The other five O
have been recalculated independently and all of them are

given together in a unified notation, ensuring exact perturba-
tive unitarity and also correcting previous misprints. Then, a b c
we have applied the coupled channel IAM to describe the
whole meson-meson scattering below 1.2 GeV, including

low energy data like scattering lengths. This new calculation
allows for a direct comparison with the standard low energy
constants of ChPT and that is why we have made a consid-
erable effort to estimate the uncertainties in all our results,
d [

which are in very good agreement with the present determi-

nations obtained from low energy data without unitarization.

The main differences of this work frofi9] are that we con- FIG. 1. Generic one-loop Feynman diagrams that have to be
sider the full one-loop results for the amplitudes, ensuringevaluated in meson-meson scattering.

their finiteness and scale independence in dimensional regu-

larization, we take into account the new processes mentioned Mgw 0 0

above, and we are able to describe the low energy region 5

more accurately. This had already been achieved forrthe Mo=| 0 Mg, 0 ' ©)

KK system only in11], but here we complete this task for 0 0 2mg—Mg,

all meson-meson scattering. — . .
The paper is organized as follows. In Sec. Il we reviewAS @ matter of fact, from these definitions, it can be easily

the main features of the meson-meson scattering calculatiof§$en that the tree Ievelzmasseg satisfy the Gell-Mann—Okubo
at one loop in ChPT. The final results for the amplitudes ardelation [12] 4Mg—Mg —3Mg, =0, which will be very
collected in Appendix B because of their length. The defini-useful for simplifying the amplitudes.

tion of partial waves and unitarity is discussed in Sec. Ill, From the Lagrangian in Eq1), one can obtain th®(p?)

and the 1AM is presented in Sec. IV. In Sec. V, we review thedmplitudes just by calculating the corresponding tree level
available data on meson-meson scattering. In Secs. VI arfgéynman diagrams. In order to obtain t¢p*) contribu-

VIl we first use the IAM with present determinations of the tions, one has to consider loop diagrams, whose generic to-
low energy constants and next make a fit to the data rePology is given in Fig. 1, which will generate UV diver-
viewed in Sec. V. Our conclusions are summarized in Secgences. If loop integrals are regularized with dimensional
VIII. Apart from the amplitudes in Appendix B, we have also regularization, which preserves the chiral symmetry con-

collected some useful formulas in Appendix A. straints, the divergences can be reabsorbed in the chiral pa-
rameterd.; of the fourth order Lagrangian:
Il. MESON-MESON SCATTERING AT ONE LOOP L4= Ll((?MUT&”U>2+ L2<ﬁMU Tr?,,U)((?“U Tﬂvu>
thezrr]; iI;)west order Lagrangian for $8) chiral perturbation n ngﬂufﬁﬂu&yu Ta"U)+ L4((9MUT(3“U><UTMO

) +M{U)+Ls(3,UTd*U(UTMo+M{U)) +Le(UTM,

0
Lo=7(3,0T*U+Mo(U+UD), (D) + MUY+ L(UTMo— MUY+ Lg(MiUMIU

t t
wheref is the pion decay constant in the &@Ychiral limit +UTMoU M), (4)

and the ﬁngular prackeltls stanﬁ for the trace |°f tRB3Na-  \yhere the terms that couple to external sources, like gauge
trices. The matrixU collects the pseudo Goldstone bosonfields, are omitted2,3]. TheL; constants are related to the

fields m, K, 7 throughU(®) = exp(v2®/fo), where renormalized L{ () generically asL;=L[(u)+I'\ [3]
where i is theMS—1 renormalization scale,

1 1
0 + +
—mt=7 ™ K d-4
V2 6 M 1 1
V6 =62l g=z 3 log4m—y+1)|, ®)
1 1
= - - g0y KO
P (x) m ol e J6 n v is the Euler constant, and thg coefficients can be found
in [3]. We remark that th& ; andL ; constants are not renor-
- 0 2 malized and are therefore scale independent, Ile=1",
2 Thus, up to fourth order one has to consider the tree level

diagrams fronO(p?) andO(p?*), together with the one-loop
andMj is the tree level mass matrix. Throughout this paperdiagrams in Fig. 1. We stress that mass and wave function
we will be assuming the isospin limit, so thdt, is given by  renormalizations should be accounted for to the same order.

054009-2



MESON-MESON SCATTERING WITHIN ONE-LO® ...

PHYSICAL REVIEW D 65 054009

The latter are schematically represented by the tadpole digkccording to the chiral power counting, we have to use Egs.
gram(e) in Fig. 1. As is customary, we define the bare fields(6) and (8) only in the tree level part of the amplitudes. In

in terms of the renormalized ones as=ZY?7"®" and so on

fact, the mass renormalization E®) affects only the mass

for the kaons and eta, so that scalar fields have finite canonierms coming from the Lagrangian in E(l) and not the
cal kinetic terms. Taking into account all the different con-masses coming from the kinematics of the corresponding
tributions from diagrams of typée) in Fig. 1 plus those tree process. As will be seen below, we will not need the mass

level diagrams coming front,, one obtains

4 2 4\ ) )
Zp=1%gpat guk— 3_fg(2M07T+MOK)

8

— p[2LAMG+ Ly LM, ),
0

2

1 28, ,
ZK:1+ —/,L,,T‘F/,LK‘F Elun_ W(MO#_FSMOK)
0

8
—%[<2LL+L;>MSK+LLMSW],

Z =1+2 —4—)\M2 _ 8 3L, —LYHm?
=1+ 2uk 72 Vo 3f2[( 4—Ls)Mg,
0 0

+2(3LY+2LE M3,
where
MP o M?
Mi:mbgF,
with i = 7,K, 5.

(6)

()

renormalization oM, in any of our expressions.

The meson decay constants are also modified to one loop.
It will be convenient for our purposes to write all the one-
loop amplitudes in terms of a single decay constant, which
we have chosen to be,. For that reason and for an easier
comparison with previous results in the literature, we also
give here the result for the meson decay constants to one
loop [3]:

_ 4M(2)7T r r 8M(2)K r
fa=fo| 1= 2pr—pxt —z (Lyt Lo+ — L),
0 0

31“17 SMK 31“‘77 4M(2)71' r
fK—fO{l— L

4M?
+ f—z"K(zL;JrLg)
0

r 2

L 4M
f,= fo[1—3ﬂ.<+ f—g“(MSW+2M§K)+ ?"”Lg}. ©)
It is important to stress that both the physical masses in
Eq. (8) and the decay constants in E§) are finite and scale
independent.
Therefore, the one-loop ChPT scattering amplitude

contain a divergent part and they are scale dependent. As fQyjj| have the generic form

the mass renormalizations, the physical pion and kaon

masses are given in terms of the tree level onds8hs

16M2
B 2 2Li-Ly)

2_np2 ~n
M’]T_MO’TT 3 fO

1+M7T_

SMSW r r r r
tog L2l LimLy |

2

2u, 8M3,
M2=M3 1+%+f—g°(2l_g—|_;)

SMSK r r r r
+ —foz—(4L6+ 2Lg—2L,—Lg)|,
2

4 0
M2=M§ | 1+2ux— It f—g”(ng—Lg)

8
+%<2MSK+MSW><2L2—LL>

1
+§,u,7,

128
* g7z (Mo Mg *(3La+Lp).
0

+M2{— +2
om| — Mo 3 MK

8

T(s,t,u)=Ty(s,t,u) + TH%s,t,u) + Ty"(s,t,u) (10

wheres,t,uare the Mandelstam variables. Hefg,is the tree
level contribution from the Lagrangian in E¢l), whereas
TP contains the fourth order terms which are polynomials in
s,t,u Those polynomials have four possible origins: tree
level terms from the Lagrangian in E¢4) proportional to
L{, other polynomial terms proportional tt; with i
=4,...,8 coming from the mass and decay constant renormal-
ization in Egs.(8) and(9), terms proportional tq:; coming
from tadpole diagramgd) and(e) in Fig. 1], and finally pure
polynomial fourth order terms which stem from our param-
etrization of the one-loop functiorisee Appendix A Let us
remark that, for technical reasons explained in Sec. Il B, we
have chosen to write all our amplitudes in termsf gfonly
since, using Eqg9), fx andf, can be expressed in terms of
f., Ly, andLg. In addition, T;" stands for the contribution
of diagrams(a), (b), and(c) in Fig. 1. These contributions
not only contain the imaginary parts required by unitarity but
also yield the correct analytic structure for the perturbative

amplitudes, as will be discussed below. We remark that all

the terms inT4" will be proportional to the andJ functions

defined in Appendix A.
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Using crossing symmetry it is not difficult to see that Note that we are normalizing the partial waves including
there are only eight independent meson-meson amplitudea.factorN, such thatN=2 if all the particles in the process
We have calculated these amplitudes to one loop it35U are identical andN=1 otherwise. Recall that, since we are
ChPT. They are given in Appendix B. Three of these ampli-working in the isospin limit, the three pions are considered as

tudes had not been calculated before, namiéRyy—K®»,  identical, so thatN=2 only for the wm— w7 and 77
nn—nn, and K p—K=°. For the rest, we have checked — 77 processes. | .
that our amplitudes coincide with previous res(it,11] up We shall comment now on th&,,, amplitudes for every

to differences in notation and different simplification possible process involving,K, 7. Using crossing symmetry
schemes, equivalent up @(p*). In particular, since we are and assuming isospin symmetry exactly, we will determine
interested in the “exact” form of perturbative unitarifgee  the number of independent amplitudes for each process. The
below), we have written our final results in terms of a single discussion is general and there is no need to invoke ChPT,
pion decay constarft,, and we have used the Gell-Mann— although we will refer to the results for the amplitudes in
Okubo relation, taking care to preserve exact perturbativé\ppendix B, which gives the one-loop ChPT results.
unitarity. Furthermore, we have explicitly checked that all 77— 7= scattering There is only one independent am-

the amplitudes remain finite and scale independent. plitude, so that one has
Finally, we wish to add a remark about 7" mixing, 0
since the physicab is indeed a mixture of the (3) octet and T(s,t,u)=3T(s,t,u) + T(t,5,u) + T(u,t,9),
singlet pseudoscalars, whereas in this work we are only us-
: : Ti(s,t,u)=T(t,s,u)—T(u,t,s)
ing the standard S@3) ChPT. One may wonder then if our 1t ™ 1190

description of they is just that of the pseudoscalar octet
component, since in this Lagrangian the singlet field is not an
explicit degree of freedom. However, it has been shpusj whereT(s,t,u) is ther* 7~ — 7970 amplitude. At one loop
that the standard framework results from an expansion irﬂ1 ChPT iE i’s given in Appendix B, EqB4) '

powers of the inverse powers of the “topological suscepti- Km—Km scattering Crossing ,syrﬁme;cry allows us to
bility” of the complete U3) Lagrangian. In that context the write thel = 1/2 in terms of thd = 3/2 one as

7' is considered as a massive stéteat is why it does not
count as an explicit degree of freedpbut the singlet com- TY2(s,t,u)=4[3T33u,t,5) - T¥(s,t,u)]. (12)
ponent generates a correctionlts. Note that, indeed, the

mass of they contains arlL; contribution, and that is why Here, T3/2(s,t,u) is the K* 7t —K* 7+ amplitude, whose
we can useM ,, in Eq. (8) with its physical value, whereas expression at one loop within ChPT corresponds to(B§).
Mo, is the one satisfying the Gell-Mann—Okubo relation ex- Kk KK scattering We can write the isospin amplitudes
actly. Therefore, our approach can be understood as the lovyg

est order approximation to the- »" mixing problem, where

T2(s,t,u)=T(t,5,u)+T(u,t,s),

all the effects of the mixing appear only through. Since TO(s,t,u) =Ten(S,t,u) + Tre St 1),
we will compare only with data in states with omeat most,
and below 1200 MeV, our results seem to suggest that this THs,t,u)=Te(S,t,u) — T S,t,U), (13

approximation, although somewhat crude, is enough with the

present status of the experimental data. Indeed, we will seghereT¢, and Ty, are, respectively, the amplitudes for the
that the values that we obtain for, are in perfect agreement processesK "K~™—K ™K~ and K°K°—K*K~. Their ex-
with those given in the literaturéand this comparison can pressions to one loop correspond to E@7) and (B8), re-
now be done because we have the complete one-loop ampblpectively.

tudes renormalized in the standard way KK — 7 scattering In this case, one has

Ill. PARTIAL WAVES AND UNITARITY V3 y 2
Tos,t,u)= —-[T¥qu,s,0)+ T¥t,s,u)],
A. Partial waves 2
Let us denote byl f.fb(s) the partial wave for the process 1
aﬁb,_i.e., the projec_tion of the amplitude for that process THs,t,u)= —[T¥q(u,s,t) - T¥4t,s,u)], (14)
with given total isospid and angular momentuih That is, V2
if T, (s,t,u) is the isospin combination with total isospin
oneakﬁ(as ) P A whereT¥(s,t,u) is theK " 7" —K* 7+ amplitude, given in
Appendix B for one-loop ChPT, EqB5).
3 1 1 | K#n—K# scattering This is a purel =1/2 process. The
Tab(S)= o8 f_ldx P3(X) Tap(s,t(s,X),u(s,X)) one-loop amplitude can be read directly from EB2).
(12) KK— 57 scattering This is anl =0 process that using

crossing symmetry can be obtained from the previous ampli-
wheret(s,x),u(s,x) are given by the kinematics of the pro- tude as follows:

cessa— b with x=cos#, the scattering angle in the center of
mass frame. Troko_, (S, t,U)=Tgo, .ko,(t,S,U). (15
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Kp—Ka scattering This is also anl=1/2 process, 1 fora given ch_oic.e of,J, the partial waverT ;; satisfies Eq.
whose amplitude, correctly normalized, is (19), so that unitarity means that

TYq(st,u)= —V3Tyo,_koz0(S,t,u), (16 IMTy= 0y Tyyl*=Im Tt = -0y (23

where the one-loop expression igpn_)gowo can be found !N principle, the above equatidmlds only above threshold
in Eq. (B3). up to the energy where another state 2 is physically acces-

sible. If there are two states available, then Thmatrix el-

KK— 77 scattering This is anl=1 process related to ements satisfy

the K®7—K%#° amplitude by crossing symmetry, i.e.,
IMTy3= 04| Tyg 2+ 05| T1o%,
T(s,t,u)= —V2Txo, . ko0(t,S,u). a7
IMT=01T11Ti,+0,T15T5,,
7 n— an scattering This is a purel =1 isospin ampli- e Te izt
tude whose one-loop ChPT expression can be read directly
from Eq. (B6).
ma— 77 scattering Now | =0 and the amplitude is ob- In matrix form they read
tained from the previous one by crossing, as

IM Top= 04| Ty ?+ 05| T2l %

IMT=TST*=ImT 1=-3, (24)
T 0,0, ,n(S,t,U)=T 0, 0,(t,S,U). (18 '
with

nn— nn Scattering Here,| =0 and the corresponding
one-loop amplitude can also be read directly from @R1). T Ti op 0

In this paper we will be interested in the case when there T= Tp Tl =\ 0 o) (25
are several coupled states for a given choicé Xfi.e., the
coupled channel case. In particular, with the above normalwhich allows for a straightforward generalization to the case
ization, the relationship between tHematrix elementsTh,  of n accessible states by using n matrices.

and theSmatrix ones is given for two coupled channels One must bear in mind that the unitarity relations imply

(a,b=1,2) by that the partial waves are bounded as the energy increases.
. For instance, in the one-channel case, from @8) we can
S11=1+2i04Tyy, (19 write
=1+2i05T,,, 20 sinéd .
S22 2122 (20 T,= ~ oid 26)
. 1
S15= 5= 2iNo10,T 1, (21

where§ is the phase of;;.
where thelJ superscripts have been suppressed to ease the Note that all the unitarity relations Eqe3) and (24) are
notation and we have used the fact that due to time reversghear on the left hand side and quadratic on the right. As a
invarianceT;;=T;; . Here,o;=2q; /+/s whereq; is the cen-  consequence, if one calculates the amplitudes perturbatively
ter of mass momentum in the stateéNote thato; is nothing  as truncated series in powers of an expansion parameter, say
but the phase space of that state/at In thel =0 channel T=T,+T,+---, the unitarity equations will never be satis-
above thenn threshold we will use the corresponding gen-fied exactly. In particular, for ChPT that means that unitarity

eralization in the case of three channels. can only be satisfiegerturbatively i.e.,
B. Unitarity ImT,=0,
The Smatrix should be unitary, i.eSS=1. In case there IMT,=T,3T,, (27)

is only one state available, that means t8aian be param-
etrized in terms of a single observable, which is customarily
chosen as the phase shift. For the case of two channels, the
elementsS;; are organized in a unitary>22 matrix, contain-  where the second equation is satisfied exactly only if one is
ing only three independent parameters. We will follow thecareful to expres$, in terms of masses and decay constants
standard parametrization: consistently with the choice made fdr. That has not al-
. . ways been the case in the literature and that is one of the

ne? L iV1-77elort o) rea);ons why we have recalculated some processes: all our

i\/l——772e‘<51+ 57) 77ezia2

results satisfy exact perturbative unitarity. Otherwise there
are additionaD(p®) terms in Eq(27). As we will see below,
where thes, are the phase shifts anglis the inelasticity. this will be relevant in obtaining a simple formula for the
The unitarity relation translates into relations for the ele-unitarized amplitudes. Our choice has been to rewrite all the
ments of theT matrix of a particularly simple form for the fx andf, contained in the amplitudes in terms tf, L},
partial waves. For instance, if there is only one possible statand Lt using the relations in E¢9).

S= , (22

054009-5
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The deviations from Eq(24) are more severe at high plane and the identification of the pole associated with each
energies, and in particular in the resonance region, since uniesonance in the second Riemann sheet.
tarity implies that the partial waves are boundsege Eq. In view of Eq. (32), it may seem necessary to know the
(26)], which cannot be satisfied by a polynomial. Generi-complete O(p*) ChPT calculation of each one of the
cally, in the resonance region, the unitarity bounds are satul-matrix elements. Nevertheless, one could use a further ap-
rated. If a polynomial is adjusted to saturate unitarity in aProximation and calculate only treechannel loopsFig. 1a,
given region, in general, it will break the unitarity bound which are the only ones responS|bIe for the unitarity cut and
right afterward. Another way of putting it is that resonances2'® Supposed to dominate in the resonant region. This was
are associated with poles in the complex plane, which willth® approach followed if9], having in mind that the com-
never be reproduced with polynomials. plete ChPT calculations were not available at _that time for

For all these reasons, if we are interested in extending th@"Y meson-meson scattering two-channel matrix. The results

good properties of ChPT to higher energies, we have tg'ere remarkable, reproducing up to 1.2 GeV. sevkd)

modify the amplitudes, imposing unitarity and a functional ;neenseorg'tmgsggv‘o’ecr? ttrtzgr(;%;:(?ensnﬁlj Oivrgele'trUdﬁﬁe ig?;te\tﬁgt the
form that allows for poles in the complex plane. This will be . '

. . . . s-channel loops were regularized with a cutoff, together with
achieved with the inverse amplitude method. the omission of crossed loops and tadpoles, made it impos-
sible to compare the chiral parameters with those of standard
IV. THE COUPLED CHANNEL INVERSE AMPLITUDE ChPT (still, they had the correct order of magnitude, as ex-

METHOD pected. In addition, the low energy ChPT predictions were

_ L recovered only partially. This motivated the author§lifi] to
As can be seen from the unitarity condition in Eg4), calculate the full O(p%) K'K-—K' K- and K'K-

the imaginary part of the inverse amplitude is known exactly — i ) IR
above the corresponding thresholds, namelyTT=—5. —KOK° amplitudes, which allowed for the unitarization
Indeed, any amplitude satisfying the unitarity constraintWith Eq. (32) of the (1,J)=(0,0) and(1,1) channels. This

should have the following form: approach again yielded a good high energy description but
also reproduced simultaneously the low enengyscattering
T=(ReT 1-i3¥) %, (28)  lengths. All these results were obtained with parameters

compatible with those of standard ChPI1].
Consequently, we should only have to calculate the real part As we saw in the previous section, we have calculated the
of T~1. As a matter of fact, many unitarization methods arelast three independef(p*) meson-meson scattering ampli-
just different approximations to Re ! (see[9] for details.  tudes that were still missing. They are given in Appendix B
The idea behind the inverse amplitude method is to use Edn a unified notation with the other five that we have recal-
(28), but approximating R& * with ChPT. Since we have culated independentlycorrecting some minor misprints in

T=T,+T,4+---, then the literature. Therefore, we are now ready to unitarize the
complete meson-meson scattering by means of(&2).
T =Ty (A-T, T+, (29 However, at this point we have to recall that for a given
energy Eq.(32) has been justified only for a matrix whose
ReTflsz’l[l—(ReT4)T2’1+---], (30 dimension is exactly the number of states accessible at that

o . ) energy. The reason is that the unitarity relation Ef) in-
so that multiplying Eq(28) by T,T, ~ on the leftandl, “T,  creases its dimensionality each time we cross a new thresh-
on the right, we find old. Thus, for instance, imrm scattering, one should use the

one-dimensional IAM up to th&K threshold, then the two-
dimensional IAM, etc., although this procedure yields dis-
continuities on each threshold, instead of a single analytic
function. Another possibility9] is to use the IAM with the
highest possible dimensionality of tHel channel for all
energies. This second possibility yields an analytiand

T=T,(T,—ReT,—iT,3T,) 'T,. (31

At this point, if the amplitude satisfies “exact perturbative
unitarity,” namely, Eq.(27), we can simplify the above equa-
tion to obtain the simple expression

T=T,(T,—T,) T,. (32

This is the generalization of the IAM to coupled channels. ‘An erratum for these amplitudes has appeared, published when

Note that this formula ensures exact unitarity onlyfifsat- e were preparing this work. The previous results end conclusions

isfies exact perturbative unitarity. in [11]_are nevertheless correct, since the errate did n_ot affect the
The 1AM was first applied to just one elastic chanfigl numerical calculations. We thank J. A. Oller for discussions and for

. . letting us check that their corrected amplitudes coincide with ours.
and it was able to reproduce well ther and K scattering 2As a technical remark, let us note that in this case the IAM has to

phase shifts below th&K andK 7 thresholds, respectively. pe rederived in terms of the partial waves, divided by the c.m.
In addition it was able to generate the [now called momenta of the initial and final states to thé power, to ensure

fo(400-1200), the p, and theK* resonance$8]. Further-  that these new amplitudes are real at lowest order. From there the
more, it was shown how the formula for the one-channelderivation follows the same steps, and we recover the very same

IAM can be justified in terms of dispersion relatiof8],  Eq.(32) by multiplying by the initial and final state momenta in the
which allowed for the analytic continuation to the complexend.
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hence continuoysfunction, but it may not satisfy unitarity Channel (1,J)=(1,9

exactly at all energies, namely, when the number of opened For the energies considered here, the two states that may
channels is §ma||er than tﬁe dlmenS|0|t1aI|ty of the 1AM for- appear in this channel arer andK K. In Figs. Za) and 3a),
mula. Following ther7-KK example, if we use the two- we plot the data on therw scattering phase shift obtained
dimensional IAM formula, we will have exact unitarity en- from [19] and [20], which correspond to the squares and

sured above th&K threshold, but not below. In particular, if triangles, respectively. Let us remark that the first set of data
points tends to be between two and three standard deviations

we still use the two-dimensional IAM below theK thresh- piapar than the second when the phase shift is higher than
old, the IAM 7 scattering element will have an additional 9o and the other way around for smaller values of the phase
spurious contribution from the imaginary part of tieK shift (note that the error bars are smaller than the data sym-
scattering left cut, which extends up t&=4(MZ—M?2).  bols. Thus the data sets are not quite consistent with one
This is a well known and lasting problem in the literature another, which could be fixed with the addition of a system-

[14—16 that affects other unitarization methods also, like the2lC €rror of the order of a few percent.
This channel is completely dominated by the state and

K-matrix method 15]. As a matter of fact, several years ago ) . o — )
[14] it was suggested that the physical solution would probN€re is almost no inelasticity due tK production below
ably be an interpolation between the two approaches just200 MeV. The (I-731,)/4 points from the inelasticity

mentioned. However, in the context of ChPT and the IAM analysis given ir{21] are shown in the lowest part of Figs.

— ) '2(d) and 3d).

and for theww7-KK channels, it was foundlll] that the
violations of unitarity are, g(_anerically, of the order of a few Channel (1,J)=(0,0
percent only. We have confirmed this result but now for the ]
whole meson-meson scattering sector. Even the threshold pa- For this channel we may have up to three states, namely,
rameters can be accurately reproduced, since they are defingdr, KK and »». In this case, there are three observables
through the real parts of the amplitudes, which are almost notith several sets of data, which, as can be seen in F{g$. 2
affected by the spurious part. The origin of this problem is2(¢), and 2d), are somewhat incompatible between them-
that the 1AM in Eq.(32) mixes the left cuts of all the chan- Selves when considering only the errors quoted in the experi-
nels involved when performing the inverse of fhg T, ma- ments. Again, they become compatible if we assume a sys-
trix. Thus, it is not able to reproduce the left cut singularities!€Matic error of a few percent. For ther scattering phase
correctly [8,17], although numerically their contribution is SNift (900, S€€ Fig. 2)), the experimental data shown come
negligible when all the observables are expressed in terms % m different analyses of the CERN'MUD'Ch Collaboration
the real parts of the amplitude, ataking into account the 2]. (Op?’” squargsas well as f_ron[_lg] (solid square_)s [23]
present status of the data and the uncertainties in the L (S°lid triangles, and [24] (solid circles. Conceming the

In this paper we have chosen to show the second ap?™— KK phase shift, the data in Figs(c2 and 3c) corre-
proach, since the one-dimensional IAM has been thoroughlgPond to[21] (solid triangle$ and [25] (solid squaresand
studied in[8]. Very recently, there have been dispersive apthey are reasonably compatible, mainly due to the large er-
proaches[16] proposed to circumvent this problem in the rors in the first set. F'Qa”y, we also show in Figgdpand
7m-KK system, but they involve the calculation of left cut 3(@ the data for (- 75)/4, since it is customary to repre-

integrals that are hard to estimate theoretically. It would be>€Nt in that way the values of the inelasticifyo. The ex-

interesting to have them extended and related to the ChpRerimental results are rather confusing here, mainly up to
formalism, but that is beyond the scope of this work. Thell00 MeV, due to problems in the normalization. From the

fact that we use the higher dimensional 1AM formalism, dat@ shown in the figure, in Sec. VIl we have only fitted to
which contains spurious cuts, does not allow for a clean conthSe coming froni25] (solid squarel [26] (solid triangles,
tinuation to the complex plane. Nevertheless, since poles a$27] (Open squargsand[28] (open circles There is a dis-
sociated with resonances have already been found in the on@dréément in the normalization of the data [@®] (dia-
dimensional casd8] and in other approximated coupled Monds up to a factor of 2(see[30] for a discussion We

channel IAM approachd@], we leave their description for a have not included the latter in the fit, mostly because in the
generalized IAM approach with better analytic propertiesanalySiS of[29] the authors neglect the unitarity constraint,

[18]. In this work we will concentrate on physicavalues, which in our approach is satisfied exactly at those energies.

and the compatibility of the unitarized description of reso-

nances and low energy data with existing determinations of Channel (1,J)=(2,0

the chiral parameters. Nevertheless, we will also show that There is only therr state and so we display in Figs(e?

this can also be achieved with the first, discontinuous, apand 3e) only the 8,, phase shifts again from the CERN-

proach. Munich Collaboration[31] (open squarégsand the CERN-
Saclay Collaboratiofi32] (solid triangles.

Let us then comment on the data available for each chan- This reaction is particularly important since it yields very
nel. precise information on théy 511 combination ofzr7r scat-
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FIG. 2. The curves represent the result of applying the coupled channel IAM using the determination of the ChPT low energy constant
given in the fourth column of Table I. The shaded area covers the uncertainty due to the errors in those deteriaisstimnsg they were
totally uncorrelated

tering phase shifts at very low energies. In Fig$) and 3f) Channel (I,J)=(1/2,1)

we show the data from the Geneva-Saclay gri@§j (solid Here the possible states dter andK 7. We have plotted
triangles and the very recent, and more precise, data fromn Figs. 2g) and 3g) data from the following experi-
the E865 Collaboration at Brookhavgs4] (solid squares ~ ments: [35] (solid squaresand[36] (solid triangle$. Note
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FIG. 3. The curves represent the result of the coupled channel IAM fit to meson-meson scattering observables that is described in the text.
The shaded area covers only the uncertainty due to the statistical errorslin paeameters obtained fromnuiT (assuming they were
uncorrelategl The area between the dotted lines corresponds to the error bands including jrittesystematic error added to the datee
text for detail$. Finally, the dashed line corresponds to the use of the one-channel IAM when only one channel is accessible, but keeping the
same parameters as in the previous fit.

that the first set is systematically lower than the second, Channel (1,J)=(1/2,0)

which is newer and more precise. Nevertheless, they are Here the states are al$om and K 7. The data in Figs.
compatible, thanks mostly to the large error bars on the firsg(h) and 3h) come from the following experiments35]
set. (solid squares [37] (open triangleks [38] (open diamonds
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[36] (solid triangle$, and[39] (open squaregslt can be eas- TABLE |. Different sets of chiral parameters10°. The second
ily noticed that not all the data sets are compatible withinand third columns come from an(p®) and40(p4) analysis ofK,
errors, but once again they can be reconciled by assumingdgcayd42], respectively. Note that; andLg are set to zero. In the

Systema’[ic error of the order of a few percent_ third column LE ,er ,L3 are taken fron{43] and the rest fron1[2]
(L, andLg are estimated from the Zweig ryle

Channel (1,J)=(3/2,0)
The only state here igK. In this case we have plotted in

K,, decaysO(p®) K, decaysO(p*) ChPT

Figs. 2i) and 3i) data sets froni36] (solid triangles and ~ L1(M)) 0.53£0.25 0.46 0403
[40] (solid squares The latter are somewhat lower than the L2(M,) 0.71+0.27 1.49 1.3%0.3

former, although they are compatible mostly due to the large Ls —2.72+1.12 —-3.18 —35+11

errors in[36]. La(M)) 0 0 -0.3£0.5

LE(M,) 0.91+0.15 1.46 1.40.5

Channel (1,J)=(1,0 Ls(M,) 0 0 —0.2£0.3

. . — L, —0.32+0.15 —0.49 —0.4+0.2

The possible states for this case argandKK. We have LL(M,) 0.62+0.2 1.00 0.903

plotted in Figs. %) and 3j) the 77 effective mass distribu-
tion from the pp—p(n7* 7 )p reaction studied by the
WA76 Collaboration[41]. In order to reproduce these data,

we use these error bands are so wide that the results for the other
columns in Table | are rather similar, even for the central
do., 102 values. Qualitatively all of them look the same.
dEc_m__Cp””|T12 +background, (33 It is noticeable that the 1AM results, even with the low

energy parameters from standard ChPT, already provide dis-

where thec factor accounts for the normalization of the masstinct resonant shapes of the f,(980), K*, and ay(980)
distribution and the dashed curve in these figures corre(see Figs. @), 2(b), 2(g), and 2j), respectively. In addition,
sponds to a background due to other resonances apart frofie IAM also provides two other extremely wide structures
the a,(980) (see[41] for details. in the (0,0 77 and (1/2,0 7K scattering amplitudes. They

Once we have described the data in the different channel§orrespond to the [or f,(400—1200] and « (see Figs. &)
we will first compare with the IAM “predictions” from the ~and 2h)). These structures are too wide to be considered as
present values of the ChPT low energy constants, and latdreit-Wigner resonances, but they are responsible for the

we will fit these data by means of the IAM. relatively high values of the phase shiftke strength of the
interaction already near threshold. In recent years there has
VI. THE IAM WITH PRESENT LOW ENERGY CONSTANT begn a considerable discussion about the existence and prop-
DETERMINATIONS erties of these two statéfor references, see the scalar meson

review by the Particle Data GroypDG) [45]). Since ChPT

In this section we will comment on the results of applying does not deal directly with quarks and gluons, it is very
the coupled channel IAM using the low energy constantdifficult to make any conclusive statement about the spectro-
from standard ChPT. Since the values of these constants haseopic nature of these statéshether they aregq, four-
been determined from low energy data or lafgg argu- quark states, meson molecules, etmless we make addi-
ments, the high energy results could be considered as preditenal assumptiong44], which would then spoil much of the
tions of the IAM. For our calculations we have uség  model independency of our approach, which is based just on
=92.4MeV, M . =139.57 MeV,M=495.7MeV, andV,  chiral symmetry and unitarity. Nevertheless, the simplicity
=547.45 MeV. and remarkable results of this method give strong support,

In the second column of Table | we list the values ob-from the theoretical side, for the existence of both éhand
tained from a very recent and precise two-lddp®) analy-  the x poles. From previous work, it is known that the ChPT
sis ofK,, decayg42]. Note that the errors are only statisti- amplitudes unitarized with the IAM generate the poles in the
cal. In the next column we list the central values of the sameéecond Reimann sheet associated with theand the «
analysis but only a©(p*). In the fourth column we list the around\/%:440—i225 [8,9] and 770-i1250 MeV [9], re-
values from another set whetg ,L,,L5 are taken from an spectively.(Let us remember that, since these states are very
overall fit to Ko, and o data[43] and the rest are taken wide, the familiar relations M=Re\S,;. and I'=
from [2]. Note that all of them are quite compatible and, —2 |m\/§Ole are very crude approximationsWe have
except forLs, the size of the error bars is comparable. checked that similar results are obtained for the amplitudes

In Fig. 2 we show the results of the IAM with the values of this work. These values have to be considered as esti-
given in the fourth column of Table I. The solid curve cor- mates, since the uncertainties must be rather big, taking into
responds to the central values, whereas the shaded aresscount that the data in these channels are very conflicting
cover the uncertainty due to the error on the parametergsee Figs. 2 and)3The fact that we are able to reproduce
They have been obtained with a Monte Carlo Gaussian samhese states with parameters compatible with previous deter-
pling of 1000 choices of low energy constants for eash  minations is also strong support for their pole positions,
assuming the errors are uncorrelated. It is worth noticing thatvhich are in agreement with recent experimental determina-
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TABLE II. Low energy constantgx10°) obtained from an seen when commenting on the experiments in the previous
IAM fit to the meson-meson scattering data. The errors listed in thgection, and as can be observed in Figs. 2 and 3, there are
second column are obtained by adding in quadrature those of cokeyeral incompatible sets of data for some channels. In the
umns 3 and 4. literature, this is usually solved by adding an extra system-
atic error until these values are compatible. We have made
three fits by adding 1%, 3%, and 5% errors to the data in
each channel. The continuous line corresponds to the 3%

Fit+errors MINUIT error  Systematic error
(curve in Fig. 3 (band in Fig. 3 from data

L1(M,) 0.56+0.10 +0.008 +0.10 case and the resulting values are listed in the second col-
Ly(M,) 1.21+0.10 +0.001 +0.10 umn of Table Il. The shaded areas have been obtained again
Lg —-2.79+0.14 +0.02 +0.12 from a Monte Carlo sampling using thle; uncertainties
La(M,) —0.36+0.17 +0.02 +0.17 given by MINUIT for this fit, which are listed in the third
L5(M,) 1.4+0.5 +0.02 +0.5 column of Table II. Let us remark that there would be almost
LE(M,,) 0.07+0.08 +0.03 +0.08 no difference to _the naked eye if we showgd the fit.with al%
L, —0.44+0.15 +0.003 +0.15 or a 5% error, in either the central continuous line or the
L5(M,) 0.78+0.18 +0.02 +0.18 shaded bands. Furthermore, fifeper degree of freedom for

any of these fits is alway®(1).

However, although the curves remain almost unchanged
tions for both thes and thex [46]. when fitting with a different global systematic error, the val-

To summarize, we have just shown how the present statuges ofL; come out somewhat differently from each fit. This
of both the experimental data and thedeterminations al- is an additional source of error on theparameters, listed in
lows for use of the IAM despite the approximations made inthe fourth column of Table Il. It can be seen that it dominates
its derivation, like the poor description of the left cut noted the uncertainty orh; . For illustration, the area between the
above. dotted lines in Fig. 3 corresponds to a Gaussian sampling of
the chiral parameters with the two sources of error added in
quadrature.

By comparing thel| from the IAM fit in Table 1l with
those of previous ChPT determinatiofis Table I), we see

Once we have seen that the IAM already describes théhat there is perfect agreement between them. This compari-
basic features of meson-meson scattering, we can proceedson of the complete IAM fit parameters is possible only now
fit the data in order to obtain a more accurate description. Fathat we have the fulD(p?) amplitudes, given in Appendix
that purpose we have used thaiuiT function minimization B, which are regularized and renormalized following the
and error analysis routine from the CERN program librarysame scheme as in standard ChPT. In particular, the agree-
[47]. ment in the value of ; indicates that we are including the

Our results are presented in Fig. 3, whose different curvesffects of then’ consistently at lowest order.
and bands can be understood as follows. As we have already The threshold parametefscattering lengths and slope pa-

VIl. INVERSE AMPLITUDE METHOD FIT TO THE
SCATTERING DATA

TABLE Ill. Scattering lengths,; and slope parametels; for different meson-meson scattering chan-
nels. The experimental data come fr¢&0,55, the one-loop results frorfb,8,10, and those at two loops
from [42]. We are using the definitions and conventions given in those references. Let us remark that our
one-loop IAM results are closer to those of two-loop ChPT, although the IAM depends on many fewer
parameters than th@(p®) ChPT.

ChPT ChPT

Experiment IAM fit o(p% 0o(p®)
ago 0.26+0.05 0.231°39% 0.20 0.219-0.005
boo 0.25+0.03 0.30:0.01 0.26 0.2720.011
az —0.028+0.012 —0.0411°395%° -0.042 —0.042+0.01
bao —0.082+0.008 —0.074+0.001 -0.070 —0.0756+0.0021
ay 0.038+0.002 0.037%0.0007 0.037 0.03780.0021
1720 0.13to 0.24 0.11°3%8 0.17
3120 —0.13 to—0.05 —0.049°00%; -0.5
Ay 0.017 to 0.018 0.0160.002 0.014
aso 015997 0.0072
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rameters obtained with the 1AM are given in Table Ill for it can be seen that the scattering lengths can also be repro-
the low energy constants in the second column in Table Ilduced simultaneously with the high energy data.

The errors in Table IIl are obtained by a Gaussian sampling The next observable is thew—KK phase shift, Fig.

of the above low energy constants. Note that the experimerg(c), which can also be fitted neatly. Since we have included
tal values of the threshold parameters have not been used @fe 55 intermediate state, the fit is somewhat better than with
input in the fit, and the numbers we give are therefore prejyst two channels above the twpthreshold, as was sug-
dictions of the IAM. As we have anticipated before and Tablegested irf11], but not as much as expectétiis could be due

Il shows clearly, we are able to reproduce the low energyto our crude treatment of-»’ mixing, which we noted at
behavior with great accuracy. Let us then comment, for eackhe end of Sec. )I

different channel, on the results of the 1AM fit. Finally, in Fig. 3d), we show the inelasticity in th, 0)
channel. These are the most controversial sets of data, since
Channel (1,3)=(1,1) there is strong disagreement between several experiments

(up to a factor of 2 in the overall normalizatipras we

The most striking feature of this channel is th&70  mentioned when commenting on the data for this observable.
resonance, which, as can be seen in Fig),Xan be fitted

with gre_at precision.. This had already been achieved at Channel (1,3)=(2,0

O(p*) with both the singld8] and the couplef11] channel o )

formalisms. However, it is now achieved in a simultaneous \We have plotted the results in Fige} Since only thers

fit with all the other channels, but since we are using theState can have these quantum numbers, we are simply repro-
completeO(p*) expressions we have a good description ofducing the single channel IAM formalism, which already

the high energy data without spoiling the scattering lengthglave a very good description of this nonresonant chei@jel
listed in Table 1lI. Nevertheless, let us remark that it is now fitted simulta-

This channel depends very strongly om[2-L,—L}, neously with all the other channels, and the value of the

and this combination can thus be fitted with great accuracy?catte_ring length obtained from our fit is compatible with the
The mass and width from a clear Breit-Wigner resonance caf*Perimental result and standard Ch{g&e Table Il].

be obtained from the phase shift by means of In addition, once we haye a description of this and(the
0) channel, we can obtain the phase of e parameter
5 1 [dés,)\t which measures dire@P violation in K— 77 decayq48].
6y(Mr)=90°, Tr=p—| o (34 Itis defined, in degrees, as follows:
R\ OS s=M2
#(€')=90°= (800 520)s=m2- (35

For the (1,1) case we obtairM ,=775.7°3MeV, andT,

=135.5 gMeV, in perfect agreement with the values given or result is¢(e') =38+ 0.3, where the error is obtained
by the PDG[45]. The errors correspond to a Gaussian samfom a4 Gaussian sampling of the parameters listed in column
pling with the central values quoted in the second column 05 of Taple 11 with themINUIT errors in the third column. This
Table Il and thevinuiT errors of the fit. is in very good agreement with the experimentally observed

Finally, and just for illustration, the inelasticity prediction 5j,e of ¢(e')=43.5+ 7. Standard ChPT49] predicts 45
from the IAM is shown in Fig. &). Note that the data values - g

are so small and the claimed precision is so tiny that any

other effect not considered in this woflike the 4 interme-

diate statgwould yield a contribution beyond the precision Low energy K,, decay data
we can expect to reach with the IAM. That is why these data

have been excluded from the fi. There is no real improvement in the description of these

low energy data in Fig. @) compared to ChPT, since stan-
dard ChPT works very well at these energies. However, these
Channel (1,3)=(0,0) very precise data at such low energies ensure that the param-
eters of our fit cannot be too different from those of standard

hPT. In addition, they are extremely important in the deter-
mination of the scattering lengths, in particular, of the con-
ttroversialaoo.

There are three independent observables in this chann
with data. Concerning therrr scattering phase shift, plotted
in Fig. 3(b), we can reproduce two resonant structures. Firs
there is theo [or f,(400—1200]}, which corresponds to a
broad bump in the phase shift that gets as high as 50° not
very far from threshold. This is not a narrow Breit-Wigner Channel (1,J)=(2/2,1)
resonance. Indeed, it was shown in the IAM with just one As happened in thél,1) channel with thep, this channel
channel 8] that it is possible to find an associated pole in theis dominated by th&* (892). This is a distinct Breit-Wigner
second Riemann sheet, quite far from the real axis. Secondesonance that can be fitted very accurately with the IAM
we can nicely reproduce the shape of thg€980) which (see Fig. 8g)). From Eq.(34) we find M« =889+5 MeV
corresponds to a narrow Breit-Wigner resonance althoughnd I'c« =46+13 MeV, in fairly good agreement with the
over a background phase provided by theso that its mass PDG [45]. The errors were obtained in the same way as for
and width cannot be read directly from EG4). Once more, the p resonance in thél, 1) channel.
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Channel (1,J)=(1/2,0) 100

Because of the wide dispersion of experimental results, A0,/ dEm(1ub/GeV)
our fit yields a wide error band for this channel, as can be
seen in Fig. &). Nevertheless, as happened in {tte0
channel, the phase shift is of the order of 50° not far for
threshold, due to a wide bump similar to thrén that chan- 40
nel. Here, this broad structure has been identified by different
experimental and theoretical analy4&€,9,51,46 as thex 20
although there is still a controversy about its existence anc
origin [52], as also happened with tle It is very similar to
the o, and hence it cannot be interpreted as a Breit-Wigner
narrow resonance. 25
We also give in Table Ill the value for the scattering 5, 5
length of this channel, in good agreement with the experi- »q
mental data, which nevertheless are not very well known. 475

15

L L L

IIIII|I\I|\\I|[I\|I\\ll\\ll\l\IIIII
QSO 900 920 940 960 980 1000 1020 1040 1060

doy/ dE..(ub/GeV)

L LA LAY AN LR LAY AR R L

Channel (1,J)=(3/2,0) 125 T ]
Since only7K can have these quantum numbers, this is N
once more the IAM with a single channel, which already
provided a very good descriptid8]. We show in Fig. 3i the g
results of the global fit for this channel, as well as the corre- " FE |\ i oo b boo oo oy
sponding scattering length in Table IlI. 950 900 920 940 960 980 1000 1020 1040 1060
®
Channel (1,J)=(1,0 FIG. 4. We show the effective mass distributions of the two

In our global fit, the data in this chann@ee Fig. 3jare  Mesons in the final state ¢ p—3"(1385)77 (top) and K™ p
reproduced using Eq33). The shape of the,(980) is —3 " (1385KK (bottom); the data come frorf63]. The curves and
neatly reproduced in the mass distribution. In order to combands are as in Fig. 3.
pare the value of the normalization constanvith experi-
ment, we also show in Fig. 4 the result of applying the IAM when using the IAM with incomplete chiral amplitudg3,
with the parameters obtained from our fit to the experimentaénd it was used later to study the— 77 decay within a
data obtained from K p—27(1385)ry and K p  chiral unitary approach54]. The fact that we find it here
—3,%(1385)KK [53]. These data have not been included in29ain confirms that it is not an artifact of the approximations
our fit since they do not have error bars, but it can be seeHSed in[9]. In addition, although the amplitudes used here
that the IAM provides a good description. Once again we arére complete up t®(p®) and the fit is rather different, it
using a formula like Eq(33), but with a constant different appears almost at the same place, which supports the sound-
from that for Fig. 3j and no background. Our resultds Ness of the results ifg]. o .
=63+ 15ub/GeV, to be compared with the values quoted in  Finally, we have also added in Fi§ a dashed line that

[53] wherec was taken from 73 to 16&b/GeV. corresponds to the result with the central values of the pa-
rameters in the second column of Table Il but where we have
Channel (1,3)=(0,1) used the one-channel 1AM at energies where there is only

_ o one state available, the two-channel IAM when there are
Finally, we show in Fig. 5 the results for the modulus of

the amplitude in th€0, 1) channel. In this case, there is only

one meson-meson scattering channel, namigk,— KK. :
Therefore, we can apply only the single channel IAM, and in '*f
so doing we find a pole at approximately 935 MeV on the "
real axis. The width of this resonance is zero, since Within:Z;'

our approach it can couple only KK and its mass is below £
the two-kaon threshold. One is tempted to identify this reso- |
nance with the$(1020 meson, but in fact it can only be f
related to its octet paibg. The reason is that the singlet part
w1 is SU3) symmetric and it does not couple to two mesons
since their spatial function has to be antisymmetric. Conse-
quently we can associate the resonance obtained with the FiG. 5. We show the modulus of the,§)=(0,1) KK—KK
IAM only with the octetwg [9,54]. The position of the pole  amplitude. The pole around 935 can be identified with the asjet
seems consistent with an intermediate mass between thsee text for details Although that cannot be shown in a plot, the
¢(1020 and the w(770). This state had also been found modulus of the amplitude actually becomes infinite.

KK— KK
| Toyl?

18F

r 1 M 1 1 [l [l L
850 900 850 1000 1050 1100 1150 1200
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two, etc. As we commented at the end of Sec. IV, this ap+al parameters within their resulting error bars.

proach ensures exact unitarity at all energies, but we can see Summarizing, we have extended and completed previous
that it generates a discontinuity at each threshold. The resul@nalyses using these techniques in the meson sector so that
are compatible within the wider error bands with the previ-we believe that our present work will be useful for further
ous IAM fit (the space between the dotted linebhis was Phenomenological applications.

expected since, as we have already commented, the differ-

ence between the two approaches is of the order of a few ACKNOWLEDGMENTS

percent, which is also the order of magnitude of the system-
atic error added to the data for the fit. Of course, it is possibleCI

to obtain a fit with this method also, as done[#), and the  jressed in this paper. We also thank J. Nieves and E. Ruiz-
resulting parameters are still compatible with those listed inyrrigla for providing and explaining to us the Monte Carlo
Table IIl. code used to generate the error bands. In addition, we have
profited from interesting discussions with A. Dobado and E.
VIIl. CONCLUSIONS Oset. We acknowledge partial support from the Spanish

In this work we have completed the calculation of the (13:I3C2:23(T projects FPA2000-0956, PB98-0782, and BFM2000-

lightest octet meson-meson scattering amplitudes within chi=
ral perturbation theory at one loop. We have calculated three

new amplitudes;n— 777, K n—K 7, andK 57— K, but we APPENDIX A: USEFUL FORMULAS

have also recalculated the other five independent amplitudes, Here we will give the main results and definitions of the

checking and revising previous results. The full expressiongjitferent functions coming from the one-loop ChPT calcula-
are given in Appendix B in a unified notation, using dimen-tjon. We are following the notation and conventions|8F

sional regularization and theMS—1 renormalization When calculating the ChPT amplitudes, the typical loop
scheme, which is the usual one within ChPT. All the mesonintegrals that appear are, on the one hand, the tadpole inte-

nite isospinl and angular momentuld) can be expressed in

terms of these eight amplitudes. ddq i ) M i

Since ChPT is a low energy theory, the one-loop ampli- J 2m)° WZZMi A+ mz'og;z (A1)
tudes have to be unitarized in order to reach energies as high !
as 1200 MeV(and, in particular, the two-kaon threshpld \herey is the renormalization scales 7, K, %, and we have
For that purpose we have applied the coupled channel insytracted its divergent part fak— 4, with  given in Eq.(5).

verse amplitude method, which ensures unitarity for coupledn the other hand, the integral coming from diagrai@s
channels and is also able to generate resonances and thgif, and(c) in Fig. 1 is:

associated poles, without introducing any additional param-

We are very grateful to J. A. Oller for his comments,
arifications, and discussions about almost every issue ad-

2 2

eter. In addition, it respects the chiral expansion at low en- ) i diq 1
ergies, in our case up ©(p?). Thus, we have shown that it Jpo(P?) =i 2m% [P~ M3][(q—p)°—M3]
is possible to describe simultaneously the data on th#) ( Q (A2)

=(0,0), (1,1, (2,0, (1,0, (1/2,0, (1/2,7, and (3/2,0

meson-meson channels below 1200 MeV, which correspondhereP, Q= m,K,7 and whose divergent contribution in di-

to 20 different reactions. We also describe seven resonamiensional regularization can be separated as

shapes, namely, ther, p(770, K*(892), «, f,(980), _

a0(980), and the octebg. Jpq(8)=Jpq(0) +Jpg(s) +O(d—4), (A3)

This description is achieved with values for the low en-

ergy constants that are perfectly compatible with previoué"’here

determinations obtained using standard ChPT and low en- 1 1 M2 2
; . . X : P o

ergy data. This comparison is possible only since we now Jpo(0)=—2\— —2—[M§,Iog—2—MéIog—2

have the complet®(p*) expression for all the amplitudes in 167 A K M

the standard ChPT scheme. Indeed, with the present determi-

nations of standard ChPT, we can already find the resonance I (S)= =2 | 2+[ =~ E o M_(ZD

shapes and we obtain the most distinct features of each chan- ~F 3272 s A)%9w2

nel, although with large uncertainties due to the present

knowledge of the chiral parameters. v(s) [stw(s)]?-A? A
Nevertheless, we have performed a fit of our unitarized s og[s_ v(s)]°—A?| (A4)

amplitudes to the meson-meson data and we have obtained a
very accurate description not only of the resonance regiorgnd
but also of the low energy data, and in particular of the

— M2 2
scattering lengths. We have also paid particular attention to A=Mp—Mg,
the uncertainties and errors in our description, which have ) 5
been estimated with Monte Carlo samplings of the fitted chi- 2 =Mp+Mg,
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v3(s)=[s—(Mp+Mg)2][s— (Mp—Mg)?]. where from Eq(A4) one has
For the case of a single mabs,=Mg, the above inte-
grals read T(0)= 1 E+2M%Mélo M3 A8)
. - T 3272\ A2 CT AT 9z
Jpp(S)=—2\~ 15 1+Iog;§— +3pp(S),
From the above definitions it is easy to check that the
s)—1 functions J(s)/ dJ(s)/s? h lI-defined limits as
JPP(S) |24 a(s)log a(s) , (A5) _u}r;)c ionsJ(s)/s and J(s)/s* have well-defined limits a
o(s)+1 .
with
5 ” APPENDIX B: ONE LOOP AMPLITUDES FROM CHPT
a(s)=(1—4Mza/s)* (AB)

Here we list the expressions for the eight independent
Note that the above integrals have the correct unitaritymeson-meson scattering amplitudes to one loop in ChPT. We

structure in the right cut, which extends on the real axis fromhave carefully checked the scale independence and perturba-
s=(Mp+M )2 to infinity. In fact, all the integrals appearing tive exact unitary(see Sec. I). Note that we have used Eq.
to one loop in ChPT can be expressed in terms of the tadpol@) to write all thefy andf, in terms off ., L}, andLg, in
andJ integrals abovd3]. However, it is customary to ex- order to ensure “exact” perturbatlve unitarity, EQ7). Let
press the results also in terms of us first give the three amplitudes that had never before ap-

_ . . peared in the literature in any form.

Jpo(s)=J(s)—sJ'(0), (A7) For nn—nmn,

16M2—7M2

T(st,u)= of? s;LT’;{71\/|§T—48|\/|§,}— M2{8][t2—su 4tM7]+14M 7 —48M2M2 +378M 5}

182

4 2 4 4 2 4 4

3—fz—2-{M —8MZM? +24M 7} + 4 (2L5+2L5+ L) {s?+t2+u?—4M T {12M TLy+(3M2
—1OM77M,]+13M,,)L[-,—36M,]Lr6—24(MfT—3M1,M,]+2M,])L7—6Lg(2MfT—6MfTMf]+7M‘}7)}

1 _
o (Z7(1BME=TM)2T,,(s)

1 2 2 4 2012 4
_—2f4{27(t —Su—4tM”)+16(23M7]—22MKM”+10MK)}+ 6

1927

+M23,(5)+ (95— 2M2 —6M2)2Jy i (5) +[ s> t]+[ s> ]} (B1)
For K°p—K%z,

9t—6M5—-2M% 2L

1
T(s,t,u)= 512 3f4[3|v| +12M%+M (5|v|2 9t)]+3f4{2(12L1+5L3)(2M t)(ZMf]—t)+(12Lr2+L3)

4
X[(s=Mg—=M?%)Z+(u—ME—M2)2]}+ f—4{8(Lg—L;)M§M§7+2L7(Mi—4M§TM§+3M‘}7)

Mo

+Lg(M2—=3M2M? +6M)+2L4t(M? + Mﬁ)}_48f2(l\/l—2—l\/lz)
T K n

{2MZ[26M2 +69t] —84M ¢

MK
+3[16M% —50tM 5 + (s—u)?]} — {92M§ —8IM?t2— 60M [ 3t+ M7 ]
7

72f2MZ(Miz—M?2)

+18ME (52— 2su+6tM? +8M )} + k] {144M§— 1282 +[27(s—u)?— 48&M2
7

1442 M2 (Mg —M?)

1
+428MgIM? +2[ 153 — 166M ¢ IM %+ 144M O} + W{na\ﬂ‘,& Mg[184M7 - 153]

2304%
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Uk(D(9—2M7-6M7)  J,,,(1)(9t—2M7 ~6M?) (16Mz— 7M7)
16f7, 216f7

2 2 4
—9[10t°+ 2su—3tM 7, +4M7 ]} +

Uan(OM7 1 | 3cy(9)
8f 324 9

[27s(s—u)+18M +8M 7 +54uM? +45M % + 12M%(3s—2M?)

Jk (S
—18Mﬁ(6s—3u+4MfT+9Mf])]+KT()[27s(s—u)+29Mﬁ+11Mf7+18M‘,‘7+2Mﬁ(188+27u—47MfT
Jka(9)
—78M?%)+6MZ(9u—6s+8M?)]— < {Mg(3u+14M2—8M?)+2Mg —2MgM2(3u+5M2 +4M?)
Ji,(9)
+Mi[6MfI+Mi(3u+4Mi)]}+"T(Mﬁ—Mf])z(4M727—18M§—6Mf7—3u)+6(Mﬁ—Mf])z
Jka(S)(ME=M2)2+ ] () (ME—M2)?
x = K S K7 L [seulf. (B2)
S
For K° n— KO’TTO,
8MZ+3M2+M2—9t .
T(stu)y=———"2— + {275+ 185U+ 27U+ 17AME — 292 + 12(5MZ — 6)M2
12v3f2 48/3f2(M2—M?2)
MK

—32M41—

.

5 {9t? M2 + 24MR + MY (17TM % — 15t) + 2MZ[9(s—u)?+ 6tM2 — 22M 7 ]}

w

24/3F2ME(ME—M

Mg 2 2 2y N2 2 4
- 3(s—u)?+2(3t—14ME+10M2)(ME—2M2)} + ————{2(2s+Uu)(s+2u) — 19M
1&f3f§,(M§—M§7){( o “ P (M2} 256\/§772ff7{( (2w «

Ls
—23tM2—16M % +5ME(13t+24M %)} — ——{s?+4su+u?—30Mg — 2tM 5+ 2M % + BME (t+2M?)}

V3f
9t—8MZ—M2—3M?

+ 713tk (t

‘/jfi{3Mf,[Lg—2(2L7+ Lg) ]+ M3[6(2L,+Lg) —LE]—B6LEMZ(t—M?)}—

+4M23_(D]+

T Ty

P~ Ji,(S)[275(u—s)—45M g+ 14M % — 6M2(9u+7M2%) —9M ) + M % (36— 54u

+22M2+156M2%) 1+ 3]y (S)[20M g + 7TM % +35(9s+ 3u—4M?) — 2MZ (165+9u— 18M 2% +3M?)

Jk(9)

—M?%(40s+18u—30M?2)]+9 <

(ME=M?)[10My +2M % —M%(3u+8M2) +Mg(3u—12M2 +8M?)]

543 (s)

+9 7 (Mg=M7)°

Jk(9) 543¢,(S)
s 2

(MZ—M?2)2(3u—2Mz+2M?%)— (ME=M2)(Mg—M?)3—

X (Mg=M?3)+[s—ul. (B3)

Apart from the above three amplitudes, we have recalculated the other independent five. The reason is threefold. First, we
wanted them to satisfy exact perturbative unitarity to apply the simplest IAM formulas. This was not the case of all the
calculations in the literature, even when considering the one-channel case. Second, there have been several unfortunate
misprints and errata in the published formulasluding some errata made by one of.usinally we would like to have a
self-contained description of the one-loop calculation, together with all the resulting formulas. Nevertheless, when compared
with previous analyses, our results are not exactly the same because we have chosen to express the amplitudes in terms of onl
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one physical decay constaht, and we have used the Gell-Mann—Okubo relation only to simplify masses if it did not affect
the exact perturbative unitarity relation. Apart from previous misprints, the difference®(@%. The first amplitude to
appear in the literature was™ 7~ — %7, although in SW2) [2]. However, we have been able to check also with th¢3sU
calculation[10]. The result, following the notation in Appendix A, is

; MWM?T

s—M7 4
T(stu)=—z—- 372—7{45 —4tu—4sM2+9M4) — —2—2—{5 —tu+2sM3}— W+f—4{(2Lrl+L3)(s—2MfT)2
7T Ty T

gM?2
+L5[(t—2M2)2+ (u—2M2)2]} + 7 {(2L4+LE)s+2(2LE+Lg—2LL —L)M2} +

1
W{%(Mi—s)s

1 [s%3k(s) M3, (s _ 1 [(t—4aM2)(2s+t—4M?) I (1
+2LU=56M T} + o K4K()+ g"()+(sz—Mi)Jm(s)]+W{( )¢ . =) Jk(®)

+[t(t—u)—2M3(t—2u+ Mi)]\]_ww(t)+[t<—>u]]. (B4)

TheK* 7t —K* 7" one-loop calculation was first given ja0]. It was correct up t@(p*) but when expressed in terms
of physical constants it did not satisfy exact perturbative unitarity. One of us gave an expression satisfying thaf8¢lation
there was also a typographical error in that reference. Our corrected result, expressed just in feriss of

M2+M2—s 2
T3 t,u)= Kzfz + (AL La) (1= 2MQ) (1= 2M7) + (25 + Lg) (U= Mg = M7)?+ 2L5(s— Mg = M7)?
+ALY[tM2+ M2 (t—4M2)]—2LEM2(s+ M2 —M2) +8(2LE+LEM2M2 ) + 222N ﬁ\;? {2M (7s

+5u—12M3)(2M2—t)—[268?+ 21su+ 25u°— 3MZ(s+5u+ 16M3) M2+ (85s+ 53u—78MK)M:‘,—66M °1

MK
T 121 ZMZ(M2—M

{42|\/|6 M2(5s+4u—9M2)(2MZ—1t)+4M§(12M2 — 135— 8u) + M2[ 11s?+ 12su

+7u?-3M2(s—u+8M2)]}+ {4IM® — 18(s+u)M% +[36(s—u)u+9(s+5u)M?2

My
2012012 2
7212M2(M%~ M?)

1
Teor7 2 (3(s— 100t —6su- 3u?—27My +MZ(30s— 3t

—50M4IM2 - +u)—43MZIM 7 +8IMS}+
5OMIM 7~ 3[9(5s+u) — AMTIM’+ BIMS} + 3

Kﬂ'( )
16f%

+21u—34M2)—3M2(t—2s—3u+M2)} — {(s—5u)u+5Mg—2(s—2u)M2+5M* —2MZ(s—2u

3,,(OM
7

2 J_W(t) 2 2\ns2 4 2
+5M2)}+ {t(5t—2s+2M32)+(8s+3t—8M2)M2—8M*} — [2|v| +6M2—0t]

244

KK( ) Ky,(U)
+ + + + +
24f4 {MK(4S 3t—4M? “)t+t(4t—s M?2 ) 4MK} 432fi

+38M 75— M?%(36u—48M2) —9(3(s—u)u—6sM>+M7)}+ f(4)(|v|2 M2 —s)2— 4';(4u){2|v|ﬁ

{2MZ(275+18u—74M%~5IM?2) +29M

+10MIM%+3sM7 + My (3s—4M2+10M%) —2Mg (2M 5+ (3s+4M2)M2+3M5) } —

, Jka(U)(5—2Mg—2M?)
m 16f4u

(Mg—M2)23,, (u)+(M&—M2)23y (u)
H(ME— M) . (85)

The one-loopm®7— 7w°7» amplitude was calculated ifil0]. We give here the result expressed in terms of physical
guantities:
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M2 (13M5+6t(MZ=M2)=9M2M?)u, (M2—MIM2+AMZM))u My

=—7- +
Tstu=zp 9r2(MZ—M?) 9rZMZ(MZ—M?) 6f2

M2{20M (t—3M?)—25M%
+3[3(s?+su+u?)+8tM2—9Mm* +i 2(Li+Lg/6)(t—2M2)(t—2M?) + (L5+ Lo/3)[(s— M2 —M?)?
[3(s"+sut+u) . b fzi2(L1+ La/B)( =) )T (La+Laf3[(s—M7—M?)
8
+(u—|v|§,—|v|§7)2]}+E{[t(m§,+Mi)—4M§,M3,]L;+2(2Lg—Lg/3)M§,M§7+4L7M§T(M§T—M§)+2Lg|v|;‘,}

1 1M2

2 2 2 2
+ 5rat S{7M%+ M2(154M2% — 72t) — 9[3(s*+ s+ u?) + BtM2 — 9M ]}+6f4 5 Jnn(D(16MF 7M?2)

l_ _ 2 _ 2\, 7 2 M2
+4JKK(t)(9t 2M<, 6Mn)+J,T,,(t)M,,(2t M2)

+i M%J. (s)+i7 (s)(9s—8M2 —M2—3M?2)2
gfi Ty Ty 24 KK K m n

+[s<u]j;. (B6)

Finally, the KK scattering amplitudes were calculated[itl]. They were given in a rather different notation from the
previous ones. Our result is, fésf" K~ —K*K ™,

M2 —
Ta(stu)= —35 Gf’;:/lz[5(52+st+t2)+6u2—13u|v|2 8MK]+2f2 5(u—2M2)
T VK
_1132+8st+11t2+8uM§—32M‘,§ 9(s?+12)+24uMg —6aMy|

n 2 _onp2
242 16M2—M?2) 1217 | OMi—2M5 =21

81(s2+1t2)—36(s+t)M2+8M*%  9(s?+1?)+24uMZ — 64M ¢ oLt (U 2M2)2
12M2 2(M2—M2) r{2La(u=2Mi)

+ (2L + Lo+ Lg)[(s—2M2) 2+ (t—2M2)2]— 4L uMZ — 2L E(u—2M2)M2 =4[ LE—2(2L§+ LE) Mg}

186st— 177U+ 1032 M2 — 1648\/|4 1

+ 5304272 2 (U—2MZ) 2k (u)+

28817 [6qs(2s+t)+4uM§—8M§]

()

X Jxk(S)+2(9s—8M2 —M2 —3M )2 “” +(95—2M2-6M2)%J, (s)+3[s(11s+4t—8ME)

—8(s+2t—4M2)M21J, (s) +[s—t] ¢, (B7)
and forK°KO K K™,

Mg—u MK
TameErr M2{5s — Su+8u2—2M2(s+16u) + 36M 3} +

Thed Sit,U) = 5(u—2M32)

.|:2
115+ 4t2+ 4s(2t+u) — 8(s+2t)M2  24(s—2t)MZ—9(s?—2t?) + 16M}
- +
12M2 8(Mz—M?2)
- (9s—2M§T)2+ 8MZ(3s—6t+2M3)—9(s?— 2t?)
T oM? 2(MZ-M?)

My
122

9(s—u)+14M2

2
+f—4{(4L’1+L3)(s—2|v|§)2+2L;(u—21\/|§)2

4
+(2LS+Lg)(t—2M2)2 + f—4{4LgsMﬁ—2Mﬁ[4L;+ LE—2(2L§+Lg)]—LE(u—2M3)M2}

_ 3(315*+4su+16U%) — 4ME(305+57u—8OME)  Jik(s) J,n(S)

J
230477 617 LS(5™W T AMK2M— 0] oo
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X (9s—8MZ—M2—3M2%)2+ ';K( )( —2M2)%+ 96:4 [S(7s—4t+8M2)+8(s+2t—4M2)M?2]
rrlt) 2 AM2)(t—4M?2 (V) 9t—8M2—M2—-3M?2)2
+T ()[t(s+2t)+4uM —8Mm4 ]+ s )(95 2MZ—6M?)2. (B8)
244 K 288f4
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