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Meson-meson scattering within one-loop chiral perturbation theory and its unitarization
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We present a complete one-loop calculation of all the two-meson scattering amplitudes within the frame-
work of SU~3! chiral perturbation theory, which includes pions, kaons, and the eta. In addition, we have
unitarized these amplitudes with the coupled channel inverse amplitude method, which simultaneously ensures
the good low energy properties of chiral perturbation theory and unitarity. We show how this method provides
a remarkable description of meson-meson scattering data up to 1.2 GeV including the scattering lengths and the
generation of seven light resonances, which is consistent with previous determinations of the chiral parameters.
Particular attention is paid to discussing the differences and similarities of this work with previous analyses in
the literature.
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I. INTRODUCTION

In the last 20 years, chiral perturbation theory~ChPT!
@1–3# has emerged as a powerful tool to describe the in
actions of the lightest mesons. These particles are cons
ably lighter than the rest of the hadrons, which is nowad
understood as a consequence of the spontaneous break
the SU(3)L3SU(3)R chiral symmetry down to SU(3)L1R ,
which would be present in QCD if the three lightest qua
were massless. In such a case, the light mesons would
respond to the massless Goldstone bosons associated
spontaneous chiral symmetry breaking. Of course, quarks
not massless, but their masses are so small compared t
typical hadronic scalesO(1 GeV) that their explicit symme
try breaking effect also translates into a small mass for
lightest mesons, which become pseudo Goldstone bos
Hence, the three pions correspond to the pseudo Golds
bosons of the SU~2! spontaneous breaking that would occ
if only the u andd quarks were massless, which is a rema
ably good approximation. Similarly, the meson octet form
by the pions, the kaons, and the eta can be identified with
eight pseudo Goldstone bosons associated with the S~3!
breaking when thes quark is also included.

The low energy interactions of pions, kaons, and the
can be described in terms of an effective Lagrangian
follows the SU(3)L3SU(3)R→SU(3)L1R spontaneous
symmetry breaking pattern. If we do not include any ad
tional field apart from the pseudo Goldstone bosons,
description will be valid only for energies much below th
scale where new states appear. That is, the effective C
Lagrangian provides just a low energy description. As a c
sequence we can organize all the possible terms that res
the symmetry requirements in a derivative~and mass! expan-
sion. Therefore, any amplitude is obtained as a perturba
expansion in powers of the external momenta and the qu
masses. The importance of this formalism is that the the
is renormalizable and predictive, in the following sense:
loop divergences appearing at a given order in the expan
can be absorbed by a finite number of counterterms, or
energy constants, that appear in the Lagrangian at that
same order. Thus, order by order, the theory is finite a
depends on a few parameters that can be determined ex
0556-2821/2002/65~5!/054009~20!/$20.00 65 0540
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mentally. Once these parameters are known, any other ca
lation at that order becomes a prediction. Basically, these
the main ideas underlying ChPT, which has proved very s
cessful in describing low energy hadron phenomenology~for
reviews see@4#!.

Despite the success of this approach, it is unfortuna
limited to low energies~usually, less than 500 MeV!. That is
the reason why, over the last few years, there has bee
growing interest in extending the applicability range of t
chiral expansion to higher energies. Of course, this requ
the use of nonperturbative methods to improve the high
ergy behavior of ChPT amplitudes. These methods incl
the explicit introduction of heavier resonant states in the
grangian @5#, resummation of diagrams in a Lippmann
Schwinger or Bethe-Salpeter approach@6#, or other methods
that unitarize the amplitudes like the inverse amplitu
method~IAM ! @7,8#. The last method has been generalized
allow for a coupled channel formalism@9#, yielding a suc-
cessful description of the meson-meson scattering am
tudes up to 1.2 GeV, and even generating dynamically se
light resonances.

In principle, these methods recover at low energies
good properties of ChPT, since they use part of the pertu
tive information. However, it should be noted that, so far, t
full results to one loop for all the meson-meson scatter
processes are not available in the literature. At present, o
the pp→pp @10#, Kp→Kp @10#, hp→hp @10#, and the
two independentK1K2→K1K2,K1K2→K0K̄0 @11# am-
plitudes have been obtained in the SU~3! ChPT framework,
although with different procedures and notation. As a con
quence, the IAM has been applied rigorously only to thepp,
KK̄ final states, whereas for a complete treatment of
whole low energy meson-meson scattering, additional
proximations had to be made@9#. In particular, the lowest
order expansion could not be recovered complete up
O(p4), thus spoiling the scattering lengths and, in additio
it was not possible to compare directly with the low ener
parameters of standard ChPT in dimensional regulariza
and the modified minimal subtractionMS21 scheme.

In this work, we have calculated all the meson-mes
scattering amplitudes at one loop in ChPT. There are th
©2002 The American Physical Society09-1
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amplitudes that have never appeared published in the lit
ture: Kh→Kh, hh→hh, and Kp→Kh. The other five
have been recalculated independently and all of them
given together in a unified notation, ensuring exact pertur
tive unitarity and also correcting previous misprints. The
we have applied the coupled channel IAM to describe
whole meson-meson scattering below 1.2 GeV, includ
low energy data like scattering lengths. This new calculat
allows for a direct comparison with the standard low ene
constants of ChPT and that is why we have made a con
erable effort to estimate the uncertainties in all our resu
which are in very good agreement with the present deter
nations obtained from low energy data without unitarizatio
The main differences of this work from@9# are that we con-
sider the full one-loop results for the amplitudes, ensur
their finiteness and scale independence in dimensional r
larization, we take into account the new processes mentio
above, and we are able to describe the low energy reg
more accurately. This had already been achieved for thepp,
KK̄ system only in@11#, but here we complete this task fo
all meson-meson scattering.

The paper is organized as follows. In Sec. II we revi
the main features of the meson-meson scattering calcula
at one loop in ChPT. The final results for the amplitudes
collected in Appendix B because of their length. The defi
tion of partial waves and unitarity is discussed in Sec.
and the IAM is presented in Sec. IV. In Sec. V, we review t
available data on meson-meson scattering. In Secs. VI
VII we first use the IAM with present determinations of th
low energy constants and next make a fit to the data
viewed in Sec. V. Our conclusions are summarized in S
VIII. Apart from the amplitudes in Appendix B, we have als
collected some useful formulas in Appendix A.

II. MESON-MESON SCATTERING AT ONE LOOP

The lowest order Lagrangian for SU~3! chiral perturbation
theory is

L25
f 0

2

4
^]mU†]mU1M0~U1U†!&, ~1!

wheref 0 is the pion decay constant in the SU~3! chiral limit
and the angular brackets stand for the trace of the 333 ma-
trices. The matrixU collects the pseudo Goldstone bos
fields p, K, h throughU(F)5exp(i&F/f0), where

F~x!5S 1

&
p01

1

A6
h p1 K1

p2
2

1

&
p01

1

A6
h K0

K2 K̄0 2
2

A6
h

D
~2!

andM0 is the tree level mass matrix. Throughout this pap
we will be assuming the isospin limit, so thatM0 is given by
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a-

re
a-
,
e
g
n
y
d-
s,
i-
.

g
u-
ed
n

ns
e
-
,

nd

e-
c.

r

M05S M0p
2 0 0

0 M0p
2 0

0 0 2m0K
2 2M0p

2
D . ~3!

As a matter of fact, from these definitions, it can be eas
seen that the tree level masses satisfy the Gell-Mann–Ok
relation @12# 4M0K

2 2M0p
2 23M0h

2 50, which will be very
useful for simplifying the amplitudes.

From the Lagrangian in Eq.~1!, one can obtain theO(p2)
amplitudes just by calculating the corresponding tree le
Feynman diagrams. In order to obtain theO(p4) contribu-
tions, one has to consider loop diagrams, whose generic
pology is given in Fig. 1, which will generate UV diver
gences. If loop integrals are regularized with dimensio
regularization, which preserves the chiral symmetry co
straints, the divergences can be reabsorbed in the chira
rametersLi of the fourth order Lagrangian:

L45L1^]mU†]mU&21L2^]mU†]nU&^]mU†]nU&

1L3^]mU†]mU]nU†]nU&1L4^]mU†]mU&^U†M0

1M0
†U&1L5^]mU†]mU~U†M01M0

†U !&1L6^U
†M0

1M0
†U&21L7^U

†M02M0
†U&21L8^M0

†UM0
†U

1U†M0U†M0&, ~4!

where the terms that couple to external sources, like ga
fields, are omitted@2,3#. The Li constants are related to th
renormalized Li

r(m) generically as Li5Li
r(m)1G il @3#

wherem is theMS21 renormalization scale,

l5
md24

16p2 F 1

d24
2

1

2
~ log 4p2g11!G , ~5!

g is the Euler constant, and theG i coefficients can be found
in @3#. We remark that theL3 andL7 constants are not renor
malized and are therefore scale independent, i.e.,G35G7
50.

Thus, up to fourth order one has to consider the tree le
diagrams fromO(p2) andO(p4), together with the one-loop
diagrams in Fig. 1. We stress that mass and wave func
renormalizations should be accounted for to the same or

FIG. 1. Generic one-loop Feynman diagrams that have to
evaluated in meson-meson scattering.
9-2
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The latter are schematically represented by the tadpole
gram~e! in Fig. 1. As is customary, we define the bare fiel
in terms of the renormalized ones asp5Zp

1/2p ren and so on
for the kaons and eta, so that scalar fields have finite can
cal kinetic terms. Taking into account all the different co
tributions from diagrams of type~e! in Fig. 1 plus those tree
level diagrams coming fromL4 , one obtains

Zp511
4

3
mp1

2

3
mK2

4l

3 f 0
2 ~2M0p

2 1M0K
2 !

2
8

f 0
2 @2L4

r M0K
2 1~L4

r 1L5
r !M0p

2 #,

ZK511
1

2
mp1mK1

1

2
mh2

2l

3 f 0
2 ~M0p

2 15M0K
2 !

2
8

f 0
2 @~2L4

r 1L5
r !M0K

2 1L4
r M0p

2 #,

Zh5112mK2
4l

f 0
2 M0K

2 2
8

3 f 0
2 @~3L4

r 2L5
r !M0p

2

12~3L4
r 12L5

r !M0K
2 #, ~6!

where

m i5
Mi

2

32p2f 0
2 log

Mi
2

m2 , ~7!

with i 5p,K,h.
Note that the wave function renormalization constantsZi

contain a divergent part and they are scale dependent. A
the mass renormalizations, the physical pion and k
masses are given in terms of the tree level ones as@3#

Mp
2 5M0p

2 F11mp2
mh

3
1

16M0K
2

f 0
2 ~2L6

r 2L4
r !

1
8M0p

2

f 0
2 ~2L6

r 12L8
r 2L4

r 2L5
r !G ,

MK
2 5M0K

2 F11
2mh

3
1

8M0p
2

f 0
2 ~2L6

r 2L4
r !

1
8M0K

2

f 0
2 ~4L6

r 12L8
r 22L4

r 2L5
r !G ,

Mh
25M0h

2 F112mK2
4

3
mh1

8M0h
2

f 0
2 ~2L8

r 2L5
r !

1
8

f 0
2 ~2M0K

2 1M0p
2 !~2L6

r 2L4
r !G1M0p

2 F2mp1
2

3
mK

1
1

3
mhG1

128

9 f 0
2 ~M0K

2 2M0p
2 !2~3L71L8

r !. ~8!
05400
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According to the chiral power counting, we have to use E
~6! and ~8! only in the tree level part of the amplitudes. I
fact, the mass renormalization Eq.~8! affects only the mass
terms coming from the Lagrangian in Eq.~1! and not the
masses coming from the kinematics of the correspond
process. As will be seen below, we will not need the m
renormalization ofMh in any of our expressions.

The meson decay constants are also modified to one l
It will be convenient for our purposes to write all the on
loop amplitudes in terms of a single decay constant, wh
we have chosen to bef p . For that reason and for an easi
comparison with previous results in the literature, we a
give here the result for the meson decay constants to
loop @3#:

f p5 f 0F122mp2mK1
4M0p

2

f 0
2 ~L4

r 1L5
r !1

8M0K
2

f 0
2 L4

r G ,
f K5 f 0F12

3mp

4
2

3mK

2
2

3mh

4
1

4M0p
2

f 0
2 L4

r

1
4M0K

2

f 0
2 ~2L4

r 1L5
r !G ,

f h5 f 0F123mK1
4L4

r

f 0
2 ~M0p

2 12M0K
2 !1

4M0h
2

f 0
2 L5

r G . ~9!

It is important to stress that both the physical masses
Eq. ~8! and the decay constants in Eq.~9! are finite and scale
independent.

Therefore, the one-loop ChPT scattering amplitu
~renormalized and scale independent! for a given process
will have the generic form

T~s,t,u!5T2~s,t,u!1T4
pol~s,t,u!1T4

uni~s,t,u! ~10!

wheres,t,uare the Mandelstam variables. Here,T2 is the tree
level contribution from the Lagrangian in Eq.~1!, whereas
T4

pol contains the fourth order terms which are polynomials
s,t,u. Those polynomials have four possible origins: tr
level terms from the Lagrangian in Eq.~4! proportional to
Li

r , other polynomial terms proportional toLi with i
54,...,8 coming from the mass and decay constant renorm
ization in Eqs.~8! and ~9!, terms proportional tom i coming
from tadpole diagrams@~d! and~e! in Fig. 1#, and finally pure
polynomial fourth order terms which stem from our para
etrization of the one-loop functions~see Appendix A!. Let us
remark that, for technical reasons explained in Sec. III B,
have chosen to write all our amplitudes in terms off p only
since, using Eqs.~9!, f K and f h can be expressed in terms o
f p , L4

r , andL5
r . In addition,T4

uni stands for the contribution
of diagrams~a!, ~b!, and ~c! in Fig. 1. These contributions
not only contain the imaginary parts required by unitarity b
also yield the correct analytic structure for the perturbat
amplitudes, as will be discussed below. We remark that
the terms inT4

uni will be proportional to theJ̄ andJ% functions
defined in Appendix A.
9-3
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Using crossing symmetry it is not difficult to see th
there are only eight independent meson-meson amplitu
We have calculated these amplitudes to one loop in SU~3!
ChPT. They are given in Appendix B. Three of these am
tudes had not been calculated before, namely,K̄0h→K̄0h,
hh→hh, and Kh→Kp0. For the rest, we have checke
that our amplitudes coincide with previous results@10,11# up
to differences in notation and different simplificatio
schemes, equivalent up toO(p4). In particular, since we are
interested in the ‘‘exact’’ form of perturbative unitarity~see
below!, we have written our final results in terms of a sing
pion decay constantf p , and we have used the Gell-Mann
Okubo relation, taking care to preserve exact perturba
unitarity. Furthermore, we have explicitly checked that
the amplitudes remain finite and scale independent.

Finally, we wish to add a remark abouth-h8 mixing,
since the physicalh is indeed a mixture of the U~3! octet and
singlet pseudoscalars, whereas in this work we are only
ing the standard SU~3! ChPT. One may wonder then if ou
description of theh is just that of the pseudoscalar oct
component, since in this Lagrangian the singlet field is no
explicit degree of freedom. However, it has been shown@13#
that the standard framework results from an expansion
powers of the inverse powers of the ‘‘topological suscep
bility’’ of the complete U~3! Lagrangian. In that context th
h8 is considered as a massive state~that is why it does not
count as an explicit degree of freedom! but the singlet com-
ponent generates a correction toL7 . Note that, indeed, the
mass of theh contains anL7 contribution, and that is why
we can useMh in Eq. ~8! with its physical value, wherea
M0h is the one satisfying the Gell-Mann–Okubo relation e
actly. Therefore, our approach can be understood as the
est order approximation to theh-h8 mixing problem, where
all the effects of the mixing appear only throughL7 . Since
we will compare only with data in states with oneh at most,
and below 1200 MeV, our results seem to suggest that
approximation, although somewhat crude, is enough with
present status of the experimental data. Indeed, we will
that the values that we obtain forL7 are in perfect agreemen
with those given in the literature~and this comparison ca
now be done because we have the complete one-loop am
tudes renormalized in the standard way!.

III. PARTIAL WAVES AND UNITARITY

A. Partial waves

Let us denote byTab
IJ (s) the partial wave for the proces

a→b, i.e., the projection of the amplitude for that proce
with given total isospinI and angular momentumJ. That is,
if Tab

I (s,t,u) is the isospin combination with total isospinI,
one has

Tab
IJ ~s!5

1

32Np E
21

1

dx PJ~x!Tab
I
„s,t~s,x!,u~s,x!…

~11!

wheret(s,x),u(s,x) are given by the kinematics of the pro
cessa→b with x5cosu, the scattering angle in the center
mass frame.
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Note that we are normalizing the partial waves includi
a factorN, such thatN52 if all the particles in the proces
are identical andN51 otherwise. Recall that, since we a
working in the isospin limit, the three pions are considered
identical, so thatN52 only for the pp→pp and hh
→hh processes.

We shall comment now on theTab
I amplitudes for every

possible process involvingp,K,h. Using crossing symmetry
and assuming isospin symmetry exactly, we will determ
the number of independent amplitudes for each process.
discussion is general and there is no need to invoke Ch
although we will refer to the results for the amplitudes
Appendix B, which gives the one-loop ChPT results.

pp→pp scattering. There is only one independent am
plitude, so that one has

T0~s,t,u!53T~s,t,u!1T~ t,s,u!1T~u,t,s!,

T1~s,t,u!5T~ t,s,u!2T~u,t,s!,

T2~s,t,u!5T~ t,s,u!1T~u,t,s!,

whereT(s,t,u) is thep1p2→p0p0 amplitude. At one loop
in ChPT it is given in Appendix B, Eq.~B4!.

Kp→Kp scattering. Crossing symmetry allows us t
write the I 51/2 in terms of theI 53/2 one as

T1/2~s,t,u!5 1
2 @3T3/2~u,t,s!2T3/2~s,t,u!#. ~12!

Here, T3/2(s,t,u) is the K1p1→K1p1 amplitude, whose
expression at one loop within ChPT corresponds to Eq.~B5!.

KK̄→KK̄ scattering. We can write the isospin amplitude
as

T0~s,t,u!5Tch~s,t,u!1Tneu~s,t,u!,

T1~s,t,u!5Tch~s,t,u!2Tneu~s,t,u!, ~13!

whereTch and Tneu are, respectively, the amplitudes for th
processesK1K2→K1K2 and K̄0K0→K1K2. Their ex-
pressions to one loop correspond to Eqs.~B7! and ~B8!, re-
spectively.

KK̄→pp scattering. In this case, one has

T0~s,t,u!5
)

2
@T3/2~u,s,t !1T3/2~ t,s,u!#,

T1~s,t,u!5
1

&
@T3/2~u,s,t !2T3/2~ t,s,u!#, ~14!

whereT3/2(s,t,u) is theK1p1→K1p1 amplitude, given in
Appendix B for one-loop ChPT, Eq.~B5!.

Kh→Kh scattering. This is a pureI 51/2 process. The
one-loop amplitude can be read directly from Eq.~B2!.

K̄K→hh scattering. This is anI 50 process that using
crossing symmetry can be obtained from the previous am
tude as follows:

TK̄0K0→hh~s,t,u!5TK̄0h→K̄0h~ t,s,u!. ~15!
9-4
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Kh→Kp scattering. This is also anI 51/2 process,
whose amplitude, correctly normalized, is

T1/2~s,t,u!52)TK̄0h→K̄0p0~s,t,u!, ~16!

where the one-loop expression forK̄0h→K̄0p0 can be found
in Eq. ~B3!.

K̄K→ph scattering. This is anI 51 process related to
the K̄0h→K̄0p0 amplitude by crossing symmetry, i.e.,

T1~s,t,u!52&TK̄0h→K̄0p0~ t,s,u!. ~17!

ph→ph scattering. This is a pureI 51 isospin ampli-
tude whose one-loop ChPT expression can be read dire
from Eq. ~B6!.

pp→hh scattering. Now I 50 and the amplitude is ob
tained from the previous one by crossing, as

Tp0p0→hh~s,t,u!5Tp0h→p0h~ t,s,u!. ~18!

hh→hh scattering. Here, I 50 and the correspondin
one-loop amplitude can also be read directly from Eq.~B1!.

In this paper we will be interested in the case when th
are several coupled states for a given choice ofI,J, i.e., the
coupled channel case. In particular, with the above norm
ization, the relationship between theT-matrix elementsTab

IJ

and theS-matrix ones is given for two coupled channe
(a,b51,2) by

S115112is1T11, ~19!

S225112is2T22, ~20!

S125S2152iAs1s2T12, ~21!

where theIJ superscripts have been suppressed to ease
notation and we have used the fact that due to time reve
invarianceTi j 5Tji . Here,s i52qi /As whereqi is the cen-
ter of mass momentum in the statei. Note thats i is nothing
but the phase space of that state atAs. In the I 50 channel
above thehh threshold we will use the corresponding ge
eralization in the case of three channels.

B. Unitarity

TheSmatrix should be unitary, i.e.,SS†51. In case there
is only one state available, that means thatS can be param-
etrized in terms of a single observable, which is customa
chosen as the phase shift. For the case of two channels
elementsSi j are organized in a unitary 232 matrix, contain-
ing only three independent parameters. We will follow t
standard parametrization:

S5S he2id1 iA12h2ei ~d11d2!

iA12h2ei ~d11d2! he2id2
D , ~22!

where thed i are the phase shifts andh is the inelasticity.
The unitarity relation translates into relations for the e

ments of theT matrix of a particularly simple form for the
partial waves. For instance, if there is only one possible s
05400
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1 for a given choice ofI,J, the partial waveT11 satisfies Eq.
~19!, so that unitarity means that

Im T115s1uT11u2⇒Im T11
2152s1 . ~23!

In principle, the above equationholds only above threshold
up to the energy where another state 2 is physically ac
sible. If there are two states available, then theT-matrix el-
ements satisfy

Im T115s1uT11u21s2uT12u2,

Im T125s1T11T12* 1s2T12T22* ,

Im T225s1uT12u21s2uT22u2.

In matrix form they read

Im T5TST* ⇒Im T2152S, ~24!

with

T5S T11 T12

T12 T22
D , S5S s1 0

0 s2
D , ~25!

which allows for a straightforward generalization to the ca
of n accessible states by usingn3n matrices.

One must bear in mind that the unitarity relations imp
that the partial waves are bounded as the energy increa
For instance, in the one-channel case, from Eq.~23! we can
write

T115
sind

s1
eid ~26!

whered is the phase oft11.
Note that all the unitarity relations Eqs.~23! and~24! are

linear on the left hand side and quadratic on the right. A
consequence, if one calculates the amplitudes perturbati
as truncated series in powers of an expansion parameter
T5T21T41¯ , the unitarity equations will never be satis
fied exactly. In particular, for ChPT that means that unitar
can only be satisfiedperturbatively: i.e.,

Im T250,

Im T45T2ST2 , ~27!

¯ ,

where the second equation is satisfied exactly only if on
careful to expressT4 in terms of masses and decay consta
consistently with the choice made forT2 . That has not al-
ways been the case in the literature and that is one of
reasons why we have recalculated some processes: al
results satisfy exact perturbative unitarity. Otherwise th
are additionalO(p6) terms in Eq.~27!. As we will see below,
this will be relevant in obtaining a simple formula for th
unitarized amplitudes. Our choice has been to rewrite all
f K and f h contained in the amplitudes in terms off p , L4

r ,
andL5

r using the relations in Eq.~9!.
9-5
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The deviations from Eq.~24! are more severe at hig
energies, and in particular in the resonance region, since
tarity implies that the partial waves are bounded@see Eq.
~26!#, which cannot be satisfied by a polynomial. Gene
cally, in the resonance region, the unitarity bounds are s
rated. If a polynomial is adjusted to saturate unitarity in
given region, in general, it will break the unitarity boun
right afterward. Another way of putting it is that resonanc
are associated with poles in the complex plane, which w
never be reproduced with polynomials.

For all these reasons, if we are interested in extending
good properties of ChPT to higher energies, we have
modify the amplitudes, imposing unitarity and a function
form that allows for poles in the complex plane. This will b
achieved with the inverse amplitude method.

IV. THE COUPLED CHANNEL INVERSE AMPLITUDE
METHOD

As can be seen from the unitarity condition in Eq.~24!,
the imaginary part of the inverse amplitude is known exac
above the corresponding thresholds, namely, ImT2152S.
Indeed, any amplitude satisfying the unitarity constra
should have the following form:

T5~ReT212 iS!21, ~28!

Consequently, we should only have to calculate the real
of T21. As a matter of fact, many unitarization methods a
just different approximations to ReT21 ~see@9# for details!.
The idea behind the inverse amplitude method is to use
~28!, but approximating ReT21 with ChPT. Since we have
T.T21T41¯ , then

T21.T2
21~12T4T2

211¯ !, ~29!

ReT21.T2
21@12~ReT4!T2

211¯#, ~30!

so that multiplying Eq.~28! by T2T2
21 on the left andT2

21T2

on the right, we find

T.T2~T22ReT42 iT2ST2!21T2 . ~31!

At this point, if the amplitude satisfies ‘‘exact perturbativ
unitarity,’’ namely, Eq.~27!, we can simplify the above equa
tion to obtain the simple expression

T.T2~T22T4!21T2 . ~32!

This is the generalization of the IAM to coupled channe
Note that this formula ensures exact unitarity only ifT4 sat-
isfies exact perturbative unitarity.

The IAM was first applied to just one elastic channel@7#
and it was able to reproduce well thepp andpK scattering
phase shifts below theKK̄ andKh thresholds, respectively
In addition it was able to generate thes @now called
f 0(400– 1200)#, the r, and theK* resonances@8#. Further-
more, it was shown how the formula for the one-chan
IAM can be justified in terms of dispersion relations@8#,
which allowed for the analytic continuation to the compl
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plane and the identification of the pole associated with e
resonance in the second Riemann sheet.

In view of Eq. ~32!, it may seem necessary to know th
complete O(p4) ChPT calculation of each one of th
T-matrix elements. Nevertheless, one could use a further
proximation and calculate only thes-channel loops~Fig. 1a!,
which are the only ones responsible for the unitarity cut a
are supposed to dominate in the resonant region. This
the approach followed in@9#, having in mind that the com-
plete ChPT calculations were not available at that time
any meson-meson scattering two-channel matrix. The res
were remarkable, reproducing up to 1.2 GeV seven~I,J!
meson-meson scattering channels~17 amplitudes!, and even
generating seven resonances. However, the fact that
s-channel loops were regularized with a cutoff, together w
the omission of crossed loops and tadpoles, made it imp
sible to compare the chiral parameters with those of stand
ChPT ~still, they had the correct order of magnitude, as e
pected!. In addition, the low energy ChPT predictions we
recovered only partially. This motivated the authors in@11# to
calculate the full O(p4) K1K2→K1K2 and K1K2

→K0K̄0 amplitudes,1 which allowed for the unitarization
with Eq. ~32! of the (I ,J)5(0,0) and~1,1! channels. This
approach again yielded a good high energy description
also reproduced simultaneously the low energypp scattering
lengths. All these results were obtained withLi parameters
compatible with those of standard ChPT@11#.

As we saw in the previous section, we have calculated
last three independentO(p4) meson-meson scattering amp
tudes that were still missing. They are given in Appendix
in a unified notation with the other five that we have rec
culated independently~correcting some minor misprints in
the literature!. Therefore, we are now ready to unitarize t
complete meson-meson scattering by means of Eq.~32!.

However, at this point we have to recall that for a giv
energy Eq.~32! has been justified only for a matrix whos
dimension is exactly the number of states accessible at
energy. The reason is that the unitarity relation Eq.~24! in-
creases its dimensionality each time we cross a new thr
old. Thus, for instance, inpp scattering, one should use th
one-dimensional IAM up to theKK̄ threshold, then the two-
dimensional IAM, etc., although this procedure yields d
continuities on each threshold, instead of a single anal
function. Another possibility@9# is to use the IAM with the
highest possible dimensionality of theI,J channel for all
energies.2 This second possibility yields an analytic~and

1An erratum for these amplitudes has appeared, published w
we were preparing this work. The previous results and conclus
in @11# are nevertheless correct, since the errata did not affect
numerical calculations. We thank J. A. Oller for discussions and
letting us check that their corrected amplitudes coincide with ou

2As a technical remark, let us note that in this case the IAM ha
be rederived in terms of the partial wavesTab divided by the c.m.
momenta of the initial and final states to theJth power, to ensure
that these new amplitudes are real at lowest order. From there
derivation follows the same steps, and we recover the very s
Eq. ~32! by multiplying by the initial and final state momenta in th
end.
9-6
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MESON-MESON SCATTERING WITHIN ONE-LOOP . . . PHYSICAL REVIEW D 65 054009
hence continuous! function, but it may not satisfy unitarity
exactly at all energies, namely, when the number of ope
channels is smaller than the dimensionality of the IAM fo

mula. Following thepp-KK̄ example, if we use the two
dimensional IAM formula, we will have exact unitarity en

sured above theKK̄ threshold, but not below. In particular,

we still use the two-dimensional IAM below theKK̄ thresh-
old, the IAM pp scattering element will have an addition

spurious contribution from the imaginary part of theKK̄
scattering left cut, which extends up toAs54(MK

2 2Mp
2 ).

This is a well known and lasting problem in the literatu
@14–16# that affects other unitarization methods also, like t
K-matrix method@15#. As a matter of fact, several years ag
@14# it was suggested that the physical solution would pr
ably be an interpolation between the two approaches
mentioned. However, in the context of ChPT and the IA

and for thepp-KK̄ channels, it was found@11# that the
violations of unitarity are, generically, of the order of a fe
percent only. We have confirmed this result but now for
whole meson-meson scattering sector. Even the threshold
rameters can be accurately reproduced, since they are de
through the real parts of the amplitudes, which are almost
affected by the spurious part. The origin of this problem
that the IAM in Eq.~32! mixes the left cuts of all the chan
nels involved when performing the inverse of theT2-T4 ma-
trix. Thus, it is not able to reproduce the left cut singularit
correctly @8,17#, although numerically their contribution i
negligible when all the observables are expressed in term
the real parts of the amplitude, andtaking into account the
present status of the data and the uncertainties in the Li .

In this paper we have chosen to show the second
proach, since the one-dimensional IAM has been thoroug
studied in@8#. Very recently, there have been dispersive a
proaches@16# proposed to circumvent this problem in th
pp-K̄K system, but they involve the calculation of left c
integrals that are hard to estimate theoretically. It would
interesting to have them extended and related to the C
formalism, but that is beyond the scope of this work. T
fact that we use the higher dimensional IAM formalism
which contains spurious cuts, does not allow for a clean c
tinuation to the complex plane. Nevertheless, since poles
sociated with resonances have already been found in the
dimensional case@8# and in other approximated couple
channel IAM approaches@9#, we leave their description for a
generalized IAM approach with better analytic propert
@18#. In this work we will concentrate on physicals values,
and the compatibility of the unitarized description of res
nances and low energy data with existing determinations
the chiral parameters. Nevertheless, we will also show
this can also be achieved with the first, discontinuous,
proach.

V. MESON-MESON SCATTERING DATA

Let us then comment on the data available for each ch
nel.
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Channel „I ,J…Ä„1,1…

For the energies considered here, the two states that
appear in this channel arepp andKK̄. In Figs. 2~a! and 3~a!,
we plot the data on thepp scattering phase shift obtaine
from @19# and @20#, which correspond to the squares a
triangles, respectively. Let us remark that the first set of d
points tends to be between two and three standard devia
higher than the second when the phase shift is higher t
90°, and the other way around for smaller values of the ph
shift ~note that the error bars are smaller than the data s
bols!. Thus the data sets are not quite consistent with
another, which could be fixed with the addition of a syste
atic error of the order of a few percent.

This channel is completely dominated by thepp state and
there is almost no inelasticity due toKK̄ production below
1200 MeV. The (12h11

2 )/4 points from the inelasticity
analysis given in@21# are shown in the lowest part of Figs
2~d! and 3~d!.

Channel „I ,J…Ä„0,0…

For this channel we may have up to three states, nam
pp, KK̄ and hh. In this case, there are three observab
with several sets of data, which, as can be seen in Figs. 2~b!,
2~c!, and 2~d!, are somewhat incompatible between the
selves when considering only the errors quoted in the exp
ments. Again, they become compatible if we assume a
tematic error of a few percent. For thepp scattering phase
shift ~d00, see Fig. 2~b!!, the experimental data shown com
from different analyses of the CERN-Munich Collaboratio
@22# ~open squares!, as well as from@19# ~solid squares!, @23#
~solid triangles!, and @24# ~solid circles!. Concerning the
pp→KK̄ phase shift, the data in Figs. 2~c! and 3~c! corre-
spond to@21# ~solid triangles! and @25# ~solid squares! and
they are reasonably compatible, mainly due to the large
rors in the first set. Finally, we also show in Figs. 2~d! and
3~d! the data for (12h00

2 )/4, since it is customary to repre
sent in that way the values of the inelasticityh00. The ex-
perimental results are rather confusing here, mainly up
1100 MeV, due to problems in the normalization. From t
data shown in the figure, in Sec. VII we have only fitted
those coming from@25# ~solid squares!, @26# ~solid triangles!,
@27# ~open squares!, and @28# ~open circles!. There is a dis-
agreement in the normalization of the data of@29# ~dia-
monds! up to a factor of 2~see@30# for a discussion!. We
have not included the latter in the fit, mostly because in
analysis of@29# the authors neglect the unitarity constrain
which in our approach is satisfied exactly at those energ

Channel „I ,J…Ä„2,0…

There is only thepp state and so we display in Figs. 2~e!
and 3~e! only the d20 phase shifts again from the CERN
Munich Collaboration@31# ~open squares! and the CERN-
Saclay Collaboration@32# ~solid triangles!.

Low energy Kl4 decay data

This reaction is particularly important since it yields ve
precise information on thed00-d11 combination ofpp scat-
9-7
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FIG. 2. The curves represent the result of applying the coupled channel IAM using the determination of the ChPT low energy
given in the fourth column of Table I. The shaded area covers the uncertainty due to the errors in those determinations~assuming they were
totally uncorrelated!.
om
tering phase shifts at very low energies. In Figs. 2~f! and 3~f!
we show the data from the Geneva-Saclay group@33# ~solid
triangles! and the very recent, and more precise, data fr
the E865 Collaboration at Brookhaven@34# ~solid squares!.
05400
Channel „I ,J…Ä„1Õ2,1…

Here the possible states areKp andKh. We have plotted
in Figs. 2~g! and 3~g! data from the following experi-
ments: @35# ~solid squares! and @36# ~solid triangles!. Note
9-8
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FIG. 3. The curves represent the result of the coupled channel IAM fit to meson-meson scattering observables that is described
The shaded area covers only the uncertainty due to the statistical errors in theLi parameters obtained fromMINUIT ~assuming they were
uncorrelated!. The area between the dotted lines corresponds to the error bands including in theLi the systematic error added to the data~see
text for details!. Finally, the dashed line corresponds to the use of the one-channel IAM when only one channel is accessible, but ke
same parameters as in the previous fit.
n
a

fir
that the first set is systematically lower than the seco
which is newer and more precise. Nevertheless, they
compatible, thanks mostly to the large error bars on the
set.
05400
d,
re
st

Channel „I ,J…Ä„1Õ2,0…

Here the states are alsoKp and Kh. The data in Figs.
2~h! and 3~h! come from the following experiments:@35#
~solid squares!, @37# ~open triangles!, @38# ~open diamonds!,
9-9
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@36# ~solid triangles!, and@39# ~open squares!. It can be eas-
ily noticed that not all the data sets are compatible wit
errors, but once again they can be reconciled by assumi
systematic error of the order of a few percent.

Channel „I ,J…Ä„3Õ2,0…

The only state here ispK. In this case we have plotted i
Figs. 2~i! and 3~i! data sets from@36# ~solid triangles! and
@40# ~solid squares!. The latter are somewhat lower than th
former, although they are compatible mostly due to the la
errors in@36#.

Channel „I ,J…Ä„1,0…

The possible states for this case areph andKK̄. We have
plotted in Figs. 2~j! and 3~j! the ph effective mass distribu-
tion from the pp→p(hp1p2)p reaction studied by the
WA76 Collaboration@41#. In order to reproduce these dat
we use

dsph

dEc.m.
5cpphuT12

10u21background, ~33!

where thec factor accounts for the normalization of the ma
distribution and the dashed curve in these figures co
sponds to a background due to other resonances apart
the a0(980) ~see@41# for details!.

Once we have described the data in the different chann
we will first compare with the IAM ‘‘predictions’’ from the
present values of the ChPT low energy constants, and
we will fit these data by means of the IAM.

VI. THE IAM WITH PRESENT LOW ENERGY CONSTANT
DETERMINATIONS

In this section we will comment on the results of applyi
the coupled channel IAM using the low energy consta
from standard ChPT. Since the values of these constants
been determined from low energy data or largeNc argu-
ments, the high energy results could be considered as pre
tions of the IAM. For our calculations we have usedf p

592.4 MeV, Mp5139.57 MeV, MK5495.7 MeV, andMh
5547.45 MeV.

In the second column of Table I we list the values o
tained from a very recent and precise two-loopO(p6) analy-
sis of Kl4 decays@42#. Note that the errors are only statist
cal. In the next column we list the central values of the sa
analysis but only atO(p4). In the fourth column we list the
values from another set whereL1 ,L2 ,L3 are taken from an
overall fit to Ke4 and pp data @43# and the rest are take
from @2#. Note that all of them are quite compatible an
except forL5 , the size of the error bars is comparable.

In Fig. 2 we show the results of the IAM with the value
given in the fourth column of Table I. The solid curve co
responds to the central values, whereas the shaded
cover the uncertainty due to the error on the paramet
They have been obtained with a Monte Carlo Gaussian s
pling of 1000 choices of low energy constants for eachAs,
assuming the errors are uncorrelated. It is worth noticing
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these error bands are so wide that the results for the o
columns in Table I are rather similar, even for the cent
values. Qualitatively all of them look the same.

It is noticeable that the IAM results, even with the lo
energy parameters from standard ChPT, already provide
tinct resonant shapes of ther, f 0(980), K* , and a0(980)
~see Figs. 2~a!, 2~b!, 2~g!, and 2~j!, respectively!. In addition,
the IAM also provides two other extremely wide structur
in the ~0,0! pp and ~1/2,0! pK scattering amplitudes. The
correspond to thes @or f 0(400– 1200)# andk ~see Figs. 2~b!
and 2~h!!. These structures are too wide to be considered
Breit-Wigner resonances, but they are responsible for
relatively high values of the phase shifts~the strength of the
interaction! already near threshold. In recent years there
been a considerable discussion about the existence and
erties of these two states~for references, see the scalar mes
review by the Particle Data Group~PDG! @45#!. Since ChPT
does not deal directly with quarks and gluons, it is ve
difficult to make any conclusive statement about the spec
scopic nature of these states~whether they areqq̄, four-
quark states, meson molecules, etc.! unless we make addi
tional assumptions@44#, which would then spoil much of the
model independency of our approach, which is based jus
chiral symmetry and unitarity. Nevertheless, the simplic
and remarkable results of this method give strong supp
from the theoretical side, for the existence of both thes and
the k poles. From previous work, it is known that the ChP
amplitudes unitarized with the IAM generate the poles in
second Reimann sheet associated with thes and the k
aroundAspole.4402 i225 @8,9# and 7702 i250 MeV @9#, re-
spectively.~Let us remember that, since these states are v
wide, the familiar relations M.ReAspole and G.
22 ImAspole are very crude approximations.! We have
checked that similar results are obtained for the amplitu
of this work. These values have to be considered as e
mates, since the uncertainties must be rather big, taking
account that the data in these channels are very conflic
~see Figs. 2 and 3!. The fact that we are able to reproduc
these states with parameters compatible with previous de
minations is also strong support for their pole position
which are in agreement with recent experimental determ

TABLE I. Different sets of chiral parameters3103. The second
and third columns come from anO(p6) andO(p4) analysis ofKl4

decays@42#, respectively. Note thatL4
r andL6

4 are set to zero. In the
third columnL1

r ,L2
r ,L3 are taken from@43# and the rest from@2#

~L4
r andL6

r are estimated from the Zweig rule!.

Kl4 decaysO(p6) Kl4 decaysO(p4) ChPT

L1
r (M r) 0.5360.25 0.46 0.460.3

L2
r (M r) 0.7160.27 1.49 1.3560.3
L3 22.7261.12 23.18 23.561.1

L4
r (M r) 0 0 20.360.5

L5
r (M r) 0.9160.15 1.46 1.460.5

L6
r (M r) 0 0 20.260.3
L7 20.3260.15 20.49 20.460.2

L8
r (M r) 0.6260.2 1.00 0.960.3
9-10
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tions for both thes and thek @46#.
To summarize, we have just shown how the present st

of both the experimental data and theLi determinations al-
lows for use of the IAM despite the approximations made
its derivation, like the poor description of the left cut not
above.

VII. INVERSE AMPLITUDE METHOD FIT TO THE
SCATTERING DATA

Once we have seen that the IAM already describes
basic features of meson-meson scattering, we can proce
fit the data in order to obtain a more accurate description.
that purpose we have used theMINUIT function minimization
and error analysis routine from the CERN program libra
@47#.

Our results are presented in Fig. 3, whose different cur
and bands can be understood as follows. As we have alre

TABLE II. Low energy constants~3103! obtained from an
IAM fit to the meson-meson scattering data. The errors listed in
second column are obtained by adding in quadrature those of
umns 3 and 4.

Fit1errors
~curve in Fig. 3!

MINUIT error
~band in Fig. 3!

Systematic error
from data

L1
r (M r) 0.5660.10 60.008 60.10

L2
r (M r) 1.2160.10 60.001 60.10
L3 22.7960.14 60.02 60.12

L4
r (M r) 20.3660.17 60.02 60.17

L5
r (M r) 1.460.5 60.02 60.5

L6
r (M r) 0.0760.08 60.03 60.08
L7 20.4460.15 60.003 60.15

L8
r (M r) 0.7860.18 60.02 60.18
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seen when commenting on the experiments in the prev
section, and as can be observed in Figs. 2 and 3, there
several incompatible sets of data for some channels. In
literature, this is usually solved by adding an extra syste
atic error until these values are compatible. We have m
three fits by adding 1%, 3%, and 5% errors to the data
each channel. The continuous line corresponds to the
case and the resultingLi values are listed in the second co
umn of Table II. The shaded areas have been obtained a
from a Monte Carlo sampling using theLi uncertainties
given by MINUIT for this fit, which are listed in the third
column of Table II. Let us remark that there would be almo
no difference to the naked eye if we showed the fit with a 1
or a 5% error, in either the central continuous line or t
shaded bands. Furthermore, thex2 per degree of freedom fo
any of these fits is alwaysO(1).

However, although the curves remain almost unchan
when fitting with a different global systematic error, the va
ues ofLi come out somewhat differently from each fit. Th
is an additional source of error on theLi parameters, listed in
the fourth column of Table II. It can be seen that it domina
the uncertainty onLi . For illustration, the area between th
dotted lines in Fig. 3 corresponds to a Gaussian samplin
the chiral parameters with the two sources of error adde
quadrature.

By comparing theLi
r from the IAM fit in Table II with

those of previous ChPT determinations~in Table I!, we see
that there is perfect agreement between them. This comp
son of the complete IAM fit parameters is possible only n
that we have the fullO(p4) amplitudes, given in Appendix
B, which are regularized and renormalized following t
same scheme as in standard ChPT. In particular, the ag
ment in the value ofL7 indicates that we are including th
effects of theh8 consistently at lowest order.

The threshold parameters~scattering lengths and slope p

e
ol-
n-

at our
fewer
TABLE III. Scattering lengthsaIJ and slope parametersbIJ for different meson-meson scattering cha
nels. The experimental data come from@10,55#, the one-loop results from@5,8,10#, and those at two loops
from @42#. We are using the definitions and conventions given in those references. Let us remark th
one-loop IAM results are closer to those of two-loop ChPT, although the IAM depends on many
parameters than theO(p6) ChPT.

Experiment IAM fit
ChPT
O(p4)

ChPT
O(p6)

a00 0.2660.05 0.23120.006
10.003 0.20 0.21960.005

b00 0.2560.03 0.3060.01 0.26 0.27960.011

a20 20.02860.012 20.041120.001
10.0009 20.042 20.04260.01

b20 20.08260.008 20.07460.001 20.070 20.075660.0021

a11 0.03860.002 0.037760.0007 0.037 0.037860.0021

a1/20 0.13 to 0.24 0.1120.09
10.06 0.17

a3/20 20.13 to20.05 20.04920.003
10.002 20.5

a1/21 0.017 to 0.018 0.01660.002 0.014

a10 0.1520.11
10.07 0.0072
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rameters! obtained with the IAM are given in Table III fo
the low energy constants in the second column in Table
The errors in Table III are obtained by a Gaussian samp
of the above low energy constants. Note that the experim
tal values of the threshold parameters have not been use
input in the fit, and the numbers we give are therefore p
dictions of the IAM. As we have anticipated before and Ta
III shows clearly, we are able to reproduce the low ene
behavior with great accuracy. Let us then comment, for e
different channel, on the results of the IAM fit.

Channel „I ,J…Ä„1,1…

The most striking feature of this channel is ther~770!
resonance, which, as can be seen in Fig. 3~a!, can be fitted
with great precision. This had already been achieved
O(p4) with both the single@8# and the coupled@11# channel
formalisms. However, it is now achieved in a simultaneo
fit with all the other channels, but since we are using
completeO(p4) expressions we have a good description
the high energy data without spoiling the scattering leng
listed in Table III.

This channel depends very strongly on 2L1
r 1L32L2

r ,
and this combination can thus be fitted with great accura
The mass and width from a clear Breit-Wigner resonance
be obtained from the phase shift by means of

d IJ~MR!590°, GR5
1

MR
S dd IJ

ds D
s5M

R
2

21

. ~34!

For the ~1,1! case we obtainM r5775.723.3
14.3MeV, and Gr

5135.529.0
18.0MeV, in perfect agreement with the values give

by the PDG@45#. The errors correspond to a Gaussian sa
pling with the central values quoted in the second column
Table II and theMINUIT errors of the fit.

Finally, and just for illustration, the inelasticity predictio
from the IAM is shown in Fig. 3~d!. Note that the data value
are so small and the claimed precision is so tiny that
other effect not considered in this work~like the 4p interme-
diate state! would yield a contribution beyond the precisio
we can expect to reach with the IAM. That is why these d
have been excluded from the fit.

Channel „I ,J…Ä„0,0…

There are three independent observables in this cha
with data. Concerning thepp scattering phase shift, plotte
in Fig. 3~b!, we can reproduce two resonant structures. Fi
there is thes @or f 0(400– 1200)#, which corresponds to a
broad bump in the phase shift that gets as high as 50°
very far from threshold. This is not a narrow Breit-Wign
resonance. Indeed, it was shown in the IAM with just o
channel@8# that it is possible to find an associated pole in t
second Riemann sheet, quite far from the real axis. Sec
we can nicely reproduce the shape of thef 0(980) which
corresponds to a narrow Breit-Wigner resonance altho
over a background phase provided by thes, so that its mass
and width cannot be read directly from Eq.~34!. Once more,
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it can be seen that the scattering lengths can also be re
duced simultaneously with the high energy data.

The next observable is thepp→KK̄ phase shift, Fig.
3~c!, which can also be fitted neatly. Since we have includ
thehh intermediate state, the fit is somewhat better than w
just two channels above the two-h threshold, as was sug
gested in@11#, but not as much as expected~this could be due
to our crude treatment ofh-h8 mixing, which we noted at
the end of Sec. II!.

Finally, in Fig. 3~d!, we show the inelasticity in the~0, 0!
channel. These are the most controversial sets of data, s
there is strong disagreement between several experim
~up to a factor of 2 in the overall normalization!, as we
mentioned when commenting on the data for this observa

Channel „I ,J…Ä„2,0…

We have plotted the results in Fig. 3~e!. Since only thepp
state can have these quantum numbers, we are simply re
ducing the single channel IAM formalism, which alread
gave a very good description of this nonresonant channel@9#.
Nevertheless, let us remark that it is now fitted simul
neously with all the other channels, and the value of
scattering length obtained from our fit is compatible with t
experimental result and standard ChPT~see Table III!.

In addition, once we have a description of this and the~0,
0! channel, we can obtain the phase of thee8 parameter
which measures directCP violation in K→pp decays@48#.
It is defined, in degrees, as follows:

f~e8!590°2~d002d20!s5M
K
2 . ~35!

Our result isf(e8)53860.3, where the error is obtaine
from a Gaussian sampling of the parameters listed in colu
2 of Table II with theMINUIT errors in the third column. This
is in very good agreement with the experimentally observ
value of f(e8)543.567. Standard ChPT@49# predicts 45
66.

Low energy Kl4 decay data

There is no real improvement in the description of the
low energy data in Fig. 3~f! compared to ChPT, since stan
dard ChPT works very well at these energies. However, th
very precise data at such low energies ensure that the pa
eters of our fit cannot be too different from those of stand
ChPT. In addition, they are extremely important in the det
mination of the scattering lengths, in particular, of the co
troversiala00.

Channel „I ,J…Ä„1Õ2,1…

As happened in the~1,1! channel with ther, this channel
is dominated by theK* (892). This is a distinct Breit-Wigner
resonance that can be fitted very accurately with the IA
~see Fig. 3~g!!. From Eq.~34! we find MK* 588965 MeV
and GK* 546613 MeV, in fairly good agreement with the
PDG @45#. The errors were obtained in the same way as
the r resonance in the~1, 1! channel.
9-12
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Channel „I ,J…Ä„1Õ2,0…

Because of the wide dispersion of experimental resu
our fit yields a wide error band for this channel, as can
seen in Fig. 3~h!. Nevertheless, as happened in the~0,0!
channel, the phase shift is of the order of 50° not far
threshold, due to a wide bump similar to thes in that chan-
nel. Here, this broad structure has been identified by diffe
experimental and theoretical analyses@50,9,51,46# as thek
although there is still a controversy about its existence
origin @52#, as also happened with thes. It is very similar to
the s, and hence it cannot be interpreted as a Breit-Wig
narrow resonance.

We also give in Table III the value for the scatterin
length of this channel, in good agreement with the exp
mental data, which nevertheless are not very well known

Channel „I ,J…Ä„3Õ2,0…

Since onlypK can have these quantum numbers, this
once more the IAM with a single channel, which alrea
provided a very good description@8#. We show in Fig. 3i the
results of the global fit for this channel, as well as the cor
sponding scattering length in Table III.

Channel „I ,J…Ä„1,0…

In our global fit, the data in this channel~see Fig. 3j! are
reproduced using Eq.~33!. The shape of thea0(980) is
neatly reproduced in the mass distribution. In order to co
pare the value of the normalization constantc with experi-
ment, we also show in Fig. 4 the result of applying the IA
with the parameters obtained from our fit to the experimen
data obtained from K2p→S1(1385)ph and K2p

→S1(1385)KK̄ @53#. These data have not been included
our fit since they do not have error bars, but it can be s
that the IAM provides a good description. Once again we
using a formula like Eq.~33!, but with a constant differen
from that for Fig. 3j and no background. Our result isc
563615mb/GeV, to be compared with the values quoted
@53# wherec was taken from 73 to 165mb/GeV.

Channel „I ,J…Ä„0,1…

Finally, we show in Fig. 5 the results for the modulus
the amplitude in the~0, 1! channel. In this case, there is on
one meson-meson scattering channel, namely,KK̄→KK̄.
Therefore, we can apply only the single channel IAM, and
so doing we find a pole at approximately 935 MeV on t
real axis. The width of this resonance is zero, since wit
our approach it can couple only toKK̄ and its mass is below
the two-kaon threshold. One is tempted to identify this re
nance with thef~1020! meson, but in fact it can only be
related to its octet partv8 . The reason is that the singlet pa
v1 is SU~3! symmetric and it does not couple to two meso
since their spatial function has to be antisymmetric. Con
quently we can associate the resonance obtained with
IAM only with the octetv8 @9,54#. The position of the pole
seems consistent with an intermediate mass between
f~1020! and thev~770!. This state had also been foun
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when using the IAM with incomplete chiral amplitudes@9#,
and it was used later to study thef→pp decay within a
chiral unitary approach@54#. The fact that we find it here
again confirms that it is not an artifact of the approximatio
used in@9#. In addition, although the amplitudes used he
are complete up toO(p4) and the fit is rather different, it
appears almost at the same place, which supports the so
ness of the results in@9#.

Finally, we have also added in Fig. 3 a dashed line tha
corresponds to the result with the central values of the
rameters in the second column of Table II but where we h
used the one-channel IAM at energies where there is o
one state available, the two-channel IAM when there

FIG. 4. We show the effective mass distributions of the tw
mesons in the final state ofK2p→S1(1385)ph ~top! and K2p

→S1(1385)KK̄ ~bottom!; the data come from@53#. The curves and
bands are as in Fig. 3.

FIG. 5. We show the modulus of the (I ,J)5(0,1) KK̄→KK̄
amplitude. The pole around 935 can be identified with the octetv8

~see text for details!. Although that cannot be shown in a plot, th
modulus of the amplitude actually becomes infinite.
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two, etc. As we commented at the end of Sec. IV, this
proach ensures exact unitarity at all energies, but we can
that it generates a discontinuity at each threshold. The res
are compatible within the wider error bands with the pre
ous IAM fit ~the space between the dotted lines!. This was
expected since, as we have already commented, the d
ence between the two approaches is of the order of a
percent, which is also the order of magnitude of the syste
atic error added to the data for the fit. Of course, it is poss
to obtain a fit with this method also, as done in@8#, and the
resulting parameters are still compatible with those listed
Table III.

VIII. CONCLUSIONS

In this work we have completed the calculation of t
lightest octet meson-meson scattering amplitudes within
ral perturbation theory at one loop. We have calculated th
new amplitudeshh→hh, Kh→Kh, andKh→Kp, but we
have also recalculated the other five independent amplitu
checking and revising previous results. The full expressi
are given in Appendix B in a unified notation, using dime
sional regularization and theMS21 renormalization
scheme, which is the usual one within ChPT. All the mes
meson scattering partial waves below 1200 MeV, with de
nite isospinI and angular momentumJ, can be expressed i
terms of these eight amplitudes.

Since ChPT is a low energy theory, the one-loop am
tudes have to be unitarized in order to reach energies as
as 1200 MeV~and, in particular, the two-kaon threshold!.
For that purpose we have applied the coupled channe
verse amplitude method, which ensures unitarity for coup
channels and is also able to generate resonances and
associated poles, without introducing any additional para
eter. In addition, it respects the chiral expansion at low
ergies, in our case up toO(p4). Thus, we have shown that
is possible to describe simultaneously the data on the (I ,J)
5(0,0), ~1,1!, ~2,0!, ~1,0!, ~1/2,0!, ~1/2,1!, and ~3/2,0!
meson-meson channels below 1200 MeV, which corresp
to 20 different reactions. We also describe seven reso
shapes, namely, thes, r~770!, K* (892), k, f 0(980),
a0(980), and the octetv8 .

This description is achieved with values for the low e
ergy constants that are perfectly compatible with previo
determinations obtained using standard ChPT and low
ergy data. This comparison is possible only since we n
have the completeO(p4) expression for all the amplitudes i
the standard ChPT scheme. Indeed, with the present dete
nations of standard ChPT, we can already find the resona
shapes and we obtain the most distinct features of each c
nel, although with large uncertainties due to the pres
knowledge of the chiral parameters.

Nevertheless, we have performed a fit of our unitariz
amplitudes to the meson-meson data and we have obtain
very accurate description not only of the resonance reg
but also of the low energy data, and in particular of t
scattering lengths. We have also paid particular attentio
the uncertainties and errors in our description, which h
been estimated with Monte Carlo samplings of the fitted c
05400
-
ee
lts
-

er-
w
-

le

n

i-
e

s,
s

-

-
-

i-
gh

n-
d

heir
-
-

d
nt

-
s
n-
w

i-
ce
n-

nt

d
d a
n,

to
e
i-

ral parameters within their resulting error bars.
Summarizing, we have extended and completed previ

analyses using these techniques in the meson sector so
we believe that our present work will be useful for furth
phenomenological applications.
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APPENDIX A: USEFUL FORMULAS

Here we will give the main results and definitions of th
different functions coming from the one-loop ChPT calcu
tion. We are following the notation and conventions of@3#.

When calculating the ChPT amplitudes, the typical lo
integrals that appear are, on the one hand, the tadpole
gral, i.e., the Feynman boson propagator evaluated atx50:

E ddq

~2p!d

i

q22Mi
2 52Mi

2l1
Mi

2

16p2 log
Mi

2

m2 ~A1!

wherem is the renormalization scale,i 5p,K,h, and we have
extracted its divergent part ford→4, with l given in Eq.~5!.
On the other hand, the integral coming from diagrams~a!,
~b!, and~c! in Fig. 1 is:

JPQ~p2!52 i E ddq

~2p!d

1

@q22M P
2 #@~q2p!22MQ

2 #
~A2!

whereP, Q5p,K,h and whose divergent contribution in d
mensional regularization can be separated as

JPQ~s!5JPQ~0!1 J̄PQ~s!1O~d24!, ~A3!

where

JPQ~0!522l2
1

16p2

1

D FM P
2 log

M P
2

m2 2MQ
2 log

MQ
2

m2 G ,
J̄PQ~S!5

1

32p2 F21S D

s
2

S

D D log
MQ

2

M P
2

2
n~s!

s
log

@s1n~s!#22D2

@s2n~s!#22D2G , ~A4!

and

D5M P
2 2MQ

2 ,

S5M P
2 1MQ

2 ,
9-14
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n2~s!5@s2~M P1MQ!2#@s2~M P2MQ!2#.

For the case of a single massM P5MQ , the above inte-
grals read

JPP~s!522l2
1

16p2 S 11 log
M P

2

m2 D 1 J̄PP~s!,

J̄PP~s!5
1

16p2 F21s~s!log
s~s!21

s~s!11G , ~A5!

with

s~s!5~124M P
2 /s!1/2 ~A6!

Note that the above integrals have the correct unita
structure in the right cut, which extends on the real axis fr
s5(M P1MQ)2 to infinity. In fact, all the integrals appearin
to one loop in ChPT can be expressed in terms of the tad
and J̄ integrals above@3#. However, it is customary to ex
press the results also in terms of

J% PQ~s![ J̄~s!2sJ̄8~0!, ~A7!
05400
y

le

where from Eq.~A4! one has

J̄8~0!5
1

32p2 F S

D2 12
M P

2 MQ
2

D3 log
MQ

2

M P
2 G . ~A8!

From the above definitions it is easy to check that
functions J̄(s)/s and J% (s)/s2 have well-defined limits ass
→0.

APPENDIX B: ONE LOOP AMPLITUDES FROM CHPT

Here we list the expressions for the eight independ
meson-meson scattering amplitudes to one loop in ChPT.
have carefully checked the scale independence and pertu
tive exact unitary~see Sec. III!. Note that we have used Eq
~9! to write all thef K and f h in terms off p , L4

r , andL5
r , in

order to ensure ‘‘exact’’ perturbative unitarity, Eq.~27!. Let
us first give the three amplitudes that had never before
peared in the literature in any form.

For hh→hh,
T~s,t,u!5
16MK

2 27Mp
2

9 f p
2 1

mp

9 f p
2 $7Mp

2 248Mh
2%2

mK

18f p
2 MK

2 $81@ t22su24tMh
2 #114Mp

4 248Mp
2 Mh

21378Mh
4%

2
mh

3 f p
2 Mh

2 $Mp
4 28Mp

2 Mh
2124Mh

4%1
4

f p
4 ~2L1

r 12L2
r 1L3!$s21t21u224Mh

4%2
8

3 f p
4 $12Mh

4L4
r 1~3Mp

4

210Mp
2 Mh

2113Mh
4 !L5

r 236Mh
4L6

r 224~Mp
4 23Mp

2 Mh
212Mh

4 !L726L8
r ~2Mp

4 26Mp
2 Mh

217Mh
4 !%

2
1

192p2f p
4 $27~ t22su24tMh

2 !116~23Mh
4222MK

2 Mh
2110MK

4 !%1
1

6 f p
4 $ 1

27 ~16MK
2 27Mp

2 !2J̄hh~s!

1Mp
4 J̄pp~s!1 1

12 ~9s22Mp
2 26Mh

2 !2J̄KK~s!1@s↔t#1@s↔u#%. ~B1!

For K̄0h→K̄0h,

T~s,t,u!5
9t26Mh

222Mp
2

12 f p
2 2

2L5
r

3 f p
4 @3Mp

4 112Mh
41Mp

2 ~5Mh
229t !#1

1

3 f p
4 $2~12L1

r 15L3
r !~2MK

2 2t !~2Mh
22t !1~12L2

r 1L3!

3@~s2MK
2 2Mh

2 !21~u2MK
2 2Mh

2 !2#%1
4

f p
4 $8~L6

r 2L4
r !MK

2 Mh
212L7~Mp

4 24Mp
2 Mh

213Mh
4 !

1L8
r ~Mp

4 23Mp
2 Mh

216Mh
4 !12L4

r t~Mh
21MK

2 !%2
mp

48f p
2 ~MK

2 2Mh
2 !

$2MK
2 @26Mh

2169t#284MK
4

13@16Mh
4 250tMh

21~s2u!2#%2
mK

72 f p
2 MK

2 ~MK
2 2Mh

2 !
$92MK

6 281Mh
2 t2260MK

4 @3t1Mh
2 #

118MK
2 ~5t222su16tMh

218Mh
4 !%1

mh

144f p
2 Mh

2~MK
2 2Mh

2 !
$144tMK

4 2128MK
6 1@27~s2u!22486tMK

2

1428MK
4 #Mh

212@153t2166MK
2 #Mh

41144Mh
6%1

1

2304f p
4 p2 $116MK

4 1MK
2 @184Mh

22153t#
9-15



First, we
all the
nfortunate

mpared
rms of only
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29@10t212su23tMh
214Mh

4 #%1
t J̄KK~ t !~9t22Mp

2 26Mh
2 !

16f p
4 1

J̄hh~ t !~9t22Mp
2 26Mh

2 !~16MK
2 27Mp

2 !

216f p
4

1
t J̄pp~ t !Mp

2

8 f p
4 1

1

32 f p
4 H J̄Kh~s!

9
@27s~s2u!1189MK

4 18Mp
4 154uMh

2145Mh
4112Mp

2 ~3s22Mh
2 !

218MK
2 ~6s23u14Mp

2 19Mh
2 !#1

J̄Kp~s!

9
@27s~s2u!129MK

4 111Mp
4 118Mh

412MK
2 ~18s127u247Mp

2

278Mh
2 !16Mp

2 ~9u26s18Mh
2 !#2

J̄Kp~s!

s
$MK

4 ~3u114Mp
2 28Mh

2 !12MK
6 22MK

2 Mp
2 ~3u15Mp

2 14Mh
2 !

1Mp
2 @6Mh

41Mp
2 ~3u14Mh

2 !#%1
J̄Kh~s!

s
~MK

2 2Mh
2 !2~4Mp

2 218MK
2 26Mh

223u!16~MK
2 2Mh

2 !2

3
J% Kp~s!~MK

2 2Mp
2 !21J% Kh~s!~MK

2 2Mh
2 !2

s2 1@s↔u#J . ~B2!

For K̄0h→K̄0p0,

T~s,t,u!5
8MK

2 13Mh
21Mp

2 29t

12) f p
2

1
mp

48) f p
2 ~MK

2 2Mp
2 !

$27s2118su127u21174tMK
2 2292MK

4 112~5MK
2 26t !Mp

2

232Mp
4 %2

mK

24) f p
2 MK

2 ~MK
2 2Mp

2 !
$9t2Mp

2 124MK
6 14MK

4 ~17Mp
2 215t !12MK

2 @9~s2u!216tMp
2 222Mp

4 #%

2
mh

16) f p
2 ~MK

2 2Mh
2 !

$3~s2u!212~3t214MK
2 110Mh

2 !~Mk
222Mh

2 !%1
1

256)p2f p
4 $2~2s1u!~s12u!2192MK

4

223tMh
2216Mh

415MK
2 ~13t124Mh

2 !%2
L3

) f p
4 $s214su1u2230MK

4 22tMh
212Mh

416MK
2 ~ t12Mh

2 !%

1
1

) f p
4 $3Mp

4 @L5
r 22~2L71L8

r !#1Mh
4@6~2L71L8

r !2L5
r #26L5

r Mp
2 ~ t2Mh

2 !%2
9t28MK

2 2Mp
2 23Mh

2

144) f p
4 @3t J̄KK~ t !

14Mp
2 J̄ph~ t !#1

1

288) f p
4 H J̄Kh~s!@27s~u2s!245MK

4 114Mp
4 26Mh

2~9u17Mp
2 !29Mh

41MK
2 ~36s254u

122Mp
2 1156Mh

2 !#13J̄Kp~s!@29MK
4 17Mp

4 13s~9s13u24Mh
2 !22MK

2 ~16s19u218Mp
2 13Mh

2 !

2Mp
2 ~40s118u230Mh

2 !#19
J̄Kh~s!

s
~MK

2 2Mh
2 !@10MK

4 12Mp
4 2Mh

2~3u18Mp
2 !1MK

2 ~3u212Mp
2 18Mh

2 !#

19
J̄Kp~s!

s
~MK

2 2Mp
2 !2~3u22MK

2 12Mp
2 !2

54J% Kh~s!

s2 ~MK
2 2Mp

2 !~MK
2 2Mh

2 !32
54J% Kp~s!

s2 ~MK
2 2Mp

2 !3

3~MK
2 2Mh

2 !1@s↔u#J . ~B3!

Apart from the above three amplitudes, we have recalculated the other independent five. The reason is threefold.
wanted them to satisfy exact perturbative unitarity to apply the simplest IAM formulas. This was not the case of
calculations in the literature, even when considering the one-channel case. Second, there have been several u
misprints and errata in the published formulas~including some errata made by one of us!. Finally we would like to have a
self-contained description of the one-loop calculation, together with all the resulting formulas. Nevertheless, when co
with previous analyses, our results are not exactly the same because we have chosen to express the amplitudes in te
054009-16
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one physical decay constantf p , and we have used the Gell-Mann–Okubo relation only to simplify masses if it did not a
the exact perturbative unitarity relation. Apart from previous misprints, the differences areO(p6). The first amplitude to
appear in the literature wasp1p2→p0p0, although in SU~2! @2#. However, we have been able to check also with the SU~3!
calculation@10#. The result, following the notation in Appendix A, is
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The K1p1→K1p1 one-loop calculation was first given in@10#. It was correct up toO(p4) but when expressed in term
of physical constants it did not satisfy exact perturbative unitarity. One of us gave an expression satisfying that relation@8#, but
there was also a typographical error in that reference. Our corrected result, expressed just in terms off p is
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The one-loopp0h→p0h amplitude was calculated in@10#. We give here the result expressed in terms of phys
quantities:
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Finally, the KK scattering amplitudes were calculated in@11#. They were given in a rather different notation from th
previous ones. Our result is, forK1K2→K1K2,
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and for K̄0K0→K1K2,
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