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Heavy-light meson decay constant from QCD sum rules in the three-loop approximation
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~Received 25 September 2001; published 28 January 2002!

In this paper we compute the decay constant of the pseudoscalar heavy-light mesons in the heavy quark
effective theory framework of QCD sum rules. In our analysis we include the recently evaluated three-loop
result of orderas

2 for the heavy-light current correlator. The value of the bottom quark mass, which essentially
limits the accuracy of the sum rules forB meson, is extracted from the nonrelativistic sum rules forY
resonances in the next-to-next-to-leading approximation. We find stability of our result with respect to all types
of corrections and the specific form of the sum rule which reduces the uncertainty. Our resultsf B5206
620 MeV andf D5195620 MeV for theB andD meson decay constants are in impressive agreement with
recent lattice calculations.

DOI: 10.1103/PhysRevD.65.054006 PACS number~s!: 12.38.Lg, 14.40.Lb, 14.40.Nd
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I. INTRODUCTION

The decay constant of a pseudoscalar meson with
heavy and one light quark constitutes a hadronic quan
which is of primary phenomenological interest. It covers t
strength of the leptonic weak decays ofB andD mesons and
enters as an input quantity into the analysis of the non
tonic B and D meson decays and theB-B̄ mixing process.
The latter is of special interest since it provides a dir
source of the information on the Cabibbo-Kobayas
Maskawa matrix elements involving the top quark. Still
experimental information of sufficient accuracy is availab
and the theoretical study of the decay constant is manda

The first quantitative evaluation of theB and D meson
decay constantsf B and f D using radiative corrections wa
performed in@1# where the QCD sum rules proposed in@2,3#
have been used together with the perturbative two-loop
sults ofO(as) @4#. More refined evaluations followed@5–9#
where it was realized that the accuracy of the decay const
is significantly limited by the uncertainty of the bottom qua
mass. In@10–12# the heavy quark effective theory~HQET!
@13,14# has been used to resum the leading and next
leading logarithms of the heavy quark mass. After the ren
malization group improvement the two-loop correctio
were found to be huge, which might be a signal of the i
portance of the higher order contributions and questions
reliable determination of the decay constants.

The only method to compute hadronic matrix eleme
which is entirely based on the first principles of QCD
probably the lattice gauge theory simulations. For theB me-
son decay constant the value

f B
lat5200630 MeV ~1!

is cited in the review article@15# as an average over differen
calculations performed on the lattice. It agrees w
with a recent evaluation off B @16# where the resultf B
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0556-2821/2002/65~5!/054006~9!/$20.00 65 0540
ne
ty
e

-

t
-

ry.

e-

ts

o-
r-

-
e

s

ll

5204(8)(29)(144) MeV is given. Here, the first error i
statistical, the second due to the discretization and the t
one includes the uncertainty from the lattice scale. The nu
bers obtained forf B from lattice calculations are in reason
able agreement with the ones obtained from sum rules.
averaged value for the latter can be found in@17#

f B
s.r.5178642 MeV. ~2!

For theD meson decay constant the situation is similar. T
lattice result@15,18#

f D
lat5225630 MeV, ~3!

again overshoots the sum-rule estimate

f D
s.r.5188648 MeV, ~4!

given in Ref.@17#. In spite of the essential progress in th
lattice calculations their uncertainty is still rather large and
is too early to rely solely on the results of this approach.
the other hand, the sum-rule analysis can be essentially
proved to reach an accuracy which is comparable or e
better than the current accuracy of the lattice calculations
provides an independent cross check of the latter. In
paper we perform an analysis of the sum rules for
pseudo-scalar heavy-light meson decay constant and
prove the existing calculations with respect to several po
which we summarize in the following.

~i! We include the three-loop perturbative corrections
O(as

2) which recently became available@19,20#.
~ii ! The bottom quark mass, which constitutes a cruc

input for f B , is determined using the approach suggested
@21,22# in the context of semileptonic decays of the botto
quark. The latter is also quite sensitive to the pole massmb .
The basic idea is to replacemb by the ratio of experimenta
and theoretical moments of the nonrelativistic sum rules
Y resonances. It is computed order by order up to the n
to-next-to-leading accuracy depending on the perturba
input used for the evaluation of the sum rules forf B . In this
context we would like to refer to@7# where also the
Y-resonance sum rules have been used, however, only u
orderas .
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A. A. PENIN AND M. STEINHAUSER PHYSICAL REVIEW D65 054006
The charm quark pole massmc , necessary for the calcu
lation of f D , is then extracted from the HQET relation b
tweenmb andmc .

~iii ! For the evaluation of the decay constantf B we use
both Laplace and Hilbert sum rules. We present, for the fi
time, the explicit formulas of the latter in the framework
HQET. The comparison of the results obtained with bo
approaches provides us with an estimate of the intrinsic
certainty of the method.

We will show that these new ingredients improve sign
cantly the reliability of the sum rules and finally the pred
tion for the decay constant, in particular forf B .

This paper is organized as follows. In Secs. II and III w
introduce the basic features of the sum rules and the HQ
formalism, respectively. In Sec. IV the renormalization gro
improved sum rules for the decay constant are given in
three-loop approximation. The problem of the heavy qu
mass determination is discussed in Sec. V. In Sec. VI,
present the numerical analysis and Sec. VII contains our c
clusions.

II. SUM RULES

The decay constant of a pseudo-scalar mesonP consisting
of a heavy~Q! and a light quark~q! is defined through the
matrix element

^0u j m
a uP~p!&5 i f Ppm , ~5!

where j m
a 5q̄gmg5Q is the axial-vector current. In this pape

we focus on theB meson with the bottom quark as the hea
constituent but present also the analysis ofD mesons with
charm as heavy flavor. We neglect theSU(3) violating ef-
fects of the strange quark mass. The ratio of the decay c
stants of strange and non-strange mesons can be rel
computed both on the lattice and using QCD sum rules, a
essential part of the uncertainties cancels@15–18#.

In order to derive the QCD sum rules for the pseud
scalar heavy-light meson decay constantf P one considers the
correlator

Ca~q2!5 i E dxeiqx^0uT]m j m
a ~x!]n j n

a†~0!u0&, ~6!

which is related to the correlator of the pseudo-scalar c
rents

Pp~q2!5 i E dxeiqx^0uT jp~x! j p†~0!u0& ~7!

by the equation ]m j m
a 5mQj p, where j p5 i @mQ(m)/

mQ#q̄g5Q andm̄Q(m) andmQ are theMS and pole mass o
the heavy quarkQ, respectively.

Following @3# the correlatorCa(q2) is evaluated in two
ways. In the Euclidean region whereq22mQ

2 !0 it can be
reliably computed in QCD because of the asymptotic fr
dom. The correlator gets a perturbative contribution cor
sponding to the leading operator in the operator product
pansion~OPE! of the two currents in Eq.~6!. Furthermore
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there are power suppressed terms from the vacuum exp
tion values of the higher dimension operators~so-called
vacuum condensates! parametrizing the nonperturbativ
long-distance effects. On the other hand, the correlator
be obtained from the dispersion integral over the phys
states. In the standard analysis only the ground state mes
supposed to give a delta-function contribution to the spec
function. Assuming local quark-hadron duality the contrib
tion from the higher resonances is modeled by the pertu
tive continuum starting at some thresholdsc which brings an
intrinsic uncertainty to the approach. Finally one arrives
the following equation:

Cpt
a ~q2!1Cnpt

a ~q2!5
f P

2 M P
4

M P
2 2q2

1
1

pEsc

`

ds
Im@Cpt

a ~s!#

s2q2

1subtractions, ~8!

whereM P is the meson mass.Cpt
a and Cnpt

a are the pertur-
bative and nonperturbative QCD contributions, respectiv
The subtractions needed for the dispersion integral are
specified explicitly as they will drop out in the following. T
suppress the contribution from higher resonances and to
duce the uncertainty one can perform a Borel transforma
of Eq. ~8!

1

~n21!! S 2q2
d

dq2D n

Ca~q2!U
2q2,n→`

2q2/n5M2

5
1

pEmQ
2

`

ds
e2s/M2

M2
Im @Ca~s!#, ~9!

where M is the Borel parameter, and arrive at so-call
Laplace sum rules. Alternatively, it is possible to consid
moments of Eq.~8!

1

n! S d

dq2D n

Ca~q2!U
q250

5
1

pEmQ
2

`

ds
Im @Ca~s!#

sn11
, ~10!

which leads to Hilbert sum rules. To estimate the intrin
uncertainty of the method we will follow both options. In th
above sum rules the weight functions cut off the dispers
integral at a typical hadronic scale much less than the he
quark mass so that it is saturated by the near threshold re
where the heavy quark is nonrelativistic. Laplace sum ru
are particularly relevant for the nonrelativistic HQET ana
sis because of the heavy quark mass independent expone
suppression of the relativistic momentum region. The sit
tion is more tricky in the case of Hilbert sum rules as
discussed below.

III. HEAVY QUARK EFFECTIVE THEORY

Systematic description of the heavy quark nonrelativis
dynamics and consistent separation of the relativistic effe
can be done within HQET. Let us discuss this issue in m
detail. The perturbative heavy-light quark system involv
two dynamical scales: the hard scale given by the he
6-2
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HEAVY-LIGHT MESON DECAY CONSTANT FROM QCD . . . PHYSICAL REVIEW D65 054006
quark mass and the soft scale given by the off-threshold
ergy

ṽ5
q22mQ

2

mQ
. ~11!

By integrating out the relativistic hard modes with the o
shell momentum of ordermQ one arrives at HQET which
includesṽ as dynamical scale. The effect of the hard mod
is accumulated in the Wilson~matching! coefficients leading
to an expansion inas along with relativistic corrections an
contributions from higher dimensional operators leading
an expansion in 1/mQ . In the hadronic matrix elements th
latter is converted to an expansion in the dimensionless
rameterL̄/mQ whereL̄'M P2mQ describes the nonpertur
bative long-distance effects and remains finite asmQ→`. In
the process of scale separation spurious divergences ap
at the intermediate steps which result in the anomalous
mensions of the effective theory operators and lead to
corrections involving the large logarithms of the for
ln(mQ /ṽ). These logarithmic corrections can be resumm
by solving the effective theory renormalization group equ
tions.

For this purpose let us consider the effective theory re
ization of the axial-vector current. The corresponding co
nection between the QCD operator and its HQET counter
is given by

j m
a 5Ca~mQ!C̃~mQ! j̃ m8 ~mQ!1O~1/mQ!. ~12!

The matching coefficients have been computed in@23,24# up
to orderas

2 . In theMS subtraction scheme they read

Ca~mQ!512
as

(nf )~mQ!

p

2

3
1S as

(nf )~mQ!

p
D 2F2

683

576
2

17p2

72

2
p2

18
ln 22

11

36
z~3!1nl S 47

288
1

p2

36D G , ~13!

C̃~mQ!511
89

864
S as

(nl )~mQ!

p
D 2

,

where nl is the number of light flavors andz(3)
51.2020569 . . . is theRiemannz-function. The renormal-
ization group equation which governs the evolution ofj̃ m8 (m)
is of the form

m2
d

dm2
j̃ m8 ~m!5g̃8 j̃ m8 ~m!, ~14!

where the anomalous dimension is known up to two loo
@25#

g̃85g0

as
(nl )

p
1g1S as

(nl )

p
D 2

1O~as
3!,
05400
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g05
1

2
, g15

127

144
1

7p2

108
2

5

72
nl . ~15!

The solution of Eq.~14! reads

j̃ m8 ~m!5AX~mQ!

X~m!
j̃ m8 ~mQ!, ~16!

where

X~m!5@as
(nl )~m!#2g0 /b0F11S g1

b0
2

g0b1

b0
2 D as

(nl )~m!

p

1O~as
2!G 2

, ~17!

and the first two coefficients of theb-function are given by

b05
11

4
2

1

6
nl , b15

51

8
2

19

24
nl . ~18!

Thus in the nonrelativistic regionṽ!mQ we have the fol-
lowing representation of the perturbative part of the c
relator ~6!:

Im@Cpt
a ~q2!#5@Ca~mQ!C̃~mQ!#2

X~m!

X~mQ!
mQ

2 Im @P̃pt~ṽ !#

1O~1/mQ!, ~19!

where the universal HQET current correlatorP̃pt(ṽ) does
not depend onmQ and the spin and parity of the currents. I
imaginary part is known up to the three-loop approximati
of O(as

2) @20#

Im @P̃pt~ṽ !#5
3ṽ2

8p
S 11

as
(nl )~m!

p F17

3
1

4p2

9
1L ṽG

1S as
(nl )~m!

p
D 2H 99~15!1S 1657

72
1

97p2

54 DL ṽ

1
15

8
L ṽ

2
1nlF23.6~4!1S 2

13

12
2

2p2

27 DL ṽ

2
1

12
L ṽ

2 G J D , ~20!

whereL ṽ5 ln(m2/ṽ2). The uncertainty in the non-logarithmi
three-loop terms results from the semi-numerical meth
used in Ref.@20#. For m'ṽ the HQET correlator does no
include large logarithms. They are all contained in the fac
X(m)/X(mQ) which sums up the leading and next-to-leadi
logarithms of the formas

n lnn(mQ /ṽ) andas
n11 lnn(mQ /ṽ).

On the phenomenological side the HQET decay cons
is defined through the matrix element of the HQET curre
6-3
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^0u j̃ m~m!uP̃~v !&5
i

A2
f̃ P~m!vm , ~21!

whereuP̃(v)& is the nonrelativistic, i.e. quantum mechanic
meson state with velocityv. It is connected tof P via the
relation

f PAM P5Ca~mQ!C̃~mQ! f̃ P~mQ!1O~1/mQ!. ~22!

By using the renormalization group property of the HQE
current it is convenient to introduce the renormalizati
group invariant quantity

f̃ P
r 5AX~m! f̃ P~m!, ~23!

which is a universal low-energy parameter of strong inter
tions.

IV. THE HEAVY QUARK EFFECTIVE THEORY SUM
RULES

Now we are in the position to write down the renorma
ization group improved sum rules for the heavy-lig
pseudo-scalar meson decay constant.

A. Laplace sum rules

Let us start with the sum rules in the infinite heavy qua
mass limitmQ→`. Transforming Eq.~8! to HQET and ne-
glecting the mass suppressed terms we obtain

~ f̃ P
r !25eD/TH X~m!S T

pE0

ṽc /T
dze2z Im @P̃pt~zT!#2^q̄q&~m!

3F112
as

p G D 1X~T!
m0

2^q̄q&

4T2 J , ~24!

whereD5(M P
2 2mQ

2 )/mQ , ṽc5(sc2mQ
2 )/mQ , m0

25^q̄gs

3Gmnsmnq&/^q̄q& andmQT5M2. We keep the operators u
to dimension 5 in the OPE and neglect the running of
quark-gluon operator.

The mass suppressed contribution to the correlator ca
found by subtracting the asymptotic HQET result from t
full theory expression. In this way the mass suppressed c
tribution to the physical decay constant from Laplace s
rules is obtained as

d f P
2 5eD/T

1

M P
S mQ

M P
D 3H T

pE0

ṽc /T
dze2z Im @dPpt

p #~zT!

1^q̄q&~mQ!F2as

p

T

mQ
E

0

`

dz
e2z

11zT/mQ
G

2
m0

2^q̄q&
2TmQ

1
^asG

mnGmn&
12pmQ

J , ~25!

where
05400
,

-

e

be

n-

Im@dPpt
p ~q2!#5Im@Ppt

p ~q2!#

2@Ca~mQ!C̃~mQ!#2
X~m!

X~mQ!
Im@P̃pt~ṽ !#.

~26!

The one-loop expression for this function is given by

Im@d (1)Ppt
p ~ṽ !#52

3

8p

ṽ

mQ

ṽ2

11ṽ/mQ

. ~27!

The two-loop approximation forPpt
p (q2) is known in full

QCD in analytical form@4#. It determines theO(as) part of
Eq. ~26! which reads

Im@d (2)Ppt
p ~ṽ !#5

as

2p2

ṽ2

11ṽ/mQ
H 2

ṽ

mQ
F13

4
1

p2

3

1
3

2
lnS mQ

ṽ
D G1FS ṽ

mQ
D J , ~28!

where

F~x!52Li2~2x!1 ln~x!ln~11x!2
x

11x
ln~x!

1
11x

x
ln~x11!21

52
3

2
x1S 1

3
1

1

2
ln~x! D x21O~x3!, ~29!

with Li2(z) being the dilogarithmic function. The perturba
tive mass suppressed contribution ofO(as

2) can be obtained
from the numerical three-loop result1 of @19,20#. Thus we get
the final expression for the decay constant:

f P
2 5S mQ

M P
D 3@Ca~mQ!C̃~mQ!#2

X~mQ!

~ f̃ P
r !2

M P
1d f P

2 . ~30!

The first term of this equation includes the leading HQE
contribution up toO(as

2) and the resummed leading an
next-to-leading logarithms of the heavy quark mass. The s
ond term represents all heavy quark mass suppressed t
up to orderas

2 .

B. Hilbert sum rules

The use of HQET for Hilbert sum rules is rather subtle
they do not have a proper infinite heavy quark mass lim
Indeed, the naive limitmQ→` leads to the decay constan

~ f̃ P
r !25

1

8p2ṽc
32^q̄q&1O~as!, ~31!

1Available at URL http://www-ttp.physik.uni-karlsruhe.de
Progdata/ttp00-25
6-4
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which, in contrast to Eq.~24!, does not contain a dynamica
constraint on the parameterṽc . Therefore one cannot us
them to study the HQET decay constant. Nevertheless
possible to apply Hilbert sum rules for the calculation of t
physical decay constant and, furthermore, use HQET for
analysis. Indeed, if we keep the factor 1/sn1151/@mQ

2n12(1

1ṽ/mQ)n11# unexpanded in 1/mQ , it is straightforward to
obtain the proper scaling

ṽc5
4

3
D1O~as,1/mQ!, ~32!

where D is defined after Eq.~24!, from the ratio of two
arbitrary moments. Note that Eq.~32! is obtained from the
purely perturbative correlator and the quark condensate
tribution is neglected. This allows for the nonrelativist
treatment of the heavy quark inCa(s). Moreover, the dis-
persion integral is saturated by the regionṽ,mQ /n and thus
for n.mQ /ṽc the result is not sensitive toṽc in contrast to
Eq. ~31!. In this way we obtain the renormalization grou
improved Hilbert sum rules of the following form:

f P
2 5

M P
2n22

mQ
2n21 H ṽc

p E
0

1 dz

~11zṽc /mQ!n11

3S @Ca~mQ!C̃~mQ!#2
X~m!

X~mQ!
Im@P̃pt~zṽc!#

1Im@dPpt
p ~zṽc!# D2^q̄q&~mQ!

3F11
2

3

as

p S 123
ṽc

mQ
E

0

` dz

~11zṽc /mQ!n12D G
1

n~n11!

8

m0
2^q̄q&

mQ
2

1
^asG

mnGmn&
12pmQ

J . ~33!

V. THE HEAVY QUARK MASSES

Before turning to the numerical analysis we want to d
cuss the determination of the heavy quark mass which is
input parameter of the sum rules given above. The result
the physical decay constant~30! is rather sensitive to the
heavy quark mass value. ThereforemQ should be determined
with a great accuracy in order to obtain a reasonable pr
sion for f P . The best accuracy of the bottom quark ma
determination is achieved within the heavy quarkonium s
rules @2#. The corresponding expression for the pole mas
given by the ratio

mb5S M n
th

M̃n
expD 1/2n

. ~34!

Here the dimensionful experimental moments

M n
exp59E

0

`

ds
Rexp~s!

sn11
, ~35!
05400
is

e

n-

-
n

or

i-
s

is

are generated by the normalized cross section ofe1e2 anni-
hilation Rexp(s)5s(e1e2→hadronsbb̄)/s(e1e2→m1m2).
The dimensionless theoretical moments are defined as
lows:

M n
th512p~4mb

2!nE
0

`

ds
Im@Pv~s!#

sn11
, ~36!

where the vector current correlator is defined through

~qmqn2q2gmn!Pv~q2!5 i E dxeiqx^0uT jm~x! j n~0!u0&,

~37!

with j m5b̄gmb. If n is large enough the experimental m
ments are saturated by theY resonance contributions whic
are known with high precision. For largen the dispersion
integral in Eq.~36! is saturated by the region near thresho
where the nonrelativistic expansion in the heavy quark
locity is applicable and the correlator can be systematic
computed within the effective theory of nonrelativistic QC
~NRQCD! @26#. The complete result for the moments inclu
ing the second order corrections in the strong coupling c
stant and heavy quark velocity is now available@22,27–29#.

It is widely believed that due to the renormalon contrib
tions the absolute value of the heavy quark pole mass
tained through Eq.~34! is divergent@29–31#. As a conse-
quence the absolute value of the pole mass is plagued
an intrinsic uncertainty of orderLQCD . On the other hand
mb is not an observable and has no immediate phys
meaning. Therefore it can safely be removed from relatio
between physical observables. Using this philosophy we
placemb in the sum rules forf B by the fixed order expres
sion of the right-hand side of Eq.~34!. Equivalently, we de-
termine the value of the pole mass according to Eq.~34! only
in a given order of the perturbative expansion correlated
the order of the approximation forf B . A detailed discussion
of the sum rules and the corresponding numerical results
be found in@22#. In particular, we use the next-to-leadin
order~NLO! result,mb54.68 GeV, for the calculation off B
to order as and the next-to-next-to-leading order~NNLO!
result, mb54.79 GeV, for theO(as

2) analysis of f B . The
accuracy of the numerical value for the fixed order appro
mation formb is no longer restricted byLQCD since it is not
related to the divergence of the series in Eq.~34!. It is mainly
due to the dependence of the theoretical moments on
normalization scale ofas and due to the dependence onn
which altogether amounts to660 MeV for the NNLO result
@22,27#. Note that the direct order-by-order matching of t
results formb and f B is not obvious due to different kinds o
resummation adopted in the sum rules: the study of
Y-resonance sum rules requires the resummation of the
gular Coulomb terms while the above analysis of t
B-meson sum rules involves the resummation of the he
quark mass logarithms. Our matching of the perturbative
ries is based on the fact that in a given approximation b
the Y-resonance sum rules and theB-meson sum rules in-
clude the perturbative corrections of the same order inas to
the threshold behavior of the heavy-heavy and heavy-li
6-5
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A. A. PENIN AND M. STEINHAUSER PHYSICAL REVIEW D65 054006
quark current correlators, respectively. Performing the an
sis in the described way we expect that the large perturba
corrections tomb cancel in the complete expression so th
the final series forf B in terms of physical moments~35! is
convergent. This approach turned out to be very efficient
the analysis of the bottom quark semileptonic decay wi
@21,22#. We will show that the method works in the case
the sum rules forf B as well.

For a given value of the bottom quark mass the cha
quark mass can be obtained from the HQET constraint of
form

mb2mc1O~1/mb,c!5MB2MD , ~38!

which results inmc51.37 GeV for the NNLO value ofmb .
Due to the cancellation between the different terms of or
1/mb,c ~see, for example,@32#! this numerical value is valid
with O(1/mb,c) accuracy. The use of the relation~38! brings
an additional uncertainty tomc so that the total uncertaint
can be roughly estimated as6100 MeV.

VI. NUMERICAL ANALYSIS

In this section we present the numerical analysis of
sum rules. We adopt the same input values for the vacu
condensates as in@17#:

^q̄q&~1 GeV!52@225~25! MeV#3,

^asG
mnGmn&50.04~2! GeV4, ~39!

m0
2~1 GeV!50.8~2! GeV2.

The strong coupling constant is evaluated with four act
flavors using two-loop accuracy andL (4)5296 MeV. This
value corresponds toas

(5)(mb)50.210 obtained from
as

(5)(MZ)50.1185 using the four-loop renormalizatio
group evolution@33#. For the meson masses we useMB
55.2793(7) GeV andMD51.8641(10) GeV, respectivel
@34#.

A. The decay constant within heavy quark effective theory

Let us start with the analysis of the limitmQ→`. The
general philosophy for the determination of the decay c
stant from Laplace sum rules is as follows@3#: one has to
optimize the upper bound of the duality interval,ṽc , in such
a way that the value off̃ P

r as computed from Eq.~24! is
stable against a variation of the Borel parameterT. The latter
is varied in the range where both the hadronic and Q
representations of the correlator can be computed relia
On the QCD side of the sum rules the restriction onT is
mainly due to the perturbative contribution becauseT is an
effective scale ofas in Eq. ~24!. Taking into account the
large value of the second order nonlogarithmic coefficien
Eq. ~20! we conclude thatT cannot be chosen much less th
1.5 GeV whereas(T)/p*0.1 to ensure the convergence
the perturbative series. Note that the power suppressed t
become dangerous at essentially lowerT and that the above
restriction also provides the convergence of the oper
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product expansion~OPE!. On the opposite side of the sum
rules the hadronic representation of the correlator is relia
only for T&ṽc which provides the exponential suppressi
of the contributions from higher resonances.

The logarithmic dependence ofP̃pt(zT) on T in Eq. ~24!
is quite important for the stability of the sum rules. Therefo
it is crucial to use the HQET renormalization group to g
control over the high order logarithmic contributions. Th
leading and next-to-leading logarithms ofT can be summed
up by settingm5T in the factorX(m) and in the correlator

P̃pt(zT). We adopt this prescription in our analysis. How
ever, the normalization scale ofas in the O(as

2) part of

P̃pt(zT) is not fixed in our approximation and the corr
spondingm-dependence is not compensated byX(m). We do
not useT as the normalization scale here when determin
the optimal value ofṽc because the resulting spuriou
T-dependence leads to rather unstable sum rules. If the
malization scale ofas in the O(as

2) contribution is not cor-
related toT the result has a rather weak dependence onm
when varying the latter in the same interval asT.

Adopting the central values of the input parameters a
m52 GeV, we obtain for the universal HQET decay co
stant

f̃ P
r 5410 ~MeV!3/2, ~40!

which constitutes an average for 2.05 GeV<ṽc
<2.10 GeV. For these values the highest stability is o
served. This value should be compared with the result

tained using the orderas expression of the correlatorP̃pt(ṽ)
which is f̃ P

r 5418 MeV at the optimal valueṽc52.4 GeV.
One notices that the inclusion of theO(as

2) contribution

leads to a rather small variation off̃ P
r though the correction

to the correlator itself is quite large@cf. Eq.~20!#. This can be
explained by a considerable compensation of the large

rections toP̃pt(ṽ) andmb ~which enters the analysis throug
D) and the change of the optimal valueṽc .

B. B meson decay constant

Taking into account the mass suppressed contribution
the Laplace sum rules and performing the analysis along
line described in the previous section, we obtain for theB
meson decay constant

f B5206 MeV, ~41!

which constitutes an average for 2.25 GeV<ṽc<2.3 GeV.
To illustrate the stability of the sum rules with respect to t
variation of the parameterT we plot in Fig. 1f B as a function
of T for various values ofṽc . It can be seen that the curve
for ṽc'2.25 GeV andṽc'2.3 GeV provide the mos
stable results. Note that for these values ofṽc the function
f B(T) has a weakly pronounced minimum aroundT
'2 GeV. At the same time, the use of the two-loopO(as)
approximation ofP̃pt(ṽ) along with the NLO value ofmb
6-6
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FIG. 1. The B meson decay
constant f B as a function of the
Borel parameterT of the Laplace
sum rules for different values o

the threshold parameterṽc . From
top to bottom the curves corre

spond toṽc52.35, 2.3, 2.25 and
2.2 GeV.
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gives f B5205 MeV at the optimal valueṽc52.75 GeV. As
in the heavy quark limit we observe that due to the comp
sation of the corrections theO(as

2) result is practically the
same as theO(as) one. This fact is a strong argument
favor of our treatment of the bottom quark mass. TheO(as

2)
mass suppressed corrections, which are included in Eq.~41!,
reduce the value off B by approximately 5 MeV. Taking into
account the fact that the nonperturbative part of the Q
contribution is saturated by the leading quark condens
which gives about 10% of the total QCD contribution, w
conclude that our result is stable with respect to all the ty
of corrections to the sum rules.

Note that no rigorous results concerning the high or
behavior of the perturbative series both for theY-resonance
andB-meson sum rules are available and the absence of
able higher order perturbative corrections to the decay c
stant within our approach cannot be proven strictly ev
though it works well up to theO(as

2) approximation. How-
ever, our approach provides the convergence also in hig
orders if the divergence of the perturbative series for
Y-resonance andB-meson sum rules is related to the use
the pole mass and is thus dominated by the renormalon
tribution. This is because we effectively remove the p
mass from the analysis of the decay constant in favor of
experimental moments of theY-resonance spectral densi
and operate with the relation between physical observa
which is free from the corresponding renormalon ambigu

Let us next discuss the uncertainty of the result in E
~41!. The error inmb of 660 MeV @21,22# results in an
uncertainty of612 MeV in f B . The variation of the input
value of as(MZ) within the experimental error bars 0.118
60.0020 @34# leads to the uncertainty interval 201 Me
, f B,213 MeV. On the other hand, the result is not sen
tive to the normalization point ofas in the O(as

2) contribu-
tion and to the non-logarithmic three-loop coefficient in E
~20!. Note, that the change of the parameters requires e
time a new optimization ofṽc .
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Another source of errors is the intrinsic uncertainty of t
method due to the approximation of the hadronic contrib
tion to the dispersion integral~8!. A rough estimate of this
uncertainty is obtained by the variation of the upper bound
the duality interval around its optimal value. The variation

ṽc by 6100 MeV leads to67 MeV variation off B which
can be read off Fig. 1. A larger deviation from the optim
value leads to the essentially unstable sum rules. If we

the errors induced by the uncertainties inmb , as and ṽc
discussed so far in quadrature we obtainf B5206
616 MeV.

A more advanced way to estimate the intrinsic uncertai
of the sum-rule approach is to change the weight function
the dispersion integral and redo the analysis using the
rules which operate with Hilbert moments of the correla
~10! instead of its Borel transform~9!. The range ofn rel-
evant for reliable predictions of Hilbert sum rules is, in fa
quite restricted. The contribution of the mixed condens
grows rapidly withn. Thus, requiring the convergence of th
OPE sets an upper limit onn. For the bottom quark it isn
'12 where the contribution of the mixed condensate is
proximately 2/3 of the leading quark one. At the same tim
to avoid strong dependence of the result onṽc , one should
usen.mb /ṽc'3. The optimal value ofṽc can be found by
minimizing the dependence of the result onn in the above
interval which results inṽc'2.2 GeV. For this value the
decay constant stays within the interval 192 MeV& f B
&195 MeV asn varies from 4 to 12 as can be seen in F
2 wheref B is plotted as a function ofn. This result forf B is
in good agreement with the value obtained from the Lapl
sum rules.

Note, that in addition to the stability requirement there
a strong consistency check on the value ofṽc . The decay
constant drops out in the ratio of two moments which lea
to a relation betweenMB , mb andṽc . Our analysis is con-
sistent if the physical value of the meson mass is reprodu
6-7
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FIG. 2. The B meson decay
constant f B as a function of the
moment numbern of the Hilbert
sum rules for different values o

the threshold parameterṽc . From
top to bottom the curves corre

spond toṽc52.35, 2.3, 2.25, 2.2,
2.15, 2.1 and 2.05 GeV. The valu
m52 GeV has been adopted.
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from this relation for some value of the bottom quark mass
the interval given by the sum rules for theY resonances. Fo
the above value ofṽc this requirement is fulfilled for alln in
the allowed interval. In fact, the ratio of the 6th and 7th mo-
ment and the ratio of the 10th and 11th moment imply exactly
the central valuemb54.79. Note that for these momentsf B
has a local extremum as a function ofn. In other words, if
the B-meson sum rules in the three-loop approximation
used to determinemb , the result is in perfect agreement wi
the NNLO value of the bottom quark mass from t
Y-resonances sum rules.

We would like to emphasize that the dependence off B on
mb is completely different for the Laplace and Hilbert su
rules. Thus, by comparing the results of the sum rules
can also estimate the error due to the uncertainty inmb .
Furthermore, the prescription how the parameterṽc is deter-
mined and the structure of the condensate contributions
also quite different. The fact that both approaches give cl
results reflects the small intrinsic uncertainty of the sum-r
method in this particular case and furthermore strongly s
ports our treatment ofmb . Thus the total error originating
from the uncertainty inmb and the approximation of the
hadronic spectrum can be estimated as615 MeV. The re-
maining error is mainly due to the uncertainty in the inp
values ofas(MZ). Consequently, as a conservative estim
of the uncertainty of our result forf B we quote620 MeV.
Because of the stronger dependence of the Hilbert sum r
on mb we use them to estimate the error but take the cen
value for our final result forf B from the Laplace sum rules

C. D meson decay constant

Since mc is not large in comparison to the scaleL̄ the
expansion in 1/mc cannot provide us with the same accura
as we have for the bottom quark. For the same reason
resummation of the charm quark mass logarithms is ne
sary and we can just use the three-loop result for the
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relator up toO(as
2) in the full theory@19,20#. The use of the

Laplace sum rules then leads to

f D5195 MeV, ~42!

for the optimal valueṽc52.35 GeV. The Hilbert sum rules
are not reliable in this case because of the strong depend
on mc which is known with much less relative accuracy th
mb . Furthermore, the Hilbert sum rules suffer from lar
contribution from the higher dimension condensates. T
variation of the input parameters basically leads to sim
variations off D and f B . Due to the weaker sensitivity off D
to the charm quark mass the additional uncertainty inmc
does not lead to a larger error inf D . Thus, assuming the
same intrinsic uncertainty of the sum rules we obtain
same error bars for the extracted value off D .

VII. CONCLUSIONS

To summarize, we have computed theB and D meson
decay constants within the QCD sum rules approach.
final results read

f B5206620 MeV, ~43!

f D5195620 MeV. ~44!

For the analysis we used the tree-loop result for the hea
light current correlator. The large logarithms of the botto
quark mass have been taken into account by means of
HQET renormalization group. The bottom quark mass wh
essentially limits the accuracy of the sum rules forf B has
been extracted from theY-resonance sum rules up to NNLO
In the case of theB meson the analysis has been perform
by employing Laplace and Hilbert sum rules. They ha
quite a different structure especially as regards the dep
dence on the bottom quark mass. The fact that the res
obtained with these two approaches are in a good agreem
6-8
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gives us confidence in the reliability of the sum-rule meth
applied to the calculation of the decay constants. The re
also turned out to be quite stable with respect to inclusion
the perturbative corrections inas and 1/mb and the nonper-
turbative corrections due to the vacuum condensate contr
tions. This allowed us to reduce the uncertainty of the
tracted value off B and f D . The obtained values of both th
B and D meson decay constants are consistent with the
isting sum-rule results@cf. Eqs. ~2! and ~4!#. However, the
accuracy of our result is increased in comparison to the
vious estimates. The values in Eqs.~43! and ~44! are in im-
pressive agreement with the results obtained in lattice ca
lations @cf. Eqs. ~1! and ~3!#. Probably no further
improvement of the accuracy is possible within the stand
QCD sum-rule framework due to the intrinsic uncertainty
the method.

Our final comment concerns the current experimental
tus. A measurement is only available for theDs meson decay
constant where the most recent result reads@35#
l.

r,

n

,

. B

-
ic

a
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f Ds

exp5286644~stat!641~syst! MeV. ~45!

Converting the number in Eq.~44! with the help of the lattice
result f Ds

/ f D51.18@18#, which agrees with the values give

in @17#, we obtain f Ds
5230 MeV. This is in reasonable

agreement with the experimental value of Eq.~45!.
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nez, Nucl. Phys.B375, 582 ~1992!.

@26# W. E. Caswell and G. P. Lepage, Phys. Lett.167B, 437~1986!;
G. P. Lepageet al., Phys. Rev. D46, 4052~1992!.
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