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Heavy-light meson decay constant from QCD sum rules in the three-loop approximation
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In this paper we compute the decay constant of the pseudoscalar heavy-light mesons in the heavy quark
effective theory framework of QCD sum rules. In our analysis we include the recently evaluated three-loop
result of orderai for the heavy-light current correlator. The value of the bottom quark mass, which essentially
limits the accuracy of the sum rules f& meson, is extracted from the nonrelativistic sum rules Yor
resonances in the next-to-next-to-leading approximation. We find stability of our result with respect to all types
of corrections and the specific form of the sum rule which reduces the uncertainty. Our festaR86
+20 MeV andfp=195+20 MeV for theB andD meson decay constants are in impressive agreement with
recent lattice calculations.
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[. INTRODUCTION =204(8)(29)(+44) MeV is given. Here, the first error is
statistical, the second due to the discretization and the third

The decay constant of a pseudoscalar meson with onene includes the uncertainty from the lattice scale. The num-
heavy and one light quark constitutes a hadronic quantitypers obtained fof gz from lattice calculations are in reason-
which is of primary phenomenological interest. It covers theable agreement with the ones obtained from sum rules. An
strength of the leptonic weak decays®andD mesons and averaged value for the latter can be found 1]
enters as an input quantity into the analysis of the nonlep-
tonic B and D meson decays and tH&B mixing process.
The latter is of ;pemal [nterest since It p.rowdes a d're(,:tFor theD meson decay constant the situation is similar. The
source of the information on the Cabibbo-Kobayashi-|_:

i . ) : lattice resulf15,1§

Maskawa matrix elements involving the top quark. Still no
experimental information of sufficient accuracy is available fi2'=225+30 MeV, 3
and the theoretical study of the decay constant is mandatory.

The first quantitative evaluation of thHe and D meson  again overshoots the sum-rule estimate
decay constant$g and f using radiative corrections was
performed in1] where the QCD sum rules proposed 3] f5'=188+48 MeV, 4
have been used together with the perturbative two-loop re- ) _ ) _
sults of O(ay) [4]. More refined evaluations followg®—9]  diven in Ref.[17]. In spite of the essential progress in the
where it was realized that the accuracy of the decay constankattice calculations their uncertainty is still rather large and it
is significantly limited by the uncertainty of the bottom quark IS t00 early to rely solely on the results of this approach. On
mass. IN[10-17 the heavy quark effective theoiHQET) the other hand, the sum-rule analysis can be essentially im-
[13,14 has been used to resum the leading and next-tgProved to reach an accuracy which is cpmparable or even
leading logarithms of the heavy quark mass. After the renorbetter than the current accuracy of the lattice calculations and
were found to be huge, which might be a signal of the im-Paper we perform an analysis of the sum rules for the
portance of the higher order contributions and questions thBSeudo-scalar heavy-light meson decay constant and im-
reliable determination of the decay constants. prove the existing calculations with respect to several points

The only method to compute hadronic matrix elementsvhich we summarize in the following. _
which is entirely based on the first principles of QCD is (|)2 We !nclude the three-loop pgrturbatlve corrections of
probably the lattice gauge theory simulations. ForBhme-  O(«ag) which recently became availabi9,20].

f$'=178+42 MeV. )

son decay constant the value (i) The bottom quark mass, which constitutes a crucial
input for f5, is determined using the approach suggested in
f2'=200+30 MeV (1) [21,22 in the context of semileptonic decays of the bottom

quark. The latter is also quite sensitive to the pole nmgs
is cited in the review articlgl5] as an average over different The basic idea is to replags, by the ratio of experimental
calculations performed on the lattice. It agrees welland theoretical moments of the nonrelativistic sum rules for
with a recent evaluation ofg [16] where the resultfg Y resonances. It is computed order by order up to the next-
to-next-to-leading accuracy depending on the perturbative
input used for the evaluation of the sum rules fgr. In this
*Permanent address: Institute for Nuclear Research, Russiatontext we would like to refer td7] where also the
Academy of Sciences, 60th October Anniversary Prospect 7a, MosY -resonance sum rules have been used, however, only up to
cow 117312, Russia. order as.
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The charm quark pole mass., necessary for the calcu- there are power suppressed terms from the vacuum expecta-
lation of fp, is then extracted from the HQET relation be- tion values of the higher dimension operatqson-called
tweenm, andm,. vacuum condensatesparametrizing the nonperturbative

(iii ) For the evaluation of the decay constdgtwe use long-distance effects. On the other hand, the correlator can
both Laplace and Hilbert sum rules. We present, for the firsbe obtained from the dispersion integral over the physical
time, the explicit formulas of the latter in the framework of states. In the standard analysis only the ground state meson is
HQET. The comparison of the results obtained with bothsupposed to give a delta-function contribution to the spectral
approaches provides us with an estimate of the intrinsic unfunction. Assuming local quark-hadron duality the contribu-
certainty of the method. tion from the higher resonances is modeled by the perturba-

We will show that these new ingredients improve signifi- tive continuum starting at some threshs|dwhich brings an
cantly the reliability of the sum rules and finally the predic- intrinsic uncertainty to the approach. Finally one arrives at

tion for the decay constant, in particular foy. the following equation:

This paper is organized as follows. In Secs. Il and Il we
introduce the basic features of the sum rules and the HQET 5 5 sz‘é 1 (= Im[W5(s)]
formalism, respectively. In Sec. IV the renormalization group W5(a%) +Wi(q )_ —q2 7 ds s—
improved sum rules for the decay constant are given in the P d ¢ d
three-loop approximation. The problem of the heavy quark + subtractions, 8

mass determination is discussed in Sec. V. In Sec. VI, we
present the numerical analysis and Sec. VII contains our corwhereMp is the meson massl'y, and W7, are the pertur-
clusions. bative and nonperturbative QCD contributions, respectively.
The subtractions needed for the dispersion integral are not
Il. SUM RULES specified explicitly as they will drop out in the following. To
suppress the contribution from higher resonances and to re-

The decay constant of a pseudo-scalar mésoansisting  duce the uncertainty one can perform a Borel transformation
of a heavy(Q) and a light quarkg) is defined through the of Eq. (8)
matrix element

.a . 1 2 d n\lfa 2
<0|J/_L|P(p)>:|fpp,u,l (5) (n_1)| q Q (q ) *q22,n~>3°2
— —g4/n=M
WherejfL:quySQ is the qxial-vector current. In this paper w2
we focus on thé8 meson with the bottom quark as the heavy _ ijw dse Im[Pa(s)] ©
constituent but present also the analysisDomesons with ’

charm as heavy flavor. We neglect t8&J(3) violating ef-

fects of the strange quark mass. The ratio of the decay coiwhere M is the Borel parameter, and arrive at so-called
stants of strange and non-strange mesons can be reliablyplace sum rules. Alternatively, it is possible to consider
computed both on the lattice and using QCD sum rules, as amoments of Eq(8)

essential part of the uncertainties cand¢as—-18.

In order to derive the QCD sum rules for the pseudo- 1 3 a2 Im[P&(s)]
scalar heavy-light meson decay constinbne considers the | g2 V4(q ) f ds——— g (10
correlator 4

which leads to Hilbert sum rules. To estimate the intrinsic
Pa(g?) =i f dx€9X(0|Ta#j2(x)a”j27(0)[0), ~ (6)  uncertainty of the method we will follow both options. In the
above sum rules the weight functions cut off the dispersion
which is related to the correlator of the pseudo-scalar curntegral at a typical _hgdronic scale much less than the hea_vy
rents quark mass so that it is saturated by the near threshold region
where the heavy quark is nonrelativistic. Laplace sum rules
. are particularly relevant for the nonrelativistic HQET analy-
I1P(g?) =i f dx€e9*(0|TjP(x)jPT(0)|0) (7)  sis because of the heavy quark mass independent exponential
suppression of the relativistic momentum region. The situa-
tion is more tricky in the case of Hilbert sum rules as is

i “id —mLiP iP=j
by the equation 9“j,=mqjP, where jP=i[mq(u)/ discussed below.

mQ]quQ andmg(u) and mq are theMS and pole mass of
the heavy quarlQ, respectively.

Following [3] the correlator¥?(g?) is evaluated in two
ways. In the Euclidean region wheqs"—mé<0 it can be Systematic description of the heavy quark nonrelativistic
reliably computed in QCD because of the asymptotic freedynamics and consistent separation of the relativistic effects
dom. The correlator gets a perturbative contribution correcan be done within HQET. Let us discuss this issue in more
sponding to the leading operator in the operator product exdetail. The perturbative heavy-light quark system involves
pansion(OPE of the two currents in Eq(6). Furthermore two dynamical scales: the hard scale given by the heavy

IIl. HEAVY QUARK EFFECTIVE THEORY
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quark mass and the soft scale given by the off-threshold en- 1 127 772 5
ergy Y= 5 NMT1a2T 108 72 (19
2 .2 .
~_97Mo (1)  The solution of Eq(14) reads
mg
. . . . i X(mQ)"-'r
By integrating out the relativistic hard modes with the off- Ju(p)= ijﬂ(mq), (16)

shell momentum of ordemg one arrives at HQET which

includesw as dynamical scale. The effect of the hard modesyhere

is accumulated in the Wilsofmatching coefficients leading

to an expansion img along with relativistic corrections and

contributions from higher dimensional operators leading to x(,u):[ag”')(ﬂ)]szﬁo
an expansion in iy . In the hadronic matrix elements the

latter is converted to an expansion in the dimensionless pa-

rameterA/mQ whereA~Mp—mg desqribe§ .the nonpertur- +0O( ag)
bative long-distance effects and remains finitevgs—. In

the process of scale separation spurious divergences appear

at the intermediate steps which result in the anomalous diand the first two coefficients of th@-function are given by
mensions of the effective theory operators and lead to the

Bo B3

1+< Y1 70/31> ™ ()

w

2

: 17

corrections involving the large logarithms of the form 11 1 51 19

In(mg/w). These logarithmic corrections can be resummed Bo=7 g+ Pi=g — M- (18)
by solving the effective theory renormalization group equa-

tions.

Thus in the nonrelativistic regioﬁ;<mQ we have the fol-

For this purpose let us consider the effective theory real, ing representation of the perturbative part of the cor-

ization of the axial-vector current. The corresponding CONelator (6):

nection between the QCD operator and its HQET counterpart

is given by B X( ) o

_ . lm[‘PSt(qz)]=[Ca(mq)C(mq)]zx(m )mélm[Hpt(w)]

j,=Ca(mg)C(mg)] ,(Mmg) +O(1/img). (12 Q

+0(1img), (19
The matching coefficients have been computef®8124 up
to orderaﬁ. In the MS subtraction scheme they read where the universal HQET current correlalﬁgt('[u) does
") ) 5 not depend omng and the spin and parity of the currents. Its
_ag(mg) 2 [ag (Mg 683 1772  imaginary part is known up to the three-loop approximation
Calmo)=1=——"—3+|— “576 72 of O(a?) [20]
m? 11 2 ~5 () 2
A S 0 r ~ ~ 3w ag"(1)[17 4w
18127 3643 M| 288" 36 } (13 Im[Hpt(w)]=g( 1+ — [§+ <+ L;:,}
(ny) 2 (ny) 2 2
~ 89 [ ag(mq) ag " (p) 1657 9777\
C(mQ)=1+@ T , + = 9%15)4‘ 72 + 54 L
2
where n; is the number of light flavors and(3) 4 1_5|_Z +n, —3.6(4)+( — E’_ zl) Lz
=1.202056 . .. is theRiemann/-function. The renormal- 8 1227
ization group equation which governs the evolutioﬁpq,u) 1
is of the form B
1))
d . ~ ~
w20 () =T, (), (14)  whereL;=In(u%?. The uncertainty in the non-logarithmic
du three-loop terms results from the semi-numerical method

) o used in Ref[20]. For u~w the HQET correlator does not
where the anomalous dimension is known up to two 100pSyq|yde large logarithms. They are all contained in the factor
[25] X(u)/X(mg) which sums up the leading and next-to-leading

() () 2 logarithms of the formef In"(my/w) and a2 In"(mg /).
S I B +O(ad) On the phenomenological side the HQET decay constant
LERRCIF s is defined through the matrix element of the HQET current
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- - i~ Im[ SI15(g%)]1=Im[I15(q?)]
<0|J,L(M)|P(v)>=ﬁfp(u)vw (21) X( :
[Ca(mQ)C(mQ)]2 |m[Hpt(w)]

where|I3(v)) is the nonrelativistic, i.e. quantum mechanical,

meson state with velocity. It is connected tdfp via the (26)
relation The one-loop expression for this function is given by
fpMp=Ca(mg)C(Mg)Tp(mg) + O(1img).  (22) 3 7 o2
Im[é(l)H (0)]=—5— — ——=—. (27
By using the renormalization group property of the HQET 8m Mg 1+ /Mg
current it is convenient to introduce the renormalization o ) )
group invariant quantity The two-loop approximation fngt(qZ) is known in full
QCD in analytical form{4]. It determines th&)(«,) part of
Fo= VX(u)Tp(p), (23  EQ.(26) which reads
L . . ~ ~ )
which is a universal low-ener arameter of strong interac- w w |13 7
fons 9P 9 Im[ 62IIE(@)]=— 2— -7t
IV. THE HEAVY QUARK EFFECTIVE THEORY SUM 3 o
QUARK +oIn| =2 |+F —) ] (28)
2 w Mg
Now we are in the position to write down the renormal- h
ization group improved sum rules for the heavy-light V€€
pseudo-scalar meson decay constant.
F(x)=2Liy(— x)+|n(x)|n(1+x)— In(x)
A. Laplace sum rules
Let us start with the sum rules in the infinite heavy quark i 1+Xln(x+1)—1
mass limitmg— . Transforming Eq(8) to HQET and ne- X
glecting the mass suppressed terms we obtain 3 1
S Zaz 2 3
2x+ 3+ 2In(x) X<+ O(x®), (29

- T (ogm ~ _
(ffp>2=eA”[ xw(;j dze *Im[11,(zT)] - (aa)(w)
0 with Li,(z) being the dilogarithmic function. The perturba-

o < q q) tive mass suppressed contribution(’@@ag) can be obtained
x| 1+ 2= |+ X(T) Mo ] , (24)  from the numerical three-loop restitif [19,20. Thus we get
™ the final expression for the decay constant:
whereA=(Mg—mg)/mg, w=(s.—mg)/Mg, Mo=(qgs fZZ(E)S[Ca(mQ)C(mQ)]Z (frp)2+5f2 0
X G*"a,,0)/{qq) andmgT= M?2. We keep the operators up P 1Mp X(mg) Mp P
to dimension 5 in the OPE and neglect the running of the
guark-gluon operator. The first term of this equation includes the leading HQET

The mass suppressed contribution to the correlator can beontribution up toO(ai) and the resummed leading and
found by subtracting the asymptotic HQET result from thenext-to-leading logarithms of the heavy quark mass. The sec-
full theory expression. In this way the mass suppressed corend term represents all heavy quark mass suppressed terms
tribution to the physical decay constant from Laplace sumup to orderag.
rules is obtained as

B. Hilbert sum rules

3 ~
Sf2=eMT_— ( mQ) IJ% dze ?Im[ SIIH](zT) The use of HQET for Hilbert sum rules is rather subtle as
Mp\Mp/ | 7Jo they do not have a proper infinite heavy quark mass limit.
as T (= e ? Indeed, the naive limitng— < leads to the decay constant
+(aa)(mo) o me dZ1+zT/mQ 5 1., —
_ (fo)?=g20e—(d0) + Oas), (3D
mi(ad)  (asG"'G,.)
- + , (25
2Tmg 127mg
lavailable  at  URL  http://www-ttp.physik.uni-karlsruhe.de/
where Progdata/ttp00-25
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which, in contrast to Eg(24), does not contain a dynamical are generated by the normalized cross sectioa'&™ anni-
constraint on the parametar,. Therefore one cannot use hilation R®%s)=c(e"e” —hadrongy)/o(e"e” —u'un").
them to study the HQET decay constant. Nevertheless it i§he dimensionless theoretical moments are defined as fol-
possible to apply Hilbert sum rules for the calculation of thelows:
physical decay constant and, furthermore, use HQET for the m{ITo(S) ]

. . 1_ 2n+2 *© m S
an~aly5|s. Indeed, if we kee_p the fa.ctlosri['i .—1/[mQ (1 M:]h: 1277(4m§)nf ds —. (36)
+w/mg)"* 1] unexpanded in Mg, it is straightforward to 0 s"

obtain the proper scalin
prop g where the vector current correlator is defined through

~ 4
@emght Olastimg) B2 (@ar-qemed) - f dx€P(0| Tj*(x)]"(0)[0),
where A is defined after Eq(24), from the ratio of two (37
arbitrary moments. Note that E¢B2) is obtained from the - ) )
purely perturbative correlator and the quark condensate cofvith j,=bvy,b. If n'is large enough the experimental mo-
tribution is neglected. This allows for the nonrelativistic MeNts are saturated by theresonance contributions which
treatment of the heavy quark Nr3(s). Moreover, the dis- are knoyvn with h|_gh precision. For Iarga_e the dispersion
persion integral is saturated by the regior Mg /n and thus integral in Eq.(36) IS _sa_turated by_ the_ region near threshold
= ) AP where the nonrelativistic expansion in the heavy quark ve-
for n>mgq /. the result is not sensitive to in contrast 1o |ocjty is applicable and the correlator can be systematically
Eq. (31). In this way we obtain the renormalization group computed within the effective theory of nonrelativistic QCD

improved Hilbert sum rules of the following form: (NRQCD) [26]. The complete result for the moments includ-
M22 (7 1 q ing the second order corrections in the strong coupling con-
f2= P &f _ a stant anq heavy quark velocity is now availa&e,27—29..
mén—l T Jo (1+sz/mQ)“+1 It is widely believed that due to the renormalon contribu-

tions the absolute value of the heavy quark pole mass ob-
tained through Eq(34) is divergent[29-31. As a conse-
guence the absolute value of the pole mass is plagued with
an intrinsic uncertainty of ordekcp. On the other hand,
P/ e m, is not an observable and has no immediate physical
- Im[aﬂ"‘(zw‘:)]) (qa)(mg) meaning. Therefore it can safely be removed from relations
- between physical observables. Using this philosophy we re-
14 E is( 1— We [ * dz )] placem, in the sum rules forfg by the fixed order expres-
37 sion of the right-hand side of E¢434). Equivalently, we de-
termine the value of the pole mass according to(B4) only
] in a given order of the perturbative expansion correlated to

~ X ~ -
[Cal mQ)C(mQ)]ZMIm[Hpt(ch)]

x X(Mg)

MaJo (14 zw./mg)"+2

X

n(n+1) m(aq) (aG*"G,,)
+ 2
8 m3, 12mmg

(33 the order of the approximation fdk . A detailed discussion
of the sum rules and the corresponding numerical results can
be found in[22]. In particular, we use the next-to-leading
V. THE HEAVY QUARK MASSES order(NLO) result,m,=4.68 GeV, for the calculation dfg

Before turning to the numerical analysis we want to dis-10 Orderas and the next-to-next-to-leading ordéNNLO)

— e® 2 ;
cuss the determination of the heavy quark mass which is ahesult, m,=4.79 GeV, .for theO(as) analy5|s offp. The .
- faccuracy of the numerical value for the fixed order approxi-

mation formy, is no longer restricted by ocp since it is not

the physical decay constaf80) is rather sensitive to the . - . :
PRy y (80) related to the divergence of the series in B4). It is mainly

heavy quark mass value. Therefong should be determined .
with a great accuracy in order to obtain a reasonable precf-jue to.the' dependence of the theoretical moments on the
normalization scale ofrg and due to the dependence on

sion for fp. The best accuracy of the bottom quark mass .
oo ; s ; hich altogether amounts to 60 MeV for the NNLO result
determination is achieved within the heavy quarkonium su . .
ya 22,27]. Note that the direct order-by-order matching of the

rules[2]. The corresponding expression for the pole mass i . . . :
(2] P gexp P results form, andfg is not obvious due to different kinds of

iven by the ratio . ;
g Y resummation adopted in the sum rules: the study of the
( Mth)ll2n Y -resonance sum rules requires the resummation of the sin-
n
mb_

(349  gular Coulomb terms while the above analysis of the
B-meson sum rules involves the resummation of the heavy
quark mass logarithms. Our matching of the perturbative se-
ries is based on the fact that in a given approximation both
the Y-resonance sum rules and tBemeson sum rules in-

(35)  clude the perturbative corrections of the same orderiito
the threshold behavior of the heavy-heavy and heavy-light

A AEXP
M,
Here the dimensionful experimental moments

» R®Ns
wiges [asT9
0 s

n+1 '’
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quark current correlators, respectively. Performing the analyproduct expansiofOPE). On the opposite side of the sum
sis in the described way we expect that the large perturbativeules the hadronic representation of the correlator is reliable

corrections tomy, cancel in the complete expression so thatonly for T=<w, which provides the exponential suppression
the final series forfg in terms of physical momentS5) is  of the contributions from higher resonances.
convergent. This approach turned out to be very efficient for

. ; ) X The logarithmic dependence ﬁfpt(z'l') onTin Eq. (24
Egi g%al\)//\/séswm ;r;\eov??ﬁgtmth%u;r:tsgcrin\lxl\/%%osn;ﬁ She’acigs\’:%t]ns quite important for the stability of the sum rules. Therefore

it is crucial to use the HQET renormalization group to get
the sum rules forfg as well. Q group 1o 9

For a given value of the bottom quark mass the char control over the high order logarithmic contributions. The

: . rT]eading and next-to-leading logarithms Bfcan be summed
quark mass can be obtained from the HQET constraint of thﬁp by settingu=T in the factorX(x) and in the correlator

form ~
IT,(zT). We adopt this prescription in our analysis. How-
mp— M+ O(1/my o)=Mg—Mp, (38 ever, the normalization scale afs in the O(ai) part of
which results inm,=1.37 GeV for the NNLO value ofn, . [T(zT) is not fixed in our approximation and the corre-

Due to the cancellation between the different terms of Ordeﬁpondingﬂ—dependence_ is not compensateddfy.). We dc_) .
1m,, . (see, for example32]) this numerical value is valid not useT as the normzillzatlon scale here when determining
with O(1/my, ) accuracy. The use of the relati¢d8) brings ~ the optimal value ofw. because the resulting spurious
an additional uncertainty to, so that the total uncertainty T-dependence leads to rather unstable sum rules. If the nor-

can be roughly estimated as100 MeV. malization scale ot in the (’)(aﬁ) contribution is not cor-
related toT the result has a rather weak dependencexwon
VI. NUMERICAL ANALYSIS when Varying the latter in the same intervalTas

Adopting the central values of the input parameters and

In this section we present the numerical analysis of thg,=2 GeV, we obtain for the universal HQET decay con-
sum rules. We adopt the same input values for the vacuurgtant

condensates as [1.7]:
_ T,=410 (MeV)®?, (40)
(9g)(1 GeV)=—[22525) MeV]?,
which  constitutes an average for 2.05 (’5&2&
<2.10 GeV. For these values the highest stability is ob-
served. This value should be compared with the result ob-
tained using the ordetg expression of the correlatff[pt(Z))
The strong coupling constant is evaluated with four activewhich isTrP=418 MeV at the optimal value,=2.4 GeV.
flavors using two-loop accuracy and®)=296 MeV. This  One notices that the inclusion of th@(aZ) contribution
vaéue corresponds t_oag ((my)=0.210 obtained from  |eads to a rather small variation 8 though the correction
a)(Mz)=0.1185 using the four-loop renormalization tq the correlator itself is quite lardef. Eq.(20)]. This can be
group evolution[33]. For the meson masses we USB;  explained by a considerable compensation of the large cor-
=5.2793(7) GeV andMp=1.8641(10) GeV, respectively oo tol1 (@) andm, (which enters the analysis through

34]. ~
34 A) and the change of the optimal valug .

(asG*"G,,)=0.042) GeV’, (39

m3(1 GeV)=0.82) Ge\2.

A. The decay constant within heavy quark effective theory
. . L B. B meson decay constant
Let us start with the analysis of the limibg—o. The

general philosophy for the determination of the decay con- 1aKing into account the mass suppressed contribution to
stant from Laplace sum rules is as follof&: one has to t.he Laplaqe sum rules and_ performllng the analygls along the

o o ~ line described in the previous section, we obtain for Ehe
optimize the upper bound of the duality interval,, in such

~ _ meson decay constant
a way that the value of as computed from Eq(24) is
stable against a variation of the Borel param@terhe latter fg=206 MeV, (41
is varied in the range where both the hadronic and QCD
representations of the correlator can be computed reliablyyhich constitutes an average for 2.25 @egcs 2.3 GeV.
On the QCD side of the sum rules the restriction s To illustrate the stability of the sum rules with respect to the
mainly due to the perturbative contribution becaliss an  variation of the parametérwe plot in Fig. 1fg as a function
effective scale ofas in Eq. (24). Taking into account the ¢ 1 ¢or various values of. . It can be seen that the curves

large value of the second order nonlogarithmic coefficient i ~ ~ .
Eq. (20) we conclude that cannot be chosen much less then or we~2.25 GeV andw~2.3 GeV provide the most

1.5 GeV whereag(T)/7=0.1 to ensure the convergence of Stable results. Note that for these valueswgfthe function
the perturbative series. Note that the power suppressed terris(T) has a weakly pronounced minimum around
become dangerous at essentially loWeand that the above ~2 GeV. At the same time, the use of the two-l00pas)
restriction also provides the convergence of the operatoapproximation ofll,(w) along with the NLO value o
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FIG. 1. The B meson decay
constantfg as a function of the

% 206 | s Borel parameteil of the Laplace
é sum rules for different values of
o5 - \ ] the threshold parameter, . From
top to bottom the curves corre-
spond tow,=2.35, 2.3, 2.25 and
202 | ) 2.2 GeV.
200 | =

198 PR R EIP R EHN RPN S R R T S
1.5 1.6 1.7 1.8 19 2 21 22 23 2.4 25

T (GeV)

gives fg=205 MeV at the optimal value.=2.75 GeV. As Another source of errors is the intrinsic uncertainty of the
in the heavy quark limit we observe that due to the compenmethod due to the approximation of the hadronic contribu-
sation of the corrections th@(«?2) result is practically the tion to the dispersion integrdB). A rough estimate of this
same as th&(a.) one. This fact is a strong argument in uncertainty is obtained by the variation of the upper bound of
favor of our treatment of the bottom quark mass. U(exi) the duality interval around its optimal value. The variation of
mass suppressed corrections, which are included if4g. . by +100 MeV leads tat7 MeV variation offg which
reduce the value dfg by approximately 5 MeV. Taking into can be read off Fig. 1. A larger deviation from the optimal
account the fact that the nonperturbative part of the QCDsalue leads to the essentially unstable sum rules. If we add
cor_ltrlbu_tlon is saturated by the leading quark_condensatqhe errors induced by the uncertaintiesrin, a and o,
which gives about 10%.of the tote_ll QCD contribution, we yiscussed so far in quadrature we obtalip =206
conclude that our result is stable with respect to all the types. 16 MeV.

of corrections to the sum rules. A more advanced way to estimate the intrinsic uncertainty

Note that no rigorous results concerning the high ordety¢ i gym-rule approach is to change the weight function in
behavior of the perturbative series both for tieesonance the dispersion integral and redo the analysis using the sum
andB-meson sum rules are available and the absence of sigya5 \which operate with Hilbert moments of the correlator
able higher order perturbative corrections to the decay COv10) instead of its Borel transforrt9). The range of rel-
stant within our approach cannc%t be proven strictly everyyant for reliable predictions of Hilbert sum rules is, in fact,
though it works well up to th&)(«s) approximation. How-  qite restricted. The contribution of the mixed condensate
ever, our approach provides the convergence also in highfrows rapidly withn. Thus, requiring the convergence of the
orders if the divergence of the perturbative series for theypg gets an upper limit on. For the bottom quark it is
Y-resonance anB-meson sum rules is related to the use of < 12 where the contribution of the mixed condensate is ap-

the pole mass and is thus dominated by the renormalon Copoximately 2/3 of the leading quark one. At the same time,
tribution. This is because we effectively remove the pole

; ; to avoid strong dependence of the result?im one should
mass from the analysis of the decay constant in favor of the ~ ) ~
experimental moments of tHg-resonance spectral density US€N=>My/wc~3. The optimal value oi. can be found by
and operate with the relation between physical observablgdinimizing the dependence of the result onin the above
which is free from the corresponding renormalon ambiguity.interval which results inw~2.2 GeV. For this value the
Let us next discuss the uncertainty of the result in Eqdecay constant stays within the interval 192 Melg
(41). The error inm, of 60 MeV [21,27 results in an =195 MeV asn varies from 4 to 12 as can be seen in Fig.
uncertainty of+=12 MeV in fg. The variation of the input 2 wherefg is plotted as a function af. This result forfg is
value of ag(M;) within the experimental error bars 0.1185 in good agreement with the value obtained from the Laplace
+0.0020[34] leads to the uncertainty interval 201 MeV sum rules.
<fg<213 MeV. On the other hand, the result is not sensi- Note, that in addition to the stability requirement there is
tive to the normalization point ok, in the O(aﬁ) contribu-  a strong consistency check on the valuewqf. The decay
tion and to the non-logarithmic three-loop coefficient in Eqg.constant drops out in the ratio of two moments which leads

(20). Note, that the changg of the parameters requires every a relation betweeMg, m, andw,. Our analysis is con-
time a new optimization of.. . sistent if the physical value of the meson mass is reproduced
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197

196

FIG. 2. The B meson decay
constantfg as a function of the
moment numben of the Hilbert
sum rules for different values of
the threshold parameter, . From
top to bottom the curves corre-
spond tow,=2.35, 2.3, 2.25, 2.2,
2.15, 2.1 and 2.05 GeV. The value
u=2 GeV has been adopted.

195

194

£, (MeV)

193

192

191

from this relation for some value of the bottom quark mass irvelator up toO(aﬁ) in the full theory[19,20]. The use of the

the interval given by the sum rules for tieresonances. For | aplace sum rules then leads to

the above value ab, this requirement is fulfilled for alh in

the allowed interval. In fact, the ratio of thd"@nd 7" mo- fp=195 MeV, (42

ment and the ratio of the ¥0and 11" moment imply exactly 5

the central valuen,=4.79. Note that for these momerfts ~ for the optimal valuen,=2.35 GeV. The Hilbert sum rules

has a local extremum as a function mfIn other words, if are not reliable in this case because of the strong dependence

the B-meson sum rules in the three-loop approximation aré®N M¢ which is known with much less relative accuracy than

used to determine, , the result is in perfect agreement with My - Furthermore, the Hilbert sum rules suffer from large

the NNLO value of the bottom quark mass from the contribution from the hlgher dimension condensates. The

Y -resonances sum rules. variation of the input parameters basically leads to similar
We would like to emphasize that the dependencésasn  Variations offp andfg. Due to the weaker sensitivity df,

m, is completely different for the Laplace and Hilbert sum t0 the charm quark mass the additional uncertaintynin

rules. Thus, by comparing the results of the sum rules onfoes not lead to a larger error fp. Thus, assuming the

can also estimate the error due to the uncertaintynjn ~ Same intrinsic uncertainty of the sum rules we obtain the

Furthermore, the prescription how the parametgis deter- same error bars for the extracted valuef gt
mined and the structure of the condensate contributions are

also quite different. The fact that both approaches give close VIl. CONCLUSIONS
results reflects the small intrinsic uncertainty of the sum-rule
method in this particular case and furthermore strongly sup
ports our treatment ofm,. Thus the total error originating
from the uncertainty inm, and the approximation of the

To summarize, we have computed tBeand D meson
decay constants within the QCD sum rules approach. Our
final results read

hadronic spectrum can be estimatedzas5 MeV. The re- fg=206+20 MeV, (43
maining error is mainly due to the uncertainty in the input
values ofag(M7). Consequently, as a conservative estimate fp=195+20 MeV. (44)

of the uncertainty of our result fdrz we quote=20 MeV.

Because of the stronger dependence of the Hilbert sum rulgsyr the analysis we used the tree-loop result for the heavy-
onm, we use them to estimate the error but take the centrg|ght current correlator. The large logarithms of the bottom
value for our final result fOffB from the Laplace sum rules. quark mass have been taken into account by means of the
HQET renormalization group. The bottom quark mass which
essentially limits the accuracy of the sum rules fgrhas
o been extracted from thé-resonance sum rules up to NNLO.
Sincem, is not large in comparison to the scalethe In the case of th& meson the analysis has been performed
expansion in Ih; cannot provide us with the same accuracyby employing Laplace and Hilbert sum rules. They have
as we have for the bottom quark. For the same reason nguite a different structure especially as regards the depen-
resummation of the charm quark mass logarithms is necesience on the bottom quark mass. The fact that the results
sary and we can just use the three-loop result for the cormebtained with these two approaches are in a good agreement

C. D meson decay constant
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gives us confidence in the reliability of the sum-rule method fOP=286=44(stay = 41(sysh) MeV. (45)
applied to the calculation of the decay constants. The result s
also turned out to be quite stable with respect to inclusion oConverting the number in E¢44) with the help of the lattice
the pe_rturbative _COWeCtiOﬂS ims and 1, and the nonper- - resultfp_/fp=1.18[18], which agrees with the values given
t_urbatlve.correctlons due to the vacuum condepsate contribys [17], we obtainf, =230 MeV. This is in reasonable
tions. This allowed us to reduce the uncertainty of the ex- . s
tracted value of g andf . The obtained values of both the agreement with the experimental value of E4f).
B and D meson decay constants are consistent with the ex-
isting sum-rule resultgcf. Egs.(2) and (4)]. However, the ACKNOWLEDGMENTS
accuracy of our result is increased in comparison to the pre- We would like to thank K.G. Chetyrkin for the motivation
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lations [cf. Egs. (1) and (3)]. Probably no further ported in part by the Deutsche Forschungsgemeinschaft
improvement of the accuracy is possible within the standardhrough Grant No. KN 365/1-1, by the Bundesministerium
QCD sum-rule framework due to the intrinsic uncertainty offur Bildung und Forschung through Grant No. 05 HTO9GUA
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