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How the quark self-energy affects the color-superconducting gap
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We consider color superconductivity with two flavors of massless quarks which form Cooper pairs with total
spin zero. We solve the gap equation for the color-superconducting gap parameter to subleading order in the
QCD coupling constantg at zero temperature. At this order ing, there is also a previously neglected contri-
bution from the real part of the quark self-energy to the gap equation. Including this contribution leads to a
reduction of the color-superconducting gap parameterf0 by a factorb085exp@2(p214)/8#.0.177. On the
other hand, the BCS relationTc.0.57f0 betweenf0 and the transition temperatureTc is shown to remain
valid after taking into account corrections from the quark self-energy. The resulting value forTc confirms a
result obtained previously with a different method.
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I. INTRODUCTION

Quantum chromodynamics~QCD! is the fundamenta
theory of the strong interaction. In strongly interacting mat
at large density or, equivalently, large quark chemical pot
tial m, asymptotic freedom@1# implies that single-gluon ex
change becomes the dominant interaction between qua
Single-gluon exchange is attractive in the color-antitrip
channel@2#. By Cooper’s theorem@3#, any attractive interac-
tion destabilizes the Fermi surface and, at sufficiently sm
temperatureT, leads to the condensation of Cooper pairs
the Cooper pair condensate carries charge quantum num
of a local gauge symmetry, the Meissner effect leads to
perconductivity. Strongly interacting matter, where qua
Cooper pairs carry color charge, becomes a color super
ductor. In a superconductor, exciting particle-hole pairs co
at least an amount of energy of 2f0, wheref0 is the value of
the superconducting gap parameter at the Fermi surface
T50. Its value can be computed from a gap equation deri
in the mean-field approximation, which, in QCD, involve
single-gluon exchange@4,5#.

Schematically, this gap equation can be written in
form @6#

f05g2Fz ln2S m

f0
D1b lnS m

f0
D1aGf0 . ~1!

For small values of the QCD coupling constant,g!1, the
solution is@4,5,7–9#

f052b m expS 2
c

gD @11O~g!#. ~2!

The first term in Eq.~1! contains two powers of the loga
rithm ln(m/f0). One logarithm is well known from the ga
equation in standard BCS theory@3#, where it arises from the
integration over fermion momenta up to the Fermi surfa
The other logarithm is special to theories with long-ran
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interactions, like the exchange of almost static magnetic g
ons in QCD@5,7#. Its origin is a collinear singularity when
integrating over angles between quark and gluon moment
the gap equation. The weak-coupling solution~2! implies
that the first term in brackets in Eq.~1! is ;1/g2. It therefore
dominates the right-hand side of Eq.~1!. Together with the
prefactorg2, it is of order O(1) in the gap equation. The
value of the coefficientz determines the constantc in Eq.
~2!.

The second term in Eq.~1! contains subleading contribu
tions of orderO(g) to the gap equation, characterized by
single power of the logarithm ln(m/f0);1/g. A part of these
contributions arises from the exchange of nonstatic magn
and static electric gluons@5#. Both types of interactions are
of short range: they are screened on a distance scalemg

21 ,
wheremg is the gluon mass;mg

25Nfg
2m2/(6p2), Nf is the

number of quark flavors. Consequently, the collinear lo
rithm characteristic for long-range interactions is absent,
one is left with the BCS logarithm. The coefficientb in Eq.
~1! determines the constantb in Eq. ~2!.

The third term in Eq.~1! summarizes sub-subleading co
tributions of orderO(g2) with neither a collinear nor a BCS
logarithm. It was argued in Refs.@4,5,10# that at this order
gauge-dependent terms enter the QCD gap equation. H
ever, the gap parameter is in principle an observable quan
and thus gauge independent. Therefore one concludes
the mean-field approach cannot be used to compute
subleading contributions to the gap parameter. It was a
shown@11# that effects from the finite lifetime of quasipart
cles in the Fermi sea influence the value off0 at this order.
In weak coupling, these contributions are suppressed by
power ofg compared to the subleading terms and theref
constitute an orderO(g) correction to the prefactorb, as
indicated in Eq.~2!.

The value of the coefficientc was first computed by Son
@7#:

c

g
5

p

2ḡ
, ḡ[

g

3A2
. ~3!
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Son also gave an estimate for the constantb,

b5
b0

g5
, ~4!

with a constantb0 of orderO(1), which could not be deter
mined in the approach of Ref.@7#. In Refs.@4,5# the constant
b0 was computed by solving the QCD gap equation inclu
ing nonstatic magnetic and static electric gluon exchan
The result is

b05256p4S 2

Nf
D 5/2

b08 , ~5!

with an undetermined constantb08 of order O(1). In Refs.
@4,5#, where the only subleading contributions to the g
equation arise from nonstatic magnetic and static elec
gluon exchange,b0851. In principle, however, there could b
other subleading contributions, which would changeb08 to a
valueb08Þ1.

At sufficiently large temperature, thermal random moti
breaks up Cooper pairs and the superconducting conden
melts. In Ref.@5# it was shown that the temperatureTc for
the transition between the normal and the superconduc
phase is related to the zero-temperature gap at the F
surface in the same way as in BCS theory,

Tc5
eg

p
f0.0.57f0 , ~6!

whereg.0.577 is the Euler-Mascheroni constant.
In Ref. @12#, Brown, Liu, and Ren calculatedTc in a dif-

ferent approach with the result

Tc52
eg

p
256p4S 2

Nfg
2D 5/2

c18m expS 2
p

2ḡ
D , ~7!

where

c185expS 2
p214

8 D.0.177. ~8!

Furthermore, the authors of Ref.@12# assumed the validity o
Eq. ~6!, and concluded that

b085c18 , ~9!

as one readily checks with Eqs.~2!–~5!, ~7!, and~8!. Physi-
cally, the difference between the approach of Refs.@4,5# and
that of Ref. @12# is that contributions from the quark sel
energy were neglected in the former, but taken into acco
in the latter. If the above arguments are correct, one m
therefore conclude that the quark self-energy constitute
subleading correction to the gap equation and thus is res
sible for the change of the value ofb08 from 1 toc18 given by
Eq. ~8!. The authors of Ref.@12# also assert that there are n
further subleading contributions that could alter the value
c18 .
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While manifestly gauge invariant, a disadvantage of
approach of Ref.@12# is that its range of applicability is
restricted to the normal-conducting phase and thus can
determine the value ofTc , but not the value of the zero
temperature gapf0. Therefore a relation betweenTc andf0,
like Eq. ~6!, can in principle not be established within th
approach. It is possible to derive such a relation with the h
of the gap equation, as demonstrated in Ref.@5#, but contri-
butions from the quark self-energy were neglected in obta
ing the result Eq.~6!. It is conceivable that Eq.~6! changes,
once these contributions are taken into account. Con
quently, the validity of Eq.~9! is not obvious.

The aim of the present paper is twofold. On the one ha
we want to compute the contribution of the quark self-ene
to the value of the constantb08 in the zero-temperature gap
On the other hand, we want to confirm the result~7! for Tc .
To this end, it is necessary to first compute the value of
zero-temperature gap by directly solving the gap equa
including the quark self-energy. Second, one has to pr
that Eq.~6! remains valid in order to determineTc , which
then can be compared to the value~7! obtained in Ref.@12#.
Our paper is organized as follows. In Sec. II we first clar
how the quark self-energy enters the gap equation. In S
III, the resulting gap equation is solved at zero temperatu
In Sec. IV we determineTc . We conclude in Sec. V with a
summary of our results.

Our convention for the metric tensor isgmn5diag$1,21,
21,21%. Our units are\5c5kB51. Four-vectors are de
noted by capital letters,K[Km5(k0 ,k), andk[uku, while
k̂[k/k.

II. THE GAP EQUATION INCLUDING THE QUARK
SELF-ENERGY

In fermionic systems at nonzero density, it is advan
geous to treat fermions and charge-conjugate fermions
independent degrees of freedom and to work in the so-ca
Nambu-Gorkov basis. In this basis, the full inverse fermi
propagator is defined as@11#

S21[S S11
21 S12

21

S21
21 S22

21D 5S S0
11
211S11 S12

S21 S0
22
211S22

D ,

~10!

where S0
11 is the propagator for free fermions,S0

22 the
propagator for free charge-conjugate fermions. In mom
tum space and, form@m,

S0
11~Q!5~gmQm1mg0!21, S0

22~Q!5~gmQm2mg0!21,
~11!

where gm are Dirac matrices. The four components of t
fermion self-energy are denoted asS i j , i , j 51,2. The 11
component of the self-energy,S11, is the standard one-loop
self-energy for fermions; similarly,S22 is the self-energy for
charge-conjugate fermions. The 21 component of the s
energy,S21, which was denotedF1 in Ref. @5#, is the gap
matrix in a superconductor, whileS125g0S21

† g0. In the fol-
5-2
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lowing, we somewhat imprecisely use the term ‘‘se
energy’’ only for the diagonal componentsS11 andS22.

Inverting Eq.~10! one obtains the full fermion propagato
S, with the diagonal components

S115@S0
11
211S112S12~S0

22
211S22!

21S21#
21, ~12a!

describing the~normal! propagation of fermions, and

S225@S0
22
211S222S21~S0

11
211S11!

21S12#
21, ~12b!

describing the~normal! propagation of charge-conjugate fe
mions. In superconductors, due to the presence of a ferm
fermion condensate one can always convert an incoming
mion into an outgoing charge-conjugate fermion and v
versa. Therefore the full fermion propagatorS also has off-
diagonal components,

S1252~S0
11
211S11!

21S12S22, ~12c!

S2152~S0
22
211S22!

21S21S11, ~12d!

describing the anomalous propagation of fermions and
charge-conjugate fermions.@Please note that our sign con
vention for the self-energy differs from that in Ref.@11#,
which leads to the difference between our Eqs.~12! and Eqs.
~2.4! and ~2.5! in Ref. @11#.#

Let us now consider a system of quarks interacting
one-gluon exchange. In mean-field approximation@13#, the
four components of the fermion self-energy in moment
space are computed as

S i j ~K !52g2
T

V (
Q

Dmn
ab~K2Q!@Ĝa

mS~Q!Ĝb
n# i j , i , j 51,2.

~13!

Here, Dmn
ab is the gluon propagator, andĜa

m is the diagonal

Nambu-Gorkov matrixĜa
m5diag(gmTa ,2gmTa

T),Ta are the
Gell-Mann matrices. We compute the self-energy in
imaginary-time formalism, i.e.,T/V(Q[T(n*d3q/(2p)3,
where n labels the fermionic Matsubara frequencies,vn
5(2n11)pT[ iq0. For i j 511, Eq.~13! becomes Eq.~2.7!
of @11#, for i j 521, we recover Eq.~2.6! of Ref. @11# ~how-
ever, due to our different sign convention, only up to
overall sign!.

A fully self-consistent treatment of the mean-field a
proximation requires us to solve the coupled system of E
~12! and ~13!. The mean-field solution obtained in this wa
resums terms of infinite order in the coupling constant. Ho
ever, because only a particular class of diagrams is taken
account~the so-called ‘‘rainbow’’ diagrams!, such a solution
is in general not gauge invariant. On the other hand,
quasiparticle properties encoded in the propagator, like t
excitation spectrum, are physical observables and thu
principle gauge invariant. Indeed, a complete solution of
Schwinger-Dyson equations, as well as a perturbative exp
sion in powers ofg, preserve gauge invariance. Neverthele
as was discussed in the introduction, an expansion of
mean-field equation~13! for the color-superconducting ga
matrix F1[S21 in powers of g is believed to be gauge
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invariant up to terms of subleading order@the first two terms
in Eq. ~1!#, and the gauge dependence only surfaces at s
subleading order@the third term in Eq.~1!, or the terms
;O(g) in Eq. ~2!#. To preserve gauge invariance beyo
subleading order, other diagrams than those of rainbow
pology have to be added to Eq.~13!, or in other words, one
has to go beyond the mean-field approximation to solve
the gap matrixS21.

If one restricts the computation of the gap to sublead
accuracy, however, the mean-field equation~13! should be
sufficient to obtain a gauge-invariant result. It is then ma
datory to identifyall terms that can contribute to subleadin
order. In Eq.~13! for S21, the term in square brackets be
comes2gmTa

TS21(Q)gnTb . With the exception of Ref.@11#,
previous calculations of the QCD gap parameter neglec
the termsS11 and S22 in S21, see Eq.~12!. A perturbative
calculation of these self-energies, i.e., approximat

@Ĝa
mS(Q)Ĝb

n#11.gmTaS0
11(Q)gnTb , and analogously fori j

522, and analytical continuation to real energiesq0 gives
the result@14#

S0~Q![S0
11~Q!5S0

22~Q!.g0ḡ2S q0 ln
M2

q0
2

1 ipuq0u D ,

~14!

whereM25(3p/4)mg
2 . On the quasiparticle mass shell,q0

5eq , and near the Fermi surface,eq.f0, the real part of the
self-energy is of orderg2f0 ln(m/f0);gf0, while the imagi-
nary part is;g2f0 and thus down by a factor ofg compared
to the real part.

In Ref. @11#, the real part ofS0 was neglected and th
effect of the imaginary part on the magnitude of the col
superconducting gap was studied. It was found that a non
nishing imaginary part leads to sub-subleading correcti
@terms included in the third term;a in Eq. ~1!# and to
corrections of orderO(g) to the prefactor of the gap, cf. Eq
~2!. Therefore they are of the same order as terms that vio
gauge invariance in the mean-field approximation@4,5,10#.

Since the real part of the self-energy is parametrica
larger than the imaginary part by one power ofg, we expect
the former to contribute to subleading order,O(g), to the
gap equation, and therefore lead to a correction of or
O(1) to the prefactor. As discussed in the introduction, t
is precisely what the authors of Ref.@12# found, assuming
the validity of Eq.~6!. In the next section, we solve the ga
equation including the quark self-energy and compute
value ofb08 at zero temperature. In Sec. IV we then check
validity of Eq. ~6!.

First note that, since the real part of the quark self-ene
is expected to influence the value off0 only at subleading
order in the gap equation, it is sufficient to approximate
value of S11 or S22 in the propagator in Eq.~13! @cf. Eq.
~12!# by the perturbative expressionS0, Eq. ~14!, the differ-
ence contributing at sub-subleading order to the gap eq
tion. In order to solve the gap equation, let us revert
analytic continuation to real energies in Eq.~14!, i.e., q0 is
purely imaginary in the following. From Eqs.~12! and~14!,
the effect of includingS0 is to replace
5-3
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q0→
q0

Z~q0!
~15!

in the quark propagator, where

Z~q0![S 11ḡ2 ln
M2

q0
2 D 21

~16!

is the quark wave-function renormalization factor. Since
only want to consider the real part of the quark self-ener
we shall ignore the cut of the logarithm in Eq.~16! when
performing the Matsubara sum in Eq.~13! by contour inte-
gration. In other words, we assume that the quark propag
has only simple poles in the complexq0 plane, correspond
ing to the excitation energies of quasiparticles with infin
lifetime. This approximation is valid up to subleading ord
in the gap equation, because, as explained above, ef
from a finite quasiparticle lifetime enter only at su
subleading order.

A wave-function renormalization of the form~16! is
known from nonrelativistic systems@15#, where it leads to
non-Fermi-liquid behavior. In relativistic systems, no
Fermi-liquid behavior has been recently studied in great
tail by Boyanovsky and de Vega@16#.

After these introductory remarks, we may immediate
proceed to Eq.~3.3! of Ref. @11# or Eq.~32! of Ref. @5#. This
equation determines the spin-zero gap in a two-flavor co
superconductor in pure Coulomb gauge. With the repla
ment ~15! it reads

f~K !5
2

3
g2

T

V (
Q

Z2~q0!
f~Q!

q0
22@Z~q0!eq#2

3FD l~K2Q!
11 k̂•q̂

2
1D t~K2Q!

3S 2
32 k̂•q̂

2
1

11 k̂•q̂

2

~k2q!2

~k2q!2D G , ~17!

where we neglected the contribution of antiparticles. T
next step is to perform the Matsubara sum overq0. We use
spectral representations for the propagators, as in Ref.@5#.
The only difference to the calculation of Ref.@5# is that the
poles of the fermion propagator are shifted. To leading or
they are now given by

q0.6Z~eq!eq[6 ẽq . ~18!

The rest of the calculation is straightforward. We also ta
the external quark energyk0 to be on the new quasiparticl
mass shell,k05Z(ek) ek5 ẽk . Then, in analogy to Eq.~3.4!
of Ref. @11# and Eq.~72! of Ref. @5#, the final result for the
gap equation, including the quark self-energy, reads

fk.ḡ2E
0

dd~q2m!

ẽq

Z2~ ẽq!tanhS ẽq

2T
D 1

2
lnS b̃2m2

u ẽq
22 ẽk

2u D fq ,

~19!
05400
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where b̃[256p4@2/(Nfg
2)#5/2. Note that we have replace

the symbolb in Eq. ~72! of Ref. @5# by b̃, because the defi
nition of b, cf. Eqs.~4!,~5!, includesb08 , the value of which
has yet to be determined. In Ref.@5#, this distinction was not
necessary, because thereb08[1. We abbreviated fk

[f( ẽk ,k); fq is defined similarly.

III. SOLVING THE GAP EQUATION

Let us now solve the gap equation~19! at zero tempera-
ture. In this case, the factor tanh@ẽq /(2T)#51. Moreover, to
leading order we can make the replacementsẽq→eq and ẽk

→ek in the logarithm ln(b̃2m2/uẽq
22ẽk

2u). For similar reasons

Z( ẽq).Z(eq). Following Ref.@7#, we approximate

1

2
lnS b̃2m2

ueq
22ek

2u D→ lnS b̃m

eq
D u~q2k!1 lnS b̃m

ek
D u~k2q!,

~20!

and then introduce the variables@5#

x5ḡ lnS 2b̃m

k2m1ek
D , ~21a!

y5ḡ lnS 2b̃m

q2m1eq
D , ~21b!

x* 5ḡ lnS 2b̃m

f0
D , ~21c!

x05ḡ lnS b̃m

d
D . ~21d!

Note that in contrast to Ref.@5# we choose to include a facto
ḡ in the definition of these variables. Consequently, sin
f0;m exp(21/ḡ), x* ;O(1) andx0;O(ḡ). Furthermore,
x andy are of orderO(1) near and of orderO(ḡ) away from
the Fermi surface.

In analogy to Eqs.~84! and ~85! of Ref. @5#, the gap
equation and its derivatives read in these new variables

f~x!.xE
x

x*
dy~122ḡy!f~y!1E

x0

x

dyy~122ḡy!f~y!,

~22a!

df~x!

dx
.E

x

x*
dy~122ḡy!f~y!, ~22b!

d2f~x!

dx2
.2~122ḡx!f~x!. ~22c!

In these equations, we neglected contributions of or
O(ḡ2), for instance, a termḡ2 ln(b̃m/M) in the wave-function
renormalization factorZ(eq).
5-4
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In order to solve Eq.~22c!, we replacex with a new
variablez,

z[2~2ḡ!22/3~122ḡx!, ~23!

and obtain Airy’s differential equation@17#,

d2f~z!

dz2
5zf~z!. ~24!

The solutionf(z) of Eq. ~24! is a linear combination of the
Airy functions Ai(z) and Bi(z),

f~z!5C1 Ai ~z!1C2 Bi~z!. ~25!

In weak coupling,z is always negative, and the Airy func
tions and their first derivatives can be expressed in term
modulus and phase, defined as

Ai ~z!5M ~ uzu!cosu~ uzu!, Bi~z!5M ~ uzu!sinu~ uzu!,

M ~ uzu!5AAi2~z!1Bi2~z!, u~ uzu!5arctanFBi~z!

Ai ~z!G ,
Ai 8~z!5N~ uzu!cosw~ uzu!, Bi8~z!5N~ uzu!sinw~ uzu!,

N~ uzu!5AAi 82~z!1Bi82~z!, w~ uzu!5arctanF Bi8~z!

Ai 8~z!
G .

~26!

At the Fermi surface, the value of the zero-temperature
function is f(z* )5f0 and its derivative vanishes
df(z* )/dz50. Consequently, we obtain for the gap fun
tion

f~z!5f0

M ~ uzu!

M ~ uz* u!

sin@w~ uz* u!2u~ uzu!#

sin@w~ uz* u!2u~ uz* u!#
. ~27!

In order to determinef0, we use Eq.~22a! at the Fermi
surface,z5z* , and substitute the integration variabley by
u[2(2ḡ)22/3(122ḡy) to obtain

f~z* !5E
z*

z0
du@u1~2ḡ!22/3#uf~u!, ~28!

wherez052(2ḡ)22/3@122ḡx0#. According to Eq.~24!, we
can replaceuf(u) with d2f(u)/du2. Integrating by parts,
this leads to the condition

@z01~2ḡ!22/3#f8~z0!5f~z0!. ~29!

Note that the above equation depends onz* through Eq.
~27!. It seems that Eq.~29! also depends onz0 which is
arbitrary and far from the Fermi surface. In weak couplin
however, the dependence onz0 disappears, as we shall sho
in the following. We first rewrite the condition~29! as
05400
of

p

,

@z01~2ḡ!22/3#sin@w~ uz* u!2w~ uz0u!#

5
M ~ uz0u!
N~ uz0u!

sin@w~ uz* u!2u~ uz0u!#. ~30!

In weak coupling,uzu;(2ḡ)22/3@1, and we may use the
asymptotic formulas@17#

w~ uzu!.
3p

4
2

2

3
uzu3/22

7

48
uzu23/21O~ uzu29/2!

.2
1

3ḡ
1

3p

4
1x2ḡS x2

2
1

7

24D1O~ ḡ2!,

u~ uzu!.
p

4
2

2

3
uzu3/21

5

48
uzu23/21O~ uzu29/2!

.2
1

3ḡ
1

p

4
1x2ḡS x2

2
2

5

24D1O~ ḡ2!,

M ~ uzu!
N~ uzu!

.uzu21/2@11O~ uzu23!#, ~31!

where we employeduzu.(2ḡ)22/3(122ḡx), cf. Eq. ~23!.
We now expand Eq.~30! to orderO(ḡ) and obtain

x* 5arctanF2
2

ḡ~11x* 2!
G . ~32!

In weak coupling, the argument of the arctan is large, and
can expand the right-hand side to orderO(ḡ) aroundp/2.
The result is

x* .
p

2
1ḡ

11x* 2

2
. ~33!

To orderO(ḡ), we can approximatex* 2.p2/4 on the right-
hand side of Eq.~33!, and using the definition ofx* , Eq.
~21c!, we obtain the zero-temperature gap value at the Fe
surface,

f052b̃b08m expS 2
p

2ḡ
D , ~34!

whereb08 is given by Eq.~9!, with c18 of Eq. ~8!. In conclu-
sion, the effect of including the quark self-energy in the g
equation changes the value ofb08 from one, as in Refs.@4,5#,
to the valuec18 given in Eq.~8!.

IV. DETERMINING THE TRANSITION TEMPERATURE

Within the gap equation approach, we can also determ
the temperatureTc for the transition between the normal an
the superconducting phase. We follow Ref.@5# and consider
the gap equation~22a! at the Fermi surface, restoring th
factor tanh@e(y)/(2T)# present at nonzero temperature. As
5-5
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Ref. @5#, we assume that to leading order the shape of the
function at nonzero temperature is the same as at zero
perature, and that only the overall magnitude changes w
temperature,f(x,T)5f(T)f(x,0)/f0. Then the gap equa
tion reads

15E
x0

x*
dyy~122ḡy!tanh

e~y!

2T

f~y,0!

f0
. ~35!

We now separate the range of integration into two piec

@x0 ,x* #→@x0 ,xk#1@xk ,x* #, where xk5x* 2ḡ ln(2k)
5ḡ ln@b̃m/(kf0)#. The main contribution to the integral in Eq
~35! comes from the region of momenta away from t
Fermi surface,@x0 ,xk#. In this region,e(y)@f0;T, such
that we can approximate the factor tanh@e(y)/(2T)#.1. By
making use of Eqs.~24! and~29!, the integral over the region
@x0 ,xk# is evaluated as

I5E
x0

xk
dy y~122ḡy!

f~y,0!

f0

5
1

f0
$f~zk!2@zk1~2ḡ!22/3#f8~zk!%

512
p

2
ḡ ln 2k1O~ ḡ2!, ~36!

wherezk5z* 2(2ḡ)1/3ḡ ln 2k. The last line is obtained by
expanding the right-hand side of the second equality to o
O(ḡ) aroundz* . Equation~35! becomes

E
xk

x*
dy y~122ḡy!tanh

e~y!

2T

f~y,0!

f0
5

p

2
ḡ ln 2k1O~ ḡ2!.

~37!
05400
ap
m-
th

s,

er

The integral on the left-hand side may now be computed
order O(ḡ). As in Ref. @5#, this amounts to approximating
y.x* andf(y,0)/f0.1. Furthermore, the correction from
the quark self-energy can be neglected, 122ḡy.1. In this
way, we obtain Eq.~104! of Ref. @5#; consequently the BCS
result~6! remains valid to leading order ing, even when the
quark self-energy is taken into account in the gap equat
With Eqs.~6! and ~34!, we thus conclude that our result fo
Tc is the same as that obtained in Ref.@12#.

V. CONCLUSIONS

In this paper, we have computed the spin-zero gap i
two-flavor color superconductor at zero temperature from
mean-field gap equation. In contrast to earlier stud
@4,5,8,9,11#, we have included subleading contributions fro
the real part of the quark self-energy. We found that th
contributions reduce the gap parameter at the Fermi sur
by a factorb085exp@2(p214)/8#.0.177. We then computed
the transition temperatureTc between the normal and supe
conducting phase and found that the BCS relationTc
.0.57f0 remains valid to leading order ing after including
the corrections from the quark self-energy. Therefore we
tain the same value forTc as in Ref.@12#.
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