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How the quark self-energy affects the color-superconducting gap
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We consider color superconductivity with two flavors of massless quarks which form Cooper pairs with total
spin zero. We solve the gap equation for the color-superconducting gap parameter to subleading order in the
QCD coupling constang at zero temperature. At this order @ there is also a previously neglected contri-
bution from the real part of the quark self-energy to the gap equation. Including this contribution leads to a
reduction of the color-superconducting gap parameigiby a factorby=exg —(#>+4)/8]=0.177. On the
other hand, the BCS relatioh,=0.57¢, between¢, and the transition temperatufie. is shown to remain
valid after taking into account corrections from the quark self-energy. The resulting vallig fmmfirms a
result obtained previously with a different method.
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[. INTRODUCTION interactions, like the exchange of almost static magnetic glu-
ons in QCD[5,7]. Its origin is a collinear singularity when
Quantum chromodynamic$QCD) is the fundamental integrating over angles between quark and gluon momenta in
theory of the strong interaction. In strongly interacting matterthe gap equation. The weak-coupling soluti#) implies
at large density or, equivalently, large quark chemical potenthat the first term in brackets in E€L) is ~1/g°. It therefore
tial u, asymptotic freedonfil] implies that single-gluon ex- domlnateszth_e right-hand side of E@). Together with the
change becomes the dominant interaction between quarkgrefactorg®, it is of order O(1) in the gap equation. The
Single-gluon exchange is attractive in the color-antitripletv@lue of the coefficient’ determines the constantin Eq.
channel2]. By Cooper’s theorem3], any attractive interac- (

tion destabilizes the Fermi surface and, at sufficiently smal{. The second term in Eq1) contains subleading contribu-

temperaturel, leads to the condensation of Cooper pairs. If lons of orderO(g) to the gap equation, characterized by a

the Cooper pair condensate carries charge quantum numbe%"ggk.a power of.the logarithm Ipd 4o)~1/g. A part O.f these .
. contributions arises from the exchange of nonstatic magnetic
of a local gauge symmetry, the Meissner effect leads to su:

erconductivity. Stronalv interacting matter. where uarkand static electric gluons]. Both types of interactions are
b HVILY.- gy 9 ' q of short range: they are screened on a distance $n§1ile,
Cooper pairs carry color charge, becomes a color SUpercot, e is the aluon massm2=N.q2 2/(672), Ny is the
ductor. In a superconductor, exciting particle-hole pairs costs 9 g Ty =Neg 1t o

at least an amount of energy oi3, whereg is the value of number of quark flavors. Consequently, the collinear loga-
. 9y ' bo X rithm characteristic for long-range interactions is absent, and
the superconducting gap parameter at the Fermi surface f

. = “gne is left with the BCS logarithm. The coefficietin Eq.
T=0. Its value can be computed from a gap equation derive 1) determines the constahtin Eq. (2).

in the mean-field approximation, which, in QCD, involves = " Tne third term in Eq(1) summarizes sub-subleading con-

single-gluon exchangfet,5]. _ _ . tributions of orderO(g?) with neither a collinear nor a BCS
Schematically, this gap equation can be written in theiggarithm. It was argued in Reff4,5,10 that at this order
form [6] gauge-dependent terms enter the QCD gap equation. How-

ever, the gap parameter is in principle an observable quantity,
glnz(— M ) and thus gauge independent. Therefore one concludes that
do oo the mean-field approach cannot be used to compute sub-
subleading contributions to the gap parameter. It was also
For small values of the QCD coupling constagts1, the  shown[11] that effects from the finite lifetime of quasiparti-
solution is[4,5,7—9 cles in the Fermi sea influence the valuedgf at this order.
In weak coupling, these contributions are suppressed by one
c power ofg compared to the subleading terms and therefore
3 [1+0O(g)]. (20 constitute an ordeO(g) correction to the prefactob, as
indicated in Eq.(2).
The first term in Eq(1) contains two powers of the loga- _ The value of the coefficiert was first computed by Son
rithm In(w/¢p). One logarithm is well known from the gap [7]:
equation in standard BCS thed], where it arises from the
integration over fermion momenta up to the Fermi surface.
The other logarithm is special to theories with long-range
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Son also gave an estimate for the constant

=,

g

b (4)

with a constanbg of orderO(1), which could not be deter-
mined in the approach of R€f7]. In Refs.[4,5] the constant
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While manifestly gauge invariant, a disadvantage of the
approach of Ref[12] is that its range of applicability is
restricted to the normal-conducting phase and thus can only
determine the value of ., but not the value of the zero-
temperature gap,. Therefore a relation betwedn and ¢,
like Eqg. (6), can in principle not be established within this
approach. It is possible to derive such a relation with the help

b, was computed by solving the QCD gap equation inclug-Of the gap equation, as demonstrated in R&, but contri-

ing nonstatic magnetic and static electric gluon exchange:

The result is

2 5/2
bo=2567* —) by, ©)

Ny

with an undetermined constahf, of order O(1). In Refs.

[4,5], where the only subleading contributions to the gap :
equation arise from nonstatic magnetic and static electrid©® this end,
gluon exchangehy= 1. In principle, however, there could be

other subleading contributions, which would chargeto a
valueb# 1.

At sufficiently large temperature, thermal random motion
breaks up Cooper pairs and the superconducting condens

melts. In Ref[5] it was shown that the temperatufe for

the transition between the normal and the superconductin
phase is related to the zero-temperature gap at the Fer

surface in the same way as in BCS theory,

eY
Te="—¢0=0.570y, (6)

where y=0.577 is the Euler-Mascheroni constant.
In Ref.[12], Brown, Liu, and Ren calculated, in a dif-
ferent approach with the result

5/2
o
ciu ex;n( - —_) N
2g

2

e” 2
T.=2—2567"
m N¢g

where

, e+ 4
ci=ex 5

Furthermore, the authors of R¢L2] assumed the validity of
Eq. (6), and concluded that

)20.177. (8)

by=c;,

9

as one readily checks with Eq®)—(5), (7), and(8). Physi-
cally, the difference between the approach of Regfs] and

utions from the quark self-energy were neglected in obtain-
ing the result Eq(6). It is conceivable that Eq6) changes,
once these contributions are taken into account. Conse-
quently, the validity of Eq(9) is not obvious.

The aim of the present paper is twofold. On the one hand,
we want to compute the contribution of the quark self-energy
to the value of the constai, in the zero-temperature gap.
On the other hand, we want to confirm the res)tfor T..
it is necessary to first compute the value of the
zero-temperature gap by directly solving the gap equation
including the quark self-energy. Second, one has to prove
that Eq.(6) remains valid in order to determinE., which
then can be compared to the val(@ obtained in Ref[12].

Our paper is organized as follows. In Sec. Il we first clarify

Hw the quark self-energy enters the gap equation. In Sec.

IIl, the resulting gap equation is solved at zero temperature.
fh sec. IV we determind .. We conclude in Sec. V with a

@hmmary of our results.

Our convention for the metric tensor ¢8*’=diag{1,— 1,
—1,—1}. Our units arei =c=kg=1. Four-vectors are de-
noted by capital letterK=K*=(kq,k), andk=|k|, while
k=k/k.

II. THE GAP EQUATION INCLUDING THE QUARK
SELF-ENERGY

In fermionic systems at nonzero density, it is advanta-
geous to treat fermions and charge-conjugate fermions as
independent degrees of freedom and to work in the so-called
Nambu-Gorkov basis. In this basis, the full inverse fermion
propagator is defined 441]

. ( S S121) _ ( SISy
ST Sy 2

E21.2
S +35)
(10
where S°,; is the propagator for free fermion§®,, the

propagator for free charge-conjugate fermions. In momen-
tum space and, fop>m,

SOll(Q)z(’}’#QM‘F/-H’o)ﬂ,

Sozz(Q)z()’“QM_MYO)ﬂ,
that of Ref.[12] is that contributions from the quark self- (11
energy were neglected in the former, but taken into account
in the latter. If the above arguments are correct, one mawhere y* are Dirac matrices. The four components of the
therefore conclude that the quark self-energy constitutes ermion self-energy are denoted as;, i,j=1,2. The 11
subleading correction to the gap equation and thus is respoeomponent of the self-energy,;,, is the standard one-loop
sible for the change of the value bf from 1 toc; given by  self-energy for fermions; similarly. ,, is the self-energy for
Eqg. (8). The authors of Ref.12] also assert that there are no charge-conjugate fermions. The 21 component of the self-
further subleading contributions that could alter the value ofnergy,2,;, which was denoted ™ in Ref.[5], is the gap
Ccy- matrix in a superconductor, whil;,= y03 1;7. In the fol-
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lowing, we somewhat imprecisely use the term “self-invariant up to terms of subleading ordéhe first two terms

energy” only for the diagonal components;; andX ,,. in Eq. (1)], and the gauge dependence only surfaces at sub-
Inverting Eq.(10) one obtains the full fermion propagator subleading ordefthe third term in Eq.(1), or the terms
S with the diagonal components ~0(g) in Eqg. (2)]. To preserve gauge invariance beyond

. o-1 e 41 subleading order, other diagrams than those of rainbow to-
Sy=[S11 +311—31(S%, +322) 21l (128 pology have to be added to EQ.3), or in other words, one
has to go beyond the mean-field approximation to solve for
the gap matrix ,; .

_reo-1 _ -1 -1 -1 If one restricts the computation of the gap to subleading
S2=[$2 + 2oz~ 2ol Siy’+ 20 "Eadl T (120) accuracy, however, the mean-field equatid8) should be
describing thdnorma» propaga’[ion of Charge-conjugate fer- sufficient to obtain a gauge—invariant result. It is then man-
mions. In superconductors, due to the presence of a fermiorlatory to identifyall terms that can contribute to subleading
fermion condensate one can always convert an incoming ferder. In Eq.(13) for %5, the term in square brackets be-
mion into an outgoing charge-conjugate fermion and vicecomes— y“T1S,1(Q) y"T, . With the exception of Ref11],
versa. Therefore the full fermion propaga®also has off-  previous calculations of the QCD gap parameter neglected

describing thgnorma) propagation of fermions, and

diagonal components, the terms2,; andX,, in S,;, see Eq.12). A perturbative
calculation of these self-energies, i.e., approximating
S1o=— (S04 20) S, (120 [PS(Q)Thl11= v*TaS11(Q) 7' Ty, and analogously foij
Sy= — (051 43,) 15,15, (129 ;gzr;e;:}?{li?alytlcal continuation to real energigsgives
describing _theanomak_)us propagation of fermio_ns and B M2
chrge ceiuglc emoniolase efe U S0 91 300)=3°4(Q) Q)| sl + .

which leads to the difference between our E4®) and Egs. (14)
(2.4 and (2.5 in Ref.[11].]
Let us now consider a system of quarks interacting Viﬁ\NhereM2=(37r/4)m§. On the quasiparticle mass sheil,

one-gluon exchange. In mean-field approximatia], the  —¢_ and near the Fermi surfacg,= ¢, the real part of the
four components of the fermion self-energy in momentuMself-energy is of ordeg?e, IN(w/do) ~gdy, While the imagi-
space are computed as nary part is~g2¢, and thus down by a factor gfcompared
1 A A to the real part.
3(K)= _gzv D AZE(K—Q)[FQ‘S(Q)FE]” . ij=1,2. In Ref. [11_], the real part of2% was neglected and the
Q effect of the imaginary part on the magnitude of the color-

(13 superconducting gap was studied. It was found that a nonva-
b A _ nishing imaginary part leads to sub-subleading corrections
Here, A%7 is the gluon propagator, and; is the diagonal  [terms included in the third term-a in Eq. (1)] and to
Nambu-Gorkov matriX'4=diag(y*T,,— 'yMT;),Ta are the  corrections of orde©(g) to the prefactor of the gap, cf. Eq.
Gell-Mann matrices. We compute the self-energy in the(2). Therefore they are of the same order as terms that violate
imaginary-time formalism, i.e.T/VEo=TZ,[d%q/(2m)3, ~ gauge invariance in the mean-field approxima{idr5,10.
where n labels the fermionic Matsubara frequencies, Since the real part of the self-energy is parametrically
=(2n+1)7T=iq,. Forij =11, Eq.(13) becomes Eq(2.7) larger than the imaginary part by one powergpfve expect
of [11], for ij =21, we recover Eq(2.6) of Ref.[11] (how-  the former to contribute to subleading ord€(g), to the
ever, due to our different sign convention, only up to angap equation, and therefore lead to a correction of order
overall sign. O(1) to the prefactor. As discussed in the introduction, this
A fully self-consistent treatment of the mean-field ap-is precisely what the authors of R¢fLl2] found, assuming
proximation requires us to solve the coupled system of Eqghe validity of Eq.(6). In the next section, we solve the gap
(12) and (13). The mean-field solution obtained in this way equation including the quark self-energy and compute the
resums terms of infinite order in the coupling constant. How-value ofb, at zero temperature. In Sec. IV we then check the
ever, because only a particular class of diagrams is taken intealidity of Eq. (6).
account(the so-called “rainbow” diagrams such a solution First note that, since the real part of the quark self-energy
is in general not gauge invariant. On the other hand, thés expected to influence the value ¢f only at subleading
quasiparticle properties encoded in the propagator, like theiorder in the gap equation, it is sufficient to approximate the
excitation spectrum, are physical observables and thus imalue of %, or %, in the propagator in Eq13) [cf. Eq.
principle gauge invariant. Indeed, a complete solution of th€12)] by the perturbative expressi@?P, Eq. (14), the differ-
Schwinger-Dyson equations, as well as a perturbative expam@nce contributing at sub-subleading order to the gap equa-
sion in powers of), preserve gauge invariance. Neverthelesstion. In order to solve the gap equation, let us revert the
as was discussed in the introduction, an expansion of thanalytic continuation to real energies in E@4), i.e., qq is
mean-field equatioril3) for the color-superconducting gap purely imaginary in the following. From Eq§12) and (14),
matrix ® =3, in powers ofg is believed to be gauge the effect of includings® is to replace
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do whereb=2567*2/(N¢g?)]1>2 Note that we have replaced

9 Z(q0) 19 e symbolb in Eq. (72) of Ref.[5] by b, because the defi-
. nition of b, cf. Egs.(4),(5), includesby, the value of which
in the quark propagator, where has yet to be determined. In Rg5], this distinction was not
2) 1 necessary, because therfgi=1. We abbreviated ¢

Z(qo)E( 1+g° In—- (16) = p(ey k); ¢q is defined similarly.
0

. . L . I1l. SOLVING THE GAP EQUATION
is the quark wave-function renormalization factor. Since we

only want to consider the real part of the quark self-energy, Let us now solve the gap equatioh9) at zero tempera-
we shall ignore the cut of the logarithm in E(L6) when ture. In this case, the factor tdrfy/(2T)]=1. Moreover, to
performing the Matsubara sum in E{.3) by contour inte- leading order we can make the replaceméat& € ande,

gration. In other words, we assume that the quark propagator, =5
has only simple poles in the compley plane, correspond- €k In the logarithm I /rEZ 62|) For similar reasons,

ing to the excitation energies of quasiparticles with infiniteZ(€q) =Z(&,). Following Ref.[7], we approximate
lifetime. This approximation is valid up to subleading order - ~ ~
in the gap equation, because, as explained above, effects 1, [ D°u | bu O+ bu o(k—
from a finite quasiparticle lifetime enter only at sub- 2 |e2— —n € 6=k +In o(k=a),
. €q Ek| a
subleading order. (20)
A wave-function renormalization of the fornil6) is
known from nonrelativistic system{d5]|, where it leads to and then introduce the variablgs]
non-Fermi-liquid behavior. In relativistic systems, non-

Fermi-liquid behavior has been recently studied in great de- — 2bu
tail by Boyanovsky and de Vedd6]. x=gIn K—ute) (213
After these introductory remarks, we may immediately K
proceed to Eq(3.3) of Ref.[11] or Eq.(32) of Ref.[5]. This o5
equation determines the spin-zero gap in a two-flavor color y=gIn _PB ) (21b)
superconductor in pure Coulomb gauge. With the replace- q—ute€q
ment(15) it reads ~
x* =gin| 22 (210
2 ,T - “dn
o(K)=30% 3 2@ S %o
3TV %_[Z(QO)Eq] ~
- — [bu
]
X A(K= Q) +A(K=-Q)

Note that in contrast to Reff5] we choose to include a factor
g in the defin@on of these variables. Eonsequently, since
do~ pexp(=1/g), x*~0(1) andxy~0O(g). Furthermore,

x andy are of ordeiO(1) near and of orde®(g) away from
where we neglected the contribution of antiparticles. Thene Fermi surface.

spectral representations for the propagators, as in [Béf.  equation and its derivatives read in these new variables
The only difference to the calculation of R¢§] is that the

—A.A A.A — 2
x(_S kq+1+kq(k q)) 17

2 2 (k=g

poles of the fermion propagator are shifted. To leading order, x* _ x _
they are now given by ¢(X):XJX dy(1—2gy)¢(y)+ L dyy(1—2gy)¢(y),
0
~ 22
Qo==*Z(€g)eq=*€q. (18) (229

The rest of the calculation is straightforward. We also take d
the external quark energy) to be on the new quasiparticle

mass shellko=Z(e) e=€x. Then, in analogy to Eq3.4)
of Ref.[11] and Eq.(72) of Ref. [5], the final result for the d?¢(x) —
gap equation, including the quark self-energy, reads dx2 =—(1-29%) (). (229

— (od(q— € |1
¢k292fo (qu “) 726 q)tam( 2T)2'”
q

. f:*dy<1—25y>¢<y>, (22b)

n2,,2 . . .
b*u & In these equations, we neglected contributions of order
|~§ e 0O(g?), for instance, a terg? In(bu/M) in the wave-function

(19 renormalization factoZ(e).

054005-4



HOW THE QUARK SELF-ENERGY AFFECTS TH. ..

In order to solve Eq.(22¢), we replacex with a new
variablez,

z=—(2g) " ?*(1-2gx), (23
and obtain Airy’s differential equatiofiL7],
d2¢p(z
d¢z(2 ' z¢(2). (24)

The solution¢(z) of Eq. (24) is a linear combination of the

PHYSICAL REVIEW D 65 054005

[2o+(29) 2R]sin o(|2*]) — ¢(|zq|)]

M(|zo|)
N(|zo|)

sine(|z*]) = 6(|1zo]) 1. (30

In weak coupling,|z|~(2g) %31, and we may use the
asymptotic formula$17]

37w 2 7
_ _ _|9l32_ __ —-3/2 —9/2

Airy functions Ai(z) and Bi(z), 1 37 X7 -
= 35+ 7 +x—g 2+24 +0(g°),
¢(z)=C, Ai(2)+C, Bi(2). (25
In weak coupling,z is always negative, and the Airy func- 0(|z|)= T z|z|3/2+ i|z|*3/2+ 0(|z|~%?
tions and their first derivatives can be expressed in terms of 4 3 48
modulus and phase, defined as
1 = x> 5 -
Ai(2)=M(|z))cosd(|z)), Bi(z)=M(|z)sino(lz)), T g a9 2 e OO,
: - Bi(z) M(l2))
M(|z|)= VAi%(z) +Bi’(z), 6(|z )=arctar%.— ) |-V -3
| | | | Ai(z) N(|Z|) |Z| 2[1+O(|Z| )1 (31

Ai'(z)=N(|z])cose(|z]), Bi'(2)=N(|z])sine(|z]),

Bi’(z)
Ai'(2)

N(|z|)= VAI'%(z)+Bi'?(z), go(|z|)=arctar{

(26)

At the Fermi surface, the value of the zero-temperature ga

function and its derivative vanishes,

is ¢(z*)= o

d¢(z*)/dz=0. Consequently, we obtain for the gap func-

tion

M(|z)) sine(]z*])—6(|2])]
M(|z*]) sie(|z*)— 6(]z* )]

#(2)= oo (27)

In order to determineb,, we use Eq(22a at the Fermi
surface,z=2z*, and substitute the integration variahjeby

u=—(2g) 31— 2gy) to obtain

¢(z*>=f;c’du[u+(25>‘2’3]u¢(u>, (28)

wherezy= — (29) ~ 21— 2gx,]. According to Eq.(24), we
can replaceug(u) with d?¢(u)/du?. Integrating by parts,
this leads to the condition

[20+(29) ?°]¢' (20) = (2o). (29
Note that the above equation depends Zinthrough Eg.
(27). It seems that Eq(29) also depends omzg, which is

where we employedz|=(2g)  #¥(1-2gx), cf. Eq. (23).
We now expand Eq30) to orderO(g) and obtain
2

sy (32

xX* = arctar{

In weak coupling, the argument of the arctan is large, and we

Ean expand the right-hand side to ordé(a) around /2.
The result is

. 71'_}__14-X*2
=TT

(33

To orderO(g), we can approximate* 2= 72/4 on the right-
hand side of Eq(33), and using the definition ok*, Eq.
(210, we obtain the zero-temperature gap value at the Fermi

surface,
a
29/’

whereby is given by Eq.(9), with c; of Eq. (8). In conclu-
sion, the effect of including the quark self-energy in the gap
equation changes the valuelgff from one, as in Refd4,5],

to the valuec; given in Eq.(8).

bo=2bbju exp( (34)

IV. DETERMINING THE TRANSITION TEMPERATURE

Within the gap equation approach, we can also determine
the temperatur@ . for the transition between the normal and

arbitrary and far from the Fermi surface. In weak coupling,the superconducting phase. We follow Réf] and consider
however, the dependence mndisappears, as we shall show the gap equatiori22g at the Fermi surface, restoring the

in the following. We first rewrite the conditiof29) as

factor tanhe(y)/(2T)] present at nonzero temperature. As in
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Ref.[5], we assume that to leading order the shape of the gaphe integral on the left-hand side may now be computed to

function at nonzero temperature is the same as at zero temirder O(g). As in Ref.[5], this amounts to approximating
perature, and that only the overall magnitude changes wit~y* and ¢(y,0)/¢,=1. Furthermore, the correction from

temperaturegp(x, T) = ¢(T) ¢(x,0)/¢y. Then the gap equa-

tion reads
x* — ,0
1= J dyy(1l— Zgy)tanhf(—y) M (35
XO 2T ¢O

We now separate the range of integration into two piece

[X0,X* ]=[X0. X, ]+ X, X*],  where x,=x*—gIn(2«)

=gIn[bu/(k¢)]. The main contribution to the integral in Eq.
(35 comes from the region of momenta away from the

Fermi surface[Xq,X,]. In this region,e(y)> ¢o~T, such
that we can approximate the factor the(ly)/(2T)]=1. By

making use of Eq924) and(29), the integral over the region

[Xg,X,] is evaluated as

(% = 9.0
I= fXOdyy(l 2913/)—(1,0

1 _
= g{d)(ZK)—[ZK+(29)_2’3]¢’(ZK)}
0

T .
=1-5gin2x+0(g?), (36)

wherez,=z* —(29)“3gIn 2«. The last line is obtained by

S,

the quark self-energy can be neglected; 2gy=1. In this
way, we obtain Eq(104) of Ref.[5]; consequently the BCS
result(6) remains valid to leading order igy even when the
quark self-energy is taken into account in the gap equation.
With Egs.(6) and(34), we thus conclude that our result for
T. is the same as that obtained in Rgf2].

V. CONCLUSIONS

In this paper, we have computed the spin-zero gap in a
two-flavor color superconductor at zero temperature from a
mean-field gap equation. In contrast to earlier studies
[4,5,8,9,11, we have included subleading contributions from
the real part of the quark self-energy. We found that these
contributions reduce the gap parameter at the Fermi surface
by a factorb,=exd — (7?+4)/8]=0.177. We then computed
the transition temperaturg. between the normal and super-
conducting phase and found that the BCS relatibn
=0.57¢, remains valid to leading order g after including
the corrections from the quark self-energy. Therefore we ob-
tain the same value fof; as in Ref[12].
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