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Connection between the perturbative QCD potential and phenomenological potentials

Y. Sumino
Department of Physics, Tohoku University, Sendai, 980-8578 Japan

~Received 20 June 2001; published 22 January 2002!

When the cancellation of the leading renormalon contributions is incorporated, the total energy of abb̄
systemEtot,bb̄(r)[2mpole,b1VQCD(r ) agrees well with the potentials used in phenomenological models for
heavy quarkonia in the range 0.5 GeV21&r &3 GeV21. We provide a connection between the conventional
potential-model approaches to the quarkonium spectroscopy and the recent computation based on perturbative
QCD.
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I. INTRODUCTION

For over 20 years, most successful theoretical approa
for describing the charmonium and bottomonium syste
~including the excited states! have been those based on va
ous phenomenological potential models. The
phenomenological-model approaches have elucidated the
ture of the heavy quarkonium systems, such as their lept
widths and transitions among different levels, in addition
reproducing the energy levels. The phenomenological po
tials determined and used in these studies have more or
similar slopes in the range 0.5 GeV21&r &5 GeV21, which
may be represented by a logarithmic potential} log r
1const. See, e.g., Ref.@1# for a recent analysis based on th
potential models. An apparent deficit of these approache
however, the difficulty in relating phenomenological para
eters to the fundamental parameters of QCD.

The reason why people have been using phenomeno
cal models is because the theory of nonrelativistic bou
states based on perturbative QCD failed to reproduce
charmonium and bottomonium spectra. This is in contr
with the corresponding theory based on perturbative QE
which has been successful in describing the spectra of
QED bound states. The main problem has been the p
convergence of the perturbative expansions when the en
levels of the heavy quarkonia are computed in series exp
sions in the strong coupling constant. Since the coup
constant is quite large at relevant scales, approximating o
one, it has been considered as an indication of large non
turbative effects inherent in these quarkonium systems
fact the difference between a typical phenomenological
tential and the Coulomb potential tends to be a linearly ris
potential at distancesr *1 GeV21, suggesting confinemen
of quarks. Within perturbative QCD, the origin of the po
convergence has been understood in terms of the renorm
contributions@2#.

More recently, theoretical frameworks based on QC
have been developed for describing these quarkonium
tems systematically. Within effective theories based on
propriate expansions in small parameters, various poten
are defined such that the leading-order potential plays a
close to that of the potentials introduced in the above p
nomenological approaches. The order countings of term
organizing the expansions depend crucially on the rela
sizes of the dynamically generated scales~soft scale;mv,
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ultrasoft scale;mv2, wherem andv are the quark mass an
velocity, respectively! and the hadronization scale;LQCD.
This aspect contrasts with the fact that the expansion par
eter in the nonrelativistic bound state theory based on per
bative QCD is simply 1/c ~inverse of the speed of light!. In
the formalism developed in Refs.@3–7#, or in the potential
nonrelativistic QCD~PNRQCD! formalism @8,9# formulated
more systematically, potentials are defined in a way su
for practical computations by lattice simulations~or by using
models!. On the basis of these formalisms, lattice calcu
tions have shown from first principles that the leading-ord
potential has a shape consistent with the phenomenolog
potentials in the relevant range, although the accuracy of
computations needs further improvements@10,11#.

Very recently, a new computation of the charmonium a
bottomonium spectra has been reported in the framewor
nonrelativistic bound state theory based on perturbative Q
@12#. It incorporated recent significant developments in t
field: ~1! the full computations of the quarkonium energ
levels up to order 1/c2 @13–16#; ~2! the cancellation of the
leading renormalons contained in the quark pole mass
the static QCD potential@17,18#. As a result, the convergenc
property of the series expansions of the energy levels
proved drastically, which enabled stable perturbative pred
tions for the levels up to some of then53 bottomonium
states and then51 charmonium states~n is the principal
quantum number!. Furthermore, the computed spectrum
when averaged over spins, reproduced the gross structu
the observed energy levels of the bottomonium states, wi
moderate theoretical uncertainties estimated from the n
to-leading renormalon contributions. It indicates that nonp
turbative contributions to the bottomonium spectrum, in t
scheme free from the leading renormalons, would absorb
next-to-leading renormalon uncertainties of the perturba
predictions and may be of the size comparable to them.

It is then natural to ask whether there is a connect
between the above phenomenological potential-model
proaches~supplemented by the more systematic framewo
and lattice calculations! and the recent computation based
perturbative QCD. Once this connection is established,
may merge these approaches and further develop unders
ing of the charmonium and bottomonium systems. For
stance, in the perturbative computation, the level splittin
between theS-wave andP-wave states as well as the fin
©2002 The American Physical Society03-1



n
is

ce
b

tu
e
ti

t
h
a

D
s
u
i-
m
no
c
th
-

iv
-
in
a

he

f a

. V

io
of

a

g

e

der
n

his
re-

si-
gu-

t

p
ent

s a

he
ys-
of

l

nge
f
his
rder

the
l

er
on
e
al

Y. SUMINO PHYSICAL REVIEW D 65 054003
splittings among thenPj states turn out to be smaller tha
the corresponding experimental values. Although the d
crepancy is still smaller than the estimated theoretical un
tainties of the perturbative predictions, it should certainly
clarified whether they are explained by higher-order per
bative corrections, or, we need specific nonperturbative
fects for describing them. On the other hand, the poten
approaches have been successful also in explaining theS-P
splittings and the fine splittings. Hence, we expect tha
connection between these theoretical approaches would
to clarify origins of the differences of the present perturb
tive predictions and the experimental data.

In this paper we focus on the perturbative static QC
potential up toO(aS

3), since it dictates the major structure
of the quarkonium spectra in the perturbative computation
to O(1/c2) @12#. Taking into account the above key ingred
ent~2!, we subtract the leading renormalon contribution fro
the QCD potential. Then we compare it with the phenome
logically determined potentials. Our comparison also elu
dates to which extent the perturbative computation of
QCD potential@up to O(aS

3), and after subtracting the lead
ing renormalon# reproduces the results of the nonperturbat
computations.~We will regard typical phenomenological po
tentials as representatives of the lattice results, taking
account consistency of the potentials determined in both
proaches.!

In Sec. II we review the theoretical uncertainties from t
renormalon contributions within the context of the large-b0
approximation. In Sec. III we analyze the total energy o
quark-antiquark system up toO(aS

3). Also the interquark
force is analyzed in Sec. IV. We draw conclusions in Sec

II. RENORMALONS IN THE LARGE- b0

APPROXIMATION

The static QCD potential, defined from an expectat
value of the Wilson loop, represents the potential energy
static quark-antiquark pair

VQCD~r !52 lim
T→`

1

iT
log

^0uTr P exp@ igSrGdxmAm~x!#u0&

^0uTr 1u0&
~1!

52CF

aV~1/r !

r
, ~2!

where G is a rectangular loop of spatial extentr and time
extent T. The second line defines theV-scheme coupling
constantaV(1/r ), whereCF54/3. In perturbative QCD, the
V-scheme coupling constant is calculable in a series exp
sion in the coupling constant as1

1From O(aS
4) and beyond, the series includes infrared div

gences; the divergences can be circumvented by a resummati
diagrams, which brings in logaS in the series expansion or th
log(meff r) term when the theory is matched to the potenti
NRQCD effective theory@19,9#.
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aV~1/r !5aS~m! (
n50

`

Pn@ log~mr !#S aS~m!

4p D n

. ~3!

Throughout this paper,aS(m) denotes the strong couplin
constant in theMS scheme withnl active flavors;m is the
renormalization scale;Pn(L) denotes annth-degree polyno-
mial of L. Although the exact QCD potentialVQCD(r ) is
independent of the scalem, at each order of the perturbativ
expansionm dependences remain. We keepm as a free pa-
rameter in this section. From an analysis of higher-or
terms, it has been known@2# that the perturbative expansio
of VQCD(r ) has an uncertainty of orderLQCD, which is re-
ferred to as the renormalon problem. We first review t
property and estimate uncertainties of the perturbative p
diction for the QCD potential.~See, e.g., Refs.@20#, @21# for
introductory reviews.!

The ‘‘large-b0 approximation’’@22# is an empirically suc-
cessful method for analyzing large-order behaviors of phy
cal quantities in perturbative QCD and renormalon ambi
ities inherent in them. Let us denote byVb0

(r ) the QCD

potential within this approximation and byVb0

(n)(r ) its

O(as
n11) term

Vb0
~r !5 (

n50

`

Vb0

~n!~r !. ~4!

From the Taylor expansion of the Borel transform ofVb0
(r ),

we can easily computeVb0

(n)(r ) one by one from the lowes

order. Also the asymptotic form forn@1 is determined as

Vb0

~n!~r !;2CF 4paS~m!3
me5/6

2p2 H b0aS~m!

2p J n

n!, ~5!

whereb051122nl /3 is the coefficient of the QCD one-loo
beta function. The above asymptotic behavior is independ
of r. It means that, although each term of the potential i
function of r, its dominant part forn@1 is only a constant
potential which mimics the role of the quark mass in t
determination of the total energy of a quark-antiquark s
tem. As we raisen, first uVb0

(n)(r )u decreases due to powers

the smallaS ; for very largen it increases due to the factoria
n!. Around n052p/@b0aS(m)#, uVb0

(n)(r )u becomes small-

est. The size of the term scarcely changes within the ra
nP(n02An0,n01An0). We may consider the uncertainty o
this asymptotic series as the sum of the terms within t
range, since one may equally well truncate the series at o
n02An0 or at ordern01An0 in estimating the ‘‘true value’’
of the potential

dVb0
~r !;U (

n5n02An0

n01An0

Vb0

~n!~r !U;L[m expF2
2p

b0aS~m!G .
~6!

Them dependence vanishes in this sum, and this leads to
claimed uncertainty. In Fig. 1~a! we show the QCD potentia
in the large-b0 approximation truncated at the (N11)-th

-
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-
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FIG. 1. The QCD potential in
the large-b0 approximation trun-
cated at theO(aS

N11) term. We
set m52.49 GeV, nl54, and
aS(m)50.273 @corresponding to
aS

(5)(MZ)50.1181#. ~a! Before
subtraction of the leading renor
malon.~b! After subtraction of the
leading renormalon.
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N Vb0

(n)(r ), for N50,1,2,..., andnl54. We see that

the higher order corrections are indeed large and almost
stant~independent ofr!.

It was found @17,18# that the leading renormalon con
tained in the QCD potential gets cancelled in the total ene
of a static quark-antiquark pair

Etot~r ![2mpole1VQCD~r !, ~7!

if the pole massmpole is expressed in terms of the modifie
minimal subtraction scheme (MS) mass. Namely, when ex
pressed in terms of theMS mass and in a series expansion
aS(m), the pole mass contains the leading renormalon@23#
which is one half in size and opposite in sign of the lead
renormalon ofVQCD(r ). Thus, the total energyEtot(r) is free
from the leading renormalon uncertainties.Etot(r) possesses a
residual uncertainty originating from the next-to-leadi
renormalon@2#

dEtot~r !;L3~Lr !2, ~8!

which is smaller than the leading renormalon uncertainty
the ranger &L21. Shown in Fig. 1~b! is the QCD potential
in the large-b0 approximation@truncated at the (N11)-th
term# after the leading renormalon is subtracted at each o
of aS(m):

V̄b0
~r !5 (

n50

` FVb0

~n!~r !

1CF4paS~m!
me5/6

2p2 H b0aS~m!

2p J n

n! G . ~9!

One sees that the series expansion of the potential has
come much more convergent as compared to Fig. 1~a!. For a
particular choice of the scalem52.49 GeV, the term on the
right-hand side of Eq.~9! becomes smallest at aroundn57
in the range 1 GeV21,r ,5 GeV21. Hence, the error bar
corresponding to the next-to-leading renormalon uncerta
61/2L (Lr )2 ~taking L5300 MeV! are attached to the po
tential forN57 in the same figure. We may consider that t
line for N57 together with the error bars indicate a typic
accuracy of the perturbative prediction for the QCD pote
tial, when the leading renormalon is cancelled. We see
the potential is bent upwards at long distances as comp
to the leading Coulomb potential (N50). If we choose a
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smaller scale form, the term becomes smallest at a smallern.
In this case, convergence properties become better at largr,
where we obtain a value ofV̄b0

(r ) consistent withN57 of
Fig. 1~b! with less terms~smallerN!. Similarly to the leading
renormalon case, the uncertainty ism independent, nonethe
less.

III. THE TOTAL ENERGY OF A qq̄ SYSTEM

Now we examine the total energy of a quark-antiqua
pair, defined in Eq.~7!, exactly up toO(aS

3). This quantity is
free from the leading renormalon uncertainty; in fact the c
cellation of the leading renormalons occurs at a deeper le
than what can be seen in the large-b0 approximation@18#.
We also note that the cancellation at each order of pertu
tive expansion is realized only when we use the same c
pling constant in expandingmpole andVQCD(r ).2

The QCD potential of the theory withnl massless flavors
only3 is given, up toO(aS

3), by

VQCD~r !52CF

aS~m!

r F11S aS~m!

4p D ~2b0l 1a1!

1S aS~m!

4p D 2H b0
2S 4l 21

p2

3 D
12~b112b0a1!l 1a2J G , ~10!

where@24#

l 5 log~mr !1gE , ~11!

b05112
2

3
nl , b151022

38

3
nl , ~12!

2This can be seen, for example, from the fact that the ordern0

52p/@b0aS(m)# at which Eq.~5! becomes smallest is depende
on the value ofaS(m) used for the expansion.

3The QCD potential of the theory which containsnh heavy flavors
~with massm! andnl massless flavors coincides with the potent
in Eq. ~10! up toO(aS

3) if we count 1/r 5O(aSm) and if we prop-
erly match the coupling to that of the theory withnl massless fla-
vors only.
3-3
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a15
31

3
2

10

9
nl ,

a25
4343

18
136p2166z32

9p4

4
2nl S 1229

27

1
52z3

3 D1
100

81
nl

2. ~13!

The relation between the pole mass and theMS mass has
been computed up to three loops in a full theory, which c
e
n

he

e

05400
-

tainsnh heavy flavors andnl massless flavors@25#. Rewrit-
ing the relation in terms of the coupling of the theory withnl
massless flavors only, we find4

mpole5m̄H 11
4

3

aS~m̄!

p
1S aS~m̄!

p D 2

d11S aS~m̄!

p D 3

d2J ,

~14!

where m̄[mMS(mMS) denotes the renormalization-group
invariantMS mass, and
d15
3049

288
1

2p2

9
1

p2 log 2

9
2

z3

6
1nl S 2

71

144
2

p2

18D1nhS 2
143

144
1

p2

9 D , ~15!

d25
1145453

10368
1

25379p2

2592
1

235p2 log 2

54
2

9z3

8
2

341p4

2592
2

7p2 log2 2

27
2

19 log4 2

54
2

76a4

9

2
1331p2z3

432
1

1705z5

216
1nl S 2

81227

7776
2

965p2

648
2

11p2 log 2

81
2

707z3

216
1

61p4

1944
1

2p2 log2 2

81

1
log4 2

81
1

8a4

27 D1nhS 2
157007

7776
1

13627p2

1944
2

640p2 log 2

81
1

751z3

216
1

41p4

972
2

p2 log2 2

81

1
log4 2

81
1

8a4

27
2

p2z3

4
1

5z5

4 D1nl
2S 2353

23328
1

13p2

324
1

7z3

54 D1nlnhS 5917

11664
2

13p2

324
2

2z3

27 D
1nh

2S 9481

23328
2

4p2

405
2

11z3

54 D , ~16!
:
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with a45Li4(1/2). Furthermore, we rewriteaS(m̄) in terms
of aS(m) using the renormalization-group evolution of th
coupling constant. Thus, we examine the series expansio
Etot@r;m̄,aS(m)# in aS(m) up to O(aS

3). Qualitatively the se-

ries shows a convergence property very similar toV̄b0
(r ) for

N50,1,2; see Fig. 1~b!.
The obtained total energy depends on the scalem due to

truncation of the series at a finite order. One finds that, w
r is small, the series converges better and the value ofEtot(r)
is lessm dependent if we choose a large scale form, whereas
whenr is larger, the series converges better and the valu
Etot(r) is lessm dependent if we choose a smaller scale form.
Taking into account this property, we will fix the scalem in
two different ways below.

~1! We fix the scalem5m1(r ) by demanding stability
against variation of the scale:

m
d

dm
Etot@r ;m̄,aS~m!#U

m5m1~r !

50. ~17!

~2! We fix the scalem5m2(r ) on the minimum of the
absolute value of the last known term@O(aS

3) term# of
Etot(r):
of

n

of

m
d

dm
Etot

~3!@r ;m̄,aS~m!#2U
m5m2~r !

50. ~18!

In this analysis we examine the total energy of abb̄ sys-
tem. We setm̄b[mb

MS(mb
MS)54.203 GeV, which is taken

from Ref.@12#. ~Its error is estimated to be about630 MeV.!
For simplicity we analyzeEtot(r) in two hypothetical cases
~i! when mc50 ~nl54 andnh51! and ~ii ! in the limit mc
→mb ~nl53 andnh52!. The real world lies somewhere i
between the two cases: the charm quark decouples in
excited states of bottomonium but not in the ground st
@26#. A more precise analysis requires inclusion of nonze
mc effects intoEtot(r), which will be reported elsewhere@27#.
The input value of the strong coupling constant
aS

(5)(MZ)50.1181@28#. We evolve the coupling and matc
it to the couplings of the theory withnl54 and 3 succes-
sively by solving the renormalization-group equation n

4Whennh51, this relation coincides with Eq.~14! of @25#, which
is given numerically~indirectly throughb0 and b1!. Note that, in
the other formulas of Ref.@25#, the coupling of the full theory is
used.
3-4
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FIG. 2. ~a! The total energy of abb̄ system measured from 2m̄b in two hypothetical cases. In each case, the scale is fixed bm
5m1(r ) ~dotted lines! or m5m2(r ) @solid lines if Etot

(3)(r)50; dashed lines ifuEtot
(3)(r)u.0#. ~b! The scales chosen by the scale-fixin

prescriptions~17! and~18! in case~i!. The notations are same as in~a!. A conventional scale choicem5exp(2gE)/r is also shown~dotdashed
line!.
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merically with the 3-loop beta function and by using t
3-loop matching condition@30#5 ~3-loop running!.

Figure 2~a! showsEtot(r) ~measured from 2m̄b! for the
two cases~i! and~ii !. In each caseEtot(r) are plotted with the
two different scale-fixing prescriptions; the total ener
hardly changes whether we choosem5m1(r ) or m
5m2(r ). In case~i!, the minimal sensitivity scalem1(r ) ex-
ists only in the ranger &3 GeV21; for the choice m
5m2(r ), the minimum value ofuEtot

(3)(r)u is zero in the range
r &3 GeV21, whereasuEtot

(3)(r)u.0 in the ranger *3 GeV21.
These features indicate an instability of the perturbative p
diction for Etot(r) at r *3 GeV21. The scalesm1(r ) and
m2(r ) are shown as functions ofr in Fig. 2~b!. For compari-
son, we also showm5exp(2gE)/r, which has been consid
ered as a natural scale of the QCD potentialVQCD(r ) con-
ventionally. One sees thatm1(r ) andm2(r ) are considerably
larger than exp(2gE)/r. The scales chosen in case~ii ! are
similar. In Table I we show each term of the series expans
of Etot(r). The series shows healthy convergent behavio
r &3 GeV21.

At this stage, let us discuss why the scalesm1(r ) and
m2(r ) are considerably larger than exp(2gE)/r. For this pur-
pose we use an approximate expression for the pole m
which follows from the fact that the dominant contribution
the pole-MS mass relation can be read from the infrar
region, loop momentaq!m̄ of the QCD static potential@18#

2mpole'2m̄1E
uqW u,m̄

d3qW

~2p!3 uVQCD~q!u

52m̄1
2CF

p E
0

m̄
dqãV~q!. ~19!

Here,VQCD(q)52CF4pãV(q)/q2 is the QCD static poten
tial in momentum space. Then the total energy can be wri
approximately as

Etot~r !'2m̄1E d3qW

~2p!3 uVQCD~q!u@u~m̄2q!2exp~ iqW •rW !#

~20!

5We take the matching scales asm̄b andm̄c(5m̄b), respectively.
05400
-

n
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ss,

n

52m̄1
2CF

p E
0

`

dqaV~q!Fu~m̄2q!2
sin~qr !

qr G . ~21!

In the integrands, the factors in the square brackets are
preciable only in the range 1/r &q,m̄. So, roughly speak-
ing, Etot(r) is determined from an averagêãV& of the
V-scheme couplingãV(q) over the range 1/r &q,m̄. When
evaluating this quantity in fixed-order perturbation theory
scale m(r ) which represents this average coupling, i.
ãV@m(r )#'^ãV&, would be a most natural scale. Such
scale should lie between 1/r and m̄. This argument is in
contrast with the conventional principle for the scale cho
for the QCD potentialVQCD(r ). Apart fromLQCD, the QCD
potential contains only one scale 1/r , so that the choice of
scale has been almost automatic,m;1/r . The potential
alone, however, has a large uncertainty due to the lead
renormalon. It stems from the contribution ofãV(q) at q
;LQCD. On the other hand, the total energy is free from t
leading renormalons by cutting out large contributions fro
LQCD;q,1/r as seen in Eq.~21!. Consequently the relevan
scale is shifted to higher momentum region in comparison
that of VQCD(r ).

It would also be instructive to compare the above sc
choices with the Brodsky-Lepage-Mackenzie~BLM ! scale-
fixing prescription@29# applied toVQCD(r ) and Etot(r), re-
spectively. In this prescription~at the lowest order!, the part
of higher-order corrections toVQCD(r ) or to Etot(r) given by
the large-b0 approximation is absorbed into the scale choi
For the QCD potential, at the lowest order the BLM scale
fixed asm5exp(25/62gE)/r'0.43 exp(2gE)/r. For the to-
tal energy, the BLM scale at the lowest order is given bym
5 f (m̄r )/r , where

f ~x!5expF S logx2
p2

8
1gE2

53

192D x

x2
p

2

2
5

6
2gEG .

~22!

Due to the singularity off (x) at x5p/2, the BLM scale
turns out to be unstable aroundr 5p/(2m̄). This is because
the coefficient ofb0 logm in Etot@r;m̄,aS(m)# becomes small
by a cancellation betweenVQCD(r ) and 2mpole. In this re-
gion of r, the BLM prescription forEtot(r) would be unreli-
3-5
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TABLE I. Series expansion of the total energy inaS(m) with the two scale choices Eqs.~17! and~18!. Etot
(n)(r) denotes theO(aS

n) term
of Etot(r). All numbers are in MeV unit. The minimal sensitivity scalem1(r ) exists only atr ,2.8 GeV21 in case~ii !.
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able. Forr .p/(2m̄), the function f (m̄r ) increases mono
tonically. Setting m̄54.203 GeV, we find that atr
*0.6 GeV21 the scalem5 f (m̄r )/r exceeds the BLM scale
of the QCD potential; atr *1 GeV21, m5 f (m̄r )/r becomes
almost independent ofr, m'0.5 GeV, converging toward
the BLM scale of the pole mass. These features in the reg
r *0.6 GeV21 are consistent with the results of the analy
given in Sec. II. Since the higher-order corrections are la
for Vb0

(r ), the BLM scale ofVQCD(r ) tends to be small. On
the other hand, since the higher-order corrections are sm
for V̄b0

(r ), the BLM scale ofEtot(r) is larger. Intuitively the
BLM scale of a quantity sensitive to renormalons is attrac
towards theLQCD scale, whereas that of a renormalon-fr
quantity is determined by a short-distance scale. Thus,
qualitative features of the BLM scales agree with those of
scales shown in Fig. 2~b! in the range 1 GeV21&r
&5 GeV21, although the level of agreement is not very a
curate. At shorter distancesr'p/(2m̄), validity of the BLM
prescription for the total energy seems doubtful on acco
of the large cancellation.

We return to the discussion ofEtot(r). In Fig. 3 we com-
pare the total energies in cases~i! and ~ii ! with typical phe-
nomenological potentials used in phenomenological
proaches. We take the following.

~i! A Coulomb-plus-linear potential~Cornell potential!
@31#

V~r !52
k

r
1

r

a2 ~23!

with k50.52 anda52.34 GeV21.
~ii ! A power-law potential@32#

V~r !528.064 GeV1~6.898 GeV!~r 31 GeV!0.1.
~24!

~iii ! A logarithmic potential@33#
05400
n

e

ler

d

e
e

-

nt

-

V~r !520.6635 GeV1~0.733 GeV!log~r 31 GeV!.
~25!

We may consider the differences of these potentials in
range 0.5 GeV21&r &5 GeV21 as uncertainties of the phe
nomenologically determined potentials. In order to make
clear comparison, arbitrary constants have been added t
the potentials andEtot(r) such that their values coincide a
r 51 GeV21. As stated, we expect the perturbative predicti
for a realisticEtot(r) to lie between those for the cases~i! and
~ii !. It appears to be in good agreement with the phenome
logical potentials in the above range. The level of agreem
is consistent with the uncertainties expected from the ne
to-leading renormalon contributions~indicated by the error
bars!.

FIG. 3. A comparison of the total energy of abb̄ system in the
two hypothetical cases~dotted lines! and typical phenomenologica
potentials~solid lines!. For a reference, we show typical sizes of t
bottomonium and charmoniumS states as determined from th
r.m.s. interquark distances with respect to the Cornell poten
A^r 2&Cornell.
3-6
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IV. THE INTERQUARK FORCE

Instead of the total energy, we may also consider the
terquark force defined by

F~r ![2
d

dr
Etot~r !52

d

dr
VQCD~r ! ~26!

[2CF

aF~1/r !

r 2 . ~27!

The last line defines the ‘‘F-scheme’’ coupling constan
aF(m). The interquark force is also free from the leadi
renormalon. In fact it has been noted@34# that the perturba-
tive expansion ofF(r ) is more convergent than that of th
potentialVQCD(r ). Since in the zero quark mass limitF(r ) is
dependent only onr, we may determine itsr dependence
using the renormalization-group equation

m2
d

dm2 aF~m!5bF~aF!. ~28!

It is instructive to compare the beta functions for the co
plings defined in the three different schemes. Fornl54, we
find

bV~aV!520.6631aV
220.3251aV

321.7527aV
4

1O~aV
5 ! ~V scheme!,

bF~aF!520.6631aF
220.3251aF

320.5861aF
4

1O~aF
5 ! ~F scheme!, ~29!

bMS~aS!520.6631aS
220.3251aS

320.2048aS
4

1O~aS
5! ~MS scheme!.

The first two coefficients of the beta functions are schem
independent~when we neglect the quark masses!. The third
coefficient of theV-scheme beta function is quite large, r
flecting poor convergence ofVQCD(r ) due to the leading
renormalons. The third coefficient of theF-scheme beta
function is smaller by factor 3 due to cancellation of t
leading renormalon. The third coefficient of theMS-scheme
beta function is even smaller by factor 3. This may be due
the fact that theF-scheme coupling still contains the next-t
leading renormalon contributions. From this comparison,
may conclude that it is better to analyzeF(r ) rather than
VQCD(r ) as a physical quantity, in perturbative analyses.6

The observed bottomonium spectrum is qualitatively v
different from the Coulomb spectrum. The largest differen
is that, the level spacings between consecutive bottomon

6This is valid up to the constant term of the potential, which
important in relating the bound state masses to the heavy q
masses. An alternative way may be to study renormalization-gr
evolution ofVQCD(r ) after subtracting the leading renormalon fro

it by hand@similar to V̄b0
(r ) of Eq. ~9!#.
05400
-
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-
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nSstates are almost constant, whereas in the Coulomb s
trum the level spacings decrease as 1/n2. When we consider
effects of the QCD radiative corrections on the lowest-or
Coulomb potential, one may interpret that in the QCD pote
tial 2CFaV(1/r )/r , theV-scheme coupling increases at lon
distances, so that the potential will be bent downwards. T
is obviously a bad interpretation, because in such a case
level spacings among the excited states become even sm
than those of the Coulomb spectrum. We should rather c
sider the interquark force. A better interpretation is that
F(r )52CFaF(1/r )/r 2, the F-scheme coupling increases
long distances, anduF(r )u grows correspondingly. This
means that the slope of the potential becomes steeper at
distances.~Its effect resembles an addition of a linearly risin
potential to the Coulomb potential.! Accordingly the level
spacings among the excited states increase. Thus, the e
of the radiative corrections on the level spacings are e
qualitatively reversed, whether we considerVQCD(r ) or F(r )
as the physically relevant quantity.7

One may verify these features in Fig. 4, in which t
Coulomb potential, theV-scheme potentials and th
F-scheme potentials are displayed. TheV-scheme potentials
are calculated by solving the renormalization-group equa
for aV numerically, usingbV in Eq. ~29! up to orderaV

2

~1-loop!, order aV
3 ~2-loop!, and orderaV

4 ~3-loop!. The
F-scheme potentials are calculated by first solving
renormalization-group equation foraF numerically viabF in
Eq. ~29! and then by integrating2F(r ) over r numerically;
arbitrary constants are added such that theF-scheme poten-
tials coincide the Coulomb potential atr 50.4 GeV21. The
initial values foraV andaF are given atr 5exp(2gE)/m̄b by

rk
p

7It is a matter of interpretation. One may understand the radia
corrections in the context of theV scheme and require for larg
nonperturbative corrections to remedy the discrepancy from
phenomenologically determined potentials or the results of non
turbative ~lattice! calculations~see, e.g., Refs.@35, 36#!. Alterna-
tively one may understand the radiative corrections in the contex
theF scheme and call for much smaller nonperturbative correctio

FIG. 4. A comparison of the QCD potentials calculated in theV
and F schemes as well as the Coulomb potential. The Coulo
potential is given by 2CFa/r with a50.279. The V- and
F-scheme potentials correspond toaS

(5)(MZ)50.1181.
3-7



th
c

in
r

e
th
lo

,
n

r

ing
th

g
d

a

e
u
is
p
e

me
in

ap-

er
d in

hy
ro-
D.

led,
en-
ot-
on-

ng

es

up
n-

o

ill
g of
de-
to

um
in-

im-
s

r
r aro

Y. SUMINO PHYSICAL REVIEW D 65 054003
matching to the fixed-order results. As can be seen,
V-scheme potentials become singular at fairly short distan
r;2 GeV21 ~1-loop!, 0.9 GeV21 ~2-loop!, and 0.4 GeV21

~3-loop!, respectively. As expected, theF-scheme potentials
have wider ranges of validity:8 they become singular atr
;6.9 GeV21 ~1-loop!, 2.8 GeV21 ~2-loop!, and 1.7 GeV21

~3-loop!, respectively. The situation is puzzling, however,
that the predictable range reduces as we include more te
of bF(aF). The 2-loop and 3-loopF-scheme potentials ar
consistent with the phenomenological potentials within
uncertainty expected from the next-to-leading renorma
contributions, in the range 0.5 GeV21&r &2.8 GeV21 and
0.5 GeV21&r &1.7 GeV21, respectively. On the other hand
the 1-loopF-scheme potential does not satisfy this criterio

If we take a larger input value foraS
(5)(MZ), the slopes of

theF-scheme potentials get steeper, sinceaF increases. Also,
it explains whyEtot(r) for case~ii ! is steeper than that fo
case~i! in Fig. 2~a!: aF for nl53 is larger than that fornl
54 at r *1/m̄b .

V. CONCLUSIONS

When we incorporate the cancellation of the lead
renormalon contributions, the perturbative expansion of
total energyEtot(r) of a bb̄ system, up toO(aS

3) and supple-
mented by the scale-fixing prescription~17! or ~18!, con-
verges well atr &3 GeV21. Moreover, it agrees with the
phenomenologically determined potentials in the ran
0.5 GeV21&r &3 GeV21 within the uncertainty expecte
from the next-to-leading renormalon contributions. Even
r *3 GeV21, the scale-fixing prescription~18! gives a rea-
sonable prediction forEtot(r); it appears that the perturbativ
prediction does not break down suddenly but rather the
certainty grows gradually asr increases. The agreement
unlikely to be accidental, since as soon as we take the in
aS

(5)(MZ) outside of the present world average valu
0.118160.0020@28#, the agreement is lost quickly.

A nonrelativistic Hamiltonian

H52mpole1pW 2/mpole1VQCD~r !5pW 2/mpole1Etot~r !
~30!

8The large discrepancy between the potentials obtained f
bV(aV) andbF(aF) was noted first in Ref.@37#.
to
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constitutes a part of the full Hamiltonian~up to the order
1/c2! analyzed in Ref.@12#. It determines the bulk of the
quarkonium level structure computed therein. At the sa
time, the above Hamiltonian is exactly the ones analyzed
the conventional phenomenological potential-model
proaches~at the leading order! if Etot(r) is identified with the
phenomenological potentials. Also, it is the leading-ord
Hamiltonian of the more systematic frameworks discusse
Sec. I. Thus, we find that the agreement ofEtot(r) and the
phenomenologically determined potentials is the reason w
the gross structure of the bottomonium spectrum is rep
duced well by the computation based on perturbative QC
Our observation confirms the conclusion of Ref.@12#, that
once the leading renormalon contributions are cancel
there remain no large non-perturbative effects, which ess
tially deteriorate perturbative treatment of some of the b
tomonium and charmoninum states, but only moderate c
tributions comparable in size with the next-to-leadi
renormalons.

Similarly, if we analyze the interquark forceF(r ) instead
of VQCD(r ), the range of perturbative predictability becom
significantly wider, as known from the previous study@34#.
We confirm this observation using a renormalization-gro
analysis. We find that the 2-loop and 3-loop renormalizatio
group-improved potentials, obtained by integrating2F(r ),
are consistent with the phenomenological potentials up tr
;2.8 GeV21 and r;1.7 GeV21, respectively.

We expect that the connection elucidated in this work w
be useful for developing deeper theoretical understandin
the bottomonium and charmonium systems. For more
tailed comparisons, in general it would be more secure
compute the quarkonium spectra directly rather thanEtot(r)
or F(r ). Indeed, the series expansions of the quarkoni
energy levels turn out to be more convergent when we
clude the full corrections~pW 4 term, Darwin potential, spin-
dependent potentials, etc.! to the O(1/c2) Hamiltonian, as
compared to the expansions of the energy levels of the s
plified Hamiltonian~30! ~even after the leading renormalon
are cancelled!.
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