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When the cancellation of the leading renormalon contributions is incorporated, the total energﬁof a
SysteME o pi(1)=2Myiep T Voco(r) agrees well with the potentials used in phenomenological models for
heavy quarkonia in the range 0.5 Ge\sr=<3 GeV . We provide a connection between the conventional
potential-model approaches to the quarkonium spectroscopy and the recent computation based on perturbative
QCD.
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. INTRODUCTION ultrasoft scale~ mv?2, wheremandy are the quark mass and

. velocity, respectivelyand the hadronization scate A ocp.
For over 20 years, most successful theoretical approachgg,is aspect contrasts with the fact that the expansion param-

for describing the charmonium and bottomonium systemgyey i the nonrelativistic bound state theory based on pertur-
(including the excited statgdave been those based on vari- bative QCD is simply I (inverse of the speed of lightin

ous phenomenologmal potential modells. Thesethe formalism developed in Reff3-7], or in the potential
phenomenological-model approaches have elucidated the NS relativistic QCD(PNRQCD formalism([8,9] formulated
ture of the heavy quarkonium systems, such as their leptonic '

widths and transitions among different levels, in addition tomore systematically, potentials are defined in a way suited

reproducing the energy levels. The phenomenological poter{pr practical computations by lattice simulatiofes by using

tials determined and used in these studies have more or le§%dels. On the basis of these formalisms, lattice calcula-
similar slopes in the range 0.5 GeV<r=5 GeV }, which tions have shown from first principles that the leading-order

may be represented by a logarithmic potentialogr potent?al h.as a shape consistent with the phenomenological
+const. See, e.g., RefL] for a recent analysis based on the potentials in the relevant range, although the accuracy of the
potential models. An apparent deficit of these approaches i§0mputations needs further improvemefits, 11].
however, the difficulty in relating phenomenological param-  Very recently, a new computation of the charmonium and
eters to the fundamental parameters of QCD. bottomonium spectra has been reported in the framework of
The reason why people have been using phenomenologionrelativistic bound state theory based on perturbative QCD
cal models is because the theory of nonrelativistic bound12]. It incorporated recent significant developments in the
states based on perturbative QCD failed to reproduce theld: (1) the full computations of the quarkonium energy
charmonium and bottomonium spectra. This is in contrastevels up to order tP [13-16; (2) the cancellation of the
with the corresponding theory based on perturbative QEDleading renormalons contained in the quark pole mass and
which has been successful in describing the spectra of thihe static QCD potentidll7,18. As a result, the convergence
QED bound states. The main problem has been the pogroperty of the series expansions of the energy levels im-
convergence of the perturbative expansions when the energyroved drastically, which enabled stable perturbative predic-
levels of the heavy quarkonia are computed in series expartions for the levels up to some of the=3 bottomonium
sions in the strong coupling constant. Since the couplingtates and the=1 charmonium stateé is the principal
constant is quite large at relevant scales, approximating ordejuantum number Furthermore, the computed spectrum,
one, it has been considered as an indication of large nonpewhen averaged over spins, reproduced the gross structure of
turbative effects inherent in these quarkonium systems. Ithe observed energy levels of the bottomonium states, within
fact the difference between a typical phenomenological pomoderate theoretical uncertainties estimated from the next-
tential and the Coulomb potential tends to be a linearly risingo-leading renormalon contributions. It indicates that nonper-
potential at distances=1 GeV !, suggesting confinement turbative contributions to the bottomonium spectrum, in the
of quarks. Within perturbative QCD, the origin of the poor scheme free from the leading renormalons, would absorb the
convergence has been understood in terms of the renormaloext-to-leading renormalon uncertainties of the perturbative
contributions[2]. predictions and may be of the size comparable to them.
More recently, theoretical frameworks based on QCD It is then natural to ask whether there is a connection
have been developed for describing these quarkonium sybetween the above phenomenological potential-model ap-
tems systematically. Within effective theories based on approacheqsupplemented by the more systematic frameworks
propriate expansions in small parameters, various potentiaind lattice calculationsnd the recent computation based on
are defined such that the leading-order potential plays a rolperturbative QCD. Once this connection is established, we
close to that of the potentials introduced in the above phemay merge these approaches and further develop understand-
nomenological approaches. The order countings of terms iing of the charmonium and bottomonium systems. For in-
organizing the expansions depend crucially on the relativestance, in the perturbative computation, the level splittings
sizes of the dynamically generated scalssft scale~mu, between theSwave andP-wave states as well as the fine
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splittings among th& P; states turn out to be smaller than © ag(w)\"
the corresponding experimental values. Although the dis- av(llr)zas(,u)E Pn[log(,ur)]< Z ) . ©)]
crepancy is still smaller than the estimated theoretical uncer- n=0 ™
tainties of the perturbative predictions, it should certainly bel_h hout thi denotes the st i
clarified whether they are explained by higher-order pertur- roug o_u Is paperas(u) ) eno es_ € strong goup Ing
bative corrections, or, we need specific nonperturbative efconstant in theMS scheme witm, active flavors;u is the
fects for describing them. On the other hand, the potentiaienormalization scale®,(L) denotes amth-degree polyno-
approaches have been successful also in explainingte ~Mial of L. Although the exact QCD potentiafocep(r) is
splittings and the fine splittings. Hence, we expect that dndependent of the scaje, at each order of the perturbative
connection between these theoretical approaches would hef¥Pansionu dependences remain. We kegpas a free pa-
to clarify origins of the differences of the present perturba-/@Meter in this section. From an analysis of higher-order
tive predictions and the experimental data. terms, it has been knOV\[rZ].that the perturbatwe. expansion
In this paper we focus on the perturbative static QCDOf Voco(r) has an uncertainty of ordetqcp, which is re-
potential up toO(a3), since it dictates the major structures ferred to as the 'renormalon prqblem. We first review this
of the quarkonium spectra in the perturbative computation uﬁ)_roperty and estimate unqertamtles of the perturbative pre-
to O(1/c?) [12]. Taking into account the above key ingredi- .d'Ct'()n for the QCD potentiakSee, e.g., Ref$20], [21] for
ent(2), we subtract the leading renormalon contribution frommtrOdUCtory reviews.

the QCD potential. Then we compare it with the phenomeno- The “large 3, approximgtion"[ZZ] is an empiri.cally suc-
logically determined potentials. Our comparison also eIuci—CeSSf'JI method for analyzing large-order behaviors of physi-
al quantities in perturbative QCD and renormalon ambigu-

dates to which extent the perturbative computation of the’d At .

QCD potentiallup to O(a3), and after subtracting the lead- ities inherent in them. Let us denote b (r) the QCD

ing renormalofreproduces the results of the nonperturbativePotential within this approximation and bW(g”O)(f) its

computations(We will regard typical phenomenological po- o(a;‘*l) term

tentials as representatives of the lattice results, taking into

account consistency of the potentials determined in both ap- “

proaches. Vg ()= > V;;"O)(F)- (4)
In Sec. Il we review the theoretical uncertainties from the n=0

renormalon contributions within the context of the lagg-

approximation. In Sec. Ill we analyze the total energy of a , ")

guark-antiquark system up t@(ag). Also the interquark we can easily computvﬁo(r) one by one from the lowest

force is analyzed in Sec. IV. We draw conclusions in Sec. Vorder. Also the asymptotic form for>1 is determined as

From the Taylor expansion of the Borel transfornwo(r),

5/6 n
e [e%
Il. RENORMALONS IN THE LARGE- B, Vi (r)~—Ce 47Ta5(/L)Xl;—T BOZ—S('M)] nl, (5
APPROXIMATION & &

The static QCD potential, defined from an expectationwhereg,=11-2n,/3 is the coefficient of the QCD one-loop
value of the Wilson loop, represents the potential energy of #eta function. The above asymptotic behavior is independent
static quark-antiquark pair of r. It means that, although each term of the potential is a

function of r, its dominant part fon>1 is only a constant
_ (o|Tr peXQigSgirdXMA#(x)]|o> potential which mimics the role of the quark mass in the
Vocp(r)=— lim ﬁlog (0[Tr 1]0) determination of the total energy of a quark-antiquark sys-
T tem. As we raise, first|V{}(r)| decreases due to powers of

1
@ the smallag; for very largen it increases due to the factorial
ay(1) n!. Around ng=27/[ Boas(x)], |V(ﬁ”o)(r)| becomes small-
=Ll 2 est. The size of the term scarcely changes within the range

r . .
ne (No— vNg, N+ vNo). We may consider the uncertainty of

. . . this asymptotic series as the sum of the terms within this
whereI is a rectangular loop of spatial extentand time . )
range, since one may equally well truncate the series at order

extent T. The second line defines thé-scheme coupling = . L . .
constantay(1/r), whereCg=4/3. In perturbative QCD, the 2]9 thgn—ﬁo?ér?éa?rdemﬁ Vo in estimating the “true value

V-scheme coupling constant is calculable in a series expan-
sion in the coupling constant ‘as

—_—

n0+2\/n0 277_
SV, (1)~ vi(r)| ~A= ex;{——}
'BO( ) n=ng— Mgy BO( ) " Boas(w)

From O(«d) and beyond, the series includes infrared diver- (6)
gences; the divergences can be circumvented by a resummation of
diagrams, which brings in logs in the series expansion or the The u dependence vanishes in this sum, and this leads to the
log(ueT) term when the theory is matched to the potential- claimed uncertainty. In Fig.(&) we show the QCD potential
NRQCD effective theory19,9]. in the largeB, approximation truncated at theNf+1)-th
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FIG. 1. The QCD potential in
the largeB, approximation trun-

>
_ 8 . cated at theO(a§'?) term. We
E o set u©=249GeV, n=4, and
5 I% ag(un)=0.273 [corresponding to
N
>

! 1 2 3 4 5 a®(M;)=0.1181. (a) Before

/ r [GeV-] subtraction of the leading renor-
0:8 malon.(b) After subtraction of the
leading renormalon.

(a) (b)

term ELOV(B”O)(r), for N=0,1,2,..., anch;=4. We see that smaller scale foy, the term becomes smallest at a smatler
the higher order corrections are indeed large and almost cof? this case, convergence properties become better at larger
stant(independent of). where we obtain a value OIBO(r) consistent wittN=7 of

It was found[17,18 that the leading renormalon con- Fig. 1(b) with less termgsmallerN). Similarly to the leading
tained in the QCD potential gets cancelled in the total energyenormalon case, the uncertaintyisndependent, nonethe-
of a static quark-antiquark pair less.

Eol(r)=2mpygetV r), 7 _
1) =2Mpoiet Vco( ) @ lll. THE TOTAL ENERGY OF A g SYSTEM
if the pole massmyq is expressed in terms of the modified N6y we examine the total energy of a quark-antiquark
minimal subtraction schemeMsS) mass. Namely, when ex- pair defined in Eq(7), exactly up toO(ad). This quantity is
pressed in terms of tH&S mass and in a series expansion infree from the leading renormalon uncertainty; in fact the can-
as(u), the pole mass contains the leading renormgR8]  cellation of the leading renormalons occurs at a deeper level
which is one half in size and OppOSIte In sign of the |ead|ngthan what can be seen in the |arg§_approximati0n[18]'
renormalon oVqcp(r). Thus, the total energl(r) is free  we also note that the cancellation at each order of perturba-
from the leading renormalon uncertainti&s,(r) possesses a tive expansion is realized only when we use the same cou-
residual uncertainty originating from the next-to-leading pling constant in expandingoe andVQCD(r).Z
renormalon 2] The QCD potential of the theory with; massless flavors

o A
SEf1)~AX (A2, g Onvis given, up 100(ad), by

which is smaller than the leading renormalon uncertainty in e as(p) {1+(as(,u)) 08/ +
the range <A 1. Shown in Fig. 1b) is the QCD potential qcol") F ar | 2P/ T2
in the largeB, approximation[truncated at theN-+1)-th

2 2

term| after the leading renormalon is subtracted at each order + aS(f“)) ,32( e ™

of ag(w): 4 0 3
— - +2(By+2Boay) +ay |, 10
V=3, [V(ﬁng(r) (B1+2Boay)l +a, (10

we®®( Boas(m)|" where[24]
+Cedmag(n) 57 % nl. (9

/' =log(ur)+ e, (13)

One sees that the series expansion of the potential has be-

come much more convergent as compared to Rig. For a 2 38

particular choice of the scale=2.49 GeV, the term on the Bo=11=zn;, B1=102-=n, (12)
right-hand side of Eq(9) becomes smallest at aroune- 7

in the range 1 GeV!<r<5 GeV . Hence, the error bars

corresponding to the next-to-leading renormalon uncertainty 2ric can pe seen, for example, from the fact that the onder
+1/2A (Ar)? (taking A =300 MeV) are attached to the po- _ 5/ g 4q(1)] at which Eq.(5) becomes smallest is dependent
tential forN=7 in the same figure. We may consider that thegn the value ofas() used for the expansion.

line for N=7 together with the error bars indicate a typical 3The QCD potential of the theory which contaimgheavy flavors
accuracy of the perturbative prediction for the QCD poten-with massm) andn, massless flavors coincides with the potential
tial, when the leading renormalon is cancelled. We see thah Eq. (10) up toO(ad) if we count 1f = O(asm) and if we prop-
the potential is bent upwards at long distances as comparesily match the coupling to that of the theory with massless fla-
to the leading Coulomb potentiaNE0). If we choose a  vors only.
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31 10 tainsn,, heavy flavors anah, massless flavorf25]. Rewrit-
a= 3 jnl , ing the relation in terms of the coupling of the theory with
massless flavors only, we fifid
—4343+ 367246 97" 1229
A= g F30T 08T N 7 [ dadm) [ag@|2 [agi)|?
mp0|e:m 1+ § + dl+ dz y
%s) 190, 13 " " T
3 81 (13

The relation between the pole mass and k& mass has Where m=mys(mys) denotes the renormalization-group-
been computed up to three loops in a full theory, which coninvariantMS mass, and

3049 27? w?log2 L, 71 w2 143 7
n h (19

=288 9 "9 6 ™M T144 18/ "™ T142" 9

1145453 253797% 2357%log2 9/; 3417* 7w?log?2 19lod'2 76a,

d2= 70368 " 2592 ' 54 8 2502 27 54 9

1331772g3Jr 17055 81227 9657° 11w?log2 707§3+ 61774+ 272 log? 2
432 216 " 7776 648 81 216 = 1944 81
log*2 8a,
81 27"

157007+ 1362772 640772I092+751§3+417T4 w2 log? 2
" T 7776 T 19044 81 216 ' 972 81

. 5917 13w% 2{;
MOl 11664 324 27

log*2 8a, w?l3; 5is 2353 1372 7§3
s 27 2 T2 "\ 233" 304

9481 4x? 114, 16
23328 405 54 (16)
|

with a,=Li,(1/2). Furthermore, we rewriteg(m) in terms d P )
of ag(u) using the renormalization-group evolution of the MaEtot[r;m!aS(M)] =0. (18
coupling constant. Thus, we examine the series expansion of m= pp(r)
Ewodr;Mag(u)] in ag(w) up to O(ad). Qualitatively the se- B
ries shows a convergence property very similav'g(r) for In this analysis we examine the total energy dflasys-
N=0,1,2; see Fig. (b). tem. We setm,= (m VS)=4.203 GeV, which is taken

The obtained total energy depends on the Smmje to from REf[lz] (ltS error is estimated to be abotiB0 MeV)
truncation of the series at a finite order. One finds that, whefror simplicity we analyzeE(r) in two hypothetical cases:
r is small, the series converges better and the valuggf) () whenm;=0 (n;=4 andn,=1) and(ii) in the limit m,
is lessu dependent if we choose a large scaledowhereas — My (Nj=3 andny=2). The real world lies somewhere in
whenr is larger, the series converges better and the value d¥etween the two cases: the charm quark decouples in the
Etot(r) is |ESS,LL dependent if we choose a smaller Sca|eljor excited states of bottomonium but not in the ground state
Taking into account this property, we will fix the scakein [26]. A more precise analysis requires inclusion of nonzero

two different ways below. m,. effects intoE,.(r), which will be reported elsewhefa7].
(1) We fix the scaleu=pu4(r) by demanding stability The input value of the strong coupling constant is
against variation of the scale: a$)(M;)=0.1181[28]. We evolve the coupling and match

it to the couplings of the theory with;=4 and 3 succes-

d . sively by solving the renormalization-group equation nu-

,u,d—Eto{r;m,as(,u,)] =0. 17
% -
= pq(r)
) o “Whenn,=1, this relation coincides with E¢14) of [25], which

(2) We fix the scaleu= u,(r) on the minimum of the s given numerically(indirectly throughg, and ;). Note that, in
absolute value of the last known terf®(ag) term] of  the other formulas of Ref25], the coupling of the full theory is
Etot(r): used.
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FIG. 2. (@) The total energy of ob system measured fromn, in two hypothetical cases. In each case, the scale is fixeg by
=u4(r) (dotted lines or u=pu,(r) [solid lines if EG(r)=0; dashed lines HES)(r)|>0]. (b) The scales chosen by the scale-fixing
prescriptiong17) and(18) in case(i). The notations are same as(@. A conventional scale choige= exp(—yg)/r is also showridotdashed

line).

merically with the 3-loop beta function and by using the

3-loop matching conditiofi30]® (3-loop running.
Figure 2a) showsE,y(r) (measured from &) for the
two casedi) and(ii). In each cas&,(r) are plotted with the

sin(qr)
ar |

6(m—q)— (21)

_ ZCF *
=2m+—J dgay(q)
T Jo

In the integrands, the factors in the square brackets are ap-

two different scale-fixing prescriptions; the total energypreciable only in the range £ q<m. So, roughly speak-

hardly changes whether we choose=u4(r) or u
= u»(r). In case(i), the minimal sensitivity scalgq(r) ex-
ists only in the ranger=3GeV !; for the choice u
= u,(r), the minimum value ofEE)(r)| is zero in the range
r=3 GeV !, whereagE&)(r)|>0 in the range =3 GeV .

ing, Ey(r) is determined from an averag@y,) of the
V-scheme coupling,(q) over the range t<£q<m. When
evaluating this quantity in fixed-order perturbation theory, a
scale u(r) which represents this average coupling, i.e.,
ay[ p(r)]=(ay), would be a most natural scale. Such a

These features indicate an instability of the perturbative prescale should lie betweenrland m. This argument is in

diction for Ei(r) at r=3 GeV 1. The scalesu,(r) and
uo(r) are shown as functions ofin Fig. 2(b). For compari-
son, we also shovu=exp(— yg)/r, which has been consid-
ered as a natural scale of the QCD potentigkp(r) con-
ventionally. One sees that;(r) andw,(r) are considerably
larger than exp{ yg)/r. The scales chosen in cage) are

contrast with the conventional principle for the scale choice
for the QCD potentiaVqcp(r). Apart fromAcp, the QCD
potential contains only one scaler 150 that the choice of
scale has been almost automatie~1/r. The potential
alone, however, has a large uncertainty due to the leading
renormalon. It stems from the contribution af,(q) at q

similar. In Table | we show each term of the series expansion- A 5cp. On the other hand, the total energy is free from the
of Ei(r). The series shows healthy convergent behavior aleading renormalons by cutting out large contributions from

r<3Gevy
At this stage, let us discuss why the scalegr) and
uo(r) are considerably larger than expfg)/r. For this pur-

Aqcp~a<1ir as seenin Eq21). Consequently the relevant
scale is shifted to higher momentum region in comparison to
that of Vep(r).

pose we use an approximate expression for the pole mass, It would also be instructive to compare the above scale
which follows from the fact that the dominant contribution to choices with the Brodsky-Lepage-Mackenzi®LM) scale-
the poleMS mass relation can be read from the infraredfixing prescription[29] applied toVocp(r) and Eq(r), re-

region, loop momentg<m of the QCD static potentidlL 8]

_ d3qg
2mpo|e~2rn+ Jé <EW |VQCD(q)|

(19

Here,Vocp(d) = — Cr4man(q)/g? is the QCD static poten-

tial in momentum space. Then the total energy can be written

approximately as

_ dg _ L
Etot(r)%2m+f(27)3|VQCD(Q)|[9(m—Q)—eXp(Iq'f)]
(20

SWe take the matching scales @& andm.(=m,), respectively.

spectively. In this prescriptiofat the lowest ordegr the part

of higher-order corrections tdocp(r) or to Ey(r) given by
the largeB, approximation is absorbed into the scale choice.
For the QCD potential, at the lowest order the BLM scale is
fixed asu=exp(—5/6— yg)/r~0.43 expt- yg)/r. For the to-

tal energy, the BLM scale at the lowest order is givenwby
=f(mr)/r, where

w? 53 x 5

FRCEETY
X—35

f(x)=exp | logx— —ve |-

(22)

Due to the singularity off(x) at x==/2, the BLM scale
turns out to be unstable aroune- 77/(2m). This is because
the coefficient ofBylog u in Eiofr;m,ag(u)] becomes small
by a cancellation betwee¥igcp(r) and 2mgge. In this re-
gion of r, the BLM prescription forE(r) would be unreli-
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TABLE |. Series expansion of the total energyda(u) with the two scale choices EqgEl7) and (18). Eg}z(r) denotes th®©(ag) term
of E(r). All numbers are in MeV unit. The minimal sensitivity scalg(r) exists only ar <2.8 GeV ! in case(ii).

case (i)
u=p(r) M= pa(r)
Eg(n EZ(n ) Eg(n EQ() E((
r=1Gev™! 797 69 -17 750 98 0
r=2GevV™! 1255 ~14 -17 1173 48 0
r=3GevV™! 1709 —290 13 1606 —-185 9
case (ii)
p=py(r) m= po(r) ,
E(r E(n) ) E(r) EQ(r) EQ(n)
r=1GevV™! 962 70 -32 879 117 0
r=2Gev™! 1659 —-116 —31 1502 4 0
r=3Gev™' 1994 —197 70

able. Forr>m/(2m), the functionf(mr) increases mono- V(r)=—-0.6635 GeW(0.733 GeVlog(rx1 GeV).

tonically. Setting m=4.203GeV, we find that atr (25
=0.6 GeV ! the scalep=f(mr)/r exceeds the BLM scale
of the QCD potential; at=1 GeV !, u=f(mr)/r becomes
almost independent af, u~0.5GeV, converging towards

the BLM scale of the pole mass. These features in the regio . . .
r=0.6GeV ! are consistent with the results of the analysisnomenologlcally determined potentials. In order to make a

given in Sec. Il. Since the higher-order corrections are |argglear comparison, arbitrary constants .have been gdcjed to all
for VBo(r)’ the BLM scale olqer(r) tends to be small. On the potentials andE,(r) such that their values coincide at

he other hand. si he hiah q . IIr=1GeV’1. As stated, we expect the perturbative prediction
the other hand, since the higher-order corrections are smallgg, . realisticE,y(r) to lie between those for the casgsand

for Vg (1), the BLM scale ofE,o(r) is larger. Intuitively the  (jj). It appears to be in good agreement with the phenomeno-
BLM scale of a quantity sensitive to renormalons is attractedogical potentials in the above range. The level of agreement
towards theAocp scale, whereas that of a renormalon-freeis consistent with the uncertainties expected from the next-
guantity is determined by a short-distance scale. Thus, th-leading renormalon contributiori@ndicated by the error
qualitative features of the BLM scales agree with those of thévars.
scales shown in Fig. (B) in the range 1 GeV!sr

=5 GeV !, although the level of agreement is not very ac-
curate. At shorter distances= 7/(2m), validity of the BLM
prescription for the total energy seems doubtful on account

We may consider the differences of these potentials in the
fange 0.5GeVl=r=5GeV ! as uncertainties of the phe-

Power-law Pot.
Logarithmic Pot.

of the large cancellation. 2 Bl 1):case (i)
We return to the discussion &y(r). In Fig. 3 we com- '
pare the total energies in casgsand (ii) with typical phe- 1.5 g
nomenological potentials used in phenomenological ap- = E;t(r):case(i)
proaches. We take the following. CIB!
[31(]0 A Coulomb-plus-linear potentia(Cornell potential . Comnell Pot.
K T . .
V(r)=——+ — 23) of [ 2 ] 3 4 [ 5  [GeV]
ra Y(S) Y2S)  Y(3S)|  Yi4S)
Y(15) W(28S)

with x=0.52 anda=2.34 GeV ..

(ii) A power-law potentia[32]

V(r)=—8.064 GeW(6.898 GeV(rx1 GeV)oL

(iii ) A logarithmic potentia[33]

FIG. 3. A comparison of the total energy obd system in the
two hypothetical case@lotted line$ and typical phenomenological
potentials(solid lines. For a reference, we show typical sizes of the
bottomonium and charmoniur8 states as determined from the
r.m.s. interquark distances with respect to the Cornell potential

\/<—rZ$Cornell-
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F -scheme Pot.

IV. THE INTERQUARK FORCE

Instead of the total energy, we may also consider the in-
terquark force defined by

S
d d B, B e
F(r)y=- ar Eiol(r)=— ar VQCD(r) (26) 'EE = Coulomb Pot.
g -2
o
I
apg(1fr) & s
e en 8

1-loop

The last line defines the F-scheme” coupling constant
ag(w). The interquark force is also free from the leading
renormalon. In fact it has been notgg#] that the perturba-
tive expansion of(r) is more convergent than that of the
potentialVqcp(r). Since in the zero quark mass linfi(r) is
dependent only om, we may determine its dependence
using the renormalization-group equation

2 3

0 y_scheme Pot.

r o [GeV1l

FIG. 4. A comparison of the QCD potentials calculated in\the
and F schemes as well as the Coulomb potential. The Coulomb
potential is given by—Cra/r with «=0.279. The V- and
F-scheme potentials correspondd§’(M,)=0.1181.

nSstates are almost constant, whereas in the Coulomb spec-
trum the level spacings decrease as’1MWhen we consider
effects of the QCD radiative corrections on the lowest-order
Coulomb potential, one may interpret that in the QCD poten-
tial —Cray(1/r)/r, theV-scheme coupling increases at long
distances, so that the potential will be bent downwards. This
is obviously a bad interpretation, because in such a case, the
level spacings among the excited states become even smaller
than those of the Coulomb spectrum. We should rather con-
sider the interquark force. A better interpretation is that in
F(r)=—Cgag(1/r)/r?, the F-scheme coupling increases at
long distances, andF(r)| grows correspondingly. This
means that the slope of the potential becomes steeper at long
distances(lts effect resembles an addition of a linearly rising
potential to the Coulomb potentialAccordingly the level
spacings among the excited states increase. Thus, the effects
of the radiative corrections on the level spacings are even
qualitatively reversed, whether we considiycp(r) or F(r)

The first two coefficients of the beta functions are schemeas the physically relevant quantity.

independentwhen we neglect the quark maspeghe third One may verify these features in Fig. 4, in which the

d
’U“Zd_,uz ap(p)=Br(ag). (28

It is instructive to compare the beta functions for the cou-
plings defined in the three different schemes. Rt 4, we
find

Bu(ay)=—0.663%Z—0.325%)— 1.752%,
+0(a3) (V schemg,

Br(ap)=—0.663%2—0.325%3 — 0.586 1}

+0(a}) (F schemg, (29)
Bris( as) = —0.6631r—0.325k3— 0.2048v¢

+0(ad) (MS schemg.

coefficient of theV-scheme beta function is quite large, re-
flecting poor convergence 0focp(r) due to the leading
renormalons. The third coefficient of thE-scheme beta

function is smaller by factor 3 due to cancellation of thef,

leading renormalon. The third coefficient of tMS-scheme

Coulomb potential, theV-scheme potentials and the
F-scheme potentials are displayed. TWisscheme potentials
are calculated by solving the renormalization-group equation
or ay numerically, usingBy in Eq. (29 up to ordera\z,
(1-loop), order o3 (2-loop, and orderay, (3-loop. The

beta function is even smaller by factor 3. This may be due tq.scheme potentials are calculated by first solving the

the fact that thé--scheme coupling still contains the next-to-

renormalization-group equation fa= numerically viaBg in

leading renormalon contributions. From this comparison, Weeq. (29) and then by integrating- F(r) overr numerically;

may conclude that it is better to analygdr) rather than
Vaco(r) as a physical quantity, in perturbative analySes.

arbitrary constants are added such thatRkecheme poten-
tials coincide the Coulomb potential at=0.4GeV %, The

_ The observed bottomonium spectrum is qualitatively veryinitial values foray andar are given ar = exp(— yg)/m, by
different from the Coulomb spectrum. The largest difference

is that, the level spacings between consecutive bottomonium——

5This is valid up to the constant term of the potential, which is

"It is a matter of interpretation. One may understand the radiative
corrections in the context of th& scheme and require for large
nonperturbative corrections to remedy the discrepancy from the

important in relating the bound state masses to the heavy quagshenomenologically determined potentials or the results of nonper-
massgs. An alternative way may .be to study .renormallzatlon-groumrbaﬂve (lattice) calculations(see, e.g., Refd.35, 36)). Alterna-
evolution ofVocp(r) after subtracting the leading renormalon from tively one may understand the radiative corrections in the context of

it by hand([similar to V(1) of Eq. (9)].

theF scheme and call for much smaller nonperturbative corrections.
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matching to the fixed-order results. As can be seen, theonstitutes a part of the full Hamiltoniafup to the order
V-scheme potentials become singular at fairly short distancet/c?) analyzed in Ref[12]. It determines the bulk of the
r~2GeV ! (1-loop), 0.9 GeV'?! (2-loop), and 0.4 GeV!  quarkonium level structure computed therein. At the same
(3-loop), respectively. As expected, tllescheme potentials time, the above Hamiltonian is exactly the ones analyzed in
have wider ranges of validify:they become singular at  the conventional phenomenological potential-model ap-
~6.9GeV ! (1-loop), 2.8 GeV'! (2-loop), and 1.7 GeV!  proachegat the leading ord@if E(r) is identified with the
(3-loop), respectively. The situation is puzzling, however, in phenomenological potentials. Also, it is the leading-order
that the predictable range reduces as we include more ternkgamiltonian of the more systematic frameworks discussed in
of Be(ag). The 2-loop and 3-loofF-scheme potentials are Sec. |. Thus, we find that the agreementEf(r) and the
consistent with the phenomenological potentials within thephenomenologically determined potentials is the reason why
uncertainty expected from the next-to-leading renormalorihe gross structure of the bottomonium spectrum is repro-
contributions, in the range 0.5GeV<r=<2.8GeV ! and duced well by the computation based on perturbative QCD.
0.5GeV '=r=1.7GeV?, respectively. On the other hand, Our observation confirms the conclusion of Rgf2], that
the 1-loopF-scheme potential does not satisfy this criterion.once the leading renormalon contributions are cancelled,

If we take a larger input value fgy(s5)(|\/|z), the slopes of there remain no large non-perturbative effects, which essen-
the F-scheme potentials get steeper, singencreases. Also, tially deteriorate perturbative treatment of some of the bot-
it explains whyE,(r) for case(ii) is steeper than that for tomonium and charmoninum states, but only moderate con-
case(i) in Fig. 2@): ar for n,=3 is larger than that fon, tributions comparable in size with the next-to-leading
=4 atr=1/m,. renormalons.

Similarly, if we analyze the interquark forég(r) instead
of Voep(r), the range of perturbative predictability becomes
V. CONCLUSIONS significantly wider, as known from the previous stud4|.

When we incorporate the cancellation of the leadingVe confirm this observation using a renormalization-group
renormalon contributions, the perturbative expansion of th@nalysis. We find that the 2-loop and 3-loop renormalization-

total energyE .(r) of abEsystem, up t@(ag) and supple- group—improved _potentials, obtained by integrat'rﬁg(r),
mented by the scale-fixing prescriptida?7) or (18), con- are consistent with the phenomenological potentials up to

~ 1 _ 1 :
verges well atr<3 GeV 1. Moreover, it agrees with the 2.8GeV " andr~1.7GeV™, respectively.

phenomenologically determined potentials in the rang% we $x|pfect(;hatThe_condnectlontﬁlumd?tetli |n(§h|S¥VOI;jk_WI”f
0.5GeV '=r=3 GeV ! within the uncertainty expected he ulsettu or deve Opcljngh eeper theore |::a un Fers an mgéo
from the next-to-leading renormalon contributions. Even atne bottomonium and charmonium systems. For more de-

tailed comparisons, in general it would be more secure to

r=3 GeV !, the scale-fixing prescriptiofil8) gives a rea- . .
sonable prediction foE,(r); it appears that the perturbative cor'r;pute lthg qléartlaonlum. spectra dlrectly :(a;[::er tE%l((r) .
prediction does not break down suddenly but rather the un2’ (r). Indeed, the series expansions of the quarkonium

certainty grows gradually as increases. The agreement is energy levels turn out to be more convergent when we in-

. 4 . . .
unlikely to be accidental, since as soon as we take the inp(ude ;[jhe tfuII ;:or:_e<|:t|on$go tt?]rmo' Dl7r;/v|anot$tnt|z_il, Spin-
a(ss)(l\/lz) outside of the present world average values ependent potentials, ek e O(1/c%) Hamiltonian, as

. . compared to the expansions of the energy levels of the sim-
0.118%+ 0'0020.[2.8]’ the _agreement is lost quickly. plified Hamiltonian(30) (even after the leading renormalons
A nonrelativistic Hamiltonian

are cancelled

H= zmpole+ ﬁzlmpole+ VQCD(r) = sz/ Mpole™ Etor(r)
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