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Superfluid and conformal phase transitions of two-color QCD
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The phase structure of two-color QCD is examined as a function of the chemical potential and the number
of light quark flavors. We consider effective Lagrangians for two-color QCD containing the Goldstone exci-
tations, spin-one particles and negative intrinsic parity terms. We discuss the possibility of a conformal phase
transition and the enhancement of the global symmetries as the number of flavors is increased. The effects of
a quark chemical potential on the spin-one particles and on the negative intrinsic parity terms are analyzed. It
is shown that the phase diagram that is predicted by the linearly realized effective Lagrangian at the tree level
matches exactly that predicted by chiral perturbation theory.
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[. INTRODUCTION first difference is that the fermionic determinant in the path
integral is real(thought not necessarily positivand so lat-
Quantum chromodynami¢QCD) at a large quark chemi- tice simulations can be performed at nonzero baryon and
cal potential has attracted a great deal of interest in recengospin chemical potential for an even number of quark fla-
years[1]. Since single gluon exchange between two quarksors[8—19). SecondlyN?— N; of the Goldstone excitations
is attractive in the color-antitriplet channé, 3], quark mat-  are diquarks which carry nonzero baryon charge. As shown
ter is expected to behave as a color superconductor for i@ Refs.[20,21], this has the advantage that chiral perturba-
sufficiently large quark chemical potential. Possible phenomtion theory[22] is valid at the critical chemical potential as
enological applications include the description of quark starsppposed to the case df.=3 for which the critical chemical
neutron star interiors and the physics near the core of colpotential lies well above the scale at which chiral perturba-
lapsing starg1,4,5. From a theoretical point of view, one tion theory becomes invalid. Also, the formation of a diquark
would like to be able to derive the QCD phase diagram fromcondensate in thi.=2 theory does not break gauge invari-
first principles as a function of temperature, chemical potenance and so exhibits superfluidity at large chemical poten-
tial and the number of light flavors. While much has beentials, unlike the case dil,=3 which exhibits superconduc-
learned about the phase structure of QCD at nonzero tentivity.
perature through a combination of perturbation theory and There also has been much progress in understanding the
lattice simulations, the phase structure at a nonzero chemicghase structure of supersymmetric theories as the number of
potential and for large numbers of flavors has been less exnassless fermions is vari¢d3]. While much less in known
tensively explored6]. The phase structure as the number offor nonsupersymmetric theories, the infrared behavior of
light flavors is increased is expected to be quite rich. Foisuch theories should change dramatically as the number of
example, in Ref{7], the effects of chiral symmetry breaking massless fermions is increased. In particularNgr 11, the
were found to be dramatically reduced as the number of flaene-loop beta function fal.=2 QCD becomes positive and
vors was increased from zero to four. At asymptotically largethe theory loses asymptotic freedom. In this non-Abelian
quark chemical potentialgs> A ocp, perturbation theory is  QED-like phase, the theory is not expected to be confining or
valid and one is able to perform controlled calculations. Forto exhibit chiral symmetry breaking. Just beldw=11, a
small to intermediate chemical potentials, however, one mugterturbative infrared stable fixed point develops. In this
rely either on effective theories or perform lattice simula-phase, the trace of the energy momentum tensor vanishes and
tions. Standard importance sampling methods employed ithe theory is a non-Abelian conformal field theory. Just be-
lattice simulations fail, however, at a nonzero chemical pofore the onset of the conformal phase, it has been argued that
tential forN;= 3 since the fermionic determinant is complex. an enhanced global symmetry can emerge involving the mas-
For N.= 2, the situation is very different since the quarks sive spectrum of the theorf24,25. This new dynamical
are in a pseudoreal representation of the gauge group. Tleymmetry may arise when the number of light flavors is near
a critical number of flavorgaboutNg=8 [24-27]). Above
this value, the theory is expected to enter the conformal re-
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standard modeJ24]. The hadronic spectrum close to this tentials. The vacuum structure that is predicted at tree-level
point can be very different than for a smaller number ofis identical to that of chiral perturbation theof81]. The
flavors. For example, this enhanced global symmetry caslispersion relations of the pseudo-Goldstone bosons are cal-
lead to degenerate masses for the vector spectrum even in thglated as well as the dependence of the condensates on the
presence of chiral symmetry breaking. Additionally, whenbaryon and isospin chemical potentials.
approaching the conformal point all of the massive states of This paper is organized as follows. In Sec. Il the nonlin-
the theory become light exponentially fast as the number ofarly realized effective Lagrangian is reviewed. In Sec. Il
flavors reaches the critical value. we briefly comment on th&l; phase diagram at zero chemi-

In this work we study the phase structureNyf=2 QCD  cal potential and review the possibilifg4,25,2§ that novel
as a function of chemical potential and the number of lightthenomena like parity doubling can emerge near the confor-
flavors. We begin by reviewing the most general effectiveMal phase transition. The effects of a nonzero baryon chemi-
Lagrangian forN,=2 describing the Goldstone bosons and¢@l potential are illustrated in Secs. IV, V, and VI. First, we
spin-one states and their interactions. This Lagrangian wagludy the effects of the chemical potential on #ierms and
first constructed in Ref§24] and[28] within the context of ~then we consider the dispersion relations of the spin-one
extended technicolor theories. We first discuss the nonlinedf€!ds in the presence of a chemical potential. We then turn to
realization of chiral symmetry and later consider the linearthe linearly realized theory. In Sec. VIl the linear effective
effective Lagrangian. Before introducing a chemical potenl-2grangian is reviewed. The phase diagram and dispersion
tial, the possible phase structure of two-color QCD as thd€lations at nonzero baryon and isospin chemical potentials
number of flavors is increased is discussed. The enhanceéH€ Studied and the results are contrasted with those of chiral
global symmetry mentioned above is identified at the level of€rturbation theory. We conclude in Sec. VIIl. Our conven-

the effective Lagrangian. tions are summarized in the Appendix.

We stress that if we were to consider an approximate local
flavor symmetry when introducing the spin-one particles, Il. THE TWO-COLOR NONLINEAR EFFECTIVE
then no enhanced symmetry is allowed. An intriguing possi- LAGRANGIAN

bility is that for a small number of flavors relative to the . . . .
number of colors it might be reasonable to include the vec- The simplest example of a gauge theory with fermions in

tors as almost gauge vectors of chiral symmetry, while for aa pseudoreal representatiorNs=2 QCD with the fermions

In the fundamental representation. The quantum global sym-
large number of flavors the enhanced global symmetry ma : ) . ;
. S . . etry for N; matter fields isSU(2N¢) which contains
set in. Both limits severely constrain the effective

Lagrangians. Lattice simulations are a very useful means of U (Ng) XSUg(N¢). Using the Wess and Bagger spinorial
testing such conjectures. conventiond 32], the underlying Lagrangian is
An essential component for any effective Lagrangian for a 1
strongly interacting theory is the set of intrinsic negative Ly :22——6 V.é;wﬂ Qo
parity terms, i.e. those terms contracted by the fully antisym- ¢ 4g> "
metric tensore,,,,. The Wess-Zumino terrf29,30 is the 1
time honored example of anterm and is needed to saturate —5m,Q"m,E Q+H.c. 1)
(in the Goldstone phagehe 't Hooft global non-Abelian 2
anomaly constraints. When the underlying fermions are in a a :
pseudoreal representation of the gauge groupetpart of ~ Cp» @ndG, with a=1,2,3 are the gluon field strength and
the effective Lagrangian involving the Goldstone bosons andi€ld, respectively, YVh'le the® are the Pauli matrices for the
the spin-one fields was explicitly constructed in Rg8].  SUc(2) group. Qg is a two-spinor fermion field in the
We show that this sector of the theory couples to the baryoftindamental representation of color with=1,2 and |
and isospin chemical potentials. These terms are also exs1, - -,2N¢,
pected to be important when studying the solitonic sector of
the theory. o ac @
Next, we study the effect of the chemical potential on the Nioama)
spin-one fields and we explicitly calculate the mass gaps.
The results suggest that some of the vectors may conden$ethe massless limitrg,=0), the classical global symmetry
and hence break rotational invariance. The value of thés U(2N¢) which is then broken by the Adler-Bell-Jackiw
chemical potential at the onset of the vector condensation isnomaly toSU(2N¢). The mass term explicitly breaks the
predicted by assuming that vectors are sufficiently massiv€U(2N;) symmetry toSp(2Ns). The 2N¢ X 2N¢ matrix E is
and that the vacuum alignment of the theory is determined
by the Goldstone excitations. 0 1
We then turn to study the superfluid phase transition at E= -1 0/ )
nonzero chemical potential using a linear realization of the
underlying chiral symmetry. The linear sigma model not onlyFor a sufficiently small number of flavors, one expects the
has the advantage that the calculations are relatively simplieory to confine and to dynamically generate a condensate
but also allows us to predict how the magnitude of the conwhich spontaneously breaks the global symmetry group for
densates changes with the baryon and isospin chemical paero quark masses. For three-color QCD with quarks in the
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fundamental representation, this condensate is the usullis useful to formally define a chiral covariant derivative

quark-antiquark condensate; however, on account of the en- . -

larged SU(2N;) global symmetry in two-color QCD, any D,U=4d,U-IAU-IUA,. (11

quark-antiquark condensate can be continuously rotated in

a quark-quark condensate and the only discernible conde

sate is an admixture of these two condensates. The subgro

down to which theSU(2N¢) symmetry is broken is usually TH{D,UD*U™]. (12)

taken to be the maximal diagonal subgrdsip(2N;) [33], a !

choice which is consistent with a new criterion presented inAlthough we have introduced the vector fields formally as

Ref. [34]. vectors associated with a local chiral gauge theory, the effec-
We now turn to the construction of the low energy effec-tive Lagrangian must respect the glol&lU(2N;) transfor-

tive Lagrangian. We divide the Hermitian generatdig?}, mations and is given by

of SU(2N;), normalized according to [F3T?]= 62%/2, into

ho_he most general two-derivative term which preserves local
GBiraI symmetry is

two classes: the generators ®f(2N;) which we denote by Lesr=v?Ti{D,UDUT]+mTI{A,A"]
{s?} with a=1, ... ,N?+N;, and the remaining generators 2 Top 1L e 2 t
. : . +hv“Tr A JUA'""U']+ TrA,UD"U
of SU(2N;) which we denote by{X'} with i=1,...,2N? o7THA, IH+1so7THA, ]
—N;—1. Note that the latter set parametrizes the quotient +u2m2 T MU+ M TUT. (13)

spaceSU(2N;)/Sp(2Ns). An explicit realization of the gen- _ o
erators is provided in the Appendix. This breaking patternWe counted the vector fields as derivatives and added a
gives N?—N;—1 Goldstone bosons which are encoded indemocratic quark mass matrix

the 2N X 2N antisymmetric matrix 0 —1
U=el (¥, @ ME(l o) a9
U transforms linearly under a chiral rotation as The parametersy,, s, h are real constants which effectively
measure the departure from local chiral symmetry. The de-
U—uuu', (5) generate masses of the pseudo-Goldstone exicitations are de-

. . o ~ noted by m,. Equation (13) is the most general two-
with ue SU(2N;). The nonlinear realization constraint, derivative effective Lagrangian compatible with the global

uut=1,is automatically satisfied. symmetries olN.=2 QCD[24,28,.
The generators of th8p(2Ny) satisfy the relation For completeness, we augment the effective Lagrangian
- with the simplest possible kinetic term for the vectors
STE+E S=0, (6)
. 1
while theX' generators obey Lyjn=———TIF,,F*"], (158
29
XTE—E X=0. (7)
where
Using this last relation we can easily demonstrate that pv_ oA vAp L Ap AV
= —U. For simplicity, we also require that FPP=0PA"— " AP—I[ AP, A"]. (15D
PfU=1, (8) The vector kinetic piece arises as a fourth order term in the

derivative counting and is a dimensionless coupling con-
in order to avoid discussing the explicit realization of thestant. The tree-level masses of the vectors can also be calcu-

underlying Adler-Bell-Jackiw axial anomaly at the effective lated and are given by
Lagrangian leve[27].
MZ=g*(m§—hv?) (163

A. The spin-one fields Mizgz[m\2,+vz(h+4—25)], (16b)

We next introduce the coupling between the Goldstone
excitations and a vector field. While there are many differenwhere we have split the vectors into those associated with
ways to introduce vector fields at the level of the effectivethe {S*} generators and those associated with{tk& gen-
Lagrangian(the hidden local gauge symmetry of REB5], erators. Note that, in general, there is a nonzero mass split-
for example, they are all equivalent at tree level. We con- ting between these two sets.
sider the vector field

B. The € terms for SU(2N;)

A, =AST?, 9 ) o
Next, we consider the complete set of 4-derivative terms
which we take to transform underJ(2N;) rotation as which have negative intrinsic parity and contain spin-one
and spin-zero fields. As mentioned in the Introduction, these
A,—uAu"—i(g,uu. (100 terms contain the Lorentz antisymmetric tenggy,,, and
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the canonical example is the Wess-Zumino action. Theseurrents associated with non-Abelian anomalies at the effec-
terms are necessary at the effective Lagrangian level sindéve Lagrangian level. For the case at hand, the con§€ast
they account for the 't Hooft global anomaly constraints infixed to be
the Goldstone phase. Additionally, they are important when
qguantizing the solitonic sector of the theory. They can be . N¢

: i } £ C=—i , (19
compactly written using the language of algebra-valued dif 24072
ferential forms:

with N.= 2 [28]. We note that the coefficient is similar to the
caseN.=3 sinceSU(2N;) D SU_ (Nf) X SUR(Ny).

Since the fermions are in a pseudoreal representation of the SINCe We are considering a theory which contains vectors
gauge group, it is sufficient to define only one type of differ-and only global chiral symmetry, E¢18) needs to be gen-
ential form, @, since now the other possible forng eralized. This has been done in Ref8]. In order to generate

—U~'dU=a" is not independen28]. The Wess-Zumino all allowed terms, the authors of Re28] first formally
term is gauged the Wess-Zumino action following a standard proce-

dure developed in Ref§30,36,37. This procedure automati-
cally provides most of the desired terms and local chiral
FWiU]=CfM5Tr[a5]. (18)  invariance relates the coefficients of the newerms to the

Wess-Zumino coefficient. The effective Lagrangian was then
The dimension of the spacetime must be increased by ongeneralized to be only globally invariant under chiral rota-
spatial direction in order to make the action local. Hence, thdions, and as a result, all the terms have different coefficients.
integral in Eg. (18) must be performed over a five- Remarkably, the gauging procedure generates all but one
dimensional manifold whose boundaryt) is the ordinary term allowed by global invariance.
four-dimensional Minkowski space. The coeffici&étan be The most general 4-derivative Lagrangian respecting
fixed, in general, by matching the anomalous variation of theglobal chiral rotations is

a=(dU)U " 1=(9,U)U tdx". (17

FWiU,A]zFWiU]HlOle 4Tr[Aa3]—1oczf 4Tr[(dAA+AdA)a]—503f 4Tr[dAdUATU’1—dATdU’1AU]
M M M
—504 4Tr[UATU‘1(Aa2+a2A)]+5C5f 4Tr[(Aa)2]+i1006f 4Tr[A3a]
M M M
+i10C7J 4Tr[(dAA+AdA)UATU‘1]—ilOCsf 4Tr[AaAUATu-l]Jrlocgf 4Tr[A3UATU‘1]
M M M

5
+ zclof 4Tr[(AUATU’1)2]+iC11j TIA?(@UATU T —UATU *a)], (20)
M M

whereC; are imaginary coefficients anl= A"dx, [28]. It is IIl. THE PHASE STRUCTURE ALONG THE N¢ AXIS
important to stress that when imposing local chiral symmetry As mentioned in the Introduction, the infrared behavior of

all .Of the coglfflmgnts are glven.by E,qlg) except forCqy gauge theories changes dramatically as the number of light
which is zero. Using C and CP invariance, one can show  femion flavors is varied23]. In this section we review two

that there are no other negative intrinsic odd parity terms af,ssipilities that should be directly accessible in lattice simu-
this order. Aside from the standard four-derivative terms in-ations of two-color QCD. Predictions resulting from ana-
volving the Goldstone fields, we are now endowed with &ytic calculations are at the moment only possible for super-
rather complete and general effective Lagrangian. The actiogymmetric theories; however, the behavior of the beta
Is function for two-color QCD does offer some guidance. We
focus here on zero chemical potential, but in later sections
will briefly discuss the largéd; behavior of two-color QCD
at nonzero chemical potential.
Sett= f d*X(Lets+ Liin) + TwA U, A (21
A. The conformal phase transition

ForN¢>11, the one-loop beta function of two-color QCD
IN.B.: We have changed the normalization of the coefficients withchanges sign and the theory loses asymptotic freedom
respect to Ref[28]. [39,40. The resulting infrared free theory is now in a non-
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i SO KD naon ot 5 L=v*TLa,UIVTHMITAAATD, (29
L [ [
6 é 1'1 Nf whereM?=m2—2v? [24,28. Note that the Lagrangian also

possesses an extra glolzgl (i.e. A—zA, with z=*+1) sym-
FIG. 1. The possible phase structureNgf=2 QCD as function metry. If such an enhanced symmetry emerges, the vectors
of the number of light quark flavors. along the broken generators become mass degenerate with
those along the orthogonal directions. Fy=3 QCD, this
Abelian QED-like phase in which neither confinement norcorresponds to mass degenerate vector and axial particles
chiral symmetry breaking is expected. For valueNpfnear  even in the presence of chiral symmetry breaking.
but below 11, the beta function develops a perturbative in- From Eq.(25), one finds that in the enhanced symmetry
frared stable fixed point at which the trace of the energyscenario, the interactions between the vectors and the Gold-
momentum tensor vanishes exactly and the theory is a nomstone excitations only appear at the next order in the deriva-
Abelian conformal field theory. In this phase, the couplingtive counting scheme in the form of the double trace terms
constant is small on account of the large number of flavors
and so we do not expect any of the global symmetries to L4=+a;Tr{3,Ua’UTITIA,A"]
break. However, as the number of flavors is decreased, the ”
fixed point becomes nonperturbative and the coupling con- +a2Tr[&pU&VUT]Tr[A”A Ik (26

stant increases to a critical value at which chiral symmetry i%hereal anda, are real coefficients. If the only extended

spontaneously broken. A dynamical scale is generated a mmetrv aroup is the discre roun. then the Lagrana-
conformal symmetry is lost. The generation of this scale der-g, y group % group, grang

. 7 . ~~lan can include single trace terms of the form
fines the critical number of massless flavors, i.e. the mini-
mum number of flavors for which the gauge theory is still T o,Ua’UTA,AY], THAAPUATATUT. (27
conformal and chiral symmetry is still intact. Below this P ’ P Y

critical number of flavors, the theory is expected to confineThe enhanced symmetry scenario imposes very Stringent
and the low energy spectrum is hadronic. This discussiogonstraints on the possible form of teeerms as well. If we
assumes that the conformal and chiral phase transitions cgequire that the effective Lagrangian respects the full en-
incide, but whether or not this is true is still controversial. hanced global symmetngp(2N;) X[ SU(2N;)]X Z,, then

We will assume here, as corroborated by lattice Simulationg‘]ere are no vector axia terms. However, if on|y the dis-

for Nc=3 [7], that there is in fact a single conformal/chiral cretez, symmetry is imposed, then the surviving terms are
phase transition. Figure 1 summarizes the possible phase, c,, C,, Cs, Cg andCyp.

structure for two-color QCD as a function of the number of ~ As supported by ordinary QCD phenomenoldgg], we

light flavors. conjecture the following phase structure before entering the
conformal phase: approximate local chiral symmetry for
B. The enhanced global symmetry scenario smallN;, parity doubling and an extra global symmetry near

When the number of flavors is just below the critical the criticalN¢. For a fixed, nonzero chemical potential, the
value, the theory still exhibits chiral symmetry breaking putPhase structure as the nu.mber of light flavors is increased
it is possible that the vector spectrum changes quite signifishould be even richer. For instance, whén>11, the theory
cantly. In Refs[24,28, it was suggested that a new global iS N0 longer asymptotically free and the low energy theory is
symmetry may be dynamically generated. This Symmemﬁlmply th_e QCD Lagrangian. This regime is clearly notmthe_
acts on the massive spectrum of the theory and it is related M€ universality class as the one in which the lowest exci-
the modification of the second Weinberg spectral functiorf@tions are Goldstone bosons. Réf smaller than but near
sum rule near the critical number of flavoas). Indeed, the critical valueN¢=8, we approach the conformal phase.
there are examples of supersymmetric theories with enlhe hadronic mass scale of the theory vanishes exponentially

hanced global symmetry group3s. fast[25-27 and all of the physical states whose masses are
From Eq.(13), one sees that the global symmetry grouplinked to the hadronic mass scale, i.e. all non-Goldstone ex-
becomesS p(2N;) X[ SU(2N;)] for citations, become very Ilght._When there is a large mass gap
between the Goldstone excitations and the rest of the spec-

s=4, h=2, (22)  trum, the phase diagram fdd,=2 can be predicted using

chiral perturbation theory20,21,31. Near the conformal
and the mass splitting between the vectors is zero: point, however, this approach is expected to break down

since there is now a tower of light, non-Goldstone excita-

M2=g¥(mé—2v%)=M3. (23)  tions. This tower of light states should suppress the forma-

tion of both the quark-antiquark and the diquark condensates
The extraSU(2N;) symmetry group acts only on the vector by virtue of conformality. This behavior can be distinguished

field as from the corrections to the mean-field analysis of the effec-
tive Lagrangian since the latter will not lead to a vanishing of
A—uAu’, ue[SU2N;)], (24 either condensate. This has already been verified at next-to-
leading order in Ref[41]. We suggest then that by measur-
and the effective Lagrangian, E@L3), reduces to ing diquark condensation at nonzero chemical potential lat-
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tice simulations may be able to single out important featureger. Since the Lagrangian is invariant under a gldbél )g

of the conformal phase transition. symmetry group, there is a conserved current, the zeroth
component of which is the conserved charged associated
IV. NONZERO CHEMICAL POTENTIAL with the baryon number. In the operator formalism, the grand

canonical partition function is

In this section we review the procedure for introducing a
chemical potential associated with a conserved charge into
the effective theory. For simplicity, we consider only a
baryon chemical potential, but the generalization to includeC ing f h f i h hi I
an isospin chemical potential is straightforward. This proce- onve.rtmg rom.t e operator ormaiism to the pat .|ntegra
dure uniquely fixes the coefficients of the chemical potentiaformal'sm' one finds that after integrating over the field mo-

terms in the effective Lagrangian and is equivalent to thé"nentum the introduction of a chemical potential, for a scalar
approaches used in Refi20,21] to introduce a chemical degree of freedom, serves only to shift the time derivatives in

potential via an auxiliary extended gauge symmetry. the fashion:
At nonzero chemical potential, the microscopic Lagrang-

Z(B,u)=Tre BH-1Q (32)

ian has the form 7> P J
ﬁtzﬁﬁtz 2M§t+'u' . (33
1. _
= — .GHV 4 4 —
Eng=2 492G’” CHH1Qo" 9, = 11gB o, Note that this is equivalent to replacing the usual derivatives
R by the covariant derivative in E¢31).
. T 1 T Before discussing the effects of a nonzero chemical po-
—16, 5|Q—5mQ 7,E Q+H.c. (28 tential on the vectors and the terms, it is instructive to
review the predictions of the effective Lagrangian including
where the N;X2N; matrix only the pseudo-Goldstone excitatidi2®,21]. The effects of
a nonzero baryon chemical potential are manifest even at the
1{1 O level of the chiral effective Lagrangian sindg(N;—1) of
“2lo =1 (29 the Goldstone modes are diquarks which have nonzero

baryon charge. This is not the case fdg=3 QCD since

is the baryon charge matrix for the quarks and the conjugatthere is no coupling between the Goldstone modes and the

quarks? One may check that when written in the basis of thebaryon chemical potential in chiral perturbation theory. An-

usualSU(2N;) spinors this term gives the usual coupling of other related, but salient, difference is that fé=2, the

the quarks to the chemical potentialBZyozp [21]. critical chemical _potent|al_at_ which the baryon _d_enS|ty be-
After definingB,= ugB 5, , this Lagrangian is formally comes nonzero is well within the range of validity of the

invariant under the following U(2Ns) transformation: eﬁegtlve theory. . .
Since a nonzero baryon chemical potential only preserves

Q—uQ a Sp(N¢) X Sp(N;) subgroup of the originaBU(2N;) sym-
metry group, the chemical potential is in competition with
1 the pion mass for the vacuum structure. It is crucial that this
B,—uB,uf— —u(g,u" competition be allowed to take place in the low energy ef-
K fective Lagrangian. At zero baryon chemical potential and
nonzero pion masSp(2Ny) is left invariant by the vacuum
and the parametrization is given by E¢3) and (4). How-
ever, if ug exceedsm_, a nonzero diquark condensate is

and ue SU(2Ns). Implementing the previous transforma- o ;
tions at the effective Lagrangian, the authors of Refs €Xpected to form. The combination of the chiral condensate

[20,21,31 were able to uniquely determine the coupling of and the diquark condensate leaves onfypéN;) invariance,

the chemical potential to the Goldstone bosons in the effec@d consequently one must introduce a parametrization

tive theory. The result is that the chemical potential enterdVhich allows for this additional symmetry breaking. A gen-
into the effective Lagrangian in the form of a covariant de-ral parametrization is

rivative which we give schematically by

E—u*Eul (30

U :ei(nix‘/u)g (34)
d,—d,—iB, (31

This same result can be arrived at by examining the coni/hereX; are the broken generators with respecLioit this

served charges in the effective theory. The chemical potentli’fo'r.‘t’ V‘lf ;:ogilder (_)ntly gn even number of flavors and fol-
is associated with the conserved charge of the baryon nu owing Ref. [21] we introduce

S =Ecog )+ D sin(¢), (35)
2We adopt the convention of Ref31] where the diquarks are
chosen to have baryon charge 1. where
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A. Nonzero baryon chemical potential

(36) The effect of the baryon chemical potential through ¢he

terms is obtained by substitutiny, by B,= ugd, B in Eq.
The variational parameter is determined by minimizing the (20) with C;=C, fori=1,...,10 andC;;=0. SinceB, only
free energy. has a temporal component, all terms with more thanBpe
After introducing the chemical potential as discussedvanish on account of the antisymmetry of the differential
above, the most general effective Lagrangian containing onljorms. The resulting term is
pseudo Goldstone excitations to second order in the chiral

counting is I'[U,B]=i MBlOCJ ,TMBa’]
M
L(U)=0v?T[9,Us"UT]—idugv?Tr{BUsUT]

— Oijk 44
+szﬂé(Tr[BUBTUT]‘FTI’[BB]) =1 MBlOCfM4Tr[Baiajak]e Xd* x. (42)

+02m2TI MU+ M TUT]. 3 . . .
v Tl M M ] (37) In general, this term does not vanish and it is instructive to

vestigate it in more detail. By expandirgto first order in
erivatives and lowest order in Goldstone fields, we have the
Ieagrangian density

The phase diagram and dispersion relations for the pseud
Goldstone modes were derived[i20,21]. The steps leading
to the phase diagram are as follows. First, one maximizes th
stationary action: -
B o i ugl0C T Baaja] €
L(3)=2v°u3(TBXBTS ]+ Tr[BB]) c
=5—U’:B OIRTIBLX| XMIXMd, '3, 7+ - -

+u?mA T M + M T3 (38)
with respect top. This leads to the following nonanalytic (43
behavior ing:
For N¢=2 the trace is nonzero only ifm,n=1,2,3, that is
=0 for ug<m,, (399  only the pion generator' with i=1,2,3 contribute to the
trace (see the Appendix for the conventign#\n explicit
m?2 calculation yields
cofe)=— for ug=m,. (40)
MB

i uglOC f 4Tr[Ba3]
It was shown in Ref[21] that this vacuum direction does M
indeed parametrize the global minimum of the static poten- c

_ il N , ) —i5 B IMnG0ijK g 19 My —Nady i+ ... (44
tial £(2). The condensates and densities are simply given by I NTE s € dimm djm dym X . (44
derivatives of the static potential with respect to the appro- v

priate sources. For the reader’s convenience, we repeat these

expressions along with the baryon density The integral is related to the winding number when consid-
ering nontrivial topological sectors of the theory and it is
Yy =2N;G cosp, (¢Pih)=2N;Gsineg, naturally coupled tqug . .
() f Gy ! In the evaluation of Eq(42), we used the explicit repre-
Ne=8N;v2uasire. (41) sentation of the generators given in £41). As the diquark

condensation sets in and the minimum of the stationary La-
The constanG is the chiral condensate in the chiral limit. 9rangian rotates according to E(R5), this representation

We want to stress that the above analysis assumes that tHEe@ks down. If, however, we choose to write the rotation of

vector spectrum is heavy as compared to the mass of tHae ge_nerators explicitly then we may use the_original repre-
pseudo Goldstone excitations. This assumption, howeve entation of the generators at the cost of rotating the sources

should not hold for large enough number of flavors. Hence i 21J:

would be very interesting to see if lattice calculations find

deviations forN¢=8. We also remark that the Lagrangian in B—Bcos¢g—BDESsine. (45
Eq. (37) is investigated at tree level.

For N;=2 one can verify that
V. THE € TERMS AT NONZERO CHEMICAL POTENTIAL

ijk | —
In this section we compute the effect of the chemical po- K T[BDE XX"™X"]gjm' 9 n"=0,  (46)
tential in thee terms. For simplicity we neglect the spin-one
fields and consider onli}{;=2. and the final result is
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) s there is no coupling at all between the isospin chemical po-
[ MBlOCJWTf[Ba ] tential and the baryonic sector of the theory. For this reason,

the spectrum of solitons in two-color QCD is richer than for
3

_ Cug N N.=3. To our knowledge this exciting possibility has not
=i5cog @)—3 2 f 46'm”60"k been explored. Note that it is straightforward to extend these
4y20% 1in=1 Ju results into the &g, ;) plane, using the results f81]. As a
X g d Mg dix+ - (47)  direct application of Eq(42), one can also extend these re-
sults to highem; .
where the sum over,m,n is performed forl,m,n=1,2,3. Finally we recall that a relevant feature of the Wess-

Note that the contribution from the winding number to the Zumino term is that is required to saturate at the effective
baryon density is proportional to cag(and hence decreases Lagrangian level the 't Hooft global anomaly conditions. It is

with increasingug like m2/ug . also well known that the Goldstone bosons are sufficient
(when chiral symmetry is spontaneously brokém saturate
B. Nonzero isospin chemical potential the anomaly matching conditions. So no other light degree of

freedom close to the conformal phase transition is expected
Above we observed that theterms couple to the baryon {4 affect the Wess-Zumino term. In the conformal region the

chemical potential via the pions transforming according toynderlying quarks will automatically saturate the 't Hooft
the adjoint representation &Uy,(Ny). The diquark sector, anomaly conditions. So it would certainly be interesting to

however, was not active. The situation is reversed when congonitor these terms close to the conformal phase transition.
sidering a nonzero isospin chemical potential. Since the

quarks carry different flavor quantum numbers, it is possible

. . . . VI. THE VECTOR SPECTRUM AT NONZERO CHEMICAL
and even natural to introduce different chemical potentials

. : . POTENTIAL
for the different flavors. Let us considBir =2 and introduce ©
the chemical potentials We now examine the effects of a nonzero baryon chemi-
cal potential on the spectrum of vectors. The chemical po-
pe=pytug and  w=uy—ug. (49 tential enters simply by modifying the derivatives acting on
Here we considejug=0. The effects ofu, in the € terms the vector fields:
enters through the substitution in EQO) of A, by a,A—d A —i[B, A ] (51)
N viip v ™p s
1/ 0 . _ _ _ = .
|= g1 80,1 =80, = 5. (49) wlth B,=wugd,0B=V,B whereV—_(,uB_,O). Using the pre-
2\0 -7 vious prescription for the vector kinetic term, we find

The microscopic two-color Lagrangian is invariant under the TF, F**1—TiF, F**]1-4iTi[F,,[B"A"]]

combined exchangeg < ug and d «io,7,dg where o,

and , are Pauli matrices acting in spin and color space, —2T{[B,,A,][B”,A"]-[B,,A,][B"A]].
respectively. ¢, is the left down-quark field and the combi- (52
nationio,7,d% is known as the conjugate quark stafEhis

invariance is inherited by the effective Lagrangian where itRetaining only the quadratic terms in E45a and integrat-
translates intou,— ug and (X, 7,X,) < (m4Xs, msXs). NG by parts yields

Using this we conclude from the explicit calculation in the

case of baryon chemical potential that, fdi=2 and 1 ) , _ )
:O y p f MB ﬁquadzz—ng?{ﬁab[nP D_&pa ]_4| 7ab[77p V&
tm10C f Til’] =3 (VP9 + V") ]+ 2xan V-V = VIV LA
: (53
Cu °
. | . . h
=i5co _— J Imn _0ijk Wit
9{@) 4\/51)3 |1m12n=3 M4€ €

Yao=THTB,T’]],  xap=Tr[B, T][B, T"]]. (54)
X gy oy mM g dix+ - (50)

Note that the inclusion of a baryon chemical potential in-
where now the sum over the flavor indices is performed forduces a “magnetic-type” mass term for the vectors at tree-
|,m,n=3,4,5, while cosp=(m_/w)? for x;>m, and ¢=0 level. To complete the quadratic terms, we include the ordi-
otherwise. As above, this term is also related to the windinghary mass term already present in Eif):
number of the diquark Goldstone fields. We note that in these
€ terms ug couples only to the isospin triplet?, 72, 7, v ,
while u, couples only to the baryon triplet®, 7*, 7°. This Emass:EA?"p EavAy, (59)
should be contrasted with three-color QCD in which the
baryon chemical potential couples to the isospin triplet, butwith

2
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1 . — def S3pE%— 4 yapusE — 9% %Ean— 215 Xan] = 0. (58)
sab=ﬁ{<M§+Mi>6ab+2<M§—Mé)Tr[TaszTzf]}.
(56) Here we choose to focous d¥;=2. The basis of the 15

] ) i ) vectors is taken as that given in the Appendix. We choose the
This term gives the lowest order interaction between thefollowing ordering, A®=A3s* for a=1 10. A2
L] 1 1 LRI | 1 1

Goldstone sector and the vectors. We assume that the yaya-10 ¢, a=11,...15. Explicitly calculating the

. i i

;/r?cu.urtn ah%nmr-int IS f'.xed tt)ﬁl tk|1e S.oldsto(;le sef;:to: a?(:hs?races in Eq(58) using the said basis one finds that the zero
IS Interaction term gives the leading order efec oF e omentum propagator matrix is block diagonal with three

ahgnmgnt on the dispersion rela.t|ons for the vectors. 1Xx1 terms and four & 3 blocks. The diagonal terms are for
Having extracted the quadratic terms for the vectors, we 1 = > 3 .

: A, AP, and AL The masses in these channels take the

can calculate the mass gap, i.e. the zero momentum limit Osfin le value

the dispersion relations. In this limit, the temporal compo- 9

nents have no energy dependence while the quadratic part of

the spatial components has the form Ma=Mg, a=1,23. (59

A 5,,E2—4 E—g%2&p—2ulxap]A. (5
i %ab YabieE 70 Eab ™ 21 Xan A 7 the 3x3 blocks mix @S AP ALY (A7 AE ALY,

Up until this pointN; is completely general and the masses(A?,A°, A*®), and @A A A%) respectively. The first
of the (2N;)?—1 vector modes can be obtained by solvingthree triplets are degenerate and the masses are obtained by

for E solving for E:
E2+ u2—M3 2iEu 0
. MZ2+M2 MZ—M3 MZ—M32
—2iEu E2+ u2— 5 5 c042¢) —5—sin2¢) 0 (60
ME—MG ME+ME ME—MG
0 ———sin(2¢) E2— >~ 5 Cod2¢)
while in the A A® A% sector we must solve
M2+MZ M2-M2 M2Z—M2
E2— X 54 X "S00q2¢) 0 X Sqin2¢)
2 2 2
MZ+M2 M%—M3 .
0 E2+ u?— >~ 5 c0d2¢) 2iIEu =0. (61)
2 2
XTssin(ch) —2iEp E2+ u2- M2

To illustrate the calculation of the general zero momen-A? fields. However, theA* and Al® states mix since

tum propagator matrix, we now investigate the-type” di- [B,X*]=—iX® and[B,X%]=+iX* and so
quark vector states, i.e. the fields* and A®. The y,, and _
the &,,, terms do not mixA* and Al® with the rest of the 15 B i ~ Gap
Y1415 ~ V15147 50 Xab™ T (62

with a,b=14,15. Additionally, the last term in E@56) de-

SWe remind the reader that at the tree level there is also a qQUrends on§ and it mixesAil“ andAils with Ai4' This mixing,

dratic term of the type/“I1°A7 . This mixing term can be diago- powever, vanishes in two casé®: the nonsuperfluid phase,

nalized (24,37 away by the field redefinitonA—A+uv[(4 . . _ . . .
—s)/2M3]4I1 while leaving the mass spectrum unchangéd. .e. whereug<m, with ¢=0 andE_E_’(") the superfluid

stands for the vectors which mix with the pions wHilg is its tree  phase withug>m, where o~ 7/2 andX~D.
level mass. In case(i), we find
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6 R 6
M,/m, M,/m_
My/m_ 4 Mym, 4
2r 1 2r 1
0 ] 1 1 0 1 Il 1
0 1 2 3 4 0 1 2 3 4
U./m_ W./m_

FIG. 2. The triply degenerate masses of the vectors in the sec- FIG. 3. The masses of the three vectors in the sector
tors (AY A% A1), (A7,A% AY, and @AY AN AP We have (A AP A" with the same choice of the parametirs,my ,v,g
choosenh=s=0, my=4m_ v=m_ andg=1 to make the plot. as in Fig. 2. Note the square-root singularity of the lightest vector
The choiceh=s=0 realizes the limit where the vector Lagrangian mass just below the critical chemical potential in accordance with
only breaks local chiral symmetry through the term proportional toEq. (67).

2
my .
X-like generator or of two X-like and one S-like generator
Mi this mass splitting is apparent on the plots. The X-like and
§ab:7 %an, =0, (63)  s-like vectors only mix for 8 < /2, that is only forug

>m_ andug¥m,..
The mass gaps of the vectors and the possibility of vector

with a,b=4,5, while for casdii) we have ; L . . -
condensation can be studied in lattice simulations. Such stud-

Mé - ies would give direct information about the conformal phase
&1~ o T (64) transition since the masses of the vectors depend directly on
1%

the parameters, h, andm,,. Fixing these parameters is suf-
ficient to check our conjecture that for a small number of
™ light flavors we can use an approximate local chiral gauge
§1515= 5 ¢= 5 (€9 theory to introduce the vector-Goldstone interactiéines h
=s=0 but mf,# 0), while for a large number of flavors an
After diagonalizing the quadratic mass terms, the mass gagnhanced global symmetfiie. s=2h=4) may emerge. We
in case(i) is hope that lattice simulations can shed light on this issue in
the near future.

Mvi:Mxi/.LB. (66)
HereV™* labels the states which diagonalize the mass matrix. VII. THE TWO-COLOR LINEAR EFFECTIVE
In case(ii), we find that LAGRANGIAN
> 1, ) ) In this section, we study the effective Lagrangian for two-
My== E[MS“LMXJFZ#B color QCD for which the chiral symmetry is linearly real-

ized. The authors of Ref42] used this theory to study the
+(M2-M2)2+8u2(M2+M2)], (670  superfluid phase transition at a nonzero baryon chemical po-
tential and zero isospin chemical potential. This theory was
ato=m/2. Forug=Mgor My, V™ becomes massless. This also used in Ref.43] to examine the universal properties of
suggests that vectors condense jfigy=min{Mg,My} break-  the chiral symmetry restoring phase transition of two-color
ing rotational invariance. At this value @fg, the approach QCD at nonzero temperature and a vanishing chemical po-
breaks down since the effects of such a condensation is nagéntial. The random matrix model for two-color QCD at a
accounted for in Eq(35). This calculation is in agreement nonzero chemical potential considered by the authors of Ref.
with the general solutions plotted in Figs. 2 and in 3. In thesd44] also bears resemblence to the linear sigma model con-
plots we have choseh=s=0, my=4m,, v=m_, andg  sidered here. We begin by introducing the effective Lagrang-
=1. This choice leads to the conventional vector mass splitian including the couplings between the pseudo Goldstone
ting between the X-like and the S-like vectors at zero chemiexcitations and the spin-one sector. We then derive the phase
cal potential. As the triplets consist of two S-like and onediagram at nonzero baryon and isospin chemical potential.
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In the linear effective Lagrangian, th&\g—N;—1 Gold-  £;;e0=Tr[d,M "M ]—m2Ti[M MT]—4 X\, Ti[M M ]2
stone fields which are present in the nonlinear effective La- f1n2 +
grangian are accompanied by a scalar partiote, These —AN(TIM M7+ 2 TEM (pgB+ )M (1B
fields are elements of the antisymmetrid2< 2N; matrix + )+ M MY (gB+ 1)2]+ 4 Tr (ugB

1 H aysa
M=ﬁ(a—l2\/§ﬂ' X3)E. (68) + 1) AgM MT]—%Re(Tr[MM]). (74)

5

For N¢=2, there is a triplet of pions, a scalar quark-
M—uMu. (69) antiquark bound state, a scalar diquark, and its antiparticle.
The diquarks carry baryon chargel and the triplet of pions
A vector field,A,, can be introduced in a fashion similar to have isospin charges 1 and 0. Computing the traces ih
that for the nonlinear effective Lagrangian and so transformgor N¢=2, one finds the effective potential
according to Eq(10). Hence, it is useful to define the cova-
riant derivative acting oM

Under the action ofie SU(2N;), M transforms as

2

m A M
V= 7(0_2_}_,1.].a,1.7.a)_‘_ Z(O.Z_I_,n_a,na)z_ 2' [(W1)2+(772)2]
DM=4,M—iAM—iMAT. (70)

As in the nonlinear realization, we write a general Lagrang- —78[(774)2+(775)2]—H o. (75)
ian consistent with the global chiral symmetry invariance:

Linear=Tr[d,M "M 1= m2TI{M MT]+ic, T A, (Ma*M There is no distinction between the two quartic terms in Eq.
inear y y (74) for Ny=2, and so the two couplings,; and \,, have
—a”MMT)]+c2Tr[A”MAIMT]+chr[AyAV] been absorbed into a single coupling, The coefficientan

+ 12 and\ may be expressed in terms ., m, andf_.:
+C,TIAAPMM T =N TH{M MT]

2 2
—\o(THM M])2— HReTH{ MM 1)/ 2 e 3m772 My (763
1 »
- z—ngr[FWF IP (72) m2—m?2
A= . (76b)

2
where M is given by Eq(68), F,, is given in Eq.(15b and 215
all the coefficients are real. Since it is determined by the.l_

. . . ; he potential is manifestly invariant under@(2)x0(2)
same symmetry principle, the linear effective Lagrangian is : : ; 5
AT . ) symmetry group, i.e. under independent rotationsmof, (%)

very similar in form to the nonlinear version. We have only

4 5 ici i
included potential terms up to fourth order in the mass di-and (m", ). An explicit calculation shows that at the level

mension. The Gell-Mann—Oakes—Renner relation fixes thice)f the .Lagran_glan th|_s myar.lance is not violated by the term
S - . inear in the time derivative:

coefficient of the explicit symmetry breaking term to He

—m2 ; .

=m_f,, Wherg m,_ is the degenerate mass pf the pseudo 4T (ueB+ 1) dpM M= (mtdgme— w2aymd)

Goldstone patrticles at zero baryon and isospin chemical po-

tential andf ., =22 v. For simplicity, we are ignoring terms + pg(modgmt— mtdom®).

which account for the explicit breaking of the anomalous 77

U(1), symmetry group.
For the purposes of deriving the phase diagram, we con- \ve denote the pion condensate {ay), the diquark con-

si_der only N¢=2 in the absgnce of spin-one parti_cles. AS yensate by D) and the chiral condensate Ky). Sincen
discussed above, the chemical potentials can be introducgghes not couple to either chemical potential, it is not ex-

by form_ally replacing the usual derivatives with the covari- pected to condense. TI@(2)x O(2) symmetry invariance
ant derivative of the effective potential requires that

‘3VM_>(?VM_i(/LBB+MII)5OVM_iM(MBB_F/UvII)&O]E%Z) <771>2+<772>2=<7T>2, <7T4>2+<775>2=<D>2, (78)

where in the unbroken phase. The values of the condensates as a
function of the baryon and isospin chemical potentials are

ug(l O i = 0 found by extremizing the effective potential:
meB+ul=—- 5 3l (73
2\0 -1/ 210 T
Y 0=~ H ()M A(0)2+ (m)?+ (D))
The linear effective Lagrangian at nonzero baryon and isos-  &(c)
pin chemical potential is then (793
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V , (7%, 7°) sectors. For the two unmixed statesand 7>, the
WZOZ(ﬂ[mZ—M. +N ()2 +(m)?+(D)?)] dispersion relations are, respectively,
(79D E,= o+ M+ N(3(0) 2+ (m? (D)) (833
V
W=0=<D>[m2—ué+>\(<o>2+<w>2+<D>2)]. E, 3= Vp2+m2+ N\ ({0)2+(m)2+(D)?).

There are three real solutions to this set of equations corre- _The dlsper§|on relations for them{, =) sector are ob-
sponding to three distinct phases. The first solution is giveﬁalned by solving
by (7)=(D)=0 with (o) determined by the nonzero solu- 2, —2imE
tion to H=m2f_ =(a)(m?>+\(0)). In this phase(o) is e(

constant, i.e. equal tb,.. The other two solutions are

=0, (843

2|,LL|E Zz

where the diagonal terms are

H
(o)=— (80a
MB

2y=p*~E?+ m?*+ 7 ((0)*+3(m)?+(D)?) — uf
(84b)

2p=p*— E*+m?+ N ((0)?+(m)?+(D)?) — uf .
(840

(80b)
The dispersion relations for thert,7°) can be found by

exchangingu, and wg in the dispersion relations for the

(809 (7!, 72) sector(we denote the propagating modes in the
diquark sector byD.). The dispersion relations in the non-
superfluid phasey, ,ug<m,, are

(0’)=i (813 E,=\p?+m2+2\f2 (853

and

2
M
E.,= Vp*+m; (85b)
(D)=0 (81b)
E,. =VpP+mi*u, (850
Ep, = Vp®+m.+ug. (85d)

(m)= (819

In the phase with the condensation of pions, the dispersion

Note that even for nonzero quark masses) and(D) are  relations are
true order parameters. The phase boundaries ingheu)

2
plane can now be calculated and are given by solving the E2=p2+ 2\H + 2 (863
inequalities 7 wl
oV 0>0 82 2 24 2
W(@TMW), )>0, (823 EZ =p°+ui (86b)
and 2
52V = =pz—m2—%+3m2
W((0>,0,<D>)>O. (82b) i
H? ’
For ug<pu,, the inequalities are satisfied far,<m,,, + —4+m2—3,u,2 +4u2p? (860
and for ug>pu,, ug<m,. One may check that the second My

derivatives of the potential vanish on these critical lines in-

dicating that the transition is of second order. Along the line E2D+: P2+ wl+ ud+ 2up\pP+ ul. (860

pug=m>m_, the transition is first-order since the baryon -

and isospin densities are discontinuous across this line. Thidote that foru,>m_, the 7, is the massless Goldstone

is exactly the phase diagram which is predicted by chiraboson which arises on account of the spontaneous breaking

perturbation theory31]. of the baryon number. In the phase with the diquark conden-
The dispersion relations can now be calculated by examsate, the dispersion relations can be obtained by interchang-

ining the quadratic terms in Eq74). The Lorentz breaking ing u, with ug and . with D... In this phase, th® . is

term in Eq. (74) induces a mixing in the #%,7%) and the Goldstone mode.
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The fermionic determinant for two-color QCD is real but large phenomenologically. In fact, the spin-one sector was
not positive at nonzero chemical potential. Therefore, it isshown in Ref[47] to be crucial to the dynamics of the light
only possible to study cases where an equal number of fladegrees of freedom.
vors share a given chemical potential. The two-flavor case

discgssed above is thus only accessible to lattice simulations ACKNOWLEDGMENTS
at eitheru,;=0 or ug=0. If one doubles the number of
flavors and gives two flavors a chemical potenﬂ@|and the The authors thank A. JaCkson, R. L. Jaﬁe, J. SCheChter, J.

other two flavors a chemical potentipjd’ then the theory Skullel’ud, D. Toublan and J. Verbaarschot for useful discus-

has positivity in the full (5 ,x,) phase. The phase diagram, Sions.
however, has a different form than the one ab[@4.
APPENDIX: EXPLICIT REALIZATION OF THE  Sp(4)

GENERATORS
VIll. CONCLUSION

. . The generators ddU(4) can be conveniently represented
In this work, we have examined the phase structure o 9 (4) yrep

two-color QCD as a function of the baryon and isospin

chemical potentials as well as the number of light quark fla- A B [Cc D

vors via effective Lagrangians. We first considered the case Sa:( t T), x'=( t T),

for which the chiral symmetry group is nonlinearly realized. BT —A b- C

In addition to the pseudo Goldstone excitations, we aug- . - . -

mented the theory with the sector of spin-one particles an&vheref IS I-T|erm|t|an,C Is Hermitian and trgcelesﬁzBT

the negative intrinsic parity terms for the gro8pJ(2Ny). andD=—D ’ The{S} are also a represc_enFtEUon of t8e(4)
We reviewed the salient aspects of the conformal phas enerators since they obey the relatiBiE+ES=0. We

(A1)

transition which is expected to occur as the number of ligh efine

flavors is increased. Since this phase transition strongly af- 1 a 0

fects the phase structure as a function of the chemical poten- [ T a=1234. (A2)
tials, we suggested different ways in which lattice simula- 22\ 0 —AT) T

tions should cast further light on these issues. We

demonstrated that new terms in the chemical potentials exigtora=1,2,3, we have the standard Pauli matrices, while for
in the negative intrinsic parity sector at the level of the ef-a=4 we definer*=1. These are simply the generators for
fective Lagrangian. Such terms are expected to play an imSUy(2)xU,(1). Fora=5,...,10

portant role when analyzing the solitonic structure Ny

=2 QCD. Since the baryons are also Goldstone bosons, the 1 0 B

solitonic structure is naturally richer than fof.=3 QCD. :ﬁ gat o) @72---.10 (A3)

For example, just agg couples to the winding number of

the pion sector, we showed that couples to the winding gnq

number of the diquark sector. Future investigations into this

matter will certainly be interesting. B5=1, B’=7, B9=r! (A4)
Also, unlike N.=3 QCD, some of the spin-one particles

of N.=2 QCD are charged under baryon number. We have Bé=i1, B®=is3, BO=j;L

hence analyzed this sector at nonzero baryon chemical po-

tential. We observed novel features such as the possible corfhe five axial type generato{s;(i} are

densation of vector particles. We were able to calculate the

value of the chemical potential at which the vectors condense 1

and thereby break rotational invariance. Our results provide X'=—

new avenues for future investigations. We then turned to the 22

linear effective Lagrangian including the spin-one sector.

The phase diagram that is predicted by the linear effective’

Lagrangian matches that predicted by chiral perturbation

theory. Xi:i
Our results can be extended to describe QCD-like theories 2\/5

with quarks in the adjoint representation of the gauge group

for an arbitrary number of colors. Another possible area ofand

investigation is standard QCD with a nonzero isospin chemi-

cal potential[45]. Both cases are suitable for lattice studies. D*=7?, D°=ir% (A7)

For example, ordinary QCD at nonzero strange and isospin

chemical potentials has been studied in R46]. The inclu-  The generators are normalized as follows:

sion of the vector mesons may alter the phase structure pre-

dicted in Ref.[46] since the average mass splitting between TH[ SASP] = Tr[XaXP] = }bﬁb, TXISY]=0. (A8)

the spin-one sector and the spin-zero is not dramatically 2

70
0o 7T

), =1,2,3, (A5)

here7 are the standard Pauli matrices. Fer4,5

0 D
DT o

), i=4,5, (AB)
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