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Superfluid and conformal phase transitions of two-color QCD
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The phase structure of two-color QCD is examined as a function of the chemical potential and the number
of light quark flavors. We consider effective Lagrangians for two-color QCD containing the Goldstone exci-
tations, spin-one particles and negative intrinsic parity terms. We discuss the possibility of a conformal phase
transition and the enhancement of the global symmetries as the number of flavors is increased. The effects of
a quark chemical potential on the spin-one particles and on the negative intrinsic parity terms are analyzed. It
is shown that the phase diagram that is predicted by the linearly realized effective Lagrangian at the tree level
matches exactly that predicted by chiral perturbation theory.
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I. INTRODUCTION

Quantum chromodynamics~QCD! at a large quark chemi
cal potential has attracted a great deal of interest in re
years@1#. Since single gluon exchange between two qua
is attractive in the color-antitriplet channel@2,3#, quark mat-
ter is expected to behave as a color superconductor f
sufficiently large quark chemical potential. Possible pheno
enological applications include the description of quark sta
neutron star interiors and the physics near the core of
lapsing stars@1,4,5#. From a theoretical point of view, on
would like to be able to derive the QCD phase diagram fr
first principles as a function of temperature, chemical pot
tial and the number of light flavors. While much has be
learned about the phase structure of QCD at nonzero t
perature through a combination of perturbation theory a
lattice simulations, the phase structure at a nonzero chem
potential and for large numbers of flavors has been less
tensively explored@6#. The phase structure as the number
light flavors is increased is expected to be quite rich. F
example, in Ref.@7#, the effects of chiral symmetry breakin
were found to be dramatically reduced as the number of
vors was increased from zero to four. At asymptotically la
quark chemical potentials,m@LQCD, perturbation theory is
valid and one is able to perform controlled calculations. F
small to intermediate chemical potentials, however, one m
rely either on effective theories or perform lattice simu
tions. Standard importance sampling methods employe
lattice simulations fail, however, at a nonzero chemical
tential forNc53 since the fermionic determinant is comple

For Nc52, the situation is very different since the quar
are in a pseudoreal representation of the gauge group.
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first difference is that the fermionic determinant in the pa
integral is real~thought not necessarily positive! and so lat-
tice simulations can be performed at nonzero baryon
isospin chemical potential for an even number of quark
vors @8–19#. Secondly,Nf

22Nf of the Goldstone excitations
are diquarks which carry nonzero baryon charge. As sho
in Refs.@20,21#, this has the advantage that chiral perturb
tion theory@22# is valid at the critical chemical potential a
opposed to the case ofNc53 for which the critical chemical
potential lies well above the scale at which chiral perturb
tion theory becomes invalid. Also, the formation of a diqua
condensate in theNc52 theory does not break gauge inva
ance and so exhibits superfluidity at large chemical pot
tials, unlike the case ofNc53 which exhibits superconduc
tivity.

There also has been much progress in understanding
phase structure of supersymmetric theories as the numb
massless fermions is varied@23#. While much less in known
for nonsupersymmetric theories, the infrared behavior
such theories should change dramatically as the numbe
massless fermions is increased. In particular, forNf.11, the
one-loop beta function forNc52 QCD becomes positive an
the theory loses asymptotic freedom. In this non-Abel
QED-like phase, the theory is not expected to be confining
to exhibit chiral symmetry breaking. Just belowNf511, a
perturbative infrared stable fixed point develops. In th
phase, the trace of the energy momentum tensor vanishes
the theory is a non-Abelian conformal field theory. Just b
fore the onset of the conformal phase, it has been argued
an enhanced global symmetry can emerge involving the m
sive spectrum of the theory@24,25#. This new dynamical
symmetry may arise when the number of light flavors is n
a critical number of flavors~aboutNF58 @24–27#!. Above
this value, the theory is expected to enter the conformal
gime. This enhanced symmetry group may be important,
example, when coupling a two-color strongly interacti
theory to the electroweak symmetry breaking sector of
©2002 The American Physical Society02-1
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standard model@24#. The hadronic spectrum close to th
point can be very different than for a smaller number
flavors. For example, this enhanced global symmetry
lead to degenerate masses for the vector spectrum even i
presence of chiral symmetry breaking. Additionally, wh
approaching the conformal point all of the massive state
the theory become light exponentially fast as the numbe
flavors reaches the critical value.

In this work we study the phase structure ofNc52 QCD
as a function of chemical potential and the number of lig
flavors. We begin by reviewing the most general effect
Lagrangian forNc52 describing the Goldstone bosons a
spin-one states and their interactions. This Lagrangian
first constructed in Refs.@24# and @28# within the context of
extended technicolor theories. We first discuss the nonlin
realization of chiral symmetry and later consider the line
effective Lagrangian. Before introducing a chemical pote
tial, the possible phase structure of two-color QCD as
number of flavors is increased is discussed. The enhan
global symmetry mentioned above is identified at the leve
the effective Lagrangian.

We stress that if we were to consider an approximate lo
flavor symmetry when introducing the spin-one particl
then no enhanced symmetry is allowed. An intriguing pos
bility is that for a small number of flavors relative to th
number of colors it might be reasonable to include the v
tors as almost gauge vectors of chiral symmetry, while fo
large number of flavors the enhanced global symmetry m
set in. Both limits severely constrain the effectiv
Lagrangians. Lattice simulations are a very useful mean
testing such conjectures.

An essential component for any effective Lagrangian fo
strongly interacting theory is the set of intrinsic negati
parity terms, i.e. those terms contracted by the fully antisy
metric tensorehnrs . The Wess-Zumino term@29,30# is the
time honored example of ane term and is needed to satura
~in the Goldstone phase! the ’t Hooft global non-Abelian
anomaly constraints. When the underlying fermions are i
pseudoreal representation of the gauge group, thee part of
the effective Lagrangian involving the Goldstone bosons
the spin-one fields was explicitly constructed in Ref.@28#.
We show that this sector of the theory couples to the bar
and isospin chemical potentials. These terms are also
pected to be important when studying the solitonic secto
the theory.

Next, we study the effect of the chemical potential on t
spin-one fields and we explicitly calculate the mass ga
The results suggest that some of the vectors may cond
and hence break rotational invariance. The value of
chemical potential at the onset of the vector condensatio
predicted by assuming that vectors are sufficiently mas
and that the vacuum alignment of the theory is determi
by the Goldstone excitations.

We then turn to study the superfluid phase transition
nonzero chemical potential using a linear realization of
underlying chiral symmetry. The linear sigma model not on
has the advantage that the calculations are relatively sim
but also allows us to predict how the magnitude of the c
densates changes with the baryon and isospin chemica
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tentials. The vacuum structure that is predicted at tree-le
is identical to that of chiral perturbation theory@31#. The
dispersion relations of the pseudo-Goldstone bosons are
culated as well as the dependence of the condensates o
baryon and isospin chemical potentials.

This paper is organized as follows. In Sec. II the nonl
early realized effective Lagrangian is reviewed. In Sec.
we briefly comment on theNf phase diagram at zero chem
cal potential and review the possibility@24,25,28# that novel
phenomena like parity doubling can emerge near the con
mal phase transition. The effects of a nonzero baryon che
cal potential are illustrated in Secs. IV, V, and VI. First, w
study the effects of the chemical potential on thee terms and
then we consider the dispersion relations of the spin-
fields in the presence of a chemical potential. We then tur
the linearly realized theory. In Sec. VII the linear effectiv
Lagrangian is reviewed. The phase diagram and disper
relations at nonzero baryon and isospin chemical poten
are studied and the results are contrasted with those of c
perturbation theory. We conclude in Sec. VIII. Our conve
tions are summarized in the Appendix.

II. THE TWO-COLOR NONLINEAR EFFECTIVE
LAGRANGIAN

The simplest example of a gauge theory with fermions
a pseudoreal representation isNc52 QCD with the fermions
in the fundamental representation. The quantum global s
metry for Nf matter fields isSU(2Nf) which contains
SUL(Nf)3SUR(Nf). Using the Wess and Bagger spinori
conventions@32#, the underlying Lagrangian is

LNc5252
1

4g2
GW mn•GW mn1 i Q̄s̄nF ]n2 i GW n•

tW

2
GQ

2
1

2
mqQTt2E Q1H.c. ~1!

Gmn
a and Gn

a with a51,2,3 are the gluon field strength an
field, respectively, while theta are the Pauli matrices for th
SUc(2) group. Qa

c,I is a two-spinor fermion field in the
fundamental representation of color withc51,2 and I
51,•••,2Nf ,

Q5S qL

is2t2qR*
D . ~2!

In the massless limit (mq50), the classical global symmetr
is U(2Nf) which is then broken by the Adler-Bell-Jackiw
anomaly toSU(2Nf). The mass term explicitly breaks th
SU(2Nf) symmetry toSp(2Nf). The 2Nf32Nf matrix E is

E5S 0 1

À1 0D . ~3!

For a sufficiently small number of flavors, one expects
theory to confine and to dynamically generate a conden
which spontaneously breaks the global symmetry group
zero quark masses. For three-color QCD with quarks in
2-2
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SUPERFLUID AND CONFORMAL PHASE TRANSITIONS . . . PHYSICAL REVIEW D 65 054002
fundamental representation, this condensate is the u
quark-antiquark condensate; however, on account of the
larged SU(2Nf) global symmetry in two-color QCD, any
quark-antiquark condensate can be continuously rotated
a quark-quark condensate and the only discernible con
sate is an admixture of these two condensates. The subg
down to which theSU(2Nf) symmetry is broken is usually
taken to be the maximal diagonal subgroupSp(2Nf) @33#, a
choice which is consistent with a new criterion presented
Ref. @34#.

We now turn to the construction of the low energy effe
tive Lagrangian. We divide the Hermitian generators,$Ta%,
of SU(2Nf), normalized according to Tr@TaTb#5dab/2, into
two classes: the generators ofSp(2Nf) which we denote by
$Sa% with a51, . . . ,2Nf

21Nf , and the remaining generato
of SU(2Nf) which we denote by$Xi% with i 51, . . . ,2Nf

2

2Nf21. Note that the latter set parametrizes the quoti
spaceSU(2Nf)/Sp(2Nf). An explicit realization of the gen-
erators is provided in the Appendix. This breaking patte
gives 2Nf

22Nf21 Goldstone bosons which are encoded
the 2Nf32Nf antisymmetric matrix

U5ei (P jXj /v)E. ~4!

U transforms linearly under a chiral rotation as

U→u U uT, ~5!

with uPSU(2Nf). The nonlinear realization constrain
UU†51, is automatically satisfied.

The generators of theSp(2Nf) satisfy the relation

STE1E S50, ~6!

while theXi generators obey

XTE2E X50. ~7!

Using this last relation we can easily demonstrate thatUT

52U. For simplicity, we also require that

PfU51, ~8!

in order to avoid discussing the explicit realization of t
underlying Adler-Bell-Jackiw axial anomaly at the effectiv
Lagrangian level@27#.

A. The spin-one fields

We next introduce the coupling between the Goldsto
excitations and a vector field. While there are many differ
ways to introduce vector fields at the level of the effect
Lagrangian~the hidden local gauge symmetry of Ref.@35#,
for example!, they are all equivalent at tree level. We co
sider the vector field

An5An
aTa, ~9!

which we take to transform under aSU(2Nf) rotation as

An→uAnu†2 i ~]nu!u†. ~10!
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It is useful to formally define a chiral covariant derivative

DnU5]nU2 iAnU2 iUAn
T . ~11!

The most general two-derivative term which preserves lo
chiral symmetry is

Tr@DnUDnU†#. ~12!

Although we have introduced the vector fields formally
vectors associated with a local chiral gauge theory, the ef
tive Lagrangian must respect the globalSU(2Nf) transfor-
mations and is given by

Le f f5v2Tr@DnUDnU†#1mV
2Tr@AnAn#

1hv2Tr@AnUATnU†#1 i sv2Tr@AnUDnU†#

1v2mp
2 Tr@MU1M †U†#. ~13!

We counted the vector fields as derivatives and adde
democratic quark mass matrix

M[S 0 À1

1 0 D . ~14!

The parametersmV , s, h are real constants which effectivel
measure the departure from local chiral symmetry. The
generate masses of the pseudo-Goldstone exicitations ar
noted by mp . Equation ~13! is the most general two
derivative effective Lagrangian compatible with the glob
symmetries ofNc52 QCD @24,28#.

For completeness, we augment the effective Lagrang
with the simplest possible kinetic term for the vectors

Lkin52
1

2g2
Tr@FrnFrn#, ~15a!

where

Frn5]rAn2]nAr2 i @Ar,An#. ~15b!

The vector kinetic piece arises as a fourth order term in
derivative counting andg is a dimensionless coupling con
stant. The tree-level masses of the vectors can also be c
lated and are given by

MS
25g2~mV

22hv2! ~16a!

MX
25g2@mV

21v2~h1422s!#, ~16b!

where we have split the vectors into those associated w
the $Sa% generators and those associated with the$Xa% gen-
erators. Note that, in general, there is a nonzero mass s
ting between these two sets.

B. The e terms for SU„2Nf…

Next, we consider the complete set of 4-derivative ter
which have negative intrinsic parity and contain spin-o
and spin-zero fields. As mentioned in the Introduction, th
terms contain the Lorentz antisymmetric tensorehnrs and
2-3
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J. T. LENAGHAN, F. SANNINO, AND K. SPLITTORFF PHYSICAL REVIEW D65 054002
the canonical example is the Wess-Zumino action. Th
terms are necessary at the effective Lagrangian level s
they account for the ’t Hooft global anomaly constraints
the Goldstone phase. Additionally, they are important wh
quantizing the solitonic sector of the theory. They can
compactly written using the language of algebra-valued
ferential forms:

a5~dU!U215~]nU !U21dxn. ~17!

Since the fermions are in a pseudoreal representation o
gauge group, it is sufficient to define only one type of diffe
ential form, a, since now the other possible formb
5U21dU5aT is not independent@28#. The Wess-Zumino
term is

GWZ@U#5CE
M5

Tr@a5#. ~18!

The dimension of the spacetime must be increased by
spatial direction in order to make the action local. Hence,
integral in Eq. ~18! must be performed over a five
dimensional manifold whose boundary (M4) is the ordinary
four-dimensional Minkowski space. The coefficientC can be
fixed, in general, by matching the anomalous variation of
tr

s
in

tio

it
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currents associated with non-Abelian anomalies at the ef
tive Lagrangian level. For the case at hand, the constantC is
fixed to be

C52 i
Nc

240p2
, ~19!

with Nc52 @28#. We note that the coefficient is similar to th
caseNc53 sinceSU(2Nf).SUL(Nf)3SUR(Nf).

Since we are considering a theory which contains vec
and only global chiral symmetry, Eq.~18! needs to be gen
eralized. This has been done in Ref.@28#. In order to generate
all allowed terms, the authors of Ref.@28# first formally
gauged the Wess-Zumino action following a standard pro
dure developed in Refs.@30,36,37#. This procedure automati
cally provides most of the desired terms and local ch
invariance relates the coefficients of the newe terms to the
Wess-Zumino coefficient. The effective Lagrangian was th
generalized to be only globally invariant under chiral ro
tions, and as a result, all the terms have different coefficie
Remarkably, the gauging procedure generates all but
term allowed by global invariance.

The most general 4-derivativee Lagrangian respecting
global chiral rotations is
GWZ@U,A#5GWZ@U#1 i10C1E
M4

Tr@Aa3#210C2E
M4

Tr@~dAA1AdA!a#25 C3E
M4

Tr@dAdUATU212dATdU21AU#

25 C4E
M4

Tr@UATU21~Aa21a2A!#15 C5E
M4

Tr@~Aa!2#1 i10C6E
M4

Tr@A3a#

1 i10C7E
M4

Tr@~dAA1AdA!UATU21#2 i10C8E
M4

Tr@AaAUATU21#110C9E
M4

Tr@A3UATU21#

1
5

2
C10E

M4
Tr@~AUATU21!2#1 iC11E

M4
Tr@A2~aUATU212UATU21a!#, ~20!
of
light

u-
a-
er-
eta

e
ons

D
om

n-
whereCi are imaginary coefficients andA5Andxn @28#. It is
important to stress that when imposing local chiral symme
all of the coefficients are given by Eq.~19! except forC11

which is zero.1 Using C and CP invariance, one can show
that there are no other negative intrinsic odd parity term
this order. Aside from the standard four-derivative terms
volving the Goldstone fields, we are now endowed with
rather complete and general effective Lagrangian. The ac
is

Se f f5E d4x~Le f f1Lkin!1GWZ@U,A#. ~21!

1N.B.: We have changed the normalization of the coefficients w
respect to Ref.@28#.
y

at
-
a
n

III. THE PHASE STRUCTURE ALONG THE Nf AXIS

As mentioned in the Introduction, the infrared behavior
gauge theories changes dramatically as the number of
fermion flavors is varied@23#. In this section we review two
possibilities that should be directly accessible in lattice sim
lations of two-color QCD. Predictions resulting from an
lytic calculations are at the moment only possible for sup
symmetric theories; however, the behavior of the b
function for two-color QCD does offer some guidance. W
focus here on zero chemical potential, but in later secti
will briefly discuss the large-Nf behavior of two-color QCD
at nonzero chemical potential.

A. The conformal phase transition

For Nf.11, the one-loop beta function of two-color QC
changes sign and the theory loses asymptotic freed
@39,40#. The resulting infrared free theory is now in a no

h

2-4
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Abelian QED-like phase in which neither confinement n
chiral symmetry breaking is expected. For values ofNf near
but below 11, the beta function develops a perturbative
frared stable fixed point at which the trace of the ene
momentum tensor vanishes exactly and the theory is a n
Abelian conformal field theory. In this phase, the coupli
constant is small on account of the large number of flav
and so we do not expect any of the global symmetries
break. However, as the number of flavors is decreased,
fixed point becomes nonperturbative and the coupling c
stant increases to a critical value at which chiral symmetr
spontaneously broken. A dynamical scale is generated
conformal symmetry is lost. The generation of this scale
fines the critical number of massless flavors, i.e. the m
mum number of flavors for which the gauge theory is s
conformal and chiral symmetry is still intact. Below th
critical number of flavors, the theory is expected to confi
and the low energy spectrum is hadronic. This discuss
assumes that the conformal and chiral phase transitions
incide, but whether or not this is true is still controversi
We will assume here, as corroborated by lattice simulati
for Nc53 @7#, that there is in fact a single conformal/chir
phase transition. Figure 1 summarizes the possible ph
structure for two-color QCD as a function of the number
light flavors.

B. The enhanced global symmetry scenario

When the number of flavors is just below the critic
value, the theory still exhibits chiral symmetry breaking b
it is possible that the vector spectrum changes quite sig
cantly. In Refs.@24,28#, it was suggested that a new glob
symmetry may be dynamically generated. This symme
acts on the massive spectrum of the theory and it is relate
the modification of the second Weinberg spectral funct
sum rule near the critical number of flavors@25#. Indeed,
there are examples of supersymmetric theories with
hanced global symmetry groups@38#.

From Eq.~13!, one sees that the global symmetry gro
becomesSp(2Nf)3@SU(2Nf)# for

s54, h52, ~22!

and the mass splitting between the vectors is zero:

MS
25g2~mV

222v2!5MX
2 . ~23!

The extraSU(2Nf) symmetry group acts only on the vect
field as

A→uAu†, uP@SU~2Nf !#, ~24!

and the effective Lagrangian, Eq.~13!, reduces to

FIG. 1. The possible phase structure ofNc52 QCD as function
of the number of light quark flavors.
05400
r

-
y
n-

s
o
he
-

is
nd
-

i-
l

e
n
o-

.
s

se
f

t
fi-

y
to
n

n-

L5v2Tr@]nU]nU†#1M2Tr@AnAn#, ~25!

whereM25mV
222v2 @24,28#. Note that the Lagrangian als

possesses an extra globalZ2 ~i.e. A→zA, with z561) sym-
metry. If such an enhanced symmetry emerges, the vec
along the broken generators become mass degenerate
those along the orthogonal directions. ForNc53 QCD, this
corresponds to mass degenerate vector and axial part
even in the presence of chiral symmetry breaking.

From Eq.~25!, one finds that in the enhanced symme
scenario, the interactions between the vectors and the G
stone excitations only appear at the next order in the der
tive counting scheme in the form of the double trace term

L451a1Tr@]rU]rU†#Tr@AnAn#

1a2Tr@]rU]nU†#Tr@ArAn#, ~26!

wherea1 and a2 are real coefficients. If the only extende
symmetry group is the discreteZ2 group, then the Lagrang
ian can include single trace terms of the form

Tr@]rU]rU†AnAn#, Tr@ArArUAn
TATnU†#. ~27!

The enhanced symmetry scenario imposes very string
constraints on the possible form of thee terms as well. If we
require that the effective Lagrangian respects the full
hanced global symmetry,Sp(2Nf)3@SU(2Nf)#3Z2, then
there are no vector axiale terms. However, if only the dis-
creteZ2 symmetry is imposed, then the surviving terms a
C2 , C3 , C4 , C5 , C9 andC10.

As supported by ordinary QCD phenomenology@36#, we
conjecture the following phase structure before entering
conformal phase: approximate local chiral symmetry
smallNf , parity doubling and an extra global symmetry ne
the criticalNf . For a fixed, nonzero chemical potential, th
phase structure as the number of light flavors is increa
should be even richer. For instance, whenNf.11, the theory
is no longer asymptotically free and the low energy theory
simply the QCD Lagrangian. This regime is clearly not in t
same universality class as the one in which the lowest e
tations are Goldstone bosons. ForNf smaller than but nea
the critical value,Nf.8, we approach the conformal phas
The hadronic mass scale of the theory vanishes exponent
fast @25–27# and all of the physical states whose masses
linked to the hadronic mass scale, i.e. all non-Goldstone
citations, become very light. When there is a large mass
between the Goldstone excitations and the rest of the s
trum, the phase diagram forNc52 can be predicted using
chiral perturbation theory@20,21,31#. Near the conformal
point, however, this approach is expected to break do
since there is now a tower of light, non-Goldstone exci
tions. This tower of light states should suppress the form
tion of both the quark-antiquark and the diquark condensa
by virtue of conformality. This behavior can be distinguish
from the corrections to the mean-field analysis of the eff
tive Lagrangian since the latter will not lead to a vanishing
either condensate. This has already been verified at nex
leading order in Ref.@41#. We suggest then that by measu
ing diquark condensation at nonzero chemical potential
2-5



re

a
in
a
d

ce
tia
th
l

g

a
he
of

-
fs
of
fe
er
e

on
t

um

roth
ated
nd

ral
o-
lar

s in

ves

po-

ng

t the

ero

the
n-

e-
e

ves

th
his
ef-
nd

is
ate

tion
n-

ol-
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tice simulations may be able to single out important featu
of the conformal phase transition.

IV. NONZERO CHEMICAL POTENTIAL

In this section we review the procedure for introducing
chemical potential associated with a conserved charge
the effective theory. For simplicity, we consider only
baryon chemical potential, but the generalization to inclu
an isospin chemical potential is straightforward. This pro
dure uniquely fixes the coefficients of the chemical poten
terms in the effective Lagrangian and is equivalent to
approaches used in Refs.@20,21# to introduce a chemica
potential via an auxiliary extended gauge symmetry.

At nonzero chemical potential, the microscopic Lagran
ian has the form

LNc5252
1

4g2
GW mn•GW mn1 i Q̄s̄nF ]n2 imBB d0n

2 i GW n•
tW

2
GQ2

1

2
mqQTt2E Q1H.c. ~28!

where the 2Nf32Nf matrix

B5
1

2 S 1 0

0 À1D ~29!

is the baryon charge matrix for the quarks and the conjug
quarks.2 One may check that when written in the basis of t
usualSU(2Nf) spinors this term gives the usual coupling
the quarks to the chemical potential,mBc̄g0c @21#.

After definingBn[mBB d0n , this Lagrangian is formally
invariant under the followingSU(2Nf) transformation:

Q→uQ

Bn→uBnu†2
1

m
u~]nu†!

E→u* Eu† ~30!

and uPSU(2Nf). Implementing the previous transforma
tions at the effective Lagrangian, the authors of Re
@20,21,31# were able to uniquely determine the coupling
the chemical potential to the Goldstone bosons in the ef
tive theory. The result is that the chemical potential ent
into the effective Lagrangian in the form of a covariant d
rivative which we give schematically by

]n→]n2 iBn ~31!

This same result can be arrived at by examining the c
served charges in the effective theory. The chemical poten
is associated with the conserved charge of the baryon n

2We adopt the convention of Ref.@31# where the diquarks are
chosen to have baryon charge 1.
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ber. Since the Lagrangian is invariant under a globalU(1)B
symmetry group, there is a conserved current, the ze
component of which is the conserved charged associ
with the baryon number. In the operator formalism, the gra
canonical partition function is

Z~b,m!5Tr e2b(Ĥ2mQ̂). ~32!

Converting from the operator formalism to the path integ
formalism, one finds that after integrating over the field m
mentum the introduction of a chemical potential, for a sca
degree of freedom, serves only to shift the time derivative
the fashion:

]2

]t2
→ ]2

]t2
22m

]

]t
1m2. ~33!

Note that this is equivalent to replacing the usual derivati
by the covariant derivative in Eq.~31!.

Before discussing the effects of a nonzero chemical
tential on the vectors and thee terms, it is instructive to
review the predictions of the effective Lagrangian includi
only the pseudo-Goldstone excitations@20,21#. The effects of
a nonzero baryon chemical potential are manifest even a
level of the chiral effective Lagrangian sinceNf(Nf21) of
the Goldstone modes are diquarks which have nonz
baryon charge. This is not the case forNc53 QCD since
there is no coupling between the Goldstone modes and
baryon chemical potential in chiral perturbation theory. A
other related, but salient, difference is that forNc52, the
critical chemical potential at which the baryon density b
comes nonzero is well within the range of validity of th
effective theory.

Since a nonzero baryon chemical potential only preser
a Sp(Nf)3Sp(Nf) subgroup of the originalSU(2Nf) sym-
metry group, the chemical potential is in competition wi
the pion mass for the vacuum structure. It is crucial that t
competition be allowed to take place in the low energy
fective Lagrangian. At zero baryon chemical potential a
nonzero pion massSp(2Nf) is left invariant by the vacuum
and the parametrization is given by Eqs.~3! and ~4!. How-
ever, if mB exceedsmp , a nonzero diquark condensate
expected to form. The combination of the chiral condens
and the diquark condensate leaves only aSp(Nf) invariance,
and consequently one must introduce a parametriza
which allows for this additional symmetry breaking. A ge
eral parametrization is

U5ei (P iXi /v)S̄ ~34!

whereXi are the broken generators with respect toS̄. At this
point, we consider only an even number of flavors and f
lowing Ref. @21# we introduce

S̄5Ecos~w!1D sin~w!, ~35!

where
2-6
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D[ i S I 0

0 ID with I[S 0 À1

1 0 D . ~36!

The variational parameterw is determined by minimizing the
free energy.

After introducing the chemical potential as discuss
above, the most general effective Lagrangian containing o
pseudo Goldstone excitations to second order in the ch
counting is

L~U !5v2Tr@]nU]nU†#2 i4mBv2Tr@BU]0U†#

12v2mB
2~Tr@BUBTU†#1Tr@BB# !

1v2mp
2 Tr@MU1M †U†#. ~37!

The phase diagram and dispersion relations for the pse
Goldstone modes were derived in@20,21#. The steps leading
to the phase diagram are as follows. First, one maximizes
stationary action:

L~S̄ !52v2mB
2~Tr@BS̄BTS̄†#1Tr@BB# !

1v2mp
2 Tr@MS̄1M †S̄†# ~38!

with respect tow. This leads to the following nonanalyti
behavior inw:

w50 for mB,mp , ~39!

cos~w!5
mp

2

mB
2

for mB>mp . ~40!

It was shown in Ref.@21# that this vacuum direction doe
indeed parametrize the global minimum of the static pot

tial L(S̄). The condensates and densities are simply given
derivatives of the static potential with respect to the app
priate sources. For the reader’s convenience, we repeat
expressions along with the baryon density

^c̄c&52NfG cosw, ^cc&52NfG sinw,

nB58Nfv
2mBsin2w. ~41!

The constantG is the chiral condensate in the chiral limit.
We want to stress that the above analysis assumes tha

vector spectrum is heavy as compared to the mass of
pseudo Goldstone excitations. This assumption, howe
should not hold for large enough number of flavors. Henc
would be very interesting to see if lattice calculations fi
deviations forNf.8. We also remark that the Lagrangian
Eq. ~37! is investigated at tree level.

V. THE e TERMS AT NONZERO CHEMICAL POTENTIAL

In this section we compute the effect of the chemical p
tential in thee terms. For simplicity we neglect the spin-on
fields and consider onlyNf52.
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A. Nonzero baryon chemical potential

The effect of the baryon chemical potential through thee
terms is obtained by substitutingAn by Bn5mBdn,0B in Eq.
~20! with Ci5C, for i 51, . . . ,10 andC1150. SinceBn only
has a temporal component, all terms with more than oneBn

vanish on account of the antisymmetry of the different
forms. The resulting term is

G@U,B#5 i mB10CE
M4

Tr@Ba3#

5 i mB10CE
M4

Tr@Ba ia jak#e
0i jkd4 x. ~42!

In general, this term does not vanish and it is instructive
investigate it in more detail. By expandinga to first order in
derivatives and lowest order in Goldstone fields, we have
Lagrangian density

i mB10C Tr@Ba ia jak#e
0i jk

55
CmB

v3
e0i jkTr†B@Xl ,Xm#Xn

‡] ip
l] jp

m]kp
n1•••.

~43!

For Nf52 the trace is nonzero only ifl ,m,n51,2,3, that is
only the pion generators,Xi with i 51,2,3 contribute to the
trace ~see the Appendix for the conventions!. An explicit
calculation yields

i mB10CE
M4

Tr@Ba3#

5 i 5
CmB

4A2 v3EM4
e lmne0i jk] ip

l] jp
m]kp

nd4x1••• . ~44!

The integral is related to the winding number when cons
ering nontrivial topological sectors of the theory and it
naturally coupled tomB .

In the evaluation of Eq.~42!, we used the explicit repre
sentation of the generators given in Eq.~A1!. As the diquark
condensation sets in and the minimum of the stationary
grangian rotates according to Eq.~35!, this representation
breaks down. If, however, we choose to write the rotation
the generators explicitly then we may use the original rep
sentation of the generators at the cost of rotating the sou
@21#:

B→B cosw2BDE sinw. ~45!

For Nf52 one can verify that

e0i jkTr@BDE XlXmXn#] ip
l] jp

m]kp
n50, ~46!

and the final result is
2-7
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i mB10CE
M4

Tr@Ba3#

5 i 5 cos~w!
C mB

4A2 v3 (
l ,m,n51

3 E
M4

e lmne0i jk

3] ip
l] jp

m]kp
nd4x1••• , ~47!

where the sum overl ,m,n is performed forl ,m,n51,2,3.
Note that the contribution from the winding number to t
baryon density is proportional to cos(w) and hence decrease
with increasingmB like mp

2 /mB .

B. Nonzero isospin chemical potential

Above we observed that thee terms couple to the baryo
chemical potential via the pions transforming according
the adjoint representation ofSUV(Nf). The diquark sector
however, was not active. The situation is reversed when c
sidering a nonzero isospin chemical potential. Since
quarks carry different flavor quantum numbers, it is possi
and even natural to introduce different chemical potent
for the different flavors. Let us considerNf52 and introduce
the chemical potentials

mB[mu1md and m I[mu2md . ~48!

Here we considermB50. The effects ofm I in the e terms
enters through the substitution in Eq.~20! of An by

I n[m Id0nI[m Id0n

1

2 S t3 0

0 2t3D . ~49!

The microscopic two-color Lagrangian is invariant under
combined exchangesm I↔mB and dL↔ is2t2dR* wheres2

and t2 are Pauli matrices acting in spin and color spa
respectively. (dL is the left down-quark field and the comb
nation is2t2dR* is known as the conjugate quark state.! This
invariance is inherited by the effective Lagrangian where
translates intom I↔mB and (p1X1 ,p2X2)↔(p4X4 ,p5X5).
Using this we conclude from the explicit calculation in th
case of baryon chemical potential that, forNf52 and mB
50,

i m I10CE
M4

Tr@ Ia3#

5 i 5 cos~w!
C m I

4A2 v3 (
l ,m,n53

5 E
M4

e lmne0i jk

3] ip
l] jp

m]kp
nd4x1••• , ~50!

where now the sum over the flavor indices is performed
l ,m,n53,4,5, while cosw5(mp /mI)

2 for m I.mp andw50
otherwise. As above, this term is also related to the wind
number of the diquark Goldstone fields. We note that in th
e terms mB couples only to the isospin tripletp1,p2,p3,
while m I couples only to the baryon tripletp3,p4,p5. This
should be contrasted with three-color QCD in which t
baryon chemical potential couples to the isospin triplet,
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there is no coupling at all between the isospin chemical
tential and the baryonic sector of the theory. For this reas
the spectrum of solitons in two-color QCD is richer than f
Nc53. To our knowledge this exciting possibility has n
been explored. Note that it is straightforward to extend th
results into the (mB ,m I) plane, using the results of@31#. As a
direct application of Eq.~42!, one can also extend these r
sults to higherNf .

Finally we recall that a relevant feature of the Wes
Zumino term is that is required to saturate at the effect
Lagrangian level the ’t Hooft global anomaly conditions. It
also well known that the Goldstone bosons are suffici
~when chiral symmetry is spontaneously broken! to saturate
the anomaly matching conditions. So no other light degree
freedom close to the conformal phase transition is expec
to affect the Wess-Zumino term. In the conformal region t
underlying quarks will automatically saturate the ’t Hoo
anomaly conditions. So it would certainly be interesting
monitor these terms close to the conformal phase transit

VI. THE VECTOR SPECTRUM AT NONZERO CHEMICAL
POTENTIAL

We now examine the effects of a nonzero baryon che
cal potential on the spectrum of vectors. The chemical
tential enters simply by modifying the derivatives acting
the vector fields:

]nAr→]nAr2 i @Bn ,Ar#, ~51!

with Bn5mBdn0B[VnB whereV5(mB ,0W ). Using the pre-
vious prescription for the vector kinetic term, we find

Tr@FrnFrn#→Tr@FrnFrn#24iTr†Frn@Br,An#‡

22Tr†@Br ,An#@Br,An#2@Br ,An#@Bn,Ar#‡.

~52!

Retaining only the quadratic terms in Eq.~15a! and integrat-
ing by parts yields

Lquad5
1

2g2
Ar

a$dab@hrnh2]r]n#24igab@hrnV•]

2 1
2 ~Vr]n1Vn]r!#12xab@V•Vhrn2VrVn#%An

b

~53!

with

gab5Tr†Ta@B,Tb#‡, xab5Tr†@B,Ta#@B,Tb#‡. ~54!

Note that the inclusion of a baryon chemical potential
duces a ‘‘magnetic-type’’ mass term for the vectors at tr
level. To complete the quadratic terms, we include the o
nary mass term already present in Eq.~13!:

Lmass5
v2

2
Ar

ahrnjabAn
b , ~55!

with
2-8
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jab5
1

2v2g2
$~MS

21MX
2 !dab12~MX

22MS
2!Tr@TaS̄TbTS̄†#%.

~56!

This term gives the lowest order interaction between
Goldstone sector and the vectors. We assume that
vacuum alignment is fixed by the Goldstone sector and
this interaction term gives the leading order effect of t
alignment on the dispersion relations for the vectors.3

Having extracted the quadratic terms for the vectors,
can calculate the mass gap, i.e. the zero momentum lim
the dispersion relations. In this limit, the temporal comp
nents have no energy dependence while the quadratic pa
the spatial components has the form

Ai
a@dabE

224gabmBE2g2v2jab22mB
2xab#Ai

b . ~57!

Up until this pointNf is completely general and the mass
of the (2Nf)

221 vector modes can be obtained by solvi
for E
n

qu
-
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det@dabE
224gabmBE2g2v2jab22mB

2xab#50. ~58!

Here we choose to focous onNf52. The basis of the 15
vectors is taken as that given in the Appendix. We choose
following ordering, Ai

a5Ai
aSa for a51, . . .,10, Ai

a

5Ai
aXa210 for a511, . . .,15. Explicitly calculating the

traces in Eq.~58! using the said basis one finds that the ze
momentum propagator matrix is block diagonal with thr
131 terms and four 333 blocks. The diagonal terms are fo
Ai

1 , Ai
2 , and Ai

3 . The masses in these channels take
single value

Ma5MS , a51,2,3. ~59!

The 333 blocks mix (Ai
5 ,Ai

6 ,Ai
12), (Ai

7 ,Ai
8 ,Ai

11),
(Ai

9 ,Ai
10,Ai

13), and (Ai
14,Ai

15,Ai
4) respectively. The first

three triplets are degenerate and the masses are obtain
solving for E:
UE21m22MS
2 2iEm 0

22iEm E21m22
MX

21MS
2

2
1

MX
22MS

2

2
cos~2w!

MX
22MS

2

2
sin~2w!

0
MX

22MS
2

2
sin~2w! E22

MX
21MS

2

2
2

MX
22MS

2

2
cos~2w!

U50, ~60!

while in the (Ai
14,Ai

15,Ai
4) sector we must solve

UE22
MX

21MS
2

2
1

MX
22MS

2

2
cos~2w! 0

MX
22MS

2

2
sin~2w!

0 E21m22
MX

21MS
2

2
2

MX
22MS

2

2
cos~2w! 2iEm

MX
22MS

2

2
sin~2w! 22iEm E21m22MX

2

U50. ~61!
,

To illustrate the calculation of the general zero mome
tum propagator matrix, we now investigate the ‘‘X-type’’ di-
quark vector states, i.e. the fieldsAi

14 andAi
15. Thegab and

the jab terms do not mixAi
14 andAi

15 with the rest of the 15

3We remind the reader that at the tree level there is also a
dratic term of the type]mPaAm

a . This mixing term can be diago
nalized @24,37# away by the field redefinitionA→A1v@(4
2s)/2MA

2 #]P while leaving the mass spectrum unchanged.A
stands for the vectors which mix with the pions whileMA

2 is its tree
level mass.
-Ai
a fields. However, theAn

14 and An
15 states mix since

@B,X4#52 iX5 and @B,X5#51 iX4 and so

g14,1552g15,145
i

2
, xab52

dab

2
~62!

with a,b514,15. Additionally, the last term in Eq.~56! de-

pends onS̄ and it mixesAi
14 andAi

15 with Ai
4 . This mixing,

however, vanishes in two cases:~i! the nonsuperfluid phase

i.e. wheremB,mp with w50 andS̄5E, ~ii ! the superfluid

phase withmB@mp wherew'p/2 andS̄'D.
In case~i!, we find

a-
2-9
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jab5
MX

2

v2
dab , w50, ~63!

with a,b54,5, while for case~ii ! we have

j14,145
MS

2

v2
, w5

p

2
, ~64!

j15,155
MX

2

v2
, w5

p

2
. ~65!

After diagonalizing the quadratic mass terms, the mass
in case~i! is

MV65MX6mB . ~66!

HereV6 labels the states which diagonalize the mass ma
In case~ii !, we find that

MV6
2

5
1

2
@MS

21MX
212mB

2

6A~MS
22MX

2 !218mB
2~MS

21MX
2 !#, ~67!

at w5p/2. FormB5MS or MX , V2 becomes massless. Th
suggests that vectors condense formB5min$MS,MX% break-
ing rotational invariance. At this value ofmB , the approach
breaks down since the effects of such a condensation is
accounted for in Eq.~35!. This calculation is in agreemen
with the general solutions plotted in Figs. 2 and in 3. In the
plots we have chosenh5s50, mV54mp , v5mp , andg
51. This choice leads to the conventional vector mass s
ting between the X-like and the S-like vectors at zero che
cal potential. As the triplets consist of two S-like and o

FIG. 2. The triply degenerate masses of the vectors in the
tors (Ai

5 ,Ai
6 ,Ai

12), (Ai
7 ,Ai

8 ,Ai
11), and (Ai

9 ,Ai
10,Ai

13). We have
choosenh5s50, mV54mp v5mp and g51 to make the plot.
The choiceh5s50 realizes the limit where the vector Lagrangia
only breaks local chiral symmetry through the term proportiona
mV

2 .
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X-like generator or of two X-like and one S-like generat
this mass splitting is apparent on the plots. The X-like a
S-like vectors only mix for 0,w,p/2, that is only formB
.mp andmB@” mp .

The mass gaps of the vectors and the possibility of vec
condensation can be studied in lattice simulations. Such s
ies would give direct information about the conformal pha
transition since the masses of the vectors depend directl
the parameterss, h, andmV . Fixing these parameters is su
ficient to check our conjecture that for a small number
light flavors we can use an approximate local chiral gau
theory to introduce the vector-Goldstone interactions~i.e. h
5s50 but mV

2Þ0), while for a large number of flavors a
enhanced global symmetry~i.e. s52h54) may emerge. We
hope that lattice simulations can shed light on this issue
the near future.

VII. THE TWO-COLOR LINEAR EFFECTIVE
LAGRANGIAN

In this section, we study the effective Lagrangian for tw
color QCD for which the chiral symmetry is linearly rea
ized. The authors of Ref.@42# used this theory to study th
superfluid phase transition at a nonzero baryon chemical
tential and zero isospin chemical potential. This theory w
also used in Ref.@43# to examine the universal properties
the chiral symmetry restoring phase transition of two-co
QCD at nonzero temperature and a vanishing chemical
tential. The random matrix model for two-color QCD at
nonzero chemical potential considered by the authors of R
@44# also bears resemblence to the linear sigma model c
sidered here. We begin by introducing the effective Lagra
ian including the couplings between the pseudo Goldst
excitations and the spin-one sector. We then derive the ph
diagram at nonzero baryon and isospin chemical potenti

c-

o

FIG. 3. The masses of the three vectors in the sec
(Ai

14,Ai
15,Ai

4) with the same choice of the parametersh,s,mV ,v,g
as in Fig. 2. Note the square-root singularity of the lightest vec
mass just below the critical chemical potential in accordance w
Eq. ~67!.
2-10



La

to
rm
-

g
:

th
i

ly
d
th

d
p

s
us

o
s
c

ri-

o

k-
cle.

q.

l
rm

x-

as a
are

SUPERFLUID AND CONFORMAL PHASE TRANSITIONS . . . PHYSICAL REVIEW D 65 054002
In the linear effective Lagrangian, the 2Nf
22Nf21 Gold-

stone fields which are present in the nonlinear effective
grangian are accompanied by a scalar particle,s. These
fields are elements of the antisymmetric 2Nf32Nf matrix

M5
1

2A2
~s2 i2A2paXa!E. ~68!

Under the action ofuPSU(2Nf), M transforms as

M→uMuT. ~69!

A vector field,An , can be introduced in a fashion similar
that for the nonlinear effective Lagrangian and so transfo
according to Eq.~10!. Hence, it is useful to define the cova
riant derivative acting onM

DnM5]nM2 iAnM2 iMAn
T . ~70!

As in the nonlinear realization, we write a general Lagran
ian consistent with the global chiral symmetry invariance

Ll inear5Tr@]nM]nM†#2m2Tr@M M†#1 ic1Tr@An~M]nM†

2]nMM†!#1c2Tr@AnMAn
TM†#1c3Tr@AnAn#

1c4Tr@AnAnMM†#2l1Tr@M M†#2

2l2~Tr@M M†# !22HRe~Tr@MM # !/A2

2
1

2g2
Tr@FmnFmn#, ~71!

whereM is given by Eq.~68!, Fmn is given in Eq.~15b! and
all the coefficients are real. Since it is determined by
same symmetry principle, the linear effective Lagrangian
very similar in form to the nonlinear version. We have on
included potential terms up to fourth order in the mass
mension. The Gell-Mann–Oakes–Renner relation fixes
coefficient of the explicit symmetry breaking term to beH
5mp

2 f p , wheremp is the degenerate mass of the pseu
Goldstone particles at zero baryon and isospin chemical
tential andf p52A2 v. For simplicity, we are ignoring term
which account for the explicit breaking of the anomalo
U(1)A symmetry group.

For the purposes of deriving the phase diagram, we c
sider only Nf52 in the absence of spin-one particles. A
discussed above, the chemical potentials can be introdu
by formally replacing the usual derivatives with the cova
ant derivative

]nM→]nM2 i ~mBB1m I I !d0nM2 iM ~mBB1m I I !d0n ,
~72!

where

mBB1m I I 5
mB

2 S 1 0

0 À1D 1
m I

2 S t3 0

0 2t3D . ~73!

The linear effective Lagrangian at nonzero baryon and is
pin chemical potential is then
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Ll inear5Tr@]nM]nM†#2m2Tr@M M†#24 l1Tr@M M†#2

24 l2~Tr@M M†# !212 Tr@M ~mBB1m I I !M†~mBB

1m I I !1M M†~mBB1m I I !2#14iTr@~mBB

1m I I !]0M M†#2
H

A2
Re~Tr@MM # !. ~74!

For Nf52, there is a triplet of pions, a scalar quar
antiquark bound state, a scalar diquark, and its antiparti
The diquarks carry baryon charge61 and the triplet of pions
have isospin charges61 and 0. Computing the traces inL
for Nf52, one finds the effective potential

V5
m2

2
~s21papa!1

l

4
~s21papa!22

m I
2

2
@~p1!21~p2!2#

2
mB

2

2
@~p4!21~p5!2#2H s. ~75!

There is no distinction between the two quartic terms in E
~74! for Nf52, and so the two couplings,l1 and l2, have
been absorbed into a single coupling,l. The coefficientsm
andl may be expressed in terms ofmp , ms and f p :

m25
3mp

2 2ms
2

2
~76a!

l5
ms

22mp
2

2 f p
2

. ~76b!

The potential is manifestly invariant under aO(2)3O(2)
symmetry group, i.e. under independent rotations of (p1,p2)
and (p4,p5). An explicit calculation shows that at the leve
of the Lagrangian this invariance is not violated by the te
linear in the time derivative:

4iTr@~mBB1m I I !]0M M†#5m I~p1]0p22p2]0p1!

1mB~p5]0p42p4]0p5!.

~77!

We denote the pion condensate by^p&, the diquark con-
densate bŷ D& and the chiral condensate by^s&. Sincep3

does not couple to either chemical potential, it is not e
pected to condense. TheO(2)3O(2) symmetry invariance
of the effective potential requires that

^p1&21^p2&25^p&2, ^p4&21^p5&25^D&2, ~78!

in the unbroken phase. The values of the condensates
function of the baryon and isospin chemical potentials
found by extremizing the effective potential:

dV

d^s&
5052H1^s&@m21l~^s&21^p&21^D&2!#

~79a!
2-11
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dV

d^p&
505^p&@m22m I

21l~^s&21^p&21^D&2!#

~79b!

dV

d^D&
505^D&@m22mB

21l~^s&21^p&21^D&2!#.

~79c!

There are three real solutions to this set of equations co
sponding to three distinct phases. The first solution is gi
by ^p&5^D&50 with ^s& determined by the nonzero solu
tion to H5mp

2 f p5^s&(m21l^s&). In this phase,̂ s& is
constant, i.e. equal tof p . The other two solutions are

^s&5
H

mB
2

~80a!

^D&5
AmB

22m22
lH2

mB
4

l
~80b!

^p&50, ~80c!

and

^s&5
H

m I
2

~81a!

^D&50 ~81b!

^p&5
Am I

22m22
lH2

m I
4

l
. ~81c!

Note that even for nonzero quark masses,^p& and ^D& are
true order parameters. The phase boundaries in the (m I ,mB)
plane can now be calculated and are given by solving
inequalities

d2V

d^D&d^D&
~^s&,^p&,0!.0, ~82a!

and

d2V

d^p&d^p&
~^s&,0,̂ D&!.0. ~82b!

For mB,m I , the inequalities are satisfied form I,mp ,
and formB.m I , mB,mp . One may check that the secon
derivatives of the potential vanish on these critical lines
dicating that the transition is of second order. Along the l
mB5m I.mp , the transition is first-order since the baryo
and isospin densities are discontinuous across this line.
is exactly the phase diagram which is predicted by ch
perturbation theory@31#.

The dispersion relations can now be calculated by ex
ining the quadratic terms in Eq.~74!. The Lorentz breaking
term in Eq. ~74! induces a mixing in the (p1,p2) and
05400
e-
n

e

-
e

is
l

-

(p4,p5) sectors. For the two unmixed states,s andp3, the
dispersion relations are, respectively,

Es5Ap21m21l~3^s&21^p&21^D&2! ~83a!

Ep35Ap21m21l~^s&21^p&21^D&2!.
~83b!

The dispersion relations for the (p1,p2) sector are ob-
tained by solving

detS z1 22im IE

2im IE z2
D 50, ~84a!

where the diagonal terms are

z1[p22E21m21l~^s&213^p&21^D&2!2m I
2

~84b!

z2[p22E21m21l~^s&21^p&21^D&2!2m I
2 .

~84c!

The dispersion relations for the (p4,p5) can be found by
exchangingm I and mB in the dispersion relations for th
(p1,p2) sector ~we denote the propagating modes in t
diquark sector byD6). The dispersion relations in the non
superfluid phase,m I ,mB,mp , are

Es5Ap21mp
2 12l f p

2 ~85a!

Ep0
5Ap21mp

2 ~85b!

Ep6
5Ap21mp

2 6m I ~85c!

ED6
5Ap21mp

2 6mB . ~85d!

In the phase with the condensation of pions, the dispers
relations are

Es
25p21

2lH2

m I
4

1m I
2 ~86a!

Ep0

2 5p21m I
2 ~86b!

Ep6

2 5p22m22
lH2

m I
4

13m I
2

6AS lH2

m I
4

1m223m I
2D 2

14m I
2p2 ~86c!

ED6

2 5p21m I
21mB

262mBAp21m I
2. ~86d!

Note that form I.mp , the p1 is the massless Goldston
boson which arises on account of the spontaneous brea
of the baryon number. In the phase with the diquark cond
sate, the dispersion relations can be obtained by interch
ing m I with mB andp6 with D6 . In this phase, theD1 is
the Goldstone mode.
2-12
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The fermionic determinant for two-color QCD is real b
not positive at nonzero chemical potential. Therefore, it
only possible to study cases where an equal number of
vors share a given chemical potential. The two-flavor c
discussed above is thus only accessible to lattice simulat
at either m I50 or mB50. If one doubles the number o
flavors and gives two flavors a chemical potentialmu and the
other two flavors a chemical potentialmd , then the theory
has positivity in the full (mB ,m I) phase. The phase diagram
however, has a different form than the one above@31#.

VIII. CONCLUSION

In this work, we have examined the phase structure
two-color QCD as a function of the baryon and isosp
chemical potentials as well as the number of light quark
vors via effective Lagrangians. We first considered the c
for which the chiral symmetry group is nonlinearly realize
In addition to the pseudo Goldstone excitations, we a
mented the theory with the sector of spin-one particles
the negative intrinsic parity terms for the groupSU(2Nf).

We reviewed the salient aspects of the conformal ph
transition which is expected to occur as the number of li
flavors is increased. Since this phase transition strongly
fects the phase structure as a function of the chemical po
tials, we suggested different ways in which lattice simu
tions should cast further light on these issues.
demonstrated that new terms in the chemical potentials e
in the negative intrinsic parity sector at the level of the
fective Lagrangian. Such terms are expected to play an
portant role when analyzing the solitonic structure ofNc
52 QCD. Since the baryons are also Goldstone bosons
solitonic structure is naturally richer than forNc53 QCD.
For example, just asmB couples to the winding number o
the pion sector, we showed thatm I couples to the winding
number of the diquark sector. Future investigations into t
matter will certainly be interesting.

Also, unlike Nc53 QCD, some of the spin-one particle
of Nc52 QCD are charged under baryon number. We h
hence analyzed this sector at nonzero baryon chemical
tential. We observed novel features such as the possible
densation of vector particles. We were able to calculate
value of the chemical potential at which the vectors conde
and thereby break rotational invariance. Our results prov
new avenues for future investigations. We then turned to
linear effective Lagrangian including the spin-one sec
The phase diagram that is predicted by the linear effec
Lagrangian matches that predicted by chiral perturba
theory.

Our results can be extended to describe QCD-like theo
with quarks in the adjoint representation of the gauge gr
for an arbitrary number of colors. Another possible area
investigation is standard QCD with a nonzero isospin che
cal potential@45#. Both cases are suitable for lattice studie
For example, ordinary QCD at nonzero strange and isos
chemical potentials has been studied in Ref.@46#. The inclu-
sion of the vector mesons may alter the phase structure
dicted in Ref.@46# since the average mass splitting betwe
the spin-one sector and the spin-zero is not dramatic
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large phenomenologically. In fact, the spin-one sector w
shown in Ref.@47# to be crucial to the dynamics of the ligh
degrees of freedom.
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APPENDIX: EXPLICIT REALIZATION OF THE Sp„4…
GENERATORS

The generators ofSU(4) can be conveniently represente
as

Sa5S A B

B† 2ATD , Xi5S C D

D† CTD , ~A1!

whereA is Hermitian,C is Hermitian and traceless,B5BT

andD52DT. The$S% are also a representation of theSp(4)
generators since they obey the relationSTE1ES50. We
define

Sa5
1

2A2
S ta 0

0 2taTD , a51,2,3,4. ~A2!

For a51,2,3, we have the standard Pauli matrices, while
a54 we definet451. These are simply the generators f
SUV(2)3UV(1). Fora55, . . . ,10

Sa5
1

2A2
S 0 Ba

Ba† 0 D , a55, . . . ,10 ~A3!

and

B551, B75t3, B95t1 ~A4!

B65 i 1, B85 i t3, B105 i t1.

The five axial type generators$Xi% are

Xi5
1

2A2
S t i 0

0 t iTD , 51,2,3, ~A5!

wheret i are the standard Pauli matrices. Fori 54,5

Xi5
1

2A2
S 0 Di

Di† 0 D , i 54,5, ~A6!

and

D45t2, D55 i t2. ~A7!

The generators are normalized as follows:

Tr@SaSb#5Tr@XaXb#5
1

2
dab, Tr@XiSa#50. ~A8!
2-13
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@37# Ö. Kaymakcalan and J. Schechter, Phys. Rev. D31, 1109
~1985!.

@38# R.G. Leigh and M.J. Strassler, Nucl. Phys.B496, 132 ~1997!.
@39# D.J. Gross and F. Wilczek, Phys. Rev. Lett.30, 1343~1973!.
@40# H.D. Politzer, Phys. Rev. Lett.30, 1346~1973!.
@41# K. Splittorff, D. Toublan, and J.J. Verbaarscho

hep-ph/0108040.
@42# R. Rapp, T. Schafer, E.V. Shuryak, and M. Velkovsky, Ph

Rev. Lett.81, 53 ~1998!.
@43# J. Wirstam, Phys. Rev. D62, 045012~2000!.
@44# B. Vanderheyden and A.D. Jackson, Phys. Rev. D64, 074016

~2001!.
@45# D.T. Son and M.A. Stephanov, Phys. Rev. Lett.86, 592~2001!;

Yad. Fiz.64, 899 ~2001! @Phys. At. Nucl.64, 834 ~2001!#.
@46# J.B. Kogut and D. Toublan, Phys. Rev. D64, 034007~2001!.
@47# M. Harada, F. Sannino, and J. Schechter, Phys. Rev. Lett.78,

1603 ~1997!.
2-14


