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QCD corrections to associatedt t̄ h production at the Fermilab Tevatron
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We present in detail the calculation of theO(as
3) inclusive total cross section for the processpp̄→t t̄ h in the

Standard Model, at the Fermilab Tevatron center-of-mass energyAsH52 TeV. The next-to-leading order QCD
corrections significantly reduce the renormalization and factorization scale dependence of the Born cross
section. They slightly decrease or increase the Born cross section depending on the values of the renormaliza-
tion and factorization scales.

DOI: 10.1103/PhysRevD.65.053017 PACS number~s!: 14.80.Bn, 12.15.2y, 12.38.Bx, 13.85.2t
ur
in
uc
ak
g
o

t
h

-
l
tly

a

s

d
ng
bo
he
d

s
th
in

t
il-

o
p

as

all
n
re

he
he

d.
of

for
e

t

-
the
and
de
e-

-

son
to
for

ter-
of

ted

d

to
e

I. INTRODUCTION

Among the most important goals of present and fut
colliders is the study of the electroweak symmetry break
mechanism and the origin of fermion masses. If the introd
tion of one or more Higgs fields is responsible for the bre
ing of the electroweak symmetry, then at least one Hig
boson should be relatively light, and certainly in the range
energies of present~Fermilab Tevatron! or future @CERN
Large Hadron Collider~LHC!# hadron colliders. The presen
lower bounds on the Higgs boson mass from direct searc
at the CERNe1e2 collider LEP2 areMh.114.1 GeV~at
95% C.L.! @1# for the Standard Model~SM! Higgs boson,
and Mh0.91.0 GeV andMA0.91.9 GeV ~at 95% C.L.,
0.5,tanb,2.4 excluded! @2# for the light scalar (h0) and
pseudoscalar (A0) Higgs bosons of the minimal supersym
metric standard model~MSSM!. At the same time, globa
SM fits to all available electroweak precision data indirec
point to the existence of a light Higgs boson,Mh,212
2236 GeV@3#, while the MSSM requires the existence of
scalar Higgs boson lighter than about 130 GeV@4#. There-
fore, the possibility of a Higgs boson discovery in the ma
range around 115–130 GeV seems increasingly likely.

In this context, the Tevatron will play a crucial role an
can potentially discover a Higgs boson in the mass ra
between the present experimental lower bound and a
180 GeV@5#. The dominant Higgs production modes at t
Tevatron are gluon-gluon fusion (gg→h) and the associate
production with a weak boson (qq̄→Wh, Zh). Because of
small event rates and large backgrounds, the Higgs bo
search in these channels is extremely difficult, requiring
highest possible luminosity. It is therefore important to
vestigate all possible production channels, in the effort
fully exploit the range of opportunities offered by the ava
able statistics.

Recently, attention has been drawn to the possibility
detecting a Higgs signal in association with a pair of to
antitop quarks at the Tevatron, i.e. inpp̄→t t̄ h @6#. This pro-
duction mode can play a role over most of the Higgs m
0556-2821/2002/65~5!/053017~25!/$20.00 65 0530
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range accessible at the Tevatron. Although it has a sm
event rate,;125 fb for a SM-like Higgs boson, and eve
lower for a MSSM Higgs boson, the signatu

(W1W2bb̄bb̄) is quite spectacular. Furthermore, at t
Tevatron, after fully reconstructing both top quarks, t
shape of the invariant mass distribution of the remainingbb̄
pair is quite different for the signal and for the backgroun
The statistics is too low to allow any direct measurement
the top-quark Yukawa coupling, but recent studies@7# indi-
cate that this channel can reduce the luminosity required
the discovery of a SM-like Higgs boson at Run II of th
Tevatron by as much as 15–20 %.

The total cross section forpp̄→t t̄ h has been known a
tree level for quite some time@8#. As for any other hadronic
process, next-to-leading~NLO! QCD corrections are ex
pected to be important and are crucial in order to reduce
dependence of the cross section on the renormalization
factorization scales. Preliminary indications of the magnitu
of the NLO QCD corrections can be obtained in the fram
work of the effective Higgs approximation~EHA!, where
terms of orderMh /As and Mh /mt are systematically ne
glected in the computation@9#. This approximation correctly
reproduces the collinear bremsstrahlung of the Higgs bo
from the heavy top quarks. However, we expect the EHA
be more reliable at the LHC center-of-mass energies,
which it was originally proposed, than at the Tevatron cen
of-mass energies. We will briefly discuss the predictions
the EHA for pp̄→t t̄ h in Sec. VI.

We also notice that QCD corrections to the associa
production of a Higgs boson with a pair ofbb̄ quarks, which
is dominated by thegg→bb̄h channel, have been compute
in the limit of large Mh @10#, by resuming the leading
ln(Mh /mb) terms. However this result cannot be applied
the t t̄ h production of a relatively light Higgs boson at th
Tevatron, both because the ratioMh /mt is of O(1) and does
not justify the largeMh limit, and because thegg channel is
negligible for t t̄ h production at the Tevatron.
©2002 The American Physical Society17-1
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In this paper we present in detail the calculation of t
NLO inclusive total cross section forpp̄→t t̄ h, sNLO(pp̄

→t t̄ h), in the Standard Model, at the Tevatron center-
mass energy. Forpp̄ collisions at hadronic center-of-mas
energyAsH52 TeV, more than 95% of the tree-level cro
section comes from the sub-processqq̄→t t̄ h. Therefore, we
include only theqq̄→t t̄ h channel when computing the tree
level total cross section, and we calculate the NLO to
cross section by adding the complete set of virtual and
O(as) corrections toqq̄→t t̄ h. The Feynman diagrams con
tributing to qq̄→t t̄ h at lowest order are shown in Fig. 1
while examples ofO(as) virtual and real corrections ar
given in Figs. 2–6. The main challenge in the calculation
the O(as) virtual corrections comes from the presence
pentagon diagrams with several massive external and in
nal particles. We have calculated the corresponding penta
scalar integrals as linear combinations of scalar box integ
using the method of Ref.@11#. The real corrections are com
puted using the phase space slicing method, in both
double @12,13# and single@14–16# cutoff approach. This is
the first application of the single cutoff phase space slic
approach to a cross section involving more than one mas
particle in the final state.

Numerical results for our calculation ofsNLO(pp̄→t t̄ h)
at the hadronic center-of-mass energyAsH52 TeV have
been presented in@17#. An independent calculation of th
NLO total cross section forpp̄→t t̄ h has been performed b
Beenakkeret al. @18#. The numerical results of both calcula
tions have been compared and they are found to be in
good agreement. TheO(as) corrections to the sub-proces

FIG. 1. Feynman diagrams contributing to the lowest order p

cess,qq̄→t t̄ h. The arrows indicate the momentum flow.

FIG. 2. O(as) virtual corrections: self-energy diagramsS1
(1,2)

andS2
(1,2) .
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gg→t t̄ h are, however, crucial for determiningsNLO(pp

→t t̄ h) at the LHC, sincepp collisions atAsH514 TeV are
dominated by the gluon-gluon initial state. Results for t
LHC are presented elsewhere@18,19#.

The outline of our paper is as follows. In Sec. II we sum
marize the general structure of the NLO cross section,
proceed in Secs. III and IV to present the details of the c
culation of both the virtual and real parts of the NLO QC
corrections. In Sec. V we explicitly show the factorization
the initial-state singularities into the quark distribution fun
tions, and finally we summarize our result for the NLO i
clusive total cross section forpp̄→t t̄ h at the Tevatron in
Eqs. ~5.3! and ~5.5!. Numerical results for the total cros
section are presented in Sec. VI. Explicit analytic results
the scalar pentagon and the infrared-singular box integ
are presented in Appendixes A and B. Appendix C contain
collection of soft phase space integrals that are used in

-

FIG. 3. O(as) virtual corrections: vertex diagramsV1
(1,2)-V6

(1,2) .
7-2
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calculation of the realO(as) corrections toqq̄→t t̄ h with
the double cutoff phase space slicing method. Finally, in A
pendix D we give the explicit structure of the real gluo
emission color ordered amplitudes that are used in the ca
lation of the realO(as) corrections toqq̄→t t̄ h with the
single cutoff phase space slicing method.

II. GENERAL FRAMEWORK

The inclusive total cross section forpp̄→t t̄ h at O(as
3)

can be written as

sNLO~pp̄→t t̄ h!5(
i j

E dx1dx2F i
p~x1 ,m!

3F j
p̄~x2 ,m!ŝNLO

i j ~x1 ,x2 ,m!, ~2.1!

FIG. 4. O(as) virtual corrections: box diagramsB1 , B2
(1,2) and

B3
(124) .

FIG. 5. O(as) virtual corrections: pentagon diagramsP1 and
P2.
05301
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whereF i
p,p̄ are the NLO parton distribution functions~PDF!

for parton i in a proton/antiproton, defined at a generic fa
torization scalem f5m, andŝNLO

i j is theO(as
3) parton-level

total cross section for incoming partonsi andj, composed of
the two channelsqq̄, gg→t t̄ h, and renormalized at an arb
trary scalem r which we also take to bem r5m. Throughout
this paper we will always assume the factorization and ren
malization scales to be equal,m r5m f5m. The partonic
center-of-mass energy squared,s, is given in terms of the
total hadronic center-of-mass energy squared,sH , by s
5x1x2sH . As explained in the Introduction, we consid
only theqq̄→t t̄ h channel, summed over all light quark fla
vors, and neglect thegg→t t̄ h channel, since thegg initial
state is numerically irrelevant at the Tevatron.

We write the NLO parton-level total cross sectio
ŝNLO

i j (x1 ,x2 ,m) as

ŝNLO
i j ~x1 ,x2 ,m!5as

2~m!H f LO
i j ~x1 ,x2!

1
as~m!

4p
f NLO

i j ~x1 ,x2 ,m!J
[ŝLO

i j ~x1 ,x2 ,m!1dŝNLO
i j ~x1 ,x2 ,m!,

~2.2!

whereas(m) is the strong coupling constant renormalized
the arbitrary scalem r5m, ŝLO

i j (x1 ,x2 ,m) is theO(as
2) Born

cross section, anddŝNLO
i j (x1 ,x2 ,m) consists of theO(as)

corrections to the Born cross section, including the effects
mass factorization~see Sec. V!.

The Born cross section forqq̄→t t̄ h is given by@20#

ŝLO
qq̄ ~x1 ,x2 ,m!5

as
2~m!

27ps S mt

v D 2E
xh

min

xh
max

dxhH 4b̂

xh
22b̂2 S 11

2mt
2

s D
3S 4mt

22Mh
2

s D 1Fxh12S 4mt
22Mh

2

s D
1

2

xh

~4mt
22Mh

2!~2mt
22Mh

2!

s2

1
8mt

2

sxh
G lnS xh1b̂

xh2b̂
D J , ~2.3!

wherexh52Eh /As, Eh is the Higgs boson energy in theqq̄
center-of-mass frame, xh

min52Mh /As, xh
max5124mt

2/s
1Mh

2/s, and we have introduced

FIG. 6. O(as) real corrections: examples of initial and fina
state real gluon emission.
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b̂5H @xh
22~xh

min!2#@xh
max2xh#

xh
max2xh14mt

2/s
J 1/2

. ~2.4!

Moreover, we have defined the Yukawa coupling of the
quark to begt5mt /v, wherev5(GFA2)21/2 is the vacuum
expectation value of the SM Higgs boson, given in terms
the Fermi constantGF .

The NLO QCD contribution,dŝNLO
i j (x1 ,x2 ,m), contains

both virtual and realO(as) corrections to the lowest-orde
cross section and can be written as the sum of two term

dŝNLO
i j ~x1 ,x2 ,m!5E d~PS3!(

¯
uAv irt ~ i j →t t̄ h!u2

1E d~PS4!(
¯

uAreal~ i j →t t̄ h1g!u2

[ŝv irt
i j ~x1 ,x2 ,m!1ŝ real

i j ~x1 ,x2 ,m!,

~2.5!

where uAv irt ( i j →t t̄ h)u2 and uAreal( i j →t t̄ h1g)u2 are, re-
spectively, the squared matrix elements for theO(as

3)

i j →t t̄ h andi j →t t̄ h1g processes, and(̄ indicates that they
have been averaged over the initial-state degrees of free
and summed over the final-state ones. Moreover,d(PS3) and
d(PS4) denote the integration over the corresponding thr
and four-particle phase spaces, respectively. The first ter
Eq. ~2.5! represents the contribution of the virtual gluon co
rections, while the second one is due to the real gluon em
sion. For theqq̄→t t̄ h sub-process, examples ofO(as) vir-
tual and real corrections are illustrated in Figs. 2–6 and th
structure is separately explained in Secs. III and IV.

Finally, we observe that in order to assure the renorm
ization scale independence of the total cross section
O(as

3), f NLO
i j (x1 ,x2 ,m) in Eq. ~2.2! must be of the form

f NLO
i j ~x1 ,x2 ,m!5 f 1

i j ~x1 ,x2!1 f̃ 1
i j ~x1 ,x2!lnS m2

s D ,

~2.6!

with f̃ 1
i j (x1 ,x2) given by

f̃ 1
i j ~x1 ,x2!52H 4pb0f LO

i j ~x1 ,x2!

2(
k

F E
r

1

dz1Pik~z1! f LO
k j ~x1z1 ,x2!

1E
r

1

dz2Pk j~z2! f LO
ik ~x1 ,x2z2!G J , ~2.7!

where r5(2mt1Mh)2/s, Pi j (z) denotes the lowest-orde
Altarelli-Parisi splitting function@21# of partoni into parton
j, when j carries a fractionz of the momentum of partoni
~see, e.g. Sec. IV A 2!, andb0 is determined by the one-loo
renormalization group evolution of the strong coupling co
stantas :
05301
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d ln~m2!
52b0as

21O~as
3!,

~2.8!

for b05
1

4p S 11

3
N2

2

3
nl f D ,

with N53, the number of colors, andnl f 55, the number of
light flavors. The origin of the terms in Eq.~2.7! will become
manifest in Secs. III and IV, when we describe in detail t
calculation of both virtual and realO(as) corrections toqq̄

→t t̄ h.

III. VIRTUAL CORRECTIONS

The O(as) virtual corrections to the tree-levelqq̄→t t̄ h
process consist of self-energy, vertex, box, and pentagon
grams which are shown in Figs. 2–5. We assign incom
and outgoing momenta according to the following notatio

q~q1!1q̄~q2!→t~pt!1 t̄ ~pt8!1h~ph!, ~3.1!

where the momentum flow is illustrated in Figs. 2–5. If w
denote byADi

the amplitude associated with each virtu

diagramDi , the O(as
3) virtual amplitude squared can the

be written as

(
¯

uA v irt u25(
i

(
¯

~A LO
d ADi

* 1A LO
d* ADi

!

5(
i

(
¯

2 Re~A LO
d ADi

* !, ~3.2!

where the indexi runs over the set of all virtual diagrams
andA LO

d denotes the tree-level amplitude forqq̄→t t̄ h cal-
culated ind5422e dimensions. The lowest order amplitud
A LO

d must be computed toO(e2) in order to properly ac-
count for both the singular and finite contributions genera
by the interference ofA LO

d with the single and double pole
present in the virtual amplitudesADi

. In what follows, we

denote byALO the lowest order amplitude toO(e0), i.e.
calculated ind54 dimensions. Also, in the following sec
tions, the contribution of a given diagram or set of diagra

to ŝv irt
qq̄ is always to be understood as the contribution of

corresponding term in the sum in Eq.~3.2!.
The calculation of the virtual diagrams has been p

formed using dimensional regularization, always ind54
22e dimensions. The diagrams have been evaluated u
FORM @22# and MAPLE, and all tensor integrals have bee
reduced to linear combinations of a fundamental set of sc
one-loop integrals using standard techniques@23#. The scalar
integrals which give rise to either ultraviolet~UV! or infrared
~IR! singularities have been computed analytically, while
nite scalar integrals have been evaluated using stan
packages@24#.

Self-energy and vertex diagrams contain both IR and
divergences. The UV divergences are renormalized by in
ducing a suitable set of counterterms. Since the cross sec
7-4
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is a renormalization group invariant, we only need to ren
malize the wave function of the external fields, the top-qu
mass, and the coupling constants. We discuss the renor
ization of the UV singularities of the virtual cross section
Sec. III A.

Box and pentagon diagrams are ultraviolet finite, but ha
infrared singularities. The IR poles in theO(as) virtual cor-
rections are eventually canceled by analogous singularitie
theO(as) real corrections to the tree-level cross section.
discuss the structure of the IR singularities of the virtu
cross section in Sec. III B. The structure of the IR singula
ties of the real cross section will be the subject of Secs. IV
and IV B.

The calculation of many of the box scalar integrals and
particular of the pentagon scalar integrals are extremely
borious, due to the large number of massive particles pre
in the final state and in the loop. We have evaluated
necessary pentagon scalar integrals~one for diagramP1 and
one for diagramP2), using the method of Ref.@11#, which
allows the reduction of a scalar five-point function to a su
of five scalar four-point functions, plus terms ofO(e) which
can be neglected. Since this is a crucial ingredient of
calculation, we will explain in detail in Appendix A how
the method of Ref.@11# has been applied to our case. T
IR-divergent box scalar integrals are also collected
Appendix B.

A. UV singularities and counterterms

The UV singularities of theO(as
3) total cross section

originate from self-energy and vertex virtual correction
These singularities are renormalized by introducing coun
terms for the wave function of the external field
(dZ2

(q) , dZ2
(t)), the top-quark mass (dmt), and the coupling

constants (dgt , dZas
). If we denote byDUV(Si

(1,2)) and

DUV(Vi
(1,2)) the UV-divergent contribution of each sel

energy (Si
(1,2)) or vertex diagram (Vi

(1,2)) to the virtual am-
plitude squared@see Eq.~3.2!#, we can write the UV-singular
part of the total virtual amplitude squared as

(
¯

uA v irt
UV u25(

¯
uA LOu2

as

2p H (
i 51

2

DUV~Si
(1)1Si

(2)!

1(
i 51

6

DUV~Vi
(1)1Vi

(2)!12F ~dZ2
(q)!UV

1~dZ2
(t)!UV1

dmt

mt
1dZasG J . ~3.3!

As described earlier, we denote byuA LOu2 the matrix ele-
ment squared of the tree-level amplitude forqq̄→t t̄ h, com-
puted ind54 dimensions. We also notice that, in writing E
~3.3!, we have included in the top-quark self-energy the to
mass counterterm, and we have used the fact that
Yukawa-coupling counterterm coincides with the top-ma
counterterm.

The UV-divergent contributions due to the individual di
grams are explicitly given by
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DUV~S1
(1)1S1

(2)!5NtS N

2
2

1

2ND S 2
1

eUV
D ,

DUV~S2
(1)1S2

(2)!5FNsS 5

3
N2

2

3
nl f D2Nt

2

3G S 1

eUV
D ,

DUV~V1
(1)1V1

(2)!5NsS 2
1

2ND S 1

eUV
D ,

DUV~V2
(1)1V2

(2)!5NsS N

2 D S 3

eUV
D ,

~3.4!

DUV~V3
(1)1V3

(2)!5NtS 2
1

2ND S 1

eUV
D ,

DUV~V4
(1)1V4

(2)!5NtS N

2 D S 3

eUV
D ,

DUV~V5
(1)1V5

(2)!5NtS N

2
2

1

2ND S 4

eUV
D ,

DUV~V6
(1)1V6

(2)!50,

whereNs andNt are standard normalization factors defin
as

Ns5S 4pm2

s D e

G~11e!, Nt5S 4pm2

mt
2 D e

G~11e!.

~3.5!

Moreover, we define the needed counterterms accord
to the following convention. For the external fields, we fi
the wave-function renormalization constants of the exter
fields (Z2

( i )511dZ2
( i ) , i 5q,t) using on-shell subtraction

i.e.,

~dZ2
(q)!UV52

1

2
NsS N

2
2

1

2ND S 1

eUV
D ,

~3.6!

~dZ2
(t)!UV52

1

2
NtS N

2
2

1

2ND S 1

eUV
14D .

We notice that bothdZ2
(q) anddZ2

(t) , as well as some of the

vertex corrections (V1
(1,2) andV2

(1,2)), have also IR singulari-
ties. In this section we limit the discussion to the UV sing
larities only, while the IR structure of these terms will b
given explicitly in Sec. III B.

We define the subtraction condition for the top-qua
massmt in such a way thatmt is the pole mass, in which
case the top-mass counterterm is given by

dmt

mt
52

1

2
NtS N

2
2

1

2ND S 3

eUV
14D . ~3.7!

This counterterm has to be used twice: to renormalize
top-quark mass, in diagramsS1

(1) andS1
(2) , and to renormal-
7-5



ed
s

e
g
th

lin

r

t
e

tie
l
s:

s
l

ed

th

n-

L. REINA, S. DAWSON, AND D. WACKEROTH PHYSICAL REVIEW D65 053017
ize the top-quark Yukawa coupling. As we already not
DUV(S1

(1)1S1
(2)) in Eq. ~3.4! already includes the top-mas

counterterm.
Finally, for the renormalization ofas we use the modified

minimal subtraction (MS) scheme, modified to decouple th
top quark@25#. The firstnl f light flavors are subtracted usin
the MS scheme, while the divergences associated with
top-quark loop are subtracted at zero momentum:

dZas
5

1

2
~4p!eG~11e!H S 2

3
nl f 2

11

3
ND 1

eUV

1
2

3 F 1

eUV
1 lnS m2

mt
2D G J , ~3.8!

such that, in this scheme, the renormalized strong coup
constantas evolves withnl f 55 light flavors.

It is easy to verify that the sum of all the UV-singula
contributions as given in Eq.~3.3! is finite. We also notice
that the leftover renormalization scale dependence, due to
mismatch between the renormalization scale dependenc
DUV(S2) andd(Zas

), is given by

(
¯

uA LOu2
as~m!

2p S 2
2

3
nl f 1

11

3
ND lnS m2

s D , ~3.9!

and corresponds exactly to the first term of Eq.~2.7!, as
predicted by renormalization group arguments.

B. IR singularities

This section describes the structure of the IR singulari
originating from theO(as) virtual corrections. The virtua
IR singularities come from the following set of diagram
vertex diagramsV1

(1,2) and V2
(1,2) , box diagramsB2

(1,2) , box
diagramsB3

(124) , pentagon diagramsP1 and P2, and from
the wave function renormalization of the external field
dZ2

(q) and dZ2
(t) . The IR-singular part of the total virtua

amplitude squared is then of the form

(
¯

uA v irt
IR u25(

¯
uA LOu2

as

2p
$D IR~V1

(1)1V1
(2)!1D IR~V2

(1)

1V2
(2)!1~dZ2

(q)! IR1~dZ2
(t)! IR1D IR~B2

(1)

1B2
(2)!1D IR~B3

(1)1B3
(3)1P1!1D IR~B3

(2)

1B3
(4)1P2!%, ~3.10!

where, as before,uA LOu2 denotes the matrix element squar
of the tree-level amplitude forqq̄→t t̄ h, in d54 dimensions.
The IR-divergent contributions of the various diagrams to
virtual amplitude squared are given in the following:
05301
,

e
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,

e

D IR~V1
(1)1V1

(2)!5NsS 2
1

2ND S 2
2

e IR
2

2
4

e IR
D ,

D IR~V2
(1)1V2

(2)!5NsS N

2 D S 2
4

e IR
D ,

~dZ2
(q)! IR5NsS N

2
2

1

2ND S 1

e IR
D ,

~dZ2
(t)! IR5NtS N

2
2

1

2ND S 2
2

e IR
D ,

~3.11!

D IR~B2
(1)1B2

(2)!5NtS 2
1

ND
3S 1

e IR

st t̄

~2mt
21st t̄ !b t t̄

L t t̄ D ,

D IR~B3
(1)1B3

(3)1P1!5NtS N

2
2

1

ND H 2
2

e IR
2

1
2

e IR
F lnS sqt

mt
2D 1 lnS sq̄t̄

mt
2D G J ,

D IR~B3
(2)1B3

(4)1P2!5NtS 2
1

ND H 2

e IR
2

2
2

e IR
F lnS sq t̄

mt
2D

1 lnS sq̄t

mt
2D G J ,

whereNs andNt are given in Eq.~3.5!. Moreover, we have
introduced the following kinematic invariants:

s5sqq̄52q1•q2 , st t̄52pt•pt8 , sqt52q1•pt ,

sq t̄52q1•pt8 , sq̄t52q2•pt , sq̄t̄52q2•pt8 ,
~3.12!

and we have defined

b t t̄5A12
4mt

2

~pt1pt8!2
,

~3.13!

L t t̄5 lnS 11b t t̄

12b t t̄
D .

Substituting the explicit expression for the IR-divergent co
tributions given in Eq.~3.11! into Eq. ~3.10! yields

(
¯

uA v irt
IR u25S as

2p DNt(
¯

uA LOu2H X22
v irt

e IR
2

1
X21

v irt

e IR
1dv irt

IR J ,

~3.14!

where
7-6
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X22
v irt 52S N2

1

ND ,

X21
v irt 5NF2

5

2
1 lnS sqt

mt
2D 1 lnS sq̄t̄

mt
2D G1

1

N F2 lnS s

mt
2D

1
5

2
2

st t̄

~2mt
21st t̄ !b t t̄

L t t̄22 lnS sqtsq̄t̄

sq t̄sq̄t
D G , ~3.15!

while dv irt
IR is a finite term that derives from having factore

out a common factorNt , and is given by

dv irt
IR 5S N2

1

ND F3

2
lnS s

mt
2D G1

1

N F1

2
ln2S s

mt
2D G .

~3.16!

In Secs. IV A 1 and IV B 3 we will show how the IR singu
larities of the real cross section exactly cancel the IR pole
the virtual cross section~see Eqs.~4.9!,~4.10! and Eqs.
~4.52!,~4.53!!, as predicted by the Bloch-Nordsieck@26# and
Kinoshita-Lee-Nauenberg@27,28# theorems.

IV. REAL CORRECTIONS

The O(as) corrections toqq̄→t t̄ h due to real gluon
emission~see Fig. 6! give origin to IR singularities which
cancel exactly the analogous singularities present in
O(as) virtual corrections~see Sec. III B!. These singularities
can be either ofsoft or collinear nature and can be conve
niently isolated byslicing the qq̄→t t̄ h1g phase space into
different regions defined by suitable cutoffs, a method wh
goes under the general name ofphase space slicing~PSS!.
The dependence on the arbitrary cutoff~s! introduced in the
process is not physical, and, in fact, cancels at the leve
the total real gluon emission hadronic cross section, i.e
s real , the real part ofsNLO . This constitutes an importan
check of the calculation.

We have calculated the cross section for the process

q~q1!1q̄~q2!→t~pt!1 t̄ ~pt8!1h~ph!1g~k! ~4.1!

using two different implementations of the PSS meth
which we call thetwo-cutoffandone-cutoffmethod, respec-
tively, depending on the number of cutoffs introduced. T
two-cutoff implementation of the PSS method has be
originally developed to study QCD corrections to dihadr
production@12# and has since then been applied to a vari
of processes. A nice review has recently appeared@13# to
which we refer to for more extensive references and deta
Theone-cutoffPSS method has been developed for mass
quarks in Refs.@14,15# and extended to the case of mass
quarks in Ref.@16#.

In Secs. IV A and IV B we explain in detail how we hav
applied the PSS method to our case, using thetwo-cutoff
implementation in Sec. IV A and theone-cutoffimplementa-
tion in Sec. IV B. The results fors real obtained using PSS
with one or two cutoffs agree within the statistical errors.
spite of the fact that both methods are realizations of
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general idea of phase space slicing, they have very diffe
characteristics and finding agreement between the two re
sents an important check of our calculation.

A. Phase space slicing method with two cutoffs

The general implementation of the PSS method using
cutoffs proceeds in two steps. First, by introducing an ar
trary smallsoft cutoff ds we separate the overall integratio
of the qq̄→t t̄ h1g phase space into two regions, accordi
to whether the energy of the gluon issoft, i.e.Eg<dsAs/2, or
hard, i.e. Eg.dsAs/2. The partonic real cross section of E
~2.5! can then be written as

ŝ real
qq̄ 5ŝso f t1ŝhard , ~4.2!

whereŝso f t is obtained by integrating over thesoft region of
the gluon phase space, and contains all the IR soft di

gences ofŝ real
qq̄ . To isolate the remaining collinear dive

gences fromŝhard , we further split the integration over th
hard gluon phase space according to whether the gluo
(ŝhard/coll) or is not (ŝhard/non2coll) emitted within an angle
u from the initial-state massless quarks such t
(12cosu),dc , for an arbitrary smallcollinear cutoff dc :

ŝhard5ŝhard/coll1ŝhard/non-coll . ~4.3!

The hard non-collinear part of the real cross secti
ŝhard/non-coll , is finite and can be computed numerically, u
ing standard Monte Carlo techniques. In the soft and col
ear regions, the integration over the phase space of the e
ted gluon can be performed analytically, thus allowing us

isolate the IR collinear divergences ofŝ real
qq̄ . More details on

the calculation ofŝso f t and ŝhard are given in Sec. IV A 1
and Sec. IV A 2, respectively. The cross sections describ
soft, collinear and IR-finite gluon radiation depend on t
two arbitrary parameters,ds and dc . However, in the real
hadronic cross sections real , after mass factorization, th
dependence on these arbitrary cutoffs cancels, as will be
plicitly shown in Sec. V.

1. Soft gluon emission

The soft region of theqq̄→t t̄ h1g phase space is define
by requiring that the energy of the gluon satisfies

Eg,ds

As

2
~4.4!

for an arbitrary small value of thesoftcutoff ds . In the limit
when the energy of the gluon becomes small, i.e. in thesoft
limit, the matrix element squared for the real gluon emissi
(̄uA realu2, assumes a very simple form, i.e. it factorizes in
the Born matrix element squared times an eikonal fac
Feik :
7-7
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(
¯

uAreal~qq̄→t t̄ h1g!u2 →
so f t

~4pas!(
¯

uA LOu2Feik ,

~4.5!

where the eikonal factor is given by

Feik5
N

2 F2
mt

2

~pt•k!2
2

mt
2

~pt8•k!2
1

sqt

~q1•k!~pt•k!

1
sq̄t̄

~q2•k!~pt8•k!
G1

1

2N F mt
2

~pt•k!2
1

mt
2

~pt8•k!2

2
s

~q1•k!~q2•k!
2

st t̄

~pt•k!~pt8•k!

12S 2
sqt

~q1•k!~pt•k!
1

sq t̄

~q1•k!~pt8•k!

1
sq̄t

~q2•k!~pt•k!
2

sq̄t̄

~q2•k!~pt8•k!
D G . ~4.6!

Moreover, in the soft region theqq̄→t t̄ h1g phase space
also factorizes as

d~PS4!~qq̄→t t̄ h1g! →
so f t

d~PS3!~qq̄→t t̄ h!d~PSg!so f t

5d~PS3!~qq̄→t t̄ h!
d(d21)k

~2p!(d21)2Eg

3uS ds

As

2
2EgD , ~4.7!

where d(PSg)so f t denotes the integration over the pha
space of the soft gluon. The parton level soft cross sec
can then be written as

ŝso f t5~4pas!m
2eE d~PS3!(

¯
uA LOu2E d~PSg!so f tFeik .

~4.8!

Since the contribution of the soft gluon is now complete
factorized, we can perform the integration overd(PSg)so f t in
Eq. ~4.8! analytically, and extract the soft poles that will ha
to cancelX22

v irt andX21
v irt of Eq. ~3.15!. The integration over

the gluon phase space in Eq.~4.8! can be performed using
standard techniques and we refer to Refs.@13,29# for more
details. For the sake of completeness, in Appendix C we g
explicit results for the soft integrals used in our calculatio

Finally, the soft gluon contribution toŝ real
qq̄ can be written

as follows:
05301
n

e
.

ŝso f t5
as

2p
NtE d~PS3!(

¯
uA LOu2H X22

s

e2
1

X21
s

e

1NC1
s1

C2
s

N J , ~4.9!

where

X22
s 52X22

v irt ,

X21
s 52X21

v irt 2S N2
1

ND F3

2
12ln~ds!G ,

~4.10!

C1
s5

3

2
lnS s

m2D 12 ln2~ds!22 ln~ds!F11 lnS mt
2m2

sqtsq̄t̄
D G

1
1

2
ln2S s

mt
2D 2

p2

3
2 lnS s

mt
2D F5

2
1 lnS smt

2

sqtsq̄t̄
D G1

L t t̄

b t t̄

1
1

2
~Fqt1Fq̄t̄ !1F3

2
12 ln~ds!G lnS m2

mt
2D ,

C2
s52

3

2
lnS s

m2D22 ln2~ds!22 ln~ds!F21

1
st t̄

~2mt
21st t̄ !b t t̄

L t t̄1 lnS s

m2D12 lnS sqtsq̄t̄

sq t̄sq̄t
D G

2
1

2
ln2S s

mt
2D 1

p2

3
2 lnS s

mt
2D F2

5

2

1
st t̄

~2mt
21st t̄ !b t t̄

L t t̄12 lnS sqtsq̄t̄

sq t̄sq̄t
D G2

L t t̄

b t t̄

1
2st t̄

~2mt
21st t̄ !b t t̄

FLi2S 2b t t̄

11b t t̄
D 1

1

4
ln2S 11b t t̄

12b t t̄
D G

2Fqt1Fq t̄1Fq̄t2Fq̄t̄2F3

2
12 ln~ds!G lnS m2

mt
2D ,

while Nt is defined in Eq.~3.5!, and Li2 denotes the diloga-
rithm as described in Ref.@30#. b t t̄ and L t t̄ are defined in
Eq. ~3.13!, while, for any initial partoni and final partonf,
the functionFi f can be written as

Fi f 5 ln2S 12b f

12b f cosu i f
D2

1

2
ln2S 11b f

12b f
D

12 Li2S 2
b f~12cosu i f !

12b f
D

22 Li2S 2
b f ~11cosu i f !

12b f cosu i f
D , ~4.11!

where cosuif is the angle between partonsi and f in the
center-of-mass frame of the initial state partons, and
7-8
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b f5A12
mt

2

~pf
0!2

, 12b f cosu i f 5
si f

pf
0As

. ~4.12!

All the quantities in Eq.~4.11! can be expressed in terms
kinematical invariants, once we usesi f 52pi•pf together
with

pt
05

s2 s̄t̄ h1mt
2

2As
and pt̄

0
5

s2 s̄th1mt
2

2As
, ~4.13!

where s̄f h5(pf1ph)2. As can be easily seen from Eq
~3.15! and ~4.10!, the IR poles of the virtual corrections ar
exactly canceled by the corresponding singularities in
soft gluon contribution. The remaining IR poles inŝso f t will
be canceled by the PDF counterterms as described in d
in Sec. V.

2. Hard gluon emission

The hard region of the gluon phase space is defined
requiring that the energy of the emitted gluon is above
given threshold. As we discussed earlier this is expresse
the condition that

Eg.ds

As

2
, ~4.14!

for an arbitrary smallsoft cutoff ds , which automatically
assures thatŝhard does not contain soft singularities. How
ever, a hard gluon can still give origin to singularities when
is emitted at a small angle, i.e.collinear, to a massless in
coming or outgoing parton. In order to isolate these div
gences and compute them analytically, we further divide
hard region of theqq̄→t t̄ h1g phase space into ahard/
collinear and ahard/non-collinearregion, by introducing a
second smallcollinear cutoff dc . The hard/non-collinear re
gion is defined by the condition that both
05301
e

ail

y
a
by

t

-
e

2q1•k

EgAs
.dc and

2q2•k

EgAs
.dc ~4.15!

are verified. The contribution from the hard/non-collinear
gion, ŝhard/non-coll , is finite and we compute it numericall
by using standard Monte Carlo integration techniques.

In the hard/collinear region, one of the conditions in E
~4.15! is not satisfied and the hard gluon is emitted colline
to one of the incoming partons. In this region, the initial-sta
parton i ( i 5q,q̄) is considered to split into a hard partoni 8
and a collinear gluong, i→ i 8g, with pi 85zpi and
k5(12z)pi . The matrix element squared fori j →t t̄ h1g
factorizes into the Born matrix element squared and
Altarelli-Parisi splitting function fori→ i 8g: i.e.,

(
¯

uAreal~ i j →t t̄ h1g!u2

→
coll inear

~4pas!(
i

(
¯

uALO~ i 8 j→t t̄ h!u2
2Pii 8~z!

z sig
,

~4.16!

with sig52pi•k. In our case,

Pii 8~z!5Pqq~z!5CFS 11z2

12z
2e~12z! D ~4.17!

is the unregulated Altarelli-Parisi splitting function forq
→q1g at lowest order, including terms ofO(e), and CF

5(N221)/2N. Moreover, in the collinear limit, theqq̄

→t t̄ h1g phase space also factorizes as
d
ws us to
d~PS4!~ i j →t t̄ h1g! →
coll inear

d~PS3!~ i 8 j→t t̄ h!
z d(d21)k

~2p!(d21)2Eg

uS Eg2ds

As

2 D u~cosu ig2~12dc!!

5
d5422e G~12e!

G~122e!

~4p!e

16p2
z dz dsig@~12z!sig#2euS ~12z!

z
s8

dc

2
2sigD , ~4.18!

where the integration range forsig in the collinear region is given in terms of the collinear cutoff, and we have defines8
52pi 8•pj . The integral over the collinear gluon degrees of freedom can then be performed separately, and this allo
explicitly extract the collinear singularities ofŝhard . ŝhard/coll turns out to be of the form@13,31#:

ŝhard/coll5F as

2p

G~12e!

G~122e! S 4pm2

mt
2 D eG S 2

1

e D dc
2eH E

0

12ds
dzF ~12z!2

2z

s8

mt
2G2e

Pii 8~z!ŝLO~ i 8 j→t t̄ h!1~ i↔ j !J . ~4.19!
7-9



of
ea
n

ar
ta
ca

h
IR

tw

s,
e

es

r

-

g
th
ze

li-

ing

res

nt
for
n,

ion

the

ly.
or
ture

nd

L. REINA, S. DAWSON, AND D. WACKEROTH PHYSICAL REVIEW D65 053017
The upper limit on thez integration ensures the exclusion
the soft gluon region. As usual, these initial-state collin
divergences are absorbed into the parton distribution fu
tions as will be described in detail in the Sec. V.

B. Phase space slicing method with one cutoff

An alternative way of isolating both soft and colline
singularities is to divide the phase space of the final s
partons into two regions according to whether all partons
be resolved~the hard region! or not ~the infrared, or IR,
region!. In the case ofqq̄→t t̄ h1g, thehard and IR regions
are defined by whether the gluon is resolved or not. T
emitted gluon is not resolved, and therefore considered
when

sig52pi•k,smin , with i 5q,q̄,t, t̄ , ~4.20!

for an arbitrary small cutoffsmin . Similarly to Eq.~4.2!, the
partonic real cross section can be written as the sum of
terms:

ŝ real
qq̄ 5ŝ ir 1ŝhard , ~4.21!

where ŝ ir includes both soft and collinear singularitie
while ŝhard is finite. Following the general idea of PSS, w
calculateŝ ir analytically, while we evaluateŝhard numeri-
cally, using standard Monte Carlo integration techniqu
Both ŝ ir and ŝhard depend on the cutoffsmin , but the had-
ronic real cross section,s real , is cutoff independent, afte
mass factorization, as will be shown in Sec. V.

In order to calculateŝ IR we apply the formalism devel
oped in Refs.@14–16# as follows.

~a! We consider the crossed processh→qq̄t t̄ 1g which is
obtained fromqq̄→t t̄ h1g by crossing all the initial state
colored partons to the final state, while crossing the Hig
boson to the initial state. For a systematic extraction of
IR singularities within the one-cutoff method, we organi
the amplitude forh→qq̄t t̄ 1g, A h→qq̄t t̄ g, in terms of col-
ored ordered amplitudes@32#. Using the color decomposition

Tc1c2

a Tc3c4

a 5
1

2 S dc1c4
dc3c2

2
1

N
dc1c2

dc3c4D , ~4.22!

we write A h→qq̄t t̄ g as the sum of four color ordered amp
tudesA1 , . . . ,A4 as follows:

A h→qq̄t t̄ g5 igsd f qf q̄
d f t f t̄

1

2 S dctcq̄
Tcqct̄

a A1~pt ,pt8 ,q1 ,q2 ,k!

1Tctcq̄

a dcqct̄
A2~pt ,pt8 ,q1 ,q2 ,k!

2
1

N
dctct̄

Tcqcq̄

a A3~pt ,pt8 ,q1 ,q2 ,k!

2
1

N
Tctct̄

a dcqcq̄
A4~pt ,pt8 ,q1 ,q2 ,k! D , ~4.23!
05301
r
c-

te
n

e
,

o

.

s
e

wheregs5A4pas, while (f q , f q̄ , f t , f t̄) and (cq ,cq̄ ,ct ,ct̄)
denote the flavor and color indices of the various outgo
quarks. The amplitudesAi(pt ,pt8 ,q1 ,q2 ,k) ~for i 51,2,3,4)
correspond to the four possible independent color structu
that arise in theh→t t̄ qq̄1g process, and eachAi contains
terms describing the emission of the gluon from a differe
pair of external quarks. We give the explicit expressions
theAi amplitudes in Appendix D. Due to this decompositio
the partonic cross section forh→qq̄t t̄ 1g can be written in
a very compact form:

ŝh→qq̄t t̄ g5E d~PS5!(
¯

uA h→qq̄t t̄ gu2, ~4.24!

with

(
¯

uA h→qq̄t t̄ gu25S gs
2N

2 D S N221

4 D(¯H uA 1u21uA 2u2

1
1

N2
@22uA31A 4u21uA 3u21uA 4u2#J .

~4.25!

~b! Using the one-cutoff PSS method and the factorizat
properties of both the color ordered amplitudesAi and the
gluon phase space in the soft/collinear limit, we extract

IR singularities ofŝh→qq̄t t̄ g into ŝso f t
h→qq̄t t̄ g and ŝcoll

h→qq̄t t̄ g as
follows:

ŝh→qq̄t t̄ g →
so f t

ŝso f t
h→qq̄t t̄ g

5E d~PS4!d~PSg!so f t(
¯

uA so f t
h→qq̄t t̄ gu2,

~4.26!

ŝh→qq̄t t̄ g →
coll inear

ŝcoll
h→qq̄t t̄ g

5E d~PS4!d~PSg!coll(
¯

uA coll
h→qq̄t t̄ gu2,

~4.27!

where we denote byd(PSg)so f t @d(PSg)coll# the phase
space of the gluon in the soft~collinear! limit, while

(̄uA so f t
h→qq̄t t̄ gu2 ( (̄uA coll

h→qq̄t t̄ gu2) represents the soft~collinear!

limit of Eq. ~4.25!. The explicit calculation ofŝso f t,coll
h→qq̄t t̄ g is

described in detail in Secs. IV B 1 and IV B 2, respective
The factorization of soft and collinear singularities for col
ordered amplitudes has been discussed in the litera
mainly for the leading color terms@O(N)#. For our applica-
tion of the one-cutoff PSS method, we will have to exte
these results to the sub-leading color terms@O(1/N)#.

~c! Finally, the IR singular contributionŝ ir in Eq. ~4.21!
consists of two terms:
7-10
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ŝ ir 5ŝ ir
c 1ŝcrossing. ~4.28!

As described in detail in Sec. IV B 3,ŝ ir
c is obtained by

crossingq andq̄ to the initial state andh to the final state in

the sum ofŝso f t
h→qq̄t t̄ g and ŝcoll

h→qq̄t t̄ g , while ŝcrossing corrects
for the difference between the collinear gluon radiation fro
initial and final state partons@15#, as will be discussed in
detail in Sec. V. As explicitly shown in Sec. IV B 3, the I

singularities ofŝv irt
qq̄ of Sec. III B are exactly canceled by th

corresponding singularities inŝ ir
c . On the other hand

ŝcrossingstill contains collinear divergences that will be ca
celed by the PDF counterterms when the parton cross se
is convoluted with the PDFs~see Sec. V!.

1. Soft gluon emission

We first consider the case of soft singularities, when,
the limit of Eg→0 ~soft limit!, one or moresig,smin ( i
5q,q̄,t, t̄ ). Using the factorization properties of the col
ordered amplitudesAi in the soft limit, the amplitude
squared forh→qq̄t t̄ 1g can be written as

(
¯

uA h→qq̄t t̄ gu2 →
so f t

(
¯

uA so f t
h→qq̄t t̄ gu2

5S gs
2N

2 D(¯uA LO
h→qq̄t t̄ u2H f q t̄~g!1 f q̄t~g!

2
1

N2
$ f t t̄~g!1 f qq̄~g!22@ f qt~g!2 f q t̄~g!

2 f q̄t~g!1 f q̄ t̄~g!#%J , ~4.29!

where, for any pair of quarks (a,b), the soft functionsf ab(g)
are defined as

f ab~g![
4sab

sagsbg
2

4ma
2

sag
2

2
4mb

2

sbg
2

, ~4.30!

and, as before@see Eq.~3.12!#,

si j [2pi•pj ,

both for massless and massive quarks.A LO
h→qq̄t t̄ is the tree

level amplitude for the processh→qq̄t t̄ as given by Eq.
~D1!. We note that Eq.~4.29! corresponds to the factorizatio
property expressed in Eq.~4.5!. Since, in the soft limit, the
h→qq̄t t̄ 1g phase space also factorizes, in analogy to
~4.7!, we can integrate out the soft gluon degrees of freed
and obtain the soft gluon part of the cross section foh

→qq̄t t̄ 1g as
05301
on

n

.
m

ŝso f t
h→qq̄t t̄ g5E d~PS4!(

¯
uA LO

h→qq̄t t̄ u2H Sq t̄1Sq̄t2
1

N2

3@St t̄1Sqq̄22~Sqt2Sq t̄2Sq̄t1Sq̄t̄ !#J ,

~4.31!

where, for any pair of quarks (a,b), the integrated soft func-
tions Sab are defined as

Sab5
gs

2N

2 E d~PSg!so f t~a,b,g! f ab~g!. ~4.32!

In the one-cutoff PSS method, the explicit form of the s
gluon phase space integral is given by@16#

d~PSg!so f t~a,b,g!5
~4p!e

16p2

l (e21/2)

G~12e!
@sagsbgsab2mb

2sag
2

2ma
2sbg

2 #2edsagdsbgu~smin2sag!

3u~smin2sbg!, ~4.33!

where

l5sab
2 24ma

2mb
2 , ~4.34!

and the integration boundaries forsag andsbg vary accord-
ingly to whethera andb are massive or massless quarks~see
Ref. @16# for more details!.

The explicit form of the integrated soft functionsSab is
obtained by carrying out the integration in Eq.~4.32!. When
a5q andb5q̄, i.e. when both quarks are massless, the
tegrated soft functionSqq̄ is given by@14#:

Sqq̄5S asN

2p D 1

G~12e! S 4pm2

smin
D e 1

e2 S s

smin
D e

, ~4.35!

where, in our notation,s5sqq̄ is the parton center-of-mas
energy@see Eq.~3.12!#. On the other hand, whena5q,q̄ and
b5t, t̄ , i.e. when one quark is massless and the other is m
sive, the corresponding integrated soft functions are of
form @16#

Sab5S asN

2p D 1

G~12e! S 4pm2

smin
D eS sab

smin
D eH 1

e2 F12
1

2S sab

mt
2D eG

1
1

2e S sab

mt
2D e

2
1

2
z~2!1

mt
2

sab
J

5
asN

2p

1

G~12e!S 4pm2

smin
D eH 1

2e2 1
1

2e
1

1

2e

3 lnS mt
2

smin
D 1

1

4
ln2S mt

2

smin
D 2

1

2
ln2S sab

mt
2D

1
1

2
lnS sab

mt
2D 1

1

2
lnS sab

smin
D2

1

2
z~2!1

mt
2

sab
J . ~4.36!
7-11
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Finally, whena5t andb5 t̄ , i.e. when both quarks are ma
sive, the corresponding integrated soft functionSt t̄ is given
by @16#

St t̄5S asN

2p D 1

G~12e! S 4pm2

smin
D e mt

2

Al t t̄
S Js

1

e
1Ja1JbD ,

~4.37!

where we have defined

mt
2

Al t t̄

Js512
st t̄

~2mt
21st t̄ !b t t̄

L t t̄ ,

Ja5Js lnS t1
2 l t t̄

sminmt
2D , ~4.38!

Jb5~t12t2!@122 ln~t12t2!2 ln~t1!#

1S t11t2

2 D F lnS t1

t2
D @112 ln~t12t2!#

1Li2S 12
t1

t2
D2Li2S 12

t2

t1
D G111t2t1

1~t21t1!F212 ln~t1!ln~t2!1
1

2
ln2~t1!G .

b t t̄ and L t t̄ are defined in Eq.~3.13! while l t t̄ and t6 are
given by

l t t̄[st t̄
2

24mt
4 ,

~4.39!

t65
st t̄

2mt
2

6AS st t̄

2mt
2D 2

21.

Finally, using Eqs.~4.35!–~4.38!, we can derive the complet

form of ŝso f t
h→qq̄t t̄ g :

ŝso f t
h→qq̄t t̄ g5

as

2p
NtE d~PS4!(

¯
uA LO

h→qq̄t t̄ u2

3H X̃22
s

e2
1

X̃21
s

e
1NC̃1

s1
C̃2

s

N J , ~4.40!

where
05301
X̃22
s 5S N2

1

ND ,

X̃21
s 5NF112 lnS mt

2

smin
D G2

1

N F lnS s

smin
D

1 lnS mt
2

smin
D 112

st t̄

~2mt
21st t̄ !b t t̄

L t t̄G ,

C̃1
s52 ln2S mt

2

smin
D 1 lnS mt

2

smin
D 2

1

2
ln2S sq t̄

mt
2D 2

1

2
ln2S sq̄t

mt
2D

1 lnS sq t̄sq̄t

mt
2smin

D 2
p2

6
2z~2!1mt

2S 1

sq t̄

1
1

sq̄t
D ,

~4.41!

C̃2
s52H 1

2
ln2S mt

2

smin
D 1 lnS mt

2

smin
D F lnS s

smin
D

112
st t̄

~2mt
21st t̄ !b t t̄

L t t̄G1
1

2
ln2S s

smin
D

1 ln2S sqt

mt
2D 2 ln2S sq t̄

mt
2D 2 ln2S sq̄t

mt
2D 1 ln2S sq̄t̄

mt
2D

22 lnS sqtsq̄t̄

sq̄tsq t̄
D 1

mt
2

Al t t̄

~Ja1Jb!1
p2

6
22mt

2

3S 1

sqt
2

1

sq t̄

2
1

sq̄t

1
1

sq̄t̄
D J .

2. Collinear gluon emission

In the collinear limit when an external massless quarki )
and a hard gluon become collinear and cluster to form a n
parton (i 8) @i 1g→ i 8, with collinear kinematics:pi5zpi 8
and k5(12z)pi 8#, the color ordered amplitudes factoriz
and the amplitude squared forh→qq̄t t̄ 1g can be written as

(
¯

uA h→qq̄t t̄ gu2 →
coll inear

(
¯

uA coll
h→qq̄t t̄ gu2

5S gs
2N

2 D(¯uA LO
h→qq̄t t̄ u2H f t̄

qg→q
1 f t

q̄g→q̄

2
1

N2
@ f q̄

qg→q
1 f q

q̄g→q̄22~ f t
qg→q

2 f t̄
qg→q

2 f t
q̄→q̄1 f t̄

q̄g→q̄
!#J . ~4.42!

The collinear functionsf j
ig→ i 8 contain the collinear singular

ity and are proportional to the Altarelli-Parisi splitting func
tion for ig→ i 8 @see Eq.~4.17!#, i.e.
7-12
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f j
ig→ i 8[

2

sig
S 11z2

12z
2e~12z! D . ~4.43!

Using this definition, we can see that Eq.~4.42! is equivalent
to Eq.~4.16!, althoughq andq̄, the massless quarks, are no
considered as final state quarks. The reason why we u
more involved expression is because this allows us to m
the collinear and soft regions of the gluon phase space
very natural way, as will be explained in the following. In th
same spirit, the lower indexj of the collinear functions

f j
ig→ i 8 keeps track of which color ordered amplitude a giv

collinear pole comes from. Although seemingly useless
this stage, this will be crucial in deriving Eqs.~4.44! and
~4.45!, where the integration over the collinear region of t
gluon phase space is performed in such a way to avoid
overlap with the soft gluon phase space integration in E
~4.31! and ~4.32!. Finally, we note that there is nof t̄

tg→t or

f t
t̄ g→ t̄ in Eq. ~4.42! since the gluon emission from a massi

quark does not give origin to collinear singularities.
In the collinear limit, theh→qq̄t t̄ 1g phase space als

factorizes, in complete analogy to Eq.~4.18!, provided the
obvious changes between initial and final state partons
taken into account. Therefore, we can integrate out ana
cally the collinear gluon degrees of freedom and obtain
collinear part of the partonic cross section forh→qq̄t t̄ 1g
as

ŝcoll
h→qq̄t t̄ g5E d~PS4!(

¯
uA LO

h→qq̄t t̄ u2H Cqt̄1Cq̄t2
1

N2

3@Cqq̄22~Cqt2Cqt̄2Cq̄t1Cq̄t̄ !#J , ~4.44!

where, for any pair of quarks (i , j ), the integrated collinea
functionsCi j are defined as

Ci j 5S gs
2N

2 D E d~PSg!coll~ i , j ,z! f j
ig→ i 8~z!

52S asN

2p D 1

G~12e! S 4pm2

smin
D e1

e
I ig→ i 8~z1 ,z2!.

~4.45!

The phase space of the collinear gluon can be written as

d~PSg!coll~ i , j ,z!5
~4p!e

16p2

1

G~12e!
sig

2edsig

3@z~12z!#2edzu~smin2sig!,

~4.46!

and the integration boundaries onz are defined by the re
quirement that only onesig verifies the conditionsig
,smin . This is necessary in order to avoid overlapping w
the region of phase space where the gluon is soft@see Eq.
~4.32!#, and it is easily translated into an upper bound on
05301
a
ch
a

t

to
s.

re
ti-
e

e

z integration, thanks to the structure of Eqs.~4.31! and
~4.44!. In fact, each term in Eqs.~4.31! and ~4.44! depends
on only two invariants,sig and sjg , and each term in

ŝcoll
h→qq̄t t̄ h corresponds to an analogous term inŝso f t

h→qq̄t t̄ g ~ex-
cept thatCt t̄ is missing since there is no collinear emissi

from t and t̄ ). Therefore, for eachCi j we only need to re-
quire that whensig,smin :

sjg5~12z!si 8 j.smin→z,12
smin

si 8 j

512z2 . ~4.47!

The lower bound onz is not constrained and the integratio
starts atz150. For sake of simplicity, and since this does n
give origin to ambiguities, in the following we will denot
the si 8 j invariants in Eq.~4.47! by si j . Finally, when the
integration over the collinear gluon degrees of freedom
performed, one finds that theI ig→ i 8(z1 ,z2) functions in Eq.
~4.45! are of the form@14#

I ig→ i 8~z1 ,z2!5F S z2
2e21

e D 2
3

4
1S p2

6
2

7

4D eG1O~e2!.

~4.48!

Wheni 5q,q̄ and j 5t, t̄ , i.e. when one quark is massless a
the other is massive, the integrated collinear functionsCi j

are given by

Ci j 52S asN

2p D 1

G~12e! S 4pm2

smin
D eH F lnS si j

smin
D2

3

4G1e
1

1

2
ln2S si j

smin
D1

p2

6
2

7

4
1O~e!J ,

while when bothi , j 5q,q̄, i.e. when both quarks are mas
less,

Cqq̄52S asN

2p D 1

G~12e! S 4pm2

smin
D eH F2 lnS s

smin
D2

3

2G1e
1 ln2S s

smin
D1

p2

3
2

7

2
1O~e!J .

Using these results, we can finally explicitly write the pa
tonic cross section for collinear gluon radiation as follows

ŝcoll
h→qq̄t t̄ g5S as

2p DNtE d~PS4!(
¯

uA LO
h→qq̄t t̄ u2

3H X21
c

e
1NC1

c1
C2

c

N J , ~4.49!
7-13
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where

X21
c 5NF3

2
2 lnS sq t̄

smin
D2 lnS sq̄t

smin
D G1

1

N F2
3

2
12 lnS s

smin
D

22 lnS sqtsq̄t̄

sq t̄sq̄t
D G ,

C1
c52 lnS mt

2

smin
D S lnS sq t̄

smin
D1 lnS sq̄t

smin
D2

3

2D2
1

2
ln2S sq t̄

smin
D

2
1

2
ln2S sq̄t

smin
D1

7

2
2

p2

3
, ~4.50!

C2
c5 ln2S s

smin
D2 ln2S sqt

smin
D1 ln2S sq t̄

smin
D1 ln2S sq̄t

smin
D

2 ln2S sq̄t̄

smin
D1 lnS mt

2

smin
D F2

3

2
12lnS s

smin
D

22 lnS sqtsq̄t̄

sq t̄sq̄t
D G1

p2

3
2

7

2
.

3. IR-singular gluon emission: Complete result forŝ IR

As already described in the beginning of Sec. IV B, t
partonic cross section for the IR-singular real gluon radiat
for the processqq̄→t t̄ h using the one-cutoff PSS method
given by

ŝ IR5ŝ ir
c 1ŝcrossing

5@ŝso f t
h→qq̄t t̄ g1ŝcoll

h→qq̄t t̄ g#crossed1ŝcrossing. ~4.51!

Note that crossingŝso f t
h→qq̄t t̄ g and ŝcoll

h→qq̄t t̄ g only implies the
interchange of the momenta of the quark and antiquark, s
particle and antiparticle interchange under crossing. In
case of soft gluon emission this can be easily verified
comparing Eq.~4.5! with Eq. ~4.29!, after flipping helicities
and momenta of the crossed particles. For collinear gl
emission, the crossing is complicated by the difference
tween initial and final state collinear radiation. Usin

ŝso f t,coll
h→qq̄t t̄ g in Eqs.~4.40! and~4.49!, ŝ ir

c can be explicitly writ-
ten as

ŝ ir
c 5S as

2p DNtE d~PS3!(
¯

uA LOu2H X22
IR

e2
1

X21
IR

e

1C1
IRN1C2

IR 1

NJ , ~4.52!

where
05301
n

ce
e
y

n
e-

X22
IR 52X22

v irt ,

X21
IR 52X21

v irt ,
~4.53!

C1
IR5 lnS mt

2

smin
D F22 lnS sq̄t̄

mt
2D 22 lnS sqt

mt
2D 1

7

2
2 lnS mt

2

smin
D G

1 lnS sq̄t̄

mt
2D 1 lnS sqt

mt
2D 2 ln2S sq̄t̄

mt
2D 2 ln2S sqt

mt
2D

1
7

2
2

p2

2
2z~2!1mt

2S 1

sq̄t̄

1
1

sqt
D ,

C2
IR5 lnS mt

2

smin
D F2 lnS s

mt
2D 14 lnS sqtsq̄t̄

sq t̄sq̄t
D 2

5

2
1 lnS mt

2

smin
D

1
st t̄

~2mt
21st t̄ !b t t̄

L t t̄G1
1

2
ln2S s

mt
2D 22 ln2S sq̄t

mt
2D

12 ln2S sq̄t̄

mt
2D 12 ln2S sqt

mt
2D 22 ln2S sq t̄

mt
2D

22 lnS sqtsq̄t̄

sq̄tsq t̄
D 22mt

2S 1

sqt
2

1

sq t̄

2
1

sq̄t

1
1

sq̄t̄
D

1
p2

2
2

7

2
2

mt
2

Al t t̄

~Ja1Jb!,

while Nt is defined in Eq.~3.5!, and ALO is the tree-level
amplitude forqq̄→t t̄ h in d54 dimensions.

As described in detail in Ref.@15#, ŝcrossing is given by

ŝcrossing5asE
0

1

dz ŝLO
qq̄ @Xq→q~z!1Xq̄→q̄~z!#,

~4.54!
where Xq→q(z)@Xq̄→q̄(z)# is the unrenormalized crossin
function of Ref.@15#, which accounts for the difference be
tween collinear gluon radiation off an initial or a final sta
quark ~antiquark!:

Xq→q~z!52
CF

2p S 4pm2

smin
D e 1

G~12e! S 1

e D
3H F3

2
2eS p2

3
2

7

2D Gd~12z!

1F 11z2

@~12z!11e#1

2e~12z!12eG J .

~4.55!

V. TOTAL CROSS SECTION FOR pp̄\t t̄ h AND MASS
FACTORIZATION

As described in Sec. II, the observable total cross sec
at NLO is obtained by convoluting the parton cross sect
7-14
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with the NLO quark distribution functionsF q
p,p̄(x,m),

thereby absorbing the remaining initial-state singularities

dŝNLO
qq̄ into the quark distribution functions. This can be u

derstood as follows. First the parton cross section is con

luted with thebare quark distribution functionsF q
p,p̄(x) and

subsequentlyF q
p,p̄(x) is replaced by the renormalized qua

distribution functionsF q
p,p̄(x,m) defined in some subtractio

scheme. Using theMS scheme, the scale-dependent NL

quark distribution functions are given in terms ofF q
p,p̄(x)

and the QCD NLO parton distribution function counterterm
@13,15# as follows: for thetwo-cutoff PSS method

F q
p,p̄~x,m!5F q

p,p̄~x!F12
as

2p

G~12e!

G~122e!
~4p!eS 1

e D
3CFS 2 ln~ds!1

3

2D G
1F as

2p

G~12e!

G~122e!
~4p!eG E

x

12ds dz

z

3S 2
1

e D Pqq~z!F j
p,p̄S x

zD , ~5.1!

and for theone-cutoff PSS method

F q
p,p̄~x,m!5F q

p,p̄~x!F12
as

2p

~4p!e

G~12e! S 1

e DCF

3

2G
1F as

2p

~4p!e

G~12e!G Ex

1dz

z

3S 2
1

e DCF

11z2

~12z!1
F j

p,p̄S x

zD , ~5.2!

where theO(as) terms in the previous equations are calc
lated from theO(as) corrections to theq→qg splitting, in
the PSS formalism, andPqq(z) is the Altarelli-Parisi splitting
function of Eq.~4.17!. Note that, again, we choose the fa
05301
f

o-

-

torization and renormalization scales to be equal. There
there is no explicit factorization scale dependence in E
~5.1! and ~5.2!, and the onlym dependence inF q

p,p̄(x,m)
comes fromas(m). When using the two-cutoff method an
convoluting the parton cross section with the renormaliz
quark distribution function of Eq.~5.1!, the IR singular coun-
terterm of Eq.~5.1! exactly cancels the remaining IR poles
ŝv irt

qq̄ 1ŝso f t andŝhard/coll . In the case of the one-cutoff PS
method, the IR singular counterterm of Eq.~5.2! exactly can-
cels the IR poles ofŝcrossing. Finally, the completeO(as

3)
inclusive total cross section forpp̄→t t̄ h in the MS factor-
ization scheme can be written as follows: for thetwo-cutoff
PSS method

sNLO5(
qq̄

E dx1dx2F q
p~x1 ,m!F q̄

p̄
~x2 ,m!@ŝLO

qq̄ ~x1 ,x2 ,m!

1ŝv irt
qq̄ ~x1 ,x2 ,m!1ŝso f t8 ~x1 ,x2 ,m!#

1
as

2p
CF(

qq̄
E dx1dx2

3H E
x1

12dsdz

z FF q
pS x1

z
,m DF q̄

p̄
~x2 ,m!

1F q
p̄~x2 ,m!F q̄

pS x1

z
,m D G ŝLO

qq̄ ~x1 ,x2 ,m!

3F11z2

12z
lnS s

m2

~12z!2

z

dc

2 D 112zG1~1↔2!J
1(

qq̄
E dx1dx2F q

p~x1 ,m!F q̄
p̄
~x2 ,m!

3ŝhard/non-coll~x1 ,x2 ,m!, ~5.3!

with

ŝso f t8 5ŝso f t1ŝLO
qq̄ S as

2p D G~12e!

G~122e!
~4p!e

3S 1

e DCF@4 ln~ds!13#, ~5.4!
and for theone-cutoff PSS method

sNLO5(
qq̄

E dx1dx2F q
p~x1 ,m!F q̄

p̄
~x2 ,m!H ŝLO

qq̄ ~x1 ,x2 ,m!1ŝv irt
qq̄ ~x1 ,x2 ,m!1ŝ ir

c ~x1 ,x2 ,m!1
as

2p
2CFŝLO

qq̄ ~x1 ,x2 ,m!

3F3

2
lnS smin

m2 D 1
p2

3
2

7

2G J 1
as

2p
CF(

qq̄
E dx1dx2H E

x1

1 dz

z FF q
pS x1

z
,m DF q̄

p̄
~x2 ,m!

1F q
p̄~x2 ,m!F q̄

pS x1

z
,m D G ŝLO

qq̄ ~x1 ,x2 ,m!F 11z2

~12z!1
lnS s

m2

smin

s D 112z1~11z2!S ln~12z!

12z D
1
G1~1↔2!J

1(
qq̄

E dx1dx2F q
p~x1 ,m!F q̄

p̄
~x2 ,m!ŝhard~x1 ,x2 ,m!. ~5.5!
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We note thatsNLO is finite, since, after mass factorizatio
both soft and collinear singularities have been canceled

tween ŝv irt
qq̄ 1ŝso f t8 and ŝhard/coll in the two-cutoff PSS

method, and betweenŝv irt
qq̄ and ŝ ir

c in the one-cutoff PSS
method. The last terms, respectively, describe the finite
gluon emission of Eq.~4.3! and Eq.~4.21!. Note that the
second term in Eqs.~5.3! and~5.5!, which is proportional to
ln(s/m2), corresponds exactly to the second and third term
Eq. ~2.7!, as predicted by renormalization group argumen
Before we discuss in detail the numerical results for the N
total cross section forpp̄→t t̄ h we first demonstrate tha
sNLO does not depend on the arbitrary cutoffs of the P
method, i.e. onsmin when we use the one-cutoff method, a
on the soft and hard/collinear cutoffsds anddc when we use
the two-cutoff method. We note that the cancellation of
cutoff dependence at the level of the total NLO cross sec
is a very delicate issue, since it involves both analytical a
numerical contributions. It is crucial to study the behavior
sNLO in a region where the cutoff~s! are small enough to
justify the approximations used in the analytical calculat

of the IR-divergent part ofŝ real
qq̄ , but not so small to give

origin to numerical instabilities.
Figure 7 is about the one-cutoff PSS method and sh

the dependence ofsNLO on smin . In the upper window we
illustrate the cancellation of thesmin dependence betwee
s ir

c , scrossing, and shard , while in the lower window we
show, on a larger scale, the behavior ofsNLO , including the
statistical errors from the Monte Carlo integration. We no
thatsNLO also includes the Born cross section and the virt
contribution to the NLO cross section, which are bothsmin
independent, and are therefore not shown explicitly in
upper part of Fig. 7. Clearly a plateau is reached in the
gion 0.1 GeV2,smin,100 GeV2.

Figures 8 and 9 are about the two-cutoff PSS method
Fig. 8 we show the dependence ofsNLO on the soft cutoff,
ds , for a fixed value of the hard/collinear cutoff,dc51024.

FIG. 7. Dependence ofsNLO(pp̄→t t̄ h) on the arbitrary cutoff
of the one-cutoff PSS method,smin , at AsH52 TeV, for Mh

5120 GeV, andm5mt . The upper plot shows the cancellation
thesmin dependence betweens ir

c , scrossing, andshard . The lower
plot shows, on an enlarged scale, the dependence ofsNLO on smin ,
with the corresponding statistical errors.
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In Fig. 9 we show the dependence ofsNLO on the hard/
collinear cutoff,dc , for a fixed value of the soft cutoff,ds
5531024. In the upper window of Fig. 8~9! we illustrate
the cancellation of theds(dc) dependence betweensso f t
1shard/coll and shard/non-coll , while in the lower window
we show, on a larger scale,sNLO with the statistical errors
from the Monte Carlo integration. As before,sNLO also in-
cludes the contribution from the Born and the virtual cro
sections, which are both cutoff-independent and are
shown explicitly in the upper parts of Figs. 8 and 9. Fords in
the range 1024–(2.531023) and dc in the range
1025–1023, a clear plateau is reached and the NLO to
cross section is independent of the technical cutoffs of
two-cutoff PSS method. All the results presented in the f

FIG. 8. Dependence ofsNLO(pp̄→t t̄ h) on the soft cutoffds of
the two-cutoff PSS method, atAsH52 TeV, for Mh

5120 GeV,m5mt , anddc51024. The upper plot shows the can
cellation of the ds dependence betweensso f t1shard/coll and
shard/non-coll . The lower plot shows, on an enlarged scale, the
pendence ofsNLO on ds with the corresponding statistical errors.

FIG. 9. Dependence ofsNLO(pp̄→t t̄ h) on the collinear cutoff
dc of the two-cutoff PSS method, atAsH52 TeV, for Mh

5120 GeV,m5mt , andds5531024. The upper plot shows the
cancellation of thedc dependence betweensso f t1shard/coll and
shard/non-coll . The lower plot shows, on an enlarged scale, the
pendence ofsNLO on dc with the corresponding statistical errors
7-16
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lowing are obtained using the two-cutoff PSS method w
ds anddc in the range 1024–1023. We have confirmed them
using the one-cutoff PSS method with 1<smin<10.

VI. NUMERICAL RESULTS
In the following we discuss in detail our results for th

NLO inclusive total cross section forpp̄→t t̄ h, sNLO(pp̄

→t t̄ h), as introduced in Sec. II and explicitly given by Eq
~5.3! and ~5.5!. Our numerical results are found usin
CTEQ4M parton distribution functions@33# and the 2-loop
evolution of as(m) for the calculation of the NLO cros
section, and CTEQ4L parton distribution functions and
1-loop evolution ofas(m) for the calculation of the lowes
order cross section, unless stated otherwise. The top-q
mass is taken to bemt5174 GeV andas

NLO(MZ)50.116.
First of all, in Fig. 10 we show how at NLO the depe

dence on the arbitrary renormalization/factorization scalem
is significantly reduced. We useMh5120 GeV for illustra-
tion purposes. We note that only for scalesm of the order of
2mt1Mh or bigger is the NLO result greater than the lowe
order result atAsH52 TeV.

Figure 11 shows both the LO and the NLO total cro
section forpp̄→t t̄ h as a function ofMh , at AsH52 TeV,
for two values of the renormalization/factorization scale,m
5mt andm52mt . Over the entire range ofMh accessible at
the Tevatron, the NLO corrections decrease the rate
renormalization/factorization scalesm,2mt1Mh . The re-
duction is much less dramatic atm52mt than atm5mt , as
can be seen from both Fig. 10 and Fig. 11. An illustrat
sample of results is also given in Table I. The error we qu
on our values is the statistical error of the numerical integ
tion involved in evaluating the total cross section. We e
mate the remaining theoretical uncertainty on the NLO
sults to be of the order of 12%. This is mainly due to t
leftover m dependence~about8%), thedependence on th
PDFs ~about6%), and theerror onmt ~about 7%) which
particularly plays a role in the Yukawa coupling.

FIG. 10. Dependence of sLO,NLO(pp̄→t t̄ h) on the

renormalization/factorization scalem, at AsH52 TeV, for Mh

5120 GeV.
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The correspondingK factor, i.e. the ratio of the NLO
cross section to the LO one,

K5
sNLO

sLO
, ~6.1!

is shown in Fig. 12. For scalesm betweenm5mt and m
52mt , the K factor varies roughly betweenK50.70 andK
50.95, whenMh varies in the range between 100 and 2
GeV. For scales of the order ofm52mt1Mh theK factor is
of order one and becomes larger than one for higher sca
Given the strong scale dependence of the LO cross sec
the K factor also shows a significantm-dependence and
therefore is an equally unreliable prediction. Moreover, it
important to remember that theK-factor depends on how th
LO cross section is calculated. We choose to calculate
LO cross section using both LOas(m) and LO PDFs, de-
noted bysLO in Table I. An equally valid approach could b
to evaluate the LO cross section using NLOas(m) and NLO

FIG. 11. sNLO and sLO for pp̄→t t̄ h as functions ofMh , at
AsH52 TeV, for m5mt andm52mt .

FIG. 12. K factor for pp̄→t t̄ h as a function ofMh at AsH

52 TeV for m5mt andm52mt .
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TABLE I. Values of bothsLO @calculated with LOas(m) and LO PDFs#, s̄LO @calculated with NLO
as(m) and NLO PDFs#, andsNLO for different values ofMh and for different renormalization/factorizatio
scalesm.

Mh ~GeV! m sLO ~fb! s̄LO ~fb! sNLO ~fb!

mt 6.866260.0013 5.284360.0008 4.86360.029
120 mt1Mh/2 5.908560.0011 4.584660.0007 4.84760.024

2mt 4.878960.0009 3.825260.0006 4.69160.020
2mt1Mh 4.254860.0008 3.360060.0005 4.51160.017

mt 3.404060.0006 2.581160.0005 2.35560.013
150 mt1Mh/2 2.828960.0005 2.166860.0004 2.31560.011

2mt 2.400760.0004 1.855360.0004 2.25360.010
2mt1Mh 2.028260.0004 1.581360.0003 2.14760.008

mt 1.760560.0003 1.315360.0002 1.16060.007
180 mt1Mh/2 1.414260.0003 1.069360.0002 1.15860.005

2mt 1.232660.0002 0.939060.0001 1.13260.004
2mt1Mh 1.009660.0002 0.777360.0001 1.06960.004
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PDFs, denoted bys̄LO in Table I, in which case theK factor
would just represent the impact of theO(as) corrections that
do not originate from the running ofas(m) and the PDFs.
SincesLO.s̄LO , theK factor obtained usingsLO is smaller
than the one obtained usings̄LO , and it is important to
match the rightK factor to the rightsLO or s̄LO . Therefore
we would like to stress once more that we only discuss thK
factor as a qualitative indication of the impact ofO(as)
QCD corrections, for different processes or when using
ferent approaches. The physical meaningful quantity is
NLO cross section, not theK factor.

For comparison, we have estimated theK factor also in
the EHA @9#, and we obtainK.0.6–0.7, for Higgs boson
masses up to 150 GeV and renormalization/factoriza
scales in the range betweenm5mt and m52mt1Mh . As
anticipated, we do not expect the EHA to give a quant
tively good approximation of the fullpp̄→t t̄ h calculation at
O(as), since atAsH52 TeV and for a SM Higgs boson
above the experimental bound, we cannot work in the li
Mh , mt /As!1 or Mh /mt!1. Still the EHA gives a remark-
ably good qualitative indication of the fact that the first ord
QCD corrections may lower the LO total cross section.

It is interesting to compare our NLO result forpp̄→t t̄ h

with the NLO result forpp̄→t t̄ . Since the Higgs boson i
colorless, one would naively expect the QCD corrections
both processes to be of roughly the same size. Defining
NLO cross section using the NLO evolution ofas(m) and
the NLO CTEQ4M PDFs, and the LO cross section using
LO evolution of as(m) and the LO CTEQ4L PDFs, theK
factor for t t̄ production atAsH52 TeV, with m5mt and
mt5174 GeV, is

K~pp̄→t t̄ !uqq̄50.98,
~6.2!

K~pp̄→t t̄ !u tot51.05,
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where theqq̄ label indicates that only theqq̄ initial state is
included. The size of the QCD corrections topp̄→t t̄ is thus
similar in magnitude to the result obtained in Fig. 12, taki
into account thatpp̄→t t̄ h is completely dominated by the
qq̄ channel. Of course, we do not expect a better agreem
since inpp̄→t t̄ h an additional heavy particle is produce
and new contributions to the virtual and real correctio
arise. Moreover, taking the EHA as an indication, one co
naively expect that the radiation of a Higgs boson introdu
an additional negative contribution. We also observe tha
we now use as the LO cross section the one obtained u
NLO as(m) and NLO CTEQ4M PDFs, the twoK factors in
Eq. ~6.2! increase, according to the comment we ma
above, and become

K~pp̄→t t̄ !uqq̄51.18,
~6.3!

K~pp̄→t t̄ !u tot51.24,

in agreement with the literature@34#.1 Moreover, since the
NLO cross section forpp̄→t t̄ is further increased by the
resummation of the leading and next-to-leading logarith
arising from the threshold region dynamics, the totalK factor
for pp̄→t t̄ can be as high as 1.33 form5mt . In this respect,
we also note that, contrary topp̄→t t̄ , in the threshold region
for pp̄→t t̄ h there are large negative contributions, main
from soft gluon radiation, which are largely compensated
large positive contributions from hard gluon radiation
largerAs. In the threshold region the Coulomb term, comi
from the exchange of virtual gluons between thet/ t̄ external
legs, is important and contributes to decrease the NLO c
section, although it is moderated by the behavior of

1We have compared our results with Fig. 9 of Ref.@34#, and we
see very good agreement with the LO and the NLO curves, us
mt5175 GeV andAsH51.8 TeV.
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three-body phase space. In the strict threshold limit, the C
lomb contribution to pp̄→t t̄ h goes to zero, while for
t t̄ production it is constant and dominates the NLO cro
section.

VII. CONCLUSION

The NLO inclusive total cross section for the standa
model processpp̄→t t̄ h at AsH52 TeV shows a signifi-
cantly reduced scale dependence as compared to the
result and leads to increased confidence in predictions b
on these results. The NLO QCD corrections slightly decre
or increase the Born level cross section depending on
renormalization/factorization scales used. The NLO inclus
total cross section for Higgs boson masses in the range
cessible at the Tevatron, 120,Mh,180 GeV, is of the order
of 1–5 fb.

The contributions to the NLO cross section resulting fro
real gluon emission have been calculated in two variation
the phase space slicing method, involving one or two a
trary numerical cutoff parameters, respectively. This is
first application of the one-cutoff phase space slicing
proach,~‘‘ smin’’ !, to a cross section involving more than on
massive particle in the final state. The correspondence
tween the two phase space slicing approaches is made
plicit. The virtual contributions to the NLO cross sectio
require the calculation of both box and pentagon diagra
involving several massive particles and explicit results
the integrals have been presented in the Appendixes. T
techniques can now be applied to other similar processe
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APPENDIX A: PENTAGON SCALAR INTEGRALS

In this appendix we review the details of the calculati
of the pentagon scalar integrals that appear in the calcula
of diagramsP1 and P2 illustrated in Fig. 5. Using the mo
mentum flow and the notation shown in Fig. 5, the pentag
scalar integral originating from diagramP1 (E0p1) can be
written as

E0p15m42dE ddk

~2p!d

1

N1N2N3N4N5
, ~A1!

where
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N15k2,

N25~k1q1!2,

N35~k1q11q2!2, ~A2!

N45~k1q11q22pt8!22mt
2 ,

N55~k1q11q22pt82ph!22mt
2 .

We note that we included a factorm42d in the definition of
the d-dimensional scalar integrals in order to have them
the most convenient form for the calculation of the virtu
amplitude squared. The pentagon scalar integral origina
from diagramP2 , E0p2, can be obtained from Eqs.~A1! and
~A2! by exchangingq1↔q2. Therefore in the following we
limit our discussion toE0p1, the generalization toE0p2 be-
ing straightforward.

We calculate these integrals following the method int
duced by the authors of Ref.@11#. To make contact with their
notation, we denote byki the external momenta~such that
ki

25mi
2), by Mi the internal masses, bypi the sum of the

first i external momenta,pi
m5( j 51

i kj
m , by pi j the difference

pi j
m5pj 21

m 2pi 21
m 5ki

m1ki 11
m 1•••1kj 21

m ~for i , j ), and fi-

nally by s̄i j the invariant massess̄i j 5(ki1kj )
2.

The topology of the generic pentagon scalar integra
illustrated in Fig. 13, which can be specified to our case
identifying

k1→2q1 ~ incomingq!

k2→2q2 ~ incoming q̄!

k3→pt8 ~outgoing t̄ ! ~A3!

k4→ph ~outgoingh!

k5→pt ~outgoingt !.

Using the standard Feynman parametrization techniq
the pentagon integral in Eq.~A1! can be written as

FIG. 13. Topology of the pentagon scalar integral.
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E0p152
i

16p2 ~4pm2!eG~31e!

3E
0

1P i 51
5 daid~12S i 51

5 ai !

@Dp1~ai !#
31e

, ~A4!

where the denominatorDp1(ai) is
r

m

i

f

.

05301
Dp1~ai !5 (
i , j 51

5

Si j aiaj2 ih, ~A5!

and the symmetric matrixSi j is given by

Si j 5
1

2
~Mi

21M j
22pi j

2 !. ~A6!

For our particular process, the matrixSi j has the following
explicit form:
S5
1

2 S 0 0 2s12 ~mt
22s45! 0

0 0 0 ~mt
22s23! ~mt

22s15!

2s12 0 0 0 ~mt
22s34!

~mt
22s45! ~mt

22s23! 0 2mt
2 ~2mt

22Mh
2!

0 ~mt
22s15! ~mt

22s34! ~2mt
22Mh

2! 2mt
2

D . ~A7!
Following Ref. @11#, E0p1 can then be written as the linea
combination of five scalar box integralsD0p1

( i ) :

E0p152
1

2 (
i 51

5

ciD0p1
( i ) , ~A8!

where eachD0p1
( i ) scalar box integral can be obtained fro

the scalar pentagon integralE0p1 of Eq. ~A4! in the limit
where one of the Feynman parametersai of the internal
propagators goes to zero~i.e. D0p1

( i ) is obtained whenai

→0). The five box scalar integrals we need are given
Secs. A 1–A 5. The coefficientsci in Eq. ~A8! are given by

ci5(
j 51

5

Si j
21 . ~A9!

Using Eq. ~A7! we can easily obtain them in terms o
mt , Mh , and the kinematic invariantss̄i j .

The final result for the pentagon scalar integralE0p1 can
be written as

E0p15
i

16p2
NtFX22

e2
1

X21

e
1X0G , ~A10!

whereNt is given in Eq.~3.5!, while X22 , X21 andX0 are
obtained using Eqs.~A8! and ~A7!, and the results in Secs
A 1–A 5. The expression forX0 is too lengthy to be given
explicitly in this appendix, whileX22 and X21 have the
following compact form:

X225
1

2s S 2
1

v1t1
2

1

v2t2
1

2

t1t2
D ,

X215
1

st1t2
~2Ls1Lv1

1Lv2
2Lt1

2Lt2
!

~A11!
n

1
1

st2v2
~Lt2

2Lt1
1Lv2

!

1
1

st1v1
~Lt1

2Lt2
1Lv1

!,

where we have defined

s5~q11q2!25s,

t15mt
22~q12pt!

252 q1•pt5sqt ,

t25mt
22~q22pt8!252 q2•pt85sq̄t̄ , ~A12!

v15~pt1ph!22mt
2 ,

v25~pt81ph!22mt
2 ,

and

Ls5 lnS s

mt
2D ,

Lt1
5 lnS t1

mt
2D , Lt2

5 lnS t2

mt
2D , ~A13!

Lv1
5 lnS v1

mt
2D , Lv2

5 lnS v2

mt
2D .

We discuss in the following the box scalar integralsD0p1
( i ) ,

which are used in Eq.~A8! to calculateE0p1. The analogous
7-20
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box scalar integrals forE0p2 can be obtained from theD0p1
( i )

by exchangingq1↔q2 in their analytic expression.

1. Box scalar integralD0p1
„1…

D0p1
(1) is obtained from the pentagon in the limita1→0

and corresponds to the following integral:

D0p1
(1)5m42dE ddk

~2p!d

1

N2N3N4N5

5m42dE ddk

~2p!d

1

N18N28N38N48
, ~A14!

whereN18 , . . . ,N48 are obtained fromN2 , N3 , N4, andN5 of
Eq. ~A2! by applying the momentum shiftk→k2q1, and are
explicitly given by

N185k2,

N285~k1q2!2,
~A15!

N385~k1q22pt8!22mt
2 ,

N485~k1q22pt82ph!22mt
2 ,

The part ofD0p1
(1) which contributes to the virtual amplitud

squared is given by

D0p1
(1)5

i

16p2
NtS 2

1

v2t2
D S X22

e2
1

X21

e
1X0D ,

~A16!

where Nt is given in Eq. ~3.5!, while the coefficients
X22 , X21, andX0 are given by

X225
1

2
,

X215 lnS t1mt
2

v2t2
D , ~A17!

X05ReH 2
5

6
p21 ln2S v2

mt
2D 1 ln2S t2

mt
2D 2 ln2S t1

mt
2D

12 lnS v21t1

t2
D lnS t1

v2
D12 lnS t22t1

v2
D lnS t1

t2
D

22 Li2S t22t12v2

t2
D22 Li2S v21t12t2

v2
D

12 Li2S t1~v21t12t2!

v2t2
D2I0J ,

where
05301
I05 lnS t2

t1
D lnS Mh

2

mt
2 D 1H 2Li2S 1

l1
D

1 lnS t2

t1
D lnS 2t12l1~t22t1!

t22t1
D

2Li2S t2

l1~t22t1!1t1
D1Li2S t1

l1~t22t1!1t1
D

1~l1↔l2!J , ~A18!

and

l65
1

2 S 16A12
4mt

2

Mh
2 D . ~A19!

2. Box scalar integralD0p1
„2…

D0p1
(2) is obtained from the pentagon in the limita2→0

and corresponds to the following integral:

D0p1
(2)5m42dE ddk

~2p!d

1

N1N3N4N5
. ~A20!

where N1 , N3 , N4, and N5 are given in Eq.~A2!. D0p2
(2)

is equal toD0p1
(2) , and they both coincide withD0b1 in

Appendix B 1.

3. Box scalar integralD0p1
„3…

D0p1
(3) is obtained from the pentagon in the limita3→0

and corresponds to the following integral:

D0p1
(3)5m42dE ddk

~2p!d

1

N1N2N4N5

5m42dE ddk

~2p!d

1

N18N28N38N48
, ~A21!

whereN18 , . . . ,N48 are obtained fromN1 , N2 , N4, andN5 of
Eq. ~A2! after the momentum shiftk→2k2q1 has been
applied, and are explicitly given by

N185k2,

N285~k1q1!2,
~A22!

N385~k1q12pt!
22mt

2 ,

N485~k1q12pt2ph!22mt
2 .

We notice that this integral can be obtained fromD0p1
(1) when

q2→q1 andpt8→pt .
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4. Box scalar integralD0p1
„4…

D0p1
(4) is obtained from the pentagon in the limita4→0

and corresponds to the following integral:

D0p1
(4)5m42dE ddk

~2p!d

1

N1N2N3N5

5m42dE ddk

~2p!d

1

N18N28N38N48
, ~A23!

whereN18 , . . . ,N48 are obtained fromN1 , N2 , N3, andN5 of
Eq. ~A2! after the momentum shiftk→2k2q12q2 has
been applied, and are explicitly given by

N185k2,

N285~k1q2!2,
~A24!

N385~k1q11q2!2,

N485~k1q11q22pt!
22mt

2 .

This integral coincides withD0b3
(3) in Appendix B 3.

5. Box scalar integralD0p1
„5…

D0p1
(5) is obtained from the pentagon in the limita5→0

and corresponds to the following integral:

D0p1
(5)5m42dE ddk

~2p!d

1

N1N2N3N4
, ~A25!

whereN1 , . . . ,N4 are given in Eq.~A2!. This integral coin-
cides withD0b3

(1) in Appendix B 3.

APPENDIX B: BOX SCALAR INTEGRALS

1. Box 1: Box scalar integralD0b1

The scalar box integralD0b1 can be written as

D0b15m42dE ddk

~2p!d

1

N1N2N3N4
, ~B1!

where

N15k2,

N25~k1q!2,
~B2!

N35~k1q2pt8!22mt
2 ,

N45~k1q2pt82ph!22mt
2 .

The analytical expression for this integral can be found
Ref. @35#. Since the integral is finite, we have evaluated it
d54 dimensions using the FF package@24#.
05301
n

2. Box 2: Box scalar integralsD0b2
„1… and D0b2

„2…

The scalar box integralD0b2
(1) can be written as

D0b2
(1)5m42dE ddk

~2p!d

1

N1N2N3N4
, ~B3!

where

N15k2,

N25~k1pt!
22mt

2 ,
~B4!

N35~k1pt1ph!22mt
2 ,

N45~k2pt8!22mt
2 ,

while D0b2
(2) is obtained fromD0b2

(1) by exchangingpt↔pt8 .
Therefore, all the following results forD0b2

(1) can be easily
extended toD0b2

(2) .
The part ofD0b2

(1) which contributes to the virtual ampli
tude squared is of the form

D0b2
(1)5

i

16p2
NtS X21

e
1X0D 1

~mt
22 s̄th!s̄t t̄b t t̄

, ~B5!

where Nt is given in Eq. ~3.5!, while s̄t t̄5(pt1pt8)
25(q

2ph)2.0, b t t̄5A124mt
2/ s̄t t̄ , s̄th5(pt1ph)2. The pole

part X21 is

X215 lnS 11b t t̄

12b t t̄
D , ~B6!

while the finite part can be calculated using Ref.@36#.

3. Box 3: Box scalar integralsD0b3
„1… , D0b3

„2… , D0b3
„3… , and D0b3

„4…

The scalar box integralD0b3
(1) can be written as

D0b3
(1)5m42dE ddk

~2p!d

1

N1N2N3N4
, ~B7!

where

N15k2,

N25~k1q1!2,
~B8!

N35~k1q11q2!2,

N45~k1q11q22pt8!22mt
2 .

D0b3
(2) is obtained fromD0b3

(1) by exchangingq1↔q2. On the
other hand,D0b3

(3) arises from the box diagram where th
Higgs boson is emitted from the antitop quark and cor
sponds to
7-22
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N15k2,

N25~k1q2!2,
~B9!

N35~k1q11q2!2,

N45~k1q11q22pt!
22mt

2 .

ThereforeD0b3
(3) can be obtained fromD0b3

(1) by exchanging
q1↔q2 and pt8↔pt . Finally, D0b3

(4) is obtained fromD0b3
(3)

by exchangingq1↔q2. We present here the case ofD0b3
(1) .

All other D0b3
( i ) boxes, fori 52,3,4 can be obtained following

the simple pattern of substitutions explained above.
The part ofD0b3

(1) which contributes to the virtual ampli
tude squared is given by

D0b3
(1)5

i

16p2
NtS 2

1

st2
D S X22

e2
1

X21

e
1X0D , ~B10!

whereNt is defined in Eq.~3.5!, the coefficientsX22 , X21,
andX0 are given by

X225
3

2
,

X215 lnS v1mt
4

st2
2 D ,

~B11!

X052lnS t2

mt
2D lnS s

mt
2D 2 ln2S v1

mt
2D

22 Li2S 11
v1

t2
D1

p2

3
,

ands, t2, andv1 are defined in Eq.~A12!.

APPENDIX C: PHASE SPACE SOFT INTEGRALS

In this appendix we collect the integrals which we ha
used in calculating the results in Eq.~4.10! starting from Eq.
~4.8!. For a more exhaustive treatment of the formalism u
we refer to Refs.@13,29#, from which the results in this ap
pendix have been taken.

We parametrize the soft gluond momentum in theqq̄ rest
frame as

k5Eg~1, . . . ,sinu1 sinu2 ,sinu1 cosu2 ,cosu1!, ~C1!

such that the phase space of the soft gluon ind5422e
dimensions can be written as
05301
d

d~PSg!so f t5
G~12e!

G~122e!

pe

~2p!3E0

dsAs/2
dEgEg

122e

3E
0

p

du1 sin122e u1E
0

p

du2 sin22e u2 .

~C2!

Then, all the integrals we need are of the form

I n
(k,l )5E

0

p

du1 sind23 u1E
0

p

du2

3sind24 u2

~a1b cosu1!2k

~A1B cosu11C sinu1 cosu2! l
.

~C3!

In particular we need the following four cases. WhenA2

ÞB21C2, and b52a, we use@dropping terms of order
O„(d24)2

…#

I n
(1,1)5

p

a~A1B! H 2

d24
1 lnF ~A1B!2

A22B22C2G1
1

2
~d24!

3F ln2S A2AB21C2

A1B D 2
1

2
ln2S A1AB21C2

A2AB21C2D
12 Li2S 2

B1AB21C2

A2AB21C2D
22 Li2S B2AB21C2

A1B D G J , ~C4!

while whenbÞ2a we use

I n
(0,1)5

p

AB21C2 H lnS A1AB21C2

A2AB21C2D 2~d24!

3FLi2S 2AB21C2

A1AB21C2D 1
1

4
ln2S A1AB21C2

A2AB21C2D G J ,

~C5!

I n
(0,2)5

2p

A22B22C2 F12
1

2
~d24!

A

AB21C2

3 lnS A1AB21C2

A2AB21C2D G . ~C6!

Finally, whenA25B21C2, andb52a, we have

I n
(1,1)52p

1

aA

1

d24 S A1B

2A D d/223

3F11
1

4
~d24!2Li 2S A2B

2A D G . ~C7!
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APPENDIX D: COLOR ORDERED AMPLITUDES
FOR h\qq̄t t̄¿g

The tree-level amplitude forh→q(q1)q̄(q2)t(pt) t̄ (pt8) is
explicitly given by

A LO
h→qq̄t t̄5 i

mt

v
gs

2d f qf q̄
d f t f t̄

@ ū~q1!gnTcqcq̄

a v~q2!#

3
1

~ph2pt2pt8!2 F ū~pt!S gn

p” h2p” t81mt

~ph2pt8!22mt
2

1
2p” h1p” t1mt

~ph2pt!
22mt

2
gnD Tctct̄

a v~pt8!G
5

1

2 S dctcq̄
dcqct̄

2
1

N
dctct̄

dcqcq̄D d f qf q̄
d f t f t̄

A0 ,

~D1!

whereph is taken as incoming, while all the other momen
are outgoing. Using the color decomposition given in E

~4.22!, we have rewrittenA LO
h→qq̄t t̄ in terms of a leading

color and a sub-leading color ordered amplitude. Both a
plitudes are given by

A05 i
mt

v
gs

2@ ū~q1!gnv~q2!#
1

~ph2pt2pt8!2 F ū~pt!

3S gn

p” h2p” t81mt

~ph2pt8!22mt
2

1
2p” h1p” t1mt

~ph2pt!
22mt

2
gnD v~pt8!G

5 i
mt

v
gs

2A qq̄
0,n 1

~ph2pt2pt8!2
A t t̄ ,n

0 , ~D2!
05301
.

-

where, for future purposes, we have introduced theA qq̄
0,n and

A t t̄
0,n tree-level partial amplitudes

A qq̄
0,n

5ū~q1!gnv~q2!,

A t t̄
0,n

5ū~pt!S gn
p” h2p” t81mt

~ph2pt8!22mt
2

~D3!

1
2p” h1p” t1mt

~ph2pt!
22mt

2
gnv~pt8!.

TheO(as) real corrections to the Born amplitude cons
of the processh→qq̄t t̄ 1g, where the gluon can be emitte
either from the external quark legs or from the internal glu
propagator. Therefore we can writeA h→qq̄t t̄ g as follows:

A h→qq̄t t̄ g5~ igs!d f qf q̄
d f t f t̄

em~k!@A q
m~TaTb!cqcq̄

Tctct̄

b

1A q̄
m
~TbTa!cqcq̄

Tctct̄

b 1A t
mTcqcq̄

b ~TaTb!ctct̄

1A t̄
m
Tcqcq̄

b ~TbTa!ctct̄
1A g

m~ i f abcTctct̄

b Tcqcq̄

c !#,

~D4!

whereem(k) is the polarization vector of the emitted gluo
and we have defined byA i

m the part of the real amplitude
corresponding to the emission of the gluon fromi
5q,q̄,t, t̄ ,g. More explicitly, theA i

m amplitudes are given
by
A q
m5S gs

2 mt

v D ū~q1!S gm
q” 11k”

2q1•k
gnD v~q2!

1

~ph2pt2pt8!2
A t t̄

0,n ,

A q̄
m

5S gs
2 mt

v D ū~q1!S gn

2q” 22k”

2q2•k
gmD v~q2!

1

~ph2pt2pt8!2
A t t̄

0,n ,

A g
m5S gs

2 mt

v DA qq̄,r
0 1

~ph2pt2pt8!2
@V3g

mrn~k,q1 ,q2!#
1

~q11q2!2
A t t̄ ,n

0 ,

A t
m5S gs

2 mt

v DA qq̄
0,n

ū~pt!S gm
p” t1k”1mt

2pt•k
gn

p” h2p” t81mt

~ph2pt8!22mt
2

1
2p” h1p” t1mt

~ph2pt!
22mt

2
gm

2p” h1p” t1k”1mt

~ph2pt2k!22mt
2
gn

1gm
p” t1k”1mt

2pt•k

2p” h1p” t1k”1mt

~ph2pt2k!22mt
2
gnD 1

~q11q2!2
v~pt8!,
7-24



QCD CORRECTIONS TO ASSOCIATEDt t̄ h . . . PHYSICAL REVIEW D 65 053017
A t̄
m

5S gs
2 mt

v DA qq̄
0,n

u~pt!S 2p” h1p” t1mt

~ph2pt!
22mt

2
gn

2p” t82k”1mt

2pt8•k
gm1gn

p” h2p” t82k”1mt

~ph2pt82k!22mt
2
gm

p” h2p” t81mt

~ph2pt8!22mt
2

1gn

p” h2p” t2k”1mt

~ph2pt2k!22mt
2

2p” t82k”1mt

2pt8•k
gmD 1

~q11q2!2
v~pt8!, ~D5!
r

es
where

V3g
mrn~k,q1 ,q2!5~22kr2qr!gmn1~2qm1km!gnr

1~2qn2kn!gmr). ~D6!

Using the color decomposition given in Eq.~4.22!, we can
also rewriteA h→qq̄t t̄ g as a linear combination of four colo
ordered amplitudes, as already given in Eq.~4.23!. By
matching the color factors in Eq.~D4! to the color factors in
Eq. ~4.23!, we see that the color ordered amplitud
Ai(q1 ,q2 ,pt ,pt8 ,k) ~for i 51, . . . ,4) aregiven by @32#
te

f

9.

s.

05301
A1~q1 ,q2 ,pt ,pt8 ,k!5~A q
m1A t̄

m
2A g

m!•em~k!,

A2~q1 ,q2 ,pt ,pt8 ,k!5~A q̄
m

1A t
m1A g

m!•em~k!,

~D7!

A3~q1 ,q2 ,pt ,pt8 ,k!5~A q
m1A q̄

m
!•em~k!,

A4~q1 ,q2 ,pt ,pt8 ,k!5~A t
m1A t̄

m
!•em~k!.
s.
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