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We present in detail the calculation of tmag) inclusive total cross section for the procm;qttih in the
Standard Model, at the Fermilab Tevatron center-of-mass en@igy 2 TeV. The next-to-leading order QCD
corrections significantly reduce the renormalization and factorization scale dependence of the Born cross
section. They slightly decrease or increase the Born cross section depending on the values of the renormaliza-
tion and factorization scales.
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[. INTRODUCTION range accessible at the Tevatron. Although it has a small

Among the most important goals of present and futureevent rate~1—5 fb for a SM-like Higgs boson, and even
colliders is the study of the electroweak symmetry breakindower for a MSSM Higgs boson, the signature
mechanism and the Origin of fermion masses. If the intrOdUC(W+W_bEbE) is quite Spectacu|ar_ Furthermore, at the
tion of one or more Higgs fields is responsible for the breakTevatron, after fully reconstructing both top quarks, the
ing of the electroweak symmetry, then at least one Higg$nane of the invariant mass distribution of the remairiibg
boson should be relatively light, and certainly in the range Ofpair is quite different for the signal and for the background.
energies of presentFermilab Tevatron or future [CERN  The statistics is too low to allow any direct measurement of
Large Hadron CollidefLHC)] hadron colliders. The present the top-quark Yukawa coupling, but recent studiékindi-
lower bounds on the Higgs boson mass from direct searchesate that this channel can reduce the luminosity required for
at the CERNe" e~ collider LEP2 areM;>114.1 GeV(at  the discovery of a SM-like Higgs boson at Run Il of the
95% C.L) [1] for the Standard Mode{SM) Higgs boson, Tevatron by as much as 15-20 %.
and Mpo>91.0 GeV andM»0>91.9 GeV (at 950/8 C.L., The total cross section fqpp—tth has been known at
0.5<tan/8<2.40excllude§j [2] for the light scalar K°) and e jevel for quite some timk8]. As for any other hadronic
pseudoscalarA™) Higgs bosons of the minimal supersym- nrqcess, next-to-leadingNLO) QCD corrections are ex-
metric standard modeIMSSM). At the same time, global pected to be important and are crucial in order to reduce the
SM fits to all available electroweak precision data indirectly yependence of the cross section on the renormalization and
point to the existence of a light Higgs bosoM,<212  t5ciorization scales. Preliminary indications of the magnitude
—236 GeV[3], while the MSSM requires the existence of a of the NLO QCD corrections can be obtained in the frame-
scalar Higgs boson lighter than about 130 GeN. There-  \york of the effective Higgs approximatiofEHA), where
fore, the possibility of a Higgs boson_ dlscov_ery in the masserms of orderM, /\/s and M,,/m, are systematically ne-
range around 115-130 GeV seems increasingly likely.  giacted in the computatiof®]. This approximation correctly

In this context, the Tevatron will play a crucial role and rghr6qyces the collinear bremsstrahlung of the Higgs boson

can potentially discover a Higgs boson in the mass ranggom the heavy top quarks. However, we expect the EHA to
between the present experimental lower bound and aboWs more reliable at the LHC center-of-mass energies, for

180 GeV[5]. The dominant Higgs production modes at thehich it was originally proposed, than at the Tevatron center-
Tevatron are gluon-gluon fusioyg—h) and the associated . mass energies. We will briefly discuss the predictions of
production with a weak bosorgf—Wh, Zh). Because of 1o EHA forpﬁatt_h in Sec. VI.

small event rates and large backgrounds, the Higgs boson \ye 150 notice that QCD corrections to the associated

search in these channels is extremely difficult, requiring the . . . o .
highest possible luminosity. It is therefore important to in- _produc.tlon of a Higgs boson with a pair bb quarks, which
vestigate all possible production channels, in the effort tdS dominated by thgg— bbh channel, have been computed

fully exploit the range of opportunities offered by the avail- In the limit of large My, [10], by resuming the leading
able statistics. In(Mp/my) terms. However this result cannot be applied to

Recently, attention has been drawn to the possibility othe tth production of a relatively light Higgs boson at the
detecting a Higgs signal in associaiion with a pair of top-Tevatron, both because the rakity,/m; is of O(1) and does

antitop quarks at the Tevatron, i.e.pp—tth [6]. This pro-  not justify the largeM, limit, and because thgg channel is
duction mode can play a role over most of the Higgs massegligible fortth production at the Tevatron.
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FIG. 1. Feynman diagrams contributing to the lowest order pro-
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cess,qgq—tth. The arrows indicate the momentum flow. !

In this paper we present in detail the calculation of the
NLO inclusive total cross section fapp—tth, oy o(pp %
Htt_h), in the Standard Model, at the Tevatron center-of-
mass energy. FopE collisions at hadronic center-of-mass g, P, % o,
energy/sy=2 TeV, more than 95% of the tree-level cross - Pn
section comes from the sub-procegs—tth. Therefore, we QN Q0

include only theqa—nth channel when computing the tree- , o
. 9z Pe 9z Pt

level total cross section, and we calculate the NLO total v Vo

cross section by adding the complete set of virtual and rea } }

O(as) corrections tha—>tth. The Feynman diagrams con- . P, % o,
tributing to qg—tth at lowest order are shown in Fig. 1, - Pn
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while examples ofO(«g) virtual and real corrections are
given in Figs. 2—6. The main challenge in the calculation of
the O(«g) virtual corrections comes from the presence of
pentagon diagrams with several massive external and inter
nal particles. We have calculated the corresponding pentago
scalar integrals as linear combinations of scalar box integrals
using the method of Refl11]. The real corrections are com-
puted using the phase space slicing method, in both the
double[12,13 and single[14-1§ cutoff approach. This is
the first application of the single cutoff phase space slicing
approach to a cross section involving more than one massivi
particle in the final state.

Numerical results for our calculation @fy, o(pp—tth)
at the hadronic center-of-mass energg,=2 TeV have
been presented ifil7]. An independent calculation of the

NLO total cross section fopp—tth has been performed by
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Beenakkelet al.[18]. The numerical results of both calcula-
tions have been compared and they are found to be in very
good agreement. Th&(«,) corrections to the sub-process

gg*)tﬂ'] are, however, crucial for determiningy o(pPp
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FIG. 3. O(as) virtual corrections: vertex diagramé'?-v{-2 .

—tth) at the LHC, sincepp collisions atys,=14 TeV are
dominated by the gluon-gluon initial state. Results for the
LHC are presented elsewhdrEs,19.

The outline of our paper is as follows. In Sec. Il we sum-
marize the general structure of the NLO cross section, and
proceed in Secs. Ill and IV to present the details of the cal-

st sP culation of both the virtual and real parts of the NLO QCD

corrections. In Sec. V we explicitly show the factorization of

e g' E Pe the initial-state singularities into the quark distribution func-
3 Pn

tions, and finally we summarize our result for the NLO in-

f@ clusive total cross section fqup—tth at the Tevatron in
4 o a4 o Egs. (5.3 and (5.5. Numerical results for the total cross
s 5@ section are presented in Sec. VI. Explicit analytic results for
the scalar pentagon and the infrared-singular box integrals
are presented in Appendixes A and B. Appendix C contains a
collection of soft phase space integrals that are used in the

FIG. 2. O(ag) virtual corrections:

self-energy diagrang§'?
andS§?.
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FIG. 4. O(as) virtual corrections: box diagran®,, B$*? and
B{ 4.

calculation of the real(as) corrections togqgq—tth with
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FIG. 6. O(ag) real corrections: examples of initial and final
state real gluon emission.

where F {"H are the NLO parton distribution functioti®DF)
for partoni in a proton/antiproton, defined at a generic fac-

torization scaleus=u, andal,  is the O(a?d) parton-level
total cross section for incoming partonandj, composed of

the two channelg g, gg—tth, and renormalized at an arbi-
trary scaleu, which we also take to bg,= . Throughout
this paper we will always assume the factorization and renor-
malization scales to be equal,=u;=ux. The partonic
center-of-mass energy squaresl,is given in terms of the
total hadronic center-of-mass energy squarsg, by s
=X31X,Sy . As explained in the Introduction, we consider

only theqg—tth channel, summed over all light quark fla-

vors, and neglect thggﬂtt_h channel, since thgg initial
state is numerically irrelevant at the Tevatron.
We write the NLO parton-level total cross section

O-I’\JILO(XI 1X2 vlu‘) as

&‘NjLo<xl,x2,m:ai(m{f‘do<x1,x2>

as(p) i
+ Z-’Tl' fl[\JlLO(XIIXZUu‘)]

= &Eo(xl Xo, )+ 5&HLO(X1 Xo, L),
(2.2

the double cutoff phase space slicing method. Finally, in Ap- _ _ _
pendix D we give the explicit structure of the real gluon Whereag(u) is the strong coupling constant renormalized at
emission color ordered amplitudes that are used in the calcuhe arbitrary scalge, = u, olo(X1,Xo, 1) is theO(a?) Born

lation of the realO(«ag) corrections toqa—>tt_h with the
single cutoff phase space slicing method.

Il. GENERAL FRAMEWORK

The inclusive total cross section fpp—tth at O(a?)
can be written as

UNLo(pFHtt_hF; fdxldxzfip(xpﬂ)
(2.1

ijp(XZlM)a-I’\JILO(X],YXZlM)!

k
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FIG. 5. O(as) virtual corrections: pentagon diagrarRg and
P,.

cross section, andol, o(X1,X, 1) consists of thed(as)
corrections to the Born cross section, including the effects of
mass factorizatiorisee Sec. Y.

The Born cross section farg—tth is given by[20]

2 2 > 2

. as(uw) [ my\ < [xmax 4B 2m;

UEqO(X]_,Xz,,LL) :—257775 (7) J‘X':i“ dXh| —XZ—BZ 1+ 5
h h

+

AmZ—M?2
X| ——— |+ | xy+2

4m§—|\/|ﬁ)

2 (4m{—Mp)(2m{ —Mp)
v 2

Xn S

Xn+ B
Xh_B

8m?
B3

], 2.3

wherex,=2E,,/\/s, E, is the Higgs boson energy in tiuggy
center-of-mass  frame, x'""=2M /s, x'®*=1—4m?/s
+M#Z/s, and we have introduced
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i 1/2
o [ DR ORI = Xn] derg(12)
B= max 2 : (2.4 ° ' _bOa§+O(a§)v
Xp o= Xpt+4mi/s diIn(u®)
. . (2.9

Moreover, we have defined the Yukawa coupling of the top 1/11 2
quark to beg,=m, /v, wherev =(Gg+2) " *?is the vacuum for bo=7—| 5 N=3n¢ |,
expectation value of the SM Higgs boson, given in terms of
the Fermi constanGg . with N=3, the number of colors, ana;=5, the number of

The NLO QCD contribution o, o(X1,X2, 1), contains Iight_flavo.rs. The origin of the terms in E({Z.?)_willlbecom_e
both virtual and reat?(«) corrections to the lowest-order Manifest in Secs. Il and 1V, when we describe in detail the
cross section and can be written as the sum of two terms: calculation of both virtual and rea(«s) corrections tagq

—>tﬁ’].

ST o(X1,Xz, =JdP Ayine(ij —>tth)[2
TnLo(Xa Xz 4) (PSY2 [ Aun(ij —tth)| lIl. VIRTUAL CORRECTIONS
— B The O(ay) virtual corrections to the tree-levelg—tth
+f d(PS4)E | Arealij —>tth+g)|2 process consist of self-energy, vertex, box, and pentagon dia-
grams which are shown in Figs. 2—-5. We assign incoming
E&L’m(xl,xz,MHfAT'rJea|(X1,X2,M), and outgoing momenta according to the following notation:
(29 q(qu) +a(g) —t(p) +t(p) +h(py), (3.

where | A, (ij —tth)|? and | A.ea(ij —tth+g)|? are, re-  where the momentum flow is illustrated in Figs. 2—5. If we
spectively, the squared matrix elements for th¥a?) denote byAp the amplitude associated with each virtual

ij —tth andij —tth+g processes, andl indicates that they ~diagramD;, the O(a?) virtual amplitude squared can then
have been averaged over the initial-state degrees of freedope written as

and summed over the final-state ones. Moread@?,S;) and

d(PS,) denote the integration over the corresponding three- p— p—

and four-particle phase spaces, respectively. The first term in 2 A= X (AfoAp + A6 AD,)

Eq. (2.5 represents the contribution of the virtual gluon cor- '

rections, while the second one is due to the real gluon emis-

. — T . — d
sion. For theqgq—tth sub-process, examples 6X ) vir- —Z > 2 Re(AloAp), (3.2
tual and real corrections are illustrated in Figs. 2—6 and their
structure is separately explained in Secs. Il and IV. where the index runs over the set of all virtual diagrams,

Finally, we observe that in order to assure the renormal-

d _ : 1 _
ization scale independence of the total cross section aﬁndALQ de_notes thg tree .Ievel amplitude fgq—tth C"’?'
0(ad), fil\leO(leXZiM) in Eq. (2.2 must be of the form culated ind=4—2e dimensions. The lowest order amplitude

AEO must be computed t@(e?) in order to properly ac-
B B . u? count for both the singular and finite contributions generated
fhLo(X1 X2, 1) =1 (X1, %) + T (X1, %) In[ —— |, by the interference aft{, with the single and double poles

S (2.6) present in the virtual amplitudeADi. In what follows, we
denote by.A, o the lowest order amplitude t@(e°), i.e.

with T (x1,x,) given by calculated ind=4 dimensions. Also, in the following sec-
tions, the contribution of a given diagram or set of diagrams
Fij _ ij to &gﬁt is always to be understood as the contribution of the
f1(x1.%) 2{4Wb°fLO(X1’X2) corresponding term in the sum in E®.2).

. The calculation of the virtual diagrams has been per-
_ . Kj formed using dimensional regularization, always di4
Ek U; 42, Pi(22) TLo(x21.%2) —2e dimensions. The diagrams have been evaluated using
FORM [22] and MAPLE, and all tensor integrals have been
] 2.7 reduced to linear combinations of a fundamental set of scalar
' one-loop integrals using standard technig#38. The scalar
integrals which give rise to either ultraviol@V) or infrared
where p=(2m,+M)?/s, Pij(2) denotes the lowest-order (IR) singularities have been computed analytically, while fi-
Altarelli-Parisi splitting function[21] of partoni into parton  nite scalar integrals have been evaluated using standard
j» whenj carries a fractiorz of the momentum of parton  package$24].
(see, e.g. Sec. IV AR2andby is determined by the one-loop Self-energy and vertex diagrams contain both IR and UV
renormalization group evolution of the strong coupling con-divergences. The UV divergences are renormalized by intro-
stantasg: ducing a suitable set of counterterms. Since the cross section

1 )
+ f depkj(Zz)f'Lko(Xl 1X2Z3)
p
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is a renormalization group invariant, we only need to renor-
malize the wave function of the external fields, the top-quark
mass, and the coupling constants. We discuss the renormal-

ization of the UV singularities of the virtual cross section in
Sec. llIl A.

Box and pentagon diagrams are ultraviolet finite, but have

infrared singularities. The IR poles in ti&( «¢) virtual cor-

rections are eventually canceled by analogous singularities in
the O(«s) real corrections to the tree-level cross section. We

discuss the structure of the IR singularities of the virtual

cross section in Sec. Il B. The structure of the IR singulari-
ties of the real cross section will be the subject of Secs. IV A

and IV B.

PHYSICAL REVIEW D 65 053017
2( 1

_(6_

uv

1

|

1

€yv

N
Auv<s<1“+s<f>>=M(5— 5N

)

5 2
Auv(s(zl)“LS(zz)):[Ns(gN_ §n|f) -

The calculation of many of the box scalar integrals and in

particular of the pentagon scalar integrals are extremely la-
borious, due to the large number of massive particles present

1 1
(1) 4 (2 = ) =
AUV(Vl +V1 )_NS< ZN)(GU\/)’
N\/f 3
AUV(V(21)+V(22)) :Ns<—> (_) g
2]\ eyy
(3.9
1 1

2N

€yv

)<

AUV(V(31)+ V(32)) ZM(

in the final state and in the loop. We have evaluated the

necessary pentagon scalar integfalse for diagranP,; and
one for diagramP,), using the method of Refl11], which

allows the reduction of a scalar five-point function to a sum

of five scalar four-point functions, plus terms ©f ¢) which

can be neglected. Since this is a crucial ingredient of this

calculation, we will explain in detail in Appendix A how
the method of Ref[11] has been applied to our case. The

IR-divergent box scalar integrals are also collected in

Appendix B.

A. UV singularities and counterterms

The UV singularities of theO(ag) total cross section
originate from self-energy and vertex virtual corrections.

These singularities are renormalized by introducing counter-

terms for the wave function of the external fields
(6289, 520y, the top-quark masssn,), and the coupling
constants §g;, 6Z,). If we denote byAyy(S*?) and

Auy(VH?) the UV-divergent contribution of each self-
energy §*?) or vertex diagram{{*?) to the virtual am-
plitude squaredisee Eq(3.2)], we can write the UV-singular
part of the total virtual amplitude squared as

uv
virt

S 4

[— 2
o
=2 |ALolzﬁ[§l Aup(SP+5)

6

£ 2 A (VDY) 420 (82 yy

® omy
+(5Zz )UV+ W"F&Zas . (33)
t

As described earlier, we denote hyl, o|2 the matrix ele-

ment squared of the tree-level amplitude ém—tth, com-
puted ind=4 dimensions. We also notice that, in writing Eq.

3)'

€uv

where N and V; are standard normalization factors defined
as

N
Auu(V§+VE) =M( 5) (

1
2N

N| 2

4
AUV(V(51)+V'(52)):M( a>,

Ap(VE+VvE) =0,

2\ €

A1 p? A

—mtr F(1+ E).
3.9

Moreover, we define the needed counterterms according
to the following convention. For the external fields, we fix
the wave-function renormalization constants of the external
fields (Z'=1+6z{, i=q,t) using on-shell subtraction:

./\/S=< ) I'1+e), N=

l.e.,
(52(11)) :_}N(E_iﬂi
20V 27T 20 2N eyy)’
(3.6
(52(0) :_EN(E_L)(L_FA]_
2Juv 2t 2 2N/ eyy '

We notice that bothsz{? and 5z, as well as some of the

vertex corrections\({? andV{?), have also IR singulari-
ties. In this section we limit the discussion to the UV singu-
larities only, while the IR structure of these terms will be
given explicitly in Sec. Il B.

We define the subtraction condition for the top-quark
massm; in such a way thatn, is the pole mass, in which
case the top-mass counterterm is given by

(3.3, we have included in the top-quark self-energy the top-

mass counterterm, and we have used the fact that the
Yukawa-coupling counterterm coincides with the top-mass

counterterm.
The UV-divergent contributions due to the individual dia-
grams are explicitly given by

1

_M(

2

N 1
2 2N

3

om,
€uv

- +4
m

(3.7)

|

This counterterm has to be used twice: to renormalize the
top-quark mass, in diagrang" andS{?), and to renormal-
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ize the top-quark Yukawa coupling. As we already noted, 1 4
Auy(SV+S?) in Eq. (3.4 already includes the top-mass Ar(VP+ V)= /\/( - m) - —)
counterterm. €ir  CIR
Finally, for the renormalization ok we use the modified N
minimal subtraction 1S) scheme, modified to decouple the IR(V(1)+V(2) Ns(_)( )
top quark{25]. The firstny; light flavors are subtracted using 2 €IrR
the MS scheme, while the divergences associated with the N 1
top-quark loop are subtracted at zero momentum: (52(‘” )IR= NS(E _N> ( 6|R)'
N 1
2 11 1 t
57 :—(477)EF(1+6)[ Shi— 3N — (628 )1r= M(E _N)( e.R)'
WV (3.10)
2 /.L2 1
+=|—+In| — .
3| euy n m? ] S A|R(B(21)+B(22)):Nt< - N)
h that, in this scheme, th lized st l e
such that, in this scheme, the renormalized strong coupling eir (2m2+ s B tt |

constantag evolves withn;; =5 light flavors.
It is easy to verify that the sum of all the UV-singular
contributions as given in Eq3.3) is finite. We also notice A(BO+BR+ P ):N(E_ i) 2
. . 3 3 1 t
that the leftover renormalization scale dependence, due to the N
mismatch between the renormalization scale dependence of
Ayv(Sy) and 5(2%), is given by

< | as(pn) 2 11 w
> ALl o (_§nlf+§N)|n(?): (3.9 A.R(B(gz)+B(34)+P2)=M<—£){i—i

N elzR €IrR
and corresponds exactly to the first term of E2.7), as +1In Sat
predicted by renormalization group arguments. mf

where g and A are given in Eq(3.5). Moreover, we have
B. IR singularities introduced the following kinematic invariants:

This section describes the structure of the IR singularities e — . , _
S=Sqq=201-02, St=2pP:t P;: Sqt=201" Pt»

originating from the®(«y) virtual corrections. The virtual ag= <1 G2: Sw= PPy Sqr= oMar Py
IR singularities come from the following set of diagrams: S=20.-D/ . S=20,- S=20,-p’
vertex diagrams/{*? and V{2, box diagrams8$?, box at= S P Sam Sz P S22 Py (3.12
diagramsBS' ~#), pentagon d|agrams’1 and P,, and from
the wave funcnon renormalization of the external fields,and we have defined
67 and 67§ . The IR-singular part of the total virtual

2
amplitude squared is then of the form Bi= B Amy
tt— T
N (pet+py)?
S AR 2= Aol o ARV + V) + A (V) 3.13
’ 2m A= 1+ B
tt—1In — |-
+VE) + (8250 1r +(6Z9) 1r+ Ar(BS” ~Bu
+ 5(22)) + A g( 5(31)+ Bg3)+ P+ AIR(BgZ) Substituting the explicit expression for the IR-divergent con-
tributions given in Eq(3.11) into Eq. (3.10 yields
+B{+P,)l, (3.10
lert xlillit
3 A= | L] e
where, as beford,A| o|? denotes the matrix element squared €l IR
of the tree-level amplitude fayg—tth, in d=4 dimensions. (3.14
The IR-divergent contributions of the various diagrams to the
virtual amplitude squared are given in the following: where
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, 1 general idea of phase space slicing, they have very different
virt _ _ .. . .
XZy=—|N N characteristics and finding agreement between the two repre-
sents an important check of our calculation.
virt _ 5 I Sqt | Sqit 1 |
XZ1=Nj - >*in m_t2 +in m_tz Nl o m_t2 A. Phase space slicing method with two cutoffs
The general implementation of the PSS method using two
5 Sit SqiSqt cutoffs proceeds in two steps. First, by introducing an arbi-
TS o2 “Aw—2Inf —— |, 319  yary smallsoftcutoff &, we separate the overall integration
(2m{+ ) Bit SqtSqt s

of the qa—>tt_h+g phase space into two regions, according
while 5'va“ is a finite term that derives from having factored to whether the energy of the gluonseft i.e. Eg< 5s\sl2, or

out a common factolV;, and is given by hard, i.e. E,> 55\/s/2. The partonic real cross section of Eq.
(2.5 can then be written as
5'R—N13I S +11|25 o R
virt ™ N/| 2 : m_tz N|2 " m_t2 . O'Egalza'soft‘*'o'hardv (4.2

In Secs. IVA 1 and IV B 3 we will show how the IR singu- wherecAr.Soft is obtained by integrating over tisoftregion of

larities of the real cross section exactly cancel the IR poles o?je gluon P :]aa s€ sp(.alce, and contam.s'all the .lR SOft_ diver-
the virtual cross sectiorisee Eqs.(4.9),(4.10 and Egs. 9ences ofore, . To isolate the remaining collinear diver-
(4.52,(4.53), as predicted by the Bloch-Nordsief®6] and  gences fromo,,,.q, We further split the integration over the

Kinoshita-Lee-Nauenber®7,2§ theorems. hard gluon phase space according to whether the gluon is
(Thardcoll) OF IS NOt (Thard/non—con) €Mitted within an angle
IV. REAL CORRECTIONS 6 from the initial-state massless quarks such that

) - (1—-cosh) <&, for an arbitrary smaltollinear cutoff & :
The O(ag) corrections toqg—tth due to real gluon

emission(see Fig. 6 give origin to IR singularities which . N N

cancel exactly the analogous singularities present in the Ohard= Ohardicoll T Thard/non-coll - (4.3
O(as) virtual correctiongsee Sec. Il B. These singularities

can be either ooft or collinear nature and can be conve- The hard non-collinear part of the real cross section,

niently isolated byslicing the qq—tth+g phase space into ¢, . . is finite and can be computed numerically, us-
different regions defined by suitable cutoffs, a method whiching standard Monte Carlo techniques. In the soft and collin-
goes under the general namepifase space slicing®SS.  ear regions, the integration over the phase space of the emit-

The dependence on the arbitrary cutgffintroduced in the  ted gluon can be performed analytically, thus allowing us to

process s not physwalz and, In fact,.cancels at the Ieyel %olate the IR collinear divergencesbﬁ‘ja,. More details on
the total real gluon emission hadronic cross section, i.e. in

0rear» the real part oy, o. This constitutes an important e calculation ofogeq and oy g are given in Sec. IVAL
check of the calculation. and Sec. IV A 2, respectively. The cross sections describing

We have calculated the cross section for the process soft, collinear and IR-finite gluon radiation depend on the
two arbitrary parametersjs and 5.. However, in the real
a(dy) +a(da) —t(p) +t(p;)+h(pp) +g(k)  (4.1) hadronic cross section.,, after mass factorization, the

dependence on these arbitrary cutoffs cancels, as will be ex-

using two different implementations of the PSS methodplicitly shown in Sec. V.

which we call thetwo-cutoffand one-cutoffmethod, respec-

tively, depending on the number of cutoffs introduced. The 1. Soft gluon emission

two-cutoff implementation of the PSS method has been . — — . .

originally developed to study QCD corrections to dihadron The S_(_)ft region of thejg—tth+g phase space IS defined

production[12] and has since then been applied to a varietyPy réauiring that the energy of the gluon satisfies

of processes. A nice review has recently appeddes] to

which we refer to for more extensive references and details. Js

The one-cutoffPSS method has been developed for massless Eg<ds3 (4.9

guarks in Refs[14,15 and extended to the case of massive

quarks in Ref[16]. ) o

In Secs. IVA and IV B we exp|ain in deta” hOW we have f0r an arbltl’ary Sma” Value Of '[hﬁ)ftcutoff 63. In the ||m|t

applied the PSS method to our case, using tthe-cutoff ~When the energy of the gluon becomes small, i.e. instbfe

implementation in Sec. IV A and thene-cutofimplementa- I|_m|t, the matrix element squared for the real gluon emission,

tion in Sec. IV B. The results fou e, obtained using PSS =|A,ca|% assumes a very simple form, i.e. it factorizes into

with one or two cutoffs agree within the statistical errors. Inthe Born matrix element squared times an eikonal factor

spite of the fact that both methods are realizations of thebgj:

053017-7
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soft

Z |Areal(qq—>tth+g)|2 4770‘3)2 |ALO| Dk,

(4.5
where the eikonal factor is given by
o N m? m? . Sqt
K21 (prk? (k2 (A k)(prk)
Sqr 1| m? m?
n qt , _N t 2+ ’ t -
(g2-K)(py -k) (P k)= (py-k)
S Sit
(A1-K)(az2-K)  (p,-k)(p, - k)
T . S T
(A1 K) (P k) (q1-k)(p; - k)
Sqt Sqt
+ - . 4.6
(dz2-K)(py-k) (Q2'k)(p{'k))] “9

Moreover, in the soft region thgq—tth+g phase space
also factorizes as

soft

d(PS)(qgq—tth+g) — d(PS;)(qq—tth)d(PS))soft

d@ 1k
d,
(2m) @ 2E,

)

=d(PS;)(qg—tth)

55

X 6 s?

(4.7

PHYSICAL REVIEW D65 053017

S
-1

€

. a pe—— P
UsoftzﬁMJ d(PS\;)E |-’4LO|2[€_22

CS
+NCS+ —2},

N (4.9
where
XS ,=— XU
S virt 1113
X,l:_xfl_ N_N §+2|n(55) )
(4.10
2 2
mg s
Ci=5In| = | +21(5)~2In(8y)| L+In :
u? SqtSqt /
s\ m? s\|5 s A
+§In2<—2)—?—l( 5 §+In nf -f—J
m; t SqtSqt B
3 w?
+= (th+|:q—t)+ 5 +2In09 |In| — .
t

s 3 S 2
C3 —Eln ? —21In7(65)—2In(ds)| —

where d(PS))sor; denotes the integration over the phase

space of the soft gluon. The parton level soft cross section

can then be written as

Fron= (b [ A(PS)S | Aol [ d(PSsortberc
(4.9

Since the contribution of the soft gluon is now completerF

factorized, we can perform the integration od¢P Sy) s, in

Eq. (4.8) analytically, and extract the soft poles that will have

to cancelX”') andX""}' of Eq. (3.15. The integration over
the gluon phase space in E@.8) can be performed using
standard techniques and we refer to R¢18,29 for more

details. For the sake of completeness, in Appendix C we give
explicit results for the soft integrals used in our calculation.

Finally, the soft gluon contribution to%%, can be written
as follows:

Sit S,
+——————Ag+In| —3|+21n Sat ‘”H
(2mg +sip) Bee SqtSqt

1I o[ s +772 I s 5
PL e Rl | R
Sit S A
s
(2mi+s) Bir qtSqt Bit
2S¢ 2B 1 1+ B
N . Stt , Bt +Z|n2 Bt ]
(2m{ +si) Bt 1+ By, 1- B
O K
_th+th+th_th_ §+2|n(5s) In m y
t

while MV is defined in Eq(3.5), and Li, denotes the diloga-
rithm as described in Ref30]. B and Ay are defined in
Eqg. (3.13, while, for any initial partoni and final partorf,
the functionF;; can be written as

=In (—1_'Bf )—Eln2 145
1_Bf COSGif 2 l_ﬁf

,Bf(l_COSHif))
1- B¢

B¢ (1+cosbis)
1— B cosbs

+2 Liz(—

) Liz( — (4.11

where cog%; is the angle between partoimsand f in the
center-of-mass frame of the initial state partons, and
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2
m; Sit quk 2q2k
, 1-Bscostyi=——. (4.12 ——=>06; and —=>4¢ (4.19
(P))? T opts Eg\s Eg\s
All the quantities in Eq(4.11) can be expressed in terms of
kinematical invariants, once we usg=2p;-p; together . o _
with are verified. The contribution from the hard/non-collinear re-
o . gion, f}ha,d,nomo”, is finite and we compute it nu_merically
o S™SmT mt2 o STSimt mf by using standard Monte Carlo integration techniques.
P =2—\/§ and sz—@' (4.13 In the hard/collinear region, one of the conditions in Eq.
(4.15 is not satisfied and the hard gluon is emitted collinear
where s, —(pi+pp)2 As can be easily seen from Egs to one of the incoming partons. In this region, the initial-state
th= (Pf* Pn)" .

(3.19 and (4.10, the IR poles of the virtual corrections are Partoni(i=a,q) is considered to split into a hard partof
exactly canceled by the corresponding singularities in thénd a collinear gluong, i—i’'g, with pj=zp and

Bi=\/1-

soft gluon contribution. The remaining IR polesan,q will ~ K=(1—2)p;. The matrix element squared fof—tth+g
be canceled by the PDF counterterms as described in detdfictorizes into the Born matrix element squared and the
in Sec. V. Altarelli-Parisi splitting function fori —i’g: i.e.,

2. Hard gluon emission

The hard region of the gluon phase space is defined byz | Areal(ij —tth+g)|?
requiring that the energy of the emitted gluon is above a
given threshold. As we discussed earlier this is expressed by  collinear — . 2Pii(2)
the condition that - (4mag) X D |ALo(i'j—tth)|>——F,
|

Z g
Eg> 5S§, (4.19 (4.1

. . ) with sig=2p;-k. In our case,
for an arbitrary smallsoft cutoff 65, which automatically

assures thatr,,.q does not contain soft singularities. How-

ever, a hard gluon can still give origin to singularities when it
is emitted at a small angle, i.eollinear, to a massless in-

coming or outgoing parton. In order to isolate these diver-
gences and compute them analytically, we further divide the ) o )
hard region of theqa—>tﬁ1+g phase space into hard/ is the unregulated Altarglll-Par|S| splitting function fay
collinear and ahard/non-collinearregion, by introducing a —0+g at lowest order, |nF:Iud|ng terms @(_E)ﬁ and Ci
second smaltollinear cutoff 5,. The hard/non-collinear re- =(N*—1)/2N. Moreover, in the collinear limit, theqq

Z2

1
Pii,(z)=qu(z)=CF< —e(l—z)) (4.1

1-z

gion is defined by the condition that both —tth+g phase space also factorizes as
_ collinear _ 7z dd— 1k \/g
d(PSy)(ij—tth+g) — d(PS)(i ]Htth)ma( Eg—557) 0(C059ig_(l—5c))

d=4-2¢ _ 3
o ldze) (4m- zdzdsg[(l—z)sig]_fﬁ(

[(1-2¢) 1672 27

z 2

122 2 sig), (4.18

where the integration range fey, in the collinear region is given in terms of the collinear cutoff, and we have defihed
=2p;,-p;. The integral over the collinear gluon degrees of freedom can then be performed separately, and this allows us to

explicitly extract the collinear singularities 6fha,d. (}hard,co” turns out to be of the forrh13,31:

e
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as T(1—e)
27 [(1—2¢)

(1-2)2 s' |
22 2

A’

2
m;

Ohard/coll =

Pii/(z)ero(i’j—>tﬁ1)+(iHj)J. (4.19



L. REINA, S. DAWSON, AND D. WACKEROTH PHYSICAL REVIEW D65 053017

The upper limit on the integration ensures the exclusion of where gs= V47 as, while (fq,fq.f;,f) and €4,¢q,¢,CY)
the soft gluon region. As usual, these initial-state collineardenote the flavor and color indices of the various outgoing
divergences are absorbed into the parton distribution funcquarks. The amplitudesg;(p;,p; ,d1,d2,k) (for i=1,2,3,4)

tions as will be described in detail in the Sec. V. correspond to the four possible independent color structures
that arise in theh—ttqq+g process, and eacH; contains
B. Phase space slicing method with one cutoff terms describing the emission of the gluon from a different

An alternative way of isolating both soft and collinear Pair Of external quarks. We give the explicit expressions for
singularities is to divide the phase space of the final statd€-Ai amplitudes in Appendix D. Due to this decomposition,

partons into two regions according to whether all partons caithe partonic cross section for—qqtt+g can be written in
be resolved(the hard region or not (the infrared, or IR,  a very compact form:

region. In the case ofjg—tth+g, thehard and IR regions

are defined by whether the gluon is resolved or not. The ~ hoqitg_ h—qqttg|2
emitted gluon is not resolved, and therefore considered IR, 7 B d(P%)E A 1% (4.29
when

with

Sig=2p;-k<Smin, With i=q,q,t,t,  (4.20

- 2 2
— gsNY [N —1
for an arbitrary small cutofé,.,. Similarly to Eq.(4.2), the > |v4hﬂqq“g|2:(37>( 7 2 AP+ AL
partonic real cross section can be written as the sum of two

terms:

b 2l Ayt A2t | Asf2e | A
i - [=2[ Agt A"+ | Asl*+ [ Agl*] | -
qq N2

Oreal™ Tir T Ohard» (4.21)

A (4.25
where o, includes both soft and collinear singularities,

while 0,4 is finite. Following the general idea of PSS, we  (P) Using the one-cutoff PSS method and the factorization
properties of both the color ordered amplitudésand the

calculate;, analytically, while we evaluater,.q numeri- gluon phase space in the soft/collinear limit, we extract the
cally, using standard Monte Carlo integration techniques: N

- - iR singularities ofo" 9919 jnto o+ 410 gng h-aatt
Both o, and o},,4,4 depend on the cutof,;,, but the had- follcs)wsg,]'u arities ofr 10 Tsoft and o as
ronic real cross sectiony,e,, IS cutoff independent, after :
mass factorization, as will be shown in Sec. V. o

___So

In order to calculatefrIR we apply the formalism devel- Sh—adttg _, a_hﬂqattig
oped in Refs[14-16 as follows. soft

(a) We consider the crossed procéss qqtt + g which is B O | hoddital2
obtained fromqg—tth+g by crossing all the initial state _f d(PS“)d(PSg)SO“E Aot ™%
colored partons to the final state, while crossing the Higgs (4.26
boson to the initial state. For a systematic extraction of the '
IR singularities within the one-cutoff method, we organize collinear

the amplitude forh—qqtt+g, A"999 in terms of col- Sh—aditg  _, Sh—ddttg
ored ordered amplitud¢82]. Using the color decomposition coll

- J d(PS)A(PS)con, |A 5092,
(4.27

we writeAh_’qutg as the sum of four color ordered ampli- \;nere we denote byd(PSy)sort [d(PSy)con] the phase
tudesAy, ... 4, as follows: space of the gluon in the softcollineay limit, while

S| AL a2 (3] AN 19919)2) represents the softollinea)

1
T2 T2 P (4.22

=2 8c.c,00.0,—
clcz 304 2( 0104 C3C2 N C1C2 C3C4 1

— 1 ) -
Ah_’qq“g=lg.55qu55ftft§( Sceg TeqerAL(Prs Py 01,02,K) limit of Eq. (4.29. The explicit calculation ofrlo; 7% is
described in detail in Secs. IVB 1 and IV B 2, respectively.
+T2tca50qct_“42(pt P! ,01,02,K) The factorization of soft and collinear singularities for color

ordered amplitudes has been discussed in the literature
mainly for the leading color terma9(N)]. For our applica-

= N et Tegeq Aa(PL,P 101,02, K) tion of the one-cutoff PSS method, we will have to extend
these results to the sub-leading color tefr6§1/N)].
1 () Finally, the IR singular contributiowr;, in E
— _T2 o 4 ) ir q. (4-21)
N Tocrdegeg Aa(PPr A2 k) [ (423 nl s of two terms:
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o =0l +0 (4.28 T
ir ir crossing: Ug;gqttg_j d(PS4)E |Ahﬂqqtt|2‘ Sqt"'&t
As described in detail in Sec. IV 83} is obtained by
crossingq andq to the initial state anth to the final state in X[ Sit+ Sqg— 2(Sqt— Sqr— Sqt Sq‘D]]
the sum ofo!,; 999 and crhﬁqq“g while ¢ ossing COITECts
for the difference between the collinear gluon radiation from (4.3)

initial and final state partongl5], as will be discussed in
detail in Sec. V. As explicitly shown in Sec. IV B 3, the IR where, for any pair of quarksa(b), the integrated soft func-

tions S,, are defined as
singularities Of%m of Sec. Il B are exactly canceled by the
corresponding singularities in}icr . On the other hand, gs

: Sap=
T crossing Still contains collinear divergences that will be can- ?
celed by the PDF counterterms when the parton cross secti
is convoluted with the PDFé&ee Sec. Y.

f d(PS)sor(ab,g)fap(9).  (4.32

QR the one-cutoff PSS method, the explicit form of the soft
gluon phase space integral is given [dg]

. € y (e—1/2)
1. Soft gluon emission ( m)€ N\
d(P§)sorda,b,9)= = [SagSbgSab— M5,
We first consider the case of soft singularities, when, in Hso 1672 [(1—¢) 2009 %

the I|m|t of E;—0 (soft limit), one or moresj;<s i e
- ( ) 9 mm( _mgstz)g] dsagdsbga(smin_sag)

=q, q t, t) Usmg the factorization properties of the color

ordered amplitudes4; in the soft limit, the amplitude X 0(Smin—Sbg) (4.33

squared fom—qqtt+g can be written as where

oft A=s2,—4m’m?, (4.34

—_ S -
2 [ANTaaZ X A2
obtained by carrying out the integration in E¢.32. When
1 a=q and b:E i.e. when both quarks are massless, the in-
_@{fﬂgH fqa(@) = 2[Tq(9) ~ 4d(9) tegrated soft functiors,, is given by[14]:

_ [aN 1 [4mp®\€1/ s \¢
—fat(g)+fq—t(g)]}], (4.29 Sqq—(— —(—) - g) , (4.35

and the integration boundaries fsyy ands;,q vary accord-
ingly to whethera andb are massive or massless quatse
~ _ Ref.[16] for more details
h qqtt
)2 [ Alo { TURRET(C) The explicit form of the integrated soft functiorg,, is

where, in our notations=sq is the parton center-gf-mass
where, for any pair of quarksa(b), the soft functions ,,(g)  energy{see Eq(3.12]. On the other hand, whex=q,q and

are defined as b=t,t, i.e. when one quark is massless and the other is mas-
sive, the corresponding integrated soft functions are of the

()= 4s,, _4m§_4m§ 30 form [16]
fal0=5 s 2, Sy ' o _[eN) 1 amp?| (s | [ L], 1f s ¢
ab™ | 24 I'(1-—¢€)\ smin Smin €2 2 mtz

and, as befor¢see Eq.(3.12)], )
1 [sep) " 1 m;

+ —(i;’) (2)+ —

Sij=2pi-p;, 2€\ m; 2¢ Sab

2\ €

both for massless and massive quam{”q“ is the tree asN ! /47T'u ) { ! 12
level amplitude for the procesls—>qqtt as given by Eq.

(D1). We note that Eq4.29 corresponds to the factorization

property expressed in E¢4.5). Since, in the soft limit, the X In
h—qqtt +g phase space also factorizes, in analogy to Eg.
(4.7), we can integrate out the soft gluon degrees of freedom
and obtain the soft gluon part of the cross section tor + 2

- 2 n
—qqtt+g as

= +—+=
27 T(1—e)\ spin | |26 26 2e

1 m?\ 1 .[s
+—In2( t )——In2 is
4 Smin 2 mt

1 ( Sab ) mZ]
+ZIn —SU2+ . (439
2 min b

2

Smin

Sab

053017-11



L. REINA, S. DAWSON, AND D. WACKEROTH PHYSICAL REVIEW D65 053017

Finally, whena=t andb=t, i.e. when both quarks are mas- —, 1
sive, the corresponding integrated soft funct§pis given XZ2=|N- N/

by [16]
- m? 1 s
X% ,=N[1+2In ——|In
agN 1 4\ € mt2 1 Smin N Smin
StT: - J.—+J +‘Jb s
27 |[T(1=€)\ Smin | N\ "€ 7 2 s
(4.37 +In tl-———Aq|,
Smin (2mg+s) Bre
where we have defined 2 2 2 _
~ m, 1 S 1 S
C§=2In2< . — )——In2 i; —=In? —q;
min Smin 2 m; 2 m;
2 _
m; Stt _ 2
J=1-—A, SqtSqt T o 1 1
NIV 2m+si0) Bit +In ——=—{2)+mi| —+—|,
tt ( t tt_)Btt thSmm 6 t SqT Sat
(4.4)
2y 1 m? m? s
_ T Cs=— —In2( C | — ) In( )
Ja_JSIn( SminM; ) ' (43& 2 2 Smin Smin Smin
min
Jp=(7—7)[1-2In(7,—7_)—In(7,)] (2mf+s) Bt 2 Smin
T T T4 S Sqt Sqt Sqt
+( 5 ) |n(T— [1+2In(7,—7_)] +1n? izt —Inz(%)—lnz(—q; +In2(i;>
- m; m; m; m;
+Li 1—T—+>—Li (1—7— +ltr7 SqSat| . M m°
25 7 A5 1, T —2In| 22 +—(Ja+\]b)+?—2mt2
1 SqiSqt/ VAt
+(r_+7.) —1—In(7+)ln(7,)+zln2(r+) . ( 1 1 1 1 ]
X|————— +—.
Sqt  Sqt  Sqt  Sqt/
,gitaea:lng;\t? are defined in Eq(3.13 while \;; and 7. are 2. Collinear gluon emission
In the collinear limit when an external massless quajk (
and a hard gluon become collinear and cluster to form a new
MTESIZT—M“?, parton (') [i+g—i’, with collinear kinematicsp;=zp:
(4.39 and k=(1—-2)p;.], the color ordered amplitudes factorize
and the amplitude squared for—qqtt +g can be written as
_ _\2
thst—tzi \/ St—tz —1. —_— __ collinear—— b daine
2my 2my > |Ah—aatg2 o M| ghoadttg)2
N\ haai o
Finally, using Egs(4.35—(4.38), we can derive the complete :( S )2 |AE8qqtt|2[ ftﬂ9*q+fggﬂq
form of ;99 2

1 — —

_ T rf499—q q9—q_ qg9—q
- B U
. . -
Ugof?qttgzz-/vtf d(PSy) > |AlG M2

Ve s ~s
X[E+ LANGS %} (4.40
€2 € N |’ I
The collinear functioni}gﬂ'/ contain the collinear singular-
ity and are proportional to the Altarelli-Parisi splitting func-
where tion forig—i’ [see Eq(4.17)], i.e.
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o 2 72 z integration, thanks to the structure of Eq4.31) and
fi? =5 |17 " €1-2| (443 (4.44. In fact, each term in Eqg4.31) and (4.44) depends
9 on only two invariants,sj; and sjg, and each term in

Using this definition, we can see that £4.42 is equivalent ¢ 99" corresponds to an analogous termoify; 999 (ex-

to Eq.(4.16), althoughg andq, the massless quarks, are now cept thatC is missing since there is no collinear emission
considered as final state quarks. The reason why we usefgym t andt). Therefore, for eaclC;; we only need to re-
more involved expression is because this allows us to matchre that whersig<Spin:

the collinear and soft regions of the gluon phase space in a

very natural way, as will be explained in the following. In the

same spirit, the lower index of the collinear functions Smin

ig—i’ - : , Siqg=(1—2)S;/{>Spin—2<1-—
f; keeps track of which color ordered amplitude a given 19 ] S|
collinear pole comes from. Although seemingly useless at
this stage, this will be crucial in deriving Eq&4.44) and
(4.45, where the integration over the collinear region of theThe lower bound oz is not constrained and the integration
gluon phase space is performed in such a way to avoid tétarts atz;=0. For sake of simplicity, and since this does not
overlap with the soft gluon phase space integration in Eqsgive origin to ambiguities, in the following we will denote
(4.3D) and (4.32. Finally, we note that there is n’ ' or  the s;,; invariants in Eq.(4.47 by s;;. Finally, when the
gt integration over the collinear gluon degrees of freedom is
performed, one finds that tHe,_.;/(z;,2,) functions in Eq.

(4.45 are of the form[14]

=1-27,. (4.47

197" in Eq. (4.42 since the gluon emission from a massive
quark does not give origin to collinear singularities.

In the collinear limit, theh—qqtt+g phase space also
factorizes, in complete analogy to E@.18, provided the

obvious changes between initial and final state partons are z,°-1\ 3 (7 7 5
taken into account. Therefore, we can integrate out analyti- lig—i7(21,22) = - Z+ 6 4/€ +0(€%).
cally the collinear gluon degrees of freedom and obtain the (4.49
collinear part of the partonic cross section for-qqtt+g
as _ _
Wheni=q,q andj=t,t, i.e. when one quark is massless and
- < | hcT 1 the other is massive, the integrated collinear functiGgs
ocaﬁq“g=J d(PS) > |ANG92 Cq?ngt—@ are given by
X[Cyq—2(Cqi— Cqi—Cqi+Can)] 1, (4.4 c (“SN) ! (477#2 [ | ( Sij ) 3|1
— —_ — s . pe = — n —_ =
49 gt at et at g 27 )T (1—€)\ Smin Smin) 4l€
; : ; ; 1 si |\ @ 7
where, for any pair of quarks |j), the integrated collinear ] B I
, , +=In + +0(e) 1,
functionsC;; are defined as 2 Smin 6 4
g2N . _
CiJ-:(ST) f d(PScon(i,j,2) %" (2) while when bothi,j=gq,q, i.e. when both quarks are mass-
less,
(aSN) 1 (4w2>51| ( )
=—|m— || —| —lig—i’(21,2,).
2m |T(1=€) | Spin | € 1971772 o (aSN 1 (4m2)f 2|< s) 31
(4.45 9\ 27 )T(1=e) | Smin N smnl  2]€

The phase space of the collinear gluon can be written as L in?

S w7
min)+?—§+0(6) .
o @mc 1

d(PSg)COH(Ia]vZ)_ 16/7T2 F(l_f) Sig dsig

Using these results, we can finally explicitly write the par-

X[2(1-2)]"dZ 6(Spin—Sig), tonic cross section for collinear gluon radiation as follows:
(4.49
anpl the integration boundaries anare defined by. the re- (}Ealqatt_g:(ﬁ)j\/tj d(PS,) >, |AlL16>tht_|2
quirement that only ones;, verifies the conditions, 27
<Smin- This is necessary in order to avoid overlapping with NG ce
the region of phase space where the gluon is kse Eq. x[—l+NC‘1_: _2] (4.49
(4.32], and it is easily translated into an upper bound on the € N
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where XI_R2: _xeint
XlRl: _Xvi&t
3 Sqt St 1| 3 s N o
Xe =N{——In< K )—In( Tl+=|-=+2In ) (453
! 2 Smin Smin N 2 Smin
2 2
m Sat Sqt 7 m;
SqtSat ClR= In( t) —2In| = | -2In| = +——In( )
-2 In( M) l, ! Smin mt2 mt2 2 Smin
SqtSat
qt>qt
Sqt St Sqt
2 _ +In| — +In( ) —Inz(i> —Inz(—)
Ci= —In( m )(In( St | 4 g[S )— §) - EIn2<ﬁ) m m m m;
Smin Smin Smin 2 2 Smin 2
1 7 T ayemy B 2 )
Sat iy == = me| —+ —
Sl -] S DI 2 2 e s/’
2| ( min) +2 3 y (45@ Sqt qt
2 ) 2
_ _ m; S SqtS 5 m
CE=1|n2 S 2 Sqt +1n2l 29| 442 Sat C'szln( ) 2In( +41n| 2 qt>—§+ln< t)
2 Smin Sm|n Smin Smin Smin mt SqtSqt Smin
— 2 — —
St t 3 S SI S 2 Sqt
—Inz(i +In ——=+2In ) + —————Ag[+5In (_2 2Inl —
Smin min 2 min (th + S0 Bit 2 m mt2
—) 2 — )\
SqtS 7 S S
—2|n(M +T_L +21n? +21r? q;) 2In2(izt
SquE[ 3 2 mt m; my
SqtSqt o[ 1 1 1 1
3. IR-singular gluon emission: Complete result fofnR —21In SqiSqt el S_qt - %_S_qt+ S_qt
As already described in the beginning of Sec. IV B, the 27 2
partonic cross sEcticE for the IR-singular real gluon radiation + >3~ (J +Jp),
for the procesgjg—tth using the one-cutoff PSS method is VA
given by while A; is defined in Eq(3.5), and A, o is the tree-level

amplitude forqg—tth in d=4 dimensions.

TIR= %+ Terossing As described in detail in Ref15], o¢rossingiS given by

1 —
~ h—qattc hﬂ qttg 5 — ~d4 —
=[o sof?q Y4+ o qq ]crossed+0'cr055|ng (4.5 Ucrossing_asJ dZO—LO[Xqu(Z)J’_Xq*)‘(Z)]’

where X,_.4(2)[Xq_4(2)] is the unrenormalized éros@mg
Note that crossingr;3%¢ and 525,79 only implies the  function of Ref. [15] “Which accounts for the difference be-
interchange of the momenta of the quark and antiquark, sinceveen collinear gluon radiation off an initial or a final state
particle and antiparticle interchange under crossing. In theuark (antiquark:
case of soft gluon emission this can be easily verified by

comparing Eq(4.5) with Eq. (4.29, after flipping helicities X, o(2)=— & 4ap®\c 1 E
and momenta of the crossed particles. For collinear gluon 4= 27\ Spin ) T'(l—e€)le
emission, the crossing is complicated by the difference be- 5

tween initial and final state collinear radiation. Using % §_6 m z”&(l 2)
agyfgg};,? in Egs.(4.40 and(4.49, o can be explicitly writ- 2 3

ten as

1+ 72 .
R IR —e(1-27 .

+ e —
~e 2 E [(a=27 .
gi,_( ) fd(Pss)E | ALl [ c (4.55

CIRN C 45 V. TOTAL CROSS SECTION FOR pE—»tt_h AND MASS
- N (452 FACTORIZATION

As described in Sec. Il, the observable total cross section
where at NLO is obtained by convoluting the parton cross section
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with the NLO quark distribution functions?—'g'p(x,u), torization and renormalization scales to be equal. Therefore

thereby absorbing the remaining initial-state singularities O'Ihere is no explicit factorization scale depe'nden_ce in Egs.
q (5.1 and (5.2, and the onlyu dependence -5 °(x,u)

~ qq . . . . B . _
gar'\‘%[o |gt0 tr}e”q%\:;lrkg;rsttr |:3hut|on rftur:]ctlcr)ns. Th|stic§r} be l#\]/ comes fromas(u). When using the two-cutoff method and
erstood as foflows. Frst the parton cross section 1S co 0convoluting the parton cross section with the renormalized

luted with thebare quark distribution functions§(x) and  quark distribution function of Eq5.1), the IR singular coun-
subsequently="(x) is replaced by the renormalized quark terterm of Eq(5.1) exactly cancels the remaining IR poles of
distribution functions#??(x, x) defined in some subtraction Tirt T Tsott ANA0hargicon - IN the case of the one-cutoff PSS
scheme. Using théS scheme, the scale-dependent nLo™Method, the IR smgylar counte.rterm of B§.2) exactly czn-
quark distribution functions are given in terms ﬁﬁq";(x) f:els the IR poles Obcrossfng' Fln_allyiht-a complete)(as)
and the QCD NLO parton distribution function counterterms/nclusive total cross section fgrp—tth in the MS factor-

[13,15 as follows: for thetwo-cutoff PSS method ization scheme can be written as follows: for tfa-cutoff
' ' PSS method
’y = as I'(1—e€) 1 — A*
FEPOxpu) = FRPO0[ 1-5 mwr(;) o= 2 f X0 F (X, 1) Fe(Xo, )07 (X1 Xz 1 12)
qq
X Cgl 2 In(5s)+§ + oI (X0, X0 )+ Lo Xe X2, )]
o
o T(1-e) 1 s dz L2203 [ axds,
et e GO f - T ag
27 I'(1—2e¢) X
% flﬁsdz }_p(Xl )fE( )
1 X - — Xo b
o 2) qu<z>ﬂ Z), (5.0 o z|Tz e

o1 d(X1, %o, 1)

_ X, L
+ FP(x ,,u)fg(—,,u)
and for theone-cutoff PSS method a2 a\ z Lo

1+22 [ s (1-2)? &,
]:DYE(X )_]:pvi(x) 1_ﬁﬂ E § 1_Z|n E ? Tz +(1<_>2)
g AT 27 T(1-e) el F2
as (4m)° jldz +2_ fdxldxzfg(xlyﬂ)}-g(xziﬂ)
27T(1-¢)| )y z h
1 c 1+ 72 pp(x - - X Thardmon-coll(X1, X2, 1), (5.3
<\ =)= ) (5.2 with
o .= _H}QQ(ﬁ) F(l——e)(4ﬂ_)5
where theO(a) terms in the previous equations are calcu- soft™ Tsoftm TLO| 2.7 T'(1-2¢)
lated from theO(«as) corrections to the—qg splitting, in 1
the PSS formalism, anil,¢(2) is the Altarelli-Parisi splitting X[ =|Ce[4In(59) +3], (5.4)
function of Eq.(4.17). Note that, again, we choose the fac- €
and for theone-cutoff PSS method
_ - - A w .
INLO= 2 fdxldXZFE(Xluﬂ)fg(XZvﬂ)[Uﬁqo(xleZiM)+O'giqrt(xlixzuu*)"_Ufr(xllXZw“)+ﬁ2CFUEqO(XliX2nU’)
aq
3 [sminl @ 7 ag 1dz of X1 ’y
X §|n Mz +?—§ +ECFZ fdxldxz fx? fq ;,,LL Fa(Xz,,LL)
aq 1
— X .= 1+ 72 S Smi In(1—2)
p p| 21 qq T n| =2 2min _ 2
+]-‘q(X2,,u)}'4 z”“) ol o(X1, X, 1) (1_Z)+In 2 +1-z+(1+2z9) 1—7 )+1+(1H2)]
+Z fdxldXZTg(Xlwu‘)J:g(XZ1Iu’)a-hal'd(X11X21lu‘)' (55)
qq
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20 . TTTTeaal — 2 T hardrnon-coll
e et L R
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W T e - Ot Chardrcol
53 [~ . : 53
= 51 E .51t
\-’9 497 X KN = DT o T T e o e e ;: vg 49 IIIIL‘LIFIIIJ_I:EE
c 47T 1 E4T I
45 : : : - : :
10" 10° , 10' 10° 43 -35 -3 —25 -2
Spn (GEVY) Log,,9,
FIG. 7. Dependence afy, o(pp—tth) on the arbitrary cutoff FIG. 8. Dependence afy, o(pp—tth) on the soft cutoffs, of

of the one-cutoff PSS methods,;,, at \EH=2 TeV, for My, the two-cutoff PSS method, at@:z Tev, for M,
=120 GeV, andu=m;. The upper plot shows the cancellation of =120 GeV,u=m,, andé,=10"*. The upper plot shows the can-
the s, dependence betweerf, , o ossing: @aNdoparg. The lower  cellation of the 5, dependence betweenrys+ opargcon and
plot shows, on an enlarged scale, the dependenog,of on sy, Thardmoncoll - The lower plot shows, on an enlarged scale, the de-
with the corresponding statistical errors. pendence obry o On 8 with the corresponding statistical errors.

We note thatoy o is finite, since, after mass factorization, In Fig. 9 we show the dependence of, o on the hard/
both soft and collinear singularities have been canceled bei:'olline.ar cutoff. 5. for a fixed value of th% soft cutoffs
— yYco S

tween ol + 0o @Nd Tpargcon N the two-cutoff PSS =5x 1074, In the upper window of Fig. 89) we illustrate
method, and between’, and of, in the one-cutoff PSS the cancellation of thed,(5,) dependence betweemsqy,
method. The last terms, respectively, describe the finite reat Ghargcon @Nd Oharanoncolr» While in the lower window
gluon emission of Eq(4.3 and Eq.(4.21). Note that the we show, on a larger scaley o with the statistical errors
second term in Eqg5.3) and(5.5), which is proportional to  from the Monte Carlo integration. As beforey o also in-
In(s/u?), corresponds exactly to the second and third terms o€ludes the contribution from the Born and the virtual cross
Eq. (2.7), as predicted by renormalization group argumentssections, which are both cutoff-independent and are not

Before we discuss in detail the numerical results for the NLOshown explicitlyjn the uppergparts of Figs. 8 and 9. Bgin
total cross section fopp—tth we first demonstrate that the range 10°-(2.5<10°%) and &; in the range

- dl07°-1073, a clear plateau is reached and the NLO total
onLo does not depend on the arbitrary cutoffs of the PS , atie !
method, i.e. ors,,;, when we use the one-cutoff method, and €ross section is independent of the technical cutoffs of the
on the soft and hard/collinear cutoffs and 5, when we use  tWo-cutoff PSS method. All the results presented in the fol-
the two-cutoff method. We note that the cancellation of the

cutoff dependence at the level of the total NLO cross section 40 ' ' '

is a very delicate issue, since it involves both analytical and T e c_’h_af("g";f'[
numerical contributions. It is crucial to study the behavior of 20r T
onLo In a region where the cutd) are small enough to Onio
justify the approximations used in the analytical calculation or

-di £.aq i
of the IR-divergent part obr,.,,, but not so small to give 0l O i+l )

origin to numerical instabilities.
Figure 7 is about the one-cutoff PSS method and shows

the dependence afy o ON Sy, In the upper window we 5.3
illustrate the cancellation of ths,,;, dependence between =51
& s Ocrossing @nd opaeg, while in the lower window we ""“9 B e e S e i s M LML LSS
show, on a larger scale, the behaviorogf, o, including the g 47 1
statistical errors from the Monte Carlo integration. We note 45 L ' : : .

. : . -5 -45 -4 -35 -3
thatoy o also includes the Born cross section and the virtual Log. 8

10~¢

contribution to the NLO cross section, which are beth,
independent, and are therefore not shpwn explici.tly in the F|G. 9. Dependence afyLo(pp—tth) on the collinear cutoff
upper part of Fig. 7. Clearly a plateau is reached in the res_ of the two-cutoff PSS method, ats =2 TeV, for M,

gion 0.1 GeV<sy,n<100 GeV. =120 GeV, u=m,, and 5,=5x10*. The upper plot shows the
Figures 8 and 9 are about the two-cutoff PSS method. Igancellation of thes, dependence betweem,, s+ harg/con and

Fig. 8 we show the dependence &fj o on the soft cutoff, o, gnoncon- The lower plot shows, on an enlarged scale, the de-
85, for a fixed value of the hard/collinear cutofi,=10"4. pendence ofry o on 8, with the corresponding statistical errors.
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N 10 : : :
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) r h NLO
) 5.5 . = 8 L \
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Z s
& > 09' 4
45 | ~—
Vs, =2 TeV > S
M,=120 GeV Vs=2TeV —  Sssaa
3.5 ! . ' 0 . ' '
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FIG. _10_' Deper.ldepce of 7Lonto(pp—tth) on  the FIG. 11. oy 0 and o, o for pp—tth as functions ofM,,, at
r_erllggmgg/atlon/factorlzatlon scalg, at @:2 TeV, for My, \/;:2 TeV, for u=m, and x=2m, .

. ) . ) The correspondinK factor, i.e. the ratio of the NLO
lowing are obtained using the two-cutoff PSS method witheross section to the LO one,
8s and &, in the range 1010 3. We have confirmed them
using the one-cutoff PSS method witkss,,;,< 10. oNLO
K= , (6.9
JLo

VI. NUMERICAL RESULTS
In the following we discuss in detail our results for the is shown in Fig. 12. For scaleg betweenu=m; and u

NLO inclusive total cross section fapp—tth, oy o(pp  =2M. theK factor varies roughly betweeiki=0.70 andK
—tth), as introduced in Sec. Il and explicitly given by Egs. =0.95, Whenth vfarllqes mdthe rimge betweﬁn 1?0 and_ 200
(5.3) and (5.5. Our numerical results are found using GeV. For scales of the order pi=2m;+ M), theK factor is

CTEQA4M parton distribution functiong83] and the 2-loop of_ order one and becomes larger than one for higher sca_les.
evolution of () for the calculation of the NLO cross Given the strong scale dependence of the LO cross section,

section, and CTEQA4L parton distribution functions and thethe K factor also shows a significant-dependence and

1-loop evolution ofag(u) for the calculation of the lowest j[herefore IS an equaglly uhnrellr?ge prec(i;cﬂonaMoreﬁver, r;t IS

order cross section, unless stated otherwise. The top-qua portant to remem er that thefactor depends on how the

mass is taken to bey=174 GeV anda’s\'LO(MZ)=0.116. Cross sect!on is .calculated. We choose to calculate the
First of all, in Fig. 10 we show how at NLO the depen- LO cross section using both L@y(x) and LO PDFs, de-

dence on the arbitrary renormalization/factorization sgale ?oo'([eevilzgg%:g Iébgc:é?geec%lﬁIﬁsviﬁ“dNabZ?rof ;?lg?uu:%be
is significantly reduced. We udd =120 GeV for illustra- 9 K

tion purposes. We note that only for scape®of the order of

2m,+ M, or bigger is the NLO result greater than the lowest -4 ' ' '

order result at/s,=2 TeV. 1371 e pem )
Figure 11 shows both the LO and the NLO total cross 12+ Vs ,=2TeV - u=2rtn 1

section forpp—tth as a function oM, at \su=2 TeV, 110 b

for two values of the renormalization/factorization scale,

. . ]

=m, andu=2m;. Over the entire range &l,, accessible at Q; — ]
=
©

the Tevatron, the NLO corrections decrease the rate for 09 r ]
renormalization/factorization scalgs<2m;+M,. The re- Y 0.8 I i
duction is much less dramatic at=2m, than atu=m,, as X b

can be seen from both Fig. 10 and Fig. 11. An illustrative S )
sample of results is also given in Table I. The error we quote 0.6 r 1
on our values is the statistical error of the numerical integra- 05 | ]
tion involved in evaluating the total cross section. We esti- . . .

mate the remaining theoretical uncertainty on the NLO re- 0'4110 130 150 170
sults to be of the order of 12%. This is mainly due to the M, (GeV)

leftover u dependencéabout8%), thedependence on the

PDFs (about6%), and theerror onm;, (about 7%) which FIG. 12. K factor for pp—tth as a function ofM,, at \/s,
particularly plays a role in the Yukawa coupling. =2 TeV for u=m; and u=2m;.
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TABLE I. Values of botha o [calculated with LOag(1) and LO PDF§ oo [calculated with NLO
ag(n) and NLO PDF$ andoy o for different values oM, and for different renormalization/factorization

scalesu.
My, (GeV) M oo (fb) oo (fb) oo (fb)

m, 6.8662-0.0013 5.28430.0008 4.8630.029

120 m;+ M/2 5.9085-0.0011 4.5846 0.0007 4.84%0.024
2m, 4.8783-0.0009 3.82520.0006 4.69%0.020

2mi+ My, 4.2548+0.0008 3.3606:0.0005 4.51%0.017

my 3.4040+0.0006 2.58110.0005 2.355:0.013

150 my+My/2 2.8289+0.0005 2.1668 0.0004 2.3150.011
2m, 2.40070.0004 1.85530.0004 2.253:0.010

2m+My, 2.0282+0.0004 1.5813 0.0003 2.1470.008

m, 1.7605-0.0003 1.3153 0.0002 1.166:0.007

180 m;+ M/2 1.4142-0.0003 1.0693 0.0002 1.158 0.005
2m, 1.2326+0.0002 0.9396:0.0001 1.1320.004

2mi+ My, 1.0096+ 0.0002 0.77730.0001 1.0690.004

PDFs, denoted by o in Table I, in which case thi factor ~ Where theqq label indicates that only thgq initial state is
would just represent the impact of thi¥ «;) corrections that  included. The size of the QCD correctionspgp—tt is thus

do not originate from the running af4() and the PDFs. similar in magnitude to the result obtained in Fig. 12, taking
Sinces o> 0o, theK factor obtained usingr, o is smaller ~ into account thapp—tth is completely dominated by the
than the one obtained using, o, and it is important to 99 channel. Of course, we do not expect a better agreement,
match the righK factor to the righto_ or o, o . Therefore since inpp—tth an additional heavy particle is produced,

we would like to stress once more that we only discuss<the and new contributions to the virtual and real corrections
factor as a qualitative indication of the impact 6 a.) arise. Moreover, taking the EHA as an indication, one could
S.

QCD corrections, for different processes or when using dif_naively expect that the radiation of a Higgs boson introduces

ferent approaches. The physical meaningful quantity is th&n additional negative contribution_. We also obserye that,_if
NLO cross section. not thi& factor we now use as the LO cross section the one obtained using

For comparison, we have estimated teactor also in NLO O‘S('““.) and NLO CTEQ.4M PDFs, the twi factors in
the EHA[9], and we obtairK=0.6-0.7, for Higgs boson Eq. (6.2 increase, according to the comment we made
masses up to 150 GeV and renormalization/factorizatior?bove’ and become
scales in the range betwegrn=m, and u=2m,+M,. As
anticipated, we do not expect the EHA to give a quantita-
tively good approximation of the fuppp—tth calculation at
O(ay), since at\sy=2 TeV and for a SM Higgs boson ) ) 1 )
above the experimental bound, we cannot work in the limit" agreement with the literaturg84].” Moreover, since the
M, mt/\/§<1 orM;,/m,<1. Still the EHA gives a remark- NLO cross section fopp—tt is further increased by the
ably good qualitative indication of the fact that the first orderresummation of the leading and next-to-leading logarithms
QCD corrections may lower the LO total cross section.  arising from the threshold region dynamics, the tétdactor

It is interesting to compare our NLO result fpp—tth ~ for pp—tt can be as high as 1.33 fpr=m,. In this respect,

with the NLO result forpp—tt. Since the Higgs boson is We also note that, contrary fopp—tt, in the threshold region
colorless, one would naively expect the QCD corrections tdor pp—tth there are large negative contributions, mainly
both processes to be of roughly the same size. Defining thigom soft gluon radiation, which are largely compensated by
NLO cross section using the NLO evolution af(x) and  large positive contributions from hard gluon radiation at
the NLO CTEQ4M PDFs, and the LO cross section using thearger s. In the threshold region the Coulomb term, coming
LO evolution of as(#) and the LO CTEQAL PDFs, th&  fom the exchange of virtual gluons between theexternal
factor for tt production atysy=2 TeV, with x=m, and legs, is important and contributes to decrease the NLO cross
m,=174 GeV, is section, although it is moderated by the behavior of the

K(pp—tt)|sq=1.18,

_ (6.3
K(pp—tt)|ior=1.24,

K(pp—tt)|qq=0.98, ) .
6.2) We have compared our results with Fig. 9 of R&4], and we

o ' see very good agreement with the LO and the NLO curves, using

K(pp—tt)lior=1.05, m,=175 GeV andy/s,=1.8 TeV.
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three-body phase space. Int_he strict threshold limit, the Cou- k; a k5
lomb contribution topp—tth goes to zero, while for <1
tt production it is constant and dominates the NLO cross Ads
section. ayY >— Ky
- Ady
VII. CONCLUSION k2 az k3

The NLO inclusive total cross section for the standard

model processpp—tth at \sy=2 TeV shows a signifi-
cantly reduced scale dependence as compared to the Born

FIG. 13. Topology of the pentagon scalar integral.

. ! . .. — 12
result and leads to increased confidence in predictions based Np=k*,
on these results. The NLO QCD corrections slightly decrease
or increase the Born level cross section depending on the N,=(k+qy)2

renormalization/factorization scales used. The NLO inclusive
total cross section for Higgs boson masses in the range ac-

cessible at the Tevatron, 120M,<180 GeV, is of the order N3=(k+0q;+0)?, (A2)
of 1-5 fb.
The contributions to the NLO cross section resulting from
issi i iati Ny=(k+q;+a—p{)2—m¢
real gluon emission have been calculated in two variations of 4 17027 Py b

the phase space slicing method, involving one or two arbi-
trary numerical cutoff parameters, respectively. This is the
first application of the one-cutoff phase space slicing ap-
proach,(“ spmin” ), t0 @ cross section involving more than one
massive particle in the final state. The correspondence b&\e note that we included a factpr* ¢ in the definition of
tween the two phase space slicing approaches is made ethe d-dimensional scalar integrals in order to have them in
plicit. The virtual contributions to the NLO cross section the most convenient form for the calculation of the virtual
require the calculation of both box and pentagon diagramamplitude squared. The pentagon scalar integral originating
involving several massive particles and explicit results forfrom diagramP,, EQ,,, can be obtained from EgéA1) and
the integrals have been presented in the Appendixes. The$A2) by exchangingy,« q,. Therefore in the following we
techniques can now be applied to other similar processes. limit our discussion td=0,,, the generalization t&0,, be-
ing straightforward.
We calculate these integrals following the method intro-
duced by the authors of Rdfl1]. To make contact with their
We are particularly thankful to Z. Bern and F. Paige for notation, we denote bi; the external momentésuch that
valuable discussions and encouragement. We would like tbi2=mi2), by M; the internal masses, hy; the sum of the
thank W. Giele, S. Keller, and W. Kilgore for very useful firsti external momentq){‘zzgzlkj”, by p;; the difference
suggestions and insights. We are grateful to the authors cﬁﬁ:pfgl_piﬁgl:kihr KA+ - - +kf‘,1 (for i<j), and fi-
Ref. [18] for detailed comparisons of results prior to publi-
cation. The work of L.R(S.D) is supported in part by the
U.S. Department of Energy under grant DE'Fgoz'illustrated in Fig. 13, which can be specified to our case by
97ER41022(DE-AC02-76CHO00016 The work of D.W. is identifying
supported by the U.S. Department of Energy under grant
DE-FG02-91ER40685.

Ns=(K+0y+ 0= p{ — Pp)2—mZ.
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nally by's; the invariant masses; = (k;+k;)2
The topology of the generic pentagon scalar integral is

ki,——q; (incomingq)

APPENDIX A: PENTAGON SCALAR INTEGRALS

In this appendix we review the details of the calculation ko——0qz (incomingq)

of the pentagon scalar integrals that appear in the calculation
of diagramsP, and P, illustrated in Fig. 5. Using the mo-

mentum flow and the notation shown in Fig. 5, the pentagon ks— Py (outgoingt) (A3)
scalar integral originating from diagraf, (EO,;) can be
written as k,—pp (outgoingh)
dk 1 K i
EQ..= 47df , Al 5—pP; (outgoingt).
pL—H (27r)9 N1N2N3NgNg (A1)

Using the standard Feynman parametrization technique,
where the pentagon integral in EGA1) can be written as
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H 5
i
EOp1=— 7= (4mu?)T(3+¢) Dy(a)= 2, S:aa—in, (A5)
16 p i jeidy
fll‘[?ldai 8(1-37_,a) a0 and the symmetric matrig; is given by
>< L
0 [Dp(a)]**e 1
P Sj=5(M?+MF—pf). (16)
For our particular process, the mati$g has the following
where the denominatdp,,(a;) is explicit form:
|
0 0 —Sp (MF—S45) 0
. 0 0 0 (MP=S3)  (M{—5ys)
S= 5 ~3;5 0 0 0 (M{—S34) (A7)
(M{=S45) (M{—S5) 0 2mf  (2mi-MP)
0 (M-85 (M-S (2m{-Mp  2m}
|
Following Ref.[11], EQ,; can then be written as the linear
. . . . (i) . _
combination of five scalar box integrals0{) : + m_zwz(/\fz A +A,,)
1 5
=_—_ Do _
Eopl 2 21 C'Dopl’ (AS) O_lel(Arl A72+Am1)1
where eackDOS} scalar box integral can be obtained from \yhere we have defined
the scalar pentagon integril0,;, of Eq. (A4) in the limit
where one of the Feynman paramete;sof the internal o=(01+9y)%=s,
propagators goes to zer@e. DO} is obtained wherg,
—0). The five box scalar integrals we need are given in =M= (Qy— P)2=2 0y P=$
Secs. A 1-A 5. The coefficients in Eq. (A8) are given by L 1 Pt=Sqt,
5 2 N2 __ [Ap—
_ T,=My = (2= P{) =202 P{ = Sqt» (A12)
ci=j§1 s;t (A9)
. . . _ w1=(py+ pr)? =M,
Using Eg. (A7) we can easily ob@n them in terms of
m;, My, and the kinematic invariants; . w2=(p{+ph)2—mt2.
The final result for the pentagon scalar integg@l,; can
be written as and
0= w2z Xy (A10)
= — 4y — , o
ST A0=|n(—2),
my
where; is given in Eq.(3.5), while X_,, X_; and X, are
obtained using Eq9A8) and (A7), and the results in Secs. , ,
A 1-A 5. The expression foX, is too lengthy to be given A, =In(—12), A Zm(_zz), (A13)
explicitly in this appendix, whileX_, and X_; have the ' " 2 N

following compact form:
1 1 1 2

— - +
20 W1T] @Ty TIT

X_2=

w7 )
) Aw1=ln(m—t2), Aw2=ln<a2).

1
X_,= (—=A,+A, +A, —A
OT1Ty 1 2

A,

71

We discuss in the following the box scalar integraie!!)

pl:

(A11)  which are used in EA8) to calculateEQ,;. The analogous
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box scalar integrals foEO,,, can be obtained from thi20{)
by exchangingy,« q, in their analytic expression.

1. Box scalar integral DO}
DO(Y is obtained from the pentagon in the linag—0
and corresponds to the following integral:
d
DO‘?ZM‘H’] X .
P (27)% N2N3Ny4Ns

d
:/LA_df dk 1
(2m)% NJNGNSN;

(A14)

whereNy, ... N, are obtained fronN,, N3, N4, andNs of
Eq. (A2) by applying the momentum shift—~k—q4, and are
explicitly given by

N;=k?,
Né:(k+q2)21

(A15)
N3=(k+d—p{)>—m¢,

Nj=(K+ 02— p{ —pn)2—m7,

The part ofDOéll) which contributes to the virtual amplitude

squared is given by

i
DO{Y=
PL 1672

(Al6)

where N; is given in Eq. (3.5, while the coefficients
X_,, X_4, andX, are given by

1
X_2: E,

2
Ttk ) , (A17)

WaTo
5 w2
Xo=Rel — —m?+In?| —
6 mt2
wy+ 7y T1
In| —
72 w2

To— T1— W
—2 Li2<¥)—2 Li,
2

X1=In<

T2 T1
+ |n2( —2> - In2( —2>
m; m;
T2_7'1 Tl
In| —
w3 T2
(,02+ T1— To
w3

+2In +21In

T (wo+ 71— 73)

+2 Li2( )—IO

W27y

where
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T2 ﬁ 1
To In(Tl)l m? LIZ()\+)
T —T1— AN (TH— T
| o et
T1 To— T1

71

2 +Li (
i
AN (r—T)+ 1y

—Li
2()\+(7'2_7'1)+7'1

+()\+<—>)\_)], (A18)

and
(A19)

2. Box scalar integral DOS?

Dog,zl) is obtained from the pentagon in the lingt—0
and corresponds to the following integral:

d
P (27r)9 N1N3N4N5

(A20)

where Ny, N3, N,, and N5 are given in Eq.(A2). DO

is equal toD0{?, and they both coincide wittD0; in

Appendix B 1.
3. Box scalar integral DO\
D03 is obtained from the pentagon in the lingit— 0
pl p g
and corresponds to the following integral:
d

D0(3’1):M4—df d°k 1
P (27)9 N1N2Ny4N5

d
=M4“‘f dk 1
(27m)¢ NiNJN4N

(A21)

whereN, ... N, are obtained fronN;, N5, N4, andNj; of
Eq. (A2) after the momentum shifk— —k—q; has been
applied, and are explicitly given by

Nj=k?,
Né:(k—’_ql)zl

(A22)
N3 = (k+0;—p)?—m?,

Nj= (k+ 0y~ p— pp)2—m?.

We notice that this integral can be obtained o} when
02— 0z andp; —p;.
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4. Box scalar integral DO'Y

DOE)“l) is obtained from the pentagon in the lind—0
and corresponds to the following integral:

d
Do(‘ll):lu4fdf dk 1
P (27)% N1N2N3Ns

d
=M“‘df dk 1
(2m)% NjNGNSN;

(A23)

whereNy, ... N, are obtained fronN;, N, N3, andNs of
Eq. (A2) after the momentum shifk——k—q;—q, has
been applied, and are explicitly given by

N;=k?,
Né: (k+q2)2!
(A24)
N3=(k+0a;+02)%
Ng=(k+d;+0p—p)2—my.
This integral coincides wittD0{3) in Appendix B 3.

5. Box scalar integral DO

DO} is obtained from the pentagon in the lingit— 0
and corresponds to the following integral:

d
DO(‘?):,UdeJ dk 1 ,
P (27)9 N1NaN3Ny

(A25)

whereN4, ... ,N, are given in Eq(A2). This integral coin-
cides withDO{Y in Appendix B 3.
APPENDIX B: BOX SCALAR INTEGRALS

1. Box 1: Box scalar integral DOy,

The scalar box integrdDd0,; can be written as

DOy, = 4—dJ d'k ! (B1)
b1 A (27r)9 N1NaN3Ny '
where
Nl:kz,
N,=(k+0)?,
(B2

Na=(k+q—p{)2—m?,

Ny=(k+q—p{ —pp)?—m?.

PHYSICAL REVIEW D65 053017

2. Box 2: Box scalar integralsD0{ and DO{2

The scalar box integrdd0{} can be written as

d% 1
DO =p* ¢ f (2 NaNaNaN, (B3)
where
N;=k2,
Np=(k+py)?—m?,
(B4)

Na=(k+py+ pp)2—m?,
Ny=(k— p{)z_mtz,

while DO(2) is obtained fromDO{}) by exchangingp— p; .
Therefore, all the following results fdb0§y can be easily
extended tdD0{3 .

The part ofD0O{Y which contributes to the virtual ampli-
tude squared is of the form

X_q )
— O —_—
€ (mtz —Sth)SttBit

Doglgzl N, ,  (B5)

6
where A\; is given in Eq.(3.5), while gu_=(Pt+ p)?=(q
—pn)?>0, Bir=\1-4mi/sg, sp=(pi+pp)> The pole
partX_, is

1+ B
1-Bil’

X_4=In (B6)

while the finite part can be calculated using H&6)].

3. Box 3: Box scalar integralsD0{Y , D03, DOS3 , and DOSY

The scalar box integrdd0{y can be written as

d
D0f= < <§7Tk>d NlNlesN4' €7
where
N;=k?,
N,=(k+qy)?,
(B8)

N3=(k+0q;+0p)?
Ny=(K+0y+0—p{)2—m;.

D0{Z is obtained fronDOY by exchangingy; < ds. On the

The analytical expression for this integral can be found inother hand,DO{Y arises from the box diagram where the
Ref.[35]. Since the integral is finite, we have evaluated it inHiggs boson is emitted from the antitop quark and corre-

d=4 dimensions using the FF packa|@].

sponds to
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Nj_: k2,
Np=(k+0a2)?,
(B9)

N3=(k+0;+03)?,

Ny=(k+0y+0a— p)?—m?.

ThereforeDO{3) can be obtained fror®0{Y by exchanging

0,0, andp; —p,. Finally, DO{Y is obtained fromD0{Y
by exchangingy;—q,. We present here the case DY .

All other DO{) boxes, fori =2,3,4 can be obtained following

the simple pattern of substitutions explained above.

The part ofD0O{Y which contributes to the virtual ampli-

tude squared is given by

1\(X, X
—)(—2+Tl+xo

a1y 2

i
6

., (B10)

Dofy=—{ -

where)V; is defined in Eq(3.5), the coefficientsX_,, X_1,
and X, are given by

3
X_2: E,

X,lz
(B11)
T g w
X0=2In(—22 In —2)—In2(—i)
t m; m;
2li(1s Y ™
Iy 7_—2 ?,

ando, 75, andw, are defined in Eq(A12).

APPENDIX C: PHASE SPACE SOFT INTEGRALS

In this appendix we collect the integrals which we havel (*2=
used in calculating the results in E¢4..10 starting from Eq.
(4.9). For a more exhaustive treatment of the formalism used
we refer to Refs[13,29, from which the results in this ap-

pendix have been taken.

We parametrize the soft glu@hmomentum in thaqarest

frame as

k=Eg4(1,...,sind; sind,,sinf, cosd,,cosd;), (Cl)

such that the phase space of the soft gluordind—2e

dimensions can be written as

PHYSICAL REVIEW D 65 053017

w

I'l-e € (6552
AP sor 3 s OE

El*ZE
(2m)%Jo 979

xf dalsinl*2501J dé,sin"2€ 6,.
0 0

(C2
Then, all the integrals we need are of the form
Is]k'l):f d01 Sind73 01J' d02
0 0
a+bcos,) «
X sinf=4 g, ( _1) T
(A+B cosf;+C sinf, cosb,)
(C3

In particular we need the following four cases. Whah
#B2+C?, andb=—a, we use[dropping terms of order
O((d—4)%)]

an__ T 2, (A+B)? T
" TaAre) |d—4 TN e ge_cz| T 247
2 A—\B%+C? 1I ,[ A+VB?+C?
M TArs T2 A BT e
JLi B+ \BZ+C?
+2Lip| — ————
?\ a-BZ+C?
, L B—BZ+C? -
“2te e ) (4
while whenb# —a we use
0 T | A+\B?+C? (d—a)
) n (-
" B%Z+C?| \|A-B%+C?
o i 2\B?+C? +1| ,[ A+B?+C?
i) ——— |t I ——— | .
“|a+B7+c?) 4 |A-B%+C?
(CH
2 1 1(d 4) A
A?-B?-C?| " 2 JBZ+C2
“ A+ B?+C? 5
n| ——e——| |.
A—\BZ+C?
Finally, whenA?=B2+ C?, andb=—a, we have
dr2—-3
an_, L 1 [A+B
n aAd—4| 2A
1+ Sd—ayeni,| A28 c
X+Z(_)|22A' (C7)
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APPENDIX D: COLOR ORDERED AMPLITUDES

DER where for future purposes, we have mtroducedxhﬁ and
FOR h—qqtt+g

A tree-level partial amplitudes

The tree-level amplitude fdi— q(q;)q(ax)t(p)t(p;) is
explicitly given by

Aga=u(dn)y"v(d),
AL T 25, oy 02 T 0 0(0)] :
oy — v ph_pt"'mt
, Ag =uP| v’ —— 53 (03)
1 o ph_pt+mt (ph_p’[) _mt
Xm u(py) ')’vm

_Ibh"'lbt

— pp+ Pt m ALl

+—————— 7| Tec (P - |
(ph_pt)z_mtz')’v) clcf)(pt)l (p Pt)

The O(«s) real corrections to the Born amplitude consist

of the procesi—qqtt +g, where the gluon can be emitted
either from the external quark legs or from the internal gluon

propagator. Therefore we can wrigg" 999 as follows:

1 1
= E ( 5010550(‘0?_ N é\ctctﬁcch) O qfqﬁfthAO )

(D1)

wherep,, is taken as incoming, while all the other momenta
are outgoing. Using the color decomposition given in Eq.

(4.22, we have rewrittenA!'59%" in terms of a leading

AN (i) oy 1By 1€
color and a sub-leading color ordered amplitude. Both am-

(OLAL(T T Tee

plitudes are given by

AT T Toe T AL Te el T e,

mo. 1 _ +AETY (TPT?) g o+ AL(IFRPCTR TS )],
Ao=1—0%u(d1) y"v(d2) —————| u(py) e ety et Ag el ety
v (Ph—Pt—Py) (D4)
—p{+m —pPpt+ P+ m
x( v, P p,t 5 ‘ > P p; : ) (p!) where e#(k) is the polarization vector of the emitted gluon
(Ph=P)"=m;  (Ph—Py) and we have defined byl the part of the real amplitude
m 1 corre_spgnding to the emission of the gluon from
=i _‘ggAgEV—z ?t (D2)  =aq.,q,t,t,g. More explicitly, the A amplitudes are given
v (Ph—Pt—Py) by
|
m; | — g, +k 1 0
A“=(92—)U(q )(7" n)v(q ) AL
a7 Fs LY g,k “(ph—p—p)? "
mg | — Ph 0
PPN L N Y
1T 29,k (Pn—pe—p)> "
Aé‘:(gﬁﬁ)Ao— ———————[V4"(k,01,0) A
v /) (pp—p—pp)? (qr+a)” "
lét"'k"‘mt Pr— by +my =Pt Pt my — Pt Pt kM,

A{L:(gs )A U(pt)(

Yy ;
2pe-k (pp—p{)Z-m?  (ph—

Y Yy
p02-mZ " (ph—pi—k)2—m?

LBt KEmg =Pyt btk m, ) 1
! (91+02)?

200K (py—pk>-—m”

v(py),
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m — —pptpt+m,  —p;—k+m Pr— P —k+m pr—p; +m
Ai‘=<9§—t)““3’av(pt) Y P Y5y A
v (ph_pt) —m; 2pt'k (ph_pt_k) —m (ph_pt) —m
pr—p—k+m, —p{—k+m )
ty, h— Pt _ t2 t , t o(p)), (D5)
(Ph—Pr—K)“—m; 2p; -k (q1+032)
|
where A1(01,02,P¢,P{ K= (AG+AT—AG) - €,(K),
V547 (K,d1,02) = (— 2k —qg°)g*"+(29* +k*)g"”
+(—q"—k")g""). (D6) A(d1,92,Pt Py 'k)=(v4§+v4#+v4§)'€,4(k),
(D7)

Using the color decomposition given in E@.22, we can
also rewrite. A" 999 a5 a linear combination of four color
ordered amplitudes, as already given in E4.23. By
matching the color factors in E¢D4) to the color factors in
Eq. (4.23, we see that the color ordered amplitudes
Ai(91,92,p¢,p;t LK) (fori=1,...,4) aregiven by[32]

A3(d1,92,Pt, Py ,k)=(A{{+A§) -€,(Kk),

Ay(91,92,P¢,0¢ K) = (AL + AL - €,(K).

[1] LHWG Note/2001-03, CERN-EP/2001-055, 2001.

[2] LHWG Note/2001-04, 2001.

[3] LEPEWWG/2001-01, 2001.

[4] S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. 19,C
343(1999.

[5] M. Carenaet al, “Report of the Tevatron Higgs working
group,” hep-ph/0010338.

[20] K. J. Gaemers and G. J. Gounaris, Phys. L&tB, 379(1978.

[21] G. Altarelli and G. Parisi, Nucl. Phy8126, 298 (1977.

[22] J. A. Vermaseren, math-ph/0010025.

[23] G. 't Hooft and M. Veltman, Nucl. Phy8153 365(1979; G.
Passarino and M. Veltmaibid. B160, 151 (1979.

[24] G. J. van Oldenborgh and J. A. Vermaseren, Z. Phy46,@25
(1990; Comput. Phys. Commur6, 1 (1997).

[6] J. Goldstein, C. S. Hill, J. Incandela, S. Parke, D. Rainwater{zs] J. Collins, F. Wilczek, and A. Zee, Phys. Rev. I8, 242

and D. Stuart, Phys. Rev. LeB6, 1694 (200J.

[7] J. Incandela, talk presented at t@rkshop on the Future of
Higgs PhysicsFermilab, 2001.

[8] Z. Kunszt, Nucl. PhysB247, 339(1984); W. J. Marciano and
F. E. Paige, Phys. Rev. Let6, 2433(199)); Z. Kunszt, S.
Moretti, and W. J. Stirling, Z. Phys. @4, 479(1997).

[9] S. Dawson and L. Reina, Phys. Rev.5D, 5851(1998.

[10] D. A. Discus and S. Willenbrock, Phys. Rev.39, 751(1989.

[11] Z. Bern, L. Dixon, and D. A. Kosower, Phys. Lett. 32, 299
(1993; 318 649E) (1993; Nucl. Phys.B412, 751 (1994.

[12] L. J. Bergmann, Ph.D. thesis, Florida State University, 1989.

[13] B. W. Harris and J. F. Owens, hep-ph/0102128.

[14] W. T. Giele and E. W. Glover, Phys. Rev. 4%, 1980(1992.

[15] W. T. Giele, E. W. Glover, and D. A. Kosower, Nucl. Phys.
B403 633(1993.

[16] S. Keller and E. Laenen, Phys. Rev.39, 114004(1999.

[17] L. Reina and S. Dawson, Phys. Rev. L&%, 201804(200J.

[18] W. Beenakker, S. Dittmaier, M. Knaer, B. Plumper, M. Spira,
and P. M. Zerwas, Phys. Rev. Le®&7, 201805(2001).

[19] S. Dawson, L. Orr, L. Reina, and D. Wackerofiork in
progress

(1978; W. J. Marciano,ibid. 29, 580 (1984); 31, 213E)
(1984); P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys.
B327, 49 (1989; B335 26(0E) (1989.

[26] F. Bloch and A. Nordsieck, Phys. Red2, 54 (1937).

[27] T. Kinoshita, J. Math. Phys3, 650(1962.

[28] T. D. Lee and M. Nauenberg, Phys. R&83 B1549(1964).

[29] W. Beenakker, H. Kuijf, W. L. van Neerven, and J. Smith,
Phys. Rev. D40, 54 (1989.

[30] L. Lewin, Dilogarithms
(MacDonald, London, 1958

[31] U. Baur, S. Keller, and D. Wackeroth, Phys. Re\a® 013002
(1999.

[32] F. A. Berends, W. T. Giele, and H. Kuijf, Nucl. Phy8321, 39
(1989.

[33] H. L. Lai et al, Phys. Rev. b5, 1280(1997.

[34] R. Bonciani, S. Catani, M. L. Mangano, and P. Nason, Nucl.
Phys.B529, 424 (1998.

[35] A. Denner, U. Nierste, and R. Scharf, Nucl. Php&67, 637
(1992.

[36] W. Beenakker and A. Denner, Nucl. Phg338 349 (1990.

and Associated Functions

053017-25



