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Seesaw mechanisms for Dirac and Majorana neutrino masses
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We investigate the seesaw mechanism for generally non-fine-tunedn3n mass matrices involving both Dirac
and Majorana neutrinos. We specifically show that the number of naturally light neutrinos cannot exceed half
of the dimension of the considered mass matrix. Furthermore, we determine a criterion for mass matrix textures
leading to light Dirac neutrinos with the seesaw mechanism. In particular, we study 434 and 636 mass
matrix textures and give some examples in order to highlight these types of texture. Next, we present a model
scheme based on non-Abelian and discrete symmetries satisfying the above mentioned criterion for light Dirac
neutrinos. Finally, we investigate the connection between symmetries and the invariants of a mass matrix on a
formal level.
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I. INTRODUCTION

Neutrino mass squared differences have lately been m
and more accurately measured by neutrino oscillation exp
ments. The latest values can be summarized as foll
@1–4#:

Dm(
2 P~1025,1024! eV2,

Dmatm.
2 .2.531023 eV2,

whereDm(
2 is the solar mass squared difference of the p

ferred large mixing angle solution of the solar neutrino pro
lem andDmatm.

2 is the atmospheric mass squared differen
These results were originally obtained in two flavor neutr
oscillation analyses, and are approximately valid in three
vor neutrino oscillation models at least as long as
vacuum mixing angleu2[u13 is small. This means that
three flavor neutrino oscillation model decouples into t
two flavor neutrino scenarios. An upper bound of the vacu
mixing angleu2 has been found by the CHOOZ experime
@5#, sin22u2&0.10, indicating that it is indeed small.

Neutrino oscillations depend only on the mass squa
differences and the absolute neutrino mass scale is bo
from above only to about 3 eV@6–10#. It is also unknown if
neutrinos are Dirac or Majorana particles@11,12#. Neutrino
mass models, on the other hand, depend crucially on
absolute neutrino mass scale and on the question of whe
the neutrinos are Majorana or Dirac particles. Small Ma
rana neutrino masses are, for example, naturally unders
by the canonical seesaw mechanism@13–15#, involving
right-handed neutrinos with a Majorana mass matrixMR
with entries that are much heavier than the electroweak s
e. After integrating out the superheavy right-handed neu
nos, theeffective neutrino mass matrix Mn is given in terms
of the Dirac mass matrix MD and MR as M n5
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T . The Majorana mass matrixMR is, however, in
general unrelated to the Dirac mass matrixMD , resulting in
lack of predictivity @16#. This is different for models where
certain symmetries enforce specific correlated textures
both MD andMR . This has, for example, been achieved
introducing a conserved U~1! charge, e.g., the lepton numbe

L̃5Le2Lt in a minimal left-right symmetric model@17,18#.
In general, Abelian horizontal U~1! symmetries have bee
widely used in string-inspired models@19# of Froggatt-
Nielsen type@20# for hierarchical neutrino masses@21,22# in
order to accommodate the observed largenm-nt mixing @23#.
Although Abelian flavor symmetries tend to exhibit mixing
staying maximal under renormalization group running@24#,
maximal and bimaximal mixings appear more generically
models with non-Abelian flavor symmetries@25–27#. A
drawback of non-Abelian symmetries is that the result
neutrino mass matrices typically have entries of equal m
nitude @16#, which tends to result in degenerate neutri
masses@28#. Hence, a phenomenologically successful s
nario requires that these degeneracies are broken to a ce
extent. An interesting way to achieve this is if two degen
ate neutrinos combine to one quasi Dirac neutrino. Thus,
possible that seesaw mechanism schemes for Dirac neut
based on discrete or non-Abelian symmetries provide a n
ral link between~bi!maximal mixing and hierarchical neu
trino masses.

In this paper, we will investigate the types of neutrin
mass matrix textures allowing a seesaw mechanism for b
Dirac and Majorana neutrinos when fine-tuning is abse
Unlike earlier approaches, we will not assume some c
served U~1! charge from the beginning, which is assigned
flavor basis@17,18#. Furthermore, we will not assume add
tional hierarchies between the entries of the Dirac mass
trix MD or the Majorana mass matrixMR @29#, as they could,
e.g., arise from a soft breaking of lepton numbers and p
mutation symmetries@30,31#. In particular we will not exam-
ine the singular seesaw mechanism for generating light s
ile neutrinos@32–36# in connection with Dirac neutrinos
Instead, we will consider the most general description
textures yielding small neutrino masses solely provided
©2002 The American Physical Society14-1
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the seesaw mechanism~seesaw suppressed eigenvalues! and
we will then discuss the connections to symmetries aris
from such seesaw suppressions.

The paper is organized as follows. In Sec. II, we disc
some properties of the seesaw mechanism and the resu
mass spectrum. Furthermore, we will discuss the relati
between fine-tuning and the principal invariants of a neutr
mass matrix. In Sec. III, the Zel’dovich-Konopinsk
Mahmoud~ZKM ! and pseudo Dirac neutrinos are briefly r
visited before the concept of seesaw Dirac particles~e.g.
neutrinos! is introduced. Then, it is shown that a 333 mass
matrix cannot describe a seesaw Dirac particle, i.e., it can
provide a seesaw mechanism for a Dirac particle. Nex
34 and 636 neutrino mass matrix textures for seesaw Di
particles are discussed. At the end of Sec. III, we prese
model scheme for seesaw Dirac neutrinos in the presenc
non-Abelian and discrete symmetries as well as algeb
relations. In Sec. IV, we investigate the connection betw
symmetries and the principal invariants of a neutrino m
matrix on a formal mathematical level. At the end of th
section, we examine this connection for the case of 434
neutrino mass matrices. Finally, in Sec. V, we summarize
give our conclusions.

II. THE SEESAW MECHANISM

A. Naturally small neutrino masses

The most widely accepted mechanism for the genera
of small neutrino masses is the canonical seesaw mecha
@13–15#. It involves the only spontaneously generated m
scale of the standard model~SM!, i.e., the electroweak scale
which is of the ordere;102 GeV–103 GeV, and a large
mass scale which is typically of the orderL
;1010 GeV–1016 GeV or even as high as the Planck sca
(;1019 GeV), i.e., we have the hierarchy

0,e!L. ~1!

The complex symmetric neutrino mass matrixM takes in the
flavor basisC5(na,1 . . . na,na

ns,1 . . . ns,ns
)T the follow-

ing form:

M5S 0 MD

MD
T MR

D , ~2!

wherena denotes the number of active neutrinos~in the SM,
na53), which are elements of SU(2)L doublets, andns de-
notes the number of sterile~singlet! neutrinos. Thus,M is an
n3n matrix with n5na1ns . Furthermore, in Eq.~2!, ‘‘0’’
denotes thena3na null matrix. The elements of thena3ns
Dirac mass matrixMD arise from electroweak symmetr
breaking and are thus of ordere. The elements of the
‘‘heavy’’ ns3ns Majorana mass matrixMR are not forbidden
by symmetry. These elements are therefore typically of or
L, a scale provided by a grand unified theory~GUT! or some
other embedding which is associated with the breaking
B2L symmetry.

For na5ns51, i.e.,n52, the diagonalization of the neu
trino mass matrix in Eq.~2! yields a superlight Majorana
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neutrino with mass of ordere2/L and a superheavy Majo
rana neutrino with mass of orderL. The smallness of the
neutrino masses follows from the hierarchy in Eq.~1!, which
does not constitute a fine-tuning of the model paramet
since the presence of the large mass scaleL is expected on
the grounds of GUTs. This is the famous seesaw mechan
@13–15# in its simplest form, which can be generalized
n.2. Note, however, that the results will depend crucia
on the specific form of the Dirac and Majorana mass ma
cesMD andMR . Both these matrices are expected to eme
from scenarios involving flavor symmetries and their brea
ings, which lead, for example, to so-called ‘‘texture zeros.’
nontrivial flavor structure can have profound consequen
and it is in generalnot true that the superlight neutrino
arising from the seesaw mechanism must be Majorana n
trinos. Instead, appropriate symmetries imposed on the
mions ~and the Higgs fields! can, for example, enforce
texture of the mass matrix in Eq.~2!, which allows the com-
bination of two superlight Majorana neutrinos with oppos
signs of the mass eigenvalues into one superlight Dirac n
trino.

B. Perturbation theory and the number of small neutrino
masses

Diagonalization of the complex symmetric mass matrixM
given in Eq.~2! yields the block-diagonal form

M5UTMU5S M1 0

0 M2
D , ~3!

whereU is a unitaryn3n matrix andM1 and M2 are na
3na andns3ns matrices, respectively. The hierarchy in E
~1! allows us to consider the Dirac mass matrixMD in the
neutrino mass matrixM in Eq. ~2! as a small perturbation o
the ‘‘unperturbed’’ matrix, where the Majorana mass mat
MR is kept andMD50. Therefore, we will choose for the
unitary matrixU as an ansatz

U5S C1 S2
†

2S1 C2
†D , ~4!

whereC1 is an na3na matrix, C2 is an ns3ns matrix, S1
andS2 arens3na matrices, and the entries of the matricesSi
( i 51,2) are much smaller than those of the matricesCi ( i
51,2) @51#. Using the unitarity condition for the matrixU,
U†U5UU†51n , we find that the matricesCi andSi have to
obey C1

†C11S1
†S151na

, C2C2
†1S2S2

†51ns
, C1C1

†1S2
†S2

51na
, S1S1

†1C2
†C251ns

, S2C12C2S150, and C1S1
†

2S2
†C250. Neglecting terms that are quadratic in the ma

cesSi and do not appear in combination with the Majora
mass matrixMR , we obtain, from Eq.~3!

M152~C1
TMDS11S1

TMD
T C1!1S1

TMRS1 , ~5!

M25C2* MRC2
†1~S2* MDC2

†1C2* MD
T S2

†!, ~6!

S1.MR
21MD

T C1 . ~7!
4-2
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Note that we also obtainS1.(MR
21)TMD

T C1 which together
with Eq. ~7! means thatMR

T5MR . Furthermore, using Eq
~7! and the relationS2C12C2S150, we find that

S2.C2MR
21MD

T . ~8!

Inserting Eqs.~7! and~8! into Eqs.~5! and~6! and also using
the fact that the Majorana mass matrixMR is symmetric
gives

M1.2C1
TMDMR

21MD
T C1 , ~9!

M2.C2* MRC2
†1C2* ~~MR

21!* MD
† MD

1MD
T MD* ~MR

21!* !C2
† . ~10!

Since the entries of the matrixMD are much smaller than
those of the matrixMR , which is consistent with Eqs.~7!
and ~8!, we find that

M1.2C1
TMDMR

21MD
T C1 , ~11!

M2.C2* MRC2
† . ~12!

In the limit MD→0, we can chooseC151na
and C251ns

,
i.e., after block diagonalization the mass matrices can to l
est order in the inverse seesaw scaleL21 be written as

M1.2MDMR
21MD

T , ~13!

M2.MR . ~14!

The matrix M n[2MDMR
21MD

T on the right-hand side o
Eq. ~13! is aneffective mass matrixobtained from integrating
out the heavy degrees of freedom represented by the h
Majorana mass matrixM2.MR . However, the fact that the
elements of the matricesMD andMR are of the orderse and
L, respectively, together with Eq.~13! does not implyna
‘‘seesaw mass eigenvalues’’ of superlight Majorana neutri
with masses of ordere2/L. Similarly, Eq.~14! does not im-
ply ns mass eigenvalues of orderL for superheavy Majorana
neutrinos. The diagonalization of then3n mass matrix in
Eq. ~2! leads instead to the following pattern of eigenvalu
First, for a given Majorana mass matrixMR with entries of
orderL there arer[rank(MR)<ns eigenvalues of orderL.
Then, block diagonalization of thens3ns submatrix MR
leads to anr dimensional block of rankr with eigenvalues of
order L, which is placed in the bottom-right corner of a
ns3ns null matrix, whereasns2r dimensions ofMR are not
of order L. This can be used to divide the complete ma
matrix M into blocks according to the magnitude of the e
tries. First, there is ther dimensional~diagonal! block of
order L. Then, there is the complementary diagonal blo
with dimensionna1ns2r and the off-diagonal blocks, al
with elements that are maximally of ordere. The na1ns
2r dimensional light block on the main diagonal is com
posed of thena dimensional null matrix of the original ma
trix in Eq. ~2! and elements of ordere, arising from the
reorganization into the light and heavy sectors. Thus, un
there exist specific structures in the mass matrixM that lead
05301
-

vy

s

.

s
-

k

ss

to cancellations due to symmetries, thena1ns2r dimen-
sional block on the main diagonal naturally yields 2(ns2r )
or 2na mass eigenvalues of ordere, depending on the sign o
na2ns1r . Written in a more compact form, there are,
total,

e[n2r 2una2ns1r u

mass eigenvalues of ordere in the na1ns2r dimensional
light diagonal block. Including the remaining off-diagon
blocks with elements of ordere does not change this resul
which can, for example, be seen by treating these block
perturbations to the stiff diagonal blocks. The remaining

z[n2r 2e5una2ns1r u

mass eigenvalues are not of ordere or L, i.e., they are see
saw mass eigenvalues of ordere2/L, exact zeros, or furthe
suppressed eigenvalues of orderek11/Lk, wherek.1. With
this we arrive at the important result:The number of smal
mass eigenvalues naturally generated by the seesaw me
nism cannot exceeduna2ns1r u. For na5ns this implies, for
example, that the number of seesaw mass eigenvalues
ways equal to or smaller than half of the dimension of t
mass matrixM. This means, for example, that it is impo
sible to obtain four or five seesaw mass eigenvalues of o
e2/L!e from a 636 mass matrixM. Note, however, that
the presence of symmetries may further reduce the orde
magnitude of the eigenvalues, which will be discussed
low.

C. Fine-tuning, principal invariants, and generic mass scales

We have so far discussed the natural eigenvalue spec
of a mass matrix with the structure in Eq.~2! without speci-
fying any structural details of theMD and MR matrices,
which can arise from flavor symmetries and their breakin
Such symmetries are expected to exist and they lead,
example, to so-called ‘‘texture zeros’’ or other exact alg
braic relations between different matrix elements. It is i
portant to observe that flavor symmetries can~but need not!
change the discussed generic mass eigenvalue spectrum
that one or more of the eigenvalues do not assume t
natural order of magnitude. This means that an eigenva
may turn out, for example, to be of ordere instead of order
L, of order e2/L instead of ordere, or 0 instead of order
e2/L. Sincee!L, this leads to a drastic change in the ord
of magnitude of the corresponding eigenvalue. An eig
value that is many orders of magnitude smaller than its na
ral order of magnitude may thus be understood in terms
some symmetry in the given mass matrix. Without such
symmetry, such a drastic deviation from the natural orde
magnitude in the mass eigenvalue spectrum requires a
tuning of parameters. This relation between deviations fr
the natural mass eigenvalue spectrum and flavor symme
will be further discussed in Sec. IV.

Other~in some sense also more natural! quantities for the
discussion of the properties of the mass matrices are t
4-3
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invariants. The basis independent principal invariantsTi of
the mass matrixM, wherei 51,2, . . . ,n, are defined by the
characteristic equation

det~M2l1n!5ln1(
i 51

n

Til
n2 i ~15!

and can be entirely determined from the mass eigenva
alone. In the same way as the block structure of the neut
mass matrixM given in Eq.~2! naturally leads to a generi
neutrino mass eigenvalue spectrum, each of the invarian
characterized by generic powers of the mass scalese andL.
Without the block structure in Eq.~2!, which is related to the
representations of the fields under SU(2)L3U(1)Y , one
would expect all entries of the matrixM to be of orderL and
the natural scale of all invariants would therefore beTi
5O(L i). The presence of gauge symmetries imposes, h
ever, the block structure in Eq.~2! and we have a first ex
ample where symmetries change the natural order of ma
tude of the invariantsTi .

The discussion of the seesaw mechanism above prov
the natural neutrino mass scales of orderse2/L, e, andL.
We can now discuss, in a similar way, the generic m
scales of the invariantsTi . If we denote byTi ,r the invariant
Ti of a mass matrix withr mass eigenvalues of orderL and
further elements of the mass matrix of ordere, then it is easy
to see that one obtains for the generic scales

Ti ,r5e i 2rL r for r , i , ~16!

Ti ,r5L i for r> i . ~17!

For largena andns the specific structure of the mass matr
M in Eq. ~2! reduces, however, the power ofL by one unit
for r , i ~balanced by an extra factor ofe) whenever one of
i or r is even, while the other one is odd. In Table I, t
resulting generic orders of theTi ,r ’s are given for largena
andns . For smallna andns these generic powers are eve
further reduced. For a 434 mass matrixM with a structure
as in Eq.~2! and r 52 one obtains

T1,25O~L!, T2,25O~L2!,

T3,25O~e2L!, T4,25O~e4!.

TABLE I. The generic order of magnitude of the principal in
variantsTi ( i 51,2, . . . ,6) of aneutrino mass matrixM of arbitrary
dimension and rankr (r 50,1, . . . ,6) for largena andns .

Principal Rankr
invariant 0 1 2 3 4 5 6

T1 0 L L L L L L

T2 e2 e2 L2 L2 L2 L2 L2

T3 e3 e2L e2L L3 L3 L3 L3

T4 e4 e4 e2L2 e2L2 L4 L4 L4

T5 e5 e4L e4L e2L3 e2L3 L5 L5

T6 e6 e6 e4L2 e4L2 e2L4 e2L4 L6
05301
es
o

is

-

i-

ed

s

Note thatT1,2, T2,2, andT3,2 are as in Table I, whereasT4,2
is further reduced due to the small values ofna andns .

In analogy with the discussion of the eigenvalues abov
deviation of the invariants from this generic mass scale
pendence is either a fine-tuning of parameters or a co
quence of a symmetry. Note, however, that not all symm
tries lead to a change in the generic mass scales of
invariants. The presence or absence of mass scales w
actually contribute to the invariants of the neutrino mass m
trix M nevertheless sheds light in an interesting way on
symmetries constraining the neutrino mass matrix texture

III. TEXTURES FOR SEESAW-DIRAC PARTICLES

A. Seesaw-Dirac particles

Consider in the Majorana basis a real symmetricn3n
neutrino mass matrixM. Let us assume that it can be broug
via some orthogonal transformation to the block-diago
form

M°M̃5O TMO5S A 0

0 BD , ~18!

whereA denotes a real symmetric 232 matrix given by

A5S 0 a

a 0 D ~19!

andB refers to some real symmetric (n22)3(n22) matrix.
The fields that span the matrixA will be denoted by
(n1L n2L). Diagonalization of the mass matrixM̃ then leads
to the mass matrix

m5diag~a,2a,b,g, . . . !, ~20!

where the two degenerate Majorana neutrinos with oppo
signs of the mass eigenvalues can be combined to one D
neutrino. Therefore, we will speak of the real symmetric ne
trino mass matrixM as containing aDirac particle if diago-
nalization finally leads to a mass matrix of the type given
Eq. ~20!. Note that the mass matrixM̃ respects a conserve
U~1! symmetry acting on the fermionic fields withn1L car-
rying a charge of11 andn2L carrying a charge of21.

If the mass matrixM̃ is identical to the mass matrixM
formulated in flavor basis, then the neutrinosn1L and n2L
could represent two different flavor fields. In this case, t
Majorana neutrinos of different flavors combine to one Dir
particle and the conserved U~1! charge is called a lepton
number of the ZKM type@37,38#. If, for example, the iden-
tificationsn1L5nmL andn2L5ntL hold, then the mass matrix
M̃5M exhibits a U(1)ZKM symmetry characterized by
ZKM lepton numberL̂5Lm2Lt .

If insteadM̃ÞM , then the fieldsn1L andn2L of the ma-
trix A are not flavor fields and the basis, where the assi
ment of the conserved U~1! charges~the n1L number minus
the n2L number! takes place, is different from the flavor ba
sis. In this case, the emerging Dirac particle is called
pseudo-Dirac particle@39#. To zeroth order in the gauge in
4-4



he
ve
er
a-

es
M
eu

is
.
u
-
hi
by
lig
th

c.

u
i

4
a-

y

t

w
m
al

a-

a-

-
trix

t

ac
irac

irac
re

ices
t pa-
are

will

ill
as
atrix

SEESAW MECHANISMS FOR DIRAC AND MAJORANA . . . PHYSICAL REVIEW D65 053014
teractions a pseudo-Dirac particle cannot be distinguis
from a genuine Dirac particle characterized by a conser
U(1)ZKM lepton number. However, higher order gauge int
actions induce a splitting of the Dirac particle into two M
jorana particles withnearly degenerate masses@39#. Since
we will be concerned only with zeroth order mass matric
we will, if nothing else is mentioned, refer to both the ZK
neutrino and the pseudo Dirac neutrino briefly as Dirac n
trinos. A Dirac neutrino will be called aseesaw Dirac par-
ticle if its mass is superlight due to the seesaw mechan
without invoking any fine-tuning in the sense of Sec. II C

As a quick application of the results given above, let
consider a 333 mass matrixM, which is assumed to de
scribe a Dirac neutrino. If fine-tuning is absent, then t
Dirac neutrino cannot have a small mass suppressed
seesaw mechanism, since the necessary number of two
mass eigenvalues would exceed half of the dimension of
mass matrixM, which is forbidden by the results of Se
II C.

In the next section, we will show that seesaw Dirac ne
trinos in the absence of any fine-tuning are first possible
the case of 434 mass matrices.

B. 4Ã4 textures

1. Criterion for seesaw Dirac particles

According to Sec. II, we can write any real symmetric
34 mass matrixM, providing an effective seesaw mech
nism in block form as in Eq.~2!, where the Dirac mass
matrix MD is given by the real 232 matrix

MD[S D1 D2

D3 D4
D ~21!

with Di5O(e) or Di[0, wherei 51,2,3,4, and the heav
Majorana mass matrixMR is given by the real symmetric
232 matrix

MR[S R1 R2

R2 R3
D ~22!

with Ri5O(L) or Ri[0, wherei 51,2,3. It is assumed tha
the two submatrices satisfy detMDÞ0 and detMRÞ0, i.e.,
r 52.

If we assume that the mass matrixM describes a seesa
Dirac particle in the sense of Sec. III A, then the real sy
metric mass matrixM can be brought by some orthogon
transformationM°m5O TMO to the form

m5diag~a,2a,b,g!. ~23!

The invariantsT1 andT3 defined by the characteristic equ
tion

det~M2l14!5det~m2l14!

5l41T1l31T2l21T3l1T450
~24!
05301
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are given as functions of the matrix elements of the matrixM
by

T1~D1 ,D2 , . . . ,R3!52R12R3 , ~25a!

T3~D1 ,D2 , . . . ,R3!5D1
2R31D2

2R11D3
2R31D4

2R1

22~D1D21D3D4!R2 , ~25b!

and as functions of the matrix elements of the diagonal m
trix m by

T1~a,b,g!52b2g, ~26a!

T3~a,b,g!5a2~b1g!. ~26b!

Equations~26a! and ~26b! imply that

T352a2T1 . ~27!

Assume thatT1Þ0. Then, it follows from Eq.~27! that

a252
T3~D1 ,D2 , . . . ,R3!

T1~D1 ,D2 , . . . ,R3!
!e2 ~28!

and from Eqs.~25a! and~25b! we find that the numerator is
of ordere2L and the denominator is of orderL. Hence, it is
clear that the relation~28! can only be satisfied in the pres
ence of some fine-tuned cancellations between the ma
elements ofM. If we reject fine-tuning, then it follows tha
T150, i.e.,the mass matrix must be traceless. The traceless-
ness of the mass matrix implies thatm5diag(a,2a,b,
2b), i.e., the four Majorana neutrinos combine to two Dir
neutrinos: one seesaw Dirac neutrino and one heavy D
neutrino. Thus, Eq.~27! reads

T15T350. ~29!

The above considerations tell us that Eq.~29! together
with the auxiliary relations detMDÞ0 and detMRÞ0 repre-
sent necessary and sufficient conditions for superlight D
neutrinos in the absence of fine-tuning. We will therefo
refer to Eq.~29! as thecriterion for seesaw Dirac particles.
Since the mass matrixM5(Mi j ) is originally defined in fla-
vor basis, there is a fundamental difference between matr
whose matrix elements can be considered as independen
rameters and those matrices where the matrix elements
related by some specific exact algebraic relations.

2. Textures with independent entries

Under the assumption that the matrix elementsMi j are
either exact texture zeros or independent parameters, we
now determine all possible textures of the mass matrixM in
Eq. ~2!, that describe a seesaw Dirac particle. Since we w
treat the matrix elements, which are not texture zeros,
independent parameters, the tracelessness of the mass m
M can only be satisfied ifR15R350. Thus, we obtain from
Eq. ~25b! that the criterion for seesaw Dirac particles~29!
reduces to

D1D21D3D450. ~30!
4-5
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Since the matrix elements can be varied independently,
condition~30! together with detMDÞ0 can be satisfied only
if D15D450 or D25D350. Thus, we arrive at the conclu
sion that up to trivial permutations all 434 textures with
independent nonvanishing entries, describing a superl
Dirac particle, are of the canonical form

M[S 0 0 0 e1

0 0 e2 0

0 e2 0 L

e1 0 L 0

D ~31!

with e1 ,e25O(e). Textures equivalent to the one display
in Eq. ~31! have been obtained within left-right-symmetr
and horizontal models implementing a conserved horizo
U~1! charge of the ZKM type@40#.

3. Textures in presence of algebraic relations

We will now investigate the 434 textures leading to see
saw Dirac particles if algebraic relations between the ma
elementsMi j are allowed. If we assumeR15R350, but
allow for algebraic relations within the Dirac matrixMD ,
then the criterion for seesaw Dirac particles is still given
Eq. ~30! and the corresponding texture is equal to

M5S 0 0 e1 e2

0 0 2
e1e2

e3
e3

e1 2
e1e2

e3
0 L

e2 e3 L 0

D ~32!

with e i5O(e)!O(L), wherei 51,2,3. Let us now assum
that the relationR152R3Þ0 holds. Then, the criterion fo
seesaw Dirac particles~29! reads

T35R1~2D1
21D2

22D3
21D4

2!22R2~D1D21D3D4!50.
~33!

If we assume thatR1 and R2 can be varied independently
then both parentheses in Eq.~33! are necessarily equal t
zero. The second parenthesis vanishes for the choiceD35
2D1D2 /D4, which means that the first parenthesis vanis
whenD1

25D4
2. Thus, we can in this case determine the te

ture to be

M5S 0 0 e1 e2

0 0 7e2 6e1

e1 7e2 L1 L2

e2 6e1 L2 2L1

D ~34!

with e1 ,e25O(e) andL1 ,L25O(L). Let the mass matrix
given in Eq. ~34! be spanned by the fields (n1Ln2LN1N2),
wheren1L andn2L denote two active neutrinos andN1 and
N2 denote two SM singlets. Then, the texture in Eq.~34! can
be naturally obtained by imposing the discrete symmetry
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D:H n1L→7 in2L , n2L→6 in1L ,

N1→ iN2 , N2→2 iN1 ,
~35!

in the Majorana basis.

C. 6Ã6 textures

1. Criterion for seesaw Dirac particles

In order to maximize the number of superlight particl
emerging from the seesaw mechanism, we can again acc
ing to Sec. II write a real symmetric 636 mass matrix in
block form as in Eq.~2!, where the real Dirac mass matri
MD is given by the 333 matrix

MD[S D1 D2 D3

D4 D5 D6

D7 D8 D9

D ~36!

with Di5O(e) or Di[0, wherei 51,2, . . . ,9, and thereal
symmetric heavy Majorana mass matrixMR is given by the
333 matrix

MR[S R1 R2 R3

R2 R4 R5

R3 R5 R6

D ~37!

with Ri5O(L) or Ri[0, wherei 51,2, . . . ,6. Toguarantee
an effective seesaw mechanism, it is additionally assum
that detMDÞ0 and detMRÞ0. Let us assume that the ma
matrix M describes a seesaw Dirac particle. This means
the superlight mass eigenvalue spectrum is of the typea,
2a,b.e2/L, wherea can be regarded as the mass of t
Dirac particle. Consider the characteristic equation of
mass matrixM written in block form

det~M2l16!5U2l13 MD

MD
T MR2l13

U50. ~38!

Since detMRÞ0, the matrixMR2l13 can be inverted for
l!L. One can therefore apply the Gauss elimination al
rithm to the block matrixM2l16, since it leaves the deter
minant invariant. From Eq.~38!, we therefore obtain that the
superlight mass eigenvalues of the mass matrixM are also
solutions of

u2l132MD~MR2l13!21MD
T u50. ~39!

Expanding this determinant for a small parameterl, Eq.~39!
can be rewritten as
4-6
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U2l132MDMR
21MD

T 1OS e4

L3D U
5l31FT11OS e4

L3D Gl21FT21OS e8

L6D Gl

1FT31OS e12

L9D G50, ~40!

where the invariantsT1 , T2, andT3 are defined by the char
acteristic equation det(M n2l13)5l31T1l21T2l1T3

50 of the effective mass matrixM n52MDMR
21MD

T . Using
l5O(e2/L), we find that

l31T1l21T2l1T35OS e8

L5D . ~41!

Taking the previously assumed light mass eigenvalue s
trum into account, we obtain from Eq.~41! the following
equations for the massa of the seesaw Dirac particle

T1a21T35OS e8

L5D , a31T2a5OS e8

L5D . ~42!

Since aÞ0, this system of equations can have a solut
only if

T32T1T25OS e8

L5D . ~43!

Note that the invariantT3 and the productT1T2 are both of
the ordere6/L3. Hence, Eq.~43! expresses a fine-tuning o
the mass matrixM unless the right-hand side vanishes. Sin
we reject fine-tuning, the invariants must thereforeexactly
satisfy

T32T1T250. ~44!

In fact, it is easy to show that Eq.~44! is also a sufficient
condition for a superlight Dirac particle. Hence, we will ca
it the criterion for seesaw Dirac particles. It has thus been
shown that the first order in the inverse seesaw scale g
by the effective mass matrixM n is already sufficient to de
termine non-fine-tuned neutrino mass textures leading to
saw Dirac particles.

2. Textures not yielding seesaw Dirac neutrinos

Consider an ansatz where the Dirac mass matrixMD is
equivalent to the matrix

MD[diag~D1 ,D5 ,D9!, ~45!

the simplest form consistent with detMDÞ0. For this Dirac
mass matrixMD there existexactlytwo inequivalent Majo-
rana mass matrices, that never lead to a superlight D
particle, even if arbitrary algebraic relations between the m
trix elements are allowed. These matrices are
05301
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MR5S R1 R2 0

R2 0 R5

0 R5 0
D , MR85S 0 R2 R3

R2 0 R5

R3 R5 0
D .

The criterion for seesaw Dirac particles given in Eq.~44!,
corresponding to the Majorana mass matrixMR , reads

~T32T1T2!detMR5D9
4D5

2R1
2R2

2R5
250, ~46!

which can be satisfied only if an additional texture zero w
be introduced in the mass matrixM, leading to a different
class of textures, or letting detM vanish. Similar consider-
ations hold for the Majorana mass matrixMR8 .

3. Textures with independent entries

Assume now that all nonvanishing matrix elements of
mass matrixM are independent parameters. Then, all p
sible textures consistent with the criterion for seesaw Di
particles given in Eq.~44! are equivalent to the unique form

M5S 0 e1 0 0 0 0

e1 L1 0 0 0 0

0 0 0 0 0 e2

0 0 0 0 e3 0

0 0 0 e3 0 L2

0 0 e2 0 L2 0

D ~47!

with e1 ,e2 ,e35O(e) andL1 ,L25O(L). From Eq.~47! we
observe that the superlight particles obtain their masses
two decoupled mechanisms:

~1! The Majorana particle obtains its massb from the
ordinary 232 seesaw mechanism.

~2! The Dirac particle obtains its massa from the canoni-
cal 434 texture given in Eq.~31!.

Hence, it is shown for 636 textures with independen
entries that the model-independent method presented he
determine all possible textures consistent with the criter
for seesaw Dirac particles is equivalent to the introduction
a conserved lepton number of the ZKM type@17,18#.

4. Model scheme for textures in presence of non-Abelian
and discrete symmetries

Non-Abelian as well as discrete symmetries between l
tons mostly predict lepton mass matrix textures where so
of the matrix elements are equal in magnitude, which c
result in maximal or bimaximal mixing and degenerate ne
trino masses@16,28#. In the case of non-Abelian symmetrie
models have been proposed where only one mixing an
that is nearly maximal is generic@41#. However, most of
these models have problems in naturally accommoda
large nm-nt mixing and hierarchical mass squared diffe
ences@16#. In particular the presence of a ZKM lepton num
ber in the neutrino sector as a source of~nearly! maximal
atmospheric mixing usually implies the reverse order of
hierarchy betweenDm(

2 andDmatm.
2 @42#. On the other hand

a combination of neutrinos to a pseudo Dirac particle, in
4-7
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sense of Sec. III A, does not establish a specific mixing
tween the corresponding generations, and hence allows m
freedom in accommodating mixing angles and mass squ
differences.

Contrary to the usual approach, we will therefore conc
trate on the natural generation of hierarchical mass squ
differences by imposing a conserved U~1! charge and assum
that the U~1! generator is not diagonal in flavor basis, i.
some of the active neutrinos combine to a pseudo Dirac
ticle instead of a genuine Dirac particle. The pseudo Di
character of some of the neutrinos requires the presenc
exact algebraic relations between the matrix elements.

Let ne , nm , andnt denote the SM neutrino flavor field
and N1 , N2, and N3 denote the charge conjugates of thr
right-handed neutrinos. To be specific, we will assume in
basis (N1

cN1N2
cN2N3

cN3) that the corresponding 333 Majo-
rana mass matrixMR in Eq. ~2! is of the form@43,44#

MR5LS 0 0 1

0 21 0

1 0 0
D . ~48!

This kind of Majorana matrix has received interest in t
framework of SO~3! flavor symmetries, where the three S
singletsN1 , N2, and N3 are combined to an SO~3! triplet
field @41,43–48#. Invariance of the neutrino mass terms u
der the discreteZ2 symmetry

D:H ne→2 inm , nm→ ine , nt→2nt ,

N1→ iN3 , N2→2N2 , N3→2 iN1
~49!

enforces the 636 neutrino mass matrixM to be of the form

M5S 0 0 0 e1 0 e2

0 0 0 2e2 0 e1

0 0 0 0 e3 0

e1 2e2 0 0 0 L

0 0 e3 0 2L 0

e2 e1 0 L 0 0

D , ~50!

wheree1 ,e2, and e3 denote three different real matrix ele
ments of the order of the electroweak scalee. The algebraic
relations between some of the entries of the mass matriM
in Eq. ~50!, which are established by the discrete symme
D, allow the existence of a seesaw Dirac neutrino in
absence of a conserved ZKM charge. Because of fact
there is no conserved ZKM charge present, radiative cor
tions will induce a small splitting of the degenerate mas
and could thereby, in principle, establish the hierarchy
tweenDm(

2 andDmatm.
2 .

IV. CONNECTION BETWEEN SYMMETRIES
AND INVARIANTS

The smallness of the neutrino masses is well underst
in terms of the seesaw mechanism, which is a consequ
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of the general block form of the neutrino mass matrixM
given in Eq.~2!. The sub-blocks ofM, however, leave the
mixing angles and mass spectrum of the light neutrinos
specified. Predictions for the mixing angles and mass spe
of neutrinos require further horizontal or flavor symmetri
enforcing specific textures of the Dirac and Majorana m
matrices. Therefore, it is important to relate the general pr
erties of the mass matrix as discussed above to the sym
tries acting on the different neutrino flavors.

Assume that there exists a~flavor symmetry! group G,
which is mapped into a reducible unitary representation@52#
D acting on the flavor space:

g°D~g!, gPG. ~51!

The matrix representationD(g) acts on the state vectorsC
5(na,1 . . . na,na

ns,1 . . . ns,ns
)T ~here given in flavor basis!,

where na denotes again the number of active neutrin
which are elements of SU(2)L doublets, andns denotes the
number of sterile neutrinos~SM singlets!:

C°D~g!C, gPG. ~52!

Next, consider two irreducible subrepresentationsD (a)(g)
andD (b)(g) of the representationD(g) and some matrixX
which satisfies

„D (b)~g!…TXD(a)~g!5X ~53!

for all gPG. Using Eq.~53! and the unitarity of the repre
sentations, we obtain that

X†XD(a)~g!5D (a)~g!X†X. ~54!

Since the representationD (a)(g) is irreducible, it follows
from Schur’s lemma@49,50# that X†X is proportional to the
unit matrix, i.e., the matrixX is a unitary matrix times some
arbitrary mass scale, which is given as a physical input
rameter. Furthermore, it follows that the matrixX is, up to
this overall factor, uniquely determined by the choice of t
matrix representationsD (a)(g) and D (b)(g). Moreover,
Schur’s lemma tells us that in the case that as well as
~53! for some irreducible representationD (g)(g) there holds
also a relation

„D (b)~g!…TXD(g)~g!5X ~55!

for all gPG, the representationD (g)(g) is equivalent to the
representationD (a)(g).

We will now consider the case when the symmetry gro
G is unbroken at low energies. The origin of the mass ter
in MR of the heavy sterile neutrinos generated at the GUT
embedding scale is in general quite different from the ori
of the Dirac mass terms inMD , which emerge from Yukawa
couplings and the electroweak vacuum expectation value
can therefore be assumed that in flavor basis the repres
tion D(g) takes on the block-diagonal form

D~g!5Da~g! % Ds~g!, ~56!
4-8
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whereDa(g) is anna dimensional unitary representation ac
ing on the subspace of the active neutrinos only andDs(g) is
anns dimensional representation that acts only on the ste
neutrinos.

From the unitarity of the representationD(g) it follows
that an appropriate change of basis allows us to write
representationsDa(g) andDs(g) in reduced form as

Da~g!5 %
a

ka
aDa

(a)~g!, Ds~g!5 %
a

ka
s Ds

(a)~g!, ~57!

wherea51,2, . . . runs only over the inequivalent irreducib
representations and the integerka

x , x5a,s, specifies how
often the irreducible representationDx

(a)(g) occurs in the
reduction. This means that the basis has been chosen
that the matrices of equivalent representations are iden
and

~58!

Specifically, if two representationsDa
(a)(g) andDs

(b)(g) are
equivalent, they are also understood to be identical and
can therefore choose the labeling such thatb[a. The di-
mension of the irreducible representationDx

(a)(g) will be
denoted byda

x , i.e., the representationDx
(a)(g) is a da

x 3da
x

matrix.
Consider now the neutrino mass matrixM in Eq. ~2! and

assume for simplicity that the Dirac mass matrixMD as well
as the Majorana mass matrixMR are nonsingular. From Eq
~56! the unitary transformationV that brings the representa
tion D(g) to the completely reduced form in Eq.~57! de-
composes in flavor basis intoV5Va% Vs , whereVa andVs
are unitary matrices of dimensionsna and ns , respectively.
Therefore, in the basis where the representationD(g) is in
the completely reduced form in Eq.~57!, the neutrino mass
matrix M 8[VTMV reads

M 85S 0 MD8

MD8
T MR8

D[S 0 Va
TMDVs

Vs
TMD

T Va Vs
TMRVs

D ~59!

and the effective neutrino mass matrix is simply given
M n8[2MD8 MR8

21MD8
T. In this basis, we can now apply th

above stated implications of Schur’s lemma in order to
termine the neutrino mass matrixM 8, following from the
invariance of the neutrino mass termCcM 8c;CTM 8C
@53# under the transformations

CTM 8C°CTDT~g!M 8D~g!C, gPG. ~60!

As a result, we obtain that the Majorana mass matrixMR8 is,
up to trivial permutations, in block-diagonal form

MR85diag~A1 ,A2 , . . . !, ~61!

where each submatrixAa , a51,2, . . . , defines a bilinear
form which is invariant under the symmetryG in the repre-
sentationka

s Ds
(a)(g).
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If for some a51,2, . . . therepresentationDs
(a)(g) is

equivalent to its complex conjugate representationDs
(a)* (g),

then the matrixAa can be written as

Aa5Aa8 ^ Ua , ~62a!

where Aa8 denotes some arbitrary invertible symmetricka
s

3ka
s matrix with undetermined entries of the generic ord

L, whereas the unitaryda
s 3da

s matrix Ua is determined by
the choice of the representationDs

(a)(g) @54#. If instead the
representationDs

(a)(g) is complex, i.e., not equivalent to its
complex conjugate, then the condition detMRÞ0 requires
the complete reduction of the representationDs(g) in Eq.
~57! also to contain the complex conjugate representa
Ds

(a)* (g) exactly ka
s times. Thus, the matrixAa is of the

form

Aa5S 0 Aa8

Aa8
T 0

D ^ Ua , ~62b!

where ‘‘0’’ denotes theka
s 3ka

s null matrix, Aa8 denotes some
arbitrary invertibleka

s 3ka
s matrix with undetermined entrie

of the orderL, and the unitaryda
s 3da

s matrix Ua is again
determined by the choice of the representationDs

(a)(g).
As a simple example, consider the Majorana mass ma

MR in Eq. ~48!. Before symmetry breaking, the represen
tion Ds(g)5Ds

(a)(g), where a[1, is the ~irreducible!
3-dimensional representation of SO~3!, which is equivalent
to its complex conjugate representation. Therefore, Eq.~62a!
applies whenL is the arbitrary ‘‘matrix’’ Aa8 and MR /L is
the uniquely determined unitary~even orthogonal! matrix
Ua .

Similarly to the treatment of the Majorana mass mat
MR8 in Eq. ~61!, one also verifies that the Dirac mass mat
MD8 decomposes into the unitary submatricesUa known
from Eqs.~62a! and~62b! times a mass scale of the ordere,
in such a way that the effective neutrino mass matrixM n8 can
be determined by consistently carrying out block multiplic
tions. After an appropriate relabeling of the representati
Da

(a)(g) and Ds
(a)(g), we obtain for the effective neutrino

mass matrix the block-diagonal form

M n85diag~B1 ,B2 , . . . !, ~63!

where each matrixBa , a51,2, . . . ,defines a bilinear form,
which is invariant under the symmetryG in the representa-
tion ka

aDa
(a)(g). If for some a51,2, . . . therepresentation

Da
(a)(g) is equivalent to its complex conjugate representat

Da
(a)* (g), then the matrixBa reads

Ba5Ba8 ^ Ua , ~64a!

where Ba8 denotes some arbitrary invertible symmetricka
a

3ka
a matrix with entries of the ordere2/L and the unitary

da
a3da

a matrix Ua is fixed by the representationDa
(a)(g).

For a complex representationDa
(a)(g) the invertibility of

the Dirac matrixMD requires the matrixBa to be of the form
4-9
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Ba5S 0 Ba8

Ba8
T 0

D ^ Ua , ~64b!

where ‘‘0’’ denotes theka
a3ka

a null matrix, Ba8 denotes some
invertible ka

a3ka
a matrix with entries of ordere2/L, and the

unitaryda
a3da

a matrixUa again depends on the choice of th
representationDa

(a)(g). The important thing here is to not
that each matrix element of the neutrino mass matrixM 8 in
Eq. ~59! can serve as a parameter of one and only one of
matricesBa , i.e., for aÞb the matricesBa andBb are de-
scribed by decoupled mass parameters and are therefor
dependent in a parametrical sense.

TakingBa
†Ba , it is readily seen that block diagonalizatio

of Ba yields ka
a different sets of neutrino mass eigenvalue

which are, up to relative phases,da
a-fold @or, if the represen-

tation Da
(a)(g) is complex, 2da

a-fold# degenerate. The neu-
trino masses, each of which isda

a-fold (2da
a-fold! degener-

ate, will be denoted byma l , where l 51,2, . . . ,ka
a . In this

case, theka
a different neutrino massesma l are actually cor-

related, i.e., they are in a parametrical sense depend
However, it is crucial to note that this correlation is due on
to the diagonalization of the matrixBa8 , whose entries are
not constrained by the symmetryG, which has already bee
fully taken into account when introducing the unitary mat
cesUa in Eqs.~62! and~64!. Except of their common mas
scale, which ise2/L, theka

a different masses exhibit no fur
ther relations that are protected by the symmetryG. Hence,
we can regard them as independent in agenericsense.

Let us now specialize to the case when the neutrino m
matrix M is real. The principal invariantsTi ( i
51,2, . . . ,n) of the neutrino mass matrixM can be ex-
panded as finite sums of powers of the electroweak scae
and the GUT or embedding scaleL as follows:

Ti5(
j

(
k

j 1k5 i

ajk
i S e2

L D j

Lk, ~65!

where the non-negative integersj and k have to obeyj 1k
5 i . In Eq. ~65!, the termajk

i e2 jLk2 j is the sum over all
products of mass eigenvalues, wherej eigenvalues are of the
ordere2/L andk eigenvalues are of the orderL. Since the
symmetryG implies that some of the eigenvalues are deg
erate up to a sign it can happen that some~or all! of the
coefficientsajk

i vanish exactly. However, since the absolu
value of the neutrino massesma l is undetermined by the
symmetryG, any nonvanishing coefficientajk

i Þ0 must ge-
nerically be of order unity. In other words, a situation whe
0,uajk

i u!1 cannot be understood in terms of the symme
G and must therefore be the result of some fine-tuning of
model parameters.

Within the framework presented above one can now e
test the validity of the criteria for seesaw Dirac particl
given in Secs. III B and III C. First, we note that followin
Eq. ~65!, the principal invariantsT1 andT3 of the 434 mass
matrix M in Sec. III B can be written as
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T15a01
1 L, ~66a!

T35a12
3 e2L. ~66b!

Next, using the fact that the generic mass scale of the see
Dirac particle is of the ordere2/L, Eq. ~27! implies that

a12
3 .2S e

L D 2

a01
1 . ~67!

Since the coefficientsa01
1 anda12

3 can generically either be o
order unity or vanish exactly, it indeed follows from Eq.~67!
that T15T350, which is the criterion for seesaw Dirac pa
ticles in the case of 434 matrices. Similarly, in Sec. III C,
one can confirm the validity of the criterion for seesaw Dir
particles in the case of 636 matrices.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have discussed general properties
neutrino mass matrices involving a fine-tuning condition a
the connection to flavor symmetries. We pointed out in p
ticular that the number of light neutrino masses generated
the seesaw mechanism cannot exceed half of the dimen
of the considered mass matrix if fine-tuning is absent. F
thermore, we have introduced the concept of seesaw D
particles. In the light of this, we formulated for the exampl
of real symmetric 434 and 636 neutrino mass matrices
necessary and sufficient criterion in order to obtain see
Dirac particles. For these cases it was shown that the im
sition of a conserved ZKM charge is equivalent to the
sumption that the mass terms in flavor basis represent in
pendent parameters. As an application of our methods,
demonstrated that small pseudo Dirac neutrino masses
be generated in a natural way by the seesaw mechanis
discrete or non-Abelian symmetries are taken into acco
Then, we presented a model scheme based on one con
ous non-Abelian symmetry and one discrete Abelian symm
try generically leading to a 636 mass matrix, which satisfie
the criterion for seesaw Dirac particles in the absence o
conserved ZKM charge. Furthermore, we have found tha
considerably wide class of reducible representations of
broken unitary flavor symmetries accounts only for the d
generacy of some neutrino masses, but does not establish
relations between the nondegenerate neutrino masses
nally, we confirmed the above formulated fine-tuning con
tion, i.e., the criterion for seesaw Dirac particles comi
from our symmetry considerations.
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