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Seesaw mechanisms for Dirac and Majorana neutrino masses
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We investigate the seesaw mechanism for generally non-fine-tur@dmass matrices involving both Dirac
and Majorana neutrinos. We specifically show that the number of naturally light neutrinos cannot exceed half
of the dimension of the considered mass matrix. Furthermore, we determine a criterion for mass matrix textures
leading to light Dirac neutrinos with the seesaw mechanism. In particular, we stydy ahd 6<6 mass
matrix textures and give some examples in order to highlight these types of texture. Next, we present a model
scheme based on non-Abelian and discrete symmetries satisfying the above mentioned criterion for light Dirac
neutrinos. Finally, we investigate the connection between symmetries and the invariants of a mass matrix on a

formal level.
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. INTRODUCTION —MpMg'M[ . The Majorana mass matrM is, however, in

_ . general unrelated to the Dirac mass maiy , resulting in
Neutrino mass squared differences have lately been mongck of predictivity[16]. This is different for models where
and more accurately measured by neutrino oscillation expertertain symmetries enforce specific correlated textures for
ments. The latest values can be summarized as followgoth M, andMy. This has, for example, been achieved by

[1-4]: introducing a conserved (W) charge, e.g., the lepton number
Am2 e (10751074 eV?, L=L,—L,ina minimal !eft-right symmetric modéll?,la.

In general, Abelian horizontal (1) symmetries have been
Amfnmf—‘Z-SX 1073 eV2, widely used in string-inspired modelgl9] of Froggatt-

Nielsen typd 20] for hierarchical neutrino massgz1,22 in
whereAm3 is the solar mass squared difference of the preorder to accommodate the observed largev, mixing [23].
ferred large mixing angle solution of the solar neutrino prob-Although Abelian flavor symmetries tend to exhibit mixings
lem andAmZ,, is the atmospheric mass squared differencestaying maximal under renormalization group runnjad],
These results were originally obtained in two flavor neutrinomaximal and bimaximal mixings appear more generically in
oscillation analyses, and are approximately valid in three flamodels with non-Abelian flavor symmetrig25-27. A
vor neutrino oscillation models at least as long as thedrawback of non-Abelian symmetries is that the resulting
vacuum mixing anglef,= 6,5 is small. This means that a neutrino mass matrices typically have entries of equal mag-
three flavor neutrino oscillation model decouples into twonitude [16], which tends to result in degenerate neutrino
two flavor neutrino scenarios. An upper bound of the vacuunmasseq 28]. Hence, a phenomenologically successful sce-
mixing angled, has been found by the CHOOZ experiment nario requires that these degeneracies are broken to a certain
[5], sirf26,=0.10, indicating that it is indeed small. extent. An interesting way to achieve this is if two degener-

Neutrino oscillations depend only on the mass square@te neutrinos combine to one quasi Dirac neutrino. Thus, it is

differences and the absolute neutrino mass scale is bourgbssible that seesaw mechanism schemes for Dirac neutrinos
from above only to about 3 ef6—10. It is also unknown if  based on discrete or non-Abelian symmetries provide a natu-
neutrinos are Dirac or Majorana particlgkl,12. Neutrino  ral link between(bi)maximal mixing and hierarchical neu-
mass models, on the other hand, depend crucially on thgino masses.
absolute neutrino mass scale and on the question of whether In this paper, we will investigate the types of neutrino
the neutrinos are Majorana or Dirac particles. Small Majo-mass matrix textures allowing a seesaw mechanism for both
rana neutrino masses are, for example, naturally understoddirac and Majorana neutrinos when fine-tuning is absent.
by the canonical seesaw mechanigdB8-15, involving Unlike earlier approaches, we will not assume some con-
right-handed neutrinos with a Majorana mass mailx  served U1) charge from the beginning, which is assigned in
with entries that are much heavier than the electroweak scaltavor basig17,18. Furthermore, we will not assume addi-
€. After integrating out the superheavy right-handed neutritional hierarchies between the entries of the Dirac mass ma-
nos, theeffective neutrino mass matrix Ms given in terms  trix My or the Majorana mass matrM  [29], as they could,
of the Dirac mass matrixMp and Mg as M,= e.g., arise from a soft breaking of lepton numbers and per-

mutation symmetrieg30,31]. In particular we will not exam-

ine the singular seesaw mechanism for generating light ster-

*E-mail address: lindner@ph.tum.de ile neutrinos[32—-3§ in connection with Dirac neutrinos.
"E-mail address: tohlsson@ph.tum.de Instead, we will consider the most general description of
*E-mail address: gseidl@ph.tum.de textures yielding small neutrino masses solely provided by
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the seesaw mechanisfseesaw suppressed eigenvalumsd  neutrino with mass of orde¢?/ A and a superheavy Majo-
we will then discuss the connections to symmetries arisingana neutrino with mass of order. The smallness of the
from such seesaw suppressions. neutrino masses follows from the hierarchy in EL, which

The paper is organized as follows. In Sec. Il, we discussloes not constitute a fine-tuning of the model parameters,
some properties of the seesaw mechanism and the resultisince the presence of the large mass sdalis expected on
mass spectrum. Furthermore, we will discuss the relationthe grounds of GUTs. This is the famous seesaw mechanism
between fine-tuning and the principal invariants of a neutring13—15 in its simplest form, which can be generalized to
mass matrix. In Sec. lll, the Zel'dovich-Konopinski- n>2. Note, however, that the results will depend crucially
Mahmoud(ZKM) and pseudo Dirac neutrinos are briefly re- on the specific form of the Dirac and Majorana mass matri-
visited before the concept of seesaw Dirac partides.. cesMp andMg. Both these matrices are expected to emerge
neutrinog is introduced. Then, it is shown that &<3 mass from scenarios involving flavor symmetries and their break-
matrix cannot describe a seesaw Dirac particle, i.e., it canndhgs, which lead, for example, to so-called “texture zeros.” A
provide a seesaw mechanism for a Dirac particle. Next, 4ontrivial flavor structure can have profound consequences
X4 and 6X 6 neutrino mass matrix textures for seesaw Diracand it is in generahot true that the superlight neutrinos
particles are discussed. At the end of Sec. Ill, we present arising from the seesaw mechanism must be Majorana neu-
model scheme for seesaw Dirac neutrinos in the presence tinos. Instead, appropriate symmetries imposed on the fer-
non-Abelian and discrete symmetries as well as algebraimions (and the Higgs fieldscan, for example, enforce a
relations. In Sec. IV, we investigate the connection betweenexture of the mass matrix in ER), which allows the com-
symmetries and the principal invariants of a neutrino massination of two superlight Majorana neutrinos with opposite
matrix on a formal mathematical level. At the end of this signs of the mass eigenvalues into one superlight Dirac neu-
section, we examine this connection for the case ®f44 trino.
neutrino mass matrices. Finally, in Sec. V, we summarize and
give our conclusions. B. Perturbation theory and the number of small neutrino

masses

Il. THE SEESAW MECHANISM Diagonalization of the complex symmetric mass maliix

A. Naturally small neutrino masses given in Eq.(2) yields the block-diagonal form
The most widely accepted mechanism for the generation M, O
of small neutrino masses is the canonical seesaw mechanism M=UTMU= ) , 3)
[13-15. It involves the only spontaneously generated mass 0 M

scale of the standard mod&M), i.e., the electroweak scale,

which is of the ordere~10? GeV-1& GeV, and a large whereU is a unitarynXn matrix andM, and M, aren,
mass scale which is typically of the order Xn, andngX ng matrices, respectively. The hierarchy in Eq.

~10° GeV—10° GeV or even as high as the Planck Scale(1) allows us to consider the Dirac mass matkil, in the
(~10° GeV), i.e., we have the hierarchy neutrino mass matri¥ in Eq. (2) as a small perturbation of

the “unperturbed” matrix, where the Majorana mass matrix
0<e<A. (1) Mg is kept andMp=0. Therefore, we will choose for the
unitary matrixU as an ansatz
The complex symmetric neutrino mass matvixakes in the

flavor basisW=(va; - van vs1--- vsn)' the follow- U C, S 4
ing form: “los cl) (4)
M= 0 Mp @) whereC; is annyXn, matrix, C, is anngXng matrix, S;

My Mg/’ andS, arengX n, matrices, and the entries of the matri&s

(i=1,2) are much smaller than those of the matriCeqi
wheren, denotes the number of active neutrifosthe SM,  =1,2) [51]. Using the unitarity condition for the matrild,
n,=3), which are elements of SU(2poublets, anchg de- UTU=UUT=1,, we find that the matriceS; andS; have to
notes the number of sterilsingled neutrinos. ThusM is an  obey clc,+sls,= 1n,, C,Cl+ stgzlns, c,cl+sls,
nXxn matrix with n=n,+ Ns. Furthermore, in Eq(2), “0 =1, SlS’H C£C2=1n , S,C,—C,S,=0, and ClS;r.
denotes then, X n, null matrix. The elements of the, X ng a S
Dirac mass matrixMp arise from electroweak symmetry
breaking and are thus of order. The elements of the
“heavy” ngx ng Majorana mass matrikl ; are not forbidden
by symmetry. These elements are therefore typically of order

—S;CZZO. Neglecting terms that are quadratic in the matri-
cesS; and do not appear in combination with the Majorana
mass matrixM g, we obtain, from Eq(3)

T Tar T T

A, a scale provided by a grand unified the6BUT) or some M1=—(CiMpSi TS MpCy)+ S MRSy, ®)

other embedding which is associated with the breaking of N P e bk T ot

B_L Symmetry. M2:C2MRC2+(SZ MDC2+C2MD82), (6)
Forn,=n¢=1, i.e.,n=2, the diagonalization of the neu- -

trino mass matrix in Eq(2) yields a superlight Majorana $1=Mg"MpC;. )
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Note that we also obtaif;=(Mz')"MJC; which together to cancellations due to symmetries, thg+ngs—r dimen-
with Eq. (7) means thaM;:MR, Furthermore, using Eq. sional block on the main diagonal naturally yieldsng{r)

(7) and the relatiors,C;—C,S;=0, we find that or 2n, mass eigenvalues of orderdepending on the sign of
ny,—Ng+r. Written in a more compact form, there are, in
S,=C,Mz'M]. (8) total,

Inserting Eqs(7) and(8) into Egs.(5) and(6) and also using

the fact that the Majorana mass matifikgz is symmetric e=n—r—[n;—ng+r|

ives
J mass eigenvalues of orderin the ng+ngs—r dimensional
M;=—C]MpMz*M[C,, (9) light diagonal block. Including the remaining off-diagonal
blocks with elements of order does not change this result,
M,=C3 MRCZ+ Ci((MghH* ME,MD which can, for example, be seen by treating these blocks as

T . perturbations to the stiff diagonal blocks. The remaining

+MpME(Mg)*)C5. (10
Since the entries of the matrid, are much smaller than z=n—r—e=[ny—ns+r|
those of the matridM g, which is consistent with Eq<7)

and(8), we find that mass eigenvalues are not of ordeor A, i.e., they are see-
saw mass eigenvalues of orde¥ A, exact zeros, or further
M;=—CiMpMgz*M{Cy, (11)  suppressed eigenvalues of or@&f 1/ AX, wherek>1. With
this we arrive at the important resulthe number of small
M,=C3 MRCZ. (12 mass eigenvalues naturally generated by the seesaw mecha-

o nism cannot excega,— ng+r|. Forn,=ng this implies, for
In the limit Mp—0, we can choos€;=1, andC,=1,, example, that the number of seesaw mass eigenvalues is al-
i.e., after block diagonalization the mass matrices can to lowways equal to or smaller than half of the dimension of the

est order in the inverse seesaw scale! be written as mass matrixM. This means, for example, that it is impos-
sible to obtain four or five seesaw mass eigenvalues of order
Mi=—-MpMg*MJ, (13)  €%/A<e from a 6x6 mass matrixV. Note, however, that
the presence of symmetries may further reduce the order of
M2=Mg. (14 magnitude of the eigenvalues, which will be discussed be-

The matrix M, =—MpMz*M] on the right-hand side of
Eq. (13) is aneffective mass matriabtained from integrating _ ) S _
out the heavy degrees of freedom represented by the heav§:- Fine-tuning, principal invariants, and generic mass scales

Majorana mass matrikl,=Mp. However, the fact thatthe e have so far discussed the natural eigenvalue spectrum
elements of the matricéd, andMg, are of the orderg and  of a mass matrix with the structure in E@®) without speci-

A, respectively, together with Eq13) does not implyn,  fying any structural details of thélp and Mg matrices,
“seesaw mass eigenvalues” of superlight Majorana neutrinogyvhich can arise from flavor symmetries and their breakings.
with masses of orde¢®/A. Similarly, Eq.(14) does notim-  Such symmetries are expected to exist and they lead, for
ply ng mass eigenvalues of ordarfor superheavy Majorana example, to so-called “texture zeros” or other exact alge-
neutrinos. The diagonalization of thexn mass matrix in  praic relations between different matrix elements. It is im-
Eq. (2) leads instead to the following pattern of eigenvaluesportant to observe that flavor symmetries ¢hat need not
First, for a given Majorana mass matii#g with entries of  change the discussed generic mass eigenvalue spectrum such
orderA there arer =rank(Mg) <n; eigenvalues of ordek.  that one or more of the eigenvalues do not assume their
Then, block diagonalization of thegxng submatrix Mg natural order of magnitude. This means that an eigenvalue
leads to amr dimensional block of rank with eigenvalues of may turn out, for example, to be of orderinstead of order
order A, which is placed in the bottom-right corner of an A, of ordere? A instead of order, or O instead of order
nsX ng null matrix, whereass—r dimensions oMg are not  €2/A. Sincee<A, this leads to a drastic change in the order
of order A. This can be used to divide the complete massof magnitude of the corresponding eigenvalue. An eigen-
matrix M into blocks according to the magnitude of the en-value that is many orders of magnitude smaller than its natu-
tries. First, there is the dimensional(diagonal block of  ral order of magnitude may thus be understood in terms of
order A. Then, there is the complementary diagonal blocksome symmetry in the given mass matrix. Without such a
with dimensionn,+ngs—r and the off-diagonal blocks, all symmetry, such a drastic deviation from the natural order of
with elements that are maximally of order The n,+ng  magnitude in the mass eigenvalue spectrum requires a fine-
—r dimensional light block on the main diagonal is com- tuning of parameters. This relation between deviations from
posed of then, dimensional null matrix of the original ma- the natural mass eigenvalue spectrum and flavor symmetries
trix in Eq. (2) and elements of ordeg, arising from the  will be further discussed in Sec. IV.

reorganization into the light and heavy sectors. Thus, unless Other(in some sense also more natyirgiantities for the
there exist specific structures in the mass mattithat lead  discussion of the properties of the mass matrices are their
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TABLE |. The generic order of magnitude of the principal in- Note thatT, ,, T,,, andT;, are as in Table |, whereds, ,

variantsT; (i=1,2, ... ,6) of aneutrino mass matrii of arbitrary is further reduced due to the small valuesngfandn,.
dimension and rank (r=0,1, .. . ,6) for largen, andns. In analogy with the discussion of the eigenvalues above, a

— deviation of the invariants from this generic mass scale de-
Principal Rankr pendence is either a fine-tuning of parameters or a conse-
invariant 0 1 2 3 4 5 6 quence of a symmetry. Note, however, that not all symme-
T, 0 A A A A A A f[ries _Iead to a change in the generic mass scales of the
T, &2 &2 A2 A2 A2 A2 A2 invariants. The presence or f_ibsence of mass scales which
T, S A 2A A3 A3 A3 A3 aptually contribute to the myanar_wts of _the neu.trlno mass ma-
T o o 2A2 A2 Al A4 A4 trix M ne.vertheless.sheds light in an interesting way on the
T: S A A A3 @A A5 AS symmetries constraining the neutrino mass matrix texture.
Te b €8 A2 A% At EAF S

IIl. TEXTURES FOR SEESAW-DIRAC PARTICLES

. . L o ) ) A. Seesaw-Dirac particles
invariants. The basis independent principal invariaht®of

the mass matriM, wherei=1,2, ... n, are defined by the
characteristic equation

Consider in the Majorana basis a real symmetrikn
neutrino mass matriki. Let us assume that it can be brought
via some orthogonal transformation to the block-diagonal

n form
de{M—\1,)=A"+>, TN (15)
i=1 A 0

0 B/’ (18

M—>M=0TMO= (
and can be entirely determined from the mass eigenvalues

alone. In the same way as the block structure of the neutring j,are o denotes a real symmetric2 matrix given by
mass matrixM given in Eq.(2) naturally leads to a generic

neutrino mass eigenvalue spectrum, each of the invariants is 0 «
characterized by generic powers of the mass scabsd A. A=< )
Without the block structure in Eq2), which is related to the a 0
representations of the fields under SU(XJ(1)y, one
would expect all entries of the matri to be of orderA and
the natural scale of all invariants would therefore Be
=0O(A"). The presence of gauge symmetries imposes, ho
ever, the block structure in E42) and we have a first ex-
ample where symmetries change the natural order of magni-
tude of the invariantd; .

The discussion of the seesaw mechanism above provideghere the two degenerate Majorana neutrinos with opposite
the natural neutrino mass scales of orde#&\, €, andA.  gigns of the mass eigenvalues can be combined to one Dirac
We can now discuss, in a similar way, the generic mas$eytrino. Therefore, we will speak of the real symmetric neu-
scales of the invariants; . If we denote byT; ; the invariant  t/ino mass matrisVl as containing dirac particle if diago-

T; of a mass matrix withr mass eigenvalues of ordarand  pgjization finally leads to a mass matrix of the type given in

Igrtsleer ter::noer?éso(gt;?r?snf]grstsh?Ztg;(e?ifcogﬁlltgsn Itis easy Eq. (20). Note that the mass matriM respects a conserved
U(1) symmetry acting on the fermionic fields with, car-
rying a charge of+ 1 andv,_carrying a charge of- 1.

If the mass matrixM is identical to the mass matrix
formulated in flavor basis, then the neutrineg and v,
could represent two different flavor fields. In this case, two
Majorana neutrinos of different flavors combine to one Dirac
particle and the conserved(l) charge is called a lepton

(19

andB refers to some real symmetrin{2) X (n—2) matrix.
The fields that span the matriA will be denoted by

w1 v21). Diagonalization of the mass matr then leads
to the mass matrix

m=diag a,— a,8,7,...), (20)

T, =€ "A" for r<i, (16)
T =A" for r=i. (17

For largen, andng the specific structure of the mass matrix

M in Eg. (2) reduces, however, the power &f by one unit .
for r<i (balanced by an extra factor ej whenever one of ?]‘L.’mtt).er of thi ZKM t)(/jpe[Bz,SEﬂ.r:f,kfjorthexample, the |detn-
i or r is even, while the other one is odd. In Table I, the "'calONSYa =v, andvy =vy NOId, then the mass matrix

resulting generic orders of thg s are given for largen, ~M=M exhibits a U(1} symmetry characterized by a
andng. For smalln, andng these generic powers are even ZKM lepton number. =L, —L .

further reduced. For aX4 mass matriXM with a structure If insteadM # M, then the fields;, andv,, of the ma-
as in Eq.(2) andr =2 one obtains trix A are not flavor fields and the basis, where the assign-
ment of the conserved (W) charges(the v;, number minus
T12=0(A), Tp=0(A?), the v, numbey takes place, is different from the flavor ba-
sis. In this case, the emerging Dirac particle is called a
T3,=0( €’A), T4=0( eh). pseudo-Dirac particlg39]. To zeroth order in the gauge in-
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teractions a pseudo-Dirac particle cannot be distinguishedre given as functions of the matrix elements of the maitix
from a genuine Dirac particle characterized by a conservelly
U(1),«um lepton number. However, higher order gauge inter-

actions induce a splitting of the Dirac particle into two Ma- ~ T1(D1,D2, ... ,R3)=—R;—Rs, (253
jorana particles withnearly degenerate mass¢39]. Since 5 5 ) )
we will be concerned only with zeroth order mass matrices, 13(P1,D2, ... R3)=D1R3+D5R;+ D3R;+ D3R,

we will, if nothing else is mentioned, refer to both the ZKM
neutrino and the pseudo Dirac neutrino briefly as Dirac neu-
trinos. A Dirac neutrino will be called aeesaw Dirac par-  ang as functions of the matrix elements of the diagonal ma-
ticle if its mass is superlight due to the seesaw mechanisrgix m by

without invoking any fine-tuning in the sense of Sec. Il C.

—2(D31D,+D3Dy)R;, (25D

As a quick application of the results given above, let us T(a,8,7)=—B—, (26a
consider a X3 mass matrixM, which is assumed to de-
scribe a Dirac neutrino. If fine-tuning is absent, then this Ts(a,B,y)=a?(B+ 7). (26b)

Dirac neutrino cannot have a small mass suppressed by a _
seesaw mechanism, since the necessary number of two ligkguations(26g and (26b) imply that
mass eigenvalues would exceed half of the dimension of the o,
mass matrixM, which is forbidden by the results of Sec. Ta=—a’T;. (27
IIC. .

In the next section, we will show that seesaw Dirac neu—Assume thally #0. Then, it follows from Eq(27) that
trinos in the absence of any fine-tuning are first possible in T4(Dy,Ds, ... Ry

the case of 44 mass matrices. al=—
T4(D4,Dy, ... ,R3)

<é? (29

B. 4X4 textures and from Eqgs(259 and(25b) we find that the numerator is

of ordere?A and the denominator is of orddr. Hence, it is

clear that the relatio28) can only be satisfied in the pres-
According to Sec. Il, we can write any real symmetric 4 ence of some fine-tuned cancellations between the matrix

X4 mass matrixM, providing an effective seesaw mecha- elements oM. If we reject fine-tuning, then it follows that

nism in block form as in Eq(2), where the Dirac mass T,=0, i.e.,the mass matrix must be tracele$be traceless-

1. Criterion for seesaw Dirac particles

matrix Mp is given by the real X2 matrix ness of the mass matrix implies that=diag(e,— a,8,
—B), i.e., the four Majorana neutrinos combine to two Dirac
(D1 Dy neutrinos: one seesaw Dirac neutrino and one heavy Dirac
°~\p, D, 21 neutrino. Thus, Eq(27) reads

with D;=0(€) or D;=0, wherei=1,2,3,4, and the heavy T1=T5=0. (29)

Majorana mass matriMg is given by the real symmetric

: The above considerations tell us that EQ9) together
2X2 matrix

with the auxiliary relations dé¥l,# 0 and deM g+ 0 repre-
sent necessary and sufficient conditions for superlight Dirac
E(Rl Rz) (220  neutrinos in the absence of fine-tuning. We will therefore
R R, R; refer to Eq.(29) as thecriterion for seesaw Dirac particles
Since the mass matrid = (M;;) is originally defined in fla-
with Rj=0O(A) or Ry=0, wherei=1,2,3. It is assumed that vor basis, there is a fundamental difference between matrices
the two submatrices satisfy ddt; #0 and deMz#0, i.e., whose matrix elements can be considered as independent pa-
r=2. rameters and those matrices where the matrix elements are
If we assume that the mass mathk describes a seesaw related by some specific exact algebraic relations.
Dirac particle in the sense of Sec. Ill A, then the real sym-

metric mass matriXM can be brought by some orthogonal 2. Textures with independent entries
i —0T . .
transformationM—>m=0 MO to the form Under the assumption that the matrix elemelts are
) either exact texture zeros or independent parameters, we will
m=diag a,— a,B,7). (23 now determine all possible textures of the mass mairii

) _ _ o Eq. (2), that describe a seesaw Dirac particle. Since we will
The invariantsT; andT; defined by the characteristic equa- treat the matrix elements, which are not texture zeros, as
tion independent parameters, the tracelessness of the mass matrix

M can only be satisfied iR;=R3=0. Thus, we obtain from
de(M—A1,)=de(m—A1,) Eq. (25b) that the criterion for seesaw Dirac particlez9)
reduces to
=N TN+ TN+ TN +T4=0
(24) D,D,+D3D,=0. (30)
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Since the matrix elements can be varied independently, the Vi — Five, Vo —*ivy,
condition(30) together with deM +# 0 can be satisfied only : N:iN Nos —iN (35
if D,=D,=0 orD,=D3=0. Thus, we arrive at the conclu- ! 2 2 b
sion that up to trivial permutations all>44 textures with
independent nonvanishing entries, describing a superlighf, the Majorana basis.
Dirac particle, are of the canonical form
0 0 0 C. 6X6 textures
M= 0 0 & O (31) 1. Criterion for seesaw Dirac particles
0 & 0 A In order to maximize the number of superlight particles
e 0 A O emerging from the seesaw mechanism, we can again accord-

ing to Sec. Il write a real symmetric>66 mass matrix in
with €;,e,=0(€). Textures equivalent to the one displayedblock form as in Eq(2), where the real Dirac mass matrix
in Eq. (31) have been obtained within left-right-symmetric M is given by the X 3 matrix
and horizontal models implementing a conserved horizontal
U(1) charge of the ZKM typg40].

D; D, Ds
3. Textures in presence of algebraic relations Mp=| D4 Ds Dg (36)
We will now investigate the A4 textures leading to see- D, Dg Dg
saw Dirac patrticles if algebraic relations between the matrix
elementsM;; are allowed. If we assum®&;=R3;=0, but
allow for algebraic relations within the Dirac matrMp, with D;=0O(e) or D;=0, wherei=1,2,...,9, and theeal
then the criterion for seesaw Dirac particles is still given bysymmetric heavy Majorana mass matlhik is given by the
Eq. (30) and the corresponding texture is equal to 3X 3 matrix
O O €1 €o
. 0 €16 Ri Ry Rg
y - _63 €3 (32) M R= R2 R4 R5 (37)
- Rs Rs Re
€1 — —6162 0 A
€3
€ €3 A 0 with Rj=0O(A) or Rj=0, wherei=1,2, ... ,6. Toguarantee

an effective seesaw mechanism, it is additionally assumed
with €,=0(€)<O(A), wherei=1,2,3. Let us now assume that detMp#0 and deMg#0. Let us assume that the mass
that the relatiorR; = —R3# 0 holds. Then, the criterion for matrix M describes a seesaw Dirac particle. This means that

seesaw Dirac particleR9) reads the superlight mass eigenvalue spectrum is of the type
s 2 —a,B=€%IA, wherea can be regarded as the mass of the
T3=Ry(—D1+D3—D3+D3)—2Ry(D1D,+D3Dy4)=0. Dirac particle. Consider the characteristic equation of the

(33)  mass matrixV written in block form

If we assume thaR; and R, can be varied independently,

then both parentheses in E@®3) are necessarily equal to

zero. The second parenthesis vanishes for the cHoice defM—2\1g)=
-D;D,/D,, which means that the first parenthesis vanishes

whenD2=D3. Thus, we can in this case determine the tex-

ture to be Since deMg+#0, the matrixMg—\1; can be inverted for
N<<A. One can therefore apply the Gauss elimination algo-
rithm to the block matrixVl —\ 14, since it leaves the deter-

_)\13 MD

=0. 38
ML Mg—\1g (38)

0 0 e, =€ minant invariant. From Ed.38), we therefore obtain that the
M= - (34) superlight mass eigenvalues of the mass mattiare also
€1 + € Al A2 .
solutions of
€) + €1 A2 - Al
with €;,e,=0(€) andA,A,=0O(A). Let the mass matrix |_)\13_MD(MR_)\13)71MB|:0' (39

given in Eq.(34) be spanned by the fields/{ v5 N;1N>),

wherev,, andv,_ denote two active neutrinos am and

N, denote two SM singlets. Then, the texture in BBff) can  Expanding this determinant for a small paramatgEq. (39)
be naturally obtained by imposing the discrete symmetry can be rewritten as
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4 R, R, O 0 R, Rg
—N13—MpMRME+0| —
3~ MpMg™Mp A3 Mg=[ Rz 0 Rs], ML=| R 0 Rg
. g 0 Rg O R; Rs O
—\3 € 2 €
AT O A3 A+ T+ O F) A The criterion for seesaw Dirac particles given in E4d4),
corresponding to the Majorana mass maivlx, reads
12
€
+|T3+0 F)l:o, (40) (T3—T,T,)detMg=DgDZRIRRE=0, (46)

which can be satisfied only if an additional texture zero were
be introduced in the mass matrii, leading to a different
class of textures, or letting det vanish. Similar consider-
ations hold for the Majorana mass mathks .

where the invariant3 |, T,, andT5 are defined by the char-
acteristic equation de¥{,—A13)=A3+T N2+ TN+ T;
=0 of the effective mass matrid ,= — MMz 'M[ . Using
A=0(e?/A), we find that

3. Textures with independent entries

8
NHTAN+ TN+ Tg= (’)( E—5> ) (41 Assume now that all nonvanishing matrix elements of the
A mass matrixM are independent parameters. Then, all pos-

) ) ) ) sible textures consistent with the criterion for seesaw Dirac
Taking the previously assumed light mass eigenvalue spegsarticles given in Eq(44) are equivalent to the unique form
trum into account, we obtain from E@¢41) the following

equations for the mass of the seesaw Dirac particle 0 ¢ 0 O O O
68 68 €1 Al O 0 O O
T10?4+T3=0| —|, a®+Ta=0(—|. (42 0 0 0 0 0 e

A A M = (47)
0 0 0O 0 e O
g:]r;;:(?faaﬁo, this system of equations can have a solution 0 0 0 e 0 A,
O O €) O A2 O

8
T3_T1T2:(9(6_) ) (43)  with €1,€;,e3=0(€) andA,,A,=0O(A). From Eq.(47) we
A® observe that the superlight particles obtain their masses via

two decoupled mechanisms:
Note that the invarianT; and the productl; T, are both of (1) The Majorana particle obtains its magsfrom the
the ordere®/ A®. Hence, Eq(43) expresses a fine-tuning of ordinary 2<2 seesaw mechanism.
the mass matri# unless the right-hand side vanishes. Since (2) The Dirac particle obtains its maasfrom the canoni-
we reject fine-tuning, the invariants must therefesactly ¢4 4x 4 texture given in Eq(32).

satisfy Hence, it is shown for &6 textures with independent
entries that the model-independent method presented here to
determine all possible textures consistent with the criterion
for seesaw Dirac particles is equivalent to the introduction of
a conserved lepton number of the ZKM tyfk7,18|.

T;—T,T,=0. (44)

In fact, it is easy to show that E@44) is also a sufficient
condition for a superlight Dirac particle. Hence, we will call
it the criterion for seesaw Dirac particledt has thus been
shown that the first order in the inverse seesaw scale given
by the effective mass matrill , is already sufficient to de-
termine non-fine-tuned neutrino mass textures leading to see- Non-Abelian as well as discrete symmetries between lep-

4. Model scheme for textures in presence of non-Abelian
and discrete symmetries

saw Dirac particles. tons mostly predict lepton mass matrix textures where some
of the matrix elements are equal in magnitude, which can
2. Textures not yielding seesaw Dirac neutrinos result in maximal or bimaximal mixing and degenerate neu-
Consider an ansatz where the Dirac mass maétiy is trino masse$16,28. In the case of non-Abelian symmetries,
equivalent to the matrix modgls have beep pro'posed where only one mixing angle
that is nearly maximal is generid41]. However, most of
Mp=diagD;,Ds,Dy), (450  these models have problems in naturally accommodating

large v,-v. mixing and hierarchical mass squared differ-
the simplest form consistent with déty, # 0. For this Dirac  enceq16]. In particular the presence of a ZKM lepton num-
mass matrixM  there existexactlytwo inequivalent Majo-  ber in the neutrino sector as a source(oéarly maximal
rana mass matrices, that never lead to a superlight Diragtmospheric mixing usually implies the reverse order of the
particle, even if arbitrary algebraic relations between the mahierarchy betweeAmZ andAm3,, [42]. On the other hand,
trix elements are allowed. These matrices are a combination of neutrinos to a pseudo Dirac particle, in the
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sense of Sec. Il A, does not establish a specific mixing beef the general block form of the neutrino mass mat¥ix
tween the corresponding generations, and hence allows mogéven in Eq.(2). The sub-blocks oM, however, leave the
freedom in accommodating mixing angles and mass squaredixing angles and mass spectrum of the light neutrinos un-
differences. specified. Predictions for the mixing angles and mass spectra
Contrary to the usual approach, we will therefore concenof neutrinos require further horizontal or flavor symmetries
trate on the natural generation of hierarchical mass squareshforcing specific textures of the Dirac and Majorana mass
differences by imposing a conservedlycharge and assume matrices. Therefore, it is important to relate the general prop-
that the W1) generator is not diagonal in flavor basis, i.e., erties of the mass matrix as discussed above to the symme-
some of the active neutrinos combine to a pseudo Dirac patries acting on the different neutrino flavors.
ticle instead of a genuine Dirac particle. The pseudo Dirac Assume that there exists @avor symmetry group G,
character of some of the neutrinos requires the presence wfhich is mapped into a reducible unitary representaft&#

exact algebraic relations between the matrix elements. D acting on the flavor space:
Let ve, v,, andv, denote the SM neutrino flavor fields
andN;, N,, and N5 denote the charge conjugates of three g—D(g), geG. (52

right-handed neutrinos. To be specific, we will assume in the _ _
basis (NSN;NSN,NSN5) that the corresponding>33 Majo- The matrix representatioD (g) acts on the state vecto

rana mass matri¥ in Eq. (2) is of the form[43,44 =(Va1- - Van,Vs1--- Vsn) ' (here given in flavor basis
where n, denotes again the number of active neutrinos,
0 0 1 which are elements of SU(2)doublets, and, denotes the
Mg=A[ O -1 0. (48) number of sterile neutrino&SM singlets:
1 0 0 ¥—D(g)¥, geG. (52

This kind of Majorana matrix has received interest in the
framework of S@3) flavor symmetries, where the three SM
singletsN;, N,, and N5 are combined to an SQ) triplet

field [41,43—-48. Invariance of the neutrino mass terms un-

Next, consider two irreducible subrepresentati@$’(g)
andD()(g) of the representatioB(g) and some matrix
which satisfies

der the discret&, symmetry (D¥)(g))™XD@(g)=X (53)
; Ve_)_.w’“ Yu e VT ?}T' (490 forall geG. Using Eq.(53) and the unitarity of the repre-
N;—iN3,  Np——Nz, N3z——iN; sentations, we obtain that
enforces the &6 neutrino mass matrik to be of the form XTXD@)(g)=D®)(g)XX. (54)

0 0 0 & 0 e Since the representatiob(®)(g) is irreducible, it follows

0 0 0 - 0 ¢ from Schur’s lemmd49,50 that XX is proportional to the

0 0 0 0 e; O unit_ matrix, i.e., the matri_»( isf au_nitary matrix tin_1es some
M= (50) arbitrary mass scale, which is given as a physical input pa-
€ —€6 0 O 0 A rameter. Furthermore, it follows that the matdxis, up to
0 0 e O —-A O this overall factor, uniquely determined by the choice of the

matrix representationd(®(g) and D¥)(g). Moreover,
e ea 0 A 0 Schur’s lemma tells us that in the case that as well as Eq.
(53) for some irreducible representatii”)(g) there holds
where €, ,€,, and €5 denote three different real matrix ele- also a relation
ments of the order of the electroweak scald he algebraic
relations between some of the entries of the mass mitrix (D) (g))"XDM(g)=X (55
in Eq. (50), which are established by the discrete symmetry
D, allow the existence of a seesaw Dirac neutrino in thefor all ge G, the representatiod(*(g) is equivalent to the
absence of a conserved ZKM charge. Because of fact thaepresentatiod(*)(g).
there is no conserved ZKM charge present, radiative correc- We will now consider the case when the symmetry group
tions will induce a small splitting of the degenerate masse$§ is unbroken at low energies. The origin of the mass terms
and could thereby, in principle, establish the hierarchy bein Mg of the heavy sterile neutrinos generated at the GUT or
tweenAmZ, and Amg, . embedding scale is in general quite different from the origin
of the Dirac mass terms il 5, which emerge from Yukawa
couplings and the electroweak vacuum expectation value. It
can therefore be assumed that in flavor basis the representa-
tion D(g) takes on the block-diagonal form
The smallness of the neutrino masses is well understood

in terms of the seesaw mechanism, which is a consequence D(g)=D,(g)®D(Q), (56)

IV. CONNECTION BETWEEN SYMMETRIES
AND INVARIANTS
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whereD ,(g) is ann, dimensional unitary representation act-  If for some a=1,2,... therepresentatiorD{*)(g) is
ing on the subspace of the active neutrinos onlyBgf) is  equivalent to its complex conjugate representaBdf?* (g),
anng dimensional representation that acts only on the sterilghen the matrixA, can be written as

neutrinos.

From the unitarity of the representati@(g) it follows A=A ®U,, (629
that an appropriate change of basis allows us to write the
representation® ;(g) andDg(g) in reduced form as where A! denotes some arbitrary invertible symmetkiy

x kS matrix with undetermined entries of the generic order
A, whereas the unitargl] X d® matrix U, is determined by
the choice of the representatima)(g) [54]. If instead the
wherea=1,2, ... runs only over the inequivalent irreducible representatio{*(g) is complex i.e., not equivalent to its
representations and the intege}, x=a,s, specifies how complex conjugate, then the condition 8&t+0 requires
often the irreducible representatidd{”(g) occurs in the the complete reduction of the representatdg(g) in Eq.
reduction. This means that the basis has been chosen su@y) also to contain the complex conjugate representation

that the matrices of equivalent representations are identic&'”* (9) exactly k%, times. Thus, the matrid,, is of the
and form

Da(9)=®k2D{"(g), D«(g)=@®k3D{"(g), (57)

a a

kiD{(g)=D"(g)® @D\ (g), x=as. (g a0 P
> AT 0

3

®U,, (62b)

Ka
where “0” denotes thek® X kS null matrix, A/, denotes some
Specifically, if two representatior3(®(g) andD¥)(g) are  arbitrary invertiblek; X ki, matrix with undetermined entries

equivalent, they are also understood to be identical and wef the orderA, and the unitaryd, X d7, matrix U,, is again
can therefore choose the labeling such tBata. The di-  determined by the choice of the representaff?(g).

mension of the irreducible representati®}®(g) will be As a simple example, consider the Majorana mass matrix
denoted byd* , i.e., the representatiolh&“)(g) is adxd* Mg in Eq. (48). Before symmetry breaking, the representa-
matrix. tion D(g)=D{*(g), where a=1, is the (irreducible

Consider now the neutrino mass matkikin Eq. (2) and  3-dimensional representation of &) which is equivalent
assume for simplicity that the Dirac mass matvy, as well ~ to its complex conjugate representation. Therefore (629
as the Majorana mass mattit are nonsingular. From Eq. applies whenA is the arbitrary “matrix” A, andMg/A is
(56) the unitary transformatiol that brings the representa- the uniquely determined unitarfeven orthogonal matrix
tion D(g) to the completely reduced form in Eg7) de- U,.
composes in flavor basis inté=V,®V,, whereV, andV, Similarly to the treatment of the Majorana mass matrix
are unitary matrices of dimensiomg andng, respectively. Mg in Eq. (61), one also verifies that the Dirac mass matrix
Therefore, in the basis where the representabgg) is in  M[, decomposes into the unitary submatriddg known
the completely reduced form in E¢7), the neutrino mass from Egs.(628 and(62b) times a mass scale of the order
matrix M'=VTMV reads in such a way that the effective neutrino mass mattixcan
, be determined by consistently carrying out block multiplica-
M’ = 0 Mp tions. After an appropriate relabeling of the representations
MLT Mg Dg“)(g) and Dg“)(g), we obtain for the effective neutrino
mass matrix the block-diagonal form
and the effective neutrino mass matrix is simply given by
M!=—-MpMg *M{T. In this basis, we can now apply the M =diagB;,B,, ...), (63
above stated implications of Schur’s lemma in order to de-
termine the neutrino mass matrM’, following from the  where each matriB8,, «=1,2, ... ,defines a bilinear form,
invariance of the neutrino mass terf°M’y~WwT MW  Wwhich is invariant under the symmet in the representa-
[53] under the transformations tion kiDga)(g). If for some a=1,2,... therepresentation
e - , Dg")(g) is equivalent to its complex conjugate representation
VM W—WD(gM'D(QW, geG. (600  plo*(g) then the matrixd, reads

0 VIMpV,

= (59
(VlMBva VsMRVs

As a result, we obtain that the Majorana mass matixis,

up to trivial permutations, in block-diagonal form Ba=B.®U., (643
Mp=diag A Ay, . ..), (61) where B/, denotes some arbitrary invertible symmetkig
x k% matrix with entries of the ordee?/ A and the unitary
where each submatriR,,, a=1,2,...,defines a bilinear d2xd?2 matrix U, is fixed by the representatidd’{®(g).
form which is invariant under the symmet@ in the repre- For a complex representatidmg“)(g) the invertibility of
sentationij(S“)(g). the Dirac matrixM  requires the matriB, to be of the form
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0 B,
B, 0

Ti=agA, (663
B —

a

®U,, (64b)

Ty=al,e?A. (66b)

where “0” denotes thek? < k2 null matrix, B/, denotes some
invertible k2 X k% matrix with entries of ordee?/A, and the
unitaryd? x d2 matrix U, again depends on the choice of the
representatio{*)(g). The important thing here is to note .
that each matrix element of the neutrino mass maktixin =~
Eqg. (59 can serve as a parameter of one and only one of the
matricesB,, i.e., for a# g the matrices8, andBg are de-  since the coefficienta}, anda, can generically either be of
scribed by Qecoupled mass parameters and are therefore igrger unity or vanish exactly, it indeed follows from E&7)
dependent in a parametrical sense. thatT,=T5=0, which is the criterion for seesaw Dirac par-
TakingB.B,, , itis readily seen that block diagonalization ticles in the case of %4 matrices. Similarly, in Sec. Il C,
of B, yields k%, different sets of neutrino mass eigenvalues,one can confirm the validity of the criterion for seesaw Dirac
which are, up to relative phaset,-fold [or, if the represen- particles in the case of 66 matrices.
tation D{“(g) is complex, 212-fold] degenerateThe neu-
trino masses, each of which &-fold (2d?-fold) degener- V. SUMMARY AND CONCLUSIONS
ate, will be denoted byn,,, wherel=1,2, ... k2. In this
case, thek? different neutrino masses,, are actually cor-
related, i.e., they are in a parametrical sense depende
However, it is crucial to note that this correlation is due only
to the diagonalization of the matriB,, whose entries are
not constrained by the symmet@; which has already been
fully taken into account when introducing the unitary matri-
cesU, in Egs.(62) and(64). Except of their common mass
scale, which iss?/ A, thek? different masses exhibit no fur-
ther relations that are protected by the symme&ryHence,
we can regard them as independent igemericsense.
Let us now specialize to the case when the neutrino ma

Next, using the fact that the generic mass scale of the seesaw
Dirac particle is of the ordee?/A, Eq. (27) implies that

2
ag1- (67)

A

In conclusion, we have discussed general properties of
eutrino mass matrices involving a fine-tuning condition and
ie connection to flavor symmetries. We pointed out in par-

ticular that the number of light neutrino masses generated by
the seesaw mechanism cannot exceed half of the dimension
of the considered mass matrix if fine-tuning is absent. Fur-
thermore, we have introduced the concept of seesaw Dirac
particles. In the light of this, we formulated for the examples
of real symmetric 44 and 6xX6 neutrino mass matrices a
necessary and sufficient criterion in order to obtain seesaw
Dirac particles. For these cases it was shown that the impo-
i . 7 ) . ' MaSGtion of a conserved ZKM charge is equivalent to the as-
matrix M is real. Thg principal m_varlantsTi (i sumption that the mass terms in flavor basis represent inde-
=12,...n) of the neutrino mass matrif can be ex-  ,ondent parameters. As an application of our methods, we
panded as finite sums of powers of the electroweak scale gemonstrated that small pseudo Dirac neutrino masses can
and the GUT or embedding scale as follows: be generated in a natural way by the seesaw mechanism if
discrete or non-Abelian symmetries are taken into account.
Then, we presented a model scheme based on one continu-
ous non-Abelian symmetry and one discrete Abelian symme-
try generically leading to a8 6 mass matrix, which satisfies
the criterion for seesaw Dirac particles in the absence of a
conserved ZKM charge. Furthermore, we have found that a
considerably wide class of reducible representations of un-
broken unitary flavor symmetries accounts only for the de-
generacy of some neutrino masses, but does not establish any
relations between the nondegenerate neutrino masses. Fi-
nally, we confirmed the above formulated fine-tuning condi-
tion, i.e., the criterion for seesaw Dirac particles coming
from our symmetry considerations.

2

2\
A

j+k=i

AK, (65)

where the non-negative integgrand k have to obeyj +k
=i. In Eq. (65), the termaj, e’ A*"] is the sum over all
products of mass eigenvalues, whgegenvalues are of the
order €’/ A andk eigenvalues are of the orddr. Since the
symmetryG implies that some of the eigenvalues are degen
erate up to a sign it can happen that sofoe all) of the
coefficientsa;, vanish exactly. However, since the absolute
value of the neutrino masses,, is undetermined by the
symmetryG, any nonvanishing coefficiera}k;to must ge-
nerically be of order unity. In other words, a situation where
0</|aj|<1 cannot be understood in terms of the symmetry ~We would like to thank E. Kh. Akhmedov, M. Freund, and
G and must therefore be the result of some fine-tuning of th&V. Grimus for useful discussions and valuable comments.
model parameters. Support for this work was provided by the Swedish Founda-
Within the framework presented above one can now evetion for International Cooperation in Research and Higher
test the validity of the criteria for seesaw Dirac particlesEducation (STINT) (T.O., the Wenner-Gren Foundations
given in Secs. Ill B and Il C. First, we note that following (T.O.), and the “Sonderforschungsbereich 375 flistro-
Eq. (65), the principal invarianty; andT; of the 4X4 mass Teilchenphysik der Deutschen Forschungsgemeinschaft”
matrix M in Sec. Il B can be written as (M.L., T.O., and G.S.
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