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Fractal extra dimension in Kaluza-Klein theory
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Kaluza-Klein theory in which the geometry of an additional dimension is fractal is considered. In such a
theory the mass of an elementary electric charge appears to be many orders of magnitude smaller than the
Planck mass, and the “tower” of masses which correspond to higher integer charges becomes aperiodic.
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In modern Kaluza-Klein theorie$l] the extraN—4  length, and the constartis small. Fine-tuning ofa to 20
space-time dimensions are considered to be compact amtcimal places may bring the mass to a reasonably low
small (with characteristic size on the order of the Planckvalue, but such an arbitrary fine-tuning is hardly a satisfac-
length. The symmetries of this internal space are chosen ttory solution to the problem.
be the gauge symmetries of some gauge théaly so a Similar problems remain in all the modern versions of
unified theory would contain gravity together with the otherKaluza-Klein theory, which introduce up to a dozen addi-
observed fields. In the original form of the theory a five-tional space-time dimensions and sometimes assume a com-
dimensional space-time was introduced where the four diplicated topology of the “internal space.” Despite this theo-
mensions x*, ... x* were identified with the observed retical diversity, a common feature of all the Kaluza-Klein
space-time. The associated 10 components of the metric tetheories introduced so far is the integer number of additional
sorg,z were used to describe gravity. After a compactifieddimensions used. But what if the topological properties of
fifth dimensionx® with a small circumferencé was added, the internal space are substantially different from the proper-
the extra four metric componentg,s connectingx® to  ties of our familiar four-dimensional space-time on a large
x1, ... x* gave four extra degrees of freedom which werescale? After all, we make a huge leap of faith in assuming
interpreted as the electromagnetic potenti@re and every- that space-time on the Planck scale remains “smooth” and
where else in the paper we use the following convention fodifferentiable. It is reasonable at least to consider the possi-

greek and latin indicese=1,...,4i=1,...,5). Anaddi- bility that on the Planck scale space-time experiences such
tional scalar fieldyss or dilaton may be either set to a con- substantial quantum fluctuations that it may be better de-
stant, or allowed to vary. scribed by fractal geometry with some non-integer dimen-
When a quantum fields coupled to this metric via an Sion (some attempts to consider fractal space-time geom-
equation etries may be found in the literature, see for exanipleand
the references therginwhat would be the consequences of
Osy+ay=0 ) the fractal extra dimensions in the Kaluza-Klein theory? The

_ ) _ ) ] ) ) goal of this paper is to answer this question qualitatively in

d’Alembert operator, the solutions for the field must be  \ithin the range <D <2.

periodic in thex® coordinate. This leads to the appearance of  Fractal objects and fractal dimensions are very useful

an infinite “tower” of solutions with a quantizes® compo-  mathematical concepts. A typical problem where the fractal

nent of the momentum: dimension arises naturally is an attempt to measure the pe-

5 rimeter of an island in the ocean. The result would depend on

qn=2mn/L (@ the resolution used in the measurements. The value of the

perimeter measured on the large scale from an aerial map

would be much smaller than the value obtained by walking

along the beach with a ruler, when every tiny curve of the

beach is measured. The fractal dimendibis defined from

the variation with resolution of the main fractal variatige

wheren is an integer. In our four-dimensional space-time on
a large scale such solutions with¥ 0 interact with the elec-
tromagnetic potentiad) 5 as charged particles with an elec-
tric chargee,, and massn,, :

en:ﬁqn(l%e)llzlc 3) lengthL of a fractal curve, an area _of a fractal surface,)etc.
[5]. If Dy is the topological dimensiond(=1 for a curve,

mn:ﬁ(qﬁ_a)llzlc (4) DT=2 for a surfacg the scale dimensioA=D — D+ is de-
fined as

whereG is the gravitational constarisee, for example, the

derivation in[3]). In this theory the conservation of the elec- d(InL)
tric charge is a simple consequence of the conservation of the 6= m
x°> component of the momentum. Although a unified descrip-
tion of gravity and electromagnetism has been achieved, the
result obtained for the mass of an elementary electric chargehere\ is the resolution of the measurementsslfs con-
is unsatisfactorily large il is of the order of the Planck stant we obtain

®)
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L=Lo(l/N)?, (6) The qualitative result obtained above finds support in the
following more precise theoretical consideration. Since it is
where the |ength_0 is measured wheR=1. Let us assume difficult to define a Iength interval along a fracted direc-
that the circumference of the interna? coordinate obeys tion, let us introduce an angular coordina#e varying
expressior(6) on a sufficiently small resolution scale instead Within an interval from O to Zr. Despite the fractal character
of being constant. As before, the internal space must loolf x*> we may unambiguously defing® for each pointA as
small from our four-dimensional macroscopic point of view,
SO we may assumnle, to be of the order of the Planck length
when measured on a scale compatible with the electron’s
Compton lengtH .=2##A/(mgc) or larger(here we are not
concerned with the behavior & on macroscopic scales, so wherexg is the distance along the coordinate from poinA
we may assume it to be constant&® 0 on the large scale  to some poinfA, (designated as a zero poimheasured on a
An immediate consequence of E@) in the Kaluza-Klein large scale, andl, is the circumference along the direc-
theory is the drastic reduction of mass of an elementary eledion measured on a large scale. Although all the coordinates
tric charge for6>0. Qualitatively this is clear from the fol- are supposed to be treated equally on the small scale, we
lowing simple arguments. leave the question of the possible fractal nature of the other
If we start from the circumference of the internal spage four coordinates of our common space-time out of consider-
measured at large scale and small energies, we would obta#tion, and write the metric as
the expressiofy) for the elementary charge mass which cor-
responds tog=2m/L,. A particle with such a large mass ds*=g,zdx*dx’+29,5dx*d$°+ gssd p°d ¢, (1)
would have the Compton wavelength of the order of the
Planck length. It should “see” quite a different circumfer- Whereg,s depends explicitly orx* and the scale of mea-

ence of the internal space. For-0 the internal space cir- Surements, andss also depends explicitly on the measure-
cumferencd. measured on such a small scale will be muchments scale. This dependence on the scale accounts for the

larger thanL,. Thus,qL>1 and such a solution cannot be fractal nature of the&® coordinate. Here we are not interested
the ground state. The elementary electric charge solutiof! Possible spatial dependence @fs and consider alb;s
must be obtained in a self-consistent manner, and will correcomponents to be independent ¢f. Scale dependence of
Spond to ax® component of the momentum, which is much the metric will be addressed later in the discussion. In any
smaller tham/L,. event, we consider alyjs to be small at all scales, ss?

In order to find the ground state self-consistently we musfémains reasonably well defined in our four-dimensional
find solutions of the equation|,L(q,)=27n, which de- Space-time.
scribes field solutions periodic in the coordinate, where ~ An analog of equation Ed1) with a=0 for the quantum
L(q,) satisfies Eq(6). We may assume that the measure-field ¢ in this metric is
ment scalex in Eg. (6) corresponds to 2/q,,, since any

¢°=2m7—, (10)

constant factor may be included in the valuel oThus, we i( aﬁﬂ) +i( ws OV +i( 50 OV
obtain IX IxB IX (9¢5 (7¢5 NG
lon|° J oy
n)_ R -G
in—o(2ﬂ_> 2mn. (7) +(9¢5 g Py =0. (12
Assuminga=0 the spectrum of mass looks like Since we assume that tge; do not depend explicitly ogb®,

11+ 8) we should not address the meaning of terms lig&/d¢°,
21h which would be ambiguous for a fractet coordinate. Thus,
m,= c \Ly? : ®) Eqg. (12) remains well defined, and we may search for its
solution in the usual form a$=‘l’(x“)eiq‘/’5, where period-
This tower of solutions is quite different from the tow@  CIty I ¢° requiresg,=n. As a result, we obtain
obtained in the regular five-dimensional Kaluza-Klein

. . . _ 1— N anb J ab
theory. It is no longer perlodlc a=0, and for5>0 the z/;—qﬁ 9459 210,022 +iq, y=0.
elementary charge mass, is much smaller than the Planck Oss NG IX®
mass:m;<2mwhl/cly. For example, in the case =1 we (13
obtain
This is the same as the Klein-Gordon equation in the pres-
20t ence of an electromagnetic field: in four-dimensional space-
my=—--—. (9)  time it describes a particle of mass
c(Lgl)
) ) 27hQq,
Both these developments are good, since they bring the the- m= —>—— (14)
oretical picture closer to physical reality. CO55(dn)
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which interacts with a vector field®® through a quantized The numerical value of mass of an elementary charge
chargee,~q, . If we identify gégz(q) as the scale-dependent obtained from Eqgs(8) or (9) remains quite large. If we as-
circumference_(q) of the internal space, Eq§l4) and (8) sumel to be equal to the electron’s Compton length E).
will be equivalent to each other, and we arrive at the samegivesm;~ 10"'m,. This estimate may be reduced by a few
result for the elementary charge mass and the aperiodierders of magnitude by selecting somewhat larger values of
tower of solutions described qualitatively earlier. Lo andl, or by increasing the scale dimensiénso the effect
Thus far the question of scale dependenceg;gfcompo-  of fractal extra dimension may in principle show up at an
nents in Eq(ll) has been left without detailed ConSideration.energy scale of hundreds of TeV. Overa", addition of the
In order fords? to remain a four-dimensional scalar these fractal extra dimension appears to be an alternative way of
components must be functions of other four-dimensional SCantroducing large extra dimensions which has become very
lars. Thus, a natural choice of the scalar scgle would be thﬁopular recenthf6].
Compton wavelength.=2m#/(mc), wherem is the effec- In conclusion, we have considered a Kaluza-Klein theory
tive four?dlmensmn_al mass, obtameq similar to EG4). where the geometry of an extra dimension is fractal. In such
Eh's(;)h?ﬁﬁs's dCE(!):Siltset?I’T(; \?i/rlgi]tégea(r:]zo;]?u?ifst?gil:tfjr:ztc:fegut?a theory the mass of an elementary electric charge appears to
g. (7). ' P be many orders of magnitude smaller than the Planck mass,

approach(we left the question of possible fractal nature of ) . )
the other four space-time coordinates without any considerz—ind the tower of masses which correspond to higher integer

ation) some self-consistency has been achieved. charges becomes aperiodic.
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