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Fractal extra dimension in Kaluza-Klein theory
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Kaluza-Klein theory in which the geometry of an additional dimension is fractal is considered. In such a
theory the mass of an elementary electric charge appears to be many orders of magnitude smaller than the
Planck mass, and the ‘‘tower’’ of masses which correspond to higher integer charges becomes aperiodic.
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In modern Kaluza-Klein theories@1# the extra N24
space-time dimensions are considered to be compact
small ~with characteristic size on the order of the Plan
length!. The symmetries of this internal space are chosen
be the gauge symmetries of some gauge theory@2#, so a
unified theory would contain gravity together with the oth
observed fields. In the original form of the theory a fiv
dimensional space-time was introduced where the four
mensions x1, . . . ,x4 were identified with the observe
space-time. The associated 10 components of the metric
sor gab were used to describe gravity. After a compactifi
fifth dimensionx5 with a small circumferenceL was added,
the extra four metric componentsga5 connecting x5 to
x1, . . . ,x4 gave four extra degrees of freedom which we
interpreted as the electromagnetic potential~here and every-
where else in the paper we use the following convention
greek and latin indices:a51, . . . ,4;i 51, . . .,5). An addi-
tional scalar fieldg55 or dilaton may be either set to a con
stant, or allowed to vary.

When a quantum fieldc coupled to this metric via an
equation

h5c1ac50 ~1!

is considered, whereh5 is the covariant five-dimensiona
d’Alembert operator, the solutions for the fieldc must be
periodic in thex5 coordinate. This leads to the appearance
an infinite ‘‘tower’’ of solutions with a quantizedx5 compo-
nent of the momentum:

qn
552pn/L ~2!

wheren is an integer. In our four-dimensional space-time
a large scale such solutions withnÞ0 interact with the elec-
tromagnetic potentialga5 as charged particles with an ele
tric chargeen and massmn :

en5\qn~16pG!1/2/c ~3!

mn5\~qn
22a!1/2/c ~4!

whereG is the gravitational constant~see, for example, the
derivation in@3#!. In this theory the conservation of the ele
tric charge is a simple consequence of the conservation o
x5 component of the momentum. Although a unified descr
tion of gravity and electromagnetism has been achieved,
result obtained for the mass of an elementary electric cha
is unsatisfactorily large ifL is of the order of the Planck
0556-2821/2002/65~4!/047503~3!/$20.00 65 0475
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length, and the constanta is small. Fine-tuning ofa to 20
decimal places may bring the mass to a reasonably
value, but such an arbitrary fine-tuning is hardly a satisf
tory solution to the problem.

Similar problems remain in all the modern versions
Kaluza-Klein theory, which introduce up to a dozen ad
tional space-time dimensions and sometimes assume a
plicated topology of the ‘‘internal space.’’ Despite this the
retical diversity, a common feature of all the Kaluza-Kle
theories introduced so far is the integer number of additio
dimensions used. But what if the topological properties
the internal space are substantially different from the prop
ties of our familiar four-dimensional space-time on a lar
scale? After all, we make a huge leap of faith in assum
that space-time on the Planck scale remains ‘‘smooth’’ a
differentiable. It is reasonable at least to consider the po
bility that on the Planck scale space-time experiences s
substantial quantum fluctuations that it may be better
scribed by fractal geometry with some non-integer dime
sion ~some attempts to consider fractal space-time geo
etries may be found in the literature, see for example@4# and
the references therein!. What would be the consequences
the fractal extra dimensions in the Kaluza-Klein theory? T
goal of this paper is to answer this question qualitatively
the most simple situation of a fractal extra dimensionD
within the range 0,D,2.

Fractal objects and fractal dimensions are very use
mathematical concepts. A typical problem where the frac
dimension arises naturally is an attempt to measure the
rimeter of an island in the ocean. The result would depend
the resolution used in the measurements. The value of
perimeter measured on the large scale from an aerial
would be much smaller than the value obtained by walk
along the beach with a ruler, when every tiny curve of t
beach is measured. The fractal dimensionD is defined from
the variation with resolution of the main fractal variable~a
lengthL of a fractal curve, an area of a fractal surface, et!
@5#. If DT is the topological dimension (DT51 for a curve,
DT52 for a surface!, the scale dimensiond5D2DT is de-
fined as

d5
d~ ln L !

d@ ln~ l /l!#
, ~5!

wherel is the resolution of the measurements. Ifd is con-
stant we obtain
©2002 The American Physical Society03-1
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L5L0~ l /l!d, ~6!

where the lengthL0 is measured whenl5 l . Let us assume
that the circumference of the internalx5 coordinate obeys
expression~6! on a sufficiently small resolution scale inste
of being constant. As before, the internal space must l
small from our four-dimensional macroscopic point of vie
so we may assumeL0 to be of the order of the Planck lengt
when measured on a scale compatible with the electr
Compton lengthl c52p\/(mec) or larger~here we are not
concerned with the behavior ofd on macroscopic scales, s
we may assume it to be constant ord→0 on the large scale!.
An immediate consequence of Eq.~6! in the Kaluza-Klein
theory is the drastic reduction of mass of an elementary e
tric charge ford.0. Qualitatively this is clear from the fol
lowing simple arguments.

If we start from the circumference of the internal spaceL0
measured at large scale and small energies, we would ob
the expression~4! for the elementary charge mass which co
responds toq52p/L0. A particle with such a large mas
would have the Compton wavelength of the order of
Planck length. It should ‘‘see’’ quite a different circumfe
ence of the internal space. Ford.0 the internal space cir
cumferenceL measured on such a small scale will be mu
larger thanL0. Thus,qL@1 and such a solution cannot b
the ground state. The elementary electric charge solu
must be obtained in a self-consistent manner, and will co
spond to ax5 component of the momentum, which is muc
smaller than\/L0.

In order to find the ground state self-consistently we m
find solutions of the equationqnL(qn)52pn, which de-
scribes field solutions periodic in thex5 coordinate, where
L(qn) satisfies Eq.~6!. We may assume that the measu
ment scalel in Eq. ~6! corresponds to 2p/qn , since any
constant factor may be included in the value ofl. Thus, we
obtain

qnL0S lqn

2p D d

52pn. ~7!

Assuminga50 the spectrum of mass looks like

mn5
2p\

c S n

L0l dD 1/(11d)

. ~8!

This tower of solutions is quite different from the tower~4!
obtained in the regular five-dimensional Kaluza-Kle
theory. It is no longer periodic ata50, and ford.0 the
elementary charge massm1 is much smaller than the Planc
mass:m1!2p\/cL0. For example, in the case ofd51 we
obtain

m15
2p\

c~L0l !1/2
. ~9!

Both these developments are good, since they bring the
oretical picture closer to physical reality.
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The qualitative result obtained above finds support in
following more precise theoretical consideration. Since it
difficult to define a length interval along a fractalx5 direc-
tion, let us introduce an angular coordinatef5 varying
within an interval from 0 to 2p. Despite the fractal characte
of x5 we may unambiguously definef5 for each pointA as

f552p
x0

5

L0
, ~10!

wherex0
5 is the distance along thex5 coordinate from pointA

to some pointA0 ~designated as a zero point! measured on a
large scale, andL0 is the circumference along thex5 direc-
tion measured on a large scale. Although all the coordina
are supposed to be treated equally on the small scale
leave the question of the possible fractal nature of the o
four coordinates of our common space-time out of consid
ation, and write the metric as

ds25gabdxadxb12ga5dxadf51g55df5df5, ~11!

wherega5 depends explicitly onxa and the scale of mea
surements, andg55 also depends explicitly on the measur
ments scale. This dependence on the scale accounts fo
fractal nature of thex5 coordinate. Here we are not intereste
in possible spatial dependence ofg55 and consider allgi5
components to be independent off5. Scale dependence o
the metric will be addressed later in the discussion. In a
event, we consider allgi5 to be small at all scales, sods2

remains reasonably well defined in our four-dimensio
space-time.

An analog of equation Eq.~1! with a50 for the quantum
field c in this metric is

]

]xa S gab
]c

]xbD 1
]

]xa S ga5
]c

]f5D 1
]

]f5 S g5a
]c

]xaD
1

]

]f5 S g55
]c

]f5D 50. ~12!

Since we assume that thegi5 do not depend explicitly onf5,
we should not address the meaning of terms like]gi5/]f5,
which would be ambiguous for a fractalx5 coordinate. Thus,
Eq. ~12! remains well defined, and we may search for
solution in the usual form asc5C(xa)eiqf5

, where period-
icity in f5 requiresqn5n. As a result, we obtain

hc2qn
2 12ga5gan5

g55
c12iqnga5

]c

]xa
1 iqn

]ga5

]xa
c50.

~13!

This is the same as the Klein-Gordon equation in the pr
ence of an electromagnetic field: in four-dimensional spa
time it describes a particle of mass

m5
2p\qn

cg55
1/2~qn!

~14!
3-2
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which interacts with a vector fieldga5 through a quantized
chargeen;qn . If we identify g55

1/2(q) as the scale-depende
circumferenceL(q) of the internal space, Eqs.~14! and ~8!
will be equivalent to each other, and we arrive at the sa
result for the elementary charge mass and the aperi
tower of solutions described qualitatively earlier.

Thus far the question of scale dependence ofgi5 compo-
nents in Eq.~11! has been left without detailed consideratio
In order for ds2 to remain a four-dimensional scalar the
components must be functions of other four-dimensional s
lars. Thus, a natural choice of the scalar scale would be
Compton wavelengthl c52p\/(mc), wherem is the effec-
tive four-dimensional mass, obtained similar to Eq.~14!.
This choice is consistent with the choice of scale that led
Eq. ~7!. Thus, despite the limited and heuristic nature of o
approach~we left the question of possible fractal nature
the other four space-time coordinates without any consid
ation! some self-consistency has been achieved.
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The numerical value of mass of an elementary cha
obtained from Eqs.~8! or ~9! remains quite large. If we as
sumel to be equal to the electron’s Compton length Eq.~9!
givesm1;1011me . This estimate may be reduced by a fe
orders of magnitude by selecting somewhat larger value
L0 andl, or by increasing the scale dimensiond, so the effect
of fractal extra dimension may in principle show up at
energy scale of hundreds of TeV. Overall, addition of t
fractal extra dimension appears to be an alternative way
introducing large extra dimensions which has become v
popular recently@6#.

In conclusion, we have considered a Kaluza-Klein theo
where the geometry of an extra dimension is fractal. In su
a theory the mass of an elementary electric charge appea
be many orders of magnitude smaller than the Planck m
and the tower of masses which correspond to higher inte
charges becomes aperiodic.
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