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Interaction of D0-brane bound states and Ramond-Ramond photons
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We consider the problem of the interaction between a D0-brane bound state and one-form Ramond-Ramond
~RR! photons using the world-line theory. Based on the fact that in the world-line theory the RR gauge fields
depend on the matrix coordinates of D0-branes, the gauge fields also appear as matrices in the formulation. At
the classical level, we derive the Lorentz-like equations of motion for D0-branes, and it is observed that the
center of mass is colorless with respect to the SU(N) sector of the background. Using the path integral method,
the perturbation theory for the interaction between the bound state and the RR background is developed.
Qualitative considerations show that the possibility of the existence of a map between the world-line theory
and the non-Abelian gauge theory is very considerable.
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I. INTRODUCTION

In recent years a great deal of attention has been pa
the formulation and study of field theories in noncommu
tive spaces. Apart from the abstract mathematical inter
the physical motivation for this has been the natural app
ance of noncommutative spaces in string theory. Correspo
ingly, it is understood that string theory involves some kin
of noncommutativity; two important examples are~1! the
coordinates of the bound states ofN Dp-branes@1#, which
are represented byN3N Hermitian matrices@2#, and~2! the
longitudinal directions of Dp-branes in the presence of
Neveu-Schwarz~NS! B-field background, which appears t
be noncommutative@3,4#, as seen by the ends of open strin
@5#. In the second example, the coordinates in the longitu
nal directions of the Dp-branes act as operators and sati
the algebra

@ x̂m,x̂n#5 iumn, ~1.1!

where umn is a constant antisymmetric tensor. There ha
been many attempts in the recent literature to study diffe
aspects of field theories defined in these kinds of nonc
mutative spaces. As one point, we mention that the ab
algebra is satisfied just by (̀3`)-dimensional matrices
and consequently the noncommutativities concerned sh
be assumed in all~regions! of the space. Also, since there
a nonzero expectation value for the tensor field of^Bmn&
5(u21)mn @4#, in these spaces generally one should exp
violation of Lorentz invariance.

As we recalled above, there is another kind of nonco
mutativity concerning the coordinates of D-brane bou
states, which from now on we call the ‘‘matrix coordinates
In contrast to the case related to the algebra~1.1!, for the
case of D-brane bound states, we have noncommutativity
finite dimensional matrices, and thus the noncommutativ
of coordinates is not extended to all of the space. In this c

*Email address: fatho@roma2.infn.it
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the noncommutativity is ‘‘confined’’ just inside the boun
state; to put it simply, the noncommutativity is not seen by
observer far from the bound state. In contrast with the cas
infinite extension of noncommutativity, we call this kin
confined noncommutativity.

In this picture, the natural question is, how can we kn
about the structure of confined noncommutativity? Since
noncommutativity of the bound state is confined, as in a
other similar situation known in physics, the answer to t
above question is gained by analyzing and studying the
sponse of the substructure of the bound state to exte
probes. In this respect one may consider two kinds of
external probe,~1! another D-brane, or~2! the quanta of
external fields, like gravitons or photons of the form field
To be specific, let us consider the special case of D0-bra
Using another D0-brane as a probe of a system of D0-bra
is a familiar example from studies related to the mat
model conjecture of M theory@6#. In the matrix model pic-
ture, since D0-branes are already assumed to be superg
tons of 11-dimensional supergravity theory in the light-co
gauge, the problem at hand is in fact nothing but ‘‘probin
the bound state by another individual graviton. In the mat
model, the high amount of supersymmetry, together with
specific form of the commutator potential of the matrix c
ordinates, help to calculate the elements of theS matrix for
various scattering processes. The important peculiarity
this case is that, in these kinds of investigation, one u
noncommutativity~by things like the commutator potentia!
to study the effective theory of D0-branes, rather than a
lyzing the ‘‘structure’’ of confined noncommutativity itsel
@7#. In other words, generally in this case one ignores
internal dynamics inside the bound state~as target!, and es-
sentially considers only the relative dynamics of the tar
and other D0-brane~s! as probe~s!.

In this work we want to discuss the basic elements
using the second kind of probe mentioned above~i.e., exter-
nal fields! to find information about the structure of confine
noncommutativity. As will be clear throughout the paper, t
language used in this kind of probe is much closer to
field theory formulation of the problem in comparison wi
the approach in which the probe is viewed as another
©2002 The American Physical Society04-1
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brane. To continue, we need to know the dynamics of
bound state of D0-branes in different backgrounds. Beca
of the nature of the matrix coordinates, the formulation of
dynamics of D0-branes in the background of gravity a
various form fields is a nontrivial question. Some of the m
important progress in this direction was made in@8,9#. Here
we use the results of@8,9#, restricting ourselves to the sim
plest case of zero NSB field and a flat metric, but a nonzer
one-form Ramond-Ramond~RR! field. Although the frame-
work we use here comes from the Dp-branes of string
theory, it is useful to consider the more general case in a
trary space-time dimensionsd11. Also, as the first step, we
consider the bosonic partners only.

One of the questions which can be addressed in this
rection is about the nature of the effective field theory t
captures the interaction between the bound state of
branes and the ‘‘photons’’ of the one-form RR field. To
more specific, it will be interesting to derive the effectiv
vertex function for the interaction of a one-form RR phot
with the incoming and outgoing D0-branes. These kinds
questions, and in particular the question of the amplitude
which field theory may correspond to the amplitudes deriv
by the world-line theory of D0-branes in a RR backgroun
constitute some parts of the discussion of this paper.1

The world-line formulation we will use in this work is
very much like that of the matrix model conjecture; in pa
ticular, it is in the nonrelativistic limit. To approach the Lo
entz covariant formulation, following the finite-N interpreta-
tion of @11#, it is reasonable to interpret things in the discre
light-cone quantization~DLCQ! framework. This point of
view should also be kept for the correspondence we cons
with an effective field theory for the interacting theory
D0-branes and photons.

The organization of the remaining parts of this paper is
follows. In Sec. II, based on@8,9#, we review the main as
n-
ac
f
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pects of the world-line formulation of the dynamics of D
brane bound states in nontrivial backgrounds. These incl
the equations of motion of D0-branes in a one-form ba
ground, and also the symmetry aspects of the world-line
mulation. In Sec. III, by using the path integral method, w
quantize the D0-brane theory. In particular, we write do
the expression of the propagator in the first order of per
bation, which can be converted to the amplitudes of the s
tering processes by an arbitrary external source. Section I
devoted to the conclusion and discussion.

The discussions and ideas in this paper stem from pr
ous work in @12# and @13#. In particular, the problem we
consider in this work was interpreted in@13# as the world-
line formulation of ‘‘electrodynamics on matrix space
Also, the subject of probing confined noncommutativity
mentioned briefly in the last part of@13#.

II. DYNAMICS OF D0-BRANES IN ONE-FORM RR
BACKGROUND

A. First look: D p-branes in general background

It is known that the transverse coordinates of bound sta
of N Dp-branes are represented byN3N Hermitian matrices
rather than numbers@2#; see the review@14#. Because of the
nature of matrix coordinates, the formulation of the dyna
ics of Dp-branes in the background of gravity and vario
form fields is a nontrivial question. Some of the most imp
tant progress in this direction is in@8,9#. In @8#, by taking the
T duality of string theory as the guiding principle, an actio
for the dynamics of the bound states of Dp-branes in a non-
trivial background is proposed. The proposed bosonic ac
for the bound state ofN Dp-branes~in units where 2p l 2

51! is the sum of
SBI52TpE dp11s Tr„e2fA2det@P$EIJ1EIi ~Q212d! i j EjJ%1FIJ#det~Qj
i !…, ~2.1!

SCS5mpE TrFPHei iFiFS ( C~n!eBD J eFG , ~2.2!
he

,
ld
ge
with the following definitions@8#:

Emn[Gmn1Bmn , Qj
i [d j

i 1 i @F i ,F j #Ek j ,

m,n50,...,9, I ,J50,...,p, i , j 5p11,...,9.
~2.3!

1The reader can refer to@10#, as an attempt to interpret the qua
tized propagation of D0-branes while they are interacting with e
other via the commutator potential, like the Feynman graphs o
field theory in the light-cone gauge.
In the above,Gmn and Bmn are the metric and NSB field,
respectively, andF i are world-volume scalars andN3N
Hermitian matrices that describe the position of t
Dp-branes in the transverse directions. TheC(n) is ann-form
RR field, whileFIJ is the U(N) field strength. In this action
P$¯% denotes the pullback of the bulk fields to the wor
volume of the Dp-branes, and Tr is the trace on the gau
group. iv denotes the interior product with a vectorv; for
example,iF acts on the two-formC(2)5 1

2 Ci j
(2)dxidxj as

iFC~2!5F iCi j
~2!dxj ,

h
a

4-2
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INTERACTION OF D0-BRANE BOUND STATES AND . . . PHYSICAL REVIEW D65 046004
iFiFC~2!5F iF jCi j
~2!5 1

2 @F i ,F j #Ci j
~2! . ~2.4!

Therefore (iF)2C(n)50 for the commutative case, i.e., fo
one Dp-brane.

Some comments on the above action are in order.
~i! All the derivatives in the longitudinal directions shou

actually be covariant derivatives, i.e.,] I→DI5] I1 i @AI , #
@15#. This point is true also for the pullback quantities.

~ii ! The pullback quantities depend on the transverse
rections of the Dp-branes only via their functional depen
dence on the world-volume scalarsF i @16#. Since the matrix
coordinatesF do not commute with each other, the proble
of ordering ambiguity is present. Following previous arg
ments, it is proposed that the coordinatesF appear in the
background fields by the ‘‘symmetrization prescription
@8–19#. The symmetrization on coordinates can be obtain
by the so-called non-Abelian Taylor expansion. The no
Abelian Taylor expansion for an arbitrary functionf (F i ,s I)
is given by

f ~F i ,s I ![ f ~xi ,s I !ux→F5exp@F i]xi# f ~xi ,s I !ux50

5 (
n50

`
1

n!
F i 1

¯F i n~]xi 1¯]xi n! f ~xi ,s I !ux50.

~2.5!

In the above expansion the symmetrization is recovered
the symmetric property of the derivatives inside the te
(]xi 1¯]xi n).

~iii ! This action involves a single Tr, and this Tr should
calculated by the symmetrization prescription for the no
commutative quantitiesFIJ , DIF

i , and i @F i ,F j # @20#.2

To become more familiar with the terms in the action
Dp-branes, let us consider the special casep50 of D0-
branes, in which the world volume consists of only the tim
direction, s05t. The dynamics of D0-branes in the bac
ground of the metricGmn(x,t), the one-form RR field
Cm

(1)(xn)[Am(x,t), and zero NSB field ~without being pre-
cise about the indices and coefficients! in the lowest orders is
given by an action like@8,9#

S5E dt TrS m

2
Gi j ~F,t !DtF

iDtF
j

1qGi j ~F,t !Ai~F,t !DtF
j2qA0~F,t !

2qG0i~F,t !DtF
iA0~F,t !1mG~F,t !G~F,t !@F,F#2

1@12G00~F,t !#1¯ D , ~2.6!

in which Dt5] t1 i @at(t), # acts as convariant derivative o
the world line, and we have set the chargem05q. In the

2There is a stronger prescription, with symmetrization between
noncommutative objectsFIJ , DIF

i , and i @F i ,F j # and the indi-
vidual F’s appearing in the functional dependences of the pullb
fields @8,21#. We will not use this one in our future discussion f
the case of D0-branes, with no essential change in the conclus
04600
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above, the functional dependence on the matrix coordin
of D0-branes should be understood. Finally, we have the
tion ~2.6!, which can be interpreted as the world-line form
lation of the dynamics of D0-branes in nontrivial bac
grounds.

B. Action of D0-branes in one-form background

In the following consideration in this work, we take th
special case of the dynamics of D0-branes in the backgro
of a one-form RR field„A0(x,t),Ai(x,t)…, in a flat metric
and zero NSB field. Consequently, the low energy boson
action of N D0-branes, after restoring the string lengthl, is
given by

SD05E dt TrS 1

2
mDtXiDtX

i1qDtX
iAi~X,t !2qA0~X,t !

1m
@Xi ,Xj #2

4~2p l 2!2 1¯ D , ~2.7!

in which we have slightly changed the notation for mat
coordinates from (2p l 2)F i to Xi , with the usual expansion

Xi5Xa
i Ta, i 51,...,d, a50,1,...,N221, ~2.8!

with Ta as the basis for the Hermitian matrices@i.e., the
generators of U(N)#. Although Dp-branes of string theory
exist in the critical dimensionsD510 ~or 26!, for the case of
D0-branes it will be useful to consider the more general c
in arbitrary spatial dimensionsd. We recall that the gauge
fields appear in the action through their functional dep
dence on symmetrized products of the matrix coordinateX.
The action~2.7! can be interpreted as the world-line form
lation of electrodynamics on the matrix space@13#. We men-
tion also that in this action the degrees of freedom are
hanced fromd in ordinary space tod3N2 in the space with
matrix coordinates.

The original theory, which may be called the bulk theo
is invariant under the usual U~1! transformations such as

Am~x,t !→Am8 ~x,t !5Am~x,t !2]mL~x,t !, m50.1, . . . ,d.

~2.9!

In the world-line theory, the transformation takes the form

Ai~X,t !→Ai8~X,t !5Ai~X,t !1d iL~X,t !,

A0~X,t !→A08~X,t !5A0~X,t !2] tL~X,t !, ~2.10!

in which d i is the functional derivatived/dXi . Consequently,
one obtains

dSD0;qE dt Tr$] tL~X,t !1Ẋid iL~X,t !

1 iat@Xi ,d iL~X,t !#%;qE dt TrS dL~x,t !

dt

1 iat@Xi ,d iL~X,t !# D;0. ~2.11!

ll

k

ns.
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AMIR H. FATOLLAHI PHYSICAL REVIEW D 65 046004
In the above, the first term is a surface term, and the sec
term vanishes by the symmetrization prescription@12#.3

The equations of motion for theX’s andat by the action
~2.7!, ignoring for the moment the commutator potent
@Xi ,Xj #

2, are found to be@12,13#

~2.12!

~2.13!

with the following definitions:

Ei~X,t ![2d iA0~X,t !2] tAi~X,t !, ~2.14!

Bji ~X,t ![2d jAi~X,t !1d iAj~X,t !. ~2.15!

An equation of motion similar to Eq.~2.12! is considered
in @23,24# as part of the similarities between the dynamics
D0-branes and bound states of quarks–QCD strings
baryonic state@23–25#. The point is that the dynamics of th
bound state center of mass~c.m.! is not affected directly by
the non-Abelian sector of the background, i.e., the c.m
‘‘white’’ with respect to the SU(N) sector of U(N). The c.m.
coordinates and momenta are defined by

Xc.m.
i [

1

N
TrXi , Pc.m.

i [TrPi , ~2.16!

where we are using the convention Tr1N5N. To specify the
net charge of a bound state, as an extended object, its
namics should be studied in zero magnetic and uniform e
tric fields, i.e.,Bji 50 andEi(X,t)5E0i .4 Since the fields
are uniform, they do not involveX matrices, and contain jus
the U~1! part. In other words, under gauge transformatio
E0i and Bji 50 transform to Ẽi(X,t)5V†(X,t)E0iV(X,t)
5E0i and B̃j i 50. Thus the action~2.7! yields the following
equation of motion:

~Nm!Ẍc.m.
i 5NqE0~1!

i , ~2.17!

in which the subscript~1! emphasises the U~1! electric field.
So the c.m. interacts directly only with the U~1! part of

3A general proof of the invariance of the full Chern-Simons act
was reported recently in@22#.

4In a non-Abelian gauge theory a uniform electric field can
defined up to a gauge transformation, which is quite adequate
identification of white~singlet! states.
04600
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U(N). From the string theory point of view, this observatio
is based on the simple fact that the SU(N) structure of D0-
branes arises just from the internal degrees of freedom in
the bound state.

The world-line formulation we have here is very simil
to the matrix model conjecture; in particular, it is in the no
relativistic limit. For the case of the dynamics of a charg
particle with ordinary coordinates, we can see easily that
light-cone dynamics have a form similar to the one we ha
in action ~2.7!; see the Appendix of@24#. To approach the
Lorentz covariant formulation, following the finite-N inter-
pretation of@11#, it is reasonable to interpret things here
the DLCQ framework. This should also be applied in co
sidering the correspondence of the effective field theory
the interacting theory of D0-branes–photons.

C. Symmetry transformations

Actually, the action~2.7! is invariant under the transfor
mations

Xi→X̃i5U†XiU,

at~ t !→ãt~X,t !5U†at~ t !U2 iU †] tU,
~2.18!

with U[U(X,t) as an arbitraryN3N unitary matrix; in
fact, under these transformations one obtains

DtX
i→D̃tX̃

i5U†DtX
iU, ~2.19!

DtDtX
i→D̃tD̃ tX̃

i5U†DtDtX
iU. ~2.20!

Now, in the same spirit as for the previously introduced U~1!
symmetry of Eq.~2.10!, one finds the symmetry transforma
tions

Xi→X̃i5U†XiU,

at~ t !→ãt~X,t !5U†at~ t !U2 iU †] tU,

Ai~X,t !→Ãi~X,t !5U†Ai~X,t !U1 iU †d iU,

A0~X,t !→Ã0~X,t !5U†A0~X,t !U2 iU †] tU,
~2.21!

in which we assume thatU[U(X,t)5exp(2iL) is arbitrary
up to the condition thatL(X,t) is totally symmetrized in the
X’s. The above transformations in the gauge potentials
similar to those of non-Abelian gauge theories, and we m
tion that this is just the consequence of the enhancemen
the degrees of freedom from numbers~x! to matrices~X!. In
other words, we are faced with a situation in which ‘‘th
rotation of fields’’ is generated by ‘‘the rotation of coord
nates.’’ The above observation on the gauge symmetry a
ciated with D0-brane matrix coordinates is not a new o
and we already know another example of this kind in no
commutative gauge theories; see@13#. In addition, the case
we see here for D0-branes may be considered as the finiN
version of the relation between gauge symmetry transfor
tions and transformations of matrix coordinates@26#.

or
4-4
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INTERACTION OF D0-BRANE BOUND STATES AND . . . PHYSICAL REVIEW D65 046004
The behavior of Eqs.~2.12! and ~2.13! under the gauge
transformation~2.21! can be checked. Since the action
invariant under Eq.~2.21!, it is expected that the equations
motion change covariantly. The left-hand side of Eq.~2.12!
changes toU†DtDtXU by Eq. ~2.20!, and therefore we
should find the same change for the right-hand side. Thi
in fact the case, since for any functionf (X,t) under trans-
formations~2.18! we have

f ~X,t !→ f̃ ~X̃,t !5U†f ~X,t !U,

d i f ~X,t !→ d̃ i f̃ ~X̃,t !5U†d i f ~X,t !U,

] t f ~X,t !→] t f̃ ~X̃,t !5U†] t f ~X,t !U.
~2.22!

In conclusion, the definitions~2.14! and ~2.15!, lead to

Ei~X,t !→Ẽi~X̃,t !5U†Ei~X,t !U,

Bji ~X,t !→B̃j i ~X̃,t !5U†Bji ~X,t !U,
~2.23!

a result consistent with the fact thatEi andBji are function-
als ofX. We thus see that, in spite of the absence of the u
commutator termi @Am ,An# of non-Abelian gauge theories
in our case the field strengths transform like non-Abel
ones. We recall that this is all a consequence of the ma
coordinates of D0-branes. Finally, for a similar reason to
vanishing of the second term of Eq.~2.11!, both sides of Eq.
~2.13! transform identically.

The last notable points are about the behavior ofat(t) and
A0(X,t) under symmetry transformations~2.21!. From the
world-line theory point of view,at(t) is a dynamical vari-
able, butA0(X,t) should be treated as a part of the bac
ground; however, they behave similarly under transform
tions. Also, we see by Eq.~2.21! that the coordinate
independence ofat(t), which is a consequence of dimen
sional reduction, should be understood up to a gauge tr
formation. In @12# a possible map between the dynamics
D0-branes and the semiclassical dynamics of charged
ticles in a Yang-Mills background was mentioned. It is wor
mentioning that this possible relation might be an expla
tion for the above notable points@12#.

III. QUANTUM THEORY IN ONE-FORM BACKGROUND

A. Some general aspects of bound state–photon
interaction

Before presenting the formulation, it is useful to menti
some general aspects of the problem at hand. First le
recall another representation of the symmetrization of
matrix coordinates. The other useful symmetric expansio
done by using the Fourier components of a function. To g
this Fourier expansion in matrix coordinates~we call it the
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non-Abelian Fourier expansion!, one can simply interpret the
derivatives of the usual coordinates]xi in Eq. ~2.5! as mo-
mentum numbersik i . It is then not hard to see that for a
arbitrary functionf (X,t) the non-Abelian Fourier expansio
will be found to be

f ~X,t !5E ddk f̄~k,t !eikiX
i
, ~3.1!

in which f̄ (k,t) are the Fourier components of the functio
f (x,t) ~i.e., the function in ordinary coordinates! which is
defined by the known expression

f̄ ~k,t ![
1

~2p!d E ddx f~x,t !e2 iki x
i
. ~3.2!

Since the momentum numberski are ordinary numbers, an
so commute with each other, the symmetrization prescrip
is automatically recovered in the expansion of the mom

tum eigenfunctionseikiX
i
. This picture of symmetrization for

the matrix coordinates is similar to that we already know
Weyl ordering in phase space (q̂,p̂), with @ q̂,p̂#5 i .

Now, by using the symmetric expansion~3.1!, we can
imagine some general aspects of the interaction between
brane bound states and RR photons. We recall that the bo
state of D0-branes is described by the action~2.7! after set-
ting Am(x,t)[0. We mention that the degrees of freedo
still interact due to the commutator potential. By doing
simple dimensional analysis it can be shown that the s
scale of the bound state for a finite numberN of D0-branes is
finite and is of the order ofl ;m21/3l 2/3 @27,24#. We recall
that the action we are using comes from string perturba
calculations, and consequently we have for the size scale
further relationl ! l @27,24#.

Before proceeding further, we should distinguish the d
namics of the c.m. from the internal degrees of freedom
the bound state. As mentioned before, the c.m. position
momentum of the bound state are represented by the U~1!
sector of U(N)5SU(N)3U~1!, and thus the information re
lated to the c.m. can be gained simply by the Tr operati
relation ~2.16!. So the internal degrees of freedom of th
bound state, which consist of the relative positions ofN D0-
branes together with the dynamics of strings stretched
tween the D0-branes, are described by the SU(N) sector of
the matrix coordinates. It is easy to see that the commut
potential in the action has some flat directions, along wh
the eigenvalues can take arbitrarily large values. But it
understood that, by considering the quantum effects an
the case that we expect formation of the bound state,
should expect suppression of the large values of the inte
degrees of freedom@28#. Consequently, it is expected that th
SU(N) sector of the matrix coordinates will take mean va
ues like^Xa

i &;l ~a51, . . . ,N221, nota50 as c.m.!, with
4-5
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l as the bound state size scale mentioned above.5 We should
mention that, although the c.m. is represented by the U~1!
sector, its dynamics is affected by the interaction of the
gredients of the bound state with the SU(N) sector of exter-
nal fields, similar to the situation we imagine in the case
the van der Waals force.

The important question about the interaction of a bou
state~as an extended object! with an external field is abou
the regime in which the substructure of the bound state
probed. As we mentioned in the Introduction, in our case
quanta of RR fields are the representatives of the exte
field. The quanta are coming from a source and so, a
makes things easier, we ignore their dynamics. The sourc
introduced into our problem by the gauge fieldAm(x,t).
These fields appear in the action through their functio
dependence on the matrix coordinatesX. In fact, this is the
key to probing the substructure of the bound state. Accord
to the non-Abelian Fourier expansion we mentioned abo
we have

Am~X,t !5E ddk Ām~k,t !eikiX
i
, ~3.3!

in which Ām(k,t) are the Fourier components of the fiel
Am(x,t) ~i.e., fields in ordinary coordinates!. One can imag-
ine scattering processes that are designed to probe insid
bound state. As in every other scattering process, the
limits of the momentum modes, corresponding to long a
short wavelengths, behave differently.

In the limit l uku→0 ~long wavelength regime!, the field
Am is not involved in theX matrices mainly. This means tha
the fields appear to be nearly constant inside the bound s
and in an estimation we have

eikiX
i
;eikiXc.m.

i
. ~3.4!

So in this limit we expect that the substructure and con
quently noncommutativity will not be seen@Fig. 1~a!#. As a
consequence, after interaction with a long wavelength mo
it is not expected that the bound state will jump to anot
energy level different from the first one. It should be not
that the c.m. dynamics can be affected as well in this ca

In the limit l uku5finite ~short wavelength regime!, the
fields depend on the coordinatesX inside the bound state
and so the substructure responsible for noncommutati
should be probed@Fig. 1~b!#. In fact, we know that the non
commutativity of D0-brane coordinates is a consequence
the strings which are stretched between D0-branes. So
these kinds of scattering processes, one should be ab

5There is another way to justify this expectation. It is known th
diagonal SU(N) matrices represent the relative positions of D
branes, which are expected to be of the order ofl in a bound state.
But due to the symmetry transformation we introduced in the p
vious section, the diagonal and nondiagonal elements in the m
ces can mix with each other, representing the same mecha
system. So the size scale associated with the diagonal elem
should be valid for the nondiagonal elements also.
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probe both D0-branes~as pointlike objects!, and the strings
stretched between them. In this case, it is completely to
expected that the energy levels of the incoming and outgo
bound states will be different, since the ingredients of bou
state substructure can absorb quanta of energy from the
cident wave. In this case the c.m. dynamics can be affec
in a novel way by the interaction of the substructure with t
external fields~the van der Waals effect!.

In the general case, one can gain more information ab
the substructure of a bound state by analyzing the recoil
fect on the source. To do this, one should be able to incl
the dynamics of the source in the formulation. Consider
the dynamics of the source, in terms of quantized fi
theory, means that we consider the processes in which
source and the target exchange one quantum of gauge
with definite wavelength and frequency, although off she
as Am(x,t);emeikix

i2 ivt. This kind of process is shown in
Fig. 2.

B. Path integral quantization

In this subsection we consider the quantization of D
brane dynamics, using the path integral method. The the
on the world line has gauge symmetry, defined by the tra
formations~2.21!. We should fix this symmetry, and here w
use simply the temporal gauge, defined by the condit
at(t)[0. So after the Wick rotationt→2 i t and A0→
2 iA0 , we have the following expression for the path int
gral of our system:

t

-
ri-
cal
nts

FIG. 1. Substructure is not experienced by the long wavelen
modes~a!. Because of their functional dependence on the ma
coordinates, the short wavelength modes can probe inside the b

state~b!. l andĀm(k,t) represent the size of the bound state a
the Fourier modes, respectively.

FIG. 2. Exchange of one photon between a D0-brane bo
state~thick lines! and another source~thin lines!.
4-6
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^XF ,tFuXI ,t I&;E @DX#@Dat#d~at!detUdat

dLUe2SD0@X,at#,

~3.5!

in which d(at) supports the gauge fixing condition
detudat /dLu is the determinant that arises by variation of t
gauge fixing condition, and finallySD0@X,at# is the action
~2.7! evaluated between (XF ,tF) and (XI ,t I), as ‘‘final’’ and
‘‘initial’’ conditions. The variation of the gauge fixing condi
tion can be calculated easily in our case, and it is found to
@for U(X,t)5exp(2iL)#

at50→at85dat52 iU †] tU52] tL~X,t !1O~L2!,

~3.6!

and consequently we havedat(t)/dL(t8)52] td(t2t8). So
we see that the determinant and consequently the co
sponding ghosts are decoupled from our dynamical fieldsX.6

So, up to a normalization factor, we have for the above
pression of the path integral:

^XF ,tFuXI ,t I&;E @DX#e2SD0@X,at[0#. ~3.7!

To calculate the path integral in a general background
have to use a perturbation expansion in powers of the ch
q; this expansion is also valid for weak external fiel
(A0 ,Ai). So we have

^XF ,tFuXI ,t I&

;E @DX#expF2E
t I

tF
dt TrS 1

2
mẊiẊ

i

1m
@Xi ,Xj #2

4~2p l 2!2D G
3 (

n50

`
qn

n! H i E
t I

tF
dt Tr@ẊiAi~X,t !1A0~X,t !#J n

.

~3.8!

As mentioned before, from the point of view of D0-bran
dynamics, the commutator potential@Xi ,Xj #2 is responsible
for the formation of D0-brane bound states@27#. Although
the problem of finding the full set of eigenenergies a
eigenvectors of the corresponding Hamiltonian is very di
cult, we assume that this full set is at hand. It is logical
separate the c.m. variables from the internal ones; we s
those of the c.m. by the momentaPc.m. and uPc.m.&, and the
internal ones by the energyE$n% and u$n%&, in which $n%
represents all the quantum numbers associated with the
ternal dynamics. We recall that the c.m. is free in the c
q50. It is worth recalling that, in general, we expect t

6This case is similar to the so-called axial gauge in the extre
limit l→` ~p. 196 of@29#!.
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eigenenergies to have the general formE$n%5g($n%)l 21,
with g($n%) as a function of the quantum numbers$n%, and
also the condition

^Xu$n%&→0 for uXu@l ~3.9!

for the wave functions, withl ;m21/3l 2/3 the size scale of
the bound state as we mentioned before. As in any o
quantum mechanical system, for the caseq50 the general
expression of the propagator can be used:

^X2 ,t2uX1 ,t1&q505 (
Pc.m.

(
$n%

^X2uPc.m.,$n%&^Pc.m.,$n%uX1&

3e2 i ~Pc.m.
2 /2Nm1E$n%!~ t22t1!, ~3.10!

with the definitionuPc.m.,$n%&[uPc.m.& ^ u$n%&. We can now
insert the propagator above in the expression~3.8!, noting
that the perturbation expansion has terms involving the
locity Ẋ. Based on the standard representation of ‘‘slicin
used for path integrals, finally the following expression f
the first order of perturbation is found~see@30#!:

^XF ,tFuXI ,t I&;^XF ,tFuXI ,t I&q50

1 iN lim
Dt→0

(
k51

n E ddXk21ddXkd
dXk11

3^XF ,tFuXk11 ,tk11&q50

32Dt•TrS q
Xk11

i 2Xk21
i

2Dt
Ai~Xk ,t !

1qA0~Xk ,t ! D
3^Xk21 ,tk21uXI ,t I&q50

3e2Sq50@k,k21;Dt#e2Sq50@k11,k;Dt#1O~q2!,

~3.11!

in which t j2t I5 j •Dt and tF2t I5(n11)Dt. In the above,
Sq50@ j , j 11;Dt# is the value of the action in the exponenti
of Eq. ~3.8! evaluated between the points (Xj ,t j ) and
(Xj 11 ,t j 11) (1< j <n) in the limit Dt→0. The normaliza-
tion constantN contains sufficient powers ofDt to make the
final result finite and independent ofDt. The sumSk comes
from slicing the potential term*dt Tr(Ẋ•A1A0) in the path
integral~3.8!, and it will eventually change to the time inte
gral *dt over the intermediate times in which the interacti
occurs. It is worth recalling that spatial integrals like*ddX

are in fact*Pa50
N221ddXa . We mention that for the velocity

independent termA0(X,t) the integrals ofddXk61 can be
performed to get the new propagators, and after the cha
Xk→X we simply find an expression like
e

4-7
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; i E
t I

tF
dtE ddX^XF ,tFuX,t&q50Tr@qA0~X,t !#

3^X,tuXI ,t I&q501O~q2!, ~3.12!

which is the familiar expression for velocity independent
teractions.

For many practical aims, we should find theS-matrix el-
ements between states with definite momenta and ene
~Fig. 3!. This can be done by the proper transformations
the amplitudeŝXF ,tFuXI ,t I& in coordinate space.

Because there is less knowledge about the propag
~3.10!, expression~3.11! can still not be used for actual ca
culations. As mentioned before, we expect that the spa
integrations*ddX will get their main contribution from the
volume of the bound stateV;l d. So as an approximation
and to know a little more about the result, we may ignore
commutator potential, and do the integrations in the fin
volume V;l d, or simply put*ddXa;l d, for aÞ05c.m.
By doing this, we can verify the general aspects of prob
the substructure of the bound state discussed in the prev
subsection.

C. Effective interaction vertex of photon and free D0-branes

In the considerations of the previous subsection, the ba
ground„A0(x,t),Ai(x,t)… was taken to be arbitrary. Here w
take an example in which the D0-branes interact with
monotonic incident wave, defined by the conditio
Ām(k8,v8)5emdd(k82k)d(v82v), with em as the polar-
ization vector, and the following definition for the Fourie
modes:

Ām~k8,v8![
1

~2p!d11 E ddx dt Am~x,t !e2 iki8xi1 iv8t.

~3.13!

So the corresponding gauge field isAm(X,t);em exp(iki X
i

2ivt). In addition, here we ignore the commutator potent
and consequently it is assumed that all of theN2 degrees of
freedom, including thoseN that describe the position of D0
branes, are free forq50. So we have the following expres
sion for the path integral:

FIG. 3. The graph for the transition amplitude between sta
with definite c.m. momenta and energies~P,E!, and internal energy
specified by the quantum numbers$n%.
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^XF ,tFuXI ,t I&;E @DX#expF2E
t I

tF
dt TrS 1

2
mẊiẊ

i D G
3H 11 iqE

t I

tF
dt Tr@ẊiAi~X,t !

1A0~X,t !#1O~q2!J . ~3.14!

A similar theory for a charged particle in ordinary space
considered in Appendix A, to extract the field theory vert
function of the coupling of a photon to incoming or outgoin
charged particles. So the result of the path integral above
be considered as the matrix coordinate version of the
ample of Appendix A. We continue with an expression li
that of Eq.~3.11!, as

^XF ,tFuXI ,t I&;^XF ,tFuXI ,t I& f.p.

1 iN lim
Dt→0

(
k51

n E ddXk21ddXkd
dXk11

3^XF ,tFuXk11 ,tk11& f.p.

32Dt•TrS q
Xk11

i 2Xk21
i

2Dt
Ai~Xk ,t !

1qA0~Xk ,t ! D
3^Xk21 ,tk21uXI ,t I& f.p.

3e2Sf.p.@k,k21;Dt#e2Sf.p.@k11,k;Dt#1O~q2!,

~3.15!

in which Sf.p. and^¯& f.p. are the action and the propagator
free particles, respectively; see Appendix B for the expli
expressions. The integrationsddXk61 can be done to get new
propagators, and after the changeXk→X we find

^XF ,tFuXI ,t I&;^XF ,tFuXI ,t I& f.p.

1 iN 8E
t I

tF
dtE ddX^XF ,tFuX,t& f.p.

3TrH qS XF
i 2Xi

tF2t
1

Xi2XI
i

t2t I
DAi~X,t !

1qA0~X,t !J ^X,tuXI ,t I& f.p.1O~q2!.

~3.16!

Up to now the gauge field can be in any arbitrary for
Also, since in this case we have ignored the commuta
potential and so the degrees of freedom are free forq50, we
can easily use the momentum basis for the incoming
outgoing states; see Fig. 4. So for theS-matrix element in the
momentum-energy basis, we have the expression

s

4-8
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SFI; )
a50

N221

d d~PFa2PIa!d~EFa2EIa!

1~¯ !E
t I

tF
dtE ddXE ddXId

dXF

3 )
a50

N221

~ei ~EFatF2EIatI !e2 i ~PFa•XFa2PIa•XIa!!

3^XF ,tFuX,t& f .p.

3TrF iqe•S XF2X

tF2t
1

X2XI

t2t I
D

3eik•X2 ivt1 iqe0eik•X2 ivtG
3^X,tuXI ,t I& f.p.1O~q2!, ~3.17!

in which Ea5Pa
2/(2Nm) for both I andF states@by conven-

tion Tr(TaTb)5Ndab#, and the symbolA•B is for the inner
productAiB

i . We recall that the subscriptsa andb count the
N2 independent degrees of freedom associated with thN
3N Hermitian matricesX and P. Some of the integrations
above can be done~see Appendix B!, and the resulting ex-
pression is found to be

SFI; )
a50

N221

d d~PFa2PIa!d~EFa2EIa!1~¯ !

3d d~PFc.m.2PIc.m.2k!dS (
a50

N221

~EFa2EIa!2v D
3E )

b51

N221

ddX̂bei ~PIb2PFb!•X̂bTr$ iq@e•~PF1PI !

1e0#eik•X̂%1O~q2!, ~3.18!

FIG. 4. The graph for the transition amplitude between sta
with definite momenta and energies, specified by the set$P,E% for all
N2 degrees of freedom. Here we use thin lines as incoming
outgoing states, to emphasize that these states are free befor
after the vertex of interaction.
04600
in which the second series ofd functions have appeared a
support for the total momentum and total energy conser
tion. The last expression contains the Tr and integrals o
the matrix coordinatesX̂@Tr(X̂)50#, and although the im-
proved forms in some special cases~N52 or in the large-N
limit ! are accessible, the result in the general case is
known. We mention that such integrals for ordinary coor
nates as that of Appendix A can be calculated exactly.
can present the general form of the result as

SFI; )
a50

N221

d d~PFa2PIa!d~EFa2EIa!1~¯ !

3d d~PFc.m.2PIc.m.2k!dS (
a50

N221

~EFa2EIa!2v D
3@ iqe•V~PIa,Fa ,k!1 iqe0V0~PIa,Fa ,k!#1O~q2!,

~3.19!

in which Vm(PIa,Fa ,k), as the effective vertex function~see
Fig. 4!, has the general form

Vi5Tr@~PF
i 1PI

i !H~PIa,Fa ,k!#,

V05Tr@H~PIa,Fa ,k!#, ~3.20!

with H(PIa,Fa ,k) as a matrix depending onPIa , PFa (a
51, . . . ,N221,aÞc.m.), andk. In the case of ordinary co
ordinates for covariant theory we find simplyVm;(pI
1pF)m; see Appendix A.

IV. CONCLUSION AND DISCUSSION

In this work we provide the basic elements of the intera
tion of D0-brane bound states and one-form RR photo
using the world-line formulation. At the classical level, w
checked that the action is invariant under the gauge trans
mation of the gauge fields in the bulk theory. Also, becau
of the matrix nature of the coordinates, we see that n
symmetry transformations exist, under which the gau
fields transform as gauge fields of a non-Abelian gau
theory. We interpret this observation as the case in wh
‘‘the fields rotate due to rotation of coordinates.’’ We derive
the Lorentz-like equations of motion, and the covariance
the equations was checked under the symmetry transfor
tions. It is seen that the c.m. is white or colorless with resp
to the SU(N) sector of the background fields.

At the quantum level, we developed the perturbati
theory of the interaction of D0-branes with the RR gau
fields. In particular, using the path integral method, we wr
down the expression for the propagator in the first order
perturbation, which can be converted to the amplitudes of
scattering processes by an arbitrary external source. We
cussed how the functional dependence of the gauge fi
provides the base for probing the substructure of the bo
states.

One natural extension of the studies in this work is for t
supersymmetric case. Particularly in the case of maximal
persymmetry (d59), we have the D0-branes of the matr
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model, coupled to the one-form RR background. As m
tioned in the Introduction, in the matrix model picture D
branes are assumed to be the supergravitons of
dimensional supergravity in the light-cone gauge, and
particular in this case they play the role of the ‘‘photons’’
the one-form RR field in ten dimensions. The interaction
one D0-brane with a bound state of D0-branes is studie
the context of the matrix model, and according to the ma
model interpretation the commutator potential is respons
for the interaction of the single D0-brane~maybe viewed as
one RR photon! and the bound state. The known results a
those of different orders of loop calculations. It will be inte
esting to check whether the perturbation expansion in
chargeq of this work can reproduce the loop expansion
sults of the matrix model.

Another extension of the studies of this work might be
include the gravitational effects, specifically by consideri
nonflat metrics. Comparison to the matrix model calculatio
can also be done in this case.

One interesting question is about the field theory that m
correspond to the world-line theory of matrix coordinates
the presence of a one-form background. For the case o
dinary coordinates, by studies like those of@31#, it has been
understood that the quantized world-line theory of a char
particle in the presence of the gauge fieldAm(x) corresponds
to a quantized field theory of interaction of charges and p
tons. As an example, in Appendix A we derived the fie
theory vertex function for the interaction of a photon wi
the current of incoming and outgoing particles. In the pre
ous section, we showed how various amplitudes can be
culated in principle by the world-line theory, at least in t
perturbative regime. As we saw, our knowledge of the ex
values of the amplitudes is restricted, and hence the dis
sion here will be based on some qualitative consideratio

Probably one of the best guiding observations is the m
trix nature of the gauge fields in the world-line formulatio
The components of the gauge field in the matrix basis
defined simply by

Am~X!5Aa
m~Xb!Ta, Aa

m~Xb![
1

N
Tr @Am~X!Ta#,

~4.1!

in which Aa
m(Xb) are some functions~numbers! depending

on the matrix coordinates. The most famous matrix ga
fields we know are those of non-Abelian gauge theories,
it is tempting to see what kind of relation between these t
kinds of matrix gauge field can be verified; on one side
quantum theory of matrix gauge fields, and on the other s
the quantum mechanics of matrix coordinates.

The best base we found for the possible relation m
tioned above was the suggested relation of@4#, the map be-
tween field configurations of noncommutative and ordin
gauge theories. The suggested map preserves the g
equivalence relation, and it is emphasized that, due to
different natures of the gauge groups, this map cannot b
isomorphism between the gauge groups. Since for the c
siderations below there is no essential difference betw
fermions and bosons, we take the example of the interac
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of fermionic matter with the non-Abelian gauge fieldAm(x),
which is described by the action

S5E dd11x@c̄~ igm]m2m!c2g Tr~JmAm

2 1
4 FmnFmn!#,

~4.2!
Am~x!5Aa

m~x!Ta, Fmn~x!5Fa
mn~x!Ta,

Fmn[@Dm ,Dn#, Dm[]m2 igAm ,

in which the termJmAm is responsible for the interaction;
may be chosen as that of the minimal couplingJm

a

5 i c̄gmTac. Gauge invariance specifies the behavior of t
current Jm under the gauge transformations to beJ(x)
→J8(x)5U†J(x)U.

On the side of the world-line theory of matrix coordinate
in contrast to the example of previous sections, here we c
sider a covariant theory, presented by an action like

S@X#5E dt Tr @ 1
2 mDtX

mDtX
m2qDtX

mAm~X!1¯#,

~4.3!

in which we have dropped any kind of potential, includin
the commutator potential of D0-branes. In the above,t pa-
rameterizes the world line, andDt5]t1 i @at , # is the cova-
riant derivative along the world line withat as the world-line
gauge field.7 The gauge fieldA(X) depends on the symme
trized products ofX’s. In the same spirit as the transform
tions in the world-line theory of D0-branes, we take

Xm→X̃m5U†XmU,

at→ãt5U†atU2 iU †]tU,

Am~X!→Ãm~X̃!5U†Am~X!U2 iU †dmU

~4.4!

as the gauge transformation in the covariant theory, withU
5exp@2iL(X,t)#. We mention thatDtX

m transforms as
DtX

m→D̃tX̃
m5U†DtX

mU under the transformations. Fo
lowing the relations~2.14! and~2.15!, we can define the field
strength as

Fmn~X![dmAn~X!2dnAm~X!, ~4.5!

and so the field strength transforms asFmn→F̃mn

5U†FmnU; see Eq.~2.23!. Now, we want to sketch the ma
between the field theory in space-time and the world-l
theory of a charged particle in a matrix space. It is natura
assume that the map should relate the objects in the
theories as shown in Table I.

We mention that~1! it is enough that the gauge fields a
related up to a gauge transformation,~2! the objects on both
sides are matrices, and~3! the field strengths and currents o

7See@12# for an example of these objects in a covariant theor
4-10



n
u
h
e
an
b

N
tt
by
d
tt

rc

se
ge
w
to
-
on
u
e-

he

ve

in
-

INTERACTION OF D0-BRANE BOUND STATES AND . . . PHYSICAL REVIEW D65 046004
the two theories transform identically under the gauge tra
formations. Since in this case we have matrices of eq
sizes on both sides, it may be considered as a case in w
one is able to find a one-to-one map between the two th
ries. It remains for future studies to check the relation qu
titatively, in particular by comparing the amplitudes as o
servable quantities.
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APPENDIX A: PERTURBATION THEORY OF A
CHARGED PARTICLE IN ORDINARY SPACE BY PATH

INTEGRAL METHOD

As an exercise, and to complete the basics of the pre
paper, here we review the perturbation theory of a char
particle in an electromagnetic background. In particular,
extract the vertex function of the coupling of a photon
incoming and outgoing~bosonic! charged particles. In con
trast to the nonrelativistic theory of the paper, here we c
sider a covariant example. A good reference for this disc
sion is@30#. The action we use, initially in Euclidean spac
time, is simply

S5E dt@ 1
2 mẋ22 iqẋmAm~x!#. ~A1!

We begin with an expression similar to the formula~3.11! of
the text:

TABLE I. The quantities that should be related by the map
field and world-line theories.L is the symbol for the gauge trans
formation parameter in the two theories.

Non-Abelian field theory ⇔ Gauge theory on matrix space

Am(x)5Aa
m(x)Ta ; Am(X)1gauge trans. terms

Fmn(x)5Fa
mn(x)Ta ; Fmn(X)

Jm(x)5Ja
m(x)Ta ; Dt Xm

L(x)5La(x)Ta ; L(X)
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^xF ,tFuxI ,t I&;^xF ,tFuxI ,t I& f.p.

1 iN lim
Dt→0

(
k51

n E dd11xk21dd11xk

3dd11xk11^xF ,tFuxk11 ,tk11& f.p.

32Dt•S q
xk11

m 2xk21
m

2Dt
Am~xk ,t! D

3^xk21 ,tk21uxI ,t I& f.p.

3e2Sf.p.@k,k21;Dt#e2Sf.p.@k11,k;Dt#1O~q2!,

~A2!

in which the normalization constantN contains sufficient
powers ofDt to regulate the final result, and we have t
following relations:

^x2 ,t2ux1 ,t1& f.p.;e2m~x22x1!2/2~t22t1!

;E dd11l expS i l •~x22x1!

2 i
l 2

2m
~t22t1! D , ~A3!

Sf.p.@ j 11,j ;Dt#5
m~xj 112xj !

2

2Dt
, ~A4!

with A•B5AmBm . Performing the integrationsdxk61 to re-
place the new propagators, and after the changexk→x, we
find

^xF ,tFuxI ,t I&;^xF ,tFuxI ,t I& f.p.

1 iN 8E
t I

tF
dtE dd11x^xF ,tFux,t& f.p.

3H qS xF2x

tF2t
1

x2xI

t2t I
D •A~x!J

3^x,tuxI ,t I& f.p.1O~q2!. ~A5!

From now on we restrict the calculation to the plane wa
Am(x);emeiknxn

. To find theS-matrix elements, it is usual to
go to momentum space, and we have the expression

SFI;dd~pF2pI !d~EF2EI !1
N 9e2 im2~tF2t I !/2

tF2t I

3E
t I

tF
dtE dd11xE dd11xIE dd11xF

3e2 ipF•xFeipI•xI^xF ,tFux,t& f.p.H eik•x expF iqe•S xF2x

tF2t

1
x2xI

t2t I
D G J

linear in e

^x,tuxI ,t I& f.p.1O~q2!, ~A6!
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in which pF
25pI

252m2, and to make the calculation easi
we have exponentiated theem ; so we should keep only th
linear term ine finally. By using the momentum represent
tion of the propagator̂¯& f.p. we find

SFI;dd~pF2pI !d~EF2EI !1~¯ !dd~pF2pI2k!

3d~EF2EI2k0!@ iqem~pF1pI !
m#1O~q2!,

~A7!

in which we recognize the field theory resulte•(pF1pI) for
the vertex function~p. 548 of@29#!.

APPENDIX B: CALCULATION OF S-MATRIX ELEMENT
FOR MATRIX COORDINATES IN MOMENTUM

BASIS

Here we present the derivation of Eq.~3.18!, starting with
Eq. ~3.17!. By using the definitions
04600
^X2 ,t2uX1 ,t1& f.p.;E )
a50

N221

dd11La expS iL a•~X2a2X1a!

2 i
La

2

2Nm
~ t22t1! D , ~B1!

Sf.p.@ j 11,j ;Dt#5 (
a50

N221
Nm~Xj 11,a2Xj ,a!2

2Dt
, ~B2!

we find for Eq.~3.17!
SFI; )
a50

N221

dd~PFa2PIa!d~EFa2EIa!1~¯ !E
t I

tF
dtE ddXE ddXId

dXF )
a50

N221

~ei ~EFatF2EIatI !e2 i ~PFa•XFa2PIa•XIa!!

3E )
b50

N221

dd11Qb expS iQb•~XFb2Xb!2 i
Qb

2

2Nm
~ tF2t ! D X (

c50

N221 H expF iqe•S XFc2Xc

tF2t
1

Xc2XIc

t2t I
D G J

linear in e

3Tr~Tceik•X2 ivt!1Tr~ iqe0eik•X2 ivt!C3E )
e50

N221

dd11Le expS iL e•~Xe2XIe!2 i
Le

2

2Nm
~ t2t I ! D 1O~q2!, ~B3!

in which to make the calculation easier we have exponentiated theeW ; so we should keep only the linear term ine finally. In
the above the symbolA•B is for the inner productAiB

i . It is worth recalling that the spatial integrals like*ddX are in fact

*Pa50
N221ddXa . Here we leave the terme0 for the reader to evaluate. After doing the integrations overddXI ,F , we have

SFI; )
a50

N221

d d~PFa2PIa!d~EFa2EIa!1~¯ !

3E
t I

tF
dtE )

a50

N221

ddXaei ~EFatF2EIatI !3E )
b50

N221

dd11Qbdd11Lbe2 i ~Qb
2/2Nm!~ tF2t !e2 i ~Lb

2/2Nm!~ t2t I !ei ~Lb2Qb!•Xb

3X (
c50

N221

)
e50

N221

ddS Qe2PFe1
qedce

tF2t D ddS Le2PIe1
qedce

t2t I
D

3H expF iqe•XcS 21

tF2t
1

1

t2t I
D G J

linear in e

Tr~Tceik•X2 ivt!C1O~q2!. ~B4!

By using thed functions we can simply perform the integrations overddQ andddL. Also, based on the fact that exp(ik•X)
5exp(ik•Xc.m.1N)exp(ik•X̂), with Tr(X̂)50, we can perform the integration overddX05ddXc.m.. By recalling that Ea

5Pa
2/(2Nm) for I andF states@by convention Tr(TaTb)5Ndab#, and in the limitst I→2` and tF→`, we arrive at

SFI; )
a50

N221

d d~PFa2PIa!d~EFa2EIa!1~¯ !d d~PFc.m.2PIc.m.2k!dS (
a50

N221

~EFa2EIa!2v D E )
b51

N221

ddX̂bei ~PIb2PFb!•X̂b

3 (
c50

N221

$e~ i /m!qe•~PFc1PIc!% linear in eTr~Tceik•X̂!1O~q2!. ~B5!
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