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In this paper we consider superstring propagation in a nontrivial Neveu-Schwarz—Neveu-Schwarz back-
ground. We deform the world sheet stress tensor and supercurrent with an infinitBgipfiid. We construct
the gauge-covariant super-Poincgenerators in this background and show thatBhe field spontaneously
breaks spacetime supersymmetry. We find that the gauge-covariant spacetime momenta cease to commute with
each other and with the spacetime supercharges. We construct a set of “magnetic” super-Rgnesaators
that are conserved for constant field strenigify, , and show that these generators obey a magnetic extension
of the ordinary supersymmetry algebra.
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I. INTRODUCTION by three elementdi) an algebra of operators, (i) a rep-
_ _ . . resentation of that algebra, aiiii) two distinguished ele-
Two-dimensional superconformal field theories are soluments of.4, the holomorphic and antiholomorphic stress en-

tions to the classical superstring equations of motion. Thei@rgy superfields 7(o,0) =Te(o) + 6T(s) and T(a, 6)
infinitesimal deformationgl] can be used to study super-
string propagation in nontrivial backgrounfis] and to elu-
cidate the symmetry structure of string theory it4&lf.

In this paper we describe superstring propagation in a

=?F(cr) + 6T (o). The holomorphic components satisfy one
copy of the super-Virasoro algebra,

nontrivial Neveu-Schwarz—Neveu-SchwalfdS-NS back- [T(o),T(c")]=— 1° 8"(o—a")+2iT(ad")é' (oc—0')
ground. We start in Sec. Il by deriving the infinitesimal de- 24
formations that preserve the superconformal structure. We —iT'(¢")8(c—0")

show that they also preserve the nilpotency of the Becchi-
Rouet-Stora-TyutifBRST) operators. We then construct the 1
deformation that describes superstring propagation in a nop- M , _
trivial two-form NS-NS background. (o), Te(o")}= \/ET(U )o(o—a')

In Secs. Il and IV we use this formalism to study super-
string propagation in the two-form background. We construct C ) )
the gauge-covariant super-Poincgenerators and compute +24\/§7-r5l(0_0 ) 1)
the spacetime supersymmetry algebra in the presence of the
two-form field. We find that the supersymmetry is spontane- .
ously broken, and that the gauge-covariant spacetime MAT(g), Te(o')]= ETF(U,)&(U_U,)
menta cease to commute with each other and with the space- 2
time supercharges. ., .

In Sec. V we restrict our attention to the case of a constant ~iTe(0")d(o—0");
three-form field strength. We construct a set of conservedh . . .
“magnetic’ super-Poincaregenerators that give rise to a the antiholomorphic components satisfy another. The opera-
“magnetic” extension of the supersymmetry algebra. Thetors T(o) and T(o) are the bosonic stress energy tensors,
magnetic supersymmetry is a generalization of the magnetiwhile Tz(o) andTg(o) are their supersymmetric partners.
translational symmetry associated with point particles in a The algebrad includes superfieldsb (o) with bosonic
constant magnetic fielt4]. and fermionic componentsd(o)=®g(0)+ 0P(0). It

We conclude with an Appendix in which we derive the also includes spin field§*(o) whose presence renders
most general two-form deformation that preserves the superonlocal. The states of the theory span representations of the
conformal structure. super-Virasoro algebra. The highest weight states are created

by superprimary fields, defined to be superfieldgo)

Il. SUPERCONFORMAL DEFORMATIONS whose components satisfy

In this paper we work in a Hamiltonian formalism in [T(0),Pe(0’)]=idPp(d")d' (0—0")
which the two-dimensional world sheet is parametrized by o ,
variableso and . We define our superconformal field theory —i®g(o")o(0—0") @

0556-2821/2002/68)/0460029)/$20.00 65 046002-1 ©2002 The American Physical Society



JONATHAN A. BAGGER AND IOANNIS GIANNAKIS PHYSICAL REVIEW D 65 046002

1 where®g is a (1,1) primary field. These solutions are the
[T(U),‘I)B(U')]:i(dJrE Gg(a')d' (0—0a') supersymmetric generalizations of the canonical deforma-
tions defined in Ref5].
—i®gp(o")8(o—0d’) This formalism can be used to study string propagation in

a weak but nontrivial NS-NS background. We start with an

1 undeformed theory that describes a closed superstring in flat
{Te(0),Pe(a’)}=— —=Dg(o')S(oc—0c') Minkowski space. The corresponding superconformal field
2\2 theory is defined by the following stress energy superfields:

[Te(0),Pg(0")]=1dPe(0") 8" (0~ 0")

1 1
i T= = 5,,0XEIX — =, dg"
— 5030 0"), 2 Tu 2 M0

and likewise for?(a) and?F(o). -1 —— 1 - —=
In what follows we study superconformal deformations, T= 5 00X IX" = S 9,50
that is, variations of the stress energy superfields:

(7)
T(o)—=T(0)+6T(0), Te(o)—=Te(o)+ Te(0) 1
o _® Te= 5 7 doX"
T(o)—T(o)+6T(0), Te(o)—Te(o)+6Te(0),
consistent with the super-Virasoro algebra. This requires 1 B
[8T(0),T(a")]+[T(0),6T(c")] Te= 3 Mt X"

=2i6T(ad")é'(o—0')—=1 6T (c")8(oc—0c") _
where X#, * and ¢* are world-sheet scalars and spinors,

{6Te(0),Te(o")}+{Tr(0),8Te(a’)} respectively. The algebral includes composite operators
constructed out of the matter fieldt&", ¢, J*, together with
_ 1 5T(o")8(o—o") the spin fieldsS®,S* and the ghost fields, c, 8, y, b, ¢, B
V2 and’y. All operators are understood to be normal ordered.

We take the deformation to be
[6T(0),Te(a")]+[T(0),6Te(a")]

3i L R , ST=06T=2dg
=E5TF(0' )6 (0—0")—i6TE(o")é(o—0")
_ _ 4 —v —v
[5T(0), Te(o")]+[T(0), 5Te(0")]=0 FOBLOVIXEYY+ 3, B0 @
y L F y = -
{6Te(0), Te(o ) +{Te(0),8Te(a')} =0, where®y is the vertex operator for an infinitesimal NS-NS

gauge fieldB,,, . The deformation is a (1,1) primary field if
as well as analogous conditions from the antiholomorphic
part of the algebra. B B
We restrict our attention to deformations that can be writ- 0BL,(X)=0,  3“B,,(X)=0. ©)
ten in terms of superprimary field8\Ve relax this condition

in the Appendix). Therefore we make the ansatz The first of these expressions is an equation of motion for

- B,.: the second is a gauge condition. In the Appendix, we
OTg=®p, OTp=g, (5 present the deformations that give rise to gauge-covariant

~ _ _ equations of motion for these fields.
where® and ®: have dimensiond,d) and d',d’), re-

tivelv. F ¢ notafi their d The superpartners afT and 5T can be found by calcu-
spectively. For ease of notation, we suppress their depen-.. . = )
dence on the coordinate. Substituting Eq(5) into Eq. (4) lating the commutators aPg with T andTg and demand

— ing that they satisfy Eq<4). This gives
and using Eq(2), we see thiﬁTF and 5TF_satisfy the de- g y v Eas4) 9
formation equations provided=d’ =1, d=d’'=3%, and

1 — ~ ~
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_ 1 - o The operatoh is the generator of the spacetime symmetry; it
OTe= 5[Bu(X)IX“ "+ 0\B L, (X) ¢ g 4" ]. is the zero mode of a sum of dimension (1,0) and (0,1)
currents[7].
It is tedious but straightforward to check that, 5T, §Tg . Any spacetime symmetry can be described in this way,
— . . . including the gauge symmetry of a two-form field. The gen-
and 6T satisfy the superconformal deformation equations,

erator of two-form gauge symmetry is
These deformations are the same afoih gatige sy 4
Instead of deforming the stress energy superfield, we

could have deformed the BRST charggandQ. Nilpotency hZJ do dode[£,(x)Dx*—£,(x)Dx"]
then requires

{Q.6Q}=0, {Q,5Q}=0, {Q,5Q}+{Q, 5Q}=0(11) =f o [ £,(X)IXE— £, (X)X + 3 ,€,(X) "
under the infinitesimal deformations —3,€,(X) Y], (16)
Q—Q+48Q, Q—Q+4Q. (12)  where y#= g+ OX*, Y ="1J*+ 6x* andD andD are su-

_ perspace covariant derivatives. The integrand is a sum of
The two approaches are equivalent on the local subalgebkarms of the correct dimensions provided

defined by the Gliozzi-Scherk-OlivéGSO projection. In

fact, given a deformed BRST charge, the components of the OEX(X)=0, d,E4X)=0. (17)
deformed stress energy superfield can be extracted by calcu-

lating the commutator or anticommutator@fwith the ghost | et ys check these assertions by computing the variations of
field b or 8. Nilpotency of the BRST charge implies that the e siress energy superfields:

deformedT and T obey the super-Virasoro algebra. Con-

versely, given a deformed stress energy superfield, the BRST. = » — Y v
deforr%lagons are simply Ve L TI=9,8,0X X"+ 0,0, 8,0 Y = 9,.€,0X "X

1 - a)\apgvaxﬂa)\;’}y
5Q=f do|coT— = y8Tk
2 | T T
) (13 i[h,Te]= Eangax“W—EaMgVﬁXVw
- E(g/xa)\gvlﬂ#lﬁ)\ l//V_l— Ea,u(g)\gvlﬂ#vw)\ lsz
It is straightforward to verify that the deformatiofis3) sat-
isfy (11) when - - B (19
[N, T1=0,&,0XFaX"+ 3,0, &, IXPYM " — 3, € ,IX7 IXH
Q= | dojc T(Xv¢)+ET(bYC,B,7) WY
2 —(?}\(Q#SV(“?X l// W
1 1 — 1 -1 -
—Y e ET(Fb'C’ﬂ'”H ' A ih Tl = 5 3,60K T 5 0,£,0X5"

and likewise forQ. 1 ~ i~ 1 ~ )

- E%&éy'lf"l/f”df + Eﬂﬂ&@yw"dﬂt/f ,

Ill. SPACETIME SYMMETRIES

) _ where, in the interest of space, we suppress the arguments
In string theory, the stress energy superfields=Tr@)  (x). From Eqs.(8) and (10) we see that the variations can

+ 0Ty and 7y, = Tr()+ 0T depend on the spacetime fields indeed be described by, , spacetime field,
®. Spacetime symmetries are superconformal deformations

that induce changes in the spacetime fields: BL,(X)=3,&,(X)—d,&,(X). (19
OT=ilnTo]=To+ 50~ To The deformationg18) induce a pure-gauge background for
B,,. The background preserves the gaulge

OTe=IlN Te@)]= Te@-+o0) =~ Tr@) This construction can be readily generalized to an infinite
- — — — (19 class of infinitesimal gauge symmetrieq and to finite sym-
oT=i[hTe]=Tp+s0— Te metry transformationéT-duality) [10]. These higher symme-
o o o . tries are generated by operators which classically have higher
NF: |[h,T|:((I))] = TF((D+6®) - TF((ID) . dimension, SUCh as
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. — - where P#(®) and z#(®) are the spacetime translation and
h:J dow,. .y g A(X)PIXE - X P winding number generator®Q{ "2 and Q{ ¥ are the
(20 spacetime supercharges, and the supersymmetry currents are
given by

The integrand is of dimension one if the functions _
Wy...p..p..., Satisfy differential constraints which can be JV=g e ¢z JUDZT e /2 (25)
viewed as gauge conditions. The transformation describes a
spontaneously broken spacetime symmetry because it mix@he operators are in the canonical picture; the superscripts
massive and massless spacetime figlds. indicate the ghost charges of the operators. It is a small cal-

The previous discussion can also be carried through irulation to show that the generators obey the following com-
terms of the BRST formalism. Let us suppose t@gf and  mutation relations:

Q4 are nilpotent BRST charges, functions of the spacetime

fields, andh is the zero mode of a sum of dimension (1,0) [Pr(O),pr@]=0, [P Q{ =0,
and (0,1) currents. Theh— ® + 6 is a spacetime symme-
try if [PH(O) 120
Q4 =i[h,Qa]=Qq+ 50~ Qo [2#©, 7" @1=0, [z#®,Q( ¥)=0,
_ - o (21) (26)
Qe =1[h,Qe]=Qq+ 50— Qo - [2#9.Q V=0

For the case at hand, the BRST operdgois given by B B B
{Q(a 1/2)1Q(B 1/2)}:(,),'“)an do-w-,“e ¢'

1 1
E nyvéxﬂﬁxy_i WMVIPMO"‘//V

Q=J doc

L QL .8 )= (5,5 [ doire .
—=Biy— =9
2'8 772 By) To interpret this algebra, we recall the picture changing op-
1 1 eration that is an essential ingredient of superstring theory
+f do(bC&C-I— ~yp X —=by?|, (220  [12]. Picture changing maps a BRST-invariant oper@&?
27 4 of ghost chargey to an equivalent operator of charge-1

L . via the commutator
andh is given in Eq.(16). We compute the commutator and

find o(q+l):[Q,2§o(q)]7 (27)

) — , — where¢ is defined through the bosonization of the supercon-

—3,,0X"IXE— 0,3, OXH PP B=e %3¢, y=e’y. (28)

1 — — It is straightforward to show that under the picture changing,
- Zf Ao y[d,&,0X " — ,,&,0X" P+ g i ) p_ ging
- [Q.2¢y e ?]+[Q, &yt e ¥]=aXH+ gxX*

— A NEN PN+ 0,0\ E WP Y. 23 ) (29)
2&gte™ 91— [Q, Eygte $]= aXH— axXH.
Comparing with Eqs(14) and (18), we see that this defor- [Q.2¢y 17lQuev ]
mation can be absorbed in the two-form gauge pote(@®|  This implies that

IV. SUPERSYMMETRY ALGEBRA P“H):j do(yre b+ Jre9),

We are now ready to compute the supersymmetry algebra

. ) ) 30
in the two-form gauge field background. We start with the . 30
undeformed super-Poincagenerators, Z“(‘1)=j do(yre ¢—yre ?)
P;L(O):f da(aX“+3X“) ZM(O):f da(axu_gxﬂ) are the momentum and winding number generators in the
' (—1) picture. Using these relations, we can write the last

(24)  line of Eq.(26) in a familiar form,

(—1/2) __ (—1/2) ~N(—1/2) _ ~(-1/2) _ _ _ _
Qa _f dUJa ’ Qa _f dUJa {QI( 1/2)’Q}B1/2)}:(7#)aﬁ(5ijPE;, 1)+ EijZ,EL l)), (31)

3
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where Q{ ¥=Q"12+Q"¥2) and Qf YI=Q( 12 A nontrivial B, field spontaneously breaks the transla-

—(5&_1/2)- The spacetime supercharges close into the usu%ﬁonal symmetry of Minkowski spacil1]. This can be seen

N=2 super-Poincaralgebra, modulo a change of picture. ™ the commutator of the deformed stress energy tensor

We now extend this analysis to tf@,, background. We ~With the gauge-covariant transation current, ,
first need to find gauge-covariant versions of the supersym- . )
metry generators. We begin by computing the two-form [T(o)+dT(0),dX, (0]

auge transformations of E(R4), A A
gaug @4 =idX, (") (c—a")=idX (") é(o—0a")

I[hvﬁx,u,] = %[ﬁﬂgv(x) - é?vfﬂ()()]((?xv—gxy) —Ii HW)\(X)aX”gx)‘é(o-— U,)

43,0600~ TT) =200,H,,(X) Y X7 (o= a")
2 —2id H (X)@Vapax(ré(o._o_/)

mpo
o1 — —10,0\Hupe X)W g PG 8o =0, (35
ih,0X 1= 510,€,(X) = 2,£,(X)](9X" = IX") S

where we work to first order in thB,,, field. The symmetry

is conserved if&XM is primary and of dimension one. This
requires that the field strengtt,,,, = 0. For nonzerd ,,, ,
(32 the gauge-covariant translations are spontaneously broken,

) I N P w2 just as they are for the point particle in a constant magnetic
i[h,S,e” "2]=5 (¥"™)32d,6\(X)Sge™? field.

1 N,ip__ T INTp
+ 20,0 E 0P =T T)

The supersymmetry currend, Y2 and 3 ¥ are also

~ 7 1 ~ 5 spontaneously broken for nonvanishi . This follows
: —I27_ _ T p\\B —pI2 p y g, ,\
i[h,See "] Z(yp Valpr(X)Spe" %, from the commutator
whereh is given by Eq(16). These expressions suggest that[ (o) + 6T(o),3{ ¥2(a")]
we take the following operators to be the gauge-covariant R R
super-Poincargenerators in the canonical picture and the  =iJ{ ¥ (¢") 8 (0—0o') =13 Y (o) 8(o— ")
(infinitesima) B,,, background:

i _
- - + 5 Hun (X (y*)58ge” ?2oX 8(0— o)
prO= f do(IXH+aXr), ZHO= f do(IXH“—aXH)

33 +i(y*")Ba H ,\Sge” YZYPPrS(a—a). (36)
Qf,jl’z):f dod(12) égl’”:f dod(~12), A nonzero field strength spontaneously breaks spacetime su-
persymmetry, as expected from supergravity.
where Even though the super-Poincagmmetries are spontane-

ously broken, one can still compute the supersymmetry alge-
R 1 _ 1 brain theB,,, background. It is a small exercise to show that
aX”=aXM+§BW(X)(ﬁX”—aX”)+ zavBm(X) the gaugg—covariqnt supercharges obey the following anti-
commutation relations:
X (" =49
(062,04 )= () [ dor

1 1
+ 5B (X) (X" = 3X") + 5 9,B,,(X)

X=X+ 5By,

X

1
pe 0+ EBW(X) yre

X (PP =P
(34 37

5 1
J(—1/2):S e—¢/2+ _(,yp)\),BB (X)S e—¢/2 A ~
a o a=p\ B ~(_ ~(_
4 QL .Q5 = (r")p f dor

2 ~ 1 ~
(—12)_& Ao—dl2_ — (. p\\B T A— P2 - ~ 1 ~ ~
Jo =S,e ¢ 4(,),;) )aBp)\(x)Sﬁe 2, X ¢Me—¢_ EBMV(X) ¢Ve_¢

It is not hard to check that the generators are indeed covari- . =
. (-112) H(-12n_
ant under two-form gauge transformations. {Qy 77.Qp 7}=0,

046002-5



JONATHAN A. BAGGER AND IOANNIS GIANNAKIS PHYSICAL REVIEW D 65 046002

to first order in theB ,, field. Rewriting these expressions in
terms ofQ{,*? and QS %, we find

a

A(=1/2) B(0)
[Q. Pl

A(—1/2) A(—12n _ -1 A ~ ~
{Ql(a )'QJ(B )}_5ii(7"u)aﬁf do| .8 o+ pue ¢ =—('y”)‘)§f dO'HMp)\(X)SBe_(MZ.

1 - ~
+5Bu(X) (e =Yre?)
We see that the gauge-covariant momenta and supersymme-
try charges cease to commute in the presence of a nontrivial

+€ij(7")aﬁf do| p.e e ? NS-NS background field. For the case of consteint,, ,
however, the commutatorgl2) simplify considerably. We
1 e b o find
+§BW(X)(¢ e ?+yrfe”?)|. (39
To interpret this expression, we must define the picture [IADELO),IAD(VO)]= —HMXZ"(O)
changing operation in the gauge field background. From Eq.
(27) we find
OC12) O = (M)A A(=112) 43
60 D=[5Q,260@]1+[Q,2660W]+[Q,2£60(97, [Q w A= e Q “3
(39)
where 60 is the deformation in the picture, 6¢ is the [62*1’2),%0)]: —(ypk)ﬁHMpxég’l’z).

deformation of the ghosf, and5Q is the deformation of the
BRST charge. Using this relation, it is not hard to show that
the first term on the right-hand side of EG8) is the gauge-  This algebra is similar to that of the supersymmetric point
covariant momentum generator in thel picture, particle in a constant electromagnetic background.
We have checked our results by verifying that the Jacobi
J’ do{ identity still holds. For example, we compute
Q+6Q,2¢

-¢ ! va— ¢
Q+0Q.2¢| 8™+ 5B, (X)y'e

+ 5B

Tpﬂe—ﬁur EB (X)T,We_?’;)“ [Q4 Y2 [PO pO]]4+[AO) [0 & 12)]

p0) r(-1/2) p(0)
~ -~ +[PV ![Qa 'P/_L ]]
= f da(9X,,+dX,,). (40)
= ( ’y)\p)aﬁf dO'(ﬂ)\H’qu_ apH)\,u,V
The second term is the gauge-covariant winding number gen-
erator in the same picture. Combining these results, we find =3, Hyp+ 3 Hp ), (44)

A(-12) A(=120_ (. n S:PCDL e 71y (41
{Qia 77.Qjs 1= (v")ap(6iP,, €2, ). (4D which vanishes because of the Bianchi identity.

A straightforward calculation of the commutator of the
ing coordinateX* with the generator of two-form gauge
transformations shows that the string coordinate does not
change with 8 ,, background field. This is in contrast to the
open string, in which case the string coordinate deforms and
becomes non-commutatiyé3].

We can use similar techniques to compute the remainin%tr
parts of the supersymmetry algebra:

[PO) PO
uortw

= —f dalH ,\ (X)(IX} = XM+ dyH ,0(X)
N ~ V. MAGNETIC SUPERSYMMETRY
XY= yP)] _ , _
In the previous section we saw thaBg, field spontane-
(D012 pO)] ously breaks spacetime supersymmetry. It is interesting to
@ e ask whether any deformations of the spacetime symmetries
remain conserved in this background. In this section we shall
N — g2 see that there are indeed such generators for corisigit.
(v )af doH . (X)Sge (42) We call them “magnetic” super-Poincagenerators in anal-
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ogy to the magnetic translation operators that can be con- . -~
structed for point particles in a constant magnetic f[@lH P IM=p(D— H,m\f doX(yre ?—yre ?)

The basic approach is as bgafore. We start by deforming (49)
the gauge-covariant super-Poincaterents(34) by a sum of
(0,1) and (1,0) operators. We then compute the conditions
that follow from the requirement that the new currents be Z(-M_5(-1)_ f daX“(We“”Jer”e"‘;’)
primary and dimension one with respect to the deformed # m moh
stress tensor. We find that these conditions regdifg, to
be constant, and furthermore, that the deformed currents be

of the following form: are the magnetic translation and winding generators in the 0

and — 1 pictures. This is the magnetic supersymmetry alge-
bra that holds in a constaht,,, background.

IXN =X, = H ) X2IX = H " g (45)

L - VI. CONCLUSIONS
M_ N v VAN
IRy = Xyt Hun XEIXTAH 97y In this paper we discussed deformations of the fermionic
string. We showed how to deform the stress tensor, the su-
1 percurrent and the BRST charges in a way consistent with
JEM  5(=172) —(y””)gHMMX“SBe"/”Z superconformal invariance. We used the technique to study
2 superstring propagation in a nontrivial two-form NS-NS
background.
Our main result was the construction of the gauge-
J(-v2m :‘3](—1/2)+ E(yw)ﬁH X\g o~ #2 covariant super-Poincagenerators in the presence oBg,
@ @ 2 HNTE B ' field. We found that thé,,, field generically breaks space-
time supersymmetry. For the case of constant field strength
The index M indicates that these are conserved, gaugeH ..\, we found “magnetic” extensions of the spacetime
covarlant “magnetic” super-Poincamirrents in a constant super-Poincargenerators. The magnetic generators are con-
. background. served and gauge covariant; they are generalizations of the
Once we have the magnetic currents, it is a simple exermagnetic translation operators that can be constructed for

cise to compute the magnetic supersymmetry algebra. Weoint particles in a constant magnet|c field. For the case at
find hand, the magnetic super-Poincagenerators close into a

magnetic extension of the spacetime supersymmetry algebra.
The techniques presented here can be readily extended to
{Q VM QUMM = () (5P DM+ ;2 DM, the case of a weak Ramond-Ramond background. Work
(46) along these lines is currently in progress.

and
ACKNOWLEDGMENTS

[PLO)M POM]=2H,,,ZNOM I.G. would like to thank C. Bering, J. Liu, B. Morariu, V.
Nair and A. Polychronakos for useful discussions. This work
was supported in part by the Department of Energy, contract

[QL YoM POMI= — (yMBH, , QL ™M (47)  number DE-FG02-91ER40651-TASKB, and the National
Science Foundation, grant NSF-PHY-9970781.

[Q( 1/2)M P(O)M] (,yp)\)a o Q(ﬁ_l/Z)M-

. APPENDIX
In these expressions,

In this appendix we show how to describe a NS-NS two-
form potential in an arbitrary gaud®]. We do this by first
performing an arbitrary gauge transformation about flat
spacetime. We then replace the transformation parameters by

(48) theB,,, field.
We start by computing the commutatorhgfthe generator
()M M =M of a symmetry transformation, with the stress tensand
Z, :f do(9X,, —dX,) the supercurrentr . We assume that has the form(16), but
we do not impose the differential constraints §(X). This
and gives

(OM _ M, M
P —fda(&X'u-f-&XM)
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H TN v TONCH N 1Y 1 o v 1 TONCH N 1Y o Vay A
I[N, T]=0,,6,0XH0X"+ 0\d,&,0XH YN = 503, 6,0KH0X" = ST10,0,&, OXH YN+ 3,08, 649X IX

U 92NV 1 ANV WA 1 92NV 1 " v 1 2y
0, 80K = 50,010, £ IXIXN = 50,0, X"+ 5019, 6,0XHIX"+ STIE, X

1
v A
= 5 0,0\, EHIXTIXN = 50,0, 5 5

2

1 — 1 1 1 1 _
+ 50 9,0, E\IX P — 50 3,0, ExIX P + Emaﬂgvawgpw ED&MEVW‘M”— 50 d,&,IXHIX”

1 _ _ 1 -~ _—— 1 — -
+503,&,0XFIX" = 3,£,0XHIX"— 50 9,0, E\IXVYF YN — 3,0, & ,IXFY g + 50 ,0,,E0X

2
1 - 1 ~ 1 — o~
+§D§’Uﬂ X”—Emﬁﬂf,,l//“&// —EDaﬂgyaW‘zp (A1)
and
i 1 XKV 1 oLV 1 AN 1 . 1 © 1 K9y
v 1 N,V 1 Vel 1 N
(9M07V§’U“(91// +§3#5>\§y¢/’“¢1 W _Eﬁﬂfygx lr/lﬂ_ia,ua)\gvlrllﬂw 1 (A2)

SubstitutingB,,,=4d,§,— d,§, into these equations, we find for the deformations that describe two-form propagation in flat
spacetime,

oT=

1 1 1 1 _
Buu(X)~ 5B, (X) a(ﬁ‘BM(X))aX“&XV (EDB ZaﬂaABM(X))ax#axuEaﬂaABM(X)ax#axv

1 1 1 1 _
+ 50" (X)X 4 5 B, (X)X + 5 L0\B,, (X)X g g ( 0rByu(X) = 5T0,B,,(X) [aXegr g

1 -~ 1 — -~ 1
- ( 37Bu(X) + EDaABWm) XTG4 S OB (NI = S(030B, (X) = 3,"By (X)) 34

-~ 1 —
_ap&)\B,uV(x) l/j)\ljfp'{r/,pl//v_ E(&)\ﬁ#B,uv(x)_ 0vaMBﬂ)\(x))a'r//)\l//V (A3)
and

1 1 1 1 1 1
5TF—< B.(X)— DBW(X) aaXBM(X))axw (—DB LX) — aa"B}\V(X) ax? W——a“BW(X)aw

1 ~ o~
~5 B WGP a4

One can check that the deformatiofit and 5T satisfy the super-Virasoro algebra provided

0B,,—d,9"By,—d,d"B,,=0. (A5)
This is nothing but the gauge-covariant equation of motiorBfpy. Imposing the gauge conditiaiB,,,=0, we recover the

gauge-fixed expressions discussed in the previous sections.
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