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Spacetime supersymmetry in a nontrivial Neveu-Schwarz–Neveu-Schwarz
superstring background
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In this paper we consider superstring propagation in a nontrivial Neveu-Schwarz–Neveu-Schwarz back-
ground. We deform the world sheet stress tensor and supercurrent with an infinitesimalBmn field. We construct
the gauge-covariant super-Poincare´ generators in this background and show that theBmn field spontaneously
breaks spacetime supersymmetry. We find that the gauge-covariant spacetime momenta cease to commute with
each other and with the spacetime supercharges. We construct a set of ‘‘magnetic’’ super-Poincare´ generators
that are conserved for constant field strengthHmnl , and show that these generators obey a magnetic extension
of the ordinary supersymmetry algebra.
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I. INTRODUCTION

Two-dimensional superconformal field theories are so
tions to the classical superstring equations of motion. Th
infinitesimal deformations@1# can be used to study supe
string propagation in nontrivial backgrounds@2# and to elu-
cidate the symmetry structure of string theory itself@3#.

In this paper we describe superstring propagation i
nontrivial Neveu-Schwarz–Neveu-Schwarz~NS-NS! back-
ground. We start in Sec. II by deriving the infinitesimal d
formations that preserve the superconformal structure.
show that they also preserve the nilpotency of the Bec
Rouet-Stora-Tyutin~BRST! operators. We then construct th
deformation that describes superstring propagation in a n
trivial two-form NS-NS background.

In Secs. III and IV we use this formalism to study sup
string propagation in the two-form background. We constr
the gauge-covariant super-Poincare´ generators and comput
the spacetime supersymmetry algebra in the presence o
two-form field. We find that the supersymmetry is sponta
ously broken, and that the gauge-covariant spacetime
menta cease to commute with each other and with the sp
time supercharges.

In Sec. V we restrict our attention to the case of a cons
three-form field strength. We construct a set of conser
‘‘magnetic’’ super-Poincare´ generators that give rise to
‘‘magnetic’’ extension of the supersymmetry algebra. T
magnetic supersymmetry is a generalization of the magn
translational symmetry associated with point particles in
constant magnetic field@4#.

We conclude with an Appendix in which we derive th
most general two-form deformation that preserves the su
conformal structure.

II. SUPERCONFORMAL DEFORMATIONS

In this paper we work in a Hamiltonian formalism i
which the two-dimensional world sheet is parametrized
variabless andt. We define our superconformal field theo
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by three elements:~i! an algebra of operators,A, ~ii ! a rep-
resentation of that algebra, and~iii ! two distinguished ele-
ments ofA, the holomorphic and antiholomorphic stress e
ergy superfields T(s,u)5TF(s)1uT(s) and T̄(s,u)
5T̄F(s)1uT̄(s). The holomorphic components satisfy on
copy of the super-Virasoro algebra,

@T~s!,T~s8!#52
ic

24p
d-~s2s8!12i T~s8!d8~s2s8!

2 i T8~s8!d~s2s8!

$TF~s!,TF~s8!%52
1

2A2
T~s8!d~s2s8!

1
c

24A2p
d9~s2s8! ~1!

@T~s!,TF~s8!#5
3i

2
TF~s8!d8~s2s8!

2 iTF8 ~s8!d~s2s8!;

the antiholomorphic components satisfy another. The op
tors T(s) and T̄(s) are the bosonic stress energy tenso
while TF(s) and T̄F(s) are their supersymmetric partners

The algebraA includes superfieldsF(s) with bosonic
and fermionic components,F(s)5FB(s)1uFF(s). It
also includes spin fieldsSa(s) whose presence rendersA
nonlocal. The states of the theory span representations o
super-Virasoro algebra. The highest weight states are cre
by superprimary fields, defined to be superfieldsF(s)
whose components satisfy

@T~s!,FF~s8!#5 i dFF~s8!d8~s2s8!

2 i FF8 ~s8!d~s2s8! ~2!
©2002 The American Physical Society02-1
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@T~s!,FB~s8!#5 iS d1
1

2DFB~s8!d8~s2s8!

2 i FB8 ~s8!d~s2s8!

$TF~s!,FF~s8!%52
1

2A2
FB~s8!d~s2s8!

@TF~s!,FB~s8!#5 i dFF~s8!d8~s2s8!

2
i

2
FF8 ~s8!d~s2s8!,

and likewise forT̄(s) and T̄F(s).
In what follows we study superconformal deformation

that is, variations of the stress energy superfields:

T~s!→T~s!1dT~s!, TF~s!→TF~s!1dTF~s!

~3!
T̄~s!→T̄~s!1dT̄~s!, T̄F~s!→T̄F~s!1dT̄F~s!,

consistent with the super-Virasoro algebra. This requires

@dT~s!,T~s8!#1@T~s!,dT~s8!#

52i dT~s8!d8~s2s8!2 i dT8~s8!d~s2s8!

$dTF~s!,TF~s8!%1$TF~s!,dTF~s8!%

52
1

2A2
dT~s8!d~s2s8!

@dT~s!,TF~s8!#1@T~s!,dTF~s8!#

5
3i

2
dTF~s8!d8~s2s8!2 i dTF8 ~s8!d~s2s8!

~4!
@dT~s!,T̄~s8!#1@T~s!,dT̄~s8!#50

@dT~s!,T̄F~s8!#1@T~s!,dT̄F~s8!#50

$dTF~s!,T̄F~s8!%1$TF~s!,dT̄F~s8!%50,

as well as analogous conditions from the antiholomorp
part of the algebra.

We restrict our attention to deformations that can be w
ten in terms of superprimary fields.~We relax this condition
in the Appendix.! Therefore we make the ansatz

dTF5FF , dT̄F5F̃F , ~5!

whereFF and F̃F have dimension (d,d̄) and (d8,d̄ 8), re-
spectively. For ease of notation, we suppress their dep
dence on the coordinates. Substituting Eq.~5! into Eq. ~4!

and using Eq.~2!, we see thatdTF anddT̄F satisfy the de-
formation equations providedd̄5d851, d5d̄ 85 1

2 , and

dT5dT̄52FB , ~6!
04600
,

c

-

n-

whereFB is a (1,1) primary field. These solutions are t
supersymmetric generalizations of the canonical deform
tions defined in Ref.@5#.

This formalism can be used to study string propagation
a weak but nontrivial NS-NS background. We start with
undeformed theory that describes a closed superstring in
Minkowski space. The corresponding superconformal fi
theory is defined by the following stress energy superfiel

T5
1

2
hmn]Xm]Xn2

1

2
hmncm]cn

T̄5
1

2
hmn]̄Xm]̄Xn2

1

2
hmnc̃m]̄c̃n

~7!

TF5
1

2
hmncm]Xn

T̄F5
1

2
hmnc̃m]̄Xn,

whereXm, cm and c̃m are world-sheet scalars and spino
respectively. The algebraA includes composite operator
constructed out of the matter fieldsXm,cm,c̃m, together with
the spin fieldsSa,S̃a and the ghost fieldsb, c, b, g, b̃, c̃, b̃

and g̃. All operators are understood to be normal ordered
We take the deformation to be

dT5dT̄52FB

5Bmn~X!]̄Xn]Xm1]lBmn~X!]̄Xnclcm

1]lBmn~X!]Xmc̃lc̃n1]r]lBmn~X!clcmc̃rc̃n, ~8!

whereFB is the vertex operator for an infinitesimal NS-N
gauge fieldBmn . The deformation is a (1,1) primary field i

hBmn~X!50, ]mBmn~X!50. ~9!

The first of these expressions is an equation of motion
Bmn ; the second is a gauge condition. In the Appendix,
present the deformations that give rise to gauge-covar
equations of motion for these fields.

The superpartners ofdT and dT̄ can be found by calcu-
lating the commutators ofFB with TF and T̄F and demand-
ing that they satisfy Eqs.~4!. This gives

dTF5
1

2
@Bmn~X!]̄Xncm1]lBmn~X!c̃lc̃ncm# ~10!
2-2



ns

w

eb

th
alc

e
n-
RS

s
io

; it
,1)

ay,
n-

of

s of

ents
n

or

ite

-
her

SPACETIME SUPERSYMMETRY IN A NONTRIVIAL . . . PHYSICAL REVIEW D 65 046002
dT̄F5
1

2
@Bmn~X!]Xmc̃n1]lBmn~X!clcmc̃n#.

It is tedious but straightforward to check thatdT, dT̄, dTF

and dT̄F satisfy the superconformal deformation equatio
These deformations are the same as in@6#.

Instead of deforming the stress energy superfield,
could have deformed the BRST chargesQ andQ̄. Nilpotency
then requires

$Q,dQ%50, $Q̄,dQ̄%50, $Q,dQ̄%1$Q̄,dQ%50
~11!

under the infinitesimal deformations

Q→Q1dQ, Q̄→Q̄1dQ̄. ~12!

The two approaches are equivalent on the local subalg
defined by the Gliozzi-Scherk-Olive~GSO! projection. In
fact, given a deformed BRST charge, the components of
deformed stress energy superfield can be extracted by c
lating the commutator or anticommutator ofQ with the ghost
field b or b. Nilpotency of the BRST charge implies that th
deformedT and TF obey the super-Virasoro algebra. Co
versely, given a deformed stress energy superfield, the B
deformations are simply

dQ5E dsFcdT2
1

2
gdTFG

~13!

dQ̄5E dsF c̃dT̄2
1

2
g̃dT̄FG .

It is straightforward to verify that the deformations~13! sat-
isfy ~11! when

Q5E dsH cS T(X,c)1
1

2
T(b,c,b,g)D

2
1

2
gFTF

(X,c)1
1

2
TF

(b,c,b,g)G J , ~14!

and likewise forQ̄.

III. SPACETIME SYMMETRIES

In string theory, the stress energy superfieldsTF5TF(F)

1uTF andT̄F5T̄F(F)1 ūT̄F depend on the spacetime field
F. Spacetime symmetries are superconformal deformat
that induce changes in the spacetime fields:

dT5 i@h,TF#5TF1dF2TF

dTF5 i@h,TF(F)#5TF(F1dF)2TF(F)

~15!
dT̄5 i@h,T̄F#5T̄F1dF2T̄F

dT̄F5 i@h,T̄F(F)#5T̄F(F1dF)2T̄F(F) .
04600
.

e

ra

e
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The operatorh is the generator of the spacetime symmetry
is the zero mode of a sum of dimension (1,0) and (0
currents@7#.

Any spacetime symmetry can be described in this w
including the gauge symmetry of a two-form field. The ge
erator of two-form gauge symmetry is

h5E ds dudū@jm~x!Dxm2jm~x̃ !D̄x̃m#

5E ds @jm~X!]Xm2jm~X!]̄Xm1]mjn~X!cmcn

2]mjn~X!c̃mc̃n#, ~16!

wherexm5cm1uXm, x̃m5c̃m1 ūXm and D and D̄ are su-
perspace covariant derivatives. The integrand is a sum
terms of the correct dimensions provided

hjm~X!50, ]mjm~X!50. ~17!

Let us check these assertions by computing the variation
the stress energy superfields:

i@h,T#5]mjn]̄Xm]Xn1]l]mjn]̄Xmclcn2]mjn]̄Xn]Xm

2]l]mjn]Xmc̃lc̃n

i@h,TF#5
1

2
]mjn]̄Xmcn2

1

2
]mjn]̄Xncm

2
1

2
]m]ljncmc̃lc̃n1

1

2
]m]ljncmclcn

~18!

i@h,T̄#5]mjn]̄Xm]Xn1]l]mjn]̄Xmclcn2]mjn]̄Xn]Xm

2]l]mjn]Xmc̃lc̃n

i@h,T̄F#5
1

2
]mjn]Xnc̃m2

1

2
]mjn]Xmc̃n

2
1

2
]m]ljnc̃mc̃lc̃n1

1

2
]m]ljnc̃mclcn,

where, in the interest of space, we suppress the argum
(X). From Eqs.~8! and ~10! we see that the variations ca
indeed be described by aBmn spacetime field,

Bmn~X!5]njm~X!2]mjn~X!. ~19!

The deformations~18! induce a pure-gauge background f
Bmn . The background preserves the gauge~9!.

This construction can be readily generalized to an infin
class of infinitesimal gauge symmetries@9# and to finite sym-
metry transformations~T-duality! @10#. These higher symme
tries are generated by operators which classically have hig
dimension, such as
2-3
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h5E dsvm•••n•••r•••l~X!]wXm
••• ]̄uXn

•••cr
•••c̃l.

~20!

The integrand is of dimension one if the functio
vm•••n•••r•••l satisfy differential constraints which can b
viewed as gauge conditions. The transformation describ
spontaneously broken spacetime symmetry because it m
massive and massless spacetime fields@11#.

The previous discussion can also be carried through
terms of the BRST formalism. Let us suppose thatQF and
Q̄F are nilpotent BRST charges, functions of the spacet
fields, andh is the zero mode of a sum of dimension (1,
and (0,1) currents. ThenF→F1dF is a spacetime symme
try if

dQF5 i@h,QF#5QF1dF2QF

~21!

dQ̄F5 i@h,Q̄F#5Q̄F1dF2Q̄F .

For the case at hand, the BRST operatorQ is given by

Q5E dscS 1

2
hmn]Xm]Xn2

1

2
hmncm]cn

2
3

2
b]g2

1

2
]bg D

1E dsS bc]c1
1

2
ghmncm]Xn2

1

4
bg2D , ~22!

andh is given in Eq.~16!. We compute the commutator an
find

dQ5 i@h,Q#5E dsc@]mjn]̄Xm]Xn1]l]mjn]̄Xmclcn

2]mjn]̄Xn]Xm2]l]mjn]Xmc̃lc̃n#

2
1

4E dsg@]mjn]̄Xmcn2]mjn]̄Xncm

2]m]ljncmc̃lc̃n1]m]ljncmclcn#. ~23!

Comparing with Eqs.~14! and ~18!, we see that this defor
mation can be absorbed in the two-form gauge potential~19!.

IV. SUPERSYMMETRY ALGEBRA

We are now ready to compute the supersymmetry alge
in the two-form gauge field background. We start with t
undeformed super-Poincare´ generators,

Pm(0)5E ds~]Xm1 ]̄Xm!, Zm(0)5E ds~]Xm2 ]̄Xm!

~24!

Qa
(21/2)5E dsJa

(21/2) , Q̃a
(21/2)5E ds J̃a

(21/2)
04600
a
es

in

e

ra

where Pm(0) and Zm(0) are the spacetime translation an
winding number generators,Qa

(21/2) and Q̃a
(21/2) are the

spacetime supercharges, and the supersymmetry curren
given by

Ja
(21/2)5Sae2f/2, J̃a

(21/2)5S̃ae2f̃/2. ~25!

The operators are in the canonical picture; the supersc
indicate the ghost charges of the operators. It is a small
culation to show that the generators obey the following co
mutation relations:

@Pm(0),Pn(0)#50, @Pm(0),Qa
(21/2)#50,

@Pm(0),Q̃a
(21/2)#50

@Zm(0),Zn(0)#50, @Zm(0),Qa
(21/2)#50,

~26!
@Zm(0),Q̃a

(21/2)#50

$Qa
(21/2) ,Qb

(21/2)%5~gm!abE dscme2f,

$Q̃a
(21/2) ,Q̃b

(21/2)%5~gm!abE dsc̃me2f̃.

To interpret this algebra, we recall the picture changing
eration that is an essential ingredient of superstring the
@12#. Picture changing maps a BRST-invariant operatorO(q)

of ghost chargeq to an equivalent operator of chargeq11
via the commutator

O(q11)5@Q,2jO(q)#, ~27!

wherej is defined through the bosonization of the superc
formal ghosts,

b5e2f]j, g5efh. ~28!

It is straightforward to show that under the picture changi

@Q,2jcme2f#1@Q̄,j̃ c̃me2f̃#5]Xm1 ]̄Xm

~29!
@Q,2jcme2f#2@Q̄,j̃ c̃me2f̃#5]Xm2 ]̄Xm.

This implies that

Pm(21)5E ds~cme2f1c̃me2f̃!,

~30!

Zm(21)5E ds~cme2f2c̃me2f̃!

are the momentum and winding number generators in t
(21) picture. Using these relations, we can write the l
line of Eq. ~26! in a familiar form,

$Qia
(21/2) ,Qj b

(21/2)%5~gm!ab~d i j Pm
(21)1e i j Zm

(21)!, ~31!
2-4
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SPACETIME SUPERSYMMETRY IN A NONTRIVIAL . . . PHYSICAL REVIEW D 65 046002
where Q1a
(21/2)[Qa

(21/2)1Q̃a
(21/2) and Q2a

(21/2)[Qa
(21/2)

2Q̃a
(21/2) . The spacetime supercharges close into the u

N52 super-Poincare´ algebra, modulo a change of picture
We now extend this analysis to theBmn background. We

first need to find gauge-covariant versions of the supers
metry generators. We begin by computing the two-fo
gauge transformations of Eq.~24!,

i@h,]Xm#5
1

2
@]mjn~X!2]njm~X!#~]Xn2 ]̄Xn!

1
1

2
]m]ljr~X!~clcr2c̃lc̃r!

i@h,]̄Xm#5
1

2
@]mjn~X!2]njm~X!#~]Xn2 ]̄Xn!

1
1

2
]m]ljr~X!~clcr2c̃lc̃r!

~32!

i@h,Sae2f/2#5
1

2
~grl!a

b]rjl~X!Sbe2f/2

i@h,S̃ae2f̃/2#52
1

2
~grl!a

b]rjl~X!S̃be2f̃/2,

whereh is given by Eq.~16!. These expressions suggest th
we take the following operators to be the gauge-covar
super-Poincare´ generators in the canonical picture and t
~infinitesimal! Bmn background:

P̂m(0)5E ds~]̂Xm1 ]̂̄Xm!, Ẑm(0)5E ds~]̂Xm2 ]̂̄Xm!

~33!

Q̂a
(21/2)5E ds Ĵa

(21/2) , Q̃
ˆ

a
(21/2)5E ds J̃

ˆ
a
(21/2) ,

where

]̂Xm5]Xm1
1

2
Bmn~X!~]Xn2 ]̄Xn!1

1

2
]nBml~X!

3~cncl2c̃nc̃l!

]̂̄Xm5 ]̄Xm1
1

2
Bmn~X!~]Xn2 ]̄Xn!1

1

2
]nBml~X!

3~cncl2c̃nc̃l!

~34!

Ĵa
(21/2)5Sae2f/21

1

4
~grl!a

bBrl~X!Sbe2f/2

J̃
ˆ

a
(21/2)5S̃ae2f̃/22

1

4
~grl!a

bBrl~X!S̃be2f̃/2.

It is not hard to check that the generators are indeed cov
ant under two-form gauge transformations.
04600
al

-

t
t

ri-

A nontrivial Bmn field spontaneously breaks the trans
tional symmetry of Minkowski space@11#. This can be seen
from the commutator of the deformed stress energy ten
with the gauge-covariant translation current]̂Xm ,

@T~s!1dT~s!,]̂Xm~s8!#

5 i ]̂Xm~s8!d8~s2s8!2 i ]̂Xm8 ~s8!d~s2s8!

2 i Hmnl~X!]Xn]̄Xld~s2s8!

22i ]nHmrs~X!cncr]̄Xsd~s2s8!

22i ]nHmrs~X!c̃nc̃r]Xsd~s2s8!

2 i ]m]lHnrs~X!cncrc̃lc̃sd~s2s8!, ~35!

where we work to first order in theBmn field. The symmetry
is conserved if]̂Xm is primary and of dimension one. Thi
requires that the field strengthHmnl50. For nonzeroHmnl ,
the gauge-covariant translations are spontaneously bro
just as they are for the point particle in a constant magn
field.

The supersymmetry currentsĴa
(21/2) and J̃

ˆ
a
(21/2) are also

spontaneously broken for nonvanishingHmnl . This follows
from the commutator

@T~s!1dT~s!,Ĵa
(21/2)~s8!#

5 i Ĵa
(21/2)~s8!d8~s2s8!2 i Ĵa

(21/2)8~s8!d~s2s8!

1
i

2
Hmnl~X!~gmn!a

bSbe2f/2]̄Xld~s2s8!

1 i~gmn!a
b]rHmnlSbe2f/2c̃rc̃ld~s2s8!. ~36!

A nonzero field strength spontaneously breaks spacetime
persymmetry, as expected from supergravity.

Even though the super-Poincare´ symmetries are spontane
ously broken, one can still compute the supersymmetry a
bra in theBmn background. It is a small exercise to show th
the gauge-covariant supercharges obey the following a
commutation relations:

$Q̂a
(21/2) ,Q̂b

(21/2)%5~gm!abE ds

3Fcme2f1
1

2
Bmn~X!cne2fG

~37!

$Q̃
ˆ

a
(21/2) ,Q̃

ˆ
b
(21/2)%5~gm!abE ds

3F c̃me2f̃2
1

2
Bmn~X!c̃ne2f̃G

$Q̂a
(21/2) ,Q̂̃b

(21/2)%50,
2-5
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to first order in theBmn field. Rewriting these expressions
terms ofQ̂1a

(21/2) andQ̂2a
(21/2) , we find

$Q̂ia
(21/2) ,Q̂j b

(21/2)%5d i j ~gm!abE dsFcme2f1c̃me2f̃

1
1

2
Bmn~X!~cne2f2c̃re2f̃!G

1e i j ~gm!abE dsFcme2f2c̃me2f̃

1
1

2
Bmn~X!~cne2f1c̃re2f̃!G . ~38!

To interpret this expression, we must define the pict
changing operation in the gauge field background. From
~27! we find

dO(q11)5@dQ,2jO(q)#1@Q,2djO(q)#1@Q,2jdO(q)#,
~39!

wheredO(p) is the deformation in thep picture, dj is the
deformation of the ghostj, anddQ is the deformation of the
BRST charge. Using this relation, it is not hard to show t
the first term on the right-hand side of Eq.~38! is the gauge-
covariant momentum generator in the21 picture,

E dsH FQ1dQ,2jS cme2f1
1

2
Bmn~X!cne2fD G

1F Q̄1dQ̄,2j̃S c̃me2f̃1
1

2
Bmn~X!c̃ne2f̃D G J

5E ds~]̂Xm1 ]̂̄Xm!. ~40!

The second term is the gauge-covariant winding number g
erator in the same picture. Combining these results, we

$Q̂ia
(21/2) ,Q̂j b

(21/2)%5~gm!ab~d i j P̂m
(21)1e i j Ẑm

(21)!. ~41!

We can use similar techniques to compute the remain
parts of the supersymmetry algebra:

@ P̂m
(0) ,P̂n

(0)#

52E ds@Hmnl~X!~]Xl2 ]̄Xl!1]lHmnr~X!

3~clcr2c̃lc̃r!#

@Q̂a
(21/2) ,P̂m

(0)#

5~grl!a
bE dsHmrl~X!Sbe2f/2 ~42!
04600
e
q.

t

n-
d

g

@ Q̂̃a
(21/2) ,P̂m

(0)#

52~grl!a
bE dsHmrl~X!S̃be2f̃/2.

We see that the gauge-covariant momenta and supersym
try charges cease to commute in the presence of a nontr
NS-NS background field. For the case of constantHmnl ,
however, the commutators~42! simplify considerably. We
find

@ P̂m
(0) ,P̂n

(0)#52HmnlZl(0)

@Q̂a
(21/2) ,P̂m

(0)#5~grl!a
bHmrlQ̂b

(21/2) ~43!

@Q̃
ˆ

a
(21/2) ,P̂m

(0)#52~grl!a
bHmrlQ̃

ˆ
b
(21/2) .

This algebra is similar to that of the supersymmetric po
particle in a constant electromagnetic background.

We have checked our results by verifying that the Jac
identity still holds. For example, we compute

†Q̂a
(21/2) ,@ P̂m

(0) ,P̂n
(0)#‡1†P̂m

(0) ,@ P̂n
(0) ,Q̂a

(21/2)#‡

1†P̂n
(0) ,@Q̂a

(21/2) ,P̂m
(0)#‡

5~glr!abE ds~]lHmnr2]rHlmn

2]mHnrl1]nHrlm!, ~44!

which vanishes because of the Bianchi identity.
A straightforward calculation of the commutator of th

string coordinateXm with the generator of two-form gaug
transformations shows that the string coordinate does
change with aBmn background field. This is in contrast to th
open string, in which case the string coordinate deforms
becomes non-commutative@13#.

V. MAGNETIC SUPERSYMMETRY

In the previous section we saw that aBmn field spontane-
ously breaks spacetime supersymmetry. It is interesting
ask whether any deformations of the spacetime symme
remain conserved in this background. In this section we s
see that there are indeed such generators for constantHmnl .
We call them ‘‘magnetic’’ super-Poincare´ generators in anal-
2-6
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ogy to the magnetic translation operators that can be c
structed for point particles in a constant magnetic field@4#.

The basic approach is as before. We start by deform
the gauge-covariant super-Poincare´ currents~34! by a sum of
(0,1) and (1,0) operators. We then compute the conditi
that follow from the requirement that the new currents
primary and dimension one with respect to the deform
stress tensor. We find that these conditions requireHmnl to
be constant, and furthermore, that the deformed current
of the following form:

]Xm
M5 ]̂Xm2HmnlXl]Xn2Hmnlcncl ~45!

]̄Xm
M5 ]̂̄Xm1HmnlXl]̄Xn1Hmnlc̃nc̃l

Ja
(21/2)M5 Ĵa

(21/2)2
1

2
~gmn!a

bHmnlXlSbe2f/2

J̃a
(21/2)M5 J̃

ˆ
a
(21/2)1

1

2
~gmn!a

bHmnlXlSbe2f/2.

The index M indicates that these are conserved, gau
covariant, ‘‘magnetic’’ super-Poincare´ currents in a constan
Hmnl background.

Once we have the magnetic currents, it is a simple e
cise to compute the magnetic supersymmetry algebra.
find

$Qia
(21/2)M ,Qj b

(21/2)M%5~gm!ab~d i j Pm
(21)M1e i j Zm

(21)M !,
~46!

and

@Pm
(0)M ,Pn

(0)M#52HmnlZl(0)M

@Qa
(21/2)M ,Pm

(0)M#52~grl!a
bHmrlQb

(21/2)M ~47!

@Q̃a
(21/2)M ,Pm

(0)M#5~grl!a
bHmrlQ̃b

(21/2)M .

In these expressions,

Pm
(0)M5E ds~]Xm

M1 ]̄Xm
M !

~48!

Zm
(0)M5E ds~]Xm

M2 ]̄Xm
M !

and
04600
n-

g

s
e
d

be

-

r-
e

Pm
(21)M5 P̂m

(21)2HmnlE dsXl~cne2f2c̃ne2f̃!

~49!

Zm
(21)M5Ẑm

(21)2HmnlE dsXl~cne2f1c̃ne2f̃!

are the magnetic translation and winding generators in th
and21 pictures. This is the magnetic supersymmetry al
bra that holds in a constantHmnl background.

VI. CONCLUSIONS

In this paper we discussed deformations of the fermio
string. We showed how to deform the stress tensor, the
percurrent and the BRST charges in a way consistent w
superconformal invariance. We used the technique to st
superstring propagation in a nontrivial two-form NS-N
background.

Our main result was the construction of the gaug
covariant super-Poincare´ generators in the presence of aBmn

field. We found that theBmn field generically breaks space
time supersymmetry. For the case of constant field stren
Hmnl , we found ‘‘magnetic’’ extensions of the spacetim
super-Poincare´ generators. The magnetic generators are c
served and gauge covariant; they are generalizations of
magnetic translation operators that can be constructed
point particles in a constant magnetic field. For the case
hand, the magnetic super-Poincare´ generators close into a
magnetic extension of the spacetime supersymmetry alge

The techniques presented here can be readily extende
the case of a weak Ramond-Ramond background. W
along these lines is currently in progress.

ACKNOWLEDGMENTS

I.G. would like to thank C. Bering, J. Liu, B. Morariu, V
Nair and A. Polychronakos for useful discussions. This wo
was supported in part by the Department of Energy, cont
number DE-FG02-91ER40651-TASKB, and the Nation
Science Foundation, grant NSF-PHY-9970781.

APPENDIX

In this appendix we show how to describe a NS-NS tw
form potential in an arbitrary gauge@8#. We do this by first
performing an arbitrary gauge transformation about
spacetime. We then replace the transformation parameter
the Bmn field.

We start by computing the commutator ofh, the generator
of a symmetry transformation, with the stress tensorT and
the supercurrentTF . We assume thath has the form~16!, but
we do not impose the differential constraints onjm(X). This
gives
2-7
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i@h,T#5]mjn]̄Xm]Xn1]l]mjn]̄Xmclcn2
1

2
h]mjn]̄Xm]Xn2

1

2
h]l]mjn]̄Xmclcn1]n]l]mjm]Xn]̄Xl

2
1

2
]n]l]mjm]Xn]Xl2

1

2
]n]mjm]2Xn2

1

2
]n]l]mjm]̄Xn]̄Xl2

1

2
]n]mjm]̄2Xn1

1

2
h]mjn]Xm]Xn1

1

2
hjm]2Xm

1
1

2
h]n]mjl]̄Xncmcl2

1

2
h]n]mjl]Xncmcl1

1

2
h]mjn]cmcn1

1

2
h]mjncm]cn2

1

2
h]njm]̄Xm]Xn

1
1

2
h]njm]̄Xm]̄Xn2]njm]̄Xm]Xn2

1

2
h]n]mjl]Xnc̃mc̃l2]l]mjn]Xmc̃lc̃n1

1

2
h]n]mjl]̄Xnc̃mc̃l

1
1

2
hjm]̄2Xm2

1

2
h]mjnc̃m]̄c̃n2

1

2
h]mjn]̄c̃mc̃n ~A1!

and

i@h,TF#5
1

2
]mjn]̄Xmcn1

1

2
h]mjn]Xmcn2

1

2
h]mjn]̄Xmcn1

1

2
hjm]cm2

1

2
]m]n]ljm]Xncl1

1

2
]m]n]ljm]̄Xncl

2
1

2
]m]njm]cn1

1

2
]m]ljncmclcn2

1

2
]mjn]̄Xncm2

1

2
]m]ljncmc̃lc̃n. ~A2!

SubstitutingBmn5]mjn2]njm into these equations, we find for the deformations that describe two-form propagation in
spacetime,

dT5XBmn~X!2
1

2
hBmn~X!2]n]lBlm~X! C]̄Xm]Xn2S 1

2
hBmn2

1

2
]m]lBln~X! D ]Xm]Xn1

1

2
]m]lBln~X!]̄Xm]̄Xn

1
1

2
]mBmn~X!]2Xn1

1

2
]mBmn~X!]̄2Xn1

1

2
h]lBnm~X!]Xmclcn2S ]lBnm~X!2

1

2
h]lBnm~X! D ]̄Xmclcn

2S ]lBmn~X!1
1

2
h]lBmn~X! D ]Xmc̃lc̃n1

1

2
h]lBmn~X!]̄Xmc̃lc̃n2

1

2
~]l]mBnm~X!2]n]mBlm~X!!]clcn

2]r]lBmn~X!clcmc̃rc̃n2
1

2
~]l]mBmn~X!2]n]mBml~X!!]̄c̃lc̃n ~A3!

and

dTF5S 1

2
Bmn~X!2

1

2
hBmn~X!2

1

2
]n]lBlm~X! D ]̄Xmcn2S 1

2
hBmn~X!2

1

2
]m]lBln~X! D ]Xncm2

1

2
]mBnm~X!]cn

2
1

2
]lBmn~X!cmc̃nc̃l. ~A4!

One can check that the deformationsdT anddTF satisfy the super-Virasoro algebra provided

hBmn2]m]lBln2]n]lBml50. ~A5!

This is nothing but the gauge-covariant equation of motion forBmn . Imposing the gauge condition]mBmn50, we recover the
gauge-fixed expressions discussed in the previous sections.
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