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We consider the supergravity dual descriptions of nonconformal super Yang-Mills theories realized on the
world-volume of Dp-branes. We use the dual description to compute stress-energy tensor and current correla-
tors. We apply the results to the study of dilatonic brane-worlds described by nonconformal field theories
coupled to gravity. We find that brane-worlds based on D4- and D5-branes exhibit a localization of gauge and
gravitational fields. We calculate the corrections to the Newton and Coulomb laws in these theories.
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I. INTRODUCTION We will compute correlation functions of the stress-energy
tensor and global symmetry currents. In Sec. Il we will con-
The AdS/CFT correspondence relates a conformal fielgider brane-world scenarios with a brane locatedUat
theory ind dimensions to string theory on AdS; space =U, . Whenp#3 the theory of the brane-world is dual to a
[1-3]. (For a review see Ref4].) The radial coordinate of (p+1)-dimensional nonconformal super Yang-Mills theory
AdS,, 4, often denoted by, is interpreted as an energy coupled to gravity with a cutofA =U, . These brane-world
scale from the point of view of thd-dimensional conformal scenarios are sometimes called dilatonic domain walls. We
field theory. The canonical example is thé=4 supercon- will analyze these brane-world scenarios with and without
formal field theory(SCFT) in four dimensions realized on additional compactification of brane worldvolume coordi-
the world volume of D3-branes. The dual description is anates. We will use the results of Sec. Il in order to compute
type-1IB string theory on AdSxS°. The worldvolume the corrections to Newton and Coulomb laws. We will also
theory of Dp-branes whermp#3 is a nonconformal super derive these corrections in a slightly different approach and
Yang-Mills (SYM) theory with sixteen supercharges. Thesediscuss the localization of gauge and gravitational fields. We
theories have dual descriptions that vary as we move in thénd that brane-worlds based on D4- and D5-branes exhibit a
energy scaldJ [5]. They have been much less studied com-localization of both gauge and gravitational fields. Section
pared to the conformal field theories. IV is devoted to a more detailed discussion on brane-world
Another line of research is the study of brane-world sce-scenarios based on dilatonic domain walls. Some details of
narios[6,7]. We will consider a brane-world to be a brane Green’s functions computations are outlined in the Appen-
(not necessarily a p-brang located al=U, . WhenU, is  dix.
infinite and the brane is aDbrane we recover the above,
where the [p-brane theory is a Yang-Mills field theory with-
out gravity. WhenU,, is finite, the theory on the brane is a Il. D p-BRANES
Yang-Mills theory coupled to gravity with a UV cutofi
=U, . As in the duality between gauge theory and gravity,

the brane-world case with=3 has been extensively studied dual supergravity description. We will compute correlation

as a conformal field theory coupled to a gravity system. Thi%unctions of the stress-enerav tensor and alobal svmmetr
brane-world scenario exhibits a localization of gravity on thecurrents ay 9 y y

brane-world. However, a bulk gauge field is not localized in
this scenario.

In this paper we will consider brane-worlds based on
Dp-branes whemp+ 3. We will start by considering the su-
pergravity dual descriptions and use it to compute the stress- Consider a system oN coinciding flat Op-branes of
energy tensor and current correlators of the nonconformdype-Il string theory. We denote the ten-dimensional space
field theories. We will then apply the results to the study ofcoordinates by, ... Xg. The p+1 worldvolume coordi-
dilatonic brane-worlds described by nonconformal field theonates are taken to bey, ... x,. The field theory limit of
ries coupled to gravity. We will find that brane-worlds basedthis Dp-brane system is defined by taking the string length
on D4- and D5-branes exhibit a localization of gauge ands—0 while keeping the Yang-Mills coupling?,=g4l? 2
gravitational fields, and we calculate the corrections to thdixed, wheregs is the string coupling5]. For p<6 this is a
Newton and Coulomb laws in these theories. limit that decouples the open string degrees of freedom at-

The paper is organized as follows. In Sec. Il we will con-tached to the P-branes worldvolume from the bulk closed
sider the worldvolume theory dfl coincident Op-branes in  string degrees of freedom. The worldvolume theory igpa (
type-ll string theory using the dual supergravity description.+1)-dimensionalU(N) super Yang-Mills theory with six-

In this section we will consider the worldvolume theory
of N coincident Op-branes in type-Il string theory using the

A. The dual supergravity description
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teen supercharges. In the following we will consider theWe see from Eq(4) that the string loop expansion corre-
large N 't Hooft limit, where we denote the 't Hooft param- sponds to the N expansion of the Yang-Mills theory. This

eter bya=gZN. expansion is good when the effective string coupling is small
This system has a conjectured dual string descrifidn ~ e?<1.
In the supergravity approximation thstring-frame metric Thus, the regime where the supergravity description of the
describing the system is given by system given by Eq1) is valid is dictated by the conditions
that both the curvatur€3) and effective string coupling4)
ur-pr2 A2 are small. This implies that
dg? =12 dxﬁ+ du?
A 12 y7-pr
1<g2<N¥7=P), (5)
+)\1’2U(p3)’2dQ§p> , We will work in this regime. Moreover, we will consider the
casesp<6. Whenp=6 the above field theory limit is no

(7-p)la longer a decoupling limit, and the brane worldvolume theory
b= A y7-p(p-3)/4, (1) does not decouple from the bulk physics. This can be seen,
N for instance, by the fact that the eleven-dimensional Planck
, _ _lengthl3,=g? is fixed in the limit. Therefore, gravity does
Note that we haV(_a om|tFed numerical factors t_hat will be ¢ decouple in eleven dimensions, which provides the
irrelevant for our discussions later. Tipet 1 coordinates of proper description of the system in the U%]. Another way

the Dp-brane worldvolume are denoted ky, and have di- s {5 compute the absorption cross section for graviton scat-
mension of length. The radial coordinatehas dimensions  tgring on the branes and see that it does not vanish in the

of mass, and from the pbranes worldvolume field theory |t [8]. From the brane-world scenario we will see that

point of view it plays the role of an energy scale. Largegravity and gauge fields cannot be localized.
values ofU correspond to the UV regime and small values

correspond to the IR regime of the Yang-Mills theory. The
angular coordinates of the (8p)-dimensional sphere are
denoted by)s_,. They are dimensionless in the above no- Let us now use the dual supergravity description in order
tation. The field¢ is the ten-dimensional dilaton. to compute the two-point function of the stress-energy tensor
We will be mostly interested in the nonconformal casesof the Yang-Mills field theory on the p-branes worldvol-
p# 3. In these cases the metiit) has the isometry group ume. Unlike the conformal cage=3, the two-point function
1SO(1,p) X SO(9—p). From the Yang-Mills theory point of changes as we vary the length sdale=U ~1. The regime of
view 1ISO(1,p) is the Poincare symmetry whigQ(9—p) is  validity of the supergravity computation is given by relation
the R-symmetry group. The Yang-Mills coupling is dimen- (5). As noted above this is a strong coupling regime of the
sionful, [g2\,]=[L1P"%, and we can define a dimensionless gauge theory. The results that we will find will match, up to

B. Stress-energy tensor correlators

expansion parameter of the system: a numerical factor, with the perturbative Yang-Mills expec-
tation in the crossover regime.
921=03yNUP3=)\UP~3, (2 The basic idea of the correspondence between string
theory and gauge theory is the identification, in the super-
The Yang-Mills theory is strongly coupled whep>1. gravity approximation, of the generating functional of the
The scalar curvature of the metiit) is given by connected Green’s functions in the gauge theory with the

minimum of the supergravity action subject to certain bound-
ary conditions[2,3]. For each operator on the Yang-Mills
side we identify a field on the supergravistring side. The
bulk field that couples to the stress-energy tensor of the
We see from relationt3) that the curvature expansion in the gauge theory is the graviton. In the computation of the gen-
dimensionless parametl{ﬂz on the supergravity side corre- erating functional for the stress-energy tensor correlators we
sponds to a strong coupling expansion of the gauge theory ineed to solve the graviton field equation in the background
the inverse of the effective Yang-Mills bare coupling. It is a (1) subject to some boundary conditions and insert it in the
good expansion WhetiR<1, i.e., in the regime where the supergravity action. One decomposes the metric

Yang-Mills field theory is strongly coupled. Whegf <1 _

we have a large curvature. In this regime we cannot trust the 9uv=09uvthu, pv=0,....9 (6)
supergravity description. However, the Yang-Mills perturba- o

tion theory inge¢; is valid in this regime. The overlap regime whereg,,, denotes the background meti(it) andh,,, de-

I2R~ 3

Jetf

is whengesi~1. notes the perturbation. The stress-energy tefisgrof the
The effective string coupling? in Egs. (1) can be ex- brane worldvolume field theory couples to the bulk graviton
pressed in terms de¢s as as
g(7ﬁ*p)/2
e~ = 4 s-,mf dPHIxT#%h,,, . (7)
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We can decompose the graviton field as TABLE |. The supergravity results for théN Dp-branes
' (T(X)T(0)) correlator.
hu(X, U, Q)= €,,6 *h(U)Y(Qg_p), ®)
p (T(X)T(0))
wheree,,, is a constant polarization tensor, andre thep
+1 worldvolume coordinates. The graviton is polarized NS 1
along the brane worldvolume coordinates, i.es,, 0 %Wm/s
=0, u,v=p+1,...,9. We use theransverse traceless
gauge, i.e.d,h*"=0 andh;;=0, and consider the-wave 1 ﬁ’zi
mode of the graviton, i.e., it does not vary along the direc- 9vm |x|®
tions of the (8- p)-dimensional sphere. We expand to qua- INECI
dratic order in the supergravity action for the graviton. The 2 S TERETTE
type-ll supergravity equation for the graviton modgd)) is gvm [X]
related to a minimally coupled scalar fie]8]. More pre- N2
cisely, for certain polarization and momentum vectors the 3 T
graviton equation is the minimal scalar equation x|
8 4 NSQ%M
f/(U)+ ——f'(U)—kAAUP 7f(U)=0. 9) |x[*
U 2
N_ L —[x|/\x
In the following we will suppress the index structure of the 5 A4 x5

stress-energy tensor.

We consider Eq(9) in the range &cU<U,. This equa-
tion is solved by Bessel functions and we choose the regular
solution that is normalized to one dt=U,. Substituting the 1. D4-branes
solution into the supergravity action, the generating func- The minimal scalar equatiof®) reads
tional is obtained as a pure boundary term. We construct the
“flux factor” Fr,

4
f”(U)+Uf’(U)—kz)\U‘3f(U)=O. (14)

N2
Fr=—5[F(U)UBPayf(U)],°, (10 . . P S
A Define the coordinate=2(\/U)"<, which has dimensions

. ) ) ) of length. The regular normalizable solution of E44) is
which yields the momentum-space two-point function, andgjyen by

we get that

f(z)=(k2)*K3(k2), (15)
(T T(—=K))=F5. (11) (2)=(k2)°K5(k2)

whereK;(k2) is the modified Bessel function. The relevant

By choosing thdJ, independent nonanalytic term iR and nonanalytic piece of the “flux factort10) reads

Fourier transforming, we obtain the two-point function in
x-space. Whemp<5 we get Fr=N2\KE log(k). (16)

N2 1 Ne 1

= = The Fourier transform of Eq16) yields the result
<T(X)T(O)> A2 |X|2a+p+1 ga(ﬁfa) |X|2a+p+1' d y
N392
7-p (TO)T(0)) = —1+. (17)
a= E (12) |X|

At the crossover regime between the supergravity description

For p=5 the two-point function reads ) ) .
P P and the perturbative Yang-Mills descriptia§,,N|x| ‘=1

N2 1 we have the matching to the expectddN) gauge theory
<T(X)T(0)>:m| |5/2€‘_|X|"“T, (13)  result withN? degrees of freedom:
A X
: . . N2
where we have only written the leading largé behavior. (T(X)T(0))=—. (18
We have summarized the results in Table . |x| 10

Two cases that will be of particular importance for the
brane-world scenarios apeg=4 andp=>5. It is therefore of The matching agrees up to a numerical factor that is inde-
interest to give some more details on the computation irpendent of the rank of the gauge graN@nd the Yang-Mills
these two cases. couplinggyu -
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2. D5-branes Dp-branes gauge theory. We can have additional gauge fields
The minimal scalar equatiof®) reads that couple to other global symmetry currents as, for in-
stance, in the five-dimensional fixed points wih global
symmetry analyzed in Reff10]. We will consider the former
type in the following.
In order to compute the current correlators we need to
Define UNY?=exp@\Y?), where z has dimensions of solve the graviton equation for the components of the gravi-

3
f”(U)+Uf’(U)—kz)\U’zf(U)zo. (19

length. The solutions of Eq19) are given by ton with one index along the brane worldvolume and one
index along the (8- p)-dimensional sphere. Alternatively we
f(z)=exd —zn A1+ J1+NK7)]. (200 can first reduce the supergravity metric) on the
(8—p)-dimensional sphere and solve the

After the normalization the relevant nonanalytic piece of the, ; : : : ;
+2)-dim .
“flux factor” (10) reads (p+2)-dimensional gauge field equation. We will pursue the

second procedure since it will also shed light later on brane-

N2 world scenarios based on various domain-wall solutions in
Fr=—J1+\K2 (21  the literature.
A The dimensional reduction of thepEbrane supergravity

) ] ] solutions along the sphere have been performed in Refs.
Fourier transforming Eq(21) yields Eq.(13). . [11,12 using another coordinate system. We will repeat the
~ Atthe crossover regime between the supergravity descripsame procedure here, except that we will use the coordinates
tion and the perturbative Yang-Mills  description of the supergravity solutiol). It is useful to retain theJ
gvmN[x| “?=1 we have the matching to the expect#tN)  coordinate because it has the interpretation of an energy

gauge theory result withi> degrees of freedom: scale of the brane worldvolume field theory.
\? The dimensional reduction is performed by using the an-
(T)T(0))= —. (27 S
|X|12

dst=15(e?ds;, ,+e PE-ParqgZ ), (25)

As before, the matching agrees up to a numerical factor that . . ] ] )

is independent of the rank of the gauge gradmand the Where ¢ is a scalar field andisZ is the ten-dimensional

Yang-Mills couplinggy . Dp-branes metric written in the Einstein frame, i.e., it is
At a length scaldx|<gyy/yN the effective string cou- related to the string frame metrit) by dsf=e~*?ds”. The

pling is large and the weakly coupled description is given byconstania is given by

the S-dual NS5-brane background. The minimally coupled

_ 1/2
scalar equation in this background is agél®) and the re- a= E _8 p) ] (26)
sult (13) is obtained again. 2\ p
3. Dp-branes By comparing the coefficient of théﬂz_p term of the two

metricsdsﬁ in Eq. (25) andds? in Egs. (1) we can read the

For generap the correlatof T(x) T(0)) as given in Table I?rm of the scalar

[, matches at the crossover region between the supergravi
description and the perturbative Yang-Mills description

> o , _ 1 , 1@=p)/p*?
gy uN|x|P~3=1 with the expected Yang-Mills result ef= NA(3*9)’4U*(3*‘3) /4} _ (27)
N2
(TOT(0))= —5—=- (23)  Substituting this expression into E(R5) we obtain the
|x[2®+D) +2)-dimensional metric
We note that the result in Table | for the stress-energy two- dsf,+2=N4’p)\*3’pu9’p*1(dxﬁ+)\Up”d Uu?). (28

point function wherp=1 was obtained in Ref9].
The (p+2)-dimensional gauge field bulk action is then

C. Current-current correlators given by
Global symmetry currents of the brane worldvolume field ‘
theoryJ,, couple to massless bulk gauge fiek as Sgauge=J dP*2x/g, ;. .6~ [WPE=PIep2
~ p+1 w 1
So [ o, 4 = [ @ =gy 2, 29
Gbuik
We may distinguish two types of such gauge fields. One type
of field arises from the isometries of the space on which wevhere
reduce, in our case, the {8)-dimensional sphere in Egs. 5 — aipy p=1y | ~(3-p)2/
(1). These couple t&O(9—p) R-symmetry currents of the Opui=N""PATPTIU PR, (30)
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This is of importance since while the gravitational and scalar

fields in the reduced action are canonical pr{2) dimen-
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TABLE II. The supergravity results for thé\ Dp-branes
(J(x)J(0)) correlator.

sions this is not the case for the gauge field as we see from

Eqg. (29). Note that for our purposes we omit the group
theory factors and we write the actio®9) schematically. In
the following we will suppress the Lorentz index on the cur-
rent

In order to solve the{+ 2)-dimensional Maxwell equa-
tion, we write the p+2)-dimensional gauge field as

A, (x,U)=¢,e**f(U). (31)
Imposing the gauge conditiong‘A,=0, u=0,... p+1,
andA;=0 we obtain
3
f”(U)+Uf’(U)—kz)\Up”f(U):O. (32

As before, we consider E¢32) in the range &U<U,. We
solve this equation and choose a regular solution that is no
malized to one all =U,. The generating functional for the

p (3(x)3(0))
N7/5 1
0 =
avm X%
3/2
1 N
9ym |x|®
N5/3 1
2 23 |, (1313
gym X
N2
3 _
|x[®
4 ng\Z(M
|x[°
2
r- N 1 s
5 )\15/4|X|5/2

current correlators is obtained as a pure boundary term.

Again we construct the “flux factor’F,

N2 5 U
fA=7[f(U)U auf(U)],°, (33

and we have that
(J(K)I(—Kk))=Fa. (34

By choosing theU, independent nonanalytic term if,,
and Fourier transforming we obtain fpr<5

2

(J(X)I0))= —>= - = Ni . —
N2 |x|2atp-1  g2(2-a) |y|2a+p-1
azz;—g, (35
and forp=5
2 —
<J(X)J(0)>=W1 R (36)

|X|5/2

whereK,(kz) is the modified Bessel function. The relevant
piece of the “flux factor”(10) reads

Fa=N2\k*log(k). (39
Fourier transforming Eq39) yields
N392
(3(03(0))= MZM (40

At the crossover region between the supergravity descrip-
tion and the perturbative Yang-Mills description
g2uN|x| "*=1 we have the matching to the expected gauge
theory result

2

N
(J(x)J(0))=

v (41

The matching is up to a numerical factor that is independent

The results are summarized in Table Il. Consider in detail thé@f the rank of the gauge groud and the Yang-Mills cou-

p=4 andp=5 cases.

1. D4-branes
Equation(32) reads

3
f”(U)+Uf’(U)—kz)\U‘3f(U)=0. (37)
As before, definez=2(\/U)Y2 which has dimensions of
length. The regular normalized solution of E§7) is given
by

f(z)=(k2)%Kx(k2), (38)

pling gy . We have omitted the group theory factors and R
charges as well.

2. D5-branes

Equation(32) is identical to the minimal scalar equation
(19). We consider the same solutiof®0) and construct the
“flux factor” which now reads

N2

fA:F\ll'f')\kz.

(42)

Fourier transforming Eq42) yields (36).
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At the crossover region between the supergravity descrip- LT T TN
tion and the perturbative Yang-Mills descripon — T/ NI
g2 yN|x| 72=1 we have the matching to the expected gauge 1 % %
Kk : - :

theory result:

FIG. 1. The graviton propagatdd,.,iton(k), where the first
N2 tis the f it tion while th d part is th
_ part is the free graviton propagation while the second part is the
(3093(0)) |X|10' 43 leading non-CFT correction.

As before, the matching is up to a numerical factor that isyorldvolume on a torus, sk St leads to a four-dimensional
independent of the rank of the gauge grduand the Yang-  prane-world scenarios. We will discuss in more detail the
Mills coupling gy - relation to the brane-world scenarios based on the dilatonic

Similarly as for the stress-energy tensor the re26) is  domain wall solutions in the discussion section.
also valid for large string coupling. This is because the
S-dual supergravity background df NS-5 branes leads to A. Newton's law
the same equation of motion &k9). '

The (p+1)-dimensional gravitational couplingp,; is
3. Dp-branes defined in terms of the ten-dimensional gravitational cou-

Note that the correlatqid(x)J(0)) for generalp, as given pling x4, via

in Table Il, matches at the crossover region between the su-

per_grgvityzdescripfign anq the perturbative Yang-MiIIs de- in d1%/g,0e 2¢R 0= 21 Jdp“x /—ngRpH_
scription g4 N|x|P~°=1 with the expected Yang-Mills re- K10 Kpi1
sult (47)
N?2 The left-hand sidéLHS) is the ten-dimensional gravitational
(J(x)3(0))= W (44)  action in the string frame metrid) while the right-hand side

(RHYS) is the (p+1)-dimensional gravitational action in the

Note also that, up to numerical constants that are indeper=nStéin frame. Using Eq¢1) and(47) we obtain
dent of gy and N, the two-point functions of the stress

tensorT and the currend are related fop<5 by _ 2 9$M
Gp+l=Kp+l_NU2 y (48)
(3()3(0)) =[x XT()T(0)) (45) *
and forp=5 by whereU, is the UV cutoff. Note that whetd , —o, the
gravitational coupling(48) vanishes and gravity decouples
(J(x)J(0))=N{T(X)T(0)). (46)  from the brane, as expected.
Consider the correction to Newton’s law in the brane-
IIl. BRANE-WORLDS world scenarios.
We use the notation brane-world for a bramet neces- 1. D4-branes

sarily a Dp-brang located atU=U, . Whenp#3 and the Consider a brane-world scenario described by a five-

bra_ne is a ID—brane,_the theory on the brane-world is de- 4 angjonal SYM theory coupled to gravity with a cutoff at
scribed by a p+ 1)-dimensional nonconformal super Yang- U=U, . The correction to the Newton's law can be com-

Mills theory coupled to gravity with a cutofA=U, . In uted from the ; ;
graviton propagat@y;a,iton(k) [15], as in
general, the brane-world can have extra degrees of freedo ig. 1. The first part is the free graviton propagation while

In this section we will analyze these brane-world Sce-yq gocong part is the leading non-CFT correction
narios with and without additional compactification of brane

worldvolume coordinates. These brane-world scenarios are 1 1 1
sometimes called dilatonic domain walls. To make the con- _ = _ il
necton we note that inp+2 dimensions the RR Caravion(k) =15+ ks(TIIT(— k)5 k?
(p+2)-form field Fy,,=dA,,; can be dualized and re-
placed by a cosmological constant. TheH2)-dimensional
supergravity action reduced from ten dimensions has domain
wall solutions. Some of these supersymmetric solutions are

the ten-dimensional P-branes solutions reduced on the (8 \,here we have used E{L6), andGs is given by Eq.(49).

—p)-dimensional spherg13,14,13. .. Fourier transforming in five dimensions yield
A further reduction to be discussed is the compactification

of some of the [Pp-branes worldvolume coordinates. In par-
ticular the compactification of one coordinate of the D4-
brane worldvolume on the circle!®r two of the D5-brane

1 3.2 4
:P[l"‘N gy mGsk™ log(k) 1, (49)

G
1+ N3g$MX—f). (50)

G (x) !
graviton 3
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From relation(50) we can read the modification to the five- we can neglect the momenta along the circle direction and

dimensional Newton’s force law ti: we are still in the supergravity regime defined by relaiisn
Fourier transforming in four dimensions, the gravitational
Gsm;m, N2\ Gg force reads
Fnewton™ 3 1+ 2 . (51) 1
r r c ~ Gymym, N2G,R?|[ r ) e_rml
Newton— 5~ T K ;
2. D5-branes (58)

Consider a six-dimensional brane-world scenario. The
correction to the Newton’s law can be computed as beforavhereG,R?*=Gg.
from the graviton propagatoGg,a,ion(k) as in Fig. 1.

Again, the first part is the free graviton propagation while the 4. Discussion
second part is the leading non-CFT correction. Using EQ. |n the following we compare the gravitational force based
(21) we get on the nonconformal brane-world scenarios with the gravita-
tional force in brane-world scenarios based on AdS
1 N2Gg V1+\k?
Ggrauiton(k)"’ﬁ 1+ 3 T ) (52) Ggmim, C4Gy
A Frewton™ d_2 a2 |’ (59
r r

whereGg is given by Eq.(48). Fourier transforming in six ] .
dimensions yields at large wherecy is the central charge of the underlying conformal

field theory. Comparing the above result with Esf) in five

2 312 dimensions, Eq(54) in six dimensions and Eq$56) and
N“Gg [ X o~ . . . . . :
Ggraviton(X)~ —| 1+c——| —=| e XM (B3 (598) in four dimensions after dimensional reduction, we see
x4 A2 LN that in the nonconformal brane-world scenarios the correc-

tions to Newton’s law have differemtdependences. In par-
where byc we denote a numerical constant which we ne-ticular, the D5-brane geometry leads to corrections that are
glected. The modification to the six-dimensional Newton’sexponentially suppressed. As we will see later, this corre-
force law 1f* reads sponds to the fact that the Kaluza-Klein spectrum has a mass

gap. Experimental measurements of Newton’s law can dis-

GeMmym, NGg[ r 32 _ tinguish between these different brane-world scenarios.
F = c —| e " (59
Newton 4 )\2 \/X
' B. Coulomb’s law
3. Dimensional reduction The effective p+1)-dimensional gauge coupling,

. . . , on thep-brane can be obtained via
In order to arrive at four-dimensional brane-world sce-9rane P

narios one can further compactify the worldvolume coordi-

1 1
nates. In the D4-brane case we compactify one coordinate on J dP*2x Opi25— F(2p+2)= J dP*ix— F(Zpﬂ),
a circle while in the D5-brane case we compactify two coor- Gbulk brane
dinates on a torus. Consider first the D4-brane scenario (60)

where we compactify on a circle of radil& At distances

Ix|=U" in the regime where F(,,5) and F(,, 1) denote the field strength of the

gauge field inp+2 andp+1 dimensions, respectively. The
LHS is the (p+2)-dimensional gauge field action after the
dimensional reductiori25) while the RHS is the effective

+1)-dimensional gauge field action. Usin 0) we
we can neglect the momenta along the circle direction an Iz)tain) forp>3 gaug 9 HGO

we are still in the supergravity regime defined by relation
Thus, Fourier transforming in four dimensions, the gravita- 1

R<|x|<gZuN, (55)

. ; 2
tional force is then brane™ 3 53" (61
N“UY
2
Fnewtor= Camimy ( 1+ N"AGR , (569  WhereU, is the UV cutoff.
r? r4 Consider the correction to Coulomb’s law in these brane-

world scenarios.
whereG,R=Gs.

Consider next the D5-brane scenario where we compac- 1. D4-branes
tify on two circles of radiuR. At distances in the regime Consider a five-dimensional brane-world scenario. The
correction to the Coulomb’s law can be computed from the
R<|x|<(g7yN)"2 (57)  propagator for a vector fiel6, oo (K) as in Fig. 2. The first
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LT 2 2y 12
. " N2\ g2R
J J g4q1q2(l+ g4 , (67)

+ E— —_— Fcoulomb™ > >
1 [ERERN S r r
kl

- = e -
FIG. 2. The vector field propagat@,..;,{k) where the first

i i i : heregsR=g2
part is the free vector propagation while the second part is théV 4 5 )
leading non-CFT correction. Consider next the D5-branes scenario where we compac-

tify on two circles of radiufR. At distances satisfying regime
part is the free vector propagation, while the second part i$57) we get
the leading non-CFT correction

—-1/2
efr/m

1.1 1 959102 N2giR? [ r
Gvector(k)NEJrE95<J(k)3(—k)>gsﬁ FCO”'Omb:r—Z 1+c¢ X K

68
1 342 21,2 ( )
:P[l—i_N g2 wg2k?log(k)], (62)

whereg;R?=g3.
where we have used E@39). The gauge couplings is
given by Eq.(61) for p=4. 4. Discussion
Fourier transforming in five dimensions yields '
In the following we compare the Coulomb force based on
) gg) the nonconformal brane-world scenarios with the Coulomb

1
GuectodX) ~ E( 1+ N3gYM; : (63)  force in brane-world scenarios based on AdS

The modification to the five-dimensional Coulomb’s force

law 143 reads 95910, 93aq
Fcoulomb™ d_2 1+ d_z|’
r r

(69

géqlqz

Fcoulomb™ /3 1+

(64)

Nzhgé)

I’2

whereay is the coefficient of the current-current correlator of
2 D5-branes the underlying conformal field theory. Note that fix=4 we
cannot use this formula and the corrections are logarithmic.

Consider a six-dimensional brane-world scenario. The comparing the above result with E(4) in five dimen-
correction to the Coulomb’s law can be computed as beforgjons Eq.(66) in six dimensions and Eq$67),(68) in four

from the vector propagat@, (o k) as in Fig. 2. Again, the  gimensions after dimensional reduction, we see that in the
first part is the free graviton propagation while the secont,gnconformal brane-world scenarios the corrections to Cou-
part is the leading non-CFT correction. Using E42) we  |ompys law have different dependences. In particular, the

obtain D5-brane geometry leads to corrections that are exponen-
tially suppressed. As we will see later, this corresponds to the

G (k)Ni 14 N?g§ \1+\k? 65 fact that the Kaluza-Klein spectrum has a mass gap. Again,
vector K2 A2 K2 ' experimental measurements of Coulomb’s law can distin-

guish between these different brane-world scenarios.

wheregg is given by Eq.(61) for p=5. The modification to
the six-dimensional Coulomb’s force lawr t/reads

3/2
. 96t N5 1\ 5
Coulomb I’4 A \/X .

3. Dimensional reduction

C. Graviton and gauge field localization

In the previous calculation of the Newton and Coulomb
(66) laws, a massless mode with behavid®iWas assumed to be
localized on the brane worldvolume. However, one can ex-
plicitly check the localization properties of the bulk graviton
and gauge fields on thgbrane located dt =U, by solving
Again, in order to arrive at four-dimensional brane-world the equation of motion in the background geométryand
scenarios one can further compactify the worldvolume cooreomputing the Green’s functio@ .
dinates. In the D4-brane case we compactify one coordinate By invoking the bulk-boundary correspondence, the bulk
on a circle while in the D5-brane case we compactify twoGreen’s function can be used to obtain an alternative deriva-
coordinates on a torus. Consider first the D4-branes scenartmn of the two-point functiong¢©0) in the dual theory, con-
where we compactify on a circle of radil® At distances sidered in Sec. Il. Since the Green’s function represents the
satisfying regimg55) the Coulomb force reads sum over all connected diagrams we obtain the relation
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k> G
(O O(—K) =~ Gy 2, (70 Gi0=-2-22, 73
where for the stress-energy tensioy, we use the graviton g(kKK)=i g?{M U&p_g),z

propagator k=—2G,,), while for the vector currend,, Nk

we use the gauge field propagafer=(3— p)ggﬂ]. Forp

<6 there always exists a term in E(Z0) that does not HO (i (a—1) \kuP~972)

depend on the cutof), . The results for the stress-energy XH(l) i(@—1)kUP 97’

tensor and current correlator, obtained in this way, are all in a-1(i(e=1) *

agreement with those found in Sec. II. We see from the form of(”) that one obtains Newton’s law
Let us now consider the graviton and gauge field Green'gn thep-brane located dtl, . This is consistent with the fact

function to explicitly check the localization properties on thethat the graviton zero mode is also localized there. The cor-

p-brane. responding corrections to th@{ 1)-dimensional Newton’s

law are obtained frong (') and one obtains the result found
1. Graviton earlier for the D4-brane.
Whenp=5 the Green’s function has the form

(74)

Consider a bulk graviton in the effective
(p+2)-dimensional brane-world. The minimally coupled Gg
scalar equation9) determines the mass and localization Gk(Uy Uy)=——(1+ V1+£k?), (75
properties of the g+ 1)-dimensional Kaluza-Klein modes, k
wherek?= _mz' The differential operatof9) is self-adjoint  5nq again there is a localized massless mode?| 14t U
and the solutiond,, form a complete set that satisfies the —U, . The corresponding corrections to Newton’s law aris-

orthonormal relation ing from the Kaluza-Klein continuum lead to exponentially
suppressed corrections and agree with the result found ear-
U, lier.
f dUUT = Smnr - (71 Whenp=6 one finds that there is an equal and opposite
0

contribution arising fromg(kKK) that precisely cancels the
g(k°> contribution. The remaining leading contribution from
Whenm=0 we find that the equation of motig®) always G¥% does not lead to the usual Newton’s law. Thus ffor
has a solutiorfy(U) = const, and there is always a normal- =6 we do not obtain Newton’s law and there is no localized
izable mode. This is consistent with E@8). mode in the brane-world with &% behavior.

To check whether gravity is actually localized on the
p-brane we must compute the Green’s function for two
sources on the brane. In order to do this the first question that The equation of motion for the p( 1)-dimensional
needs to be addressed is the boundary conditions. This Ialuza-Klein gauge fields is governed by E@2) where
particularly important because except for the case3, K°=—m? The differential operator in E32) is self-adjoint
there is singular behavior at=0. This singularity corre- and the solutlonsfm form a complete set that satisfies the
sponds to the massless open string degrees of freedom trRfthonormal relation
are missing in the description. We expect the singularity to f

2. Gauge fields

U*
. dUUP™%f 1 f o = Sy - (76)

be resolved once the required degrees are added, and we will
continue to impose Hartle-Hawking boundary conditions at
U=0, as in thep=3 case. Thus following the procedure \yiice that wherm=0 there is always a constant solution to
outI|ne,d n the Appendix ’the expression for the scalarEq_ (32). Thus only forp=4 will the zero mode be normal-
Green's function whet) =U"=U, is given by izable. This is consistent with E¢61).
Analogous to the graviton case we can obtain the Green’s
g?{M function for two chargedunder the gauge fieldsources lo-
G(U, U,)=—i —Ufj’*9)’2 calized on thep-brane. Following the procedure outlined in
the Appendix one obtains the gauge field Green’s function

H (G (@~ 1) NkUP ")

VA
= N G(Uy U, )= —i 2y
Hsllzl(i(a_l) )\kuip75)/2) ( ) k( * *) *

N2k

HO (i (@—1) yNkUP >
where H®) is the Hankel function of the first kind. When (“1)1(_( A Z‘p—5)/2)
p<5 the Green's function can be written in the form HO 5 (1) AkUP )

Gu(U, U, ) =69+ G X where the zero mode contribu- — 0O+ KOy 7
tion G{?) and the Kaluza-Klein contributiog () are given G+ G U0, ™
by where forp#5 we have

046001-9



TONY GHERGHETTA AND YARON OZ PHYSICAL REVIEW D65 046001

g2 The field ¢ is a D-dimensional scalar field\ is a bulk
gﬁ0)=(3_p) pgl, (78) cosmological constant anld is a constant parametrized in
k terms of a quantity\:
NN 2(D-1)
(KK —j Y ya-p)2 2_
P NIt b?=A+ RN (83)
><H(al,)3(i(cz—1)\/Xka,p*S)/z) 79 The LagrangianC is a delta-function source added to the
Hgl,)z(i(a— 1)\/XkUSf’_5)/2)' bulk action. It provides a cutoff for the boundary of the bulk

solution.

- ; : : Whenb=0 one obtains AdS solutions where the dilaton
andgy,.;=1/(NU~ ") is the effective gauge coupling for > SO

i : . is constant and the dual description is some CFT. More pre-
p=3 on thep-brane. Wherp<3, the leading contribution cisely, if we use only a slice of AdS, the description of the

g(k : 1S ppsmve andKEanceIs agalnst'an equal gnd onOSItBrane-world scenario is in terms of a CFT coupled to gravity
contribution fromg{“). Thus, there is no localized mode | i~ ciioff. For example, wheD—5 thenA s — — 8/3

: 2 .
Wltgolrlzzb;hg]véogéro mode contributio®) vanishes and and one obtains the _soluti(_{ﬁ]. This czﬁa_}n orig!nate, for in-
the leading Kaluza-Klein contribution is stance, from a ten?dlmenS|onaI ALES> solution _Of _type-
IIB supergravity, with anN=4 SCFT dual description. In
5 the truncated brane-world version, the dual conformal field
(KK) _ 1 iz €err(K) (80) theory is modified by introducing an ultraviolet cutoff, and
N2 log(k) K2 k2 gauging the Poincare symmetfr¥8,19.
Similarly, whenD =6 one obtains a six-dimensional AdS
As noticed in[16—18, even though the bulk zero mode is solution[20], whereA a4s,= —5/2. This can arise as a reduc-
nonnormalizable, one can still think of a 4D gauge field withtion of a ten-dimensional warped AglSolution correspond-
an effective gauge coupling that runs logarithmically to zeroing to the D4-D8 brane systefi0]. The dual field theory is
in the infrared. a five-dimensional CFT. A five-dimensional domain wall so-
When p=4 the zero mode contributioﬁ(ko) is nonvan- lution can be obtained by compactifying one of the brane
ishing and there is a localized gauge field on the brane. Thdimensions on a circle’Sand analyzed in terms of the cor-
corrections to Coulomb’s law arise from the Kaluza-Klein responding dual theory in Ref21]. Other similar solutions
continuum and agree with the result obtained earlier for thevere obtained in Ref22].
D4-brane. Domain wall solutions can also be constructed where
The D5-brane case is similar to that encountered for the# 0, and the dilaton is no longer constant. One example is in
minimally coupled scalar. The Green'’s function is now D=5 andA=—12/5 with a varying dilator{13,14,11,12,
which can be obtained from the near-horizon metric of D4-
9 branes compactified ont 8 S*. Following the results in Sec.
G(U, ,U,)=— —2(1+ V1+2£k?), (81 11l A, the Newtonian law obtained from the dimensional re-
k duction of the D4-brane solution is consistent with the cor-

) o ) rections obtained in Ref12]. Our derivation indicates that
and one obtains the six-dimensional Coulomb’s law. Thesgne dual theory of this domain wall solution is the five-

results are identical to the graviton case except for the cougimensional SYM theory compactified o.Sn comparison
plings and again we see the mass gap in the Kaluza-Klei, the Randall-Sundrum scenario where the correction to the
spectrum of the gauge field. o - _ Newton potential is proportional tor¥, here the corrections
Whenp>5 the contributiong is again canceled by an are 1¢5. We also considered the gauge fields in this domain
equal and opposite contribution arising fro{™. Thus  wall background. Gauge fields that arise from the isometries
there is no localized gauge field on tpebrane with 1k*  of S* have a zero mode localized on the domain wall. The
behavior. corrections to the Coulomb law arising from the Kaluza-
Klein continuum are given by E@64), and are related to the
IV. DISCUSSION current correlators of the dual field theory.
Another D=5 solution, with A= -2, arises from the
In the following we will discuss in more detail the relation ear-horizon metric of D5-branes compactified ohxE3.
between our work and the brane-world scenarios based ofpjg case, analyzed in Sec. Il A, gives rise to a Newtonian
dilatonic domain wall solutions. Consider domain wall solu-fgrce with exponentially suppressed correctiisee also

tions in D dimensions which are solutions of the field equa-Ref. [12]). Our analysis indicates that the dual field theory is

tions derived from the action a six-dimensional SYM compactified or? TThe exponen-
L tially suppressed corrections have two equivalent interpreta-
_ D ot 2 be D-1 tions. In the supergravity description, they arise because the
S f d X\/a R 2((9(’)) 2Ae +J' d™ XL, Kaluza-Klein continuum is separated from the zero mode by

(82 a mass gap. In the six-dimensional SYM theory they corre-
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spond to a mass gap of the theory developed in the stronglyith «=(7—p)/(5—p) and where we have imposed the
coupled regime. As before, we can study the gauge fields iNNeumann condition&ugk(u,u’)bzu* =0. We have also
the domain wall background. Those that arise from the isomgefined q=i(a—1)y\kUP92 and HD is the Hankel
etries of S have a zero mode localized on the domain wall.fynction of the first kind of order. As noted earlier there is
The Coulomb law corrections are exponentially suppressed; singularity atU=0, but since the solution can be made

and they are related to the current correlators of the SiXginjte there we will continue to impose the Hartle-Hawking
dimensional SYM theory. boundary condition. Thus fdd<U’ we obtain
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APPENDIX: GREEN'S FUNCTION IN THE EXTREMAL ity of G, atU=U" leads to the condition

Dp-BRANE GEOMETRY

We will follow the derivation of the Green’s function pre- Golu-u=G<lu-u. (A8)

sented in Ref[23], except that we will consider the extremal ) o . .
Dp-brane geometry. Let us first consider the case of thavhile the discontinuity ind,Gy gives the condition
minimally coupled scala® in ten dimensions. Introducing a

source function7, one obtains (04G~—04G)|u—ur=geuyuU P8 (A9)

an(V=gg"Nayd(X)) == gT(X). (A1)

whereX=(x,U, 6;), with x denoting thep+ 1 worldvolume

This leads to the solutions

coordinates. The corresponding Green’s function for Eq. ) 79w o HI(Q)
(A1) can then be defined as A_(U")= STU (p sz’ (A10)
p Ha—l(q*)
¢(X>=f d' %’ V=g G(X;X") AX"). (A2) 4
A-(U")=i 7TgYMu’(p?)/z{ Ja-1(9y)
- =M Ta” V%7
If we now consider the Fourier transform of the Green’s 5-p Hglll(q*)
function

XHP(Q) = J.a)|. (ALD)

S eilnie L
G X,X,): eI n;j if—el (X=X g U,U,),
( f (2m)P+1 8

(A3) Finally, substituting these functions into the equationgfor

] ] . andG_ gives the expression for the Green’s function in the
where the discrete Fourier transform is over the hyperspheriaytremal Op-brane geometry

cal coordinates of &P, then the Fourier component
G (U,U’) must satisfy the equation

4 (1)
- TOym _ H.’(g<)
" " (p—7)/2
[au(UB_pﬁu)—)\sz+m§iU6_p]gk(U,U’) G(U,U")=i 5-p (uu’) H(al_)l(q*)
=gymd(U—U"). (A4) X[Jo1(a ) HP(q=) —HE 1(9,)3.(9-)1],

The standard procedure for solving E@4) is to use the (A12)

solution to the homogeneous equation in the regiths ) ]
<U’ andU>U’, and then impose matching conditions atWhere inq.. (q<) we have defined).. (U-) to be the
U=U’. If we now restrict to the case whera2=0 and 9reater(lessey of U andU’. The Green's functiorfA12) is
: the general expression when#5 for a minimally coupled
scalar in the extremal pbrane geometry. Notice also that
G(U.U)=0(U—U")G-+6(U'—U)G., (A5) from the pole conditiorH(? (2i \k/(5—p)UP *'%)=0,
there is a branch cut singularity lt=0. This represents the

the solution to the homogeneous equationforU’ andp ~ Kaluza-Klein continuum beginning an=0, where k’=

write

#5 is given by —m?. When we restrict the coordinates to the location of the
p-brane atU=U’=U, we obtain the expressia72).
G-(U,U")=iA-(UHUP-D3 1 (q,)HP(q) When p=5 the solutions to the homogeneous equation
W are no longer Bessel function®0). Imposing the same
—H,71(0,)3.(a)], (A6)  poundary conditions as f@#5 gives the Green’s function
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) _ 2 €Y
, Oym 1ty 1 [Ug) 7 U, |” . 7Y 1 H;24(99)
Gk(U,U ):_T_2_'(U_* (y=1) U_* G(U,U") =i (1)1 -
2yk? UU’ \ U < N(5—p) uu’ HM ,(q,)
7 X[Jq- H
+(y+1) U_*) :|, (AlS) [ « Z(q*) a 1(q>)
~H® (0,34 1(a)], (A14)
while for p=5 it is simply
wherey= 1+ k% WhenU=U'=U, we recover the ex- G(U.U )= — 11+y 1 (U_*)Y[(y_ 1)($)7
pression(75). Notice also that from the pole conditide? k= N? 2yk? UU’ | U~ U
=0 there is a massless mode. In addition from the pole con- Yy
dition y=0, there is also a branch cut singularity beginning +(y+1) % } (A15)
at m=1/\/\. Thus whenp=5, the Kaluza-Klein continuum U<
is separated from the zero mode by a mass ga.1/ Again we see that thep( 1)-dimensional Kaluza-Klein

The Green's function for the gauge field can be obtainedpectrum has the same characteristics as that found for the
by following a similar procedure to the minimally coupled minimally coupled scalar. Whed =U’=U, we obtain the

scalar. In the case gf#5 the expression is results(77) for p#5, and(81) for p=5.
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