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Supergravity, nonconformal field theories, and brane-worlds

Tony Gherghetta
Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland

Yaron Oz
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

~Received 4 July 2001; published 24 January 2002!

We consider the supergravity dual descriptions of nonconformal super Yang-Mills theories realized on the
world-volume of Dp-branes. We use the dual description to compute stress-energy tensor and current correla-
tors. We apply the results to the study of dilatonic brane-worlds described by nonconformal field theories
coupled to gravity. We find that brane-worlds based on D4- and D5-branes exhibit a localization of gauge and
gravitational fields. We calculate the corrections to the Newton and Coulomb laws in these theories.
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I. INTRODUCTION

The AdS/CFT correspondence relates a conformal fi
theory in d dimensions to string theory on AdSd11 space
@1–3#. ~For a review see Ref.@4#.! The radial coordinate o
AdSd11, often denoted byU, is interpreted as an energ
scale from the point of view of thed-dimensional conforma
field theory. The canonical example is theN54 supercon-
formal field theory~SCFT! in four dimensions realized on
the world volume of D3-branes. The dual description is
type-IIB string theory on AdS53S5. The worldvolume
theory of Dp-branes whenpÞ3 is a nonconformal supe
Yang-Mills ~SYM! theory with sixteen supercharges. The
theories have dual descriptions that vary as we move in
energy scaleU @5#. They have been much less studied co
pared to the conformal field theories.

Another line of research is the study of brane-world s
narios @6,7#. We will consider a brane-world to be a bran
~not necessarily a Dp-brane! located atU5U* . WhenU* is
infinite and the brane is a Dp-brane we recover the above
where the Dp-brane theory is a Yang-Mills field theory with
out gravity. WhenU* is finite, the theory on the brane is
Yang-Mills theory coupled to gravity with a UV cutoffL
5U* . As in the duality between gauge theory and grav
the brane-world case withp53 has been extensively studie
as a conformal field theory coupled to a gravity system. T
brane-world scenario exhibits a localization of gravity on t
brane-world. However, a bulk gauge field is not localized
this scenario.

In this paper we will consider brane-worlds based
Dp-branes whenpÞ3. We will start by considering the su
pergravity dual descriptions and use it to compute the str
energy tensor and current correlators of the nonconfor
field theories. We will then apply the results to the study
dilatonic brane-worlds described by nonconformal field th
ries coupled to gravity. We will find that brane-worlds bas
on D4- and D5-branes exhibit a localization of gauge a
gravitational fields, and we calculate the corrections to
Newton and Coulomb laws in these theories.

The paper is organized as follows. In Sec. II we will co
sider the worldvolume theory ofN coincident Dp-branes in
type-II string theory using the dual supergravity descriptio
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We will compute correlation functions of the stress-ener
tensor and global symmetry currents. In Sec. III we will co
sider brane-world scenarios with a brane located atU
5U* . WhenpÞ3 the theory of the brane-world is dual to
(p11)-dimensional nonconformal super Yang-Mills theo
coupled to gravity with a cutoffL5U* . These brane-world
scenarios are sometimes called dilatonic domain walls.
will analyze these brane-world scenarios with and witho
additional compactification of brane worldvolume coord
nates. We will use the results of Sec. II in order to comp
the corrections to Newton and Coulomb laws. We will al
derive these corrections in a slightly different approach a
discuss the localization of gauge and gravitational fields.
find that brane-worlds based on D4- and D5-branes exhib
localization of both gauge and gravitational fields. Sect
IV is devoted to a more detailed discussion on brane-wo
scenarios based on dilatonic domain walls. Some detail
Green’s functions computations are outlined in the App
dix.

II. D p-BRANES

In this section we will consider the worldvolume theo
of N coincident Dp-branes in type-II string theory using th
dual supergravity description. We will compute correlati
functions of the stress-energy tensor and global symm
currents.

A. The dual supergravity description

Consider a system ofN coinciding flat Dp-branes of
type-II string theory. We denote the ten-dimensional sp
coordinates byx0 , . . . ,x9. The p11 worldvolume coordi-
nates are taken to bex0 , . . . ,xp . The field theory limit of
this Dp-brane system is defined by taking the string leng
l s→0 while keeping the Yang-Mills couplinggY M

2 5gsl s
p23

fixed, wheregs is the string coupling@5#. For p,6 this is a
limit that decouples the open string degrees of freedom
tached to the Dp-branes worldvolume from the bulk close
string degrees of freedom. The worldvolume theory is ap
11)-dimensionalU(N) super Yang-Mills theory with six-
©2002 The American Physical Society01-1
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TONY GHERGHETTA AND YARON OZ PHYSICAL REVIEW D65 046001
teen supercharges. In the following we will consider t
largeN ’t Hooft limit, where we denote the ’t Hooft param
eter byl5gY M

2 N.
This system has a conjectured dual string description@5#.

In the supergravity approximation the~string-frame! metric
describing the system is given by

ds25 l s
2S U (72p)/2

l1/2
dxuu

21
l1/2

U (72p)/2
dU2

1l1/2U (p23)/2dV82p
2 D ,

ef5
l (72p)/4

N
U (72p)(p23)/4. ~1!

Note that we have omitted numerical factors that will
irrelevant for our discussions later. Thep11 coordinates of
the Dp-brane worldvolume are denoted byxuu , and have di-
mension of length. The radial coordinateU has dimensions
of mass, and from the Dp-branes worldvolume field theor
point of view it plays the role of an energy scale. Lar
values ofU correspond to the UV regime and small valu
correspond to the IR regime of the Yang-Mills theory. T
angular coordinates of the (82p)-dimensional sphere ar
denoted byV82p . They are dimensionless in the above n
tation. The fieldf is the ten-dimensional dilaton.

We will be mostly interested in the nonconformal cas
pÞ3. In these cases the metric~1! has the isometry group
ISO(1,p)3SO(92p). From the Yang-Mills theory point of
view ISO(1,p) is the Poincare symmetry whileSO(92p) is
the R-symmetry group. The Yang-Mills coupling is dimen
sionful, @gY M

2 #5@L#p23, and we can define a dimensionle
expansion parameter of the system:

ge f f
2 5gY M

2 NUp235lUp23. ~2!

The Yang-Mills theory is strongly coupled whenge f f.1.
The scalar curvature of the metric~1! is given by

l s
2R;

1

ge f f
. ~3!

We see from relation~3! that the curvature expansion in th
dimensionless parameterl s

2R on the supergravity side corre
sponds to a strong coupling expansion of the gauge theo
the inverse of the effective Yang-Mills bare coupling. It is
good expansion whenl s

2R!1, i.e., in the regime where th
Yang-Mills field theory is strongly coupled. Whenge f f

2 !1
we have a large curvature. In this regime we cannot trust
supergravity description. However, the Yang-Mills perturb
tion theory inge f f is valid in this regime. The overlap regim
is whenge f f;1.

The effective string couplingef in Eqs. ~1! can be ex-
pressed in terms ofge f f as

ef;
ge f f

(72p)/2

N
. ~4!
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We see from Eq.~4! that the string loop expansion corre
sponds to the 1/N expansion of the Yang-Mills theory. Thi
expansion is good when the effective string coupling is sm
ef!1.

Thus, the regime where the supergravity description of
system given by Eq.~1! is valid is dictated by the condition
that both the curvature~3! and effective string coupling~4!
are small. This implies that

1!ge f f
2 !N4/(72p). ~5!

We will work in this regime. Moreover, we will consider th
casesp,6. Whenp>6 the above field theory limit is no
longer a decoupling limit, and the brane worldvolume theo
does not decouple from the bulk physics. This can be se
for instance, by the fact that the eleven-dimensional Pla
length l 11

3 5gsl s
3 is fixed in the limit. Therefore, gravity doe

not decouple in eleven dimensions, which provides
proper description of the system in the UV@5#. Another way
is to compute the absorption cross section for graviton s
tering on the branes and see that it does not vanish in
limit @8#. From the brane-world scenario we will see th
gravity and gauge fields cannot be localized.

B. Stress-energy tensor correlators

Let us now use the dual supergravity description in or
to compute the two-point function of the stress-energy ten
of the Yang-Mills field theory on the Dp-branes worldvol-
ume. Unlike the conformal casep53, the two-point function
changes as we vary the length scaleuxu[U21. The regime of
validity of the supergravity computation is given by relatio
~5!. As noted above this is a strong coupling regime of t
gauge theory. The results that we will find will match, up
a numerical factor, with the perturbative Yang-Mills expe
tation in the crossover regime.

The basic idea of the correspondence between st
theory and gauge theory is the identification, in the sup
gravity approximation, of the generating functional of th
connected Green’s functions in the gauge theory with
minimum of the supergravity action subject to certain boun
ary conditions@2,3#. For each operator on the Yang-Mill
side we identify a field on the supergravity~string! side. The
bulk field that couples to the stress-energy tensor of
gauge theory is the graviton. In the computation of the g
erating functional for the stress-energy tensor correlators
need to solve the graviton field equation in the backgrou
~1! subject to some boundary conditions and insert it in
supergravity action. One decomposes the metric

gmn5ḡmn1hmn , m,n50, . . . ,9 ~6!

where ḡmn denotes the background metric~1! and hmn de-
notes the perturbation. The stress-energy tensorTmn of the
brane worldvolume field theory couples to the bulk gravit
as

Sint;E dp11xTmnhmn . ~7!
1-2
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We can decompose the graviton field as

hmn~x,U,V!5emneik•xh~U !Y~V82p!, ~8!

whereemn is a constant polarization tensor, andx are thep
11 worldvolume coordinates. The graviton is polariz
along the brane worldvolume coordinates, i.e.,emn

50, m,n5p11, . . . ,9. We use thetransverse traceles
gauge, i.e.,]mhmn50 andhm

m50, and consider thes-wave
mode of the graviton, i.e., it does not vary along the dir
tions of the (82p)-dimensional sphere. We expand to qu
dratic order in the supergravity action for the graviton. T
type-II supergravity equation for the graviton modesh(U) is
related to a minimally coupled scalar field@8#. More pre-
cisely, for certain polarization and momentum vectors
graviton equation is the minimal scalar equation

f 9~U !1
82p

U
f 8~U !2k2lUp27f ~U !50. ~9!

In the following we will suppress the index structure of t
stress-energy tensor.

We consider Eq.~9! in the range 0<U<U0. This equa-
tion is solved by Bessel functions and we choose the reg
solution that is normalized to one atU5U0. Substituting the
solution into the supergravity action, the generating fu
tional is obtained as a pure boundary term. We construct
‘‘flux factor’’ FT ,

FT5
N2

l2
@ f ~U !U82p]Uf ~U !#0

U0 , ~10!

which yields the momentum-space two-point function, a
we get that

^T~k!T~2k!&5FT . ~11!

By choosing theU0 independent nonanalytic term inFT and
Fourier transforming, we obtain the two-point function
x-space. Whenp,5 we get

^T~x!T~0!&5
N2

l (22a)

1

uxu2a1p11
5

Na

gY M
2(22a)

1

uxu2a1p11
,

a5
72p

52p
. ~12!

For p55 the two-point function reads

^T~x!T~0!&5
N2

l19/4

1

uxu5/2
e2uxu/Al, ~13!

where we have only written the leading largeuxu behavior.
We have summarized the results in Table I.

Two cases that will be of particular importance for t
brane-world scenarios arep54 andp55. It is therefore of
interest to give some more details on the computation
these two cases.
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1. D4-branes

The minimal scalar equation~9! reads

f 9~U !1
4

U
f 8~U !2k2lU23f ~U !50. ~14!

Define the coordinatez52(l/U)1/2, which has dimensions
of length. The regular normalizable solution of Eq.~14! is
given by

f ~z!5~kz!3K3~kz!, ~15!

whereK3(kz) is the modified Bessel function. The releva
nonanalytic piece of the ‘‘flux factor’’~10! reads

FT5N2lk6 log~k!. ~16!

The Fourier transform of Eq.~16! yields the result

^T~x!T~0!&5
N3gY M

2

uxu11
. ~17!

At the crossover regime between the supergravity descrip
and the perturbative Yang-Mills descriptiongY M

2 Nuxu21.1
we have the matching to the expectedU(N) gauge theory
result withN2 degrees of freedom:

^T~x!T~0!&5
N2

uxu10
. ~18!

The matching agrees up to a numerical factor that is in
pendent of the rank of the gauge groupN and the Yang-Mills
couplinggY M .

TABLE I. The supergravity results for theN Dp-branes
^T(x)T(0)& correlator.

p ^T(x)T(0)&

0
N7/5

gY M
6/5

1

uxu19/5

1
N3/2

gY M

1

uxu5

2
N5/3

gY M
2/3

1

uxu19/3

3
N2

uxu8

4
N3gY M

2

uxu11

5
N2

l19/4

1

uxu5/2
e2uxu/Al
1-3
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2. D5-branes

The minimal scalar equation~9! reads

f 9~U !1
3

U
f 8~U !2k2lU22f ~U !50. ~19!

Define Ul1/25exp(zl21/2), where z has dimensions o
length. The solutions of Eq.~19! are given by

f ~z!5exp@2zl21/2~16A11lk2!#. ~20!

After the normalization the relevant nonanalytic piece of
‘‘flux factor’’ ~10! reads

FT5
N2

l3
A11lk2. ~21!

Fourier transforming Eq.~21! yields Eq.~13!.
At the crossover regime between the supergravity desc

tion and the perturbative Yang-Mills descriptio
gY M

2 Nuxu22.1 we have the matching to the expectedU(N)
gauge theory result withN2 degrees of freedom:

^T~x!T~0!&5
N2

uxu12
. ~22!

As before, the matching agrees up to a numerical factor
is independent of the rank of the gauge groupN and the
Yang-Mills couplinggY M .

At a length scaleuxu!gY M /AN the effective string cou-
pling is large and the weakly coupled description is given
the S-dual NS5-brane background. The minimally coup
scalar equation in this background is again~19! and the re-
sult ~13! is obtained again.

3. Dp-branes

For generalp the correlator̂ T(x)T(0)& as given in Table
I, matches at the crossover region between the supergra
description and the perturbative Yang-Mills descripti
gY M

2 Nuxup23.1 with the expected Yang-Mills result

^T~x!T~0!&5
N2

uxu2(p11)
. ~23!

We note that the result in Table I for the stress-energy tw
point function whenp51 was obtained in Ref.@9#.

C. Current-current correlators

Global symmetry currents of the brane worldvolume fie
theoryJm couple to massless bulk gauge fieldsAm as

Sint;E dp11xJmAm. ~24!

We may distinguish two types of such gauge fields. One t
of field arises from the isometries of the space on which
reduce, in our case, the (82p)-dimensional sphere in Eqs
~1!. These couple toSO(92p) R-symmetry currents of the
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Dp-branes gauge theory. We can have additional gauge fi
that couple to other global symmetry currents as, for
stance, in the five-dimensional fixed points withEn global
symmetry analyzed in Ref.@10#. We will consider the former
type in the following.

In order to compute the current correlators we need
solve the graviton equation for the components of the gra
ton with one index along the brane worldvolume and o
index along the (82p)-dimensional sphere. Alternatively w
can first reduce the supergravity metric~1! on the
(82p)-dimensional sphere and solve th
(p12)-dimensional gauge field equation. We will pursue t
second procedure since it will also shed light later on bra
world scenarios based on various domain-wall solutions
the literature.

The dimensional reduction of the Dp-brane supergravity
solutions along the sphere have been performed in R
@11,12# using another coordinate system. We will repeat
same procedure here, except that we will use the coordin
of the supergravity solution~1!. It is useful to retain theU
coordinate because it has the interpretation of an ene
scale of the brane worldvolume field theory.

The dimensional reduction is performed by using the
satz

dsE
25 l s

2~eawdsp12
2 1e2p/(82p)awdV82p

2 !, ~25!

where w is a scalar field anddsE
2 is the ten-dimensiona

Dp-branes metric written in the Einstein frame, i.e., it
related to the string frame metric~1! by dsE

25e2f/2ds2. The
constanta is given by

a5
1

2 S 82p

p D 1/2

. ~26!

By comparing the coefficient of thedV82p
2 term of the two

metricsdsE
2 in Eq. ~25! andds2 in Eqs.~1! we can read the

form of the scalarw

ew5F 1

N
l (32p)/4U2(32p)2/4G [(82p)/p] 1/2

. ~27!

Substituting this expression into Eq.~25! we obtain the (p
12)-dimensional metric

dsp12
2 5N4/pl23/pU9/p21~dxuu

21lUp27dU2!. ~28!

The (p12)-dimensional gauge field bulk action is the
given by

Sgauge5E dp12xAgp12e2[4/Ap(82p)]wF2

[E dp12xAgp12

1

gbulk
2

F2, ~29!

where

gbulk
2 5N24/pl3/p21U2(32p)2/p. ~30!
1-4
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This is of importance since while the gravitational and sca
fields in the reduced action are canonical in (p12) dimen-
sions this is not the case for the gauge field as we see f
Eq. ~29!. Note that for our purposes we omit the grou
theory factors and we write the action~29! schematically. In
the following we will suppress the Lorentz index on the cu
rent

In order to solve the (p12)-dimensional Maxwell equa
tion, we write the (p12)-dimensional gauge field as

Am~x,U !5«meik•xf ~U !. ~31!

Imposing the gauge conditions]mAm50, m50, . . . ,p11,
andAU50 we obtain

f 9~U !1
3

U
f 8~U !2k2lUp27f ~U !50. ~32!

As before, we consider Eq.~32! in the range 0<U<U0. We
solve this equation and choose a regular solution that is
malized to one atU5U0. The generating functional for th
current correlators is obtained as a pure boundary te
Again we construct the ‘‘flux factor’’FA

FA5
N2

l
@ f ~U !U3]Uf ~U !#0

U0 , ~33!

and we have that

^J~k!J~2k!&5FA . ~34!

By choosing theU0 independent nonanalytic term inFA ,
and Fourier transforming we obtain forp,5

^J~x!J~0!&5
N2

l (22a)

1

uxu2a1p21
5

Na

gY M
2(22a)

1

uxu2a1p21
,

a5
72p

52p
, ~35!

and forp55

^J~x!J~0!&5
N2

l15/4

1

uxu5/2
e2x/Al. ~36!

The results are summarized in Table II. Consider in detail
p54 andp55 cases.

1. D4-branes

Equation~32! reads

f 9~U !1
3

U
f 8~U !2k2lU23f ~U !50. ~37!

As before, definez52(l/U)1/2, which has dimensions o
length. The regular normalized solution of Eq.~37! is given
by

f ~z!5~kz!2K2~kz!, ~38!
04600
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whereK2(kz) is the modified Bessel function. The releva
piece of the ‘‘flux factor’’~10! reads

FA5N2lk4 log~k!. ~39!

Fourier transforming Eq.~39! yields

^J~x!J~0!&5
N3gY M

2

uxu9
. ~40!

At the crossover region between the supergravity desc
tion and the perturbative Yang-Mills descriptio
gY M

2 Nuxu21.1 we have the matching to the expected gau
theory result

^J~x!J~0!&5
N2

uxu8
. ~41!

The matching is up to a numerical factor that is independ
of the rank of the gauge groupN and the Yang-Mills cou-
pling gY M . We have omitted the group theory factors and
charges as well.

2. D5-branes

Equation~32! is identical to the minimal scalar equatio
~19!. We consider the same solutions~20! and construct the
‘‘flux factor’’ which now reads

FA5
N2

l2
A11lk2. ~42!

Fourier transforming Eq.~42! yields ~36!.

TABLE II. The supergravity results for theN Dp-branes
^J(x)J(0)& correlator.

p ^J(x)J(0)&

0
N7/5

gY M
6/5

1

uxu9/5

1
N3/2

gY M

1

uxu3

2
N5/3

gY M
2/3

1

uxu13/3

3
N2

uxu6

4
N3gY M

2

uxu9

5
N2

l15/4

1

uxu5/2
e2uxu/Al
1-5
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At the crossover region between the supergravity desc
tion and the perturbative Yang-Mills descriptio
gY M

2 Nuxu22.1 we have the matching to the expected gau
theory result:

^J~x!J~0!&5
N2

uxu10
. ~43!

As before, the matching is up to a numerical factor tha
independent of the rank of the gauge groupN and the Yang-
Mills coupling gY M .

Similarly as for the stress-energy tensor the result~36! is
also valid for large string coupling. This is because t
S-dual supergravity background ofN NS-5 branes leads to
the same equation of motion as~19!.

3. Dp-branes

Note that the correlator̂J(x)J(0)& for generalp, as given
in Table II, matches at the crossover region between the
pergravity description and the perturbative Yang-Mills d
scription gY M

2 Nuxup23.1 with the expected Yang-Mills re
sult

^J~x!J~0!&5
N2

uxu2p
. ~44!

Note also that, up to numerical constants that are indep
dent of gY M and N, the two-point functions of the stres
tensorT and the currentJ are related forp,5 by

^J~x!J~0!&5uxu2^T~x!T~0!& ~45!

and forp55 by

^J~x!J~0!&5l^T~x!T~0!&. ~46!

III. BRANE-WORLDS

We use the notation brane-world for a brane~not neces-
sarily a Dp-brane! located atU5U* . When pÞ3 and the
brane is a Dp-brane, the theory on the brane-world is d
scribed by a (p11)-dimensional nonconformal super Yan
Mills theory coupled to gravity with a cutoffL5U* . In
general, the brane-world can have extra degrees of freed

In this section we will analyze these brane-world sc
narios with and without additional compactification of bra
worldvolume coordinates. These brane-world scenarios
sometimes called dilatonic domain walls. To make the c
nection we note that in p12 dimensions the RR
(p12)-form field Fp125dAp11 can be dualized and re
placed by a cosmological constant. The (p12)-dimensional
supergravity action reduced from ten dimensions has dom
wall solutions. Some of these supersymmetric solutions
the ten-dimensional Dp-branes solutions reduced on the
2p)-dimensional sphere@13,14,12#.

A further reduction to be discussed is the compactificat
of some of the Dp-branes worldvolume coordinates. In pa
ticular the compactification of one coordinate of the D
brane worldvolume on the circle, S1 or two of the D5-brane
04600
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worldvolume on a torus, S13S1 leads to a four-dimensiona
brane-world scenarios. We will discuss in more detail t
relation to the brane-world scenarios based on the dilato
domain wall solutions in the discussion section.

A. Newton’s law

The (p11)-dimensional gravitational couplingkp11 is
defined in terms of the ten-dimensional gravitational co
pling k10 via

1

k10
2 E d10xAg10e

22fR105
1

kp11
2 E dp11xAgp11Rp11 .

~47!

The left-hand side~LHS! is the ten-dimensional gravitationa
action in the string frame metric~1! while the right-hand side
~RHS! is the (p11)-dimensional gravitational action in th
Einstein frame. Using Eqs.~1! and ~47! we obtain

Gp11[kp11
2 5

gY M
2

NU
*
2

, ~48!

where U* is the UV cutoff. Note that whenU* →`, the
gravitational coupling~48! vanishes and gravity decouple
from the brane, as expected.

Consider the correction to Newton’s law in the bran
world scenarios.

1. D4-branes

Consider a brane-world scenario described by a fi
dimensional SYM theory coupled to gravity with a cutoff
U5U* . The correction to the Newton’s law can be com
puted from the graviton propagatorGgrav i ton(k) @15#, as in
Fig. 1. The first part is the free graviton propagation wh
the second part is the leading non-CFT correction

Ggrav i ton~k!;
1

k2
1

1

k2
k5^T~k!T~2k!&k5

1

k2

5
1

k2
@11N3gY M

2 G5k4 log~k!#, ~49!

where we have used Eq.~16!, andG5 is given by Eq.~48!.
Fourier transforming in five dimensions yield

Ggrav i ton~x!;
1

x3 S 11N3gY M
2 G5

x4 D . ~50!

FIG. 1. The graviton propagatorGgrav i ton(k), where the first
part is the free graviton propagation while the second part is
leading non-CFT correction.
1-6
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From relation~50! we can read the modification to the five
dimensional Newton’s force law 1/r 3:

FNewton5
G5m1m2

r 3 S 11
N2lG5

r 4 D . ~51!

2. D5-branes

Consider a six-dimensional brane-world scenario. T
correction to the Newton’s law can be computed as bef
from the graviton propagatorGgrav i ton(k) as in Fig. 1.
Again, the first part is the free graviton propagation while t
second part is the leading non-CFT correction. Using
~21! we get

Ggrav i ton~k!;
1

k2 S 11
N2G6

l3

A11lk2

k2 D , ~52!

whereG6 is given by Eq.~48!. Fourier transforming in six
dimensions yields at largex

Ggrav i ton~x!;
1

x4 F11c
N2G6

l2 S x

Al
D 3/2

e2x/AlG . ~53!

where byc we denote a numerical constant which we n
glected. The modification to the six-dimensional Newto
force law 1/r 4 reads

FNewton5
G6m1m2

r 4 F11c
N2G6

l2 S r

Al
D 3/2

e2r /AlG . ~54!

3. Dimensional reduction

In order to arrive at four-dimensional brane-world sc
narios one can further compactify the worldvolume coor
nates. In the D4-brane case we compactify one coordinat
a circle while in the D5-brane case we compactify two co
dinates on a torus. Consider first the D4-brane scen
where we compactify on a circle of radiusR. At distances
uxu5U21 in the regime

R!uxu!gY M
2 N, ~55!

we can neglect the momenta along the circle direction
we are still in the supergravity regime defined by relation~5!.
Thus, Fourier transforming in four dimensions, the gravi
tional force is then

FNewton5
G4m1m2

r 2 S 11
N2lG4R

r 4 D , ~56!

whereG4R5G5.
Consider next the D5-brane scenario where we comp

tify on two circles of radiusR. At distances in the regime

R!uxu!~gY M
2 N!1/2, ~57!
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we can neglect the momenta along the circle direction
we are still in the supergravity regime defined by relation~5!.
Fourier transforming in four dimensions, the gravitation
force reads

FNewton5
G4m1m2

r 2 F11c
N2G4R2

l2 S r

Al
D 21/2

e2r /AlG ,

~58!

whereG4R25G6.

4. Discussion

In the following we compare the gravitational force bas
on the nonconformal brane-world scenarios with the grav
tional force in brane-world scenarios based on AdSd11,

FNewton5
Gdm1m2

r d22 S 11
cdGd

r d22 D , ~59!

wherecd is the central charge of the underlying conform
field theory. Comparing the above result with Eq.~51! in five
dimensions, Eq.~54! in six dimensions and Eqs.~56! and
~58! in four dimensions after dimensional reduction, we s
that in the nonconformal brane-world scenarios the corr
tions to Newton’s law have differentr dependences. In par
ticular, the D5-brane geometry leads to corrections that
exponentially suppressed. As we will see later, this cor
sponds to the fact that the Kaluza-Klein spectrum has a m
gap. Experimental measurements of Newton’s law can
tinguish between these different brane-world scenarios.

B. Coulomb’s law

The effective (p11)-dimensional gauge coupling
gbrane, on thep-brane can be obtained via

E dp12xAgp12

1

gbulk
2

F (p12)
2 5E dp11x

1

gbrane
2

F (p11)
2 ,

~60!

where F (p12) and F (p11) denote the field strength of th
gauge field inp12 andp11 dimensions, respectively. Th
LHS is the (p12)-dimensional gauge field action after th
dimensional reduction~25! while the RHS is the effective
(p11)-dimensional gauge field action. Using Eq.~30! we
obtain forp.3

gbrane
2 5

1

N2U
*
p23

, ~61!

whereU* is the UV cutoff.
Consider the correction to Coulomb’s law in these bra

world scenarios.

1. D4-branes

Consider a five-dimensional brane-world scenario. T
correction to the Coulomb’s law can be computed from
propagator for a vector fieldGvector(k) as in Fig. 2. The first
1-7
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part is the free vector propagation, while the second pa
the leading non-CFT correction

Gvector~k!;
1

k2
1

1

k2
g5^J~k!J~2k!&g5

1

k2

5
1

k2
@11N3gY M

2 g5
2k2 log~k!#, ~62!

where we have used Eq.~39!. The gauge couplingg5 is
given by Eq.~61! for p54.

Fourier transforming in five dimensions yields

Gvector~x!;
1

x3 S 11N3gY M
2

g5
2

x2D . ~63!

The modification to the five-dimensional Coulomb’s for
law 1/r 3 reads

FCoulomb5
g5

2q1q2

r 3 S 11
N2lg5

2

r 2 D . ~64!

2. D5-branes

Consider a six-dimensional brane-world scenario. T
correction to the Coulomb’s law can be computed as be
from the vector propagatorGvector(k) as in Fig. 2. Again, the
first part is the free graviton propagation while the seco
part is the leading non-CFT correction. Using Eq.~42! we
obtain

Gvector~k!;
1

k2 S 11
N2g6

2

l2

A11lk2

k2 D , ~65!

whereg6 is given by Eq.~61! for p55. The modification to
the six-dimensional Coulomb’s force law 1/r 4 reads

FCoulomb5
g6

2q1q2

r 4 F11c
N2g6

2

l S r

Al
D 3/2

e2r /AlG . ~66!

3. Dimensional reduction

Again, in order to arrive at four-dimensional brane-wor
scenarios one can further compactify the worldvolume co
dinates. In the D4-brane case we compactify one coordin
on a circle while in the D5-brane case we compactify t
coordinates on a torus. Consider first the D4-branes scen
where we compactify on a circle of radiusR. At distances
satisfying regime~55! the Coulomb force reads

FIG. 2. The vector field propagatorGvector(k) where the first
part is the free vector propagation while the second part is
leading non-CFT correction.
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FCoulomb5
g4

2q1q2

r 2 S 11
N2lg4

2R

r 2 D , ~67!

whereg4
2R5g5

2.
Consider next the D5-branes scenario where we comp

tify on two circles of radiusR. At distances satisfying regime
~57! we get

FCoulomb5
g4

2q1q2

r 2 F11c
N2g4

2R2

l S r

Al
D 21/2

e2r /AlG .

~68!

whereg4
2R25g6

2.

4. Discussion

In the following we compare the Coulomb force based
the nonconformal brane-world scenarios with the Coulo
force in brane-world scenarios based on AdSd11,

FCoulomb5
gd

2q1q2

r d22 S 11
gd

2ad

r d24D , ~69!

wheread is the coefficient of the current-current correlator
the underlying conformal field theory. Note that ford54 we
cannot use this formula and the corrections are logarithm

Comparing the above result with Eq.~64! in five dimen-
sions, Eq.~66! in six dimensions and Eqs.~67!,~68! in four
dimensions after dimensional reduction, we see that in
nonconformal brane-world scenarios the corrections to C
lomb’s law have differentr dependences. In particular, th
D5-brane geometry leads to corrections that are expon
tially suppressed. As we will see later, this corresponds to
fact that the Kaluza-Klein spectrum has a mass gap. Ag
experimental measurements of Coulomb’s law can dis
guish between these different brane-world scenarios.

C. Graviton and gauge field localization

In the previous calculation of the Newton and Coulom
laws, a massless mode with behavior 1/k2 was assumed to be
localized on the brane worldvolume. However, one can
plicitly check the localization properties of the bulk gravito
and gauge fields on thep-brane located atU5U* by solving
the equation of motion in the background geometry~1! and
computing the Green’s functionGk .

By invoking the bulk-boundary correspondence, the b
Green’s function can be used to obtain an alternative der
tion of the two-point functionŝOO& in the dual theory, con-
sidered in Sec. II. Since the Green’s function represents
sum over all connected diagrams we obtain the relation

e

1-8
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^O~k!O~2k!&5
k2

k
2G k

21 , ~70!

where for the stress-energy tensorTmn we use the graviton
propagator (k522Gp11), while for the vector currentJm

we use the gauge field propagator@k5(32p)gp11
2 #. For p

,6 there always exists a term in Eq.~70! that does not
depend on the cutoffU* . The results for the stress-energ
tensor and current correlator, obtained in this way, are a
agreement with those found in Sec. II.

Let us now consider the graviton and gauge field Gree
function to explicitly check the localization properties on t
p-brane.

1. Graviton

Consider a bulk graviton in the effectiv
(p12)-dimensional brane-world. The minimally couple
scalar equation~9! determines the mass and localizati
properties of the (p11)-dimensional Kaluza-Klein modes
wherek252m2. The differential operator~9! is self-adjoint
and the solutionsf m form a complete set that satisfies th
orthonormal relation

E
0

U
* dUU fmf m85dmm8 . ~71!

Whenm50 we find that the equation of motion~9! always
has a solutionf 0(U)5const, and there is always a norma
izable mode. This is consistent with Eq.~48!.

To check whether gravity is actually localized on t
p-brane we must compute the Green’s function for t
sources on the brane. In order to do this the first question
needs to be addressed is the boundary conditions. Th
particularly important because except for the casep53,
there is singular behavior atU50. This singularity corre-
sponds to the massless open string degrees of freedom
are missing in the description. We expect the singularity
be resolved once the required degrees are added, and w
continue to impose Hartle-Hawking boundary conditions
U50, as in thep53 case. Thus following the procedur
outlined in the Appendix the expression for the sca
Green’s function whenU5U85U* is given by

Gk~U* ,U* !52 i
gY M

4

Alk
U

*
(p29)/2

3
Ha

(1)
„i ~a21!AlkU

*
(p25)/2

…

Ha21
(1)

„i ~a21!AlkU
*
(p25)/2

…

, ~72!

where H (1) is the Hankel function of the first kind. Whe
p,5 the Green’s function can be written in the for
Gk(U* ,U* )5G k

(0)1G k
(KK) , where the zero mode contribu

tion G k
(0) and the Kaluza-Klein contributionG k

(KK) are given
by
04600
n

’s
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is
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r

G k
(0)522

Gp11

k2
, ~73!

G k
(KK)5 i

gY M
4

Alk
U

*
(p29)/2

3
Ha22

(1)
„i ~a21!AlkU

*
(p25)/2

…

Ha21
(1)

„i ~a21!AlkU
*
(p25)/2

…

. ~74!

We see from the form ofG k
(0) that one obtains Newton’s law

on thep-brane located atU* . This is consistent with the fac
that the graviton zero mode is also localized there. The c
responding corrections to the (p11)-dimensional Newton’s
law are obtained fromG k

(KK) and one obtains the result foun
earlier for the D4-brane.

Whenp55 the Green’s function has the form

Gk~U* ,U* !52
G6

k2
~11A11lk2!, ~75!

and again there is a localized massless mode (1/k2) at U
5U* . The corresponding corrections to Newton’s law ar
ing from the Kaluza-Klein continuum lead to exponentia
suppressed corrections and agree with the result found
lier.

Whenp>6 one finds that there is an equal and oppos
contribution arising fromG k

(KK) that precisely cancels th
G k

(0) contribution. The remaining leading contribution fro
G k

(KK) does not lead to the usual Newton’s law. Thus forp
>6 we do not obtain Newton’s law and there is no localiz
mode in the brane-world with 1/k2 behavior.

2. Gauge fields

The equation of motion for the (p11)-dimensional
Kaluza-Klein gauge fields is governed by Eq.~32! where
k252m2. The differential operator in Eq.~32! is self-adjoint
and the solutionsf m form a complete set that satisfies th
orthonormal relation

E
0

U
* dUUp24f mf m85dmm8 . ~76!

Notice that whenm50 there is always a constant solution
Eq. ~32!. Thus only forp>4 will the zero mode be normal
izable. This is consistent with Eq.~61!.

Analogous to the graviton case we can obtain the Gree
function for two charged~under the gauge field! sources lo-
calized on thep-brane. Following the procedure outlined
the Appendix one obtains the gauge field Green’s functio

Gk~U* ,U* !52 i
Al

N2k
U

*
(12p)/2

3
Ha21

(1)
„i ~a21!AlkU

*
(p25)/2

…

Ha22
(1)

„i ~a21!AlkU
*
(p25)/2

…

[G k
(0)~U* !1G k

(KK)~U* !, ~77!

where forpÞ5 we have
1-9



r

s
e

is
ith
r

Th
in
th

th

es
o
le

n

n

lu
a

n

e
lk

on
re-

he
ity

eld
d

S
-

o-
ne
r-

s in

4-
.
e-
or-
t
e-

the

ain
ries
he
a-

ian

is

eta-
the
by
re-

TONY GHERGHETTA AND YARON OZ PHYSICAL REVIEW D65 046001
G k
(0)5~32p!

gp11
2

k2
, ~78!

G k
(KK)5 i

Al

N2k
U

*
(12p)/2

3
Ha23

(1)
„i ~a21!AlkU

*
(p25)/2

…

Ha22
(1)

„i ~a21!AlkU
*
(p25)/2

…

, ~79!

andgp1151/(NU
*
(p23)/2) is the effective gauge coupling fo

p.3 on thep-brane. Whenp,3, the leading contribution
G k

(0) is positive and cancels against an equal and oppo
contribution fromG k

(KK) . Thus, there is no localized mod
with 1/k2 behavior.

For p53, the zero mode contributionG k
(0) vanishes and

the leading Kaluza-Klein contribution is

G k
(KK)5

1

N2 log~k!

1

k2
[

ee f f
2 ~k!

k2
. ~80!

As noticed in@16–18#, even though the bulk zero mode
nonnormalizable, one can still think of a 4D gauge field w
an effective gauge coupling that runs logarithmically to ze
in the infrared.

When p54 the zero mode contributionG k
(0) is nonvan-

ishing and there is a localized gauge field on the brane.
corrections to Coulomb’s law arise from the Kaluza-Kle
continuum and agree with the result obtained earlier for
D4-brane.

The D5-brane case is similar to that encountered for
minimally coupled scalar. The Green’s function is now

Gk~U* ,U* !52
g6

2

k2
~11A11lk2!, ~81!

and one obtains the six-dimensional Coulomb’s law. Th
results are identical to the graviton case except for the c
plings and again we see the mass gap in the Kaluza-K
spectrum of the gauge field.

Whenp.5 the contributionG k
(0) is again canceled by a

equal and opposite contribution arising fromG k
(KK) . Thus

there is no localized gauge field on thep-brane with 1/k2

behavior.

IV. DISCUSSION

In the following we will discuss in more detail the relatio
between our work and the brane-world scenarios based
dilatonic domain wall solutions. Consider domain wall so
tions in D dimensions which are solutions of the field equ
tions derived from the action

S5E dDxAgFR2
1

2
~]w!222LebwG1E dD21xL.

~82!
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The field w is a D-dimensional scalar field,L is a bulk
cosmological constant andb is a constant parametrized i
terms of a quantityD:

b25D1
2~D21!

~D22!
. ~83!

The LagrangianL is a delta-function source added to th
bulk action. It provides a cutoff for the boundary of the bu
solution.

Whenb50 one obtains AdS solutions where the dilat
is constant and the dual description is some CFT. More p
cisely, if we use only a slice of AdS, the description of t
brane-world scenario is in terms of a CFT coupled to grav
with a cutoff. For example, whenD55 thenDAdS5

528/3,
and one obtains the solution@6#. This can originate, for in-
stance, from a ten-dimensional AdS53S5 solution of type-
IIB supergravity, with anN54 SCFT dual description. In
the truncated brane-world version, the dual conformal fi
theory is modified by introducing an ultraviolet cutoff, an
gauging the Poincare symmetry@18,19#.

Similarly, whenD56 one obtains a six-dimensional Ad
solution@20#, whereDAdS6

525/2. This can arise as a reduc

tion of a ten-dimensional warped AdS6 solution correspond-
ing to the D4-D8 brane system@10#. The dual field theory is
a five-dimensional CFT. A five-dimensional domain wall s
lution can be obtained by compactifying one of the bra
dimensions on a circle S1 and analyzed in terms of the co
responding dual theory in Ref.@21#. Other similar solutions
were obtained in Ref.@22#.

Domain wall solutions can also be constructed whereb
Þ0, and the dilaton is no longer constant. One example i
D55 andD5212/5 with a varying dilaton@13,14,11,12#,
which can be obtained from the near-horizon metric of D
branes compactified on S13S4. Following the results in Sec
III A, the Newtonian law obtained from the dimensional r
duction of the D4-brane solution is consistent with the c
rections obtained in Ref.@12#. Our derivation indicates tha
the dual theory of this domain wall solution is the fiv
dimensional SYM theory compactified on S1. In comparison
to the Randall-Sundrum scenario where the correction to
Newton potential is proportional to 1/r 3, here the corrections
are 1/r 5. We also considered the gauge fields in this dom
wall background. Gauge fields that arise from the isomet
of S4 have a zero mode localized on the domain wall. T
corrections to the Coulomb law arising from the Kaluz
Klein continuum are given by Eq.~64!, and are related to the
current correlators of the dual field theory.

Another D55 solution, with D522, arises from the
near-horizon metric of D5-branes compactified on T23S3.
This case, analyzed in Sec. III A, gives rise to a Newton
force with exponentially suppressed corrections~see also
Ref. @12#!. Our analysis indicates that the dual field theory
a six-dimensional SYM compactified on T2. The exponen-
tially suppressed corrections have two equivalent interpr
tions. In the supergravity description, they arise because
Kaluza-Klein continuum is separated from the zero mode
a mass gap. In the six-dimensional SYM theory they cor
1-10
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spond to a mass gap of the theory developed in the stro
coupled regime. As before, we can study the gauge field
the domain wall background. Those that arise from the iso
etries of S3 have a zero mode localized on the domain wa
The Coulomb law corrections are exponentially suppress
and they are related to the current correlators of the
dimensional SYM theory.
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APPENDIX: GREEN’S FUNCTION IN THE EXTREMAL
Dp-BRANE GEOMETRY

We will follow the derivation of the Green’s function pre
sented in Ref.@23#, except that we will consider the extrem
Dp-brane geometry. Let us first consider the case of
minimally coupled scalarf in ten dimensions. Introducing
source functionJ, one obtains

]M„A2ggMN]Nf~X!…5A2gJ~X!. ~A1!

whereX5(x,U,u i), with x denoting thep11 worldvolume
coordinates. The corresponding Green’s function for
~A1! can then be defined as

f~X!5E d10X8A2gG~X;X8!J~X8!. ~A2!

If we now consider the Fourier transform of the Gree
function

G~X;X8!5(
$ni %

ei $ni %u iE dp11k

~2p!p11
eik•(x2x8)Gk~U,U8!,

~A3!

where the discrete Fourier transform is over the hypersph
cal coordinates of S82p, then the Fourier componen
Gk(U,U8) must satisfy the equation

@]u~U82p]u!2lk2U1mu i

2 U62p#Gk~U,U8!

5gY M
4 d~U2U8!. ~A4!

The standard procedure for solving Eq.~A4! is to use the
solution to the homogeneous equation in the regionsU
,U8 and U.U8, and then impose matching conditions
U5U8. If we now restrict to the case wheremu i

2 50 and

write

Gk~U,U8!5u~U2U8!G.1u~U82U !G, , ~A5!

the solution to the homogeneous equation forU.U8 andp
Þ5 is given by

G.~U,U8!5 iA.~U8!U (p27)/2@Ja21~q* !Ha
(1)~q!

2Ha21
(1) ~q* !Ja~q!#, ~A6!
04600
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with a5(72p)/(52p) and where we have imposed th
Neumann condition]uGk(U,U8)uU5U

*
50. We have also

defined q5 i (a21)AlkU(p25)/2, and Ha
(1) is the Hankel

function of the first kind of ordera. As noted earlier there is
a singularity atU50, but since the solution can be mad
finite there we will continue to impose the Hartle-Hawkin
boundary condition. Thus forU,U8 we obtain

G,~U,U8!5 iA,~U8!U (p27)/2Ha
(1)~q!. ~A7!

The unknown functionsA,(U8) and A.(U8) are deter-
mined by imposing matching conditions atU5U8. Continu-
ity of Gk at U5U8 leads to the condition

G.uU5U85G,uU5U8 , ~A8!

while the discontinuity in]uGk gives the condition

~]uG.2]uG,!uU5U85gY M
4 U8p26. ~A9!

This leads to the solutions

A,~U8!5
pgY M

4

52p
U8(p27)/2

Ha
(1)~q8!

Ha21
(1) ~q* !

, ~A10!

A.~U8!5 i
pgY M

4

52p
U8(p27)/2F Ja21~q* !

Ha21
(1) ~q* !

3Ha
(1)~q8!2Ja~q8!G . ~A11!

Finally, substituting these functions into the equations forG.

andG, gives the expression for the Green’s function in t
extremal Dp-brane geometry

Gk~U,U8!5 i
pgY M

4

52p
~UU8!(p27)/2

Ha
(1)~q,!

Ha21
(1) ~q* !

3@Ja21~q* !Ha
(1)~q.!2Ha21

(1) ~q* !Ja~q.!#,

~A12!

where in q. (q,) we have definedU. (U,) to be the
greater~lesser! of U andU8. The Green’s function~A12! is
the general expression whenpÞ5 for a minimally coupled
scalar in the extremal Dp-brane geometry. Notice also tha
from the pole conditionHa21

(1)
„2iAlk/(52p)U

*
(p25)/2

…50,
there is a branch cut singularity atk50. This represents the
Kaluza-Klein continuum beginning atm50, where k25
2m2. When we restrict the coordinates to the location of t
p-brane atU5U85U* we obtain the expression~72!.

When p55 the solutions to the homogeneous equat
are no longer Bessel functions~20!. Imposing the same
boundary conditions as forpÞ5 gives the Green’s function
1-11
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Gk~U,U8!52
gY M

2

N

11g

2gk2

1

UU8
S U*
U.

D 2gF ~g21!S U*
U,

D g

1~g11!S U*
U,

D 2gG , ~A13!

whereg5A11lk2. WhenU5U85U* we recover the ex-
pression~75!. Notice also that from the pole conditionk2

50 there is a massless mode. In addition from the pole c
dition g50, there is also a branch cut singularity beginni
at m51/Al. Thus whenp55, the Kaluza-Klein continuum
is separated from the zero mode by a mass gap 1/Al.

The Green’s function for the gauge field can be obtain
by following a similar procedure to the minimally couple
scalar. In the case ofpÞ5 the expression is
tt

O

nk

ig

04600
n-

d

Gk~U,U8!5 i
pgY M

2

N~52p!

1

UU8

Ha21
(1) ~q,!

Ha22
(1) ~q* !

3@Ja22~q* !Ha21
(1) ~q.!

2Ha22
(1) ~q* !Ja21~q.!#, ~A14!

while for p55 it is simply

Gk~U,U8!52
1

N2

11g

2gk2

1

UU8
S U*
U.

D 2gF ~g21!S U*
U,

D g

1~g11!S U*
U,

D 2gG . ~A15!

Again we see that the (p11)-dimensional Kaluza-Klein
spectrum has the same characteristics as that found fo
minimally coupled scalar. WhenU5U85U* we obtain the
results~77! for pÞ5, and~81! for p55.
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