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High temperature asymptotics of thermodynamic functions of an electromagnetic field subjected
to boundary conditions on a sphere and cylinder
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The high temperature asymptotics of thermodynamic functions of an electromagnetic field subjected to
boundary conditions with spherical and cylindrical symmetries are constructed by making use of a general
expansion in terms of heat kernel coefficients and the related determinant. For this, some new heat kernel
coefficients and determinants had to be calculated for the boundary conditions under consideration. The results
obtained reproduce all the asymptotics derived by other methods in the problems at hand and involve a few
new terms in the high temperature expansions. An obvious merit of this approach is its universality and
applicability to any boundary value problem correctly formulated.
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I. INTRODUCTION

The Casimir effect is one of the most interesting pheno
ena in quantum field theory. Since its discovery more than
years ago it has attracted much attention. In recent y
interest has intensified after its experimental verificat
reached the 1% level of precision@1–3#.

The influence of temperature on the Casimir effect h
been an important topic since its first experimental dem
stration@4#, which was done at room temperature. It was fi
shown in Ref.@5# that the temperature influence was ju
below what had been measured. It is expected that the
perature contributions will be seen in the upcoming serie
experiments.

In quantum field theory, finite temperature effects can
described at equilibrium in the Matsubara formalism by i
posing periodic~antiperiodic for fermions! boundary condi-
tions in the imaginary time coordinate. Technically this
very similar to the calculation of the Casimir effect for pla
boundaries and can be described mathematically by the s
Riemann and Hurwitz zeta functions. Another formula im
portant for applications is the well known Lifshitz formu
describing the interaction between plane dielectric bodie
finite temperature. In the case of nonflat boundaries the s
ation is, however, more complicated. In order to obtain
Casimir effect at finite temperature one has to know it
least at zero temperature; i.e., one has to know the spec
of the corresponding operator. Even then, complicated ca
lations are usually necessary and explicit results are rare

An opposite situation occurs with the asymptotic expa
sion of the Casimir energy at high temperature. It turns ou
be determined to a large extent by local quantities, which
much easier to obtain. In Ref.@6#, which did not receive its
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due attention, it was shown that this expansion can be wri
down in terms of the heat kernel coefficients and the fu
tional determinant of the operator corresponding to the s
tial part of the problem. For example, this method was
plied in @7–9# for the effective potential in curved spacetim
and for the Casimir effect for hypercuboids.

The heat kernel coefficients for differential operators
manifolds with and without boundary are known to depe
on the properties of this manifold only locally. This mea
that they can be represented as integrals over the man
and over its boundary@10# whereby characteristics like cur
vature enter as local functions. The calculation of these
efficients is a topic on its own and much progress had b
achieved especially during the past decade~see@11#, for ex-
ample!. Less is known about the determinant. It is not asc
tained in general whether it is a local quantity. However,
several examples it has been shown to be calculable m
more easily than the corresponding Casimir energy at z
temperature. As a consequence, the high temperature ex
sion of the Casimir energy can be calculated quite eas
This was emphasized in the recent review@12# where the
basic formula~2.10! below is taken from.

In the present paper we apply these general formula
some specific examples. First we consider parallel plate
order to demonstrate the technical tools on a simple probl
Then we consider conducting spherical and cylindri
shells, obtaining new terms in the asymptotic expansi
Eventually we consider the dielectric ball and cylinder whe
we restrict ourselves to the dilute approximation. These
amples demonstrate the effectiveness of the method.

An interesting application of the general formula is t
discussion of the so called classical limit which had recen
been considered in Ref.@13#. It is understood to take place i
the internal energy which is connected with the free ene
by Eq. ~2.11! ~see the next section! tends to zero forT
→`. This happens if the heat kernel coefficients with nu
ber n< 3

2 vanish.
The first calculation of the leading contributions to th

high temperature asymptotics of the Casimir energy
©2002 The American Physical Society11-1
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curved boundaries was given in Ref.@14# using the multiple
reflection expansion. As was noted in the recent paper@15#
the multiple reflection expansion can be used for the ca
lation of the heat kernel coefficients, demonstrating
equivalence of both approaches up to the question of
determinant.

The situation is to some extent different for boundar
with edges and corners. Here the application of Riemann
Hurwitz zeta functions seems to be more appropriate. A fi
example of this kind was given in Ref.@16#. The appropriate
more general methods can be expected to be those give
Ref. @17#.

The layout of the paper is as follows. In Sec. II the de
vation of the high temperature expansions in terms of
heat kernel coefficients is briefly given. In Sec. III the orig
nal setting of the Casimir effect, i.e., parallel perfectly co
ducting plates in vacuum, is considered and the high te
perature asymptotics of the thermodynamic functions
derived in terms of the relevant heat kernel coefficients.
Sec. IV the high temperature asymptotics for an electrom
netic field with boundary conditions on a sphere are
tained. In Sec. V the high temperature expansions are
structed for the boundary conditions defined on the surf
of a circular infinite cylinder. The heat kernel coefficien
needed are calculated by making use of the zeta funct
that have been obtained in an explicit form in terms of
Riemann zeta function in Ref.@18# and also by applying the
results of Ref.@19#. The functional determinants entering th
asymptotic expansions at hand are calculated by making
of the technique developed in Ref.@20#. The results obtained
are compared with the high temperature asymptotics
have been derived for boundary conditions under consi
ation by other methods. The possible extension of the
proach is discussed in the Conclusions~Sec. VI!.

The mathematical details of the calculation of the z
determinants are presented in Appendix A for an electrom
netic field subjected to boundary conditions given on
sphere and in Appendix B for the boundary conditions
fined on the surface of an infinite circular cylinder.

II. HEAT KERNEL COEFFICIENTS AND HIGH
TEMPERATURE EXPANSIONS

Let the dynamics of quantum field be defined by the o
erator

1

c2

]2

]t22D, ~2.1!

where D is not of necessity the Laplace operator, but
elliptic differential operator depending only on space coor
nates. The free energyF of the field is determined by the zet
functionzT(s) corresponding to the Euclidean version of t
operator~2.1!,

F52
T

2
zT8~0!. ~2.2!
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HereT is the temperature measured in energy units~the Bolt-
zmann constantkB is assumed to be equal to 1!, and the zeta
function zT(s) is defined in a standard way:

zT~s!5 (
m52`

`

(
$k%

~Vm
2 1vk

2!2s, ~2.3!

with Vm52pmT/\ being the Matsubara frequencies a
vk

2/c2 standing for the eigenvalues of the operator2D in Eq.
~2.1!:

2Dwk~x!5
vk

2

c2 wk~x!. ~2.4!

The characteristics of the quantum field system with d
namical operator~2.1! at zero temperature are determined
the zeta functionz(s) associated with the operator2D,

z~s!5(
$k%

vk
22s . ~2.5!

From the mathematical point of view the zeta functionz(s)
corresponding to the space part of the operator~2.1! is, un-
doubtedly, a simpler object than the complete zeta funct
zT(s) because the definition~2.3! involves an additional sum
over the Matsubara frequencies. Here a natural ques
arises as to whether one can gain knowledge of the quan
field at nonzero temperature possessing only the zeta f
tion z(s). In Ref. @6# it was shown that proceeding from th
zeta functionz(s) one can deduce the high temperature
ymptotics of thermodynamic functions such as the Hel
holtz free energy, internal energy, and entropy. Let us re
briefly the derivation of these asymptotics. By making use
the formula

l2s5
1

G~s!
E

0

`

dt ts21e2lt, ~2.6!

the zeta function~2.3! can be represented in the form

zT~s!5
1

G~s!
E

0

`

dt ts21 (
m52`

`

e2Vm
2 t(

$k%
e2vk

2t. ~2.7!

The term withm50 in this formula gives the zeta functio
~2.5!. In the remaining terms we substitute the heat ker
K(t) of the operator2D by its asymptotic expansion at sma
t:

K~ t ![(
$k%

e2vk
2t.

1

~4pt !3/2 (
n50,1/2,...

antn1¯ . ~2.8!

As a result we arrive at the following asymptotic represen
tion for the complete zeta functionzT(s):

zT~s!.z~s!1
2

~2p!3/2 (
n50,1,2,...

anS \

2pTD 2s2312n

3
G~s23/21n!

G~s!
zR~2s12n23!, ~2.9!
1-2
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wherezR(s) is the Riemann zeta function. Taking the deriv
tive of the right hand side of Eq.~2.9! at the points50 and
substituting the result into Eq.~2.2!, one obtains the high
temperature expansion for the free energy:

F~T!.2
T

2
z8~0!1a0

T4

\3

p2

90
2a1/2

T3

4p3/2\2 zR~3!2
a1

24

T2

\

1
a3/2

~4p!3/2T ln
\

T
2

a2

16p2 \F lnS \

4pTD1gG
2

a5/2

~4p!3/2

\2

24T
2T(

n>3

an

~4p!3/2 S \

2pTD 2n23

3G~n23/2!zR~2n23!, T→`. ~2.10!

Here g is the Euler constant. The arguments of the log
rithms in expansion~2.10! are dimensional, but upon collec
ing similar terms and taking account of the logarithmic on
in z8(0) it is easy to see that finally the logarithm functio
has a dimensionless argument, at least fora250. Let us note
that according to the definition~2.8! the heat kernel coeffi-
cients in our consideration are dimensional, because the
quencies,vk have the dimensionality@time#21.

The asymptotic expansions for the internal energyU(T)
and the entropyS(T) are deduced from Eq.~2.10! employing
the thermodynamic relations

U~T!52T2
]

]T
@T21F~T!#, ~2.11!

S~T!5T21@U~T!2F~T!#52
]F

]T
. ~2.12!

Substituting the expansion~2.10! into Eqs.~2.11! and~2.12!
one arrives at the asymptotics

U~T!.a0

T4

\3

p2

30
1a1/2

T3

\2

zR~3!

2p3/2 1a1

T2

24\
1

a3/2

~4p!3/2T

2a2

\

16p2 F lnS \

4pTD1g11G2
a5/2

~4p!3/2

\2

12T

2
T

4p3/2 (
n>3

anS \

2pTD 2n23

G~n21/2!zR~2n23!,

~2.13!

S~T!.
1

2
z8~0!1a0

T3

\3

2p2

45
1a1/2

T2

\2

3

4

zR~3!

p3/2 1a1

T

12\

1
a3/2

~4p!3/2 S 12 ln
\

TD2a2

\

16p2T
2

a5/2

~4p!3/2

\2

24T2

2
1

4p3/2 (
n>3

anS \

2pTD 2n23

~n22!

3G~n23/2!zR~2n23!. ~2.14!
04501
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In Eq. ~2.13! the term proportional toa2 contains the loga-
rithm of a dimensional quantity:@\/T#5@ time#21. This is
the result of the arbitrariness arising from the ultraviolet
vergences in the case ofa2Þ0 ~see Ref.@21# for a more
detailed discussion!. Unlike this situation, collecting the
logarithm functions in thea3/2 term and inz8(0) in Eq.
~2.14! leads to a dimensionless argument of the logarithm
the final expression.

It is worth noting that the zeta determinant of the opera
2D @i.e., z8(0)# does not enter the asymptotic expansion
the internal energy~2.13!. Therefore this high temperatur
expansion is completely defined only by the heat kernel
efficients. In view of this, the first term in the asymptotics
the free energy in Eq.~2.10! is referred to as a pure entrop
contribution. Its physical origin is not yet elucidated.

III. PERFECTLY CONDUCTING PARALLEL PLATES
IN VACUUM

In this section we demonstrate the application of the h
temperature expansions~2.10!, ~2.13!, and~2.14! to a simple
problem of an electromagnetic field confined between t
perfectly conducting parallel plates in vacuum. First, w
briefly recall how to construct the zeta function in this pro
lem.

As is well known, for example, from the theory o
waveguides and resonators@22# the vectors of electric and
magnetic fields in the problem at hand are expressed in te
of the electric (P8) and magnetic (P9) Hertz vectors, each
having only one nonzero componentPz8 andPz9 , satisfying,
respectively, Dirichlet and Neumann conditions on the int
nal surface of the plates. The functionsPz8 andPz9 obey the
equations

S ]2

]z2 1“

2DPz85
v2

c2 Pz8 , S ]2

]z2 1“

2DPz95
v2

c2 Pz9 ,

~3.1!

wherev is the frequency of electromagnetic oscillations, a
“

2 stands for the two-dimensional Laplace operator for
variables (x,y)5x. The separation of variables results in th
following solution:

Pz8~x,z!5exp~ ikx!sinS npz

a D , n51,2, . . . ,

Pz9~x,z!5exp~ ikx!cosS npz

a D , n50,1,2, . . . ,

vn
2~k!5c2Fk21S np

a D 2G , ~3.2!

wherea is the distance between the plates. Hence, the st
of the electromagnetic field with the energy\vn , n>1, are
doubly degenerate, while the state with energy\v05\ck is
nondegenerate.
1-3
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With allowance for this the zeta function in the proble
under consideration is given by

z~s!5
LxLy

c2s E d2k

~2p!2 H 2(
n51

` Fk21S np

a D 2G2s

1~k21m2!2sJ , ~3.3!

whereLx andLy are the dimensions of the plates.
For a correct definition of the integral in this formula

the smallk region the photon massm is introduced~infrared
regularization!. At the final step of calculations one shou
put m50. On integrating in Eq.~3.3! and substituting the
sum overn by the Riemann zeta function one arrives at t
result

z~s!5
LxLy

2pc2s F S p

a D 222s zR~2s22!

s21
1

1

2

m222s

s21 G . ~3.4!

The zeta function~3.4! gives the well known value for the
Casimir energy

EC5
\

2
zS 2

1

2D52c\
p2

720

LxLy

a3 ~3.5!

or for its density

EC

V
52

c\p2

720a4 where V5aLxLy . ~3.6!

In order to construct the high temperature expansi
~2.10!, ~2.13!, and~2.14! the heat kernel coefficients for th
system under consideration should be obtained by ma
use of the zeta function~3.4!.

The zeta function~3.4! or, in the general case,~2.5! and
the corresponding heat kernel~2.8! are related via the Mellin
transform

z~s!5
1

G~s!
E

0

`

dt ts21K~ t !. ~3.7!

This enables one to express the heat kernel coefficientsan in
terms of the values of the zeta function at the correspond
points:

an

~4p!3/25 lim
s→3/22n

~s1n23/2!z~s!G~s!, n50,1/2, . . . .

~3.8!

Substituting Eq.~3.4! into Eq. ~3.8! we obtain for perfectly
conducting parallel plates only one nonzero coefficienta0 ,

a052
V

c2 , ~3.9!
04501
s

g

g

whereV5LxLya is the volume of the space bounded by t
plates.1 This is just an illustration of the well known fact tha
for flat manifolds without boundary or with flat boundary a
the heat kernel coefficients except fora0 vanish @23#. It
should be noted here that we are considering only an e
tromagnetic field confined between the plates and do not
into account the field outside the plates.

From Eqs.~2.13! and ~3.9! it follows that the density of
internal energy has the following high temperature asymp
ics:

U~T!

V
.4

s

c
T4, T→`, ~3.10!

wheres is the Stefan-Boltzmann constant

s5
p2kB

4

60c2\3 . ~3.11!

Recall that in our formulas we putkB51, that is, the tem-
perature is measured in energy units. The transition to
grees is performed by the substitutionT→kBT.

When calculating the high temperature asymptotics of
free energy~2.10! and the entropy~2.14! one needs to derive
z8(0) for the zeta function~3.4!. Keeping in mind thatzR
(22)50 it is convenient to use here the Riemann reflect
formula

212sG~s!zR~s!cos~ps/2!5p2zR~12s! ~3.12!

which yields

zR~2s22! .
s→0

2s
zR~3!

2p2 1O~s2!. ~3.13!

From here we deduce

z8~0!5
LxLy

4pa2 zR~3!5
V

4pa3 zR~3!. ~3.14!

Insertion of Eqs.~3.9! and ~3.14! into Eq. ~2.10! gives the
following high temperature behavior for the density of fr
energy:

F

V
.2

T

8pa3 zR~3!2
T4

c3\3

p2

90
. ~3.15!

As was noted above, we are considering only electrom
netic field between the plates. Therefore when calculating
Casimir forces one should drop the last term in Eq.~3.15!
since its contribution is canceled by the pressure of
blackbody radiation on the outward surfaces of the plates
a result the high temperature asymptotics of the Casi
force, per unit surface area, attracting two perfectly condu
ing plates in vacuum is

F.2
T

4pa3 zR~3!. ~3.16!

1To obtain the vanishinga1/2 coefficient it is important to take into
account the second term in Eq.~3.4!, which depends on the photo
massm.
1-4
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Usually in the Casimir calculations the contribution of t
free blackbody radiation is subtracted from the very beg
ning @24#.

It is interesting to note that the Casimir force~3.16! and
the first term on the right hand side of Eq.~3.15! are pure
classical quantities because they do not involve the Pla
constant\. These classical asymptotics seem to be deriva
without appealing to the notion of a quantized electrom
netic field. The classical limit of the theory of the Casim
effect was discussed in a recent paper@13#.

Employing Eqs.~2.12! and ~3.15! one arrives at the high
temperature behavior of the entropy density:

S~T!

V
.

zR~3!

8pa3 1
2T3p2

45c3\3 . ~3.17!

It is worth noting that the corrections to Eqs.~3.10!, ~3.15!,
and ~3.17! are exponentially small.

The example considered shows that the zeta function
the spatial part of the evolution operator really enables on
obtain the high temperature asymptotics of the thermo
namic functions in a straightforward way. In the subsequ
sections we shall consider quantum fields defined on m
folds with boundaries possessing spherical or cylindri
symmetries, when the relevant zeta functions cannot be
tained in a closed form. Furthermore, in these cases the s
trum of the operator2D is not known explicitly. Neverthe-
less, the method proposed is applicable to these cases a

IV. THERMODYNAMIC ASYMPTOTICS
FOR ELECTROMAGNETIC FIELD WITH BOUNDARY

CONDITIONS ON A SPHERE

In the present section we consider electromagnetic fi
subjected to three types of boundary conditions on the
face of a sphere:~i! an infinitely thin and perfectly conduct
ing spherical shell;~ii ! the surface of a sphere-delimiting tw
material media with the same velocity of light~iii ! a dielec-
tric ball placed in an unbounded dielectric medium. In ord
to obtain the heat kernel coefficients determining the h
temperature asymptotics~2.10!, ~2.13!, and ~2.14! it is con-
venient to use the explicit representation of the relevant sp
tral zeta functions in terms of the Riemann zeta functi
These formulas were derived in our recent paper@18# by
taking into account the first two terms of the unifor
asymptotic expansion for the product of the modified Bes
functionsI n(nz)Kn(nz).

A. Perfectly conducting spherical shell

We take advantage of Eq.~2.26! in Ref. @18#, substituting
there the variables by 2s and recovering the explicit depen
dence on the velocity of lightc. The latter results in the
replacement of the sphere radius byR/c:

z~s!.
1

4 S R

c D 2s

s~11s!~21s!$~2112s21!zR~112s!

22112s1q~s!@~2312s21!zR~312s!22312s#

1¯%, ~4.1!
04501
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where

q~s!5
1

3840
~4801173612016s21568s3!, ~4.2!

andR is the radius of the sphere. The terms omitted in E
~4.1! are of the form

qk~s!@~22~k1s!1121!zR~2k12s11!222~k1s!11#,

k52,3,4, . . . , ~4.3!

whereqk(s) stands for some polynomials ins.
Analysis of Eqs.~4.1! and~4.2! shows that the zeta func

tion ~4.1! for a perfectly conducting spherical shell enabl
one to find the exact values of the first six heat kernel co
ficients: namely,

a050, a1/250, a150, a3/252p3/2, a250,

a5/25
p3/2

20

c2

R2 . ~4.4!

Taking into account the structure of the omitted terms~4.3! it
is easy to see that

aj50, j 53,4,5, . . . . ~4.5!

Having obtained the heat kernel coefficients~4.4! and ~4.5!
we are in position to construct the high temperature asym
totics of the internal energy of electromagnetic field by ma
ing use of Eq.~2.13!:

U~T!.
T

4
2S c\

R D 2 1

1920 T
1O~T23!. ~4.6!

Applying the technique developed in Ref.@25# more terms
can easily be added to this expansion.

In order to write the asymptotic expansions~2.10! and
~2.14! the derivative of the zeta function at the points50
should be calculated. Equation~4.1! gives an approximate
value forz8(0):

z8~0!5
g

2
1 ln 21

7

16
zR~3!2

9

8
1

1

2
ln

R

c

50.382651
1

2
ln

R

c
. ~4.7!

The terms omitted in Eq.~4.1! will render precise only the
first term in the final form of this expression, while the se
ond term (1/2)ln(R/c) will not change. The exact value o
z8(0) is calculated in Appendix A:
1-5
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z8~0!5
1

2
2

g

2
1

7

6
ln 216zR8 ~21!

1S 2
5

8
1

1

2
ln

R

c
1 ln 21

g

2D
50.384291

1

2
ln

R

c
. ~4.8!

It is worth noting that the expression in parentheses, be
multiplied byj2, is exactly the value ofz8(0) for a compact
ball with continuous velocity of light on its surface@see Eq.
~4.20! in the next subsection#. As a result we have the fol
lowing high temperature asymptotics of the free energy
the entropy in the problem in question:

F~T!.2
T

4 S ln
RT

\c
10.76858D2S \c

R D 2 1

3840T
1O~T23!,

~4.9!

S~T!.0.442151
1

4
ln

RT

\c
2

1

3840S \c

RTD 2

1O~T24!. ~4.10!

The expression~4.9! exactly reproduces the asymptotics o
tained in Ref.@14# by making use of the multiple scatterin
technique@see Eq.~8.39! in that paper#. We have not calcu-
lated the coefficienta7/2; therefore we do not know the sig
of theT23 correction in Eq.~4.9!. In Ref.@14# it is noted that
this term is negative.

In Eqs.~4.6!, ~4.9!, and~4.10! the large expansion param
eter is actually a dimensionless ‘‘temperature’’t
5RT/(\c). Therefore the same formulas describe the
havior of the thermodynamic functions whenR→` and tem-
peratureT is fixed.

The high temperature asymptotics of the thermodyna
functions derived by making use of the general expansi
~2.10!, ~2.13!, and ~2.14! contain terms independent of th
Planck constant\ or, in other words, classical contribution
@see Eqs.~4.6!, ~4.9!, and ~4.10!#. This is also true for the
high temperature limit of the Casimir force calculated p
unit area of a sphere:

F~T!.2
1

4pR2

]F~T!

]R
5

T

16pR32S \c

R D 2 1

4pR3

1

1920T

1O~T23!. ~4.11!

The leading classical term in the asymptotics~4.11! de-
scribes the Casimir force that seeks to expand the sph
The quantum correction in this formula stands for the C
simir pressure exerted on the sphere surface.

In Eqs. ~4.6!, ~4.9!, and ~4.10! the Stefan-Boltzmann
terms proportional toT4 are absent because the contributi
of the Minkowski space was subtracted from the very beg
ning in our calculations@18#. As a result we obtain the van
ishing heat kernel coefficienta0 which, in the general case, i
equal to the volume of the system under study@12#. There-
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fore our results describe only the deviation from the Stef
Boltzmann law caused by the perfectly conducting spher

The vanishing of the coefficientsa1/2 anda1 in the prob-
lem at hand can be explained by taking into account
general properties of the heat kernel coefficients@12# and by
making use of the results obtained in Ref.@25#. As is known
@26#, the solutions to the Maxwell equations with allowan
for a perfectly conducting sphere are expressed in term
the two scalar functions that satisfy the Laplace equat
with the Dirichlet and Robin boundary conditions on th
internal and external surfaces of the sphere. In view of t
one can write

an5an1
D 1an2

D 1an1
R 1an2

R , n51/2,1, . . . , ~4.12!

where the subscript plus~minus! corresponds to the interna
~external! region and the rest of the notation is obvious.
Ref. @25# it was found that

a1/21
D 522p3/2R25a1/22

D , a1/21
R 52p3/2R25a1/22

R ,

a16
D 56

8pR

3
, a16

R 57
16pR

3
. ~4.13!

As a result we have

a1/25a150. ~4.14!

Having calculated the corrections to the Stefa
Boltzmann law one should naturally discuss the possibi
of their detection. The ratio of the leading term in Eq.~4.6!
to the internal energy of blackbody radiation in unbound
space given by the Stefan-Boltzmann law~3.10! is propor-
tional to t23. Already fort;10 the corrections prove to b
of order 1023. The same value oft can be reached by vary
ing the scale of the lengthR in the problem under consider
ation or by corresponding choice of the temperatureT. Keep-
ing in mind the value of the conversion coefficientc\
5197.326 MeV fm50.229 K cm@27# we obtain the follow-
ing estimations. ForR;10213 cm ~a typical hadron size! the
temperatureT should satisfy the inequalityT@200 MeV in
order to apply the asymptotics found. ForR;1 cm we have
T@0.229 K and forR;731010 cm ~radius of the Sun! the
range of applicability of the asymptotics at hand exten
essentially to any temperature valueT@10210 K. Here we
shall not go into the details of a concrete experimental equ
ment that enables one to observe the calculated correctio
the Stefan-Boltzmann law, confining ourselves to the estim
tions presented above.

B. Compact ball with equal velocities of light inside and
outside

Let us consider a spherical surface that delimits me
with ‘‘relativistic invariant’’ characteristics, i.e., the velocit
of light is the same inside and outside the sphere@28#. In this
problem there naturally arises a dimensionless param
@29#
1-6
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j25S «12«2

«11«2
D 2

5S m12m2

m11m2
D 2

, ~4.15!

where«1 and«2 ~m1 andm2! are permittivities~permeabili-
ties! inside and outside the sphere. As usual we perform
calculation in the first order of the expansion with respec
j2.

In order to derive the zeta function for the boundary co
ditions at hand one should multiply Eq.~4.1! by j2 and re-
placeq(s) by the polynomial

p~s!52
1

2 F12
9

2
~31s!1

5

2
~31s!~41s!

2
7

24
~31s!~41s!~51s!G . ~4.16!

The zeta function, obtained in this way, affords the exact h
kernel coefficients up toa3 :

a050, a1/250, a150, a3/252p3/2j2, a250,

a5/2

~4p!3/25j2
c2

R2

p~21!

8
50. ~4.17!

With allowance for the structure of the omitted terms in E
~4.1! we can again deduce that

aj50, j 53,4,5, . . . . ~4.18!

Substitution of these coefficients into Eq.~2.13! gives the
following high temperature behavior of the internal energy
the problem under consideration:

U~T!.j2
T

4
1O~T23!. ~4.19!

The value ofz8(0) is calculated in Appendix A:

z8~0!5j2S 2
5

8
1

1

2
ln

R

c
1 ln 21

g

2D
5j2S 0.356761

1

2
ln

R

c D . ~4.20!

It is this value that is supplied by Eq.~4.1! after the changes
specified above and with allowance for the fact thatp(21)
50.

By making use of Eqs.~2.10!, ~4.17!, and ~4.20! we de-
duce the high temperature asymptotics for the free energ

F~T!52j2
T

4 S g1 ln 42
5

4D1
j2

4
T ln

\c

RT
1O~T23!

52j2
T

4
0.713521

j2

4
T ln

\c

RT
1O~T23!. ~4.21!

The entropy in the present case has the following high te
perature behavior:
04501
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S~T!5
j2

4 S 11g1 ln 42
5

4
2 ln

\c

RTD1O~T23!

5
j2

4 S 1.713522 ln
\c

RTD1O~T24!. ~4.22!

The asymptotics~4.19! and ~4.21! completely coincide with
the analogous formulas obtained in Refs.@30,31# by the
mode summation method combined with the addition th
rem for the Bessel functions.

In Ref. @30# the exact expression has also been derived
the internal energy in the problem at hand@see Eq.~3.22! in
that paper#. This formula gives only exponentially sup
pressed corrections to the leading term~4.19!:

U~T!.j2
T

4
@112~4t214t11!e24t#, ~4.23!

wheret52pRT. We have used here the relation betweenj2

and Dn: j25Dn2/4 @see Eq.~3.12! in Ref. @30##. The as-
ymptotics ~4.23! implies in particular that in reality in Eq
~4.19! there are no corrections proportional to the inve
powers of the temperatureT. From here it follows immedi-
ately that all the heat kernel coefficients with integer a
half-integer numbers equal to or greater than 3 should v
ish:

aj50, j 53,7/2,4,5/2,6, . . . ~4.24!

@compare with Eq.~4.18!#. In view of this the symbol
O(T23) denoting the omitted terms in Eqs.~4.19!, ~4.21!,
and ~4.22! should be substituted byO(e28pRT).

C. Dielectric ball in unbounded dielectric medium

The zeta function for an electromagnetic field in the ba
ground of a pure dielectric ball (m15m251,«1Þ«2) has not
been obtained in an explicit form. In Ref.@21# the heat kernel
coefficients up toa2 in this problem were found. Here w
use the results of this paper, confining ourselves to theDn2

approximation, whereDn5n12n25n1n2(c22c1)/c.(c2
2c1)/c, ni andci are the refractive index and the velocity o
light inside (i 51) and outside (i 52) the ball, andc is the
velocity of light in the vacuum: ni5A« i , ci5c/ni , i
51,2. It is assumed thatc1 and c2 differ from c slightly;
thereforec22c1 andDn are small quantities. In view of this
we have

a05
8

3
pR3

c2
32c1

3

c1
3c2

3 .8p
R3

c3 ~Dn12Dn2!,

a1/2522p3/2R2
~c1

22c2
2!2

c1
2c2

2~c1
21c2

2!
.24p3/2

R2

c2 Dn2,

a1.0, a3/25p3/2
~c1

22c2
2!

~c1
21c2

2!2 .p3/2Dn2, a2.0.

~4.25!

The coefficientsa1 and a2 equal zero only in theDn2 ap-
proximation considered here. In the general case they con
terms proportional toDnk, wherek>3.
1-7
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Allowance for one more term in the uniform asympto
expansion of the modified Bessel functions as compared
the calculations in Ref.@21# gives the next heat kernel coe
ficient

a5/2

~4p!3/25
25

2688

c4

R2 Dn4. ~4.26!

Thus correcting the mistake made in@32# we state that this
coefficient has no contributions proportional toDn2, and in
the Dn2 approximation we have to put

a5/2.0. ~4.27!

Making use of the technique developed in Ref.@20# one ob-
tains the following expression for the derivative of the ze
function for a pure dielectric ball at the points50 ~see Ap-
pendix A!:

z8~0!5
Dn2

4 S 2
7

8
1 ln

R

c
1 ln 41g D . ~4.28!

Before turning to the construction of the high temperat
asymptotics in the problem at hand by making use of
general formulas~2.10!, ~2.13!, and~2.14! the following re-
mark should be made. When considering the electromagn
field in the background of a dielectric body in the formalis
of the quantum electrodynamics of continuous media, a
matter of fact one is dealing with a system consisting of t
objects: an electromagnetic field plus a continuous dielec
body. It is important that this body is described~phenomeno-
logically! only by the corresponding permittivity without in
troducing into the Hamiltonian special additional dynamic
variables. As a result the zeta function and the relevant h
kernel coefficients calculated in this formalism also descr
both the electromagnetic field and the dielectric body. Wh
we are interested in the Casimir thermodynamic functions
such problems we obviously have to separate in the gen
expressions the contributions due to the dielectric body it
@33#.

Let us turn to such a separation procedure in the h
temperature asymptotics for a dielectric ball. Following t
reasoning of Refs.@34,35# we divide the Helmholtz free en
ergy of a material body with volumeV and surface areaS
into the parts

F5V f1Ss1FCas, ~4.29!

where f is the free energy of a unit volume of a ball,s
denotes the surface tension, andFCas is referred to as the
Casimir free energy of the electromagnetic field connec
with this body and having the temperatureT. In this way we
obtain the following high temperature behavior of the fr
energyF(T) in the problem at hand:

F~T!.a0

T4

\3

p2

90
2a1/2

T3

4p3/2\2 zR~3!1FCas~T!,

~4.30!

wherea0 anda1/2 are defined in Eq.~4.25! and
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FCas~T!.2
Dn2

8
TS ln

4TR

\c
1g2

7

8D1O~T22!.

~4.31!

The high temperature asymptotics for the Casimir inter
energy and for the Casimir entropy can be derived by mak
use of the corresponding thermodynamical relations

UCas~T!.
Dn2

8
T1O~T22!, ~4.32!

SCas~T!.
Dn2

8 S 1

8
1g1 ln

4RT

\c D1O~T23!. ~4.33!

It is worth comparing these results with analogous asym
totics obtained by different methods. In Ref.@30# at the be-
ginning of the calculations the first term of the expansion
the internal energy~4.32! was derived. The subsequent int
gration of the thermodynamic relation~2.11! gave the correct
coefficient of the logarithmic term in the asymptotics of fr
energy~4.31!. In a very recent paper@35# Barton managed to
deduce the asymptotics~4.31!–~4.33!. One should keep in
mind that our parameterDn corresponds to 2pan in the
notation of Ref.@35#.

The asymptotics~4.31!–~4.33! contain R-independent
terms. As far as we know the physical meaning of such te
remains unclear.

Preliminary analysis of a complete expression for the
ternal energy of a dielectric ball@see Eqs.~3.20! and ~3.31!
in Ref. @30## shows that probably there are only expone
tially suppressed corrections to the leading term~4.32!. In
that case in addition to Eq.~4.27! all the heat kernel coeffi-
cients with number greater than 3 should vanish in theDn2

approximation.

V. THERMODYNAMIC ASYMPTOTICS
FOR ELECTROMAGNETIC FIELD WITH BOUNDARY

CONDITIONS ON AN INFINITE CYLINDER

The calculation of the vacuum energy of an electrom
netic field with boundary conditions defined on a cylinder,
say nothing of the temperature corrections, turned out to
technically a more involved problem than the analogous
for a sphere. Therefore the Casimir problem for a cylind
has been considered in only a few papers@14,18,19,36–39#.
We again examine three cases:~i! a perfectly conducting
cylindrical shell; ~ii ! a solid cylinder withc15c2 ; ~iii ! a
dielectric cylinder whenc1Þc2 . Here we shall use the re
sults of our previous papers@18,19#.

A. Perfectly conducting cylindrical shell

In Ref. @18# the first two terms in the uniform asymptoti
expansion of the product of the modified Bessel functio
I n(nx) Kn(nx) were taken into account. As a result the spe
tral zeta function in the problem under consideration w
represented as an expansion in terms of the Riemann
1-8
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functions zR„2(k1s)11…, k50,1,2, . . . . With allowance
for the first two terms in this expansion the zeta function
given by

z~s!5Z1~s!1Z2~s!1Z3~s!. ~5.1!

Here the functionZ1(s) stands for the contribution of zer
orbital momentum with proper subtraction:

Z1~s!5
~2s21!R2s21

2Apc2sG~s!G~3/22s!
E

0

`

dy y22sH ln@12m0
2~y!#

1
1

4
y2t6~y!J , ~5.2!

mn~y!5y„I n~y!Kn~y!…8, t~y!5
1

A11y2
.

The functionZ2(s) is generated by the first term of the un
form asymptotic expansion

Z2~s!5
R2s21

64Apc2s
~122s!~322s!

3@2zR~2s11!11#
G~1/21s!

G~s!
. ~5.3!

The functionZ3 corresponds to the second term of the u
form asymptotic expansion

Z3~s!5
R2s21

61440Ap
~122s!~322s!~784s22104s2235!

3
G~3/21s!

G~s!
zR~2s13!. ~5.4!

The function Z1(s) is defined in the strip23/2,Res
,1/2, while the functionsZ2(s) andZ3(s) are analytic func-
tions in the whole complex planes except for the points
whereG(s) andzR(s) have simple poles. In order to find th
heat kernel coefficientsa0 , a1/2, anda1 through the relation
~3.8! one needs the zeta function defined in the region
1«<Res<3/21« with « being a positive infinitesimal
However, in this region Eq.~5.2! is not applicable directly
due to the bad behavior of the integral at the upper limit.
the simplest way we can overcome this difficulty as in t
case of perfectly conducting plates by introducing the pho
massm at the very beginning of the calculation and th
making the analytic continuation of the zeta function to t
pointss51/2,1,3/2. Upon taking the residual at these poi
one should putm50.

With regard to all this and using the relation~3.8! we find
the heat kernel coefficients

a050, a1/250, a150, a250. ~5.5!

The vanishing heat kernel coefficienta2 implies that the zeta
regularization gives a finite value for the vacuum energy
04501
s

-

2

n

n

s

n

the problem at hand@18,37#. The coefficienta3/2 is deter-
mined by the functionZ2(s) only @see Eq.~5.3!#:

a3/2

~4p!3/25
3

64R
. ~5.6!

The coefficienta5/2 is defined by the functionZ3(s) given in
Eq. ~5.4!:

a5/2

~4p!3/2
5

153

8192

c2

R3 . ~5.7!

The calculation of the next heat kernel coefficien
a3 ,a7/2, . . . would demand a knowledge of additional term
in the expansion of the spectral zeta function in the probl
under consideration in terms of the Riemann zeta functi
These terms are proportional tozR(2k12s11) with k
52,3, . . . , and may beobtained by employing the techniqu
developed in Ref.@18#. By analyzing the positions of pole
for these Riemann zeta functions, it is easy to show that
in the spherical case, we have

aj50, j 53,4,5 . . . .

The zeta determinant entering the high temperature asy
totics of free energy~2.10! and entropy~2.14! is calculated in
Appendix B:

z8~0!5
0.45847

R
1

3

32R
ln

R

2c
. ~5.8!

Now we are able to construct the high temperature exp
sions of the thermodynamic functions in the problem un
consideration. For the free energy we have

F~T!.20.22924
T

R
2

3T

64R
ln

RT

2\c
2

51

65536

\2c2

R3T
1O~T23!.

~5.9!

When comparing Eq.~5.9! with results of other authors on
should remember that all the thermodynamic quantities
we obtained in this section are related to a cylinder of u
length. The high temperature asymptotics of the electrom
netic free energy in the presence of a perfectly conduc
cylindrical shell was investigated in Ref.@14#. To make the
comparison convenient we rewrite their result as follows:

F~T!.20.10362
T

R
2

3T

64R
ln

RT

2\c
. ~5.10!

The discrepancy between the terms linear inT in Eqs.~5.9!
and~5.10! is due to the double scattering approximation us
in Ref. @14# ~see also the next subsection!. Our approach
provides an opportunity to calculate the exact value of t
term @see Eq.~5.9!#.

Finally, making use of the general formulas~2.13! and
~2.14!, we derive

U~T!.
3T

64R
2

153

98304

c2\2

R3T
1O~T23!, ~5.11!
1-9
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S~T!.
0.27612

R
1

3

64R
ln

RT

2\c
2

153

196608

c2\2

R3T2

1O~T24!. ~5.12!

B. Compact cylinder with c1Äc2 and with c1Åc2

Here we consider the boundary conditions for an elec
magnetic field of two types:~i! a compact infinite cylinder
with uniform velocity of light on its lateral surface;~ii ! a
pure dielectric cylinder withc1Þc2 . The explicit expres-
sions for the heat kernel coefficients up toa2 we take from
Ref. @19#, where a compact cylinder with unequal velociti
of light inside and outside was considered. Whenc15c2 the
final expressions for these coefficients are drastically sim
fied:

a050, a1/250, a150,
a3/2

~4p!3/25
3j2

64R
, a250.

~5.13!

The zeta function obtained for given boundary conditions
Ref. @18# gives

a5/2

~4p!3/25j2
c2

R3

45

8192
, aj50, j 53,4,5, . . . .

~5.14!

The heat kernel coefficients~5.13! and ~5.14! lead to the
following high temperature behavior of the internal energy
the problem at hand:

U~T!5
3j2T

64R S 12
5

512

c2\2

R2T2D1O~T23!. ~5.15!

The corresponding zeta determinant is calculated in App
dix B as

z8~0!5
j2

R S 0.206991
3

32
ln

R

2cD . ~5.16!

Now we can write the high temperature asymptotics for
free energy as

F~T!52j2
T

R F0.103501
3

64
ln

TR

2\c
1

15

65536

c2\2

R2T2G
1O~T23! ~5.17!

and for the entropy as

S~T!5
j2

R F0.103501
3

64S 11 ln
RT

2\cD2
15

65536

c2\2

T2R2G
1O~T24!. ~5.18!

Putting j251 in these equations we arrive at the doub
scattering approximation for a perfectly conducting cylind
04501
-

i-

n

n-

e

cal shell @see Eq.~5.10!#. A slight distinction between the
linear in T terms in Eq.~5.10! and Eq.~5.17! is due to the
finite error inherent in the numerical methods employed
both the approaches.

In the case of a pure dielectric cylinder (m15m251, «1
Þ«2) the first four heat kernel coefficients are different fro
zero even in the dilute approximation@19# ~small difference
between the velocities of light inside and outside the cyl
der!:

a052
6pR2

c2
4 ~c12c2!1

12pR2

c2
5 ~c12c2!2,

a1/252
2p3/2R

c2
4 ~c12c2!2,

a15
8p

c2
2 ~c12c2!2

14p

3c2
3 ~c12c2!2,

a3/25
3p3/2

16Rc2
2 ~c12c2!2,

a250,
a5/2

~4p!3/25
857

61440

~c12c2!2

R3 .

~5.19!

It should be noted that the coefficienta2 vanishes only in the
(c12c2)2 approximation. As a matter of facta2 contains
nonvanishing (c12c2)3 terms and those of higher order@19#.
Therefore the zeta regularization provides a finite answer
the vacuum energy of a pure dielectric cylinder only in t
(c12c2)2 approximation even at zero temperature.

The contribution to the asymptotic expansions of the fi
three heat kernel coefficients should be involved in the
evant phenomenological parameters in the general exp
sion of the classical energy of a dielectric cylinder~in the
same way as was done for a pure dielectric ball!. By making
use of the coefficientsa3/2 anda5/2 we get the high tempera
ture asymptotics of the internal energy in the problem
hand:

U~T!5Dn2
3

128

T

R S 12
857

17280

c2\2

T2R2D1O~T22!.

~5.20!

whereDn5n12n2.(c22c1)/c.
In view of the considerable technical difficulties we sh

not calculate the zeta function determinant for a pure die
tric cylinder. We recover the asymptotics of free energy
integrating the thermodynamic relation~2.11! and of entropy
by using the relation~2.12!. Pursuing this method, we intro
duce a new constant of integrationa that remains undeter
mined in our consideration:
1-10
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F~T!52Dn2
3

128

T

R S a1 ln
RT

\c
1

857

34560

c2\2

T2R2D1O~T22!,

~5.21!

S~T!5Dn2
3

128S 11a1 ln
RT

\c
2

857

34560

c2\2

T2R2D1O~T23!.

~5.22!

VI. CONCLUSIONS

In this paper we have demonstrated the efficiency
universality of the high temperature expansions in terms
the heat kernel coefficients for Casimir problems w
spherical and cylindrical symmetries. All the known resu
in this field are reproduced in a uniform approach and
addition a few new asymptotics are derived~for a compact
ball with c15c2 and for a pure dielectric infinite cylinder!.

As the next step in the development of this approach
can try to retain the terms exponentially decreasing wheT
→`. These corrections are well known, for example,
thermodynamic functions of the electromagnetic field in
presence of perfectly conducting parallel plates@24,40# @see
also Eq.~4.23!#. In order to reveal such terms, first the e
ponentially decreasing corrections should be retained in
asymptotic expansion~2.8! for the heat kernel.

It is worth noting that in the framework of the metho
employed the high temperature asymptotics can also be
structed in problems when the zeta regularization does
provide a finite value of the vacuum energy at zero tempe
ture, i.e., when the heat kernel coefficienta2 does not vanish.

In Ref. @13# it was argued that in the high temperatu
limit the behavior of the Casimir thermodynamic quantiti
should be the following. In the case of disjoint bounda
pieces the free energy tends to minus infinity, the entro
approaches a constant, and the internal energy vanis
Contributions to the Casimir thermodynamic quantities fro
each individual connected component of the boundary
hibit logarithmic deviations in temperature from the behav
just described. In our consideration we were obviously de
ing with an individual connected component of the bound
~a sphere or cylinder!. Our results corroborate the releva
conclusions of Ref.@13# concerning the free energy and e
tropy. However, the internal energy in our calculations ten
to infinity like T instead of vanishing, this increase bein
caused by the corresponding logarithmic terms in the h
temperature asymptotics of the free energy.
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APPENDIX A: ZETA FUNCTION DETERMINANTS
FOR ELECTROMAGNETIC FIELD SUBJECTED

TO SPHERICALLY SYMMETRIC
BOUNDARY CONDITIONS

1. A perfectly conducting sphere

First we calculatez8(0) ~zeta determinant! for an electro-
magnetic field in the background of a perfectly conducti
sphere. We proceed from the following representation
this zeta function@18#:

z~s!5S R

c D 2s sin~ps!

p (
l 51

`

~2l 11!E
0

`

dy y22s
d

dy

3 ln@12s l
2~y!#, ~A1!

where

s l~y!5
d

dy
@yIn~y!Kn~y!#, n5 l 11/2. ~A2!

The analytic continuation of Eq.~A1! to the region Ims,0 is
performed by adding and subtracting from the integrand
uniform asymptotics at largen:

s l
2~nz!.

t6~z!

4n2 , t~z!5
1

A11z2
. ~A3!

As a result we obtain

z~s!5Z~s!1zas~s!, ~A4!

where

Z~s!5S R

c D 2s sin~ps!

2p (
l 51

`

n122sE
0

` dz

z2s

d

dz H ln@12s l
2~nz!#

1
1

4n2

1

~11z2!3J , ~A5!

zas~s!5S R

c D 2s 3 sin~ps!

4p (
l 51

`

n2122sE
0

`

dz z122st8~z!

5
1

4 S R

c D 2s

s~11s!~21s!

3@~2112s21!zR~112s!22112s#. ~A6!

When calculatingz8(0) one can puts50 everywhere in
Eq. ~A5! except for sin(ps), the latter function being substi
tuted simply byps. In view of this the integral in Eq.~A5!
is evaluated easily if one takes into account the limits

lim
z→0

s l
2~nz!5S G~n!

2G~n11! D
2

5
1

4n2 , lim
z→0

t6~z!

4n2 5
1

4n2

~A7!

and the asymptotics~A3! at largez. As a result we obtain
1-11
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Z8~0!522(
l 51

`

nF lnS 12
1

4n2D1
1

4n2G . ~A8!

Differentiation of Eq.~A6! with respect tos at the points
50 gives

zas8 ~0!52
5

8
1

1

2
ln R1 ln 21

g

2
. ~A9!

In order to calculate the sum overl in Eq. ~A8! we consider
an auxiliary sum

S~a!52(
l 51

`

2nF lnS 12
a2

4n2D1
a2

4n2G ,
S~0!50, S~1!5Z8~0!, ~A10!

wherea is a parameter. The derivative of this sum with r
spect toa can be rewritten in the form

S8~a!52
a

2 (
l 51

` F 1

l 11/2
2

1

l 1~11a!/2
1

1

l 11/2

2
1

l 1~12a!/2G . ~A11!

The summation in Eq.~A11! can be done by making use o
the following relations@41#:

(
k51

` S 1

y1k
2

1

x1kD5
1

x
2

1

y
1c~x!2c~y!,

c~x11!5c~x!1
1

x
, cS 1

2D52g22 ln 2, ~A12!

wherec(x) is the digamma function~the Eulerc function!
c(x)5(d/dx)ln G(x). This gives

S8~a!5a~22g22 ln 2!2
a

2 FcS 3

2
1

a

2D1cS 3

2
2

a

2D G .
~A13!

Now we integrate both sides of Eq.~A13! overa from 0 to 1
by making use ofMAPLE:

S~1!5Z8~0!5
1

2
2

g

2
1

7

6
ln 226zR8 ~21!. ~A14!

From Eqs.~A4!, ~A9!, and~A14! it follows that

z8~0!5
1

2
2

g

2
1

7

6
ln 216zR8 ~21!

1S 2
5

8
1

1

2
ln

R

c
1 ln 21

g

2D
52

1

8
1

13

6
ln 216zR8 ~21!1

1

2
ln

R

c

04501
-

50.384291
1

2
ln

R

c
. ~A15!

2. A material ball with c1Äc2

The same technique can be used for calculating the
function determinant in the case of equal velocities of lig
inside and outside the material ball~see Sec. IV B!. The com-
plete zeta function in this problem has the form@18#

z~s!5S R

c D 2s sin~ps!

p (
l 51

`

~2l 11!E
0

`

dy y22s
d

dy

3 ln@12j2s l
2~y!#, ~A16!

wheres l(y) is defined in Eq.~A2! and the parameterj2 was
introduced in Eq.~4.15!. Adding and subtracting the uniform
asymptotics of the integrand at largen under the integral sign
in Eq. ~A16! we get

z~s!5S R

c D 2s sin~ps!

2p (
l 51

`

n122sE
0

` dz

z2s

d

dz

3H ln@12j2s l
2~nz!#1

j2

4n2

1

~11z2!3J
1j2zas~s!, ~A17!

where the functionzas(s) was introduced in Eq.~A6!. Pro-
ceeding in the same way as in the previous subsection
obtain for the derivative of the functionz(s) at the points
50

z8~0!5S~j2!1j2zas8 ~0!, ~A18!

where the functionS(j2) is defined in Eq.~A10!. For small
values of the argumentj2 we deduce from Eq.~A10!

S~j2!5
j4

16(
l 51

`
1

n3 5
j4

16
@7zR~3!28#1O~j6!. ~A19!

Therefore restricting ourselves to the first order ofj2 we
arrive at the final result:

z8~0!5j2zas8 ~0!5j2S 2
5

8
1

1

2
ln

R

c
1 ln 21

g

2D .

~A20!

3. A pure dielectric ball

The material ball with arbitrary velocities of light insid
and outside treated in Sec. IV C proves to be a more com
cated problem. In the notation of Ref.@21# the relevant zeta
function takes the formz(s)5z21(s)1z1(s), where

zr~s!5
1-12
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2
2R2s

G~s11!G~2s! (l 51

`

n122s

3E
0

`

dk k22s
d

dk
ln Dr,l~nk!,

n5 l 1 1
2 , r561 ~A21!

with

Dr,l~nk!5
2e2~k12k2!n

~xr11!
@xrsl8~nk1!el~nk2!

2sl~nk1!el8~nk2!#, k15k/c1 , k25k/c2 ,

~A22!

sl~y!5Apy/2I n~n!, el~y!5A2y/pKn~y!.

The parameterx5A(«1m2)/(«2m1) corresponds toj in Ref.
@21#.

The analytic continuation of the zeta function at hand
the region Res.0 is performed by adding and subtracting
Eq. ~A22! several terms of its asymptotic expansion

Dr,l~nk!; (
n521,0,1

`
Dn,r

nn , ~A23!

where

D215h~k1!2h~k2!2~k12k2!,

h~z!5A11z1 ln
z

11A11z2
,

D05 lnH xrc1t21c2t1

Ac1c2t1t2~xr11!
J ,

t i5
1

A11ki
2

, i 51,2. ~A24!

For our purpose it is sufficient to consider four leading ter
of the asymptotic expansion~A23!, n521,0,1,2. The func-
tions D1 and D2 are given in Ref.@21#. Proceeding in this
way we represent the zeta function~A21! as follows:

zr~s!52
2R2s

G~s11!G~2s! (l 51

`

n22s11E
0

`

dk k22s
d

dk

3S ln Dr,l2nD212D02
D1

n
2

D2

n2 D
2

2R2s

G~s11!G~2s! F zHS 2s2s,
3

2D E
0

`

dk k22s

3
dD21

dk
1zHS 2s21,

3

2D E
0

`

dk k22s
dD0

dk
04501
s

1zHS 2s,
3

2D E
0

`

dk k22s
dD1

dk

1zHS 2s11,
3

2D E
0

`

dk k22s
dD2

dk G , ~A25!

wherezH is the Hurwitz zeta function. Taking the derivativ
of the zeta function~A25! at the points50 with allowance
for the behavior ofDi(k) at k50 and`, we obtain

zr8~0!522(
l 51

` S l 1
1

2D F lnS 11
1

2n

xrc12c2

xrc11c2
D

2
1

2n

xrc12c2

xrc11c2
1

1

8n2 S xrc12c2

xrc11c2
D 2G

12H 1

4
ln

c2

c1
1

11

24
lnF xrc11c2

Ac1c2~xr11!
G1

1

2

xrc12c2

xrc11c2

2
1

8
~22 ln R2g22 ln 2!S xrc12c2

xrc11c2
D 2

2E
0

`

dk ln k
d

dk
D2J . ~A26!

In order to calculate the sum overl in Eq. ~A26! we consider
the auxiliary sum

S1~b!5(
l 51

`

2nF lnS 11
b

2n D2
b

2n
1

b2

8n2G , S1~0!50,

~A27!

with b being a parameter. The derivative of this sum can
cast in the form

S8~b!5
b

2 (
l 51

` F 1

l 11/2
2

1

l 1~b11!/2G . ~A28!

Taking into account Eq.~A12! we obtain

S8~b!5
b

2
~221g12 ln 2!1

b

2
cS b

2
1

3

2D . ~A29!

The integration of Eq.~A29! over b from 0 to b5(xrc1
2c2)/(xrc11c2) gives the sum entering Eq.~A26!:

S1~b!5
b2

4
~221g12 ln 2!1bzH8 S 0,

3

2
1

b

2D
22FzHS 21,

3

2
1

b

2D1zH8 S 21,
3

2
1

b

2D G
12FzHS 21,

3

2D1zH8 S 21,
3

2D G . ~A30!

Substitution of Eq.~A30! into Eq. ~A26! gives
1-13
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zr8~0!52
b2

4
~221g12 ln 2!2bzH8 S 0,

3

2
1

b

2D
12FzHS 21,

3

2
1

b

2D1zH8 S 21,
3

2
1

b

2D G
22FzHS 21,

3

2D1zH8 S 21,
3

2D G
12H 1

4
ln

c2

c1
1

11

24
lnF xrc11c2

Ac1c2~xr11!
G1

b

2
2

b2

8

3~22 ln R2g22 ln 2!2E
0

`

dk ln k
d

dk
D2J ,

b5
xrc12c2

xrc11c2
.

~A31!

In the case of nonmagnetic media (m15m251) the right
hand side of Eq.~A31! is slightly simplified. Assuming tha
we are dealing with a dilute dielectric ball we can expa
z8(0) in powers of the difference (c12c2), where c1

51/A«1, c251/A«2. As a result we get

z8~0!5zr5218 ~0!1zr518 ~0!

5
1

4 S 2
7

8
1 ln

R

c2
1 ln 41g D ~c12c2!2

c2
2

1O„~c12c2!3
…. ~A32!

APPENDIX B: ZETA FUNCTION DETERMINANTS FOR
ELECTROMAGNETIC FIELD WITH CYLINDRICALLY

SYMMETRIC BOUNDARY CONDITIONS

1. A perfectly conducting cylindrical shell

A complete spectral zeta function in the problem at ha
is defined by the following expression@18#:

z~s!5
R2s21

2Apc2sG~s!G~3/22s!
E

0

`

dy y122s
d

dy
ln@12m0

2~y!#

1
R2s21

Apc2sG~s!G~3/22s!
(
n51

`

n122sE
0

`

dy y122s
d

dy

3 ln@12mn
2~ny!#, ~B1!

where

mn~y!5y
d

dy
@ I n~y!Kn~y!#.

The first term on the right hand side of Eq.~B1! is an ana-
lytic function of the complex variables in the strip 21/2
,Res,1/2. Therefore there is no need for analytic contin
ation of this expression when calculatingz8(0). As regards
04501
d

-

the second term in Eq.~B1!, its analytic continuation to the
region Res,0 can be accomplished in a standard way. W
add and subtract here the uniform asymptotics of the in
grand whenn tends to infinity:

ln@12mn
2~ny!#.2

y4t6~y!

4n2 1O~n24!, t~y!5
1

A11y2
.

~B2!

As a result we obtain

z~s!5
R2s21

2Apc2sG~s!G~3/22s!
E

0

` dy

y2s21

d

dy
ln@12m0

2~y!#

1
R2s21

Apc2sG~s!G~3/22s!
(
n51

`

n122s

3E
0

` dy

y2s21

d

dy H ln@12mn
2~ny!#1

y4t6

4n2 J
2

Rs21

32Apc2s
~122s!~322s!zR~2s11!

3
G~1/21s!

G~s!
. ~B3!

Keeping in mind the behavior of the gamma function at t
origin G(s).s21 one can easily find the derivative ofz(s)
at the points50:

z8~0!5
1

pR E
0

`

dy y
d

dy
ln@12m0

2~y!#

1
2

pR (
n51

`

nE
0

`

dy y
d

dy H ln@12mn
2~ny!#1

y4t6

4n2 J
1

1

32R S 3g2423 ln
2c

R D . ~B4!

Unlike for the spherically symmetric boundaries, the integ
tion is not removed in the formula obtained forz8(0). There-
fore the first two terms in Eq.~B4! can be calculated only
numerically as

2
1

pR E
0

`

dy ln@12m0
2~y!#5

0.53490

R
. ~B5!

Applying the FORTRAN subroutine that approximates th
Bessel functions by Chebyshev’s polynomials we evalu
the first 30 terms in the sum in Eq.~B4! as

2
2

pR (
n51

`

nE
0

`

dyH ln@12mn
2~ny!#1

y4t6

4n2 J 52
0.00554

R
.

~B6!

Finally gathering together all these results we have
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z8~0!5
0.45847

R
1

3

32R
ln

R

2c
. ~B7!

2. A compact infinite cylinder with c1Äc2

Now we turn to a compact cylinder placed into an u
bounded medium such that the velocity of light is uniform
the surface of the cylinder. Proceeding as in the case
cylindrical shell we start with the expression for the releva
spectral zeta function

z~s!5
R2s21

2Apc2sG~s!G~3/222!
(

n52`

` E
0

`

dy y122s
d

dy

3 ln@12j2mn
2~y!# ~B8!

with the parameterj determined in Eq.~4.15!. In the linear
approximation with respect toj2 Eq. ~B8! assumes the form

z~s!52
R2s21j2

2Apc2sG~s!~3/22s!
E

0

`

dy y122s
d

dy
m0

2~y!

2
R2s21j2

Apc2sG~s!G~3/22s!
(
n51

` E
0

`

dy y122s
d

dy
mn

2~y!.

~B9!

The analytic continuation to the region Res,0 is needed
only for the second term in Eq.~B9!. Adding and subtracting
here the uniform asymptotics of the integrand for largen,
e
-

ys

lo

04501
-

a
t

2mn
2~ny!.2

y4t6~y!

4n2 1O~n24!, ~B10!

we obtain

z8~0!52
j2

pR E
0

`

dy y
d

dy
m0

2~y!1
2j2

pR (
n51

`

nE
0

`

dy y
d

dy

3F2mn
2~ny!1

y4t6

4n2 G1
j2

32R S 3g2423 ln
2c

R D .

~B11!

The first two terms in Eq.~B11! can again be calculated onl
numerically:

j2

pR E
0

`

dy m0
2~y!5

j2

R
0.28428, ~B12!

2
2j2

pR (
n51

` E
0

`

dyF2mn
2~ny!1

y2t6

4n2 G52
j2

R
0.00640.

~B13!

The final result reads

z8~0!5
j2

R F0.2842820.006401
1

32S 3g2423 ln
2c

R D G
5

j2

R S 0.206991
3

32
ln

R

2cD . ~B14!
c-
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