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High temperature asymptotics of thermodynamic functions of an electromagnetic field subjected
to boundary conditions on a sphere and cylinder
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The high temperature asymptotics of thermodynamic functions of an electromagnetic field subjected to
boundary conditions with spherical and cylindrical symmetries are constructed by making use of a general
expansion in terms of heat kernel coefficients and the related determinant. For this, some new heat kernel
coefficients and determinants had to be calculated for the boundary conditions under consideration. The results
obtained reproduce all the asymptotics derived by other methods in the problems at hand and involve a few
new terms in the high temperature expansions. An obvious merit of this approach is its universality and
applicability to any boundary value problem correctly formulated.
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I. INTRODUCTION due attention, it was shown that this expansion can be written

down in terms of the heat kernel coefficients and the func-

The Casimir effect is one of the most interesting phenom¢ional determinant of the operator corresponding to the spa-
ena in quantum field theory. Since its discovery more than 5@ial part of the problem. For example, this method was ap-
years ago it has attracted much attention. In recent yeaigied in[7-9)] for the effective potential in curved spacetimes

interest has intensified after its experimental verificationand for the Casimir effect for hypercuboids.

reached the 1% level of precisign—3]. The heat.kernel cc_;efficients for differential operators on
The influence of temperature on the Casimir effect haghanifolds with and without boundary are known to depend
been an important topic since its first experimental demon®n the properties of this manifold only locally. This means

stration[4], which was done at room temperature. It was firsti"at they can be represented as integrals over the manifold

shown in Ref.[5] that the temperature influence was just and over its boundarf10] whereby characteristics like cur-

below what had been measured. It is expected that the tepyature enter as local functions. The calculation of these co-

erature contributions will be seen in the upcoming series o?fficients Is a topic on its own and much progress had been
Experiments P 9 achieved especially during the past decéske[11], for ex-

' - ample. Less is known about the determinant. It is not ascer-
In quantum field theory, finite temperature effects can be,ineq in general whether it is a local quantity. However, in
described at equilibrium in the Matsubara formalism by im-¢o\arq examples it has been shown to be calculable much
posing periodidantiperiodic for fermionsboundary condi-  ore easily than the corresponding Casimir energy at zero
tions in the imaginary time coordinate. Technically this istemperature. As a consequence, the high temperature expan-
very similar to the calculation of the Casimir effect for plane sjon of the Casimir energy can be calculated quite easily.
boundaries and can be described mathematically by the sam#is was emphasized in the recent revigl2] where the
Riemann and Hurwitz zeta functions. Another formula im-pasic formula(2.10 below is taken from.
portant for applications is the well known Lifshitz formula In the present paper we apply these general formulas to
describing the interaction between plane dielectric bodies asome specific examples. First we consider parallel plates in
finite temperature. In the case of nonflat boundaries the situwsrder to demonstrate the technical tools on a simple problem.
ation is, however, more complicated. In order to obtain theThen we consider conducting spherical and cylindrical
Casimir effect at finite temperature one has to know it atshells, obtaining new terms in the asymptotic expansion.
least at zero temperature; i.e., one has to know the spectruBventually we consider the dielectric ball and cylinder where
of the corresponding operator. Even then, complicated calcuwve restrict ourselves to the dilute approximation. These ex-
lations are usually necessary and explicit results are rare. amples demonstrate the effectiveness of the method.

An opposite situation occurs with the asymptotic expan- An interesting application of the general formula is the
sion of the Casimir energy at high temperature. It turns out taliscussion of the so called classical limit which had recently
be determined to a large extent by local quantities, which arbeen considered in RdfL3]. It is understood to take place if
much easier to obtain. In Rdf6], which did not receive its the internal energy which is connected with the free energy

by Eg. (2.11) (see the next sectigrtends to zero forT
—oo, This happens if the heat kernel coefficients with num-
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curved boundaries was given in Rgf4] using the multiple  HereT is the temperature measured in energy uftits Bolt-
reflection expansion. As was noted in the recent pgb8f  zmann constaritg is assumed to be equal ty, hind the zeta
the multiple reflection expansion can be used for the calcufunction {1(s) is defined in a standard way:
lation of the heat kernel coefficients, demonstrating the B
equivalence of both approaches up to the question of the
dgterminant. PP P | gT(S):m_Em zk: (Qn+ o)~ 2.3
The situation is to some extent different for boundaries t
with edges and corners. Here the application of Riemann angith (),,=27mT/% being the Matsubara frequencies and
Hurwitz zeta functions seems to be more appropriate. A firsg,ﬁ/c2 standing for the eigenvalues of the operatak in Eq.
example of this kind was given in RéfL6]. The appropriate (2.1):
more general methods can be expected to be those given in
Ref. [17]. w?
The layout of the paper is as follows. In Sec. Il the deri- ~Ae) =z e(X). (2.9
vation of the high temperature expansions in terms of the

heat ke_rnel coefficient_s i_s briefly given. In Sec. Ill the origi-  The characteristics of the quantum field system with dy-
nal setting of the Casimir effect, i.e., parallel perfectly con-namical operatof2.1) at zero temperature are determined by

ducting plates in vacuum, is considered and the high temthe zeta functiori(s) associated with the operaterA,
perature asymptotics of the thermodynamic functions are

derived in terms of the relevant heat kernel coefficients. In _og
Sec. IV the high temperature asymptotics for an electromag- g(s)=% W (2.9
netic field with boundary conditions on a sphere are ob-
tained. In Sec. V the high temperature expansions are corrrom the mathematical point of view the zeta functif{is)
structed for the boundary conditions defined on the surfaceorresponding to the space part of the operé2ob) is, un-
of a circular infinite cylinder. The heat kernel coefficients doubtedly, a simpler object than the complete zeta function
needed are calculated by making use of the zeta functions;(s) because the definitiof2.3) involves an additional sum
that have been obtained in an explicit form in terms of theover the Matsubara frequencies. Here a natural question
Riemann zeta function in Ref18] and also by applying the arises as to whether one can gain knowledge of the quantum
results of Ref[19]. The functional determinants entering the field at nonzero temperature possessing only the zeta func-
asymptotic expansions at hand are calculated by making ug®n (s). In Ref.[6] it was shown that proceeding from the
of the technique developed in R§20]. The results obtained zeta function/(s) one can deduce the high temperature as-
are compared with the high temperature asymptotics thagmptotics of thermodynamic functions such as the Helm-
have been derived for boundary conditions under considetioltz free energy, internal energy, and entropy. Let us recall
ation by other methods. The possible extension of the apbriefly the derivation of these asymptotics. By making use of
proach is discussed in the Conclusigg&c. V). the formula

The mathematical details of the calculation of the zeta

determinants are presented in Appendix A for an electromag- )\,S:i det {5~ 1gM 2.6
netic field subjected to boundary conditions given on a I'(s) Jo ’ :
sphere and in Appendix B for the boundary conditions de-
fined on the surface of an infinite circular cylinder. the zeta function2.3) can be represented in the form
1 ( s 024 —wlt
Il. HEAT KERNEL COEFFICIENTS AND HIGH gT(s)sz dtts™t D> e Y e el (2.7
TEMPERATURE EXPANSIONS 0 m=-— {kt

Let the dynamics of quantum field be defined by the op-The term withm=0 in this formula gives the zeta function
erator (2.5. In the remaining terms we substitute the heat kernel
K(t) of the operator-A by its asymptotic expansion at small

1 9° t

?W_A’ (2.1 1

2.
K(t)= D, e “kl= at'+---. (2.8
(m=2 @R, O 28

where A is not of necessity the Laplace operator, but an , ) .
elliptic differential operator depending only on space coordi-AS @ result we arrive at the following a.symptotlc representa-
nates. The free energyof the field is determined by the zeta tion for the complete zeta functiofy(s):

function +(s) corresponding to the Euclidean version of the > 5\ 2s-3+2n
operator(2.1), ~ R
P {H(8) =4S+ 7 nolezwan(%T)
F—— 1110 (2.2 L(s=32%m) o os+2n-3 2.9
= 2§T( ). 2 Téﬁq( s+2n-3), 2.9
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wherelg(s) is the Riemann zeta function. Taking the deriva-In Eq. (2.13 the term proportional t@, contains the loga-
tive of the right hand side of Eq2.9) at the points=0 and  rithm of a dimensional quantityi%/T]=[time] 1. This is
substituting the result into Eq2.2), one obtains the high the result of the arbitrariness arising from the ultraviolet di-

temperature expansion for the free energy: vergences in the case a,,#0 (see Ref[21] for a more
detailed discussion Unlike this situation, collecting the
T T4 72 T3 a; T? logarithm functions in theag, term and in¢’(0) in Eq.
F(M==5¢(0)+a53 g5~ auzy amp2 r(3)~ 5, 7~ (2.14) leads to a dimensionless argument of the logarithm in

the final expression.

asp a, h It is worth noting that the zeta determinant of the operator
+ W/?T '”?_ Wﬁ In(m Ty —ATi.e., £'(0)] does not enter the asymptotic expansion for
the internal energy2.13. Therefore this high temperature
asp h? an i |23 expansion is completely defined only by the heat kernel co-
B (47)%2 24T Tn; (47)%2\ 27T efficients. In view of this, the first term in the asymptotics of
the free energy in Eq2.10 is referred to as a pure entropic
XT'(N=3/2){xr(2n—3), T—co. (2.10  contribution. Its physical origin is not yet elucidated.
Here y is the Euler constant. The arguments of the l0ga- \ ‘oepeecTIy CONDUCTING PARALLEL PLATES
rithms in expansioli2.10 are dimensional, but upon collect- IN VACUUM

ing similar terms and taking account of the logarithmic ones
in £'(0) it is easy to see that finally the logarithm function  In this section we demonstrate the application of the high

has a dimensionless argument, at leastior 0. Let us note
that according to the definitio(2.8) the heat kernel coeffi-

temperature expansioi(®.10), (2.13, and(2.14) to a simple
problem of an electromagnetic field confined between two

cients in our consideration are dimensional, because the freperfectly conducting parallel plates in vacuum. First, we

quenciesw, have the dimensionalitjtime] .

The asymptotic expansions for the internal eneldgyl’)
and the entropy(T) are deduced from E@2.10 employing
the thermodynamic relations

U(m)= —Tz%[T‘lF(T)], (2.11)

1 JF
S(T)=T [U(T)—F(T)]=—ﬁ. (2.12

Substituting the expansioi2.10 into Egs.(2.11) and(2.12)
one arrives at the asymptotics

T 72 T% {R(3) T? asp
U(T):aoﬁ %ﬂLal,zﬁ m + alﬁ + WQT

h | h L ag, #h?
%1677 | M\ aa) YT G 1T
ﬁT > A ZHF 1/2){r(2n—3
47732n23 an 27T (n )gR( n )1

(2.13

1, T3 272 T2 3 [r(3) T
S(T)”:Eé (O)+aOFE+al/2FZ?2_+a1E

4 32 1 Iﬁ h asp M
(am| 27T T3 1652T T (am) 2 2472
1 2n—-3

g o] (02

XT(nN—3/2)£p(2n-3). (2.14

briefly recall how to construct the zeta function in this prob-
lem.

As is well known, for example, from the theory of
waveguides and resonatdrd2] the vectors of electric and
magnetic fields in the problem at hand are expressed in terms
of the electric {I') and magnetic ") Hertz vectors, each
having only one nonzero compondif andIl}, satisfying,
respectively, Dirichlet and Neumann conditions on the inter-
nal surface of the plates. The functiolls andIl}, obey the
equations

(92
—+V?2
9z°

2
H//_w_l—[/!
z_CZ z

(3.9

(92
—+V?2
9z°

H/_w_ZHI
Z_CZ z»

wherew is the frequency of electromagnetic oscillations, and
V2 stands for the two-dimensional Laplace operator for the
variables &,y) =x. The separation of variables results in the
following solution:

IT}(x,z) =exp(ikx)sin

nwz
—), n=12,...,
a
. nmz
H’Z’(x,z)=exp(|kx)cos<7), n=0,12...,

k2+

n\?
?) }, (3.2

w3(k)=c?

wherea is the distance between the plates. Hence, the states
of the electromagnetic field with the energw,, n=1, are
doubly degenerate, while the state with eneligy,=7#ck is
nondegenerate.
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With allowance for this the zeta function in the problem whereV=L,L a is the volume of the space bounded by the

under consideration is given by plates! ThIS IS]US'[ an illustration of the well known fact that
for flat manifolds without boundary or with flat boundary all
L, L d2k ” nm\2]-s the heat kernel coefficients except fap vanish[23]. It
{(s )_ 2m)? [ Z a should be noted here that we are considering only an elec-

tromagnetic field confined between the plates and do not take

into account the field outside the plates.

+ (K24 u?)~st, (3.3 From Egs.(2.13 and (3.9 it follows that the density of
internal energy has the following high temperature asymptot-
ics:

whereL, andL, are the dimensions of the plates.
For a correct definition of the integral in this formula in U(T) 27T Tow (3.10
the smallk region the photon mass is introduced(infrared V c '’ ' '

regularization. At the final step of calculations one should

put «=0. On integrating in Eq(3.3 and substituting the Whereo is the Stefan-Boltzmann constant

sum ovemn by the Riemann zeta function one arrives at the W2k‘é
result g= W (31])
2-25r(25—2) 1 p2 % Recall that in our formulas we pi=1, that is, the tem-
{(s )— 2 — 1 + > e 1| (3.9 perature is measured in energy units. The transition to de-
WC a S S grees is performed by the substituti®a-kgT.

When calculating the high temperature asymptotics of the

The zeta functiori3.4) gives the well known value for the free energy(2.10 and the entropy2.14) one needs to derive

Casimir energy £'(0) for the zeta functior(3.4). Keeping in mind that'x
(—2)=0 it is convenient to use here the Riemann reflection
h ( 1) . m° LyL, 39 formula
Ec=%¢| —5|=—-Ch 55 3.
© 2% 2 720 &’ 21-ST () {n(s)cOg wS/2) = m2lr(1—5) (3.1
or for its density which yields

3
Ec chr? (r(28—2) = —ng( 2) +0(s?). (3.13

Vo 0t where V=al,L,. (3.6 ) 2m

) ~ From here we deduce
In order to construct the high temperature expansions

(2.10, (2.13, and(2.14 the heat kernel coefficients for the ,

system under consideration should be obtained by making & )_ At aZ gR( )= Aad ¢r(3).

use of the zeta functio(B.4). ) . .
The zeta functior(3.4) or, in the general cas¢2.5) and  Insertion of Egs(3.9) and(3.14 into Eq. (2.10 gives the

the corresponding heat kern@.8) are related via the Mellin ~ following high temperature behavior for the density of free

(3.19

transform energy:
L S (3.19
1 (- v T o A36R0)T e )
§(S)=mf dt t571K(1). (3.7) V  8ma c343 90
0

As was noted above, we are considering only electromag-
This enables one to express the heat kernel coefficisyits netic field between the plates. Therefore when calculating the

terms of the values of the zeta function at the correspondiné:.""s"n'.r forces.ong shpuld drop the last term in 3119
ince its contribution is canceled by the pressure of the

oints: e
pot blackbody radiation on the outward surfaces of the plates. As
a result the high temperature asymptotics of the Casimir
no_ L _ _ force, per unit surface area, attracting two perfectly conduct-
W?_SJ'JZ'_“(S’W 3/9L(9)I'(s), n=0,172... . ing plates in vacuum is

(3.9

T
- . : F==753¢r(3). (3.16
Substituting Eq(3.4) into Eq. (3.8) we obtain for perfectly ma

conducting parallel plates only one nonzero coefficet

7o obtain the vanishing,, coefficient it is important to take into
ay=2—, (3.9 account the second term in E®.4), which depends on the photon
072 massu.
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Usually in the Casimir calculations the contribution of the where
free blackbody radiation is subtracted from the very begin-
ning [24].

It is interesting to note that the Casimir for¢@16 and q(s)= =——
the first term on the right hand side of E@.15 are pure 3840
classical quantities because they do not involve the Planck
constanti. These classical asymptotics seem to be derivabl@ndR is the radius of the sphere. The terms omitted in Eq.
without appealing to the notion of a quantized electromag{4.1 are of the form
netic field. The classical limit of the theory of the Casimir
effect was discussed in a recent pafs]. 2(k+s)+1_ _92(k+s)+1

Employing Egs.(2.12 and(3.15 one arrives at the high A(s)L(2 Dér(2kt2st1)=2 1
temperature behavior of the entropy density:

S(T) (r(3) 27372 (3.17
vV 8ma’  45c%h ' whereqy(s) stands for some polynomials &

. . . Analysis of Eqs(4.1) and(4.2) shows that the zeta func-
It is worth noting that the corrections to E(8.10, (3.15, : ; i
and(3.17) are exponentially small, tion (4.1 for a perfectly conducting spherical shell enables

The example considered shows that the zeta function Ogne to find the exact values of the first six heat kernel coef-

the spatial part of the evolution operator really enables one t jcients: namely,

obtain the high temperature asymptotics of the thermody-

namic functions in a straightforward way. In the subsequent ao=0, a;,=0, a;=0, ag,=27"2 a,=0,
sections we shall consider quantum fields defined on mani-

folds with boundaries possessing spherical or cylindrical

symmetries, when the relevant zeta functions cannot be ob- B c
tained in a closed form. Furthermore, in these cases the spec- aW_E RZ
trum of the operator-A is not known explicitly. Neverthe-

less, the method proposed is applicable to these cases als@aking into account the structure of the omitted tek#hs) it
is easy to see that

(480+ 1736+ 2016°+568°), (4.2

k=2,34..., (43

7_[.3/2 2

(4.9

IV. THERMODYNAMIC ASYMPTOTICS
FOR ELECTROMAGNETIC FIELD WITH BOUNDARY .
CONDITIONS ON A SPHERE a;=0, j=345.... 4.9

In the present section we consider eIec}romagnetic ﬂe"ltlaving obtained the heat kernel coefficietds4) and (4.5)
subjected to three types of boundary conditions on the SUtve are in position to construct the high temperature asymp-

face of a sphereli) an infinitely thin and perfectly conduct- (qsics of the internal energy of electromagnetic field by mak-
ing spherical shell(ii) the surface of a sphere-delimiting two ing use of Eq(2.13:

material media with the same velocity of lighti ) a dielec-

tric ball placed in an unbounded dielectric medium. In order

to obtain the heat kernel coefficients determining the high T [ch)\?

temperature asymptotid®.10, (2.13, and(2.14) it is con- U(m= 4 'R

venient to use the explicit representation of the relevant spec-

tral zeta functions in terms of the Riemann zeta function.zpplying the technique developed in RER5] more terms

These formulas were derived in our recent pa#8] by  can easily be added to this expansion.

taking into account the first two terms of the uniform |y order to write the asymptotic expansiof®&10 and

asymptotic expansion for the product of the modified Bessed2_14> the derivative of the zeta function at the posit 0

functionsl,(v2)K,(vZz). should be calculated. Equatiqd.1) gives an approximate
value for¢’(0):

1970 T+O(T’3). (4.6)

A. Perfectly conducting spherical shell

We take advantage of E¢R.26) in Ref.[18], substituting
. . °> y 7 9 1 R
there the variabls by 2s and recovering the explicit depen- (0)==+IN2+ —(r(3)— =+ =In—
dence on the velocity of light. The latter results in the 2 16 8 2 ¢
replacement of the sphere radius Ric: 1 R
=0.38265+ EInE' 4.7

1/R 2s
§(S)=—(—) S(1+8)(2+9){(2'7 %~ 1){r(1+29) L . .
4\c The terms omitted in Eq4.1) will render precise only the

first term in the final form of this expression, while the sec-
ond term (1/2)Ink/c) will not change. The exact value of
+---1, 4.1 {'(0) is calculated in Appendix A:

_21+25+q(s)[(23+25_ 1)§R(3+ 28)_23+ZS]
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1 vy 7 fore our results describe only the deviation from the Stefan-
{'(0)= 575+ g'n 2+6R(—1) Boltzmann law caused by the perfectly conducting sphere.
The vanishing of the coefficients;, anda; in the prob-
R y lem at hand can be explained by taking into account the
tl—g* 5'”3“‘ In2+3 general properties of the heat kernel coefficidd® and by

making use of the results obtained in Re&X5]. As is known
1 R [26], the solutions to the Maxwell equations with allowance
=0.38429- —In—. (4.8  for a perfectly conducting sphere are expressed in terms of
2 ¢ the two scalar functions that satisfy the Laplace equation
with the Dirichlet and Robin boundary conditions on the

It is _wqrth noting that the expression in parentheses, beinghternal and external surfaces of the sphere. In view of this
multiplied by £, is exactly the value of’ (0) for a compact gne can write

ball with continuous velocity of light on its surfa¢eee Eq.
(4.20 in the next subsectidnAs a result we have the fol- a=al +aP +af +aR n=1/2 41
lowing high temperature asymptotics of the free energy and noTnE S e s End e Lo, (412

the entropy in the problem in question: . . .
Py ! P n quest where the subscript plusninug corresponds to the internal

T RT rc\2 1 (externa) region and the rest of the notation is obvious. In
F(T)=— 7 ( |n% +O.7685£9 _(E> 38400 +0(T79), Ref.[25] it was found that

49 g, = — 27 R*=ag, , afy, =27¥R*=aj, ,
ST)=0.44215 ~in 0 L[ 1 2+o T-4). (4.10 87R 167R
(T)=0. 4" %c 3840\RT (1. & a?fi%. aﬁ:ITﬂ‘ 4.13

The expressiont4.9) exactly reproduces the asymptotics ob- As a result we have
tained in Ref[14] by making use of the multiple scattering

techniquesee Eq(8.39 in that pape}. We have not calcu- a;p,=a;=0. (4.149
lated the coefficiena,; therefore we do not know the sign

of the T2 correction in Eq(4.9). In Ref.[14] it is noted that Having calculated the corrections to the Stefan-
this term is negative. Boltzmann law one should naturally discuss the possibility

In Egs.(4.6), (4.9), and(4.10 the large expansion param- of their detection. The ratio of the leading term in £4.6)
eter is actually a dimensionless “temperaturet  to the internal energy of blackbody radiation in unbounded
=RT/(hc). Therefore the same formulas describe the bespace given by the Stefan-Boltzmann |&8v10 is propor-
havior of the thermodynamic functions whBr-% and tem-  tional to 7~ 3. Already for 7~ 10 the corrections prove to be
peratureT is fixed. of order 10 3. The same value of can be reached by vary-

The high temperature asymptotics of the thermodynamidéng the scale of the lengtR in the problem under consider-
functions derived by making use of the general expansionation or by corresponding choice of the temperafurieep-
(2.10, (2.13, and (2.14 contain terms independent of the ing in mind the value of the conversion coefficieot
Planck constant or, in other words, classical contributions =197.326 MeV fm=0.229 K cm[27] we obtain the follow-
[see Egs(4.6), (4.9, and(4.10]. This is also true for the ing estimations. FoR~10" % cm (a typical hadron sizethe
high temperature limit of the Casimir force calculated pertemperaturel should satisfy the inequalitf>200 MeV in

unit area of a sphere: order to apply the asymptotics found. FRr-1 cm we have
T>0.229 K and forR~7x 10 cm (radius of the Sunthe
Ty 1 oM _ T [he 21 1 range of applicability of the asymptotics at hand extends
HT)= 47R2 R 167R° | R/ 4#R° 19207 essentially to any temperature vallie-10 *° K. Here we
3 shall not go into the details of a concrete experimental equip-
+O(T™9). (41D mentthat enables one to observe the calculated corrections to

. . ] the Stefan-Boltzmann law, confining ourselves to the estima-
The leading classical term in the asymptoti@sll) de-  tions presented above.

scribes the Casimir force that seeks to expand the sphere.
The quantum correction in this formula stands for the Ca-
simir pressure exerted on the sphere surface. ;
In Egs. (4.6), (4.9, and (4.10 the Stefan-Boltzmann outside
terms proportional td* are absent because the contribution Let us consider a spherical surface that delimits media
of the Minkowski space was subtracted from the very beginwith “relativistic invariant” characteristics, i.e., the velocity
ning in our calculation$18]. As a result we obtain the van- of light is the same inside and outside the sph&83. In this
ishing heat kernel coefficiea; which, in the general case, is problem there naturally arises a dimensionless parameter
equal to the volume of the system under sti#ig]. There- [29]

B. Compact ball with equal velocities of light inside and

045011-6
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2 2 2
o817 2|7 (M1 M2 _E_ ﬁ_ 3
C=lore,) T, (4.19 S(T)=2| 1+ y+Ind— ——In==|+O(T~3)
wheree, ande, (u, and u,) are permittivities(permeabili- 52 hc 4
ties) inside and outside the sphere. As usual we perform the 1.71352- In— +O(T™9. 4.22

calculation in the first order of the expansion with respect to

&. : o
In order to derive the zeta function for the boundary con-] N€ @symptotic¢4.19 and(4.21) completely coincide with

" . the analogous formulas obtained in Ref80,31] by the
ditions at hand one should multiply E¢t.1) by &2 and re- . ; . J.
placeq(s) by the polynomial mode summation method combined with the addition theo-

rem for the Bessel functions.

1 9 5 In Ref.[30] the exact expression has also been derived for
p(s)=—=|1—=(3+s)+=(3+5)(4+59) the internal energy in the problem at hdmsge Eq(3.22 in

2 2 2 that pape}. This formula gives only exponentially sup-
7 pressed corrections to the leading te@l9:
—=—(3+5s)(4+5s)(5+59)|. (4.19

24 2T 2 —4t

U(T)=¢ Z[1+2(4t +4t+1)e” ], (4.23
The zeta function, obtained in this way, affords the exact heat

kernel coefficients up tas: wheret=27RT. We have used here the relation betwgén
andAn: &=An?%4 [see Eq(3.12 in Ref.[30]]. The as-
ap=0, a;»,=0, a;=0, ag,=27%% a,=0, ymptotics (4.23 implies in particular that in reality in Eq.
(4.19 there are no corrections proportional to the inverse
as), 2c2 p(—1) powers of the temperatufB From here it follows immedi-
(47)3/725 @TZO- (4.17) ately that all the heat kernel coefficients with integer and

half-integer numbers equal to or greater than 3 should van-

With allowance for the structure of the omitted terms in Eg.ish:
(4.1) we can again deduce that a=0, j=37/2,45/26... (4.24)
=0, j=345.... (418  [compare with Eq.(4.18]. In view of this the symbol

- . _ _ O(T®) denoting the omitted terms in Eq&t.19, (4.21),
Substitution of these coefficients into E@.13 gives the 4.4 (4.22) should be substituted b (e 8™R™).
following high temperature behavior of the internal energy in

the problem under consideration: C. Dielectric ball in unbounded dielectric medium

a

T The zeta function for an electromagnetic field in the back-
U(T)z&ZZ+O(T‘3). (4.19  ground of a pure dielectric balj{; = u,=1,£,#¢,) has not
been obtained in an explicit form. In R¢21] the heat kernel
coefficients up toa, in this problem were found. Here we
use the results of this paper, confining ourselves toAthé
approximation, whereAn=n;—n,=n;n,(c,—cy)/c=(c,
—cq)/c, n; andc; are the refractive index and the velocity of
light inside (=1) and outsidei(=2) the ball, ancc is the
) 1 R velocity of light in the vacuum: n=\e;, c;=c/n;, i
=¢§7| 0.35676+ 5'”3 : (420 —12 It is assumed that, and c, differ from c slightly;
thereforec,—c, andAn are small quantities. In view of this
It is this value that is supplied by E¢4.1) after the changes we have
specified above and with allowance for the fact that 1)

The value ofZ’(0) is calculated in Appendix A:

=& -2 SR inat Y
8 2"¢ 2

=0. L ST
By making use of Eqs(2.10, (4.17, and (4.20 we de- Bo=3 7 g " ce(ant2an 9.
duce the high temperature asymptotics for the free energy:
(c2—c3)? R2
T 5\ & #c ayp= — 2R 2 = — A2 A2,
F(T)=—§ZZ(7+In4— —)+ 7 TIngg+0(T" 3) cicy(ci+c)) c
(c 2_C2)
2 hcC a;= 0, azp= 773/2— 3/2A n ar,= 0.
=—£— 07135} ¢ 7 TIngz+0(T” 3. (4.2) (cit+c3)?

(4.29

The coefficientsa; anda, equal zero only in the\n? ap-
The entropy in the present case has the following high temproximation considered here. In the general case they contain
perature behavior: terms proportional ta\n¥, wherek=3.
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Allowance for one more term in the uniform asymptotic An? ATR 7 )
expansion of the modified Bessel functions as compared with  Fcad T)=— rall lnﬁ_c +ty—g|tom ).
the calculations in Ref21] gives the next heat kernel coef- (4.31)

ficient

25 ¢4 The high temperature asymptotics for the Casimir internal
@An“. (4.26 energy and for the Casimir entropy can be derived by making
use of the corresponding thermodynamical relations

asgp, _
(4m)32 " 2688

Thus correcting the mistake made[iB2] we state that this

coefficient has no contributions proportional4m?, and in _ An? 2
the An? approximation we have to put UcadT)= g 11O, (4.32
ag;,=0. 4.2
512 (4.27) 2 ART .
Making use of the technique developed in D] one ob- Scad T)= g lg” y+in he +O(T™). (433

tains the following expression for the derivative of the zeta

function for a pure dielectric ball at the poist=0 (see Ap- It is worth comparing these results with analogous asymp-

pendix A: totics obtained by different methods. In RE3Q] at the be-
An2 7 R ginning of the calculations the first term of the expansion of
'(0)= |~ 3 +In—+In4+y]|. (4.28 the internal energy4.32 was derived. The subsequent inte-
c

gration of the thermodynamic relatig@.11) gave the correct
coefficient of the logarithmic term in the asymptotics of free

Before turning to the construction of the high temperatureenergy(4'3])_ In a very recent papd85] Barton managed to

asymptotics in the problem at hand by making use of thededuce the asymptotidel.3)—(4.33. One should keep in
general formulag2.10, (2.13, and(2.14 the following re- mind that our )g)argme(fe&n])corr.esbonds to 2an in tﬁe
mark should be made. When considering the electromagnetﬁotation of Ref[35]

field in the background of a dielectric body in the formalism ", asymptotics(4.3)—(4.33 contain Rindependent

of the quantum electrodynamics of continuous media, as fbrms. As far as we know the physical meaning of such terms

matter of fact one is dealing with a system consisting of tworemains unclear.

objects: an electromagnetic field plus a continuous dielectric Preliminary analysis of a complete expression for the in-

body. It is important that this body is describgzhenomeno- ternal energy of a dielectric balsee Eqs(3.20 and (3.31)

Log(ijcal_ly) qn![y tt?]/ th: cq:tresponding .ptlam(;iét.it\./ity \1viéhout ‘T" Iin Ref. [30]] shows that probably there are only exponen-
roducing into the Hamiftonman special additional dynamica tially suppressed corrections to the leading teehB2). In

variables. AS a result the zeta fung:tlon anq the relevant he%at case in addition to Eq4.27) all the heat kernel coeffi-
kernel coefficients calculated in this formalism also describe

both the electromagnetic field and the dielectric body. Whe C|enrtgx\i/vn|]tztirc1)lrj1mber greater than 3 should vanish inAfme
we are interested in the Casimir thermodynamic functions in PP '
such problems we obviously have to separate in the general

expressions the contributions due to the dielectric body itself V. THERMODYNAMIC ASYMPTOTICS
[33]. FOR ELECTROMAGNETIC FIELD WITH BOUNDARY
Let us turn to such a separation procedure in the high CONDITIONS ON AN INFINITE CYLINDER

temperature asymptotics for a dielectric ball. Following the
reasoning of Refd.34,35 we divide the Helmholtz free en-
ergy of a material body with volum¥ and surface are&
into the parts

The calculation of the vacuum energy of an electromag-
netic field with boundary conditions defined on a cylinder, to
say nothing of the temperature corrections, turned out to be
technically a more involved problem than the analogous one

F=Vf+So+Fcus (4.29  for a sphere. Therefore the Casimir problem for a cylinder
has been considered in only a few pape4,18,19,36—-3p
wheref is the free energy of a unit volume of a balt, We again examine three casd$) a perfectly conducting
denotes the surface tension, afRd, is referred to as the cylindrical shell; (i) a solid cylinder withc;=c,; (i) a
Casimir free energy of the electromagnetic field connectedlielectric cylinder wherc,;#c,. Here we shall use the re-
with this body and having the temperatufreln this way we  sults of our previous papef48,19.
obtain the following high temperature behavior of the free

energyF(T) in the problem at hand: A. Perfectly conducting cylindrical shell

4 2 T3 In Ref.[18] the first two terms in the uniform asymptotic
F(T)zaOF 90 vz 322 Cr(3)+FeadT), expansion of the product of the modified Bessel functions
(4.30 I,(nx) K,,(nx) were taken into account. As a result the spec-
tral zeta function in the problem under consideration was
wherea, anda,, are defined in Eq(4.25 and represented as an expansion in terms of the Riemann zeta

045011-8
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functions {r(2(k+s)+1), k=0,1,2 ... . With allowance the problem at hand18,37. The coefficientay, is deter-
for the first two terms in this expansion the zeta function ismined by the functiorZ,(s) only [see Eq.(5.3)]:

given by
a2 3

4(3)221(5)4‘22(5)4‘23(5) (51) (4#)372: @ (56)
Here the functionZ,(s) stands for the contribution of zero The coefficientas, is defined by the functio@z(s) given in
orbital momentum with proper subtraction: Eq. (5.4):
(2s—1)R?>s71 Joc [ aspy 153 ¢2
Z,(s)= dy y 25 In[1— 2 = —— (5.7
i) 2\/7c®T(s)[(3/2—s) Jo vy L= woy)] (4m)3/2 8192R®

1 The calculation of the next heat kernel coefficients

+Zy2t5(y)], (5.2 az,az;, ... would demand a knowledge of additional terms
in the expansion of the spectral zeta function in the problem

under consideration in terms of the Riemann zeta function.
These terms are proportional tdz(2k+2s+1) with k
=2,3,..., and may bebtained by employing the technique
developed in Ref[18]. By analyzing the positions of poles
The functionZ,(s) is generated by the first term of the uni- for these Riemann zeta functions, it is easy to show that, as

1
oY) =Y (VKL(Y)', tly)= \/1+—yz

form asymptotic expansion in the spherical case, we have
R~ a=0, j=345....
Z,y(8)= ——=:(1-25)(3—2s)
64/ The zeta determinant entering the high temperature asymp-
I(1/2+s) totics of free energy2.10 and entropy2.14) is calculated in
X[2{r(2s+1)+1] (5.3  Appendix B:

I's) -

!

0.45847 3 R
= + 5=Ins= (5.9

The functionZ; corresponds to the second term of the uni- TR TarMNxe

form asymptotic expansion
Now we are able to construct the high temperature expan-

RZS*l . : ! J
Z4(s)= (1—2s)(3—25)(784s%— 1045— 235) sions of the thermodynamic functions in the problem under
61440/ consideration. For the free energy we have
r@zts) 2s5+3 5.4 F(T 0 22924I il | RT 51 #% o(T 3
Mgy =t 54 F(N=-022924 grn oz gasgerer O -
(5.9

The functionZ,(s) is defined in the strip—3/2<Res
<1/2, while the function&,(s) andZ(s) are analytic func- When comparing Eq(5.9) with results of other authors one
tions in the whole complex plans except for the points should remember that all the thermodynamic quantities that
wherel'(s) and{(s) have simple poles. In order to find the We obtained in this section are related to a cylinder of unit
heat kernel coefficients,, a;,,, anda, through the relation length. The high temperature asymptotics of the electromag-
(3.8 one needs the zeta function defined in the region 1/2etic free energy in the presence of a perfectly conducting
+e<Res<3/2+& with & being a positive infinitesimal. cylindrical shell was investigated in Refl4]. To make the
However, in this region Eq(5.2) is not applicable directly COmparison convenient we rewrite their result as follows:
due to the bad behavior of the integral at the upper limit. In
the simplest way we can overcome this difficplty as in the F(T)2_0_10362-F_|;_ 3_T|nﬂ_ (5.10
case of perfectly conducting plates by introducing the photon 64R " 2hcC
massu at the very beginning of the calculation and then ) ) -
making the analytic continuation of the zeta function to theThe discrepancy between the terms lineafim Egs. (5.9

pointss=1/2,1,3/2. Upon taking the residual at these pointsa“d(5-10) is due to the double scattering approximation used
one should pug=0. in Ref. [14] (see also the next subsectioi®ur approach

With regard to all this and using the relati¢®8) we find  Provides an opportunity to calculate the exact value of this

the heat kernel coefficients term[see Eq(5.9].
Finally, making use of the general formulé®.13 and
a,=0, a;,=0, a;=0, a,=0. (5.5 (2.14), we derive
ishi iciemt impli 3T 153 c?h?
The vamshmg h.eat kerngl coefficiest implies that the zeta _ U(T)= —— +O(T9), (5.11)
regularization gives a finite value for the vacuum energy in 64R 98304 RT
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0.27612 3 RT 153 c242 cal shell[see Eq.(5.10]. A slight distinction between the
T+ m'n 27c  196608R3T2 Iingar inT tgrms in Eq.(5.1@ and .Eq.(5.17) is due to the _
finite error inherent in the numerical methods employed in
+O(T™%). (5.12  both the approaches.
In the case of a pure dielectric cylindeu{=u,=1, ¢4
# &,) the first four heat kernel coefficients are different from
zero even in the dilute approximati¢h9] (small difference
Here we consider the boundary conditions for an electropetween the velocities of light inside and outside the cylin-
magnetic field of two types(i) a compact infinite cylinder dep:
with uniform velocity of light on its lateral surfacdji) a
pure dielectric cylinder withc,#c,. The explicit expres-

S(T)=

B. Compact cylinder with ¢;=c¢, and with c;#c,

sions for the heat kernel coefficients upag we take from an— — BWRZ(C e+ 127TR2(C —¢,)?
Ref.[19], where a compact cylinder with unequal velocities 0 cd b c; b
of light inside and outside was considered. Witgs- ¢, the
final expressions for these coefficients are drastically simpli-
_— 27T3/2R
fied: 2
1= — T(Cl_cz) ;
2
a,=0, ay =0, a;=0 il =3—§2 a,=0
O B T G Tew 0 8 L
. a;=—(c1—Cy)— == (c1—C)%,
1 C%(l 2) 3Cg(1 )
The zeta function obtained for given boundary conditions in
Ref.[18] gives o
3

A3,= 7252 (C1—C)%,
aspp 202 45 2 16Rg

amP2~ ¢ R 8102

aj=0, j:3,4,5... .

(.19 a5, 857 (Ci—Cy)?

The heat kernel coefficienté.13 and (5.14) lead to the 22=0, (4m)%2” 61440 R°
following high temperature behavior of the internal energy in (5.19
the problem at hand:

It should be noted that the coefficieat vanishes only in the
(c,—c,)? approximation. As a matter of fact, contains
) +0O(T7%. (5.15 nonvanishing ¢; — ¢,)® terms and those of higher ordé9].
Therefore the zeta regularization provides a finite answer for
rF_he vacuum energy of a pure dielectric cylinder only in the
(c,—c,)? approximation even at zero temperature.
The contribution to the asymptotic expansions of the first
) 3 R three heat kernel coefficients should be involved in the rel-
g’(0)=§—(0.20699+—ln— _ (5.16 e_vant phenomenploglcal paramete_rs in t_he g(_angral expres-
R 32" 2c sion of the classical energy of a dielectric cylinder the
] ) ] same way as was done for a pure dielectric)b8y making
Now we can write the high temperature asymptotics for thq;se of the coefficientag, andas, we get the high tempera-

u(m=

38T L 5 c%h?
64R 512 R2T?

The corresponding zeta determinant is calculated in Appe
dix B as

free energy as ture asymptotics of the internal energy in the problem at
hand:
F(T)= al 0.10350+ 3I R +—15 ﬂCZﬁz
“An2— — [ — -2
LO(T-3) (5.17 U(M)=4n 128R(1 17280T2R2)+O(T )

(5.20
and for the entropy as
whereAn=n;—n,=(c,—c4)/cC.
&2 3 In view of the considerable technical difficulties we shall
S(T)= 5[0.1035& 4 1+ In% ~ 55536T°R2 not calpulate the zeta function determlr_1ant for a pure dielec-
tric cylinder. We recover the asymptotics of free energy by
+0O(T™ 4. (5.19  integrating the thermodynamic relati¢2.11) and of entropy
by using the relatiori2.12. Pursuing this method, we intro-
Putting £2=1 in these equations we arrive at the doubleduce a new constant of integratianthat remains undeter-
scattering approximation for a perfectly conducting cylindri- mined in our consideration:

RT) 15 c?4?
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3T RT 857 c242 , APPENDIX A:  ZETA FUNCTION DETERMINANTS
F(T)= —An®— —( In— ) +0O(T ), FOR ELECTROMAGNETIC FIELD SUBJECTED
128R 34560T°R? (5.21) TO SPHERICALLY SYMMETRIC
’ BOUNDARY CONDITIONS
1. A perfectly conducting sphere
232
S(T)=An? 2 3 1+ a |nR_T_ 857 %) o(T™ 3. First we calculatg’ (0) (zeta determinanfor an electro-
128 hc  34560T°R magnetic field in the background of a perfectly conducting

(5.22 sphere. We proceed from the following representation for
this zeta functiorj18]:

VI. CONCLUSIONS

)25 sin(7rs)
c ’7T

c

. d
{(s)= E <2I+1)f dyy *gy

In this paper we have demonstrated the efficiency and
universality of the high temperature expansions in terms of )
the heat kernel coefficients for Casimir problems with XIn[1=a7(y)], (A1)
spherical and cylindrical symmetries. All the known resultsWhere
in this field are reproduced in a uniform approach and in
addition a few new asymptotics are derivédr a compact q
ball with c;=c, and for a pure dielectric infinite cylinder o(y)=—[yl, (YK, (y)], v=I+1/2. (A2)

As the next step in the development of this approach one dy

can try to retain the terms exponentially decreasing when The analytic continuation of EGA1) to the region Ims<0 is
—o. These corrections are well known, for example, for

thermodynamic functions of the electromagnetic field in theperformed by adding and subtracting from the integrand its

presence of perfectly conducting parallel plate4,4Q [see uniform asymptotics at large:

also Eq.(4.23]. In order to reveal such terms, first the ex- 6

ponentially decreasing corrections should be retained in the az(uz):ﬂ t(z)= 1 (A3)
asymptotic expansiof2.9) for the heat kernel. ! 4p° " 1+ 2

It is worth noting that in the framework of the method
employed the high temperature asymptotics can also be coAs a result we obtain
structed in problems when the zeta regularization does not
provide a finite value of the vacuum energy at zero tempera- {(S)=2(s)+ {adS), (A4)
ture, i.e., when the heat kernel coefficieptdoes not vanish.

In Ref. [13] it was argued that in the high temperature
limit the behavior of the Casimir thermodynamic quantities os . "
should be the following. In the case of disjoint boundary Z(s)=(R) sin(7rs) > vlfzsf
pieces the free energy tends to minus infinity, the entropy
approaches a constant, and the internal energy vanishes.

where

dz d ’
?d_z |n[l—0'| (VZ)]

Contributions to the Casimir thermodynamic quantities from n i 1 (AS)
each individual connected component of the boundary ex- 4v° (1+2%)3)"

hibit logarithmic deviations in temperature from the behavior

just described. In our consideration we were obviously deal- R|253 S|r(7rs ® "

ing with an individual connected component of the boundary;_ (s)= (_) z —1—25f dz 27 258(2)

(a sphere or cylinder Our results corroborate the relevant = 0

conclusions of Ref[13] concerning the free energy and en-

tropy. However, the internal energy in our calculations tends 2s

to infinity like T instead of vanishing, this increase being :Z(E) s(1+s)(2+s)

caused by the corresponding logarithmic terms in the high

temperature asymptotics of the free energy. X[(21725—1) fx(1+2s)—21725], (AB)

When calculatingZ’ (0) one can pus=0 everywhere in
Eq. (A5) except for sings), the latter function being substi-
tuted simply byss. In view of this the integral in Eq(A5)

V.V.N. thanks Professor Barton for providing R¢B5] is evaluated easily if one takes into account the limits
prior to publication and for very fruitful communications.
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I11+1
N 32) " 32

Differentiation of Eq.(A6) with respect tos at the points
=0 gives

(A8)

z'(0)=—2|2l v

INR+In2+ 2. (A9)

o 5,1
(d0)=—3+5 5

In order to calculate the sum ovem Eq. (A8) we consider
an auxiliary sum

- a? a®
—llevln(l—ﬁ +E,
S(0)=0, S(1)=Z2'(0), (A10)

wherea is a parameter. The derivative of this sum with re-

spect toa can be rewritten in the form

o0

Sia az 1 1 1
(a)= 12 1+(1ta)2 1112
_ ALl
Cl+(1-a)2l (ALD)

The summation in EqA11) can be done by making use of
the following relationd41]:

0

1 1

y+k x+k

1
v y + (X)) = (y),

¢(x+1)=¢(x)+;, w(% —y—21In2, (A12)

where ¢(x) is the digamma functioifthe Eulery function)
Y(x)=(d/dx)InT(x). This gives

3 a

24
¢22

2

3
ot

S'(a)=a(2—y-2 In2)—g

(A13)

Now we integrate both sides of EGA13) overafrom 0 to 1
by making use oMAPLE:

S)=z'(0)=2- 24

5= 5T gN2-6k(—1).

(A14)

From Egs.(A4), (A9), and(A14) it follows that

1 7
IO=5-3+5

5+ N2+ 60K(—1)

5 1 R Y
+ ——+—InE+In2+

8 2 2

B 1+13 1I R
~"8'% 2%

In2+6¢4(~1)+

PHYSICAL REVIEW [35 045011

R
=0.38429+ In < (A15)

2. A material ball with c;=c¢,

The same technique can be used for calculating the zeta
function determinant in the case of equal velocities of light
inside and outside the material bedke Sec. IV B The com-
plete zeta function in this problem has the forhg]

)25 Sln(

d
. E(2|+1)f dyyzs

XIn[1-&af(y)],

{(s)

(A16)

whereo(y) is defined in Eq(A2) and the paramete® was
introduced in Eq(4.15. Adding and subtracting the uniform
asymptotics of the integrand at largeinder the integral sign
in Eg. (A16) we get

o

sm(ws =dz d
wo- (5 S e S
2
X{In[l—fz (VZ)] 1""—22)}
+&20.ds), (AL7)

where the function/,{s) was introduced in Eq(A6). Pro-
ceeding in the same way as in the previous subsection we
obtain for the derivative of the functiofy(s) at the points

{'(0)=S(£)+£%¢,40), (A18)
where the functior8(&?) is defined in Eq(A10). For small
values of the argumenr? we deduce from EqA10)

“a 1

()=, &
16{<

5= 16l 7¢r(3) -1+ 0(£9). (AL9)

Therefore restricting ourselves to the first order &fwe
arrive at the final result:

1 R
£(0)= 040 = 8 2+ 5ine +in2+ )

5
(A20)

3. A pure dielectric ball

The material ball with arbitrary velocities of light inside
and outside treated in Sec. IV C proves to be a more compli-
cated problem. In the notation of R¢R1] the relevant zeta
function takes the forng(s)=¢_4(s) + {4(s), where

{p(s)=
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2RZS
F(s+ HI'(—s)

Z

f dk k*?s A, (v,

v=I1+3, p==*1 (A21)
with
e (ki—kp)v
A, (k)= W—+1)[XPS|’(vk1)e|( vk2)
—s(vky)e/ (vky)], ki=klcy, ky=kl/cy,
(A22)

Si(y)=Vmyl2l (v), e(y)=V2yl7K.,(y).

The parametex = /(eg1u2)/(g,11) corresponds t@ in Ref.

[21].

The analytic continuation of the zeta function at hand to
the region Re>0 is performed by adding and subtracting in

Eq. (A22) several terms of its asymptotic expansion

o

Dy,
A (vk)~

n=-101 V

(A23)

where

D_1=n(ky) — n(ky) — (ki —ky),

4
2)=J1l+z+In————,
77 1+\1+2

XPcitr+Coty }

Do=
‘ VC1Cotyto(xP+1)

1
ti=———, i=1,2. (A24)

1+k?

For our purpose it is sufficient to consider four leading terms
of the asymptotic expansioi23), n=—1,0,1,2. The func-
tionsD; andD, are given in Ref[21]. Proceeding in this

way we represent the zeta functioh21) as follows:

2R ” x d

po2s+l —2s_

&=~ Fer DT (=9 2 fodkk K
D, D,
X |nAp’|—VD,l DO_T__Z

2R* ( 3) =
v ors| ol 2w, ok

db-, 2512 fwdkk‘zs—dDo
gk ten(2sTLal K

PHYSICAL REVIEW D 65 045011

+{n

0s, > dekk‘zs—le
>3/, dk

dD,

3 29
2s+1,—” dk k™ 25—=|,
2] Jo

ak (A25)

+{n

where(y is the Hurwitz zeta function. Taking the derivative
of the zeta functiorfA25) at the points=0 with allowance
for the behavior oD, (k) atk=0 ande, we obtain

1+ —

| 1 xPci—
n ——
2v chl+C2

(0)——22 (|+

1 xPci—c, 1 (chl_cz 2

- = + =
2v xPcy+c, 8vo\ xPcitcCsy

+2 1I e +11I
2 —

1 )(pCj__
2 XPC1+ C2

chl+ Cz
VCiCo(x?+1)

xci—c;
X‘Dcl + C2

2

1
—g(z—ln R—vy—2In 2)(

= d
—fo dkin ka(Dz}.

In order to calculate the sum ovkin Eq. (A26) we consider
the auxiliary sum

(A26)

$(0)=0,
(A27)

S(b) In[ 1+ — | -

2
5+§}'

=E 2v
=1

with b being a parameter. The derivative of this sum can be
cast in the form

S'(b) bi ! ! A28
O=52 v T+ e (A28)
Taking into account Eq(A12) we obtain
b
S’(b)——( 2+y+2In2)+ 1// >t 3] (A29)

The integration of Eq(A29) over b from 0 to b=(x"c;
—cC,)/(xci+c,) gives the sum entering EGA26):

b2 3 b
Sl(b)=z(—2+7+2 In2)+b¢}, 05+5

3
-1+

—2 22

+

13
15 .

Substitution of Eq(A30) into Eq. (A26) gives

N
Gl Lo ts

+2 gH( —1,2) +o| - (A30)

045011-13



M. BORDAG, V. V. NESTERENKO, AND |. G. PIROZHENKO

'(0)= b* 2 2In2)—b¢/ 03 b
o( )—_Z(_ +y+2In2)—b{y, 515
5 13 b , 13
T2/ lu| ~Lg 5| H| ~lst s
—2{@(—15 +aul —13
1 ¢, 11 PCitcC b b?
R ReTt) R

° d
><(2—InR—y—2In2)—f dkink=+D5,
0 dk

xc1—c¢y
~ xPcitcy”

(A31)

In the case of nonmagnetic media(= u,=1) the right
hand side of Eq(A31) is slightly simplified. Assuming that
we are dealing with a dilute dielectric ball we can expand
£’(0) in powers of the differencec(—c,), where c;
=1/\eq, c,=1/e,. As a result we get

$'(0)=¢,- 1(0)+,-4(0)

! iR binas (1= co)”
4| g ATy g
+0((c;—cy)d). (A32)

APPENDIX B: ZETA FUNCTION DETERMINANTS FOR
ELECTROMAGNETIC FIELD WITH CYLINDRICALLY
SYMMETRIC BOUNDARY CONDITIONS

1. A perfectly conducting cylindrical shell

A complete spectral zeta function in the problem at hand

is defined by the following expressid@8]:

RZS*l d
- 2S—l 1—
{(s) 2 (T (5)T (312 S)f yy~ n[1-u5(y)]
RZS 1 e l X 0 d
S d —2s__
\/—CZSF(S (32— s,)Z fo vy dy
xIn[1—uh(ny)], (B1)
where

d
Mn(y)=y@[ln(y)l<n(y)]-

The first term on the right hand side of E®1) is an ana-
lytic function of the complex variabls in the strip —1/2
<Res<1/2. Therefore there is no need for analytic continu-
ation of this expression when calculatigg(0). As regards

PHYSICAL REVIEW [35 045011

the second term in EqB1), its analytic continuation to the
region Res<0 can be accomplished in a standard way. We
add and subtract here the uniform asymptotics of the inte-
grand whem tends to infinity:

“t° 1
12y 1= L5 2 +0m4, ty)= =
(82)

As a result we obtain

S)= R fw dy d In[1— )
4 22T (s)I(3/2—s) Jo Y= 1 dy [1= wy)]
RZS—l %
+J§c25r(s) [(3/2— s)Z

d y“t6
f—z—dy In[1— Mn(nY)H

s—1

32w

T(1/2+s)
T(s)

(1—25)(3—25) {p(25+1)

(B3)

Keeping in mind the behavior of the gamma function at the
origin I'(s)=s"! one can easily find the derivative ¢(s)
at the points=0:

§(0)— fdyy In[1— u8(y)]

y4t6
+—Rn21 jdyydy[m[l a(MY)1+ 7z

2c
32R<3y 4— 3In—> (B4)

Unlike for the spherically symmetric boundaries, the integra-
tion is not removed in the formula obtained #1(0). There-
fore the first two terms in Eq(B4) can be calculated only
numerically as

1 (= , 0.53490
- == | Ty wgn- (B5)
7R Jo

R
Applying the FORTRAN subroutine that approximates the

Bessel functions by Chebyshev’s polynomials we evaluate
the first 30 terms in the sum in EB4) as

y“t

0.00554

R
(B6)

2y

TR=1

o ay| - o+

Finally gathering together all these results we have
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, 0.45847 3 | R a7 ) y4t5(y) O B10
§(0)—T 3R N (B7) —Mn(HY)——W— (n™%), (B10)
we obtain

2. A compact infinite cylinder with c;=c,

Now we turn to a compact cylinder placed into an un- & d ‘ d
bounded medium such that the velocity of light is uniform on ¢ (0)=~ R J, dy ydy,uo(y) R zl ", dy Yay
the surface of the cylinder. Proceeding as in the case of a

cylindrical shell we start with the expression for the relevant "'t6 2 2c
spectral zeta function :“n(”y)”L t3oR|3y—4-3Ing ).
R2s-1 (B11)
{(8)= —=: E dy y*~ 23 . . .
2\/Fc T'(s)['(3/2—2) n=-= The first two terms in Eq(B11) can again be calculated only
5 numerically:
XIN[1=&ui(y)] (B8)
with the paramete€ determined in Eq(4.15. In the linear f dy,uO = —O 28428, (B12)
approximation with respect ¢ Eq. (B8) assumes the form
S)=— dy V25— 2 dy —u (ny)+ =——O 00640.
{(s) 2 c? T (5)(312—9) yy dyuo(y) an A n
(B13)
RZS*ng
2s The final result reads
).
 Jmc®T(s)T(3/2—9) 2 dy ¥ gy aly . ) ,
c
(B9) '(0)= g 0.28428-0.00640+ (37 4-3 In—”
The analytic continuation to the region Be0O is needed ,
only for the second term in E¢B9). Adding and subtracting S 0.20695¢ —InE (B14)
here the uniform asymptotics of the integrand for lange "R 32 2c
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