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Simple way to generate high order vacuum graphs
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We describe an efficient practical procedure for enumerating and regrouping vacuum Feynman graphs of a
given order in perturbation theory. The method is based on a combination of Schwinger-Dyson equations and
the two-particle-irreducible~‘‘skeleton’’! expansion. The regrouping leads to skeletons containing only free
propagators, together with ‘‘ring diagrams’’ containing all the self-energy insertions. As a consequence, rela-
tively few diagrams need to be drawn and integrations carried out at any single stage of the computation and,
in low dimensions, overlapping ultraviolet and infrared subdivergences can be cleanly isolated. As an illustra-
tion we enumerate the graphs contributing to the four-loop free energy in QCD, explicitly in a continuum and
more compactly in a lattice regularization.
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I. INTRODUCTION

There are many physics contexts where multiloop Fe
man diagram computations are carried out. In QED one g
up to the four-loop level~for reviews see, e.g.,@1#! because
experiments are so precise. In particle physics phenome
ogy, particularly QCD, one goes up to the four-loop lev
~see, e.g.,@2#! because the coupling constant is not small.
studying critical phenomena in the simplest O(N) condensed
matter systems, one goes up to the five-loop level~see, e.g.,
@3#! because the effective expansion parameter is not sm

Studies of QCD at a finite temperatureT are faced with a
similar challenge. Indeed, the coupling constant expans
converges even worse than at zero temperature requirin
least T@103 LQCD to make any sense at all@4,5#. So far,
though, only the resummed three-loop level has been rea
for the simplest physical observable, the free energy@6#, be-
cause a broken Lorentz symmetry makes the analysis m
more complicated than in the cases mentioned above. In
even in principle only one more order is~partly! computable,
and then the expansion breaks down completely@7#. Multi-
loop computations are not useless, though: the infrared p
lems can be isolated to a simple three-dimensional~3D! ef-
fective field theory@8# and studied nonperturbatively the
@9#, but to convert the results to physical units from latti
regularization still necessitates a number of fixed-order p
turbative computations@10,11,12#.

As the loop order increases, so does the computatio
effort. The sheer enumeration of various diagrams and t
symmetry factors becomes nontrivial. The group-theore
and Lorentz structures of single graphs are involved. Fina
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the scalar integrals remaining are hard to evaluate ana
cally. It is therefore clear that, ideally, one would like
automatize the whole procedure~for a review of the current
status see, e.g.,@13#!.

In this paper we concentrate on the first step of any m
tiloop computation, the enumeration of various Feynm
diagrams. This step should be the easiest to automatize, s
all one needs is a straightforward evaluation of Wick co
tractions. Indeed, various packages, such asFEYNARTS @14#
andQGRAF @15#, are available for determiningn-point func-
tions in a given particle physics model.

For vacuum graphs in condensed matter systems a sim
approach is possible. For the quartic O(N) scalar model the
combinatorics is not yet too hard, but variants thereof
ready require some work. Consequently, graphical al
rithms have been developed at four-loop order and bey
for a number of simple models@16#.

In many cases, though, a straightforward generation of
full set of diagrams of a given loop order may not be t
ideal way to go. In realistic theories there are very ma
graphs, and all integrals would have to be evaluated on
same footing. This is almost impossible, particularly if ma
different masses appear.

Here we wish to present what would seem to us to b
maximally manageable setup. All vacuum graphs are ge
ated, but they are cleanly separated into two groups: one
two-particle-irreducible~2PI! ‘‘skeletons’’ with free propaga-
tors, and the other, of ‘‘ring diagrams’’ with various sel
energy insertions~see also@17#!. The self-energies, in turn
are directly obtained from lower order skeletons. We fi
that this setup economizes the generation of the vari
graphs quite significantly. We also point out that in low d
mensions, relevant for statistical physics applications, the
tegrations remaining are qualitatively different in the tw
sets.

As an illustration of the setup, we enumerate the diagra
©2002 The American Physical Society08-1
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contributing to the four-loop free energy of finite temperatu
QCD ~as well as QED and the symmetric phases of the e
troweak theory and scalar electrodynamics!. We hope,
though, that the setup may be applicable to some other c
as well. That is why we wish to separate it from the evalu
tion of the integrals arising in the finiteT context@18#, spe-
cific for that physical situation.

Our plan is the following. We summarize our basic no
tion in Sec. II, reorganize the standard skeleton expansio
Sec. III, review the Schwinger-Dyson equations forn-point
and vacuum graphs in Sec. IV, and combine them with
modified skeleton expansion to obtain a generating form
for skeleton diagrams in Sec. V. The corresponding res
are given for a lattice regularization of a generic model
Sec. VI. As an illustration, we show the loop expansion
the free energy of QCD and related models in Sec. VII.
discuss some basic properties of our setup and conclud
Sec. VIII.

II. NOTATION

Let us start by introducing a concise notation. While t
method is valid for any theory, we explicitly give all equ
tions for a genericw31w4 model. Later on we discuss mor
specific examples within this class, in particular QCD,
well as some extensions of this class. The generic class
includes the electroweak sector of the standard model, b
in its symmetric and its spontaneously broken phase.

The partition function is defined as

Z@J#5E Dw eS@w#1Jw, ~1!

whereS@w# is the action,

S@w#52
1

2
w iD i j

21w j1
1

3!
g i jkw iw jwk1

1

4!
g i jkl w iw jwkw l ,

~2!

and summations over various indices, numbering~real sca-
lar! fields and their internal and spacetime structures,
implied. Two comments are in order. First, we will for th
moment not display fermions explicitly. As far as vacuu
graphs are concerned, they do not introduce any comp
tions apart from the usual overall minus sign for each clo
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loop and can thus be introduced only at the end@19#. Second,
one should notice that the sign conventions in Eqs.~1!, ~2!
are such that in the case of Euclidean actions,g i jkl is typi-
cally negative.

For a theory with a broken symmetry, the inverse fr
propagatorD21 and the couplingsg i jk ... are functions of the
order parameter, but otherwise there are no essential com
cations. We return to this point in Sec. IV A.

The partition functionZ@J# in Eq. ~1! is the generating
functional for full Green’s functions,Gn

full5dJ
nZ@J#uJ50 . As

usual, we define

W@J#5 ln Z@J#, ~3!

the generating functional of connected Green’s functio
Gn

conn5dJ
nW@J#uJ50 . Finally, one can define the effective a

tion via

Seff@f#5W@J#2fJ, f5dJW@J#, ~4!

which generates 1PI Green’s functions,Gn
1PI

5df
n Seff@f#uf50. Note, in particular, thatdfSeff@f#52J. The

vacuum, or free energyF ~made dimensionless by a divisio
with the temperatureT!, can be obtained from any of th
generating functionals as

F52 ln Z@0#52W@0#52Seff@0#. ~5!

From the basic relationsf5dJW@J#, dfSeff@f#52J, it
follows that

dJ
2W@J#df

2 Seff@f#521. ~6!

Defining, as usual, the ‘‘proper’’ self-energy by

df
2 Seff@f#[2D211P, ~7!

we see from Eq.~6! that dJ
2W@J# is the full propagator:

dJ
2W@J#[D@f#5

1

D212P
[D1DPD1DPDPD1¯ .

~8!

We shall use here the following notation for free and f
propagators, the proper self-energy, as well as general
vertices:
~9!

~10!

~11!

~12!

~13!
8-2
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III. SKELETON EXPANSION WITH FREE PROPAGATORS

We next review the skeleton expansion for the free ene
F @20,21# and modify it such that full propagators can b
replaced with free propagators@17#. By a skeleton we mean
a 2PI vacuum diagram: one that remains connected eve
any two lines are cut. The skeleton expansion has been
as the starting point also in@17#.

It can be shown@20,21# that the loop expansion for Eq
~5! can be written as

F@D#5(
i

ci~Tr ln Di
211TrP i@D#Di !2F@D#, ~14!

where i 5$bosons, fermions%, cboson51/2, andcfermion521.
Here F@D# collects all 2PI vacuum diagrams. The fu
propagatorsDi are related to their corresponding se
energies byD215D212P @cf. Eq. ~8!#, whereD are the
free propagators. BothF, P, andF can be regarded as func
tionals of the full propagators. The partition function has
extremal property, such that the variation ofF with respect to
any of the full propagators vanishes@20,21,22#, giving a re-
lation between skeletons and self-energies:

dDi
F@D#5ciP@D#. ~15!

Here we have introduced the implicit notation that whene
a term is multiplied byci , the P’s andD’s following it are
assumed to carry the same subscript. Pictorially, Eq.~15!
corresponds to getting a self-energy by ‘‘cutting a propa
tor’’ in all possible ways in the set of vacuum skeleton
Hence knowing the skeletons alone provides full inform
tion.

In Eqs. ~14!, ~15!, it is the full propagatorsD which ap-
pear in the skeleton graphs and self-energies. We would
stead like to obtain skeletons with free propagators. As a
step in this direction, we expandD in terms of the self-
energy insertionsP@D#, D5DSn>0(PD)n, to get

F5(
i

ciTrF ln D211 (
n>2

S 12
1

nD ~PD!nG
2FFD (

n>0
~PD!nG . ~16!

We then have to evaluateP@D#.
To go forward more explicitly, we restrict ourselves to t

five-loop level here. Let the subscriptn denote the loop or-
der, and writeP5Sn>1Pn . It turns out that we need at mos
P3 . In a straightforward way, we obtain

P15P1@D#[P1
irr@D#, ~17!

P25P2
irr@D#1~P1

irr@D1DP1
irrD#!2

[P2
irr@D#1P2

red~1!@D#, ~18!
04500
y

if
ed

n

r

-
.
-

n-
st

P35P3
irr@D#1~P2

irr@D1DP1
irrD#!3

1~P1
irr@D1DPD1DP1

irrDP1
irrD#!3

[P3
irr@D#1P3

red~1!@D#1P3
red~2!@D#, ~19!

wherePn
irr aren-loop 1PI graphs, whilePn

red(m) are obtained
by cutting m lines in a lower orderPn

irr@D# and dressing
them appropriately:

P2
red~1!@D#5~DP1

irrD! jdD j
P1

irr@D#, ~20!

P3
red~1!@D#5~DP1

irrD! jdD j
P2

irr@D#

1~DP2D1DP1
irrDP1

irrD! jdD j
P1

irr@D#,

~21!

P3
red~2!@D#5

1

2
~DP1

irrD! j~DP1
irrD!kdD j

dDk
P1

irr@D#.

~22!

For the explicit diagrammatic characteristics ofP2
red~1! , see

Sec. V B.
It is easy now to unfold the loop expansion also f

F@D#5Sn>2Fn , the last term in Eq.~16!. Up to the five-
loop level, we can write

~F2@D# !n<55„F2@D1D~P11P21P3!D

1D~P11P2!D~P11P2!D

1DP1DP1DP1D#…n<5 , ~23!

~F3@D# !n<55„F3@D1D~P11P2!D

1DP1DP1D#…n<5 , ~24!

~F4@D# !n<55~F4@D1DP1D#!n<5 , ~25!

~F5@D# !n<55F5@D#, ~26!

where the arguments are to be Taylor expanded, with
derivatives obeying@cf. the diagrammatic identity Eq.~15!,
evaluated with free propagators#

dD i
Fn@D#5ciPn21

irr @D#, ~27!

and higher ones bringing back reducible self-energies,
fined in Eqs.~20!–~22!.

Inserting these expansions into Eq.~16!, we finally get, up
to the five-loop level,
8-3
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2F52(
i

ciTr ln D211F2@D#1F3@D#1(
i

ciTrF1

2
~DP1!2G1F4@D#1(

i
ciTrF1

3
~DP1!3

1DP1DS P2
red1

1

2
P2

red~1!D G1F5@D#1(
i

ciTrF1

4
~DP1!41~DP1!2DS P2

irr1
1

2
P2

red~1!D
1

1

2
DP2

irrD~P2
irr1P2

red~1!!1DP1DS P3
irr1

1

2
P3

red~1!1
1

3
P3

red~2!D G ~28!

or, written diagrammatically~and denoting byF0 the noninteracting result!,

~29!
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Here a circle withn inside denotesPn
irr , a squarePn

red~1! ,
and a double squarePn

red~2! . We will term the skeletons with
free propagators,Fn@D#, irreducible. Note that the numeri-
cal factors in front of various types of ring diagrams do n
appear to trivially follow from any simple symmetry argu
ment ~particularly in the case of reducible self-energy ins
tions!, but are best worked out explicitly via the Taylor e
pansions we have described.

Equation ~29! is the starting point of our setup. It ex
presses the free energy in an economic way in terms of
irreducible skeletonsFn@D#: either as direct contribution
or as self-energy insertions obtained from the same skele
via Eqs.~27! and~20!–~22!. We note that at then-loop level,
one needsFn@D#, but only Pn22@D#, obtained from
Fn21@D#.

IV. SCHWINGER-DYSON EQUATIONS WITH FULL
PROPAGATORS

Next, we need to generate the skeletonsFn@D#, needed in
Sec. III. To do that, we first review briefly the general set
of Schwinger-Dyson~SD! equations, converted to our nota
tion. The SD equations will then play a central role in o
main result, Eq.~49!, which is an explicit formula allowing
for a systematic generation of all skeletonsFn@D#—in prin-
ciple to any order. In this section, we follow closely the ve
enjoyable presentation by Cvitanovic´ @19#.

A. General n-point functions

The basic SD equation for the generating functionalZ@J#
of full Green’s functions derives from the trivial fact that th
integral of a total derivative vanishes:
04500
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05E Dw dweS@w#1Jw5~S8@dJ#1J!Z@J#. ~30!

For the generating functional of the connected Green’s fu
tions, Eq.~3!, one gets

05S8@W8@J#1dJ#1J. ~31!

Finally, for the effective action, Eq.~4!, we use from Sec. II
thatW8@J#5f, dJ5(df/dJ)df5W9@J#df5D@f#df , and
J52Seff8 @f# to obtain

Seff8 @f#5S8@f1D@f#df#. ~32!

Puttingf→0 on the right-hand side, this gives the SD equ
tion for the one-point function, while taking derivatives wit
respect tof on both sides of Eq.~32! and puttingf→0 only
afterwards generates SD equations for higher-point Gre
functions,

Gn
1PI5df

n21S8@f1D@f#df#uf50 . ~33!

HereD@f# is in Eq. ~8!, and we note that

dfD@f#5D@f#~df
3 Seff@f#!D@f#. ~34!

A note may be in order here concerning theories w
spontaneously broken symmetries. In that case,f corre-
sponds to the fluctuating field around some reference va
v, typically v[^w&. The quantity we should ultimately b
computing is the free energy density as a function
v: i.e., the effective potentialV(v)5F/(volume). Then
everything goes as before: we still putf→0 in the equa-
8-4
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tions above after differentiation, while the condensatev ap-
pears as a parameter in the free propagators as well as i
cubic and quartic couplings in Eq.~2! @the termJw linear in
w in Eq. ~1! need not be changed@23##. The graphs also
remain the same: only 1PI graphs, generated by the l
expansion in Eq.~29!, are to be included@23#. Tadpole-type
graphs often associated with broken symmetries would o
be generated if we want to reexpand the value ofV(v) at the
broken minimum in a strict loop expansion: writingV
5Sn>0Vn , v5Sn>0vn , such thatV08(v0)50, implies

V~v !uV8~v !505V0~v0!1V1~v0!1FV22
1

2

~V18!2

V09
G

v5v0

1FV32
V18V28

V09
1

1

2

~V18!2V19

~V09!2 2
1

6

~V18!
3V0-

~V09!
3 G

v5v0

1FV42
1

2

~V28!
212V18V38

V09
1

1

2

2V18V28V191~V18!2V29

~V09!2

2
1

6

3~V18!2~V19!213~V18!2V28V0-1~V18!3V1-

~V09!3
f
o
it

nt

t
f
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12~V18!3V19V0-1~V18!4V099

~V09!4 2
1

8

~V18!4~V0-!2

~V09!5 G
v5v0

1¯ ,

~35!

where the latter terms inside the square brackets corresp
to various tadpole graphs, with obvious notation: 1/V09 is
the free propagator of the Higgs particle with a vanishi
momentum,V18(V19) is a one-loop diagram with one leg~two
legs!, V0- is a three-vertex, etc.

Let us now illustrate the structure of Eq.~33! for the
generic model in Eq.~2!. Starting from Eq.~2!, writing down
indices, and employing Eq.~34!, we obtain, for the right-
hand side of Eq.~32!,

df i
S52D i j

21f j1
1

2
g i jk~f jfk1D jk!1

1

6
g i jkl ~f jfkf l

1D jkf l1Dklf j1Dl j fk

1D jmDknDlodfm
dfn

dfo
Seff@f#!. ~36!

We now take further derivatives according to Eq.~33!. Put-
ting f50 after each differentiation, we thus obtain the sta
dard equations@written in the notation of Eqs.~9!–~13!#
~37!

~38!

~39!

~40!

~41!
ns
lar
ally.

D

where ‘‘cyclic (n1 ,n2 ,...) ’’ denotes cyclic permutations o
the legs numbered. We have not written down the two-lo
terms in Eq.~41!, since they are not needed in our explic
four-loop demonstration below. Likewise, all higher-poi
1PI functions Gn

1PI, n>5, start with one-loop graphs in
the model of Eq.~2! and will again not contribute a
this order; they will for F5 , as well as in the model o
p
Sec. VI.

Let us stress that in a local theory the manipulatio
needed in Eq.~33! can essentially be made using regu
derivatives and can thus easily be implemented algebraic
Introducing furthermore\ as a loop counting parameter@24#
allows for an iterative solution of the corresponding S
equations.
8-5
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B. Vacuum diagrams

The SD formalism above provides equations relat
n-point Green’s functions. To incorporate vacuum diagram
one can use another simple trick: scaling. Noting that, e
Z@J# is a functional of all interaction parameters present
the action,Z@J,g i j ,g i jk ,...#, one can derive hosts of rela
tions by varying any of these parameters.

A most useful example is to rescale the entire action
S@w#→(1/\)S@w# and then vary\:

2\]\ ln Z@J#5 K 1

\
S@w#L 5

1

Z@J#

1

\
S@dJ#Z@J#. ~42!

Rewriting this in the ‘‘connected’’ language~recallW5 ln Z!,

2\]\W@J#5
1

\
S@W8@J#1dJ#, ~43!

allows one to finally go over to 1PI functions~]\W5]\Seff

1Seff8 ]\f1J]\f5]\Seff , W85f, anddJ5W9df5D@f#df!:
ns

te

04500
g
,
.,

s

2\]\ Seff@f#5 K 1

\
S@w#L 5

1

\
S@f1D@f#df#. ~44!

The free energyF52Seff@0# can now be obtained by settin
f50 and integrating over\.

Noting again that after a rescaling of the integration va
ables an expansion in\ is equivalent to the loop expansio
@24#, one can integrate the left-hand side of Eq.~44! by
*\(1/\)@¯#, but on the right-hand side one integrates ov
the loop number. Writing

2Seff@0#5F5F01F int5F01 (
n>2

Fn
int , ~45!

wheren counts the number of loops, it follows that

Fn
int5

1

n21
$S@f1D@f#df#uf50%n, n>2. ~46!

Illustrating Eq.~46! for our generic theory in Eq.~2!, we get
loser

e need
ll
n

as
~47!

where we again use the notation of Eqs.~9!–~13!.
In principle the whole loop expansion can now be generated from Eq.~47!, using Eqs.~38!–~41!. The n-loop vacuum

diagrams are expressed in terms of 1PIn-point functions, which in turn are governed by a set of SD equations. Looking c
at it, though, it is somewhat of a mess: one has to expand full propagators in terms of free ones and theP’s, use SD equations
to iterate loops forP’s, which brings back full propagators, etc. Fortunately, none of this is necessary for Eq.~29!, as we now
explain.

V. GENERATING THE IRREDUCIBLE SKELETONS F†D‡

The key observation for combining Schwinger-Dyson equations and the skeleton notation in a useful way is that w
to extract from Eq.~47! only a specific partF@D#: we already know, by Eq.~29!, what all the rest combines into. But then fu
propagators can be replaced by free propagators in all but the first term in Eq.~47!. Indeed, any self-energy insertion withi
one of the other graphs leads to a two-particle-reducible~2PR! diagram. For the same reason, the 1PI vertices in Eq.~47! can
be iterated by using the SD equations of the form in Eqs.~40!, ~41!, but with free propagators. More precisely, it goes
follows.

To generate theirreducible skeletonsF@D# from Eq. ~47!, it is sufficient to expand the first term as

~48!

where in the second step Eq.~38! was used. Taking into account the minus sign in the relation ofF andF@D# @cf. Eq. ~29!#
and writing again the loop expansion asF5Sn>2Fn , one finally obtains a closed exact equation

~49!
Equation~49! is our main result. It generates all skeleto
of all orders in the theory of Eq.~2!, once Eqs.~40!, ~41! are
used~with free propagators!. The skeletons, in turn, genera
self-energies via Eq.~27! and the analogues of Eqs.~20!–
~22!. Inserted finally into Eq.~29!, we obtain the free
energyF.
8-6
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A. Vacuum skeletons up to the five-loop level

The procedure of working out Eq.~49! is simple and me-
chanical and can, at least up to the four-loop level, even
carried out by hand, as we shall demonstrate. The only c
plication arising is the identification of equivalent topologie
the same graph can be written in very many different wa
In order to deal with this situation, it appears easiest to
sign an algebraic notation for the different topologies, rat
than a mere graphical one. For example, one can coun
numbers of three-point and four-point vertices appearing
the graph, and within those equivalence classes, one can
04500
e
-

:
s.
s-
r
he
n
use

a matrix notation for how the vertices are connected. T
significant entries of the matrix can be ordered to a sin
number, and by doing the same for all possible orderings
the vertices, a unique representative~say, the smallest of
such numbers! can be assigned to each topology. For an
plicit implementation of this kind of a procedure, see t
second paper in@16#.

Let us now explicitly work out the diagram classes in E
~49! up to the four-loop level. For the first one, inserting E
~40! gives either a two-loop graph, or three-loop graphs to
iterated further on, or directly four-loop graphs:
o

lementing
~50!

Here the further iterations give

~51!

~52!

~53!

We have dropped five-point functions each time they appear, since in the model of Eq.~2!, they start with a one-loop term, s
that diagrams containing them generate higher loop orders.

The second class in Eq.~49! only contributes toF2@D# and is trivial. For the third class in Eq.~49!,

~54!

For the fourth class, we only need the one-loop terms in Eq.~41!,

~55!

Collecting finally these different contributions together with coefficients according to Eq.~49!, we get

~56!

~57!

~58!

Proceeding to higher loop orders, an automatized treatment proves essential, for the reasons outlined above. Imp
our generic formulas as well as an ordering algorithm separating topologies inFORM @25#, we obtain in a straightforward way
8-7
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the complete set of five-loop skeletons,

~59!

Note once more that these skeletons are all that is needed for generating the loop expansion for the full free e
discussed above.

B. Self-energies up to the two-loop level

Now that we haveFn@D# in Eqs.~56!–~59!, irreducible as well as reducible self-energies can easily be obtained with
~27!, ~20!–~22!, etc. For bosonic particles, for instance (ci5

1
2 ), we get

~60!

~61!

~62!

etc. Note that the outcome of the derivative in Eq.~27! must be symmetric in all~bosonic! indices. The three and four-loo
self-energies could be derived fromF4 andF5 , respectively, but we choose not to give them here, since they are not ne
for the set of four-loop vacuum diagrams that we will display explicitly in Sec. VII.

With Eqs.~60!–~62!, the ring diagrams in Eq.~29! are readily written down.

VI. GENERIC MODEL ON THE LATTICE

So far we have considered the generic model in Eq.~2!. However, in a lattice regularization of gauge theories, hig
vertices appear as well, without spoiling renormalizability. At the generic level, it is straightforward to add such coupl
the theory in Eq.~2!. We can include, e.g., terms up to;(1/8!)g i jklmnopw iw jwkw lwmwnwowp , as would arise in lattice
perturbation theory for SU(N) gauge theories, if one keeps terms contributing to four-loop vacuum graphs. Such compu
would be needed when one converts results of three-dimensional numerical Monte Carlo studies from lattice to co
regularization@10#.

In this case, everything goes as before, except for the appearance of extra vertices in the SD equations, as well
~49!. We shall here simply spell out the final results, without rewriting explicitly the modified SD equations. We obta
following additional skeletons:

~63!

~64!
045008-8
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as well as the additional irreducible self-energy

~65!

where we again assumedci5
1
2 .

VII. APPLICATIONS: QCD, QED, SQED, ELECTROWEAK THEORY

As an application of the generic formulas derived above, we consider in this section SU(N) gauge theory with fermions an
a scalar field. This class includes QCD and QED~where graphs containing scalar propagators and, in the latter case,
field self-interactions are to be dropped out!, as well as the electroweak theory and scalar electrodynamics~SQED!. For
brevity, we display here only the vertices appearing in the symmetric phases of the latter theories. We mostly use the
of QCD, referring to the gauge fields as gluons, etc.

The Lagrangian is specified by giving Feynman rules for the free propagators and free vertices,

~66!

where gluons~scalars! are denoted by wavy~straight! lines. Both quarks and ghosts are denoted here by dotted lines
Feynman rules for them are different, but the symmetry factors agree—the only exception being diagrams with more
closed fermion loop, in which case both ghosts and quarks can appear in the same diagram simultaneously, red
symmetry by an obvious factor.

We do not here write down counterterms explicitly. Coupling constant counterterms can be viewed as a part of the c
quartic couplings, while wave function and mass counterterms can be treated as a part of theirreducible self-energiesPn

irr ,
making their appearance only in ring diagrams according to Eq.~29!.

Let us first note that once we write down the summation over the field content explicitly in Eq.~2!, the ‘‘natural’’ symmetry
factors in front of the vertices change. For instance, writing the four-point vertex in the case of two sets of field$w i%
→$Ai%1$Ba%, and using the symmetry ofg i jkl , one gets
t

ph

tly

er
qs.

ept
the

out
he
s
ta-
for
1

4!
g i jkl w iw jwkw l5

1

4!
g i jkl AiAjAkAl1

1

3!
g i jkaAiAjAkBa

1
1

~2! !2 g i j abAiAjBaBb1¯ . ~67!

Similarly, writing the three-point vertex for three differen
fields, $w i%→$Ai%1$Ba%1$CM%, one finds

1

3!
g i jkw iw jwk5

1

3!
g i jkAiAjAk1

1

2!
g i j aAiAjBa

1g iaMAiBaCM1¯ . ~68!

With these conventions, each tree-level vertex in the gra
cal notation corresponds just tog i jkl , g i jka , etc., without
any symmetry factors there: all of them are shown explici
04500
i-

.

The only thing remaining is to write the summation ov
particle species explicitly also in the propagators of E
~56!–~58!,

~69!

Only the vertices allowed by the Feynman rules are k
after this substitution. This generates all the graphs, with
correct symmetry factors.

A. Vacuum skeletons up to the four-loop level

The procedure outlined above can easily be carried
explicitly, and up to the four-loop level even by hand. T
main complication is again the identification of variou
equivalent topologies, and for this a suitable algebraic no
tion may be more useful than a graphical one. As a result,
the field content in Eq.~66!, we finally obtain
8-9
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~70!

~71!

~72!

B. Self-energies up to the two-loop level

Using Eqs.~27!, ~20!, the skeletons above immediately produce the self-energies of the model in Eq.~66!. We obtain

~73!

~74!

~75!

~76!
045008-10
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~77!

~78!

~79!

~80!

~81!

C. Ring diagrams up to the four-loop level

To be exhaustive up to the four-loop level, let us finally give the set of ring diagrams for the model of Eq.~66!. While there
are no ring diagrams up to the two-loop level, from Eq.~29! we get

~82!

~83!
ex
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Note the extremely economic structure of the skeleton
pansion of Eq.~29!: the few ring diagrams above summ
rize 22 ~276! three-loop~four-loop! diagrams.

VIII. DISCUSSION

In this paper we have described a simple practical pro
dure for systematically generating all vacuum diagrams o
given loop order in a generic field theory.

We have shown that the sum of vacuum diagrams can
written in the form of a modified skeleton expansion, E
~29!. It contains two-particle-irreducible ‘‘skeletons’’ with
free propagators, as well as various self-energy insert
inside ‘‘ring diagrams.’’ The self-energies are, in turn, det
mined by the skeletons. Thus, all one really needs is
skeletons.

The two-particle-irreducible skeletons of a given ord
are, then, generated by Eq.~49!. It contains a number of full
three-point and four-point vertices, which can in turn be e
panded using specific ‘‘irreducible’’ Schwinger-Dyson equ
tions @Eqs.~40!, ~41!, etc.#, where full propagators have bee
replaced with free propagators. In this way, all vacuu
graphs are generated simultaneously, with the correct s
metry factors. Finally, the precise particle content of t
04500
-

e-
a

e
.

ns
-
e

r

-
-

-

theory one is interested in can be specified as discusse
Sec. VII. Our method is also directly applicable to theor
with spontaneous symmetry breaking, as only free propa
tors and vertices are modified; tadpole graphs are gener
by Eq. ~35!.

This iterative procedure is very straightforward and c
be automatized, but up to the four-loop level the compu
tions are easily carried out even by hand, as we have d
onstrated. Thus, we believe that our setup economizes
generation of the set of high-order vacuum diagrams, co
pared with techniques where all types of graphs have to
dealt with on the same footing, without a separation in
skeletons with free propagators and ring diagrams.

Up to this point, we have not discussed at all the integ
tions remaining to be carried out after the diagrams h
been generated. Let us end by pointing out that our setu
beneficial as far as their structure is considered, as wel
dimensions lower than 4@17#.

The point is that low-dimensional field theories of th
type in Eq.~2! are superrenormalizable. In fact, ford52,3,
only the two-point function suffers from ultraviolet diver
gences, as can be seen by simple power counting. There
the skeleton graphs, which by definition do not have a
genuine two-point functions inside them, do not contain a
8-11
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ultraviolet divergences in subdiagrams. The ring diagra
on the other hand, do have ultraviolet divergences in sub
grams. Note, in particular, that sincePn

irr ,Pn
red(m) come with

different symmetry factors in Eq.~29!, the counterterms in
Pn

irr , which make the wholePn finite, do not in general
immediately cancel all the ultraviolet subdivergences of
ring diagrams.

Consequently, various ring diagram classes can contrib
to the overall divergences of the vacuum graphs with pot
tially infrared sensitive coefficients, coming from the oth
parts of the final integration, while skeleton diagrams cann
Fortunately, the ring diagram integrations are simpler th
et

tt.

.

s.

ni-

sh

04500
s,
a-

e

te
-

r
t.
n

those in the skeleton graphs, and this problem can thus
dealt with in a tractable setting@18#.
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