PHYSICAL REVIEW D, VOLUME 65, 045008

Simple way to generate high order vacuum graphs

K. Kajantig
Department of Physics, P.O. Box 64, FIN-00014 University of Helsinki, Finland

M. Laine
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Y. Schrader
Department of Physics, P.O. Box 64, FIN-00014 University of Helsinki, Finland
(Received 13 September 2001; published 24 January)2002

We describe an efficient practical procedure for enumerating and regrouping vacuum Feynman graphs of a
given order in perturbation theory. The method is based on a combination of Schwinger-Dyson equations and
the two-particle-irreduciblé“skeleton”) expansion. The regrouping leads to skeletons containing only free
propagators, together with “ring diagrams” containing all the self-energy insertions. As a consequence, rela-
tively few diagrams need to be drawn and integrations carried out at any single stage of the computation and,
in low dimensions, overlapping ultraviolet and infrared subdivergences can be cleanly isolated. As an illustra-
tion we enumerate the graphs contributing to the four-loop free energy in QCD, explicitly in a continuum and
more compactly in a lattice regularization.
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[. INTRODUCTION the scalar integrals remaining are hard to evaluate analyti-
cally. It is therefore clear that, ideally, one would like to

There are many physics contexts where multiloop Feynautomatize the whole proceduffer a review of the current
man diagram computations are carried out. In QED one goestatus see, e.g.13]).
up to the four-loop leve(for reviews see, e.g[1l]) because In this paper we concentrate on the first step of any mul-
experiments are so precise. In particle physics phenomendiloop computation, the enumeration of various Feynman
ogy, particularly QCD, one goes up to the four-loop leveldiagrams. This step should be the easiest to automatize, since
(see, e.g.}2]) because the coupling constant is not small. Inall one needs is a straightforward evaluation of Wick con-
studying critical phenomena in the simplestN)(condensed tractions. Indeed, various packages, SUCIFERNARTS [14]
matter systems, one goes up to the five-loop Iések, e.g., andQGRAF[15], are available for determining-point func-

[3]) because the effective expansion parameter is not smaltions in a given particle physics model.

Studies of QCD at a finite temperatuFeare faced with a For vacuum graphs in condensed matter systems a similar
similar challenge. Indeed, the coupling constant expansioapproach is possible. For the quarticN)(scalar model the
converges even worse than at zero temperature requiring abmbinatorics is not yet too hard, but variants thereof al-
least T>10° Aqcp to make any sense at d.5]. So far, ready require some work. Consequently, graphical algo-
though, only the resummed three-loop level has been reacheihms have been developed at four-loop order and beyond
for the simplest physical observable, the free en¢fybe-  for a number of simple mode([46].
cause a broken Lorentz symmetry makes the analysis much In many cases, though, a straightforward generation of the
more complicated than in the cases mentioned above. In fadyll set of diagrams of a given loop order may not be the
even in principle only one more order(gartly) computable, ideal way to go. In realistic theories there are very many
and then the expansion breaks down compleftély Multi- graphs, and all integrals would have to be evaluated on the
loop computations are not useless, though: the infrared protsame footing. This is almost impossible, particularly if many
lems can be isolated to a simple three-dimensi¢8B) ef-  different masses appear.
fective field theory[8] and studied nonperturbatively there ~ Here we wish to present what would seem to us to be a
[9], but to convert the results to physical units from lattice maximally manageable setup. All vacuum graphs are gener-
regularization still necessitates a number of fixed-order perated, but they are cleanly separated into two groups: one, of
turbative computationgl0,11,13. two-particle-irreduciblg2Pl) “skeletons” with free propaga-

As the loop order increases, so does the computationabrs, and the other, of “ring diagrams” with various self-
effort. The sheer enumeration of various diagrams and theignergy insertiongsee alsd17]). The self-energies, in turn,
symmetry factors becomes nontrivial. The group-theoretiare directly obtained from lower order skeletons. We find
and Lorentz structures of single graphs are involved. Finallythat this setup economizes the generation of the various

graphs quite significantly. We also point out that in low di-
mensions, relevant for statistical physics applications, the in-

*Email address: keijo.kajantie@helsinki.fi tegrations remaining are qualitatively different in the two
"Email address: mikko.laine@cern.ch sets.
*Email address: york.schroder@helsinki.fi As an illustration of the setup, we enumerate the diagrams
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contributing to the four-loop free energy of finite temperatureloop and can thus be introduced only at the Et#]. Second,

QCD (as well as QED and the symmetric phases of the elecene should notice that the sign conventions in Eds. (2)

troweak theory and scalar electrodynamic¥Ve hope, are such that in the case of Euclidean actiopg, is typi-

though, that the setup may be applicable to some other caseally negative.

as well. That is why we wish to separate it from the evalua- For a theory with a broken symmetry, the inverse free

tion of the integrals arising in the finif€ context[18], spe-  propagatorA ~* and the couplinggjj... are functions of the

cific for that physical situation. order parameter, but otherwise there are no essential compli-
Our plan is the following. We summarize our basic nota-cations. We return to this point in Sec. IV A.

tion in Sec. Il, reorganize the standard skeleton expansion in The partition functionZ[J] in Eq. (1) is the generating

Sec. I, review the Schwinger-Dyson equations fepoint  functional for full Green's functions] ™ = 572[J]|;_o. As

and vacuum graphs in Sec. IV, and combine them with theisual, we define

modified skeleton expansion to obtain a generating formula

for skeleton diagrams in Sec. V. The corresponding results W[J]=In2Z[J], (©)]

are given for a lattice regularization of a generic model in _ . , _

Sec. VI. As an illustration, we show the loop expansion forthgngensratmg functional of connected Green’s functions,

the free energy of QCD and related models in Sec. VII. Wel n - = 63W[J][;—o. Finally, one can define the effective ac-

discuss some basic properties of our setup and conclude #PNn via

sec. Vill Sl $1=WIII-¢1,  $=5WIL, @

IIl. NOTATION which  generates 1Pl  Green's functions,T't""

Let us start by introducing a concise notation. While the™ 84Setl ¢lly—o. Note, in particular, thabSeql ¢]=—J. The
method is valid for any theory, we explicitly give all equa- Yacuum, or free energy (made dlmen_S|onIess by a division
tions for a generig3+ ¢* model. Later on we discuss more with the temperaturd’), can be obtained from any of the

specific examples within this class, in particular QCD, asgenerating functionals as

well as some extensions of this class. The generic class also __ __ __
includes the electroweak sector of the standard model, both F=-InZ[0]=~WLO]=~Se{ O]. ®
in its symmetric and its spontaneously broken phase. From the basic relationgy= 6,;W[J], 8,Serlb]=—1, it
The partition function is defined as follows that
23] f Dep eSle1+3e 1 SWL 185 Serl ¢1= — 1. ©®

Defining, as usual, the “proper” self-energy by
whereS[ ¢] is the action,

. . . 85Ser $pl=—A"T+II, (7
= oA+ 0o N 0O .
Sel== 5 @il @i+ 37 ik @ikt 77 ik PiPj Pk we see from Eq(6) that 55W[J] is the full propagator:
() 1
and summations over various indices, numbefiregl sca- SSW[J]=D[ ¢]= T =A+AITA+ATTATIA +---.
lar) fields and their internal and spacetime structures, are (8)

implied. Two comments are in order. First, we will for the

moment not display fermions explicitly. As far as vacuumWe shall use here the following notation for free and full
graphs are concerned, they do not introduce any complicgropagators, the proper self-energy, as well as general 1PI
tions apart from the usual overall minus sign for each closedertices:

A = — (free propagator), (9)

D = === — +—@— + + ... (full propagator), (10)

nm = -- --  (proper self-energy, with legs “amputated”), (11
A™! = --g-- (inverse free propagator, with legs amputated), (12)
555t = -: (general amputated 1PI vertex) . (13

n
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Ill. SKELETON EXPANSION WITH FREE PROPAGATORS H3=ng[A]+(Hi2rr[A+AHi1rrA])3

We next review the skeleton expansion for the free energy irr i A yire
F [20,21] and modify it such that full propagators can be TUILIA+ATA+ATT ATI A,
replaced with free propagatof&7]. By a skeleton we mean _
a 2PI vacuum diagram: one that remains connected even if =IISTA]+ TRV A+ TRA2[A], (19)
any two lines are cut. The skeleton expansion has been used
as the starting point also ii7].

It can be showrj20,21] that the loop expansion for Eq.
(5) can be written as

wherell]" aren-loop 1PI graphs, whildI[**™ are obtained
by cutting m lines in a lower ordedI,[A] and dressing
them appropriately:

I j l

wherei={bosons, fermiors Cyso= 1/2, @andCeermion= — 1 red 1)r A 1_ irr irr
Here ®[D] collects all 2Pl vacuum diagrams. The full Mg V[A]= (ATl A)j0s T2 TA]
propagatorsD; are related to their corresponding self- A TTIM A Y irr
energies byD '=A"1-1I [cf. Eq. (8)], whereA are the TAILA+ALTALTA);05 HTTA]L
free propagators. Both, II, and® can be regarded as func- (22
tionals of the full propagators. The partition function has an
extremal property, such that the variationFofvith respect to 1
any of the full propagators vanishf20,21,23, giving a re- 420 A = 2 (AIITA) (AT A) 8y 85 TTTTA].
lation between skeletons and self-energies: 2 . Ik 22
3, P[D]=cII[D]. (15
For the explicit diagrammatic characteristicsI6f*", see
Here we have introduced the implicit notation that wheneveSec. V B.
a term is multiplied byc;, thell's andD’s following it are It is easy now to unfold the loop expansion also for
assumed to carry the same subscript. Pictorially, @&  P[D]=2,=,P,, the last term in Eq(16). Up to the five-
corresponds to getting a self-energy by “cutting a propagaloop level, we can write
tor” in all possible ways in the set of vacuum skeletons.

;l(;ar:]ce knowing the skeletons alone provides full informa- (Po[D]) 5= (D[ A+A(IT,+I1,+1I5)A
In Egs.(14), (15), it is the full propagator® which ap- A+ 1) AT +115)A
pear in the skeleton graphs and self-energies. We would in-
stead like to obtain skeletons with free propagators. As a first +AILATTL AL A Dnss, (23
step in this direction, we expan@ in terms of the self-
energy insertion$I[D], D=AX,-,(ITA)", to get (P3[D])pes=(P[A+A(IT;+1I,)A
1 +AH1AH1A]) <5, (24)
F=> ciTr{InA‘lJrE (1—ﬁ>(HA)” "
i n=2
(P4[DDn=s=(Py[A+AIT;A])p<s, (25
—®lAD, (HA)”}. (16)
=0
" (P5[D])nes=Ds[A], (26)

We then have to evaluaié[D].
To go forward more explicitly, we restrict ourselves to the where the arguments are to be Taylor expanded, with first
five-loop level here. Let the subscriptdenote the loop or- derivatives obeyingcf. the diagrammatic identity Eq15),
der, and writd1=3,_I1,,. It turns out that we need at most evaluated with free propagatgrs
I15. In a straightforward way, we obtain

_ Sy @ [A]=cIT [A], (27)
H1=H1[A]EHT[A], (17) A n[ ] ittn 1[ ]
H2:Hi2rr[A]+( ill'r[A+AHilrrA])2 ?ilggdr}irg];rée(;szgg)s_(bzr;;ging back reducible self-energies, de-
. Inserting these expansions into Ef6), we finally get, up
=I5 [A]+ 5 [A], (18 to the five-loop level,
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& 3
§(AH1)

1
—F==2 ¢TrinA™ "+ &,[A]+ ®g[A]+ X ¢Tr| 5 (Al
[

+D[A]+ D ¢Tr

1
- AHlA( e+ > redd

1 w1
4(AH1)4+(AH1)2A(Hgf+ ZH;G“”)

+ DA+ ¢Tr

1 . _
+§AngA(ng+H;edl))+AH1A 3

I + %Hf;dlw 1ng‘*2>” (28)

or, written diagrammaticallyand denoting byF the noninteracting result
-F = —Fo + q)g[A]

(o5 (1673 D))
+ <<I>5[A] +> 6 (% . ++%
€ P - )

Here a circle withn inside denotedI", a squarell[?*?,
and a double squaiid®® . We will term the skeletons with
free propagatorsp[A], irreducible Note that the numeri-
cal factors in front of various types of ring diagrams do notFor the generating functional of the connected Green’s func-
appear to trivially follow from any simple symmetry argu- tions, Eq.(3), one gets

ment (particularly in the case of reducible self-energy inser- Jexng

tions),pbut are b)elzst worked out explicitly via the Ta?/)llor ex- 0=STWTJ]+ 5] +J. (3D

pansions we have described. Finally, for the effective action, Eq4), we use from Sec. I

Equation (29) is the starting point of our setup. It ex- w\vrr 37— — (5D SN S =W" —Dl 1S
presses the free energy in an economic way in terms of thtﬁ_at_ S'[ﬁﬁ] t(é, oétitai(n $183)0, [J]16,=D[¢]é,, and
- effl

irreducible skeleton®,[A]: either as direct contributions
or as self-energy insertions obtained from the same skeletons g —STh+Dl[ 18 32
via Egs.(27) and(20)—(22). We note that at tha-loop level, el $1=ST+DI$]0,]. (32

one needs®,[A], but only II, [A], obtained from pyttingp— 0 on the right-hand side, this gives the SD equa-

ozf D 5,e391199=(5'[8;]+3)Z[J]. (30

®,_4[A] tion for the one-point function, while taking derivatives with
respect top on both sides of Eq.32) and putting¢— 0 only
IV. SCHWINGER-DYSON EQUATIONS WITH FULL afterwards generates SD equations for higher-point Green’s
PROPAGATORS functions

Next, we need to generate the skeletdn$A ], needed in
Sec. lll. To do that, we first review briefly the general setup
of Schwinger-Dysor(SD) equations, converted to our nota-
tion. The SD equations will then play a central role in our

main result, Eq(49), which is an explicit formula allowing S5.DId1=D 23S D 34
for a systematic generation of all skeletahg[ A ]—in prin- oPLAI=DL](0Serl #1DLS] 34

ciple to any order. In this section, we follow closely the very A pote may be in order here concerning theories with

IP'=65'S'[¢+D[ #1561l g0 (33

HereD[ ¢] is in Eq.(8), and we note that

enjoyable presentation by Cvitanoyit9]. spontaneously broken symmetries. In that cagecorre-
] ) sponds to the fluctuating field around some reference value
A. General n-point functions v, typically v=(¢). The quantity we should ultimately be

The basic SD equation for the generating functiaffal] ~ computing is the free energy density as a function of
of full Green'’s functions derives from the trivial fact that the v: i.e., the effective potentiaV(v)=F/(volume). Then
integral of a total derivative vanishes: everything goes as before: we still p#pt—0 in the equa-
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tions above after differentiation, while the condensatep-

pears as a parameter in the free propagators as well as in thie

cubic and quartic couplings in EE) [the termJ¢ linear in

¢ in Eg. (1) need not be changel®3]]. The graphs also
remain the same:
expansion in Eq(29), are to be includefi23]. Tadpole-type

graphs often associated with broken symmetries would onl

be generated if we want to reexpand the valu¥ @f) at the
broken minimum in a strict loop expansion: writing
=3 =0Vn, V=220V, such thatvj(vy) =0, implies

only 1PI graphs, generated by the loop

PHYSICAL REVIEW [B5 045008

1 12Vv))3
24

lrvg/ (Vi)4V'”’
(Vo)*

LV
8 (V”) v=v ’

(35

where the latter terms inside the square brackets correspond
Yo various tadpole graphs, with obvious notation: Vglis
the free propagator of the Higgs particle with a vanishing
momentumy;(V}) is a one-loop diagram with one létyo
legs, Vy is a three-vertex, etc.

Let us now illustrate the structure of E¢33) for the

1 (V)2 generic model in Eq2). Starting from Eq(2), writing down
V(v)|vr(v)=0=Vo(vo) +Vi(vo) +| Vo— 5 1” } indices, and employing E¢34), we obtain, for the right-
2 Vj v=vg hand side of Eq(32),
! N2\ " 3\ s -1 1 1
NV ViV, N 1 (V1) Vl_} (Vo) V’o} 04,S=—Ajj ¢+ §7ijk(¢j b+ Dj)+ 5 Yijki (Pj P
PV 2 (W) 6 (WP
+Djkd1+ D+ Dby
12+ n ! AV rr+ I\ 2\ s/
N V4_1-(V2) ,2V1V3+ 1 2ViVoVi ’ (2V1) V5 +DjmDinDi0 8y, 4 55, Serl B1). (36)
2 A 2 (Vo)

2\ 201\ NN We now take further derivatives according to E§3). Put-
13(V)*(Vy)* +3(V},) 3V2V o t(V1)'V ting ¢=0 after each differentiation, we thus obtain the stan-
6 (Vo) dard equation$written in the notation of Eq¥9)—(13)]

-~ 1. 1
- +OHEO @
= OO D @

= — --f--+ -@-, (39
OO OB D o)

- .@ SO 40
S leeNorior ile:

+ {2-loop terms} , (41)

where “cyclic (nq,n,,..

.)" denotes cyclic permutations of Sec. VI.

the legs numbered. We have not written down the two-loop Let us stress that in a local theory the manipulations
terms in Eq.(41), since they are not needed in our explicit needed in Eq(33) can essentially be made using regular

four-loop demonstration below. Likewise, all higher-point derivatives and can thus easily be implemented algebraically.
1PI1 functions Flp', n=5, start with one-loop graphs in Introducing furthermoré as a loop counting parametea4]

the model of Eq.(2) and will again not contribute at allows for an iterative solution of the corresponding SD

this order; they will for®s, as well as in the model of equations.
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B. Vacuum diagrams

1 1
—hdy Seﬁ[¢]:<hs[@]> =7 SL#+DL¢]oy]. (44)

The SD formalism above provides equations relating
n-point Green’s functions. To incorporate vacuum diagrams,
one can use another simple trick: scaling. Noting that, e.g.The free energyr = —Sc{0] can now be obtained by setting
Z[J] is a functional of all interaction parameters present in¢=0 and integrating oves. _ _ _ _
the action,Z[J,¥i , ¥ijx .--.], one can derive hosts of rela- Noting again that after a rescaling of the integration vari-

tions by varying any of these parameters. ables an expansion if is equivalent to the loop expansion
A most useful example is to rescale the entire action a§24l, one can integrate the left-hand side of Ed4) by
S ¢]—(1/h) S ¢] and then varyi: J#(L/R)[---], but on the right-hand side one integrates over

the loop number. Writing
1 11
—haﬁInZ[J]—<S[<p]>—S[5]Z[J]. (42 _
h 291 A7 - Sl 0]=F =Fo+ Fiu=Fo+ 3, FI, (49
n=2
Rewriting this in the “connected” languageecallW=In Z),
wheren counts the number of loops, it follows that

1
—hdyWLI]= o SIW'[I]+6,], (43) , 1
Fr'=——7{S[¢+D[$]54lls-0ln N=2.  (46)
allows one to finally go over to 1Pl functiorig; W= d; Ses
+ S d+ 30y p= S, W' = ¢, and5;=W"5,=D[ ¢]6,): lllustrating Eq.(46) for our generic theory in Eq2), we get

ORISR O ORI EI()] @

where we again use the notation of E¢®—(13).

In principle the whole loop expansion can now be generated from(&#), using Egs.(38)—(41). The n-loop vacuum
diagrams are expressed in terms of hRoint functions, which in turn are governed by a set of SD equations. Looking closer
at it, though, it is somewhat of a mess: one has to expand full propagators in terms of free oneslEsdube SD equations
to iterate loops folI's, which brings back full propagators, etc. Fortunately, none of this is necessary f@%cas we now
explain.

V. GENERATING THE IRREDUCIBLE SKELETONS ®[A]

The key observation for combining Schwinger-Dyson equations and the skeleton notation in a useful way is that we need
to extract from Eq(47) only a specific partP[A]: we already know, by Eq29), what all the rest combines into. But then full
propagators can be replaced by free propagators in all but the first term (@ #qglndeed, any self-energy insertion within
one of the other graphs leads to a two-particle-redudi®iRR) diagram. For the same reason, the 1PI vertices in(4&g).can
be iterated by using the SD equations of the form in Ed8), (41), but with free propagators. More precisely, it goes as
follows.

To generate thareducible skeletonsP[A] from Eq. (47), it is sufficient to expand the first term as

Q - Q + ®+{2PR}
= Trl+%@+%®+%@+%@ + {2PR}, (48)

where in the second step E@8) was used. Taking into account the minus sign in the relatioR ahd ®[A] [cf. Eq. (29)]
and writing again the loop expansion &s=3,,..,®,,, one finally obtains a closed exact equation

vty (B HOOHD @), e @
I

Equation(49) is our main result. It generates all skeletonsself-energies via Eq27) and the analogues of Eq&0)—
of all orders in the theory of Eq2), once Eqs(40), (41) are  (22). Inserted finally into Eqg.(29), we obtain the free
used(with free propagatops The skeletons, in turn, generate energyF.
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A. Vacuum skeletons up to the five-loop level a matrix notation for how the vertices are connected. The

The procedure of working out E¢49) is simple and me- significant entries (_)f the matrix can be ordt_ared to a_single
chanical and can, at least up to the four-loop level, even b8umber, and by doing the same for all possible orderings of
carried out by hand, as we shall demonstrate. The only confhe vertices, a unique representatifgay, the smallest of
plication arising is the identification of equivalent topologies: Such numbenscan be assigned to each topology. For an ex-
the same graph can be written in very many different Waysp”Cit implementation of this kind of a procedure, see the
In order to deal with this situation, it appears easiest to assecond paper ifi16].
sign an algebraic notation for the different topologies, rather Let us now explicitly work out the diagram classes in Eq.
than a mere graphical one. For example, one can count tHd9) up to the four-loop level. For the first one, inserting Eq.
numbers of three-point and four-point vertices appearing ir(40) gives either a two-loop graph, or three-loop graphs to be
the graph, and within those equivalence classes, one can ugerated further on, or directly four-loop graphs:

O, - @+{®+%®+®]4+®+@+@+5( D o

Here the further iterations give

@4 = @”@f@“ =B (51
%®4 - 1) HE) =P -OB+(6)+1) (52
@, - @ B0

We have dropped five-point functions each time they appear, since in the model(@),Bfjey start with a one-loop term, so
that diagrams containing them generate higher loop orders.
The second class in EG49) only contributes tab,[A] and is trivial. For the third class in E§49),

AD), - = W], - =B+ =D o
For the fourth class, we only need the one-loop terms in(Egj,

@4 - @+3@+6@+%@' (55

Collecting finally these different contributions together with coefficients according t¢48j.we get

%:ﬁ@%@O’ (56)
=)+t (\D++(0) - 7
#= H(@ADHDAPH QD HOD -

Proceeding to higher loop orders, an automatized treatment proves essential, for the reasons outlined above. Implementing
our generic formulas as well as an ordering algorithm separating topologiesin[25], we obtain in a straightforward way
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the complete set of five-loop skeletons,
$y=1 s CED LD+ (D) 18D 18N D
5= 2Tl 18\ 16\ [ 2\ U] 4 2 2
41 41 v Y 1 1
+1 +1 +3 +3 +3 +1
H(Q+p+ e+ i+Ep
1 1 1 1 1 1 1
@D EHIDHOHDIQ
ADAPAPHID @O

Note once more that these skeletons are all that is needed for generating the loop expansion for the full free energy, as
discussed above.

OO

Ool»-\

B. Self-energies up to the two-loop level

Now that we haveb [A] in Egs.(56)—(59), irreducible as well as reducible self-energies can easily be obtained with Egs.
(27), (20)—(22), etc. For bosonic particles, for instanag £ 3), we get

mr = -@- = (O () (60
= -o- = (DO HOHoRG . @

red(l— __.__ - '@'4‘% @ ’ (62)

etc. Note that the outcome of the derivative in E2jf) must be symmetric in allbosonig indices. The three and four-loop

self-energies could be derived frofn, and® 5, respectively, but we choose not to give them here, since they are not needed
for the set of four-loop vacuum diagrams that we will display explicitly in Sec. VII.
With Egs.(60)—(62), the ring diagrams in Eq29) are readily written down.

VI. GENERIC MODEL ON THE LATTICE

So far we have considered the generic model in @y. However, in a lattice regularization of gauge theories, higher
vertices appear as well, without spoiling renormalizability. At the generic level, it is straightforward to add such couplings to
the theory in Eq.(2). We can include, e.g., terms up t0(1/8!)¥ijkimnop®i P} PkPI PmPnPo®p, as would arise in lattice
perturbation theory for SU{) gauge theories, if one keeps terms contributing to four-loop vacuum graphs. Such computations
would be needed when one converts results of three-dimensional numerical Monte Carlo studies from lattice to continuum
regularization10].

In this case, everything goes as before, except for the appearance of extra vertices in the SD equations, as well as in Eq.

(49). We shall here simply spell out the final results, without rewriting explicitly the modified SD equations. We obtain the
following additional skeletons:

_ 1 1

. = D@4 @+ O QD+
HEOHEOHOOOHERHR. o
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as well as the additional irreducible self-energy

— 1 1 1 1
O RGN ORIE S

where we again assumeg= 3.

VII. APPLICATIONS: QCD, QED, SQED, ELECTROWEAK THEORY

As an application of the generic formulas derived above, we consider in this sectiti) §difge theory with fermions and
a scalar field. This class includes QCD and Q&ihere graphs containing scalar propagators and, in the latter case, gauge
field self-interactions are to be dropped Jpuds well as the electroweak theory and scalar electrodynatS8iQ€D. For
brevity, we display here only the vertices appearing in the symmetric phases of the latter theories. We mostly use the language
of QCD, referring to the gauge fields as gluons, etc.

The Lagrangian is specified by giving Feynman rules for the free propagators and free vertices,

’ ) 7-r"'§‘t\7..¢'§'%.,a/&a}<v><v><v (66)

where gluongscalarg are denoted by wavystraigh} lines. Both quarks and ghosts are denoted here by dotted lines; the
Feynman rules for them are different, but the symmetry factors agree—the only exception being diagrams with more than one
closed fermion loop, in which case both ghosts and quarks can appear in the same diagram simultaneously, reducing the
symmetry by an obvious factor.

We do not here write down counterterms explicitly. Coupling constant counterterms can be viewed as a part of the cubic and
quartic couplings, while wave function and mass counterterms can be treated as a paitrefitieble self-energiedI;',
making their appearance only in ring diagrams according to(Z9).

Let us first note that once we write down the summation over the field content explicitly i2)Ethe “natural” symmetry
factors in front of the vertices change. For instance, writing the four-point vertex in the case of two sets of §iglds,
—{Ai}+{B,}, and using the symmetry of;; , one gets

1 1 1 The only thing remaining is to write the summation over
21 Yiik @199k = 77 Vi ARAKATT 37 YijkaAiAAB particle species explicitly also in the propagators of Egs.
' ' ' (56)—(58),
1
+W7ijal3AiAjBaBB+.“' (67) = n . + B '
(69)

S_imilarly, writing the three-point vertex for three different Only the vertices allowed by the Feynman rules are kept
fields, {¢i}—{A} +{B,} +{Cwm}, one finds after this substitution. This generates all the graphs, with the
correct symmetry factors.

1 1 1
31 YikPi®iPkT 3y YikAiA A 21 i «AiAB,
A. Vacuum skeletons up to the four-loop level

+ i amABLCy . (68) The procedure outlined above can easily be carried out
explicitly, and up to the four-loop level even by hand. The
main complication is again the identification of various

With these conventions, each tree-level vertex in the graphiequivalent topologies, and for this a suitable algebraic nota-
cal notation corresponds just t@j , Vi, €tC., without tion may be more useful than a graphical one. As a result, for
any symmetry factors there: all of them are shown explicitly.the field content in Eq(66), we finally obtain
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Using Eqgs.(27), (20), the skeletons above immediately produce the self-energies of the model (G8EdWVe obtain

(72)

1 1 1
A@ O

B. Self-energies up to the two-loop level

(76)
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000 O S 7
6) ©. @

O .
= 1®+1{?}+% +5 () - (81)

C. Ring diagrams up to the four-loop level

To be exhaustive up to the four-loop level, let us finally give the set of ring diagrams for the model(6BEVhile there
are no ring diagrams up to the two-loop level, from E2P) we get

(~Flnw), = 1€ 44 D+ P, 2
' “ Py ", & s,
(~Flnen), = $4_d+h +i ~3p, 071 Q _92Q B
4 S o o
@
et le]
[

Note the extremely economic structure of the skeleton extheory one is interested in can be specified as discussed in
pansion of Eq(29): the few ring diagrams above summa- Sec. VII. Our method is also directly applicable to theories

rize 22(276) three-loop(four-loop diagrams. with spontaneous symmetry breaking, as only free propaga-
tors and vertices are modified; tadpole graphs are generated
by Eqg.(35).
VIII. DISCUSSION This iterative procedure is very straightforward and can

In this paper we have described a simple practical procel?e automatized, but up to the four-loop level the computa-

dure for systematically generating all vacuum diagrams of glons are easily carried QUt even by hand, as we ha\_/e dem-
given loop order in a generic field theory. onstratgd. Thus, we beheye that our setup economizes the
We have shown that the sum of vacuum diagrams can bgeneratlpn of the_ set of high-order vacuum diagrams, com-
written in the form of a modified skeleton expansion, Eq.Pared with techniques where all types of graphs have to be
(29). It contains two-particle-irreducible “skeletons” with dealt with on the same footing, without a separation into
free propagators, as well as various self-energy insertiongkeletons with free propagators and ring diagrams.
inside “ring diagrams.” The self-energies are, in turn, deter- Up to this point, we have not discussed at all the integra-
mined by the skeletons. Thus, all one really needs is thons remaining to be carried out after the diagrams have
skeletons. been generated. Let us end by pointing out that our setup is
The two-particle-irreducible skeletons of a given orderbeneficial as far as their structure is considered, as well, in
are, then, generated by Eg@9). It contains a number of full dimensions lower than f17].
three-point and four-point vertices, which can in turn be ex- The point is that low-dimensional field theories of the
panded using specific “irreducible” Schwinger-Dyson equa-type in Eq.(2) are superrenormalizable. In fact, fde=2,3,
tions[Egs.(40), (41), etc], where full propagators have been only the two-point function suffers from ultraviolet diver-
replaced with free propagators. In this way, all vacuumgences, as can be seen by simple power counting. Therefore
graphs are generated simultaneously, with the correct synhe skeleton graphs, which by definition do not have any
metry factors. Finally, the precise particle content of thegenuine two-point functions inside them, do not contain any
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ultraviolet divergences in subdiagrams. The ring diagramsthose in the skeleton graphs, and this problem can thus be

on the other hand, do have ultraviolet divergences in subdiadealt with in a tractable settind 8].

grams. Note, in particular, that singg , I1"°4™ come with

different symmetry factors in Eq29), the counterterms in

1}, which make the wholdI, finite, do not in general

immediately cancel all the ultraviolet subdivergences of the We thank M. Achhammer, U. Heinz, S. Leupold, and H.

ring diagrams. Schulz for useful discussions and correspondence. This work
Consequently, various ring diagram classes can contributeas partly supported by the TMR netwoHinite Tempera-

to the overall divergences of the vacuum graphs with potenture Phase Transitions in Particle PhysjdsU Contract No.

tially infrared sensitive coefficients, coming from the other FMRX-CT97-0122, by the RTN networlSupersymmetry

parts of the final integration, while skeleton diagrams cannotand the Early UniverseEU Contract No. HPRN-CT-2000-

Fortunately, the ring diagram integrations are simpler tharD0152, and by the Academy of Finland, Project No. 163065.
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