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Nonequilibrium large N Yukawa dynamics: Marching through the Landau pole
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The nonequilibrium dynamics of a Yukawa theory witfermions coupled to a scalar field is studied in the
large N limit with the goal of comparing the dynamics predicted from the renormalization group improved
effective potential to that obtained including the fermionic back reaction. The effective potential is of the
Coleman-Weinberg type. Its renormalization group improvement is unbounded from below and features a
Landau pole. When viewed self-consistently, the initial time singularity does not arise. The different regimes of
the dynamics of the fully renormalized theory are studied both analytically and numerically. Despite the
existence of a Landau pole in the model, the dynamics of the mean field is smooth as it passes the location of
the pole. This is a consequence of a remarkable cancellation between the effective potential and the dynamical
chiral condensate. The asymptotic evolution is effectively describedduasic uprighteffective potential. In
all regimes, profuse particle production results in the formation of a dense fermionic plasma with occupation
numbers nearly saturated up to a scale of the order of the mean field. This can be interpreted as a chemical
potential. We discuss the implications of these results for cosmological preheating.
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[. INTRODUCTION close to equilibrium and that a deeper understanding of dy-
namical processes requires a nonequilibrium treatment. The
In the standard model and its extensions, the Yukawa couaecessity for a nonequilibrium description of quantum field
plings of fermions to scalaréHiggs bosonsplay a funda- theory has become clear in cosmology where inflationary
mental role. Not only do such couplings determine thephase transitions require a fully dynamical descripfihin
masses of the fermionic degrees of freedom, but in turn it ieavy-ion collisions where a transient quark-gluon plasma
through these couplings that the fermionic sector influencemay be formed5,6], and in domain formation in phase tran-
the dynamics of the scalar fields. If these Yukawa couplingsitions[7,8], which may have consequences in cosmology as
are large enough, they can lead to negative contributions taell as in heavy-ion collisions.
the beta functions of the running scalar self-couplings and so In each of these fields, nonequilibrium effects can give
to destabilizing the vacuum by large negative radiative corrise to new phenomena which can differ from equilibrium
rections to the scalar effective potentid]. This is the behavior in dramatic ways that cannot be captured by an
Coleman-Weinberg mechanism of symmetry breaking by raeffective potential description.
diative correctiong$2]. From the point of view of cosmology, and inflationary
While such a scenario has been ruled out within the staneosmology in particular, nonequilibrium effects associated
dard model due to an unacceptably low value of the Higgswith particle production via resonances and/or instabilities in
boson and the top quark masses, large negative radiative cdsesonic field theories have taken center stage. This is evident
rections to the effective potential from large Yukawa cou-in the theory of preheatinf] as well as in the classicaliza-
plings could still be relevant in extensions of the standardion of fluctuations during inflatiori10], where spinodally
model with more complicated Higgs-Yukawa sectd&]. unstable dynamical fluctuations about a homogeneous con-
Coleman-Weinberg phase transitions in extended Higgslensate modify the long wavelength behavior of the theory.
models and their potential cosmological implications have While the nonequilibrium dynamics of fermionic fields
been studied by Sh¢B] who analyzed the effective potential has been studied recently by several autfds-14 and
of this theory. While this study extracted bounds on the pawhile there has been some remarkable progress in lattice
rameters of extended Higgs sectors from vacuum stabilitgimulations of fermionic dynamics in low dimensional gauge
and thermodynamic considerations, these results are bas#tkeories[15], the dynamical behavior of fermions has not
on an equilibrium description based on the effective potenreceived the same level of attention as the bosonic case. This
tial, a purely static quantity. is mostly due to the argument that Fermi-Dirac statistics pre-
Detailed studies reveal that the information extractedclude parametric amplification of occupation numbers with
from a static effective potential is restricted to situations verynonperturbative particle production.
In order to have access to nonperturbative dynamics, in
this work we consider theories containifgfermions with
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bosonic theories and has been studied both analytically tthat the evolution of the mean field is smooth. When the
leading order[5,16] and more recently numerically in real amplitude of the mean field becomes larger than the Landau
time including corrections beyond leading order in the largepole, the dynamics becomes oscillatory and asymptotically
N [17,18. These studies reveal a wealth of new phenomenaeaches a fixed point described by a simple quartic, upright
not accessible via perturbative methods. effective potential with a quartic coupling of order 1 and
In the largeN limit we study here, the fermions serve to with the mean field oscillating with a large amplitude around
suppress scalar field fluctuations to leading order M. Me  the origin. This novel dynamical behavior arises from a re-
find that even at leading order a new and important aspect gharkable cancellation between the fermionic fluctuations
field theory comes into play: the wave function renormaliza-and the contribution from the instantaneous effective poten-
tion. It should be noted that this does not occur at the samgal that leads to smooth dynamics through the Landau pole.
order in purely scalar theories. Our study reveals that thisvhen the initial value of the mean field is larger than the
new ingredient is responsible for dramatic new dynamicaimaxima of the effective potential but much smaller than the
phenomena. Landau pole, the ensuing nonequilibrium evolution leads to
We obtain the equations of motion of the mean field, orfermion production in a band of wave vectors up to the scale
expectation value of the scalar field, taking into account thef the Landau pole. These modes become populated with
nonequilibrium back reaction of the fermionic modes toalmost Pauli blocking saturation at large times and describe a
leading order in M. This analysis goes beyond the effective very dense medium. We study this behavior numerically and
potential approximatioh2] and affords us a window for un- confirm that this phenomenon occurs for a wide range of
derstanding the nonperturbative dynamics of this couplegharameters. We are led to conjecture that the theory is, in
system. fact, sensibly behaved beyond the Landau pole when studied
We can summarize our main results as follows: both dynamically and nonperturbatively, at least at the mean
The fully renormalized theory displays the Coleman-field level. While at this point this is merely a conjecture,
Weinberg mechanism of dimensional transmutation throughhese phenomena may have some interesting phenomeno-
radiative corrections. It has an effective potential that is uniogical consequences.
bounded from below at large values of the mean field with A consistent analysis of the renormalization during the
two symmetric global maxima and a local minimum at thedynamical evolution reveals that the wave function renor-
origin. It also exhibits a Landau pole at an energy séale malization builds up in time over a time scale@€1/A). The
which is nonperturbative in the Yukawa coupling. The non-fully renormalized equations of motion display a renormal-
perturbative nature of the pole makes the nonperturbativized coupling at a scale determined by the amplitude of the
1/N expansion particularly well suited to this problem. Largemean field, and which therefore depends parametrically on
N expansions have been used to look at the Landau poléme. This is a consequence of the “running” of the coupling
since at least the 197(80]. The presence of the Landau constant with scale, which in the dynamical evolution trans-
pole distinguishes two distinct regimes to be studied dependates to a “running” with time.

ing on the relationship between the cutdff which is re- The article is organized as follows. In Sec. Il we obtain
quired for the numerical analysis of the theory, and the pothe renormalization group improved effective potential and
sition E_ of the Landau pole. discuss its features, including the presence of the Landau

Suppose that we tak®<<E_ . Then, if the initial value of pole and the potential singularities that would occur in an
the mean field is between the origin and the global maximaanalysis based solely on the effective potential. In Sec. Il we
the mean field oscillates about the origin, and the fermionimbtain the equations of motion to leading order in the laige
quantum fluctuations grow as a result of particle productioriimit. In Sec. IV we address the renormalization of the equa-
in a preferred band of wave vectors. This is akin to whattions of motion and the energy density. We discuss and re-
happens in the bosonic case but here the production musblve the issue of potential initial time singularities; in par-
saturate due to Pauli blocking. The width of the band ofticular, we highlight the fact that the wave function
wave vectors is determined by the initial amplitude of therenormalization builds up on time scales determined by the
mean field and the mass of the scalar field. If, however, theutoff. In this section we also establish contact between the
initial value of the mean field is larger than the maxima, itsnonequilibrium equations of motion and the renormalization
amplitude runs away to the cutoff scale, at which point thegroup improved effective potential, emphasizing the emer-
evolution must be stopped since the theory reaches the edgence of smooth dynamics as the mean field approaches and
of its domain of validity. passes the Landau pole. In Sec. V we provide a detailed and

Our most noteworthy results are those for whitk-E, ~ comprehensive numerical study of the dynamics in several
and the initial value of the mean field is taken to be largercases in a wide range of parameters. In Sec. VI we provide
than the position of the maxima of the effective potential. Inan exact proof of the lack of unstable bands for fermionic
this case, an analysis of the dynamics based solely on thmode functions in the background of a scalar field that os-
static effective potential would lead to the conclusion that thecillates, by showing that the Floquet indices are purely real.
time evolution of the mean field would lead to a divergenceThis is the underlying reason for Pauli blocking at the level
or discontinuity in the time derivatives when the amplitudeof mode functions. We also offer a perturbative analysis of
reaches the value of the Landau pole. However, a detailethis important phenomenon, which provides the reason for
analysis of the full dynamics, including the fermionic fluc- the existence of a preferred band of wave vectors for the
tuations and their back reaction onto the mean field, revealfermions produced. We summarize our findings and offer
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some conjectures for potential implications of our results in  To leading order in largd& the effective potential is ob-
cosmology as well as for the phenomenology of theoriesained by replacingb(X)— /N & in the Hamiltonian and ne-
with extended Higgs-Yukawa sectors containing heavy ferglecting the scalar field fluctuations, since the energy will be
mions(and hence large Yukawa couplingbat could feature dominated by theN fermion fields. This is the mean field
a Landau pole in an energy range of phenomenological inapproximation, which becomes exact in the lakyémit.

terest. Hence
. 1 A
Il. STATIC ASPECTS: THE EFFECTIVE POTENTIAL AND _ 2 2 B 4
H[ 6g]=Q| = mg(yNdg)“+ —— (VN
ITS RENORMALIZATION GROUP IMPROVEMENT [ %] 2 Bl e) 41N ( e)

Before studying the dynamical aspects of the Yukawa N R
theory in the largeN limit it is illuminating to understand the +2 gil—ia-V+Mly, (2.6)
static aspects via the effective potential and its renormaliza- =t
tion group improvement.

The Yukawa model under consideration is described by _Ys
the Lagrangian density M \/N(\/NgB)' @9
1 , L, 5 N, The fermionic contribution to the Hamiltonian is simply
L= 5(%‘133) N EmB(DB_ mch that of N Dirac fermions of mas#, and can be diagonalized
in terms of creation and annihilation operators for particles
N . ) and antiparticles with dispersion relatiap= Vk?+M?2. The
+Z’1 il 1740, — \/_Nq)B i 2.1 state that minimizes the expectation value of the normal or-

dered Hamiltonian is the vacuum state for particles and an-
tiparticles and corresponds to the Dirac sea completely filled

where the subscri@ denotes the bare fields, anticipating the *'** . ,
(with two spin states per wave vectoSo more simply the

need for renormalization. The factors Nfin the coupling .
constants are explicitly displayed so that both the quarti®otential becomes

self-coupling and the Yukawa coupling are 6{1) in the m2 N 43K

largeN limit. To make the calculation tractable the choice is v _ ()= N[_B 52+ °B 5 Zf ———JkZ+M?
made to investigate only the fermion quanta; the scalar field 2 4! (2)
fluctuations are suppressed by writing (2.8

S - The integral in Eq.(2.8) is the (negative contribution
Pg(X,t)= NSa(t) + xe(X.1), 2.2 from the Dirac sea, and is calculated with an ultraviolet cut-
off A. A straightforward calculation, subtracting the “zero
point energy” proportional toA* and neglecting terms that
vanish in the limitA —«, leads to

where 5g(t) represents the mean field as described below.
The scaling of the mean field witkiN is dictated by the
equation of motion, since the term

y N Veﬁ(5)=5_é(m2_YéA2 +§(E+V_‘éln[ﬂ})
J_NZ& G N (2.3 N 2\ 472" a\31" 222" | 4
_ _ _ ygéél yB5B’ _ Yeds
acts as a source term for the evolution of the mean field. The S 2 [ u d 32,2 29

scaling of the scalar coupling/N is consistent with the
one-loop corrections to the scalar scattering amplitude fronvherey is an arbitrary renormalization scale. The renormal-
the Yukawa coupling proportional td(y//N)*~1/N. Thus ization of the mass and quartic scalar coupliagcan be
the fluctuations of one scalar field are suppressed srl/ gleaned directly from the form of the effective potential
the largeN limit. above. However, to make contact with the dynamics in
The effective potential is defined as the expectation valugvhich the equations of motion are obtained from the non-
of the Hamiltonian in a state that minimizes the energy subequilibrium effective action, we also need the field or wave
ject to the constraint that the field has a space-time indeperunction renormalization. The wave function renormalization

dent expectation valugl9]: cannot be extracted from the effective potential since it is
associated with gradient terms in the effective action. To
_(6|H|6) leading order in M it can be obtained from the one-fermion
Ver( 8) =min QO (2.4 loop self-energy shown in Fig. 1, where the scalar field lines
have nonvanishing external momentum.
with Q the spatial volume andl) a (coherent state for This calculation leads to
which 5 .
Vg | 2A
(5|<I>|5>=\/N5. 2.5 Z[pl=| 1+ 47Tzln m D . (2.10
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Fix]

p p -

FIG. 1. Scalar self-energy in leading order in lafdeExternal 8
dashed lines correspond to the scalar field, internal solid lines are
fermions.

The renormalization of field, mass, and couplings is now |
achieved by introducing

P (2.11)
R \/Z’ ' T T T T T T T
-1.5 -1.0 -0.5 0.0 05 1.0 1.5 X
2702
2 _ 2 Y 4 ~1/4 v
Mg=2Z| mg— 5.2 (2.12 FIG. 2. F(x)=—x*In(lxle " vs x=Mg/M.
4 54 —1/4
Ar  _,[ N8 ye [2A YrOg, | IMgle
SR_zo( 2B JB IS0 _ Ver(SR) = — In| —— 2.2
312 (3! 5.2 In ik (2.13 eff( OR) 8.2 > (2.20
Yr=Ys\Z, (2.14 Thus we see that the terhk/3! inside the parentheses in
in terms of which the renormalized effective potential is Ed-(2.19 above has been traded for a new sddlat which
given by the effective potential features a maximum. This is the mani-
festation of dimensional transmutatia.
Vor( 5= EmZ 2. % Aj y_é ] yrore Figure 2 displayd/.¢/M* vs y=Mg/M. TheVy is given
effl OR 2"RRT 4\ 31 242 by Eq(22@
(2.15 While there are alternative calculations of the effective

potential, the Hamiltonian formulation highlights many im-
We will consider the case in which the renormalized massortant aspects that will be relevant to the discussion in the
of the scalar field vanishes, since this case will highlight thenext sections. In particular, it makes clear that the effective
important feature of dimensional transmutation at the levepotential is the expectation value of the Hamiltonian in a
of the static effective potential as well as the dynamics.“vacuum” state in which the scalar field attains an expecta-
Therefore in what follows we sehg=0. tion value. Furthermore, this Hamiltonian interpretation im-
The equation of motion, which will be the focus of the mediately provides the physical reason for the effective po-
next section, require¥’ (dr)=dV(Jr)/ddg. This is given tential being unbounded below in this approximation: it is
by completely determined by the negative energy Dirac sea. For
larger amplitudes of the expectation value, the effective fer-
mionic massMp, is large; thus the negative energy of a free
fermion mode of momenturk in the Dirac sea decreases
further. Thus for larger amplitudes of the expectation value
where we introduced the renormalized effective fermionthe energy stored in the Dirac sea becomes more negative.
mass This particular point should be borne in mind when we study
the dynamics of the mean field below, since we will find that
MR=YRrOR- (217 the evolution of the scalar field “feeds off” the negative

. . energy Dirac sea.
We see that the effective potential features an extremum at 9y

Mg=M with M determined by

4

y
V'(8r)= 57 0%

27T2)\R
3lyk

Mg

1
3| (2.19

A. Renormalization group improvement

2772?\R_ @ 1 -0 (2.19 The emergence of the scalé is a consequence of the
3!y§ i 2 ’ ' renormalization scale. introduced above. A change in this
- scale is compensated for by a change in the couplings. The
In terms of the scal® we find effective action
y‘éé‘% Mg I'[6r]= | d*X[ = Ve -]+ Z[ 6-13(3,6r)%+ ]
Veil(Op)=— —— In| —|, (2.19 R efft R RIZLTLTR
2m (2.21)
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is invariant under a change of the renormalization scale, and

consequently under a change in the s®dleThis invariance Yr(IMRDVi(Mg) = —gr(IMg)MZ In
leads to a renormalization groURG) equation for the effec-

tive action[2].

Mg

Since our main focus is to study dynamical behavior, _ gM3x®In|x| 29
which involvesV/;, we now use the renormalization group B 1—(g/2)In| x| 2.27
to improve the derivative of the effective potential.

While in principle we can study the full solution of the with g=gg(M) and y=Mg/M.
renormalization group equation as [@], the largeN ap- The expressioli2.27) features a Landau pole at
proximation simplifies the task. In this limit we need keep
only the one-loop fermion contribution to renormalization. Mg~ M e2/d (2.28

Therefore, after trading the quartic self-coupling for the scale

M via dimensional transmutation, the effective poter(@ald ~ Which, if interpreted in terms of the equation of motion of
its derivative$ are only functions of the Yukawa coupling. the scalar field via the effective actid@.21), would signal
Furthermore, from the renormalization Conditiong_ll), infinite time derivatives when the value of the scalar field
(2.14) the productygdg is a renormalization group invariant reaches the putative Landau pole. Since the lavglmit
i.e., it is constant under a change of scales. With the purpos&€s not restrict the coupling to be weak, the valug oén
of comparing with the dynamics to be studied in the nextbe O(1). Therefore if the dynamical evolution of the expec-
section, it is convenient to introduce the coupling tation value of the scalar field is solely determinediy we
would expect large derivatives and nonanalytic behavior of
the dynamics as the scalar field approaches the position of
(2.22  the Landau pole.
An important result of this work is that the Landau pole is
not relevant for the dynamical evolution of the scalar field,
and to RG improve the product and contributions from particle production that cannot be
captured by the effective potential become very important.

_YR(w)
gr(p)= o2

M These nonequilibrium contributions lead to smooth dynamics
Yr(w)Vi(Br()= —gr(w)M3In|—|. (223  as the expectation value of the scalar field nears the Landau
pole.
The reason for studying this product is based on the idea lll. LARGE N YUKAWA DYNAMICS

that the effective equation of motion of the scalar field is

loosely of the form Having studied the static aspects of the Yukawa theory in

the largeN limit via the effective potential and its renormal-
) ization group improvement, we now focus our attention on
SR(t) +Vig(Sr(1))=0. (2.24  the dynamical aspects of this model.

As discussed in the Introduction, we consider a system of
While §is not invariant under a change of scéile., under a N fermions{y;}{,; coupled to a scalar fielh. The Lagrang-
renormalization group transformatipin the largeN limit ~ ian density in terms of bare fields, mass, and couplings is
the productM g=yrdx is a renormalization group invariant. given by Eq.(2.1) above. In order to study the dynamics as
Thus one is led to consider the prodygdV.. an initial value problem we introduce an external “magnetic

However, from the renormalization conditié®.14) of the ~ field” coupled to the scalar field so that— L+ h(t) P with

Yukawa coupling and the wave function renormalization£ the Lagrangian density in Eq2.1). The external source

constant in the larg®l limit given by Eq.(2.10 we find h(t) serves to generate a spatially homogeneous expectation
value for the scalar field.
2 2 oA We will assume that the source was switched on adiabati-
= —+In[—}, (2.25 cally in the infinite past and then slowly switched off tat
9r(#) 98 =0. This means that the scalar field evolves in the absence

of this external source far=0. This adiabatic switching on
which leads to the renormalization group running of this cou-procedure allows us to establish a connection with the effec-
pling: tive potential formalism of the previous section. If the initial
state ag— — is the vacuum, an adiabatically switched on
source ensures that the state is the adiabatic vacuum; recall
(2.26  that the(zero temperatujeeffective potential is referred to
the expectation value of the field in the vacuum state. We
will discuss this issue in greater detail below when we ad-
Therefore, by Choosing the new SCﬁdéE M R with the scale dress the renormalization aspects.
of dimensional transmutatioM fixed, the renormalization In order to extract the dynamics of the mean field, we
group improvement of the produ(2.23 leads to expand the scalar field as described in E2}2): ®g(X,t)

2 3 2
gr(p') a gr(u)

"

7.

+In
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=N6&g(t) + x(X,t) with (x(X,t))=0. Implementing this fa(t) (@ (1) £
’ ’ X J15(t) €
last equation within the path integral via the tadpole method U(ﬁ”’)(t)=<fl‘j(t) o |, V(ﬁ‘*)(t)=( 1‘_’(0 o,
[12], we find that to leading order in /we arrive at the 25\t X2p 925(1) &2 3.8
following equation of motion for the mean fielgs(t): 38
N we can use Eq3.7) to find
Sg(t) +mas, (t)+Eb‘3(t)+ EZ (gihy=h(t) ; (@_ = (a)
B BB 31 9B N <= \FiYi : [ido—Mp(t)]f15() x15 = (- B)f2p(xzs . (3.9
3.9 . (@ 1y @
[ido+Mp(t)]f25(t)xo5 = (- P)F1p() x5
Note that this equation is nonperturbatively exact in khe
— o |imit. The Dirac equations for thil species of fermions [idg— M B(t)]glﬁ(t)g(fé)z — (G ﬁ)gz,;(t)g(;é) ,
Y; are (3.10
(170, Mo(O] =0 where Ma(D=Yo25(0). [i 90+ Mg()1925(t) £33 = = (7 P)gap(D €15
3.2

We also impose the normalization conditions
The above equations are invariant under a permutation of the ()t 8 ()t 8
fermion fields so that we need only deal with one of them, U U =8"*=v" (v (1), (31D
denoted generically ag; therefore we make the replacement

which together withy(®Ty(&)= 58 i=1,2, imply that
ip ip ply

N
YB — — (1]2 (1Y]2—
N2, (i) —Ye(d) (3.3 [F1p(D1*+f25(0[*=1, (3.12
which is a consequence of the conservation of probability in
in Eq. (3.2). the Dirac theory, which in turn is a consequence of the fact

In order to proceed, we expand the spinor field operatorghat the Dirac equation is first order in time. This constraint
in terms of a complete set of mode function solutions of theon the mode functions will have important consequences in
time dependent Dirac equation in E.2): the dynamics and underlies the mechanism of Pauli blocking,
as will be analyzed in detail below.

We determine the initial state by demanding théf)(t
=0) represent positive energy states WM?)(tZO) rep-

. resent negative energy ones:

+df Ve (e P, (3.4)

' i9U5"(1=0) = wy(t=0)US"(t<0),  (3.133
where the creation and annihilation operators obey the usual

anticommutation relations i&ov(ﬁ“)(t =0)=—wy(t= O)V(ﬁ“)(t =0), (3.13h
{b.q.bg gt =15, d} g} =(2m)%5,,69(5— ), wherew,(t) = \p?+ Mg(t) are the mode frequencies. Con-

(3.5 sidering an initial state for which the time derivative of the
scalar field vanishes @t=0 (which can always be achieved
and the Dirac spinors satisfy the completeness relation by a shift in the time variab)eand then evaluating Eq3.9),
(3.10 att=0 and using Egqs(3.13, we find

2
2 U 0aUE O+ VIR0V (1)5]= 2, (0o~ Mo)F15(0)xi% = (G- P)F(0)xsy, (314

(36) (@) _ [~ = (a)
(0o+Mo)f25(0) xo5 = (- P)f15(0) x5, (3.19

with a,b being Dirac space indices. Furthermore, E8}2)

implies wherewo= wp(0), Mg=Mg(0). This leads to the relations
. Lo a f15(0)=V(wg+ My)/2w,,
[iv°d0— 7 B~ Ma(H)]US" (1) =0, 15(0) = Vlwo* Mo)f2wo
£25(0) = V(wo— Mol 2wo,  x2= (G- PIx.Y .
[19%90+ 7 P~ Mg VS (1) =0, 3.7 (0= Vw0 Mo)f200, Xz =(7-Pxs; (3.16

Since the time derivative operatéy, is singled out by our A similar analysis for the negative energy modes shows that
need to consider the time evolution of the system, itis besttin fact g,5(t)= f;‘ﬁ(t), gzﬁ(t)zf’l*ﬁ(t), and 55‘5’:(&
work in the basis in which/° is diagonal. Writing the four- -p) ¢\ so that we only need to solve for the positive energy
component spinorsuga)(t),v(ﬁ“)(t) in terms of two- modes. Using the relation between the spinor&ia6), Egs.
component spinor;i(g‘) ,§i(§‘), i=1,2: (3.9 reduce to
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[ido—Mg(t)]f15(t)=pfs5, (3.17  fective potential and that are responsible for a wealth of new
phenomena associated with the nonequilibrium dynamics.

[1d0+ Ma()]T25(t) =Pfyj. IV. WKB EXPANSION AND RENORMALIZATION

These can be separated into two second order equations:  While the renormalization aspects of the Yukawa theory

to leading order in the largd approximation have been stud-
[03+ P2+ ME(D)=iMg(t)]f15(t)=0.  (3.18 ied previously [11,12, here we provide an alternative

method, based on the WKB expansion, that makes contact

The second order equations have twice as many solutions #4th the effective potential formalism studied in Sec. II

the first order equations, but since the initial conditions forabove.

these equations are determined from the first order equations,

the correct, physical, pair of solutions will be found. The

second order equations are of interest because they are moreBoth the chiral condensatgy) and the energy density
amenable to the WKB expansion in the next section. ps are divergent. In order to construct the renormalized equa-
The quantity( r¢/) appears in the mean field equation Eq.tions of motion, we need to extract their divergent parts so
(3.1); we need to calculate it in terms of the mode functionsthat they can be absorbed by appropriate counterterms. This
{f l,g(t),fz,g(t)T}. This is easily done foTr our state Wben we ;alr;r%ee drgg?ng%tﬂrrflggpz\?:gi%%nsiteo Ha&\/lv?; Ighaetxgg%\gi;cr)lr We
io(tgﬂ;f;zt <2?3‘)*(bff>a) 0 avr\:glleuiip «d (“t>) :<f{*({?i§’dqllzii will concentrate onf,;(t) since the results fof,5(t) can
N apB P—a 915 2p\t):92p then be obtained via the replacemeNlg(t)«< —Mg(t)
=f15(1): throughout, including in the initial conditions.
The WKB ansatz forf 55(t) is

A. WKB solution of the mode equations

_ d3p
=2 fos(D)]2—|f5(0)|%]. (3.1
(i) jm“ p(D* = f1p(0[%]. (3.19 (6= A(t)exp Jotduﬂ(u), @1

Another important quantity for us is the energy dengity

in the fermionic fluctuations: where from now on we omit thg index on the mode func-

tions. Insert this into Eq(3.18 and take the real and imagi-
nary parts to find

i .
pi=(To)= 5 (¥"v—u"y)

A, Alt) Q1) Mg(t)
o tes()=0%4t), 25—+ = .
G A RV 23t am T am
=2fWlm[fl,g(t)flﬁ(t)Jrfz,g(t)fzﬁ(t)], 4.2
(3.20 We can solve these equations:
whereTg is the indicated component of the fermionic stress f<2'>(t): expftd u( iQ(u)+ MB_(U)) (4.3
energy tensor operator. 2Q(t) 0 2Q(u)

At this point it is important to highlight the connection
with the static effective potential studied in Sec. Il above.
The equation of motion for the mean field E8§.1) suggests
the identification of the fermionic contribution, the last term  Q?(t)= wé(t)-l—
of Eq. (3.1, with the derivative of the fermionic contribution
to the effective potentialdivided by N) given by Eq.(2.8). { 1

where

3

4

Q(t))2 1((')(0”
Qw2100

Such an identification, however, could hold only for a time

MBm) 1(M3(t>>2_MB<t>ﬂ<t>}

independent mean field. Indeed, in this case, when the scalar 2\ Q) ) 41 Q) Q(1)?
field is independent of time, the solutions of the mode equa- (4.4
tions with the initial conditions given in E¢3.16) are given
by f15(t)="f15(0), f25(t)="f,;(0), leading to Given f(z')(t), the second, linearly independent, solution
’ ' ’ ’ 90 (1) is
_ d3k Mg (I Q)
=2 ———, 3.2 527 () =15 (OF(),
<¢'r//>|stat|c (27T)3 \/szh/lé ( :D t d
) u

which is the derivative of the fermionic contribution to the F(t)=—i Jof(z')(U)z' (4.5

effective potential with respect to the effective mads .

Thus the connection with the effective potential for a staticWithout loss of generality we can take the lower limit of
mean field is manifest. As will be explained in detail below, integration inF(t) to bet=0, since including an arbitrary
for a dynamically evolving mean field there are nonequilib-constant inF(t) will only give rise to a part proportional to
rium contributions that cannot be captured by the static eff$)(t) in f{"(t). This in turn can be absorbed when con-
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structing the appropriate linear combination to satisfy the
initial conditions. The overall factor of-i was chosen so
that the Wronskian of$ (), f{" (t) would coincide with its

value in the equilibrium case.

Write f,(t)=Af9(t) + A, 9 (t), and impose the condi-

tions
f2(0)=\(wo—Mo)2wg, if5(0)=wofs(0) (4.6)
to find
(1) M(0)—Q(0)
fz(t)=f2(0)|% 1+ wo'f‘Q(O)—IT(O)
><f<2'>(0)2F(t)”. (4.7)

B. Renormalizing { i)

PHYSICAL REVIEW D 65 045007

Mg(t)
w(t)

Mg(0) o
—UCOS{ZJOdt w(t")

- A5

Mg(O) [ [t . |
+m5|r{2ﬁ)dt o(t )}

4.1

Mg(t)
4wd(t)

[ f2(0)2=]f1(0)]*]av=—

Note that
|f2(0)[>—[f1(0)|?
=[V(wo—Mo)/2w0]*—[ V(wo+ M)/ wg]?

M
== 2=[If0)~[f1(0)*la. (412
0

There are several important aspects of the renormalization

We begin the renormalization program by first studyingot the condensatéyy) that should be emphasized at this

the divergences in the fermiofchiral) condensatg ).

point.

The ultraviolet divergences of this expectation value can be The momentum integral of the first term in E¢g.11)
extracged by pzerforming a high momentum expansion ofjields the derivative of the effective potential. This would be
[f2()|*—[f1(1)]?% the only terms that will be relevant are the only contribution in an adiabatic limit in which the de-

those proportional to kP, O<p=<3, for largek. An alterna-
tive formulation can be found in Ref$§20], [11]. Further-
more, since we can obtaify(t) from f,(t) by making the
replacemenMg(t) < —Mg(t), |fo(t)|>—|f1(t)|? is odd in
Mg(t).

rivatives of the expectation value of the scalar field vanish.
This observation allows us to make a first contact with the
preparation of the initial value problem via the external
source termh(t). Switching this source on adiabatically
from the infinite past up to the initial time=0 leads to the

We first solve for the WKB frequencies by iterating Eq. first term in Eq.(4.11) for t<<0 only.
(4.4) once and keeping the appropriate power of the momen- |ntegrating the second term in E@.11) in momentum up

tum in the large momentum limit:

QOt)=w(t), (4.9
Q) =w(t)| 1+ :A%((tt))g) . (4.9

We will also need the high momentum behaviorkgft) as

to an upper momentum cutoff leads to a contribution of
the form o 8g(t)In(A); this should be identified with the
wave function renormalization.

By choosingMg(0)=0 we are able to dispense with the
fourth term in Eq.(4.12).

The third term in Eq(4.11), proportional toMg(0), has a
logarithmic UV divergence at=0 which can potentially
give rise to initial time singularities in the equations of mo-

defined in Eq(4.5). This is most easily obtained by integrat- tion [20—23, for which there are no counterterms. However,
ing by parts a sufficient number of times to extract the rel-in the infinite momentum cutoff limit, the contributions that

evant part. Doing this fof ), we find

. Mg(0) 3 Mg(0)
1200012 40(0)°

F(t)=—1

 Mpg(t)  Mg(t)
Hioamz T aam?

xexr{—tht’(iQ(t’)%—MB—(t)
0

+

20t +O0(w™ %)

(4.10

After some algebra we find

give an initial time singularity are actually finite for ary
>0. This is because the integrand is averaged out by the
strong oscillationg22]. At t=0 the contributions from the
second and third terms cancel exactly. For finite but large
cutoff A it is a straightforward exercise to show that the
combination of the second and third tergmsoportional to

M) is finite and small fot<1/A. The UV logarithmic di-

IThis can be seen simply by considering the contribution to the
momentum integral in the limit dt>Myg. The contribution of the
large k modes can be estimated by taking the ultraviolet cutoff to
infinity but introducing a lower momentum cutofi, leading to
f:j cos(xt)dikk=—Ci(2ut) with Ci(x) the cosine integral function,
which is finite fort>0 and diverges logarithmically as-0.
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vergence in the combined second and third terms begins fparticular, we seek to clearly separate the effect of particle
develop on a time scake=1/A. Thus, fort>1/A, when the production and its concomitant contribution to the dynamical
third term in Eq.(4.1)) is finite, we can write evolution.
_ . — Second, the term (14#22)[ —M3(t)(In|Mg(t)/2A|+3)
<¢¢>B(t):<‘/”/’>divz(t)+<¢¢>R(t) (4.13 —MR(I)AZ] in bOth(lﬁl//)(;Vz(t) and(%‘ﬂ)divlﬁ) will lead to
the effective potential. This is implied because this term does

with (Jw);\, ,(t) given as the momentum integral of the first Lo
two terms in Eq (4.1, not depend on the derivatives bfg(t).

Using an upper momentum cutaff and dropping terms Finally, while (¢¢)g (1) is flnlte_fort>1/A but features
of order M%/A?) we find an initial time singularity at="0, () (t) vanishes iden-
tically att=0, is finite fort<1/A, but exhibits a logarithmic
ultraviolet divergence proportional ®In(A) associated with
wave function renormalization fae> 1/A.

If we insist on using the split Eq4.13, and thus extract
4.14 the wave function renormalization divergent term at all

times, includingt<1/A, the quantity( #)5 will contain an

— _ ) ) initial time singularity given by the short time limit<1/A
and ()i (t) contains the third term of Eq4.1D) and is  of the third term in Eq(4.1D. In Refs.[20—23 this initial

- Mg(t)( |nML(t)‘ + ;) —Mg(t)A?

— 1
<¢¢>(;v2(t):ﬁ2 oA

+1

B Mg(t) (I MR(t)‘
2 2A |

finite for t=0 sinceM(0) is proportional to 1/In{). the initial conditions on the mode functions to a hi@burth)
Alternatively, we can also write order in the adiabatic expansi§@0], or by performing an
. . . appropriately chosen Bogoliubov transformation of the ini-
(Fhye= (b giv 1(1) + (W) px() (4.15 tial state[21], or, equivalently, by including a counterterm in

o the external “magnetic field’h(t) [22] so as to cancel this
with (i) iy 1(t) given as the momentum integral of only the singularity att=0. All of these methods are equivalent and
first term in Eq.(4.11): lead to a set of equations that conserve energy and are free of

initial time singularities[20—22. However, these methods
— 1 3 Mg(t) all suffer from the drawback that they do not lead to an
<'M’>di"1:ﬁ[ - MR(t)(In‘ 2A interpretation of the dynamics in terms of the effective po-
(4.16 tential. This is evident in the Bogoliubov approach advocated
o in Refs.[21], [22] since the Bogoliubov transformation in-
Now ( ri4) a(t) includes both the second and third termsvolves the derivatives of the mean field, and the Bogoliubov
in Eqg. (4.11). It is clear from the discussion above that coefficients multiply the terms that lead to the effective po-
() ae(t) is actually finite fort<1/A; it vanishes identi- tential, thereby mixing terms that depend on the derivatives
cally att=0 and does not have any initial time singularity. ©f theé mean field with terms that arise from the adiabatic
This quantity will, however, develop a logarithmic diver- €ffective potential. We refer the reader to RE21] for a
gence due to the second term in Ed.11) associated with thorough exposition of the Bogoliubov method. As discussed
wave function renormalization fde>1/A (hence AF for “al- N detail in[20-23, any approach to regulating the initial
most finite”). time singularity of(4)g (t) (when extrapolated to=0) is
Several important features of the above expressions mugantamount to a redefinition of the statetatO.
be highlighted. First, the argument of the logarithms contains Instead of seeking a regularization of this initial time sin-
the full time dependent mass, unlike a renormalizationgularity, we recognize that it arises from trying to extract a
scheme that extracts the logarithmic divergences only invave function renormalization from very early time even
terms of the initial masg11,12,21,22 note that these when there is no such divergence. We interpret the fact that
schemes differ only by finite terms. However, as will becomethe logarithmic divergence associated with wave function
clear below, keeping the full time dependent frequencies ifenormalization emerges at time scatesl/A as the build
the denominators will lead to an instantaneous effective poup of the wave function renormalization over this time scale.
tential, i.e., the static effective potential, but now as a func-This is consistent with the adiabatic hypothesis of prepara-
tion of the time dependent mean field. Furthermore, takingion of the state at=0 via an external current. At this point
the full time dependent frequencies will lead to identificationthe following question could be raised: in the formulation
of the effective coupling that “runs” with the amplitude of presented above, where is the adiabatic assumption explicit?
the mean field. This identification will allow us to establish a The answer to this important question is in the initial condi-
direct correspondence with the RG improved effective potentions on the fermionic mode functions given by £4.6) (up
tial. In this manner we will be able to clearly separate theto an overall trivial phase These initial conditions deter-
contribution from an adiabatic or instantaneous generalizamine that the state a0 is the vacuum state for free Dirac
tion of the static effective potential from important nonequi- spinors of mas#!z(0), which is determined by the value of
librium and fully dynamical effects that can only be de- the mean field at= 0. Obviously this is the state obtained by
scribed in terms of the time dependent mean field. Inadiabatically displacing the mean field from the trivial

J’_

1
5~ MR(t)AZ}.
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vacuum. As we will see in detail below, recognizing that yé
<_‘/"’[’>AF(t) vanishes identically at=0 and is fi_ni_t(_e over a Z\ 1+ m|”7 =1, (4.209
time intervalt<1/A will allow us to solve the initial value
problem self-consistently, with the result that the potential yé A2
initial time singularity is simply not there and the evolution Z( mé— W) =m§(,u), (4.20bH
is continuous throughout.
Thus, in summary, the above discussion highlights the 4
: ; ; N y 2AY)  Ag(w)
very important dynamical aspect that the wave function Zz(_B 2B === 2R M (4.200
renormalization builds up on time scalés 1/A and Eq. 31 27 3

(4.13 or Eqg.(4.15 must be used according to the time scale
studied in the evolution. However, as will be discussed in VZys=Yr(a). (4.200
detail below, when we study the full equations of motion, we o N
will see that Eq(4.15 is far more convenient for numerical ~_1hese are exactly the same renormalization conditions ob-
studies. Furthermore, we will find in Sec. 4.5 below that atdined from the renormalization of the static effective poten-
self-consistent analysis reveals that in fact there is no initiaF?L t(;)?ethetrhwith tf|1e W?Ve _fun_ctionlf renormalizlaticl)nt ?jb_'

: : G T : - ained from the one-loop fermionic self-energy calculated in
time singularity, i.e.{y4)r (0) is actually finite. Sec. Il above. Furthelramore, the renormzfliyzation of the
Yukawa coupling4.200 guarantees that the fermionic mode
C. The renormalized equations of motion equations are renormalization group invariant since they de-
pend only on the productg Sg=YRrSR-

The renormalized equation of motion for the mean field
ow becomes

We now have all the ingredients to obtain the renormal
ized equations of motion. We recall our system of equationsn

d2 2 2 PN —
gz TP M) =iMe(1) [f155(1) =0, (4.17 1- gR;M)(m eMR(t)I) ot ()M
. A — 1 Ar(w) Mg 1
Sp(t) +m3Sg(t) + g—f‘a\g(t)+y3<¢¢>3=o (4.18 TR | 1222 g2 () ‘ w | 5)
where we have sdt(t>0)=0. XME(t)+27%(y)g | =0, (4.2

Starting with the fermionic mode equations, we see that
since there are no operators present to absorb the divergenqﬁﬁere gR(M)EY§(M)/272 as defined previously, and we

in Mg(t), we need to impose the Cond't'(MB(t):MR(t). have multiplied through byg to write the equation of mo-
orygda(t) =Yrdr(t). When coupled with the wave function tion for the renormalization group invariant prodyGtdg .
renormalization conditions below, this will relate the bareWe can rewrite this as

and renormalized Yukawa couplings. This condition also im-

plies wp()s=wp(t)r- _ ) 1 [2ma(p) 1 N(p)
To study the dynamics for time scales 1/A we use Eq. Mg+ o | ot rt+ 2 2
(4.13 to separate the divergences, leading to the following (1) 9r(m) 7 gr(4)
equation for the mean field: Mg(t)| 1 -
~In ‘—§)M§<t>+4w2<wz/f>§ =0,
2 272 M
yB - 2 yBA
1+ mm? ogt| mg— 57 Og (4.22
N va  2A B where D(u) = 2/gr(x) — InjleMg(t)/u|. Using the following
+ _?+ _Bzm_) oa(t)+ye(ih)n relations we can see that all the terms in E422 are u
31 27 independent:
¥YB [ 3 ( ’MR(t) 1) m2( ) m2
~ 52| MA®|In +> MR _Ma_
1M = A2, 4.23
2m K 2 gr(m) 98 ( ?
MR(U( ’MRm )]
+ In +1|1=0, (4.19 2 2 2A
2 ——=—+In—), 4.23
H ‘ gr(®) 98 M ( b
whereu is a renormalization point. Sefs(t) = \ZSx(t), so 1 Ag(uw) 1 \g 2A
that Mg(t) =Mg(t) impliesyg=yr/\Z, and choose the co- 1272 g2(n) T 1242 g_§+|”7- (4.230
efficient of 5 to be unity. This yields the renormalization
conditions In particular,
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2 eMR(t)‘ 2 then natural that it_ will run as a parametrie functi_on of_time
= leNR0]" (4.29  through the evolution of the mean field. This physical picture

R R is manifest in Eq(4.26). This important aspect of our study
is a novel result which only becomes manifest in a real time
nonequilibrium framework that allows one to study the dy-

D=5 " |

SincegR(M)ocy%(,u)zo, unitarity appears to require that the
range of validity of the theory be restricted to be below the . _ ) .
Landau pole aE, =e~ ' exg2/ge()]. As discussed in the namics of the fully renormahzed fl_elds and couplmgs_.
Introduction, however, this may not actually be necessary !t would appear from this equation that the dynamicgof
under all circumstances; we will explore this issue further incould be singular ag crossesE, /M since
the next section.

We can now compare to the static case. Taking=0 (as _ 2 _ 2 4.2
in the static cagewe see that the term proportional k63 in Orlex(n)]= 2/g—Inex(7)| In[E/|x(7)|] @2
Eq. (4.22 is precisely the derivative of the static effective X
potential given by Eq(2.16) but now in terms of the time \here
dependent renormalized mean field. Therefore, just as with
the static effective potential, we introduce the dimensional E

transmutation scal by demanding that the instantaneous =—=e?t (4.28
or adiabatic effective potential, i.e., the static effective poten- M

tial in terms of the time dependent mean field, have a maxis
mum at this scale whemg=0:

This would certainly be the case if the equation of motion
involved only the derivative of the static effective potential.
— However, we will see below that this is not the case when the
L )‘R('“)_ nM— £=0 (4.25 fluctuations are taken into account.
127° gﬁ(,u) o2 ' We conclude this section by collecting together our renor-
malized equations of motion and initial conditions, now in
We also definey= MR(t)/M g=gr(M), g=k/M, ? terms of dimensionless variables, valid in principle tor

=mj (u= M)/M2, r=Mt. Then Eq.(4.22 can be written >1/A when( )5 (7) is free of potential initial time singu-

as larities:
m?2 d2 2 Y
X~<T>+gR[eX<r>1(m—xm—f(f) [Pz a0, 29
g ” 3
)3 (7) X”(T)+9R[ex(f)](§x(r)—x (T)lnlx(7)|+f(f)> =0,
x|n|X(t)|+2W2T) =0. (4.26 (4.30
where primes denote derivatives. _ 2<$’/I>§(T)
For mg=0 we see immediately that the combination Hr)=2m E

—grlex(DN1x3(DIn|x(7)| is the derivative of the renormal-
ization group improved effective potenti@ee Eq(2.27)]in -
terms of the running coupling constant at a scgle (up to :zf dq q2( |f25(7)|2_|f1ﬁ(7_)|2
a finite tern). 0

Thus this form of the mean field equation of motion splits ,
off the effects due to the RG improved effective potential ] x() + X (7) (4.31)
(the first two termsfrom those due to the time evolution of wq(7) 4wg(7) '
the fermionic fluctuations, which are represented #y)5 .
We also see that the effects of wave function renormalizatiofvith the initial conditions
are encoded in the prefactgg[ ex(7)] multiplying the po-
tential and fluctuatio?'] termg.ﬁ[ X Py P f125(0) = V[wq(0) % x(0)1/2w4(0),

A remarkable aspect of Eq4.26 is that the effective .
coupling depends on time. In a well defined sense, this is a if125(0)=wq(0)f1(0), (4.32
dynamical renormalization much in the same way as that )
explored in real time in Ref23]. As mentioned before we x(0)=Xxo, x(0)=0, (4.33
could have renormalized simply by absorbing the diver- _
gences with the frequencies at the initial time. However, do- (Yip)ar(0)=0. (4.39

ing this would still leave “large logarithms” arising when the o

amplitude of the mean field becomes large. As the mean field The quantity(7) is the fermionic condensate/y) after
evolves in time, the fermion fields probe different energysubtracting the contributions that lead to the effective poten-
scales. Since the coupling runs with the energy scale, it i§al and the wave function renormalization. It therefore rep-
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S
wq(T) .

Since we will focus our study on the effects of the dynam- (4.3

ics, we start by highlighting the dynamics that would ensugua g Fae(7) the “almost finite” fluctuation, since it has
from a consideration of the RG improved effective potentialomy the part of the divergences proportional ¥6r) sub-
alone[2]. A comparison between the renormalization groupyacted. Eurthermore. as discussed abde(0)= 0.

improyed effecti\_/e potential qu'.27). and the renormalized We emphasize tha,lt we have not changed the equation but
equation of mOt.IOF(4.3® clearly indicates that we can &X" have merely redistributed the terms, just as in the two alter-
tract the dynamics that would ensue solely from the eﬁeCt'VEﬁative forms of writing the fermionic condensate given by
potential by neglecting the dynamical contribution of the fer-Eqs (4.13 and (4.1

fT“O”iC fluctuatigns encoded i(7) in the equation of mo- The integral in Eq(4.36) can be done explicitly. We can
tion (4.30, leading to then combine the terms proportional f¢(7) and rewrite

Eq. (4.30 as
o

resents the purely dynamical fluctuations in the fermion fieldvhere
associated with particle production.

2_

fzﬁ( 7) flﬁ( 7)

A
F, =2 J d 2(
D. Renormalization group improved effective potential ar(7) 0 a9

'r"nZ

| EX(T)_XS(T)”]

2
2/g—Injex(7) x(7)

X"(7)+ >

2
(4.39 X (T)+m EX(T)—Xs(T)m

X(7)

+-7:AF(T)) =0,

Notice that the denominator in the second term comes solely (4.38
from wave function renormalization considerations and that A
it has a zero at the Landau pole, as discussed above. This — )—In[A+ AT ],

AV, X \7T

truncated form of the equation of motion displays clearly the
connection with the renormalization group improved effec-
tive potential, as obtained in Sec. Ilf&q. (2.27]. Obvi-  We have kept the full expressions for the integral for the sake
ously, for generic values ¢h? andg, the numerator will not  of completeness. However, ¥{7) approaches the cutoff, fer-
vanish when the denominator does, leading to infinite accelmion modes with momenta of the order of the cutoff will be
eration at the time when the mean field reaches the Landagkcited, indicating that we are approaching the limit of va-
pole. Thus, an investigation of the above equation wouldidity of our numerical approximation. This means that we
lead to unphysical behavior of the mean field as it ap-should restricty(7) to be much less than. Doing so allows
proaches the Landau pole and one would then conclude thak to simplify the expression fd, (7):
the existence of a Landau pole precludes a sensible interpre-
tation of the theory when the amplitude of the mean field is
comparable to the position of the Landau pole. Zx(7)~2/g—In2A=In
We bring this discussion to the fore because it is one of 2e
the important points of this study that the effect of the fluc-
tuations is very dramatic and completely changes the pictur&he important point to note here is tha{ () is independent
extracted from the effective potential. of time. In particular, in this formulation the Landau pole
does not give rise to any singular behavior.
From the renormalization of the couplirggiven by Eg.

(4.23b we identify
Having established the connection with the renormaliza-

tion group improved effective potential, we now study the 2

E
=ln—. (4.39
A

,1A

E. Full dynamics: Fermionic fluctuations

evolution of the full equation of motiof¥.30 including the Z:gB (4.40
fermionic fluctuationsF(7). However, at this point we face
two problems(i) the renormalized equation of moti¢#.30  j.e., the coupling at the scalk or the “bare coupling.”

is valid only fort>1/A and cannot be extrapolated to the  \We reiterate that we are still solving the renormalized
initial time t=0 because of the potential initial time singu- equations; all we have done is reformulate them for the pur-
larity in 7(0) discussed above. This, in turn, entails a potenposes of numerical analysis. The fact t#af(7) is nonvan-
tial problem with the initialization of the dynamical evolu- jshing provides a strong hint that there should be no prob-
tion. (i) Equation(4.30 cannot be numerically implemented |ems asy crosses the Landau pole. We shall see below that
accurately becausg(7) requires a subtraction that involves jndeed this is borne out by the numerics.
the second derivative of the mean field at the same time as The equation of motiori4.38 is now in a form that can
the update[see Eq.(4.31)]. Both problems can be circum- pe studied numerically. In particular, it can be initialized for
vented at once by invoking the spl#.15 or equivalently by  any large but finite cutoff. Furthermore, the form of the equa-
introducing the dimensionless quanti(7) as tion of motion given by Eq(4.39 above suggests that the
1 A 1 dynamics is smooth_ even at time §caﬂgﬂ/A WheanE(r)
_Efo dq ¢ (T))XN(T), (4.36 develops an ultraviolet logarithmic divergence. This is so

F(t)=Far(7) + RO .
because the logarithmic divergenceag(7) will be com-
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pensated by the logarithm i, in the denominator. Hence fluctuation and the adiabatic effective potential. We will see
we conclude that the equation of motioh.38 has a well numerically below that this remarkable feature is borne out
defined initialization and the dynamics is smooth withoutby the dynamics in all cases.
logarithmic divergences or discontinuities @s) approaches In the cases below we can solve the mean field equation
and passes the Landau pole. In fact, this will become clean the form given by Eq(4.38 together with the fermionic
from the detailed numerical analysis provided in the nextmode equations, simply because the update does not require
section. The equivalence of the equations of motion in term¢he specification of the second derivative and is therefore
of Fae or F and the observation that the equation of motionmore accurate. However, after each step in the iteration we
(4.38 does not feature any initial divergence suggest that théave constructed and checked that the values of the second
equation of motion4.30 is free from initial time singulari- derivative obtained from both formulations coincide, thus
ties and the numerical evolution is indeed smooth. That thigproviding a numerical check of consistency.
is indeed the case can be seen as follows. From the fact that Standard numerical techniqués fourth order predictor-
Far(0)=0 we now find that corrector Runge-Kutta ordinary differential equation solver
together with a fourth order Simpson’s rule integratare
used. We also compute the fermion occupation number rela-
x(0) ) (4.4 tive to the initial vacuum state in each momentum mode as a
function of time given by 11]

2 [mm? 5
X”(O):_Z(EX(O)_X (0)In

Furthermore, from the relation betweghand Fae given by

Eq. (4.36 we find that Na(7)=|f2q(f15(0)— f1g(N 550>  (4.44
1 In Sec. V below, we analyze the equations governing the
F(0)==x"(0)| 1—In| — system for various values of the paramet@r’sg, xo.
2 x(0)
_ F. Renormalizin
IN[A/x(0)] | 2 | o
=—"—"| —x(0)—x3(0)In| x(0)] |. Before proceeding to the numerical study of the renormal-
InN[E/A] g ized equations of motion we now turn our attention to the
(4.42) renormalization of the energy densipy. From Eq.(3.20,

we see that a time derivative of the mode functions is in-

In the large cutoff limit, the above expression becomes cutoff©IVed in computingp;. This has the effect of bringing
independent and we conclude that the equation of motion i§OWn one more power of momentum into the integrand and

terms of the renormalized fermionic condensate is also freénplies that Wg”eec_' the WKB expansion of the mode func-
of initial time divergences. Thus either formulation can now!0nS to ordek™". This entails both one more iteration of the

be used for a numerical study with well defined initialization "WXB frequency, Eq(4.4), and one more integration by parts

and smooth evolution throughout with no cutoff dependenc®n the functionF(t). Doing this yields
in the limit when the cutoff is taken to infinity.

The resolution of the initial time singularity is now clear: IMLE75(0) F25(0) + F55(0 F25(8) Jaw
from Eq. (4.11), it is clear that the initial time singularity is M2()—M2(0)  Mat
completely determined by”(0), which in turn must be ob- =—w(t)— a(1) B s(t)
tained self-consistently from the renormalized equation of 8w(t)° 4o(t)°
motion in terms ofF. The formulation of the equation of ‘
motion in terms ofF g, which vanishes &t=0, allows us to x| Mg(t)— l\'/IB(O)cos< zf dt’w(t')”
find the value of the second derivative at the origin; the 0
logarithmic singularity is now encoded #y, , which leads to . . :
an initial value of the second derivative of the mean field that _ Mg(0)[Mg(t) —Mg(0)] sin zftdt’w(t’)
is vanishingly small in the limit of large cutoff. 8w(t)® 0 '

The solution(4.42 has a remarkable aspect that explains 44
how the dynamics manages to be smooth when the amplitude (4.49

.Of. t_he mean field approaches the_ Landau pole. Consider ﬂ\‘/?/hen the factor of 2 in Eq3.20 is included, the first term
initial value problem in .wh|ch>((0) is very near the Landau 5,6 gives the contribution of the zero point energy densi-
pole, i.e.,x(0)~E. In this case we find from Ed4.42 that  tjes for a four-component Dirac fermion. This would be the
one-loop approximation to the effective potentjd] if the
frequencies were constant. In this case, we can consider this
piece to be an adiabatic approximation to the effective po-
tential as described above. The other terms have been
which leads to the conclusion that the coefficient of the cougrouped so that their contribution vanishes at the initial time.
pling grlex(0)] in (4.30 actually vanishes. That is to say, While the fully renormalized energy density has a lengthy
the potential singularity at the Landau pole is actually ren-but not very illuminating expression, we just highlight its
dered finite by an exact cancellation between the fermionienain features. After mass, coupling, and wave function

&2

m
FO)=- EX(O)—XS(O)In X(O)D' (4.43
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FIG. 3. x(7) and(y4(7))g vs . x(0)=0.75.

renormalization and a subtraction of the zero point energy A. Case 1: mMm?#0, A<E, and | xol<Xmax
(time independent and proportional to the fourth power of . . o B
the cutof the energy density is finite and conserved by uset F%r_ftfms c?selwe W'Ifl u§m /9__01’795_8'226|1:’ andflook at
of the fully renormalized equations of motion for the scalar \r/]vo neren \]fat#esf?xﬁé.' XO? .t' I' = or_relesr:fnce,
field and the mode functions. There is no unambiguous sep ne maxima ot the efiective potentia are|%a)J— 23 SO

ration between the fermionic and scalar energy density b or tlhese. values Oj.(o we expecty(r) to osqllate about the
cause of the wave function renormalization, which arise£Mdin- Figure 3 displaysy(r) as a function ofr for xo

from the fermionic fluctuations but contributes to the kinetic — '7h5'f_ | Is that th litude of th field
energy of the scalar field. The total energy density is renor-, 1€ first panel reveals that the amplitude of the mean fie

malization group invariant, finite, and conserved. Further-decays as would be expected; there is energy transfer to fer-

more, we have checked numerically in all cases that the erllion particle production. These two figures taken together

ergy density is constant throughout the evolution to theexhibit an interesting feature. There is a remarkable similar-

accuracy required in the numerical implementation, thus pro?_ty at later times between the mean field and the oscillations

viding an alternative check of the reliability of the numerical I /- A comparison of the two figures suggests that the am-
calculation. plitude of the fluctuations is proportional tp. Since the

mean field has a decreasing envelope while the fluctuations
increase, if such a proportionality exists, it must involve a
V. SOLVING THE EQUATIONS OF MOTION coefficient that is slowly increasing in time. We can actually
extract more information from a parametric plot)gf versus
which is shown in Fig. 4.
The fact that such a tight curve is produced is indicative
f an underlying relationship. In fact, we found that this

We now turn to a discussion of the actual time evolutionX®
of the coupled scalar-fermion system. At this stage we sum-
marize the discussion of the previous section on renormal®
ization to be able to focus on the important aspects to be_,,
gleaned from the numerical study. &‘a_

The fully renormalized equations of motion for the fer-
mion field modeg4.29 and for the mean field in the form
given by either Eq(4.30 or Eq. (4.38 are free of initial
time singularities or ultraviolet divergences. They can be o
consistently initialized and lead to smooth evolution. The
two forms of the mean field equation are completely equiva-
lent as they are obtained one from the other by a rearrange?1
ment of terms. While Eq4.30 seems to suggest a singular
behavior wheny reaches the Landau pole, the equivalent
form (4.38 suggests smooth and continuous evolution. 03

Mass, coupling, and wave function renormalization and a
renormalization of the zero point ener@yme independent
renders the energy density finite and conserved as a conse

guence of the equations of motion. 075 .0.50 025 0.00 025 0.50 075 5
We now study in detail different cases to bring the role of
the fermionic fluctuations to the fore. FIG. 4. x"(7) vs x(7).
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FIG. 5. n(k) vsk at times7=15.01, 51.05, 99.09, respectively.

curve could be well fitted tay(7) + bx3(7)In [x(7)| with a,b  fermion occupation numbers. In fact, the fermions produced
very slowly varying over the time scale of the oscillations. Seem to have wave numbers that lie within a region spanning
This in turn implies that the fermionic fluctuatiodgt) can k=0 to k=k. wherek.=x,. While we are used to band
also be fitted to this form, with coefficients that are slowly structure in bosonic theories with parametric resonance, it is
varying functions of time, indicating that the growth of the unexpected to encounter this structure in fermionic theories.
fermionic fluctuations results in a time dependent correction

to the mass term and quartic coupling of the mean field. This,

we believe, is a noteworthy aspect of the dynamics: the non- o2
equilibrium fermionic fluctuations, those that were not ac- ¢
counted for by the adiabatic effective potential, introduce a=
slow time dependent renormalization of the parameters of o1
the effective potential, mass, and quartic coupling.

There is a new time scale emerging from the dynamics
that is associated with tHslow) time evolution of this renor- 007
malization and the decay of the mean field. A full analysis of
these time scales is beyond the scope of this article, but we
expect to use the methods of dynamical renormalization
group[23] to investigate the relaxation of the mean field in
future work.

We next consider the behavior of the fermion occupation
numbers as a function of time. Figure 5 gives three snapshot
of n(k) versusk at different times. What should be apparent
from these pictures is the existence of band structure in the FIG. 6. x(7) vs 7 for x(0)=0.2.

-0.1

-0.2

40 80 120 160 ¢
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FIG. 7. n(k) vsk at times7=15.01, 51.05, 99.09, respectively.

Pauli blocking prevents exponential particle production sincedefinite quantitative differences in the time scale of oscilla-
the occupation numbers can at most become unity. In Sec. \flon damping of the mean field and growth of the fermion
we study in detail the issue of parametric amplification verflyctuation as compared to the massive case. These are
sus Pauli blocking. shown in Fig. 8.

Now consider the case whegg=0.20. Figure 6 Shows — \ye note that now the only scale in the problem is com-

the phenomenon of “catalyzed regeneration” or “revival” - o )
first observed if11]. The mean field decays for a while and pletely de_termmed b.y the initial value of the mean figi@),
P/vhereas in the previous case there were two scales.

then regenerates itself. It is important to note that it neve . : .
regenerates back to the original value, always to something 1 h€ figures for the dynamics of the mean field and fer-
less than that. The reason for this can be seen from the ev#dion fluctuations are qualitatively similar to those of the
lution of the momentum distribution in Fig. 7, which clearly previous case. Figure 9 shows the momentum space distribu-
shows an almost saturated distribution of particles for modtion of the fermions. The band structure is still present and is
mentak= yq. still set by the initial valuey,. This is as it should be, espe-
The allowed band fills up to saturation very early on.cially sincey, is now the only scale in the problem. Finally
After that, the energy in the scalar cannot be transferred efye again plottedy” versusy with a result identical to that
fiCiently to fermions and in fact the fermions, which COUple shown in F|g 4. We can again find a good fit a{)((T)
only to the mean field in our approximation, begin to transfer bx3(7)In|x()| with the parameters,b very slowly vary-
their energy back tg. This depletes the band but not com- jng on the time scale of the oscillations. This fit shows that a
pletely, which accounts for the incompleteness of the regenime dependent mass has been generated by the dynamics.
eration. This is not so surprising as scalar masses are not protected
_ against radiative corrections.
B. Case 2: M=0, A<E, and |xo|<Xmax Again, just as in the previous case we find that new time
The massless case leads to a qualitatively similar dynanscales emerge associated with damping in the amplitude of
ics of the mean field and the fermionic fluctuations but withthe mean field and the renormalization of the parameters.
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FIG. 10. x(7) and(y4(7))a vs 7 for x(0)=1.1.
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FIG. 11. x(7) and(¢4(7))g5 vs 7for x(0)=1.2,g=1.0,E, =2.7.

C. Case 3: M=0, A<E, and | xo|> Xmax smooth when the mean field reaches and crosses the Landau
pole. There are two important hints that led us to this con-

In this case the mean field begins to the right of the maxi- clusion: (a) the Landau pole does not appear explicitly in the

mum of the effective potential and rolls down, running awayequatmn of motion written in terms oF e (4.38) (the loga-

up to the scale of the cutoff, with a similar behavior for rithmic divergence inFae is compensated by the logarithm
(y(7)). This behavior is displayed in Fig. 10. Once thein z,): (b) the self-consistent solution far"(0) and for(0)
mean field reaches an amplitude of the order of the cutoffjiven by Eq.(4.43 when x(0) is very near the Landau pole
scale there is particle production on this scale so the momershows manifestly that the fermionic fluctuations exactly can-
tum integral over the fermionic fluctuations is no longer ac-cel the contribution from the effective potential, thus making
curate. Therefore the dynamics is no longer trustworthy andhe “residue” at the Landau pole vanish exactly. While this
the evolution must be stopped. In this case the dynamics igemarkable cancellation has been gleaned in a particular
what would be expected from the effective potential descrip<ase, that in which the initial condition places the amplitude
tion: the mean field runs away as a consequence of the epf the mean field at the Landau pole, the combination of both

fective potential being unbounded from below. arguments is suggestive enough to conjecture that the dy-
namics will be smooth in all cases g&r) crosses the Landau

pole.
In order to probe this conjecture, we need to consider the
In the previous section we discussed the possibility thataseA >E so thaty can evolve past the Landau pole but the
the presence of a Landau pole in the fully renormalized equadynamics should be reliable in such a way that the amplitude
tions of motion might not be a signal of discontinuities or of the mean field must always be much smaller than the
singularities in the evolution and that the dynamics will becutoff.

D. Case 4: Mm=0, A>E, and | xo|> Xmax

= 1 1 — 1
% <Yy(7)>
200 7 B 200000 | -
100 7 n n “ i 100000 =
0 L
0 L
-100 U =
H H 100000 | =
-200 =
T T T T T -200000 T T T T T
0.0 0.1 0.2 03 0.4 05 o 0.0 0.1 02 03 04 05
(a) (b)

FIG. 12. x(7) and(y4(7))z vs 7 for x(0)=1.2,g=0.5,E, =20.1.
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x” : : 12 for the mean field and the fully renormalized fermion
15000 | B fluctuation{ s4( 7)) . These figures show a remarkable be-
havior: y initially climbs up the potential, reaches the
10000 B maximum and begins falling down toward the minimum,
overshoots, climbing up to the maximum on the negative
5000 N side, and finally begins a plunge down the potential hill on
the negative side. As the amplitude of the mean field reaches
0 - the Landau pole at a time p the (fully renormalized fer-
mion condensaté-(7) exactly compensates the contribution
-5000 | - of the effective potential, thus canceling the singularity of the
running coupling at the position of the Landau pole.
-10000 | - When the amplitude becomes larger than the mean
field begins an oscillatory motion about the origin with
-15000 | - greater and greater amplitude. The key to understanding this
: ‘ : ‘ behavior lies in Fig. 13, which depictg’ vs y parametri-
-20 -10 0 10 x cally. Note that the two different cases we are examining are
almost indistinguishable.
FIG. 13. x” vs x parametrically for both cases. A numerical fit to excellent accuracy reveals that for
>Tip
For A>E we see from the formulatio4.38 that Z, Y'(7)~bx3(7) (5.1

<0; thus for very early time wherf,-~0 the acceleration

is negative and the mean field climbs the potential hill in-with b slowly varying in time and saturating at long times at
stead of rolling down. This is a consequence of the fact thag valueb<—2.0.

for a theory with a Landau pole, if the cutoff is taken much  Thus for 7> 7 the fermion condensate provides a small
larger than the Landau pole, the “bare” coupling becomesrenormalization of the coefficient of°In|y|. Therefore
negative but very small. Thus in the “almost finite” formu- \when the amplitude of the mean field is much larger than

lation the Only hint of the presence of a Landau pOIe isin thqu , f(T) can be neg|ected' the |Ogarithms cancel, and the
opposite sign of the second derivative of the mean field agquation of motion takes the form

compared to the case in which the cutoff is well below the
Landau pole.

Thus initially we expect that the second derivative will be ~ x"(7)+ 29— | [ x3(D)In[x(7)|+F(7)]=0

very small and negative, the mean field will slowly climb up Injex(r)
the potential hill, and the fermionic fluctuations will grow.
In what follows we study the cases with=1.0, xo
=1.2,A=200,E, =2.7, andg=0.5, xo=1.2, A=500, E, X"(7)=bx3(7) with b=<-2.0. (5.2
=20.1, respectively, to illustrate the main features of the
dynamics. This shows that the mean field behaves at late time as if it

The full dynamics for the mean field and the renormalizedwere in a quartic potential; this would also be true in the
chiral condensate in these cases is displayed in Figs. 11 amdassive case since the mass term would eventually become

- 1 1 1
=
=
=
1.0 1.0 B
-
=
=
[
0.8 0.8 -
0.6 1 0.6 -
04 04 B
0.2 1 0.2 -
0.0 T T T T T 0.0 T T T
0 5 10 15 20 25 k 0 30 60 90 k

() (b)
FIG. 14. n(k) vs k. Left figure is forr=1.89,9=1.0,E, =2.7, the right figure forr=0.35,9g=0.5,E, =20.1.
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subdominant. The “potential” appears to “open up” with a bosonic theory, when the expectation value of the scalar
time, i.e., the coefficient of the quartic term becomes smallefield oscillates around a minimum the fluctuation mode func-
and smaller as the logarithm in the denominator dominategions obey an equation of motion with an effective oscilla-
until it saturates. tory mass squared term. The resulting Sdimger-like equa-
SUppOSG that the initial value of the mean field is near thQion for the mode functions results in a Spectrum with
maximum and that the coupling is such tlat>1. In this  forbidden bands with positions that depend on the wave vec-
case from the self-consistent solutith42 we see thatF o k of the mode function and the specific details of the
~0O(1) (for A>E|). However, we have argued and S€eNoscillatory potential. For generic initial conditions, the wave
explicitly numerically that, as the mean field approaches andectors k' in the forbidden bands lead to an exponential
crosses the Landau pole, the fermion condengdte can-  growth of the mode functions with an exponent, given by the
cels the termy (T)In|X(T)|.3Th|s.|mpI|es that the fermion imaginary part of the Floquet index, that depends on the
condensate becomes O(E{). Since the renormalized fer- yetails of the potential. This is the phenomenon of parametric

mionic condensate is obtained by subtracting the terms from ., iication. The exponential growth of the mode functions

the effective potential and the wave function renormalizasg gsqociated with the buildup of a nonequilibrium, time de-
tion, the only manner in which this can actually happen,

roughly speaking, is that the mode functiohs, evolve in pendent distribution function for the bosons, i.e., particle
time almost to saturation, i.e., thHt, J?~1 for wave vec- production. : . .

tors up to the Landau pole scatee?d~ ! (or beyond. This In the ferml_omc case, thg Pauli exclusion prlnmple re-
will lead to a fermion condensate of ord‘ef This argument stricts the maximum occupation number of fermion states for

is shown to be correct by Fig. 14, which displays the occud given wave vector to be 1. This is Pauli blocking, i.e., the

pation numbers of the fermions produced as a function ofiuantum stgtes must hav'e a finite pccupation num'ber. Obvi-
momentum for larger when the mean field oscillates. ously, even if the fermionic fluctuation mode equations con-

Comparing the width of the band of occupied wave vec-{&in an oscillatory time dependent mass, Pauli blocking
tors with the amplitude of the mean field in the oscillatory Should prevent any parametric amplification and forbidden

phase(see Figs. 11 and 12eveals that the width of the band bands from occurring. This .is somewhat problematic, how-
is proportional to the amplitude of the mean field, which in €Ver- As our detailed numerical work shows, there are cases

turn is larger than the position of the Landau pole. Thus" Which the mean field is oscillatory, i.e.x(t)
states with wave vectors up 8, (or somewhat larger as "~ XoC0SE), and the fermion mode equatior8.18 take

shown by Fig. 1% are almost saturated with occupation 1 the form

(per spin. We interpret this as the formation of a very dense 2

fermionic plasma with a “chemical potential” of the order of — 4+ p?+ x5 coS(Qt) FiQxo sin(Q) | f4 2%(1)=0.
the Landau pole, since all states up to this scale are filled by t ’

produced particles. (6.2)

At first glance it would appear that the oscillatory terms
o would drive parametric amplification of the mode functions,

We want to highlight several noteworthy features thatwhich would lead to an unbounded distribution function,
emerge from the numerical analysig) As presaged by the contrary to Pauli blocking. This is not the case, though. We
discussion above, the mean field evolution is completelyow provide a rigorous proof that fermionic mode functions
nonsingular, even as it crosses the Landau pole. The avoig not have forbidden band structure and hence there is no
ance of singular behavior is entirely due to the dynamicaharametric amplification, and a perturbative argument that
growth of the fermionic fluctuations: they ensure that thenot only confirms the exact proof but also illuminates the

quantity —x*(7)In[x(7)|+F(7) vanishes when B pyjldup of the occupation number in the absence of paramet-
—In|ex(7)| does.(b) The back reaction of the fermions pro- ric amplification.

vides a small renormalization to the effective potential after
the mean field crosses the Landau pole, and as a result the
true effective potential at large values gfis upright and
quartic. The equation of motion is then of the approximate The first order equations for the fermio(3.17 can be

E. Summary of the numerical analysis

A. No forbidden bands: Formal proof

form x”~ —2x* where the factor-2 receives small correc- Written in the following matrix form:

tions from the fermion back reactiot) The nonequilibrium d

evolutio_n results in profuse particle production. The fermion [i ——pa—M(t)as|f(H)=0 (6.2
occupation humber saturates generally up to momenta larger dt

than the Landau pole, which in turn results in a very dense ] )
medium akin to a Fermi gas with chemical potential of theWith o713 the Pauli matrices and
order of the Landau pole.

f
f(={,. (6.3
VI. PAULI BLOCKING VERSUS PARAMETRIC 2
AMPLIFICATION It is straightforward to check that
An important question that we address in this section is + . .
the role of parametric amplification in a fermionic theory. In FI(Hgt)=f1 (g () +f5 (1)go(t)=const  (6.4)
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for an arbitrary pair of solution§(t) andg(t) of Eq.(6.2.  where, in general, the exponents.. are complex. Their
This is a result of the conservation of probability in the Diracimaginary parts determine the growibr decay rate of the
equation, or equivalently the normalization condition on thesolutions and are responsible for parametric amplification.
Dirac spinors. Equatiori6.2) has two linearly independent However, the unitarity of the monodromy matrix implies that

spinor solutionsh;(t),h,(t) with initial conditions the Floquet indicess . are real; hence Floquet solutions
develop a phase upon time evolution during a period but
h (O):(l h (O):(O (6.5) their magnitude is constant. This then precludes forbidden
! o) 2 1) ' bands and hence there is no parametric amplification of fer-

mionic modes. Pauli blocking is a direct result of the Dirac
fields obeying a first order evolution equation in time. This is
also at the heart of the conservation of probability nor-
malization of the Dirac spinoyswhich in turn determines
that the monodromy matrix is unitary; hence the Floquet
indices are real.

Both solutions therefore obey
hi(Ohy (=1, hi(t)hy(t)=1. (6.6)
Furthermore, it follows from the above identities that

hi(hy(t)=0, 6.7

B. Perturbative argument

i.e., the linearly independent solutions are orthogonal at all
times.

Since M(t) is periodic with periodT, i.e., M(t+T)
=M(t), thenhy(t+T) andh,(t+T) will also be solutions
of Eq. (6.2), but then they must be linear combinations of the
linearly independent solutions; (t),h,(t):

While the formal proof above unambiguously clarifies
that there is no parametric amplification of fermionic modes
with an oscillatory time dependent mass, we offer also a
perturbative argument. We do this both to highlight the main
result of the exact proof above, and also to illuminate why,
even when the Floquet indices are real and there are no for-

hy(t+T)=ah,(t)+ Bhy(t) bidden bands, time evolution with phases leads to a buildup
' of the occupation number for sonfesonant values of the
ho(t+T) = yh,(t)+ Sh(t), wave vectors.

Consider the second order evolution equation ffgg(t)
where a, B, v, & are complex coefficients. The matrix of (after rescaling by the scad):
coefficients
a B
M=

y 0

d? .
et pZ+M2(t) +iM(t) |f,5(t)=0,
6.9 t

M (t)= xocogQt). (6.13
is called the monodromy matrix and is the important concept . o . o
in Floquet theory. It represents an operator that evolves th& perturbative solution is obtained by considering=e

solution in time by one period. <1 and writing the formal expansiorflyﬁ(t)zf(fg(t)

The conditions +ef@(t) + 2fE(t) +- -, which leads to the following hi-
hi(t+Thy(t+T)=1, hi(t+Thy(t+T)=1, erarchy of equations:

(0 2§0) 4y =
hl(t+T)hy(t+T)=0 (6.9 fpO+ P70 =0,
obtained above lead to the following conditions on the coef- foa +p?im =—im ),
ficients:
20+ p 20 =—iM R0 —M2(0)FO(t)
a4 182=1, 5P+ P=1 a*y+p*o=0, O P i |

(6.10 Do (6.14

which in turn implies that the monodromy matrix is unitary: The zeroth order solution is of the form

M =
M'M=1. (6.11) f(l?g(t)ZA(ﬁ)elpt+ B(p)e Pt (6.15

This unitarity property of the monodromy matrix can be - - . ) o
traced back to the conservation of probability of the solutiongvith the coefficientsA(p),B(p) determined by the initial

of the Dirac equatior(since it is first order in timeas ex- conditions. The higher order inhomogeneous equations are

plicitly determined by the conditiof6.4). solved in terms of the retarded Green’s function
Floquet solutions are the eigenvectors of the monodromy

matrix and the(logarithms of t_hea eigenvalues are the Flo- G(pt—t')= Esir{p(t—t’)]@(t—t’). (6.16

guet exponents. Floquet solutions therefore satisfy p

F.(t+T)=€e"=F_(1), (6.12 The general solution is given by
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0 o s taining the equation of motion for the expectation value of
fiah= Jo dt’G(p,t—t")Z"(t") (6.17  the scalar field, or mean field, and comparing the dynamics

due to the full equations of motion, including the back reac-

with 7 the inhomogeneity in the equation for thté order tion of the fermionic fluctuations, to that obtained from a

contribution. We note that(l%(O):O, f(l%(O)=0, therefore renormalization group improved effective potential.

. . N Th ion of motion ined from the R ffecti
the initial conditions determine the consta{ép)B(p) to " (thfato ° .oto fbtz ed IO the RG e e(;tlvg
all orders. potential alone contains a Landau pole at a nonperturbative

_ o L scaleE, xe?9~1 whereg=y?/2x? andy is the Yukawa cou-
The first order SOI_”t"_)”f(l,g(t) exhibits a secular term, iy We should note that, since we are working within the
which grows linearly in time, whefil =2p. This obviously  |3rgeN expansion, this Landau pole cannot be considered to
corresponds to the production of a fermion pair. Howevelhe an artifact of the perturbative expansion. The dynamics
this secular term is purely imaginarf§’A(t) <it xo/p. It cor-  obtained from the effective potential alone would yield sin-
responds to a renormalization of the phase of the order solwular behavior when the amplitude of the mean field reaches
tion. The calculation to second order is lengthy but straightthe Landau pole.
forward, with the following remarkable result: purely  The renormalization of the full equations of motion leads
imaginary secular terms appear once again, which grow o a running coupling constant that depends on time through
time, leading to a further contribution to the phases. The reahe dependence on the amplitude of the mean field. This
part of the secular terms cancels out betweenMRecontri-  phenomenon is akin to the dynamical renormalization found
bution (which involves the zeroth order solutipmnd the in Ref.[23]. Furthermore, we show that potential initial sin-
contribution fromiM, which appears squared and thus al-gularities are self-consistently removed and that the dynam-
ways(in both cases, fof; ,) with opposite sign to thél2(t) ics is smooth and free of Landau pole singularities, or dis-
contribution. Therefore, at least to second order, we find thagontinuities.
the secular terms generated from resonances Wher2p The fully renormalized equations of motion including the
are purely imaginary, while the real parts of the secular term$ack reaction of the fermionic fluctuations have two different
cancel exactly. Thus there is no exponential growth of theegimes depending on whether the ultraviolet cutbfkE_
solution which would emerge from real secular terms in theor A>E, . In the former case, if the initial value of the mean
perturbative expansion. We have not attempted a higher ofield is between the origin and the maxima, the mean field
der calculation, but in view of the exact proof offered above,undergoes damped oscillations, transferring energy to the
it is clear that the result holds to all orders. The lowest ordefermionic fluctuations. This energy transfer results in fer-
perturbative solution also shows thigtand f, develop op- ~mion pair production within a band of wave vectors deter-
posite phases so that the occupation number given by Ednined by the mass of the scalar and the initial amplitude of

(4.44) becomes of the form the mean field. It is found that the back reaction from the
fermionic fluctuations, encoded in the renormalized fermion
Ng(7)ocsin(w 7) (6.189  chiral condensate, introduces a slowly varying renormaliza-

tion of the parameters of the effective potential.

with @ the real Floquet index. This explains the behavior of When the absolute value of the initial value of the mean
the occupation number displayed in the figures above, théield is larger than the maximum of the effective potential,
oscillations and the saturation. Hence, unlike the bosoni®oth the mean field and the fermion chiral condensate run
case in which parametric amplification results in an exponenaway to the cutoff scale, at which point the evolution must be
tial growth of bosonic fluctuations, here Pauli blocking at thestopped.

level of the mode functions is a consequence of real Floquet While it is commonly acknowledged that a theory that
indices that result in a bounded growth of the occupatiorfeatures a Landau pole makes physical sense only when the

number. cutoff is below the scale of the Landau pole, we decided to
study the dynamics even in the case in whick E, to find

VIl. CONCLUSIONS, CONJECTURES, IMPLICATIONS, out if S”d how there are a(;‘y S.'Egur:a”t'es é” the ”loneq”'."b'l

AND FURTHER QUESTIONS rium dynamics associated with the Landau pole. Typica

statements about the limit of validity of a theory with a Lan-
We have used an expansion ifNl/whereN is the num- dau pole are mostly based on perturbative unitarity in
ber of fermion fields coupled to a scalar, to understand th&matrix elements.
nonperturbative dynamics of this system. In this limit, the Our study is definitely nonperturbative as we study the
scalar fluctuations are suppressed relative to the fermionievolution for large amplitude mean field configurations.
ones and we can consider mean field dynamics in a consi$¥hether perturbative statements 8matrix elements pro-
tent approximation that, at least in principle, can be im-vide a limitation to the nonperturbative approach is, to our
proved on. knowledge, an open question. We therefore proceed to study
In the largeN limit, the theory exhibits dimensional trans- the theory in this regime and to analyze the consequences
mutation and symmetry breaking via the Coleman-Weinbergvithout bias.
mechanism with an effective potential that is unbounded be- In this case we find novel, remarkable behavior. When the
low and features a metastable minimum at the origin and twamplitude of the mean field reaches the Landau pole there is
symmetric maxima. The bulk of our work consisted in ob-a cancellation between the contribution from the effective
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potential and that from the renormalized chiral condensatabundant particle production. After the mean field crosses the
that prevents a singularity in the dynamics at the LandalLandau pole, the fermionic occupation numbers basically
pole from developing. The ensuing evolution is continuoussaturate up to a momentum scale of the order of the Landau
As the amplitude of the mean field becomes larger than thgole. This in turn describes a dense medium with a large
Landau pole, it begins to oscillate with an amplitude thatchemical potential of the order of the Landau pole.

grows. We find that the time evolution of the mean field is  This could potentially be relevant in an extension of the

well described by an effective potential that is quartic andstandard model with toplike quark sector with a Yukawa cou-

upright. pling of order 1. Since this theory will be part of an even

We have seen that the fermion occupation number almod@rger theory[perhaps a grand unified theofUT)] the
saturates up to a wave vector of the order of the amplitude ofutoff should be taken to be of the order the GUT scale. On
the mean field. The resulting state is a very dense medium dhe other hand with a vacuum expectation value of few hun-
plasma, which can be described as a cold, degenerate Ferfified GeV and a Yukawa coupling of order 1, the position of
gas with a chemical potential of the order of the energy scaléhe Landau pole is at a scale of a few TeV. Thus the situation
of the mean field. A>E, would naturally arise in this type of scenario.

We have also provided an exact proof of the fact that the Another potentially interesting implication in cosmology
Floquet indices for the fermionic mode functions are realwould be the following: consider that after a phase transition
therefore preventing unbounded parametric amplificationthe system is trapped in the metastable vacuum. A bubble
This is the manifestation of Pauli blocking at the level of thetype configuration, characterized by a collective coordinate
mode functions. A perturbative proof of this result served to25—27 will tunnel underneath the barrier of the effective

illuminate the workings of the exact proof. potential[26] and exit on the other side of the maximum.
The collective coordinate will then begin to roll down the
Conjectures potential hill until it reaches the Landau pole, at which point

) ) the novel dynamics studied in this article will lead to fermion
We conjecture, at this stage, that the phenomenon dfiair production and the production of a dense medium with a
smooth dynamics beyond the Landau pole is somewhat rearge chemical potential. We believe that these potential im-

lated to a recent observation that in a medium the actugljications deserve further study and we expect to address
position of the Landau pole is actually shifted to much largefnese in future work.

scaleq24].

While we have studied the theory in a regime in which
perturbative unitarity ofSmatrix elements would suggest
that the theory breaks down, we have done so nonperturba- An important aspect that we have not investigated is that
tively at the mean field level. It is conceivable that, while theof the new time scales that emerge from the dynamics. For
dynamics is smooth and there are no signals of pathologie§xample, when the mean field oscillates with small ampli-
incompatibilities may lurk in soménonperturbativematrix  tude in the first cases analyzed, there is a damping associated
elements or physical quantities that would cast doubt on th&ith the energy exchange with the fermion fluctuations. The
validity of the theory. To assess this possibility requires alime scale for damping is much larger than the typical oscil-
deeper study of correlation functions beyond mean field andftion frequency, despite the fact that the coupling is fairly
perhaps to next to leading order in lartye This is beyond ~strong. Another time scale is that associated with the growth
the goal of this article and an issue that deserves furthe®f the amplitude of oscillations after the mean field crosses
scrutiny in its own right. the Landau pole, until the amplitude saturates.

There has previously been a related conjecture that Lan- We expect to apply the methods developed28,2§ to
dau poles in some theories appear only in perturbative captudy these questions and relegate this investigation to future
culations or in calculations of unobservab|@9)]. work.

Further questions
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