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Nonequilibrium large N Yukawa dynamics: Marching through the Landau pole
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The nonequilibrium dynamics of a Yukawa theory withN fermions coupled to a scalar field is studied in the
large N limit with the goal of comparing the dynamics predicted from the renormalization group improved
effective potential to that obtained including the fermionic back reaction. The effective potential is of the
Coleman-Weinberg type. Its renormalization group improvement is unbounded from below and features a
Landau pole. When viewed self-consistently, the initial time singularity does not arise. The different regimes of
the dynamics of the fully renormalized theory are studied both analytically and numerically. Despite the
existence of a Landau pole in the model, the dynamics of the mean field is smooth as it passes the location of
the pole. This is a consequence of a remarkable cancellation between the effective potential and the dynamical
chiral condensate. The asymptotic evolution is effectively described by aquartic uprighteffective potential. In
all regimes, profuse particle production results in the formation of a dense fermionic plasma with occupation
numbers nearly saturated up to a scale of the order of the mean field. This can be interpreted as a chemical
potential. We discuss the implications of these results for cosmological preheating.
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I. INTRODUCTION

In the standard model and its extensions, the Yukawa c
plings of fermions to scalars~Higgs bosons! play a funda-
mental role. Not only do such couplings determine t
masses of the fermionic degrees of freedom, but in turn
through these couplings that the fermionic sector influen
the dynamics of the scalar fields. If these Yukawa couplin
are large enough, they can lead to negative contribution
the beta functions of the running scalar self-couplings and
to destabilizing the vacuum by large negative radiative c
rections to the scalar effective potential@1#. This is the
Coleman-Weinberg mechanism of symmetry breaking by
diative corrections@2#.

While such a scenario has been ruled out within the s
dard model due to an unacceptably low value of the Hig
boson and the top quark masses, large negative radiative
rections to the effective potential from large Yukawa co
plings could still be relevant in extensions of the stand
model with more complicated Higgs-Yukawa sectors@3#.
Coleman-Weinberg phase transitions in extended Hi
models and their potential cosmological implications ha
been studied by Sher@3# who analyzed the effective potentia
of this theory. While this study extracted bounds on the
rameters of extended Higgs sectors from vacuum stab
and thermodynamic considerations, these results are b
on an equilibrium description based on the effective pot
tial, a purely static quantity.

Detailed studies reveal that the information extrac
from a static effective potential is restricted to situations v

*Email address: boyan@pitt.edu
†Email address: devega@lpthe.jussieu.fr
‡Email address: holman@cmuhep2.phys.cmu.edu
§Email address: mmartin@cmu.edu
0556-2821/2002/65~4!/045007~24!/$20.00 65 0450
u-

e
is
s
s
to
o

r-

-

n-
s
or-
-
d

s
e

-
ty
ed
-

d
y

close to equilibrium and that a deeper understanding of
namical processes requires a nonequilibrium treatment.
necessity for a nonequilibrium description of quantum fie
theory has become clear in cosmology where inflation
phase transitions require a fully dynamical description@4#, in
heavy-ion collisions where a transient quark-gluon plas
may be formed@5,6#, and in domain formation in phase tran
sitions@7,8#, which may have consequences in cosmology
well as in heavy-ion collisions.

In each of these fields, nonequilibrium effects can g
rise to new phenomena which can differ from equilibriu
behavior in dramatic ways that cannot be captured by
effective potential description.

From the point of view of cosmology, and inflationar
cosmology in particular, nonequilibrium effects associa
with particle production via resonances and/or instabilities
bosonic field theories have taken center stage. This is evi
in the theory of preheating@9# as well as in the classicaliza
tion of fluctuations during inflation@10#, where spinodally
unstable dynamical fluctuations about a homogeneous
densate modify the long wavelength behavior of the theo

While the nonequilibrium dynamics of fermionic field
has been studied recently by several authors@11–14# and
while there has been some remarkable progress in la
simulations of fermionic dynamics in low dimensional gau
theories@15#, the dynamical behavior of fermions has n
received the same level of attention as the bosonic case.
is mostly due to the argument that Fermi-Dirac statistics p
clude parametric amplification of occupation numbers w
nonperturbative particle production.

In order to have access to nonperturbative dynamics
this work we consider theories containingN fermions with
Yukawa couplings to one scalar fieldF in leading order in
the largeN limit. The large N limit leads to a consistent
nonperturbative approximation scheme that can be syst
atically improved. This approximation has been applied
©2002 The American Physical Society07-1
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bosonic theories and has been studied both analyticall
leading order@5,16# and more recently numerically in rea
time including corrections beyond leading order in the la
N @17,18#. These studies reveal a wealth of new phenom
not accessible via perturbative methods.

In the largeN limit we study here, the fermions serve
suppress scalar field fluctuations to leading order in 1/N. We
find that even at leading order a new and important aspec
field theory comes into play: the wave function renormaliz
tion. It should be noted that this does not occur at the sa
order in purely scalar theories. Our study reveals that
new ingredient is responsible for dramatic new dynami
phenomena.

We obtain the equations of motion of the mean field,
expectation value of the scalar field, taking into account
nonequilibrium back reaction of the fermionic modes
leading order in 1/N. This analysis goes beyond the effecti
potential approximation@2# and affords us a window for un
derstanding the nonperturbative dynamics of this coup
system.

We can summarize our main results as follows:
The fully renormalized theory displays the Colema

Weinberg mechanism of dimensional transmutation thro
radiative corrections. It has an effective potential that is
bounded from below at large values of the mean field w
two symmetric global maxima and a local minimum at t
origin. It also exhibits a Landau pole at an energy scaleEL
which is nonperturbative in the Yukawa coupling. The no
perturbative nature of the pole makes the nonperturba
1/N expansion particularly well suited to this problem. Lar
N expansions have been used to look at the Landau
since at least the 1970s@30#. The presence of the Landa
pole distinguishes two distinct regimes to be studied depe
ing on the relationship between the cutoffL, which is re-
quired for the numerical analysis of the theory, and the
sition EL of the Landau pole.

Suppose that we takeL,EL . Then, if the initial value of
the mean field is between the origin and the global maxim
the mean field oscillates about the origin, and the fermio
quantum fluctuations grow as a result of particle product
in a preferred band of wave vectors. This is akin to wh
happens in the bosonic case but here the production m
saturate due to Pauli blocking. The width of the band
wave vectors is determined by the initial amplitude of t
mean field and the mass of the scalar field. If, however,
initial value of the mean field is larger than the maxima,
amplitude runs away to the cutoff scale, at which point
evolution must be stopped since the theory reaches the
of its domain of validity.

Our most noteworthy results are those for whichL@EL
and the initial value of the mean field is taken to be larg
than the position of the maxima of the effective potential.
this case, an analysis of the dynamics based solely on
static effective potential would lead to the conclusion that
time evolution of the mean field would lead to a divergen
or discontinuity in the time derivatives when the amplitu
reaches the value of the Landau pole. However, a deta
analysis of the full dynamics, including the fermionic flu
tuations and their back reaction onto the mean field, rev
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that the evolution of the mean field is smooth. When t
amplitude of the mean field becomes larger than the Lan
pole, the dynamics becomes oscillatory and asymptotic
reaches a fixed point described by a simple quartic, upr
effective potential with a quartic coupling of order 1 an
with the mean field oscillating with a large amplitude arou
the origin. This novel dynamical behavior arises from a
markable cancellation between the fermionic fluctuatio
and the contribution from the instantaneous effective pot
tial that leads to smooth dynamics through the Landau p
When the initial value of the mean field is larger than t
maxima of the effective potential but much smaller than
Landau pole, the ensuing nonequilibrium evolution leads
fermion production in a band of wave vectors up to the sc
of the Landau pole. These modes become populated
almost Pauli blocking saturation at large times and describ
very dense medium. We study this behavior numerically a
confirm that this phenomenon occurs for a wide range
parameters. We are led to conjecture that the theory is
fact, sensibly behaved beyond the Landau pole when stu
both dynamically and nonperturbatively, at least at the m
field level. While at this point this is merely a conjectur
these phenomena may have some interesting phenom
logical consequences.

A consistent analysis of the renormalization during t
dynamical evolution reveals that the wave function ren
malization builds up in time over a time scale ofO~1/L!. The
fully renormalized equations of motion display a renorm
ized coupling at a scale determined by the amplitude of
mean field, and which therefore depends parametrically
time. This is a consequence of the ‘‘running’’ of the couplin
constant with scale, which in the dynamical evolution tran
lates to a ‘‘running’’ with time.

The article is organized as follows. In Sec. II we obta
the renormalization group improved effective potential a
discuss its features, including the presence of the Lan
pole and the potential singularities that would occur in
analysis based solely on the effective potential. In Sec. III
obtain the equations of motion to leading order in the largeN
limit. In Sec. IV we address the renormalization of the equ
tions of motion and the energy density. We discuss and
solve the issue of potential initial time singularities; in pa
ticular, we highlight the fact that the wave functio
renormalization builds up on time scales determined by
cutoff. In this section we also establish contact between
nonequilibrium equations of motion and the renormalizat
group improved effective potential, emphasizing the em
gence of smooth dynamics as the mean field approaches
passes the Landau pole. In Sec. V we provide a detailed
comprehensive numerical study of the dynamics in sev
cases in a wide range of parameters. In Sec. VI we prov
an exact proof of the lack of unstable bands for fermio
mode functions in the background of a scalar field that
cillates, by showing that the Floquet indices are purely re
This is the underlying reason for Pauli blocking at the lev
of mode functions. We also offer a perturbative analysis
this important phenomenon, which provides the reason
the existence of a preferred band of wave vectors for
fermions produced. We summarize our findings and o
7-2
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NONEQUILIBRIUM LARGE N YUKAWA DYNAMICS : . . . PHYSICAL REVIEW D 65 045007
some conjectures for potential implications of our results
cosmology as well as for the phenomenology of theor
with extended Higgs-Yukawa sectors containing heavy
mions~and hence large Yukawa couplings! that could feature
a Landau pole in an energy range of phenomenological
terest.

II. STATIC ASPECTS: THE EFFECTIVE POTENTIAL AND
ITS RENORMALIZATION GROUP IMPROVEMENT

Before studying the dynamical aspects of the Yuka
theory in the largeN limit it is illuminating to understand the
static aspects via the effective potential and its renormal
tion group improvement.

The Yukawa model under consideration is described
the Lagrangian density

L5
1

2
~]mFB!22

1

2
mB

2FB
22

lB

4!N
FB

4

1(
i 51

N

c̄ iF igm]m2
yB

AN
FBGc i , ~2.1!

where the subscriptB denotes the bare fields, anticipating t
need for renormalization. The factors ofN in the coupling
constants are explicitly displayed so that both the qua
self-coupling and the Yukawa coupling are ofO~1! in the
largeN limit. To make the calculation tractable the choice
made to investigate only the fermion quanta; the scalar fi
fluctuations are suppressed by writing

FB~xW ,t !5ANdB~ t !1xB~xW ,t !, ~2.2!

wheredB(t) represents the mean field as described below
The scaling of the mean field withAN is dictated by the

equation of motion, since the term

y

AN
(
i 51

N

c̄ ic i}AN ~2.3!

acts as a source term for the evolution of the mean field.
scaling of the scalar couplingl/N is consistent with the
one-loop corrections to the scalar scattering amplitude fr
the Yukawa coupling proportional toN(y/AN)4;1/N. Thus
the fluctuations of one scalar field are suppressed as 1/N in
the largeN limit.

The effective potential is defined as the expectation va
of the Hamiltonian in a state that minimizes the energy s
ject to the constraint that the field has a space-time indep
dent expectation value@19#:

Veff~d!5min
^duHud&

V
~2.4!

with V the spatial volume andud& a ~coherent! state for
which

^duFud&5ANd. ~2.5!
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To leading order in largeN the effective potential is ob-
tained by replacingF(xW )→ANd in the Hamiltonian and ne-
glecting the scalar field fluctuations, since the energy will
dominated by theN fermion fields. This is the mean field
approximation, which becomes exact in the largeN limit.

Hence

H@dB#5VS 1

2
mB

2~ANdB!21
lB

4!N
~ANdB!4D

1(
i 51

N

c̄ i@2 iaW •¹W 1M #c i , ~2.6!

M5
yB

AN
~ANdB!. ~2.7!

The fermionic contribution to the Hamiltonian is simp
that ofN Dirac fermions of massM, and can be diagonalize
in terms of creation and annihilation operators for partic
and antiparticles with dispersion relationvk5Ak21M2. The
state that minimizes the expectation value of the normal
dered Hamiltonian is the vacuum state for particles and
tiparticles and corresponds to the Dirac sea completely fi
~with two spin states per wave vector!. So more simply the
potential becomes

Veff~d!5NH mB
2

2
dB

21
lB

4!
dB

422E d3k

~2p!3 Ak21M2J .

~2.8!

The integral in Eq.~2.8! is the ~negative! contribution
from the Dirac sea, and is calculated with an ultraviolet c
off L. A straightforward calculation, subtracting the ‘‘zer
point energy’’ proportional toL4 and neglecting terms tha
vanish in the limitL→`, leads to

Veff~d!

N
5

dB
2

2 S mB
22

yB
2L2

4p2 D 1
dB

4

4 S lB

3!
1

yB
4

2p2 lnF2L

m G D
2

yB
4dB

4

8p2 lnFUyBdB

m UG2
yB

4dB
4

32p2 , ~2.9!

wherem is an arbitrary renormalization scale. The renorm
ization of the mass and quartic scalar couplingl can be
gleaned directly from the form of the effective potenti
above. However, to make contact with the dynamics
which the equations of motion are obtained from the no
equilibrium effective action, we also need the field or wa
function renormalization. The wave function renormalizati
cannot be extracted from the effective potential since it
associated with gradient terms in the effective action.
leading order in 1/N it can be obtained from the one-fermio
loop self-energy shown in Fig. 1, where the scalar field lin
have nonvanishing external momentum.

This calculation leads to

Z@m#5S 11
yB

2

4p2 lnF2L

m G D 21

. ~2.10!
7-3
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The renormalization of field, mass, and couplings is n
achieved by introducing

dR5
dB

AZ
, ~2.11!

mR
25ZS mB

22
yB

2L2

2p2 D , ~2.12!

lR

3!
5Z2S lB

3!
1

yB
4

2p2 lnF2L

m G D , ~2.13!

yR5yBAZ, ~2.14!

in terms of which the renormalized effective potential
given by

Veff~dR!5
1

2
mR

2dR
21

dR
4

4 S lR

3!
2

yR
4

2p2 lnUyRdRe1/4

m U D .

~2.15!

We will consider the case in which the renormalized m
of the scalar field vanishes, since this case will highlight
important feature of dimensional transmutation at the le
of the static effective potential as well as the dynami
Therefore in what follows we setmR50.

The equation of motion, which will be the focus of th
next section, requiresV8(dR)5]V(dR)/]dR . This is given
by

V8~dR!5
yR

4

2p2 dR
3F2p2lR

3!yR
4 2 lnF uMRu

m G2
1

2G , ~2.16!

where we introduced the renormalized effective ferm
mass

MR5yRdR . ~2.17!

We see that the effective potential features an extremum
MR5M̄ with M̄ determined by

F2p2lR

3!yR
4 2 lnF uM̄ u

m
G2

1

2G50. ~2.18!

In terms of the scaleM̄ we find

Veff8 ~dR!52
yR

4dR
3

2p2
lnF uMRu

M̄
G , ~2.19!

FIG. 1. Scalar self-energy in leading order in largeN. External
dashed lines correspond to the scalar field, internal solid lines
fermions.
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Veff~dR!52
yR

4dR
4

8p2
lnF uMRue21/4

M̄
G . ~2.20!

Thus we see that the termlR/3! inside the parentheses i
Eq. ~2.15! above has been traded for a new scaleM̄ at which
the effective potential features a maximum. This is the ma
festation of dimensional transmutation@2#.

Figure 2 displaysVeff /M̄
4 vs x5MR /M̄ . TheVeff is given

by Eq. ~2.20!.
While there are alternative calculations of the effecti

potential, the Hamiltonian formulation highlights many im
portant aspects that will be relevant to the discussion in
next sections. In particular, it makes clear that the effect
potential is the expectation value of the Hamiltonian in
‘‘vacuum’’ state in which the scalar field attains an expec
tion value. Furthermore, this Hamiltonian interpretation im
mediately provides the physical reason for the effective
tential being unbounded below in this approximation: it
completely determined by the negative energy Dirac sea.
larger amplitudes of the expectation value, the effective
mionic massMR is large; thus the negative energy of a fr
fermion mode of momentumk in the Dirac sea decrease
further. Thus for larger amplitudes of the expectation va
the energy stored in the Dirac sea becomes more nega
This particular point should be borne in mind when we stu
the dynamics of the mean field below, since we will find th
the evolution of the scalar field ‘‘feeds off’’ the negativ
energy Dirac sea.

A. Renormalization group improvement

The emergence of the scaleM̄ is a consequence of th
renormalization scalem introduced above. A change in thi
scale is compensated for by a change in the couplings.
effective action

G@dR#5E d4x@2Veff@dR#1Z@dR# 1
2 ~]mdR!21¯#

~2.21!

re

FIG. 2. F(x)52x4 ln(uxue21/4) vs x5MR /M̄ .
7-4
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is invariant under a change of the renormalization scale,
consequently under a change in the scaleM̄ . This invariance
leads to a renormalization group~RG! equation for the effec-
tive action@2#.

Since our main focus is to study dynamical behavi
which involvesVeff8 , we now use the renormalization grou
to improve the derivative of the effective potential.

While in principle we can study the full solution of th
renormalization group equation as in@2#, the largeN ap-
proximation simplifies the task. In this limit we need ke
only the one-loop fermion contribution to renormalizatio
Therefore, after trading the quartic self-coupling for the sc
M̄ via dimensional transmutation, the effective potential~and
its derivatives! are only functions of the Yukawa coupling
Furthermore, from the renormalization conditions~2.11!,
~2.14! the productyRdR is a renormalization group invarian
i.e., it is constant under a change of scales. With the purp
of comparing with the dynamics to be studied in the n
section, it is convenient to introduce the coupling

gR~m!5
yR

2~m!

2p2 , ~2.22!

and to RG improve the product

yR~m!Veff8 „dR~m!…52gR~m!MR
3 lnUMR

M̄
U . ~2.23!

The reason for studying this product is based on the i
that the effective equation of motion of the scalar field
loosely of the form

d̈R~ t !1Veff8 „dR~ t !…50. ~2.24!

While d is not invariant under a change of scale~i.e., under a
renormalization group transformation! in the largeN limit
the productMR5yRdR is a renormalization group invarian
Thus one is led to consider the productyRVeff8 .

However, from the renormalization condition~2.14! of the
Yukawa coupling and the wave function renormalizati
constant in the largeN limit given by Eq.~2.10! we find

2

gR~m!
5

2

gB
1 lnF2L

m G , ~2.25!

which leads to the renormalization group running of this co
pling:

2

gR~m8!
5

2

gR~m!
1 lnF m

m8G . ~2.26!

Therefore, by choosing the new scalem8[MR with the scale
of dimensional transmutationM̄ fixed, the renormalization
group improvement of the product~2.23! leads to
04500
d

,

.
e

se
t

a

-

yR~ uMRu!Veff8 ~MR!52gR~ uMRu!MR
3 lnUMR

M̄
U

52
gM̄3x3 lnuxu

12~g/2!lnuxu
, ~2.27!

with g5gR(M̄ ) andx5MR /M̄ .
The expression~2.27! features a Landau pole at

MR;M̄e2/g ~2.28!

which, if interpreted in terms of the equation of motion
the scalar field via the effective action~2.21!, would signal
infinite time derivatives when the value of the scalar fie
reaches the putative Landau pole. Since the largeN limit
does not restrict the coupling to be weak, the value ofg can
be O~1!. Therefore if the dynamical evolution of the expe
tation value of the scalar field is solely determined byVeff8 we
would expect large derivatives and nonanalytic behavior
the dynamics as the scalar field approaches the positio
the Landau pole.

An important result of this work is that the Landau pole
not relevant for the dynamical evolution of the scalar fie
and contributions from particle production that cannot
captured by the effective potential become very importa
These nonequilibrium contributions lead to smooth dynam
as the expectation value of the scalar field nears the Lan
pole.

III. LARGE N YUKAWA DYNAMICS

Having studied the static aspects of the Yukawa theory
the largeN limit via the effective potential and its renorma
ization group improvement, we now focus our attention
the dynamical aspects of this model.

As discussed in the Introduction, we consider a system
N fermions$c i% i 51

N coupled to a scalar fieldF. The Lagrang-
ian density in terms of bare fields, mass, and couplings
given by Eq.~2.1! above. In order to study the dynamics
an initial value problem we introduce an external ‘‘magne
field’’ coupled to the scalar field so thatL→L1h(t)FB with
L the Lagrangian density in Eq.~2.1!. The external source
h(t) serves to generate a spatially homogeneous expecta
value for the scalar field.

We will assume that the source was switched on adiab
cally in the infinite past and then slowly switched off att
50. This means that the scalar field evolves in the abse
of this external source fort>0. This adiabatic switching on
procedure allows us to establish a connection with the ef
tive potential formalism of the previous section. If the initi
state ast→2` is the vacuum, an adiabatically switched o
source ensures that the state is the adiabatic vacuum; r
that the~zero temperature! effective potential is referred to
the expectation value of the field in the vacuum state.
will discuss this issue in greater detail below when we a
dress the renormalization aspects.

In order to extract the dynamics of the mean field, w
expand the scalar field as described in Eq.~2.2!: FB(xW ,t)
7-5
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5ANdB(t)1x(xW ,t) with ^x(xW ,t)&50. Implementing this
last equation within the path integral via the tadpole meth
@12#, we find that to leading order in 1/N we arrive at the
following equation of motion for the mean fielddB(t):

d̈B~ t !1mB
2dB~ t !1

lB

3!
dB

3~ t !1
yB

N (
i 51

N

^c̄ ic i&5h~ t !.

~3.1!

Note that this equation is nonperturbatively exact in theN
→` limit. The Dirac equations for theN species of fermions
c i are

@ igm]m2MB~ t !#c i50 where MB~ t !5yBdB~ t !.
~3.2!

The above equations are invariant under a permutation o
fermion fields so that we need only deal with one of the
denoted generically asc; therefore we make the replaceme

yB

N (
i 51

N

^c̄ ic i&→yB^c̄c& ~3.3!

in Eq. ~3.1!.
In order to proceed, we expand the spinor field opera

in terms of a complete set of mode function solutions of
time dependent Dirac equation in Eq.~3.2!:

c~xW ,t !5 (
a51

2 E d3p

~2p!3 @bpW ,aUpW
~a!~ t !eipW •xW

1dpW ,a
† VpW

~a!~ t !e2 ipW •xW#, ~3.4!

where the creation and annihilation operators obey the u
anticommutation relations

$bpW ,a ,bqW ,b
† %5$dpW ,a ,dqW ,b

† %5~2p!3dabd~3!~pW 2qW !,
~3.5!

and the Dirac spinors satisfy the completeness relation

(
a51

2

@UqW
~a!~ t !aUpW

~a!†~ t !b1V2pW
~a!~ t !aV2pW

~a!†~ t !b#5dab ,

~3.6!

with a,b being Dirac space indices. Furthermore, Eq.~3.2!
implies

@ ig0]02gW •pW 2MB~ t !#UpW
~a!~ t !50,

@ ig0]01gW •pW 2MB~ t !#VpW
~a!~ t !50. ~3.7!

Since the time derivative operator]0 is singled out by our
need to consider the time evolution of the system, it is bes
work in the basis in whichg0 is diagonal. Writing the four-
component spinorsUpW

(a)(t),VpW
(a)(t) in terms of two-

component spinorsx ipW
(a) ,j ipW

(a) , i 51,2:
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UpW
~a!~ t !5S f 1pW~ t !x1pW

~a!

f 2pW~ t !x2pW
~a!D , VpW

~a!~ t !5S g1pW~ t !j1pW
~a!

g2pW~ t !j2pW
~a!D ,

~3.8!

we can use Eq.~3.7! to find

@ i ]02MB~ t !# f 1pW~ t !x1pW
~a!5~sW •pW ! f 2pW~ t !x2pW

~a! , ~3.9!

@ i ]01MB~ t !# f 2pW~ t !x2pW
~a!5~sW •pW ! f 1pW~ t !x1pW

~a! ,

@ i ]02MB~ t !#g1pW~ t !j1pW
~a!52~sW •pW !g2pW~ t !j2pW

~a! ,
~3.10!

@ i ]01MB~ t !#g2pW~ t !j2pW
~a!52~sW •pW !g1pW~ t !j1pW

~a! .

We also impose the normalization conditions

UpW
~a!†~ t !UpW

~b!~ t !5dab5VpW
~a!†~ t !VpW

~b!~ t !, ~3.11!

which together withx ipW
(a)†x ipW

(b)5dab, i 51,2, imply that

u f 1pW~ t !u21u f 2pW~ t !u251, ~3.12!

which is a consequence of the conservation of probability
the Dirac theory, which in turn is a consequence of the f
that the Dirac equation is first order in time. This constra
on the mode functions will have important consequences
the dynamics and underlies the mechanism of Pauli block
as will be analyzed in detail below.

We determine the initial state by demanding thatUpW
(a)(t

50) represent positive energy states whileVpW
(a)(t50) rep-

resent negative energy ones:

i ]0UpW
~a!~ t50!5vp~ t50!UpW

~a!~ t,0!, ~3.13a!

i ]0VpW
~a!~ t50!52vp~ t50!VpW

~a!~ t50!, ~3.13b!

wherevp(t)5Ap21MB(t)2 are the mode frequencies. Con
sidering an initial state for which the time derivative of th
scalar field vanishes att50 ~which can always be achieve
by a shift in the time variable! and then evaluating Eqs.~3.9!,
~3.10! at t50 and using Eqs.~3.13!, we find

~v02M0! f 1pW~0!x1pW
~a!5~sW •pW ! f 2pW~0!x2pW

~a! , ~3.14!

~v01M0! f 2pW~0!x2pW
~a!5~sW •pW ! f 1pW~0!x1pW

~a! , ~3.15!

wherev05vp(0), M05MB(0). This leads to the relations

f 1pW~0!5A~v01M0!/2v0,

f 2pW~0!5A~v02M0!/2v0, x2pW
~a!5~sW • p̂!x1pW

~a! .
~3.16!

A similar analysis for the negative energy modes shows
in fact g1pW (t)5 f 2pW

* (t), g2pW (t)5 f 1pW
* (t), and j2pW

(a)5(sW
• p̂)j1pW

(a) so that we only need to solve for the positive ener
modes. Using the relation between the spinors in~3.16!, Eqs.
~3.9! reduce to
7-6
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@ i ]02MB~ t !# f 1pW~ t !5p f2pW , ~3.17!

@ i ]01MB~ t !# f 2pW~ t !5p f1pW .

These can be separated into two second order equation

@]0
21p21MB

2~ t !6 iṀ B~ t !# f 1,2pW~ t !50. ~3.18!

The second order equations have twice as many solution
the first order equations, but since the initial conditions
these equations are determined from the first order equat
the correct, physical, pair of solutions will be found. Th
second order equations are of interest because they are
amenable to the WKB expansion in the next section.

The quantitŷ c̄c& appears in the mean field equation E
~3.1!; we need to calculate it in terms of the mode functio
$ f 1pW (t), f 2pW (t)%. This is easily done for our state when w
note that ^bqW ,a

† bpW ,b&50 while ^dpW ,adqW ,a
† &5^$dpW ,a ,dqW ,b

† %&
5(2p)3dabd (3)(pW 2qW ) and use g1pW (t)5 f 2pW

* (t),g2pW (t)
5 f 1pW

* (t):

^c̄c&52E d3p

~2p!3 @ u f 2pW~ t !u22u f 1pW~ t !u2#. ~3.19!

Another important quantity for us is the energy densityr f
in the fermionic fluctuations:

r f[^T0
0&5

i

2
^c†ċ2ċ†c&

52E d3p

~2p!3 Im@ f 1pW
* ~ t ! ḟ 1pW~ t !1 f 2pW

* ~ t ! ḟ 2pW~ t !#,

~3.20!

whereT0
0 is the indicated component of the fermionic stre

energy tensor operator.
At this point it is important to highlight the connectio

with the static effective potential studied in Sec. II abov
The equation of motion for the mean field Eq.~3.1! suggests
the identification of the fermionic contribution, the last ter
of Eq. ~3.1!, with the derivative of the fermionic contributio
to the effective potential~divided byN! given by Eq.~2.8!.
Such an identification, however, could hold only for a tim
independent mean field. Indeed, in this case, when the sc
field is independent of time, the solutions of the mode eq
tions with the initial conditions given in Eq.~3.16! are given
by f 1,pW (t)5 f 1,pW (0), f 2,pW (t)5 f 2,pW (0), leading to

^c̄c&ustatic522E d3k

~2p!3

MB

Ak21MB
2

, ~3.21!

which is the derivative of the fermionic contribution to th
effective potential with respect to the effective massMB .
Thus the connection with the effective potential for a sta
mean field is manifest. As will be explained in detail belo
for a dynamically evolving mean field there are nonequil
rium contributions that cannot be captured by the static
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IV. WKB EXPANSION AND RENORMALIZATION

While the renormalization aspects of the Yukawa theo
to leading order in the largeN approximation have been stud
ied previously @11,12#, here we provide an alternativ
method, based on the WKB expansion, that makes con
with the effective potential formalism studied in Sec.
above.

A. WKB solution of the mode equations

Both the chiral condensatêc̄c& and the energy density
r f are divergent. In order to construct the renormalized eq
tions of motion, we need to extract their divergent parts
that they can be absorbed by appropriate counterterms.
can be done by finding solutions to Eq.~3.18! that allow for
a large momentum expansion, i.e., a WKB expansion.
will concentrate onf 2pW (t) since the results forf 1pW (t) can
then be obtained via the replacementMB(t)↔2MB(t)
throughout, including in the initial conditions.

The WKB ansatz forf 2pW (t) is

f 2
~ I !~ t !5A~ t !expi E

0

t

du V~u!, ~4.1!

where from now on we omit thepW index on the mode func-
tions. Insert this into Eq.~3.18! and take the real and imag
nary parts to find

Ä~ t !

A~ t !
1vpW

2~ t !5V2~ t !, 2
Ȧ~ t !

A~ t !
1

V̇~ t !

V~ t !
5

ṀB~ t !

V~ t !
.

~4.2!

We can solve these equations:

f 2
~ I!~ t !5

1

A2V~ t !
expE

0

t

duS iV~u!1
ṀB~u!

2V~u!
D , ~4.3!

where

V2~ t !5vpW
2~ t !1F3

4
S V̇~ t !

V~ t !
D 2

2
1

2
S V̈~ t !

V~ t !
D G

1F1

2
S M̈B~ t !

V~ t !
D 1

1

4
S ṀB~ t !

V~ t !
D 2

2
ṀB~ t !V̇~ t !

V~ t !2 G .

~4.4!

Given f 2
(I) (t), the second, linearly independent, solutio

f 2
(II) (t) is

f 2
~ II !~ t !5 f 2

~ I!~ t !F~ t !,

F~ t !52 i E
0

t du

f 2
~ I!~u!2 . ~4.5!

Without loss of generality we can take the lower limit
integration inF(t) to be t50, since including an arbitrary
constant inF(t) will only give rise to a part proportional to
f 2

(I) (t) in f 2
(II) (t). This in turn can be absorbed when co
7-7
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structing the appropriate linear combination to satisfy
initial conditions. The overall factor of2 i was chosen so
that the Wronskian off 2

(I) (t), f 2
(II) (t) would coincide with its

value in the equilibrium case.
Write f 2(t)5AI f 2

(I) (t)1AII f 2
(II) (t), and impose the condi

tions

f 2~0!5A~v02M0!/2v0, i ḟ 2~0!5v0f 2~0! ~4.6!

to find

f 2~ t !5 f 2~0!H f 2
~ I!~ t !

f 2
~ I!~0!

F11S v01V~0!2 i
Ṁ ~0!2V̇~0!

2V~0!
D

3 f 2
~ I!~0!2F~ t !G J . ~4.7!

B. Renormalizing Šc̄c‹

We begin the renormalization program by first studyi
the divergences in the fermion~chiral! condensatê c̄c&.
The ultraviolet divergences of this expectation value can
extracted by performing a high momentum expansion
u f 2(t)u22u f 1(t)u2; the only terms that will be relevant ar
those proportional to 1/kp, 0<p<3, for largek. An alterna-
tive formulation can be found in Refs.@20#, @11#. Further-
more, since we can obtainf 1(t) from f 2(t) by making the
replacementMB(t)↔2MB(t), u f 2(t)u22u f 1(t)u2 is odd in
MB(t).

We first solve for the WKB frequencies by iterating E
~4.4! once and keeping the appropriate power of the mom
tum in the large momentum limit:

V~0!~ t !5v~ t !, ~4.8!

V~2!~ t !5v~ t !S 11
M̈B~ t !

4v~ t !3D . ~4.9!

We will also need the high momentum behavior ofF(t) as
defined in Eq.~4.5!. This is most easily obtained by integra
ing by parts a sufficient number of times to extract the r
evant part. Doing this for̂c̄c&, we find

F~ t !5212 i
ṀB~0!

2V~0!22
M̈B~0!

4V~0!3

1S 11 i
ṀB~ t !

2V~ t !2 1
M̈B~ t !

4V~ t !3D
3expF22E

0

t

dt8S iV~ t8!1
ṀB~ t8!

2V~ t8!
D G1O~v24!

~4.10!

After some algebra we find
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@ u f 2~ t !u22u f 1~ t !u2#div52
MB~ t !

v~ t !
1

M̈B~ t !

4v3~ t !

2
M̈B~0!

4v0
2v~ t !

cosF2E
0

t

dt8v~ t8!G
1

ṀB~0!

2v0v~ t !
sinF2E

0

t

dt8v~ t8!G .
~4.11!

Note that

u f 2~0!u22u f 1~0!u2

5@A~v02M0!/2v0#22@A~v01M0!/v0#2

52
M0

v0
5@ u f 2~0!u22u f 1~0!u2#div . ~4.12!

There are several important aspects of the renormaliza
of the condensatêc̄c& that should be emphasized at th
point.

The momentum integral of the first term in Eq.~4.11!
yields the derivative of the effective potential. This would
the only contribution in an adiabatic limit in which the de
rivatives of the expectation value of the scalar field vani
This observation allows us to make a first contact with
preparation of the initial value problem via the extern
source termh(t). Switching this source on adiabaticall
from the infinite past up to the initial timet50 leads to the
first term in Eq.~4.11! for t,0 only.

Integrating the second term in Eq.~4.11! in momentum up
to an upper momentum cutoffL leads to a contribution of
the form }d̈B(t)ln(L); this should be identified with the
wave function renormalization.

By choosingṀB(0)50 we are able to dispense with th
fourth term in Eq.~4.11!.

The third term in Eq.~4.11!, proportional toM̈B(0), has a
logarithmic UV divergence att50 which can potentially
give rise to initial time singularities in the equations of m
tion @20–22#, for which there are no counterterms. Howev
in the infinite momentum cutoff limit, the contributions tha
give an initial time singularity are actually finite for anyt
@0. This is because the integrand is averaged out by
strong oscillations@22#.1 At t50 the contributions from the
second and third terms cancel exactly. For finite but la
cutoff L it is a straightforward exercise to show that th
combination of the second and third terms~proportional to
M̈ ! is finite and small fort<1/L. The UV logarithmic di-

1This can be seen simply by considering the contribution to
momentum integral in the limit ofk@MB . The contribution of the
large k modes can be estimated by taking the ultraviolet cutoff
infinity but introducing a lower momentum cutoffm, leading to
*m

` cos(2kt)dk/k52Ci(2mt) with Ci(x) the cosine integral function
which is finite for t.0 and diverges logarithmically ast→0.
7-8
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vergence in the combined second and third terms begin
develop on a time scalet>1/L. Thus, fort@1/L, when the
third term in Eq.~4.11! is finite, we can write

^c̄c&B~ t !5^c̄c&div 2
. ~ t !1^c̄c&R

.~ t ! ~4.13!

with ^c̄c&div 2
. (t) given as the momentum integral of the fir

two terms in Eq.~4.11!.
Using an upper momentum cutoffL and dropping terms

of order (M2/L2) we find

^c̄c&div 2
. ~ t !5

1

2p2 F2MR
3~ t !S lnUMR~ t !

2L U1 1

2D2MR~ t !L2

2
M̈R~ t !

2 S lnUMR~ t !

2L U11D G , ~4.14!

and ^c̄c&R
.(t) contains the third term of Eq.~4.11! and is

finite for t@1/L. In Sec. IV E we will show that this is also
finite for t50 sinceM̈B(0) is proportional to 1/ln(L).

Alternatively, we can also write

^c̄c&B5^c̄c&div 1~ t !1^c̄c&AF~ t ! ~4.15!

with ^c̄c&div 1(t) given as the momentum integral of only th
first term in Eq.~4.11!:

^c̄c&div 15
1

2p2 F2MR
3~ t !S lnUMR~ t !

2L U1 1

2D2MR~ t !L2G .
~4.16!

Now ^c̄c&AF(t) includes both the second and third term
in Eq. ~4.11!. It is clear from the discussion above th

^c̄c&AF(t) is actually finite for t<1/L; it vanishes identi-
cally at t50 and does not have any initial time singularit
This quantity will, however, develop a logarithmic dive
gence due to the second term in Eq.~4.11! associated with
wave function renormalization fort@1/L ~hence AF for ‘‘al-
most finite’’!.

Several important features of the above expressions m
be highlighted. First, the argument of the logarithms conta
the full time dependent mass, unlike a renormalizat
scheme that extracts the logarithmic divergences only
terms of the initial mass@11,12,21,22#; note that these
schemes differ only by finite terms. However, as will beco
clear below, keeping the full time dependent frequencies
the denominators will lead to an instantaneous effective
tential, i.e., the static effective potential, but now as a fu
tion of the time dependent mean field. Furthermore, tak
the full time dependent frequencies will lead to identificati
of the effective coupling that ‘‘runs’’ with the amplitude o
the mean field. This identification will allow us to establish
direct correspondence with the RG improved effective pot
tial. In this manner we will be able to clearly separate t
contribution from an adiabatic or instantaneous general
tion of the static effective potential from important noneq
librium and fully dynamical effects that can only be d
scribed in terms of the time dependent mean field.
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particular, we seek to clearly separate the effect of part
production and its concomitant contribution to the dynami
evolution.

Second, the term (1/2p2)@2MR
3(t)(lnuMR(t)/2Lu1 1

2 )

2MR(t)L2# in both ^c̄c&div 2
. (t) and^c̄c&div 1(t) will lead to

the effective potential. This is implied because this term d
not depend on the derivatives ofMB(t).

Finally, while ^c̄c&R
.(t) is finite for t@1/L but features

an initial time singularity att50, ^c̄c&AF(t) vanishes iden-
tically at t50, is finite fort<1/L, but exhibits a logarithmic

ultraviolet divergence proportional tod̈ ln(L) associated with
wave function renormalization fort@1/L.

If we insist on using the split Eq.~4.13!, and thus extract
the wave function renormalization divergent term at

times, includingt<1/L, the quantitŷ c̄c&R
. will contain an

initial time singularity given by the short time limitt<1/L
of the third term in Eq.~4.11!. In Refs.@20–22# this initial
time divergence is dealt with in several ways: by choos
the initial conditions on the mode functions to a high~fourth!
order in the adiabatic expansion@20#, or by performing an
appropriately chosen Bogoliubov transformation of the i
tial state@21#, or, equivalently, by including a counterterm i
the external ‘‘magnetic field’’h(t) @22# so as to cancel this
singularity att50. All of these methods are equivalent an
lead to a set of equations that conserve energy and are fre
initial time singularities@20–22#. However, these method
all suffer from the drawback that they do not lead to
interpretation of the dynamics in terms of the effective p
tential. This is evident in the Bogoliubov approach advoca
in Refs. @21#, @22# since the Bogoliubov transformation in
volves the derivatives of the mean field, and the Bogoliub
coefficients multiply the terms that lead to the effective p
tential, thereby mixing terms that depend on the derivati
of the mean field with terms that arise from the adiaba
effective potential. We refer the reader to Ref.@21# for a
thorough exposition of the Bogoliubov method. As discuss
in detail in @20–22#, any approach to regulating the initia
time singularity of^c̄c&R

.(t) ~when extrapolated tot50! is
tantamount to a redefinition of the state att50.

Instead of seeking a regularization of this initial time si
gularity, we recognize that it arises from trying to extrac
wave function renormalization from very early time eve
when there is no such divergence. We interpret the fact
the logarithmic divergence associated with wave funct
renormalization emerges at time scalest@1/L as the build
up of the wave function renormalization over this time sca
This is consistent with the adiabatic hypothesis of prepa
tion of the state att50 via an external current. At this poin
the following question could be raised: in the formulatio
presented above, where is the adiabatic assumption exp
The answer to this important question is in the initial con
tions on the fermionic mode functions given by Eq.~4.6! ~up
to an overall trivial phase!. These initial conditions deter
mine that the state att50 is the vacuum state for free Dira
spinors of massMB(0), which is determined by the value o
the mean field att50. Obviously this is the state obtained b
adiabatically displacing the mean field from the trivi
7-9
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vacuum. As we will see in detail below, recognizing th

^c̄c&AF(t) vanishes identically att50 and is finite over a
time interval t<1/L will allow us to solve the initial value
problem self-consistently, with the result that the poten
initial time singularity is simply not there and the evolutio
is continuous throughout.

Thus, in summary, the above discussion highlights
very important dynamical aspect that the wave funct
renormalization builds up on time scalest.1/L and Eq.
~4.13! or Eq.~4.15! must be used according to the time sca
studied in the evolution. However, as will be discussed
detail below, when we study the full equations of motion,
will see that Eq.~4.15! is far more convenient for numerica
studies. Furthermore, we will find in Sec. 4.5 below tha
self-consistent analysis reveals that in fact there is no in
time singularity, i.e.,̂ c̄c&R

.(0) is actually finite.

C. The renormalized equations of motion

We now have all the ingredients to obtain the renorm
ized equations of motion. We recall our system of equati

S d2

dt2
1p21MB

2~ t !6 iṀ B~ t ! D f 1,2pW~ t !50, ~4.17!

d̈B~ t !1mB
2dB~ t !1

lB

3!
dB

3~ t !1yB^c̄c&B50 ~4.18!

where we have seth(t.0)50.
Starting with the fermionic mode equations, we see t

since there are no operators present to absorb the diverge
in MB(t), we need to impose the conditionMB(t)5MR(t)
or yBdB(t)5yRdR(t). When coupled with the wave functio
renormalization conditions below, this will relate the ba
and renormalized Yukawa couplings. This condition also i
plies vp(t)B5vp(t)R .

To study the dynamics for time scalest@1/L we use Eq.
~4.13! to separate the divergences, leading to the follow
equation for the mean field:

S 11
yB

2

4p2 ln
2L

m D d̈B1S mB
22

yB
2L2

2p2 D dB

1S lB

3!
1

yB
4

2p2 ln
2L

m D dB
3~ t !1yB^c̄c&R

.

2
yB

2p2 H MR
3~ t !S lnUMR~ t !

m U1 1

2D
1

M̈R~ t !

2 S lnUMR~ t !

m U11D J 50, ~4.19!

wherem is a renormalization point. SetdB(t)5AZdR(t), so
that MB(t)5MR(t) implies yB5yR /AZ, and choose the co
efficient of d̈R to be unity. This yields the renormalizatio
conditions
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ZS 11
yB

2

4p2 ln
2L

m D 51, ~4.20a!

ZS mB
22

yB
2L2

2p2 D 5mR
2~m!, ~4.20b!

Z2S lB

3!
1

yB
4

2p2 ln
2L

m D 5
lR~m!

3!
, ~4.20c!

AZyB5yR~m!. ~4.20d!

These are exactly the same renormalization conditions
tained from the renormalization of the static effective pote
tial, together with the wave function renormalization o
tained from the one-loop fermionic self-energy calculated
Sec. II above. Furthermore, the renormalization of t
Yukawa coupling~4.20d! guarantees that the fermionic mod
equations are renormalization group invariant since they
pend only on the productyBdB5yRdR .

The renormalized equation of motion for the mean fie
now becomes

F12
gR~m!

2 S lnUeMR~ t !

m U D GM̈R1mR
2~m!MR

1gR~m!F S 1

12p2

lR~m!

gR
2~m!

2 lnUMR~ t !

m U2 1

2D
3MR

3~ t !12p2^c̄c&R
.G50, ~4.21!

where gR(m)[yR
2(m)/2p2, as defined previously, and w

have multiplied through byyR to write the equation of mo-
tion for the renormalization group invariant productyRdR .
We can rewrite this as

M̈R1
1

D~m! F2mR
2~m!

gR~m!
MR12S 1

12p2

lR~m!

gR
2~m!

2 lnUMR~ t !

m U2 1

2D MR
3~ t !14p2^c̄c&R

.G50,

~4.22!

where D(m)52/gR(m)2 lnueMR(t)/mu. Using the following
relations we can see that all the terms in Eq.~4.22! are m
independent:

mR
2~m!

gR~m!
5

mB
2

gB
2L2, ~4.23a!

2

gR~m!
5

2

gB
1 ln

2L

m
, ~4.23b!

1

12p2

lR~m!

gR
2~m!

5
1

12p2

lB

gB
2 1 ln

2L

m
. ~4.23c!

In particular,
7-10
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D~m![
2

gR~m!
2 lnUeMR~ t !

m U5 2

gR@eMR~ t !#
. ~4.24!

SincegR(m)}yR
2(m)>0, unitarity appears to require that th

range of validity of the theory be restricted to be below t
Landau pole atEL5e21m exp@2/gR(m)#. As discussed in the
Introduction, however, this may not actually be necess
under all circumstances; we will explore this issue further
the next section.

We can now compare to the static case. TakingmR50 ~as
in the static case! we see that the term proportional toMR

3 in
Eq. ~4.22! is precisely the derivative of the static effectiv
potential given by Eq.~2.16! but now in terms of the time
dependent renormalized mean field. Therefore, just as
the static effective potential, we introduce the dimensio
transmutation scaleM̄ by demanding that the instantaneo
or adiabatic effective potential, i.e., the static effective pot
tial in terms of the time dependent mean field, have a ma
mum at this scale whenmR50:

1

12p2

lR~m!

gR
2~m!

2 ln
M̄

m
2

1

2
50. ~4.25!

We also definex[MR(t)/M̄ , g5gR(M̄ ), q5k/M̄ , m̃2

5mR
2 (m5M̄ )/M̄2, t5M̄ t. Then Eq.~4.22! can be written

as

x9~t!1gR@ex~t!#S m̃2

g
x~t!2x3~t!

3 lnux~ t !u12p2
^c̄c&R

.~t!

M̄3
D 50. ~4.26!

where primes denotet derivatives.
For mR50 we see immediately that the combinatio

2gR@ex(t)#x3(t)lnux(t)u is the derivative of the renormal
ization group improved effective potential@see Eq.~2.27!# in
terms of the running coupling constant at a scalex~t! ~up to
a finite term!.

Thus this form of the mean field equation of motion spl
off the effects due to the RG improved effective potent
~the first two terms! from those due to the time evolution o
the fermionic fluctuations, which are represented by^c̄c&R

. .
We also see that the effects of wave function renormaliza
are encoded in the prefactorgR@ex(t)# multiplying the po-
tential and fluctuation terms.

A remarkable aspect of Eq.~4.26! is that the effective
coupling depends on time. In a well defined sense, this
dynamical renormalization much in the same way as t
explored in real time in Ref.@23#. As mentioned before we
could have renormalized simply by absorbing the div
gences with the frequencies at the initial time. However,
ing this would still leave ‘‘large logarithms’’ arising when th
amplitude of the mean field becomes large. As the mean fi
evolves in time, the fermion fields probe different ener
scales. Since the coupling runs with the energy scale,
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y

th
l

-
i-

l

n

a
t

-
-

ld

is

then natural that it will run as a parametric function of tim
through the evolution of the mean field. This physical pictu
is manifest in Eq.~4.26!. This important aspect of our stud
is a novel result which only becomes manifest in a real ti
nonequilibrium framework that allows one to study the d
namics of the fully renormalized fields and couplings.

It would appear from this equation that the dynamics ox

could be singular asx crossesEL /M̄ since

gR@ex~t!#5
2

2/g2 lnuex~t!u
5

2

ln@Ē/ux~t!u#
, ~4.27!

where

Ē5
EL

M̄
5e2/g21. ~4.28!

This would certainly be the case if the equation of moti
involved only the derivative of the static effective potentia
However, we will see below that this is not the case when
fluctuations are taken into account.

We conclude this section by collecting together our ren
malized equations of motion and initial conditions, now
terms of dimensionless variables, valid in principle fort

@1/L when^c̄c&R
.(t) is free of potential initial time singu-

larities:

S d2

dt2 1q21x2~t!6 ix8~t! D f 1,2pW~t!50, ~4.29!

x9~t!1gR@ex~t!#S m̃2

g
x~t!2x3~t!lnux~t!u1F~t! D50,

~4.30!

F~t![2p2
^c̄c&R

.~t!

M̄3

52E
0

`

dq q2S u f 2pW~t!u22u f 1pW~t!u2

2H 2
x~t!

vq~t!
1

x9~t!

4vq
3~t!

J D , ~4.31!

with the initial conditions

f 1,2pW~0!5A@vq~0!6x~0!#/2vq~0!,

i ḟ 1,2pW~0!5vq~0! f 1,2qW~0!, ~4.32!

x~0!5x0 , ẋ~0!50, ~4.33!

^c̄c&AF~0!50. ~4.34!

The quantityF~t! is the fermionic condensatêc̄c& after
subtracting the contributions that lead to the effective pot
tial and the wave function renormalization. It therefore re
7-11
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resents the purely dynamical fluctuations in the fermion fi
associated with particle production.

D. Renormalization group improved effective potential

Since we will focus our study on the effects of the dyna
ics, we start by highlighting the dynamics that would ens
from a consideration of the RG improved effective poten
alone@2#. A comparison between the renormalization gro
improved effective potential Eq.~2.27! and the renormalized
equation of motion~4.30! clearly indicates that we can ex
tract the dynamics that would ensue solely from the effec
potential by neglecting the dynamical contribution of the f
mionic fluctuations encoded inF~t! in the equation of mo-
tion ~4.30!, leading to

x9~t!1
2

2/g2 lnuex~t!u S m̃2

g
x~t!2x3~t!lnUx~t!U D50.

~4.35!

Notice that the denominator in the second term comes so
from wave function renormalization considerations and t
it has a zero at the Landau pole, as discussed above.
truncated form of the equation of motion displays clearly
connection with the renormalization group improved effe
tive potential, as obtained in Sec. II A@Eq. ~2.27!#. Obvi-
ously, for generic values ofm̃2 andg, the numerator will not
vanish when the denominator does, leading to infinite ac
eration at the time when the mean field reaches the Lan
pole. Thus, an investigation of the above equation wo
lead to unphysical behavior of the mean field as it a
proaches the Landau pole and one would then conclude
the existence of a Landau pole precludes a sensible inte
tation of the theory when the amplitude of the mean field
comparable to the position of the Landau pole.

We bring this discussion to the fore because it is one
the important points of this study that the effect of the flu
tuations is very dramatic and completely changes the pic
extracted from the effective potential.

E. Full dynamics: Fermionic fluctuations

Having established the connection with the renormali
tion group improved effective potential, we now study t
evolution of the full equation of motion~4.30! including the
fermionic fluctuationsF~t!. However, at this point we face
two problems.~i! the renormalized equation of motion~4.30!
is valid only for t@1/L and cannot be extrapolated to th
initial time t50 because of the potential initial time sing
larity in F~0! discussed above. This, in turn, entails a pote
tial problem with the initialization of the dynamical evolu
tion. ~ii ! Equation~4.30! cannot be numerically implemente
accurately becauseF~t! requires a subtraction that involve
the second derivative of the mean field at the same time
the update@see Eq.~4.31!#. Both problems can be circum
vented at once by invoking the split~4.15! or equivalently by
introducing the dimensionless quantityFAF(t) as

F~ t !5FAF~t!1S 2
1

2 E0

L

dq q2
1

vq
3~t! D x9~t!, ~4.36!
04500
d

-
e
l

e
-

ly
t

his
e
-

l-
au
d
-
at

re-
s

f
-
re

-

-

as

where

FAF~t!52E
0

L

dq q2S U f 2pW~t!U22U f 1pW~t!U22H 2
x~t!

vq~t!J D .

~4.37!

We call FAF(t) the ‘‘almost finite’’ fluctuation, since it has
only the part of the divergences proportional tox~t! sub-
tracted. Furthermore, as discussed above,FAF(0)50.

We emphasize that we have not changed the equation
have merely redistributed the terms, just as in the two al
native forms of writing the fermionic condensate given
Eqs.~4.13! and ~4.15!.

The integral in Eq.~4.36! can be done explicitly. We can
then combine the terms proportional tox9(t) and rewrite
Eq. ~4.30! as

x9~t!1
2

ZL~t! S m̃2

g
x~t!2x3~t!lnUx~t!U1FAF~t! D50,

~4.38!

ZL~t!52/g211
L

AL21x2~t!
2 ln@L1AL21x2~t!#.

We have kept the full expressions for the integral for the s
of completeness. However, ifx~t! approaches the cutoff, fer
mion modes with momenta of the order of the cutoff will b
excited, indicating that we are approaching the limit of v
lidity of our numerical approximation. This means that w
should restrictx~t! to be much less thanL. Doing so allows
us to simplify the expression forZL(t):

ZL~t!;2/g2 ln 2L5 ln
Ē

2e21L
[ ln

Ē

L̄
. ~4.39!

The important point to note here is thatZL(t) is independent
of time. In particular, in this formulation the Landau po
does not give rise to any singular behavior.

From the renormalization of the couplingg given by Eq.
~4.23b! we identify

2

ZL
5gB ~4.40!

i.e., the coupling at the scaleL or the ‘‘bare coupling.’’
We reiterate that we are still solving the renormaliz

equations; all we have done is reformulate them for the p
poses of numerical analysis. The fact thatZL(t) is nonvan-
ishing provides a strong hint that there should be no pr
lems asx crosses the Landau pole. We shall see below t
indeed this is borne out by the numerics.

The equation of motion~4.38! is now in a form that can
be studied numerically. In particular, it can be initialized f
any large but finite cutoff. Furthermore, the form of the equ
tion of motion given by Eq.~4.38! above suggests that th
dynamics is smooth even at time scalest@1/L whenFAF(t)
develops an ultraviolet logarithmic divergence. This is
because the logarithmic divergence inFAF(t) will be com-
7-12
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pensated by the logarithm inZL in the denominator. Hence
we conclude that the equation of motion~4.38! has a well
defined initialization and the dynamics is smooth witho
logarithmic divergences or discontinuities asx~t! approaches
and passes the Landau pole. In fact, this will become c
from the detailed numerical analysis provided in the n
section. The equivalence of the equations of motion in te
of FAF or F and the observation that the equation of moti
~4.38! does not feature any initial divergence suggest that
equation of motion~4.30! is free from initial time singulari-
ties and the numerical evolution is indeed smooth. That
is indeed the case can be seen as follows. From the fact
FAF(0)50 we now find that

x9~0!52
2

ZL
S m̃2

g
x~0!2x3~0!lnUx~0!U D . ~4.41!

Furthermore, from the relation betweenF andFAF given by
Eq. ~4.36! we find that

F~0!5
1

2
x9~0!F12 lnS 2L

x~0!
D G

5
ln@L̄/x~0!#

ln@Ē/L#
S m̃2

g
x~0!2x3~0!lnUx~0!U D .

~4.42!

In the large cutoff limit, the above expression becomes cu
independent and we conclude that the equation of motio
terms of the renormalized fermionic condensate is also
of initial time divergences. Thus either formulation can no
be used for a numerical study with well defined initializati
and smooth evolution throughout with no cutoff depende
in the limit when the cutoff is taken to infinity.

The resolution of the initial time singularity is now clea
from Eq. ~4.11!, it is clear that the initial time singularity is
completely determined byx9(0), which in turn must be ob-
tained self-consistently from the renormalized equation
motion in terms ofF. The formulation of the equation o
motion in terms ofFAF , which vanishes att50, allows us to
find the value of the second derivative at the origin; t
logarithmic singularity is now encoded inZL , which leads to
an initial value of the second derivative of the mean field t
is vanishingly small in the limit of large cutoff.

The solution~4.42! has a remarkable aspect that expla
how the dynamics manages to be smooth when the ampli
of the mean field approaches the Landau pole. Consider
initial value problem in whichx~0! is very near the Landau
pole, i.e.,x(0);Ē. In this case we find from Eq.~4.42! that

F~0!52S m̃2

g
x~0!2x3~0!lnUx~0!U D , ~4.43!

which leads to the conclusion that the coefficient of the c
pling gR@ex(0)# in ~4.30! actually vanishes. That is to sa
the potential singularity at the Landau pole is actually re
dered finite by an exact cancellation between the fermio
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fluctuation and the adiabatic effective potential. We will s
numerically below that this remarkable feature is borne
by the dynamics in all cases.

In the cases below we can solve the mean field equa
in the form given by Eq.~4.38! together with the fermionic
mode equations, simply because the update does not re
the specification of the second derivative and is theref
more accurate. However, after each step in the iteration
have constructedF and checked that the values of the seco
derivative obtained from both formulations coincide, th
providing a numerical check of consistency.

Standard numerical techniques~a fourth order predictor-
corrector Runge-Kutta ordinary differential equation solv
together with a fourth order Simpson’s rule integrator! are
used. We also compute the fermion occupation number r
tive to the initial vacuum state in each momentum mode a
function of time given by@11#

nq~t!5u f 2qW~t! f 1qW
* ~0!2 f 1qW~t! f 2qW

* ~0!u2. ~4.44!

In Sec. V below, we analyze the equations governing
system for various values of the parametersm̃2,g,x0 .

F. Renormalizing r f

Before proceeding to the numerical study of the renorm
ized equations of motion we now turn our attention to t
renormalization of the energy densityr f . From Eq.~3.20!,
we see that a time derivative of the mode functions is
volved in computingr f . This has the effect of bringing
down one more power of momentum into the integrand a
implies that we need the WKB expansion of the mode fu
tions to orderk24. This entails both one more iteration of th
WKB frequency, Eq.~4.4!, and one more integration by par
on the functionF(t). Doing this yields

Im@ f 1pW
* ~ t ! ḟ 1pW~ t !1 f 2pW

* ~ t ! ḟ 2pW~ t !#div

52v~ t !2
ṀB

2~ t !2ṀB
2~0!

8v~ t !3 1
ṀB~ t !

4v~ t !3

3F ṀB~ t !2ṀB~0!cosS 2E
0

t

dt8v~ t8! D G
2

ṀB~0!@ṀB~ t !2ṀB~0!#

8v~ t !3 sinS 2E
0

t

dt8v~ t8! D .

~4.45!

When the factor of 2 in Eq.~3.20! is included, the first term
above gives the contribution of the zero point energy den
ties for a four-component Dirac fermion. This would be t
one-loop approximation to the effective potential@2# if the
frequencies were constant. In this case, we can consider
piece to be an adiabatic approximation to the effective
tential as described above. The other terms have b
grouped so that their contribution vanishes at the initial tim
While the fully renormalized energy density has a lengt
but not very illuminating expression, we just highlight i
main features. After mass, coupling, and wave funct
7-13
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FIG. 3. x~t! and ^c̄c(t)&R
. vs t. x(0)50.75.
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renormalization and a subtraction of the zero point ene
~time independent and proportional to the fourth power
the cutoff! the energy density is finite and conserved by u
of the fully renormalized equations of motion for the sca
field and the mode functions. There is no unambiguous se
ration between the fermionic and scalar energy density
cause of the wave function renormalization, which aris
from the fermionic fluctuations but contributes to the kine
energy of the scalar field. The total energy density is ren
malization group invariant, finite, and conserved. Furth
more, we have checked numerically in all cases that the
ergy density is constant throughout the evolution to
accuracy required in the numerical implementation, thus p
viding an alternative check of the reliability of the numeric
calculation.

V. SOLVING THE EQUATIONS OF MOTION

We now turn to a discussion of the actual time evoluti
of the coupled scalar-fermion system. At this stage we su
marize the discussion of the previous section on renorm
ization to be able to focus on the important aspects to
gleaned from the numerical study.

The fully renormalized equations of motion for the fe
mion field modes~4.29! and for the mean field in the form
given by either Eq.~4.30! or Eq. ~4.38! are free of initial
time singularities or ultraviolet divergences. They can
consistently initialized and lead to smooth evolution. T
two forms of the mean field equation are completely equi
lent as they are obtained one from the other by a rearra
ment of terms. While Eq.~4.30! seems to suggest a singul
behavior whenx reaches the Landau pole, the equivale
form ~4.38! suggests smooth and continuous evolution.

Mass, coupling, and wave function renormalization an
renormalization of the zero point energy~time independent!
renders the energy density finite and conserved as a co
quence of the equations of motion.

We now study in detail different cases to bring the role
the fermionic fluctuations to the fore.
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A. Case 1: m̃2Å0, LËĒ, and zx0zËxmax

For this case we will usem̃2/g51, g50.261, and look at
two different values ofx0 : x050.75, 0.2. For reference
the maxima of the effective potential are atuxmaxu51.53 so
for these values ofx0 we expectx~t! to oscillate about the
origin. Figure 3 displaysx~t! as a function oft for x0
50.75.

The first panel reveals that the amplitude of the mean fi
decays as would be expected; there is energy transfer to
mion particle production. These two figures taken toget
exhibit an interesting feature. There is a remarkable simi
ity at later times between the mean field and the oscillati
in F. A comparison of the two figures suggests that the a
plitude of the fluctuations is proportional tox. Since the
mean field has a decreasing envelope while the fluctuat
increase, if such a proportionality exists, it must involve
coefficient that is slowly increasing in time. We can actua
extract more information from a parametric plot ofx9 versus
x, which is shown in Fig. 4.

The fact that such a tight curve is produced is indicat
of an underlying relationship. In fact, we found that th

FIG. 4. x9(t) vs x~t!.
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FIG. 5. n(k) vs k at timest515.01, 51.05, 99.09, respectively.
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curve could be well fitted toax(t)1bx3(t)ln ux(t)u with a,b
very slowly varying over the time scale of the oscillation
This in turn implies that the fermionic fluctuationsF(t) can
also be fitted to this form, with coefficients that are slow
varying functions of time, indicating that the growth of th
fermionic fluctuations results in a time dependent correct
to the mass term and quartic coupling of the mean field. T
we believe, is a noteworthy aspect of the dynamics: the n
equilibrium fermionic fluctuations, those that were not a
counted for by the adiabatic effective potential, introduc
slow time dependent renormalization of the parameters
the effective potential, mass, and quartic coupling.

There is a new time scale emerging from the dynam
that is associated with the~slow! time evolution of this renor-
malization and the decay of the mean field. A full analysis
these time scales is beyond the scope of this article, bu
expect to use the methods of dynamical renormaliza
group @23# to investigate the relaxation of the mean field
future work.

We next consider the behavior of the fermion occupat
numbers as a function of time. Figure 5 gives three snaps
of n(k) versusk at different times. What should be appare
from these pictures is the existence of band structure in
04500
.

n
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fermion occupation numbers. In fact, the fermions produc
seem to have wave numbers that lie within a region spann
k50 to k5kc where kc}x0 . While we are used to band
structure in bosonic theories with parametric resonance,
unexpected to encounter this structure in fermionic theor

FIG. 6. x~t! vs t for x(0)50.2.
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FIG. 7. n(k) vs k at timest515.01, 51.05, 99.09, respectively.
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Pauli blocking prevents exponential particle production sin
the occupation numbers can at most become unity. In Sec
we study in detail the issue of parametric amplification v
sus Pauli blocking.

Now consider the case wherex050.20. Figure 6 shows
the phenomenon of ‘‘catalyzed regeneration’’ or ‘‘reviva
first observed in@11#. The mean field decays for a while an
then regenerates itself. It is important to note that it ne
regenerates back to the original value, always to someth
less than that. The reason for this can be seen from the
lution of the momentum distribution in Fig. 7, which clear
shows an almost saturated distribution of particles for m
mentak&x0 .

The allowed band fills up to saturation very early o
After that, the energy in the scalar cannot be transferred
ficiently to fermions and in fact the fermions, which coup
only to the mean field in our approximation, begin to trans
their energy back tox. This depletes the band but not com
pletely, which accounts for the incompleteness of the reg
eration.

B. Case 2: m̃Ä0, LËĒ, and zx0zËxmax

The massless case leads to a qualitatively similar dyn
ics of the mean field and the fermionic fluctuations but w
04500
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definite quantitative differences in the time scale of oscil
tion damping of the mean field and growth of the fermi
fluctuation as compared to the massive case. These
shown in Fig. 8.

We note that now the only scale in the problem is co
pletely determined by the initial value of the mean fieldx~0!,
whereas in the previous case there were two scales.

The figures for the dynamics of the mean field and f
mion fluctuations are qualitatively similar to those of th
previous case. Figure 9 shows the momentum space dist
tion of the fermions. The band structure is still present and
still set by the initial valuex0 . This is as it should be, espe
cially sincex0 is now the only scale in the problem. Finall
we again plottedx9 versusx with a result identical to that
shown in Fig. 4. We can again find a good fit toax(t)
1bx3(t)lnux(t)u with the parametersa,b very slowly vary-
ing on the time scale of the oscillations. This fit shows tha
time dependent mass has been generated by the dyna
This is not so surprising as scalar masses are not prote
against radiative corrections.

Again, just as in the previous case we find that new ti
scales emerge associated with damping in the amplitud
the mean field and the renormalization of the parameters
7-16
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FIG. 8. x~t! and ^c̄c(t)&R
. vs t. x(0)50.75.

FIG. 9. n(k) vs k at timest567.67, 77.20, respectively.

FIG. 10. x~t! and ^c̄c(t)&R
. vs t for x(0)51.1.
045007-17
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FIG. 11. x~t! and ^c̄c(t)&R
. vs t for x(0)51.2, g51.0, EL52.7.
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C. Case 3: m̃Ä0, LËĒ, and zx0zÌxmax

In this case the mean field begins to the right of the ma
mum of the effective potential and rolls down, running aw
up to the scale of the cutoff, with a similar behavior f

^c̄c(t)&. This behavior is displayed in Fig. 10. Once th
mean field reaches an amplitude of the order of the cu
scale there is particle production on this scale so the mom
tum integral over the fermionic fluctuations is no longer a
curate. Therefore the dynamics is no longer trustworthy
the evolution must be stopped. In this case the dynamic
what would be expected from the effective potential desc
tion: the mean field runs away as a consequence of the
fective potential being unbounded from below.

D. Case 4: m̃Ä0, LÌĒ, and zx0zÌxmax

In the previous section we discussed the possibility t
the presence of a Landau pole in the fully renormalized eq
tions of motion might not be a signal of discontinuities
singularities in the evolution and that the dynamics will
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smooth when the mean field reaches and crosses the La
pole. There are two important hints that led us to this co
clusion:~a! the Landau pole does not appear explicitly in t
equation of motion written in terms ofFAF ~4.38! ~the loga-
rithmic divergence inFAF is compensated by the logarithm
in ZL!; ~b! the self-consistent solution forx9(0) and forF~0!
given by Eq.~4.43! whenx~0! is very near the Landau pol
shows manifestly that the fermionic fluctuations exactly ca
cel the contribution from the effective potential, thus maki
the ‘‘residue’’ at the Landau pole vanish exactly. While th
remarkable cancellation has been gleaned in a partic
case, that in which the initial condition places the amplitu
of the mean field at the Landau pole, the combination of b
arguments is suggestive enough to conjecture that the
namics will be smooth in all cases asx~t! crosses the Landau
pole.

In order to probe this conjecture, we need to consider
caseL@Ē so thatx can evolve past the Landau pole but t
dynamics should be reliable in such a way that the amplit
of the mean field must always be much smaller than
cutoff.
FIG. 12. x~t! and ^c̄c(t)&R
. vs t for x(0)51.2, g50.5, EL520.1.
7-18
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For L@Ē we see from the formulation~4.38! that ZL

,0; thus for very early time whenFAF;0 the acceleration
is negative and the mean field climbs the potential hill
stead of rolling down. This is a consequence of the fact t
for a theory with a Landau pole, if the cutoff is taken mu
larger than the Landau pole, the ‘‘bare’’ coupling becom
negative but very small. Thus in the ‘‘almost finite’’ formu
lation the only hint of the presence of a Landau pole is in
opposite sign of the second derivative of the mean field
compared to the case in which the cutoff is well below t
Landau pole.

Thus initially we expect that the second derivative will
very small and negative, the mean field will slowly climb u
the potential hill, and the fermionic fluctuations will grow.

In what follows we study the cases withg51.0, x0
51.2, L5200, EL52.7, andg50.5, x051.2, L5500, EL
520.1, respectively, to illustrate the main features of
dynamics.

The full dynamics for the mean field and the renormaliz
chiral condensate in these cases is displayed in Figs. 11

FIG. 13. x9 vs x parametrically for both cases.
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12 for the mean field and the fully renormalized fermio
fluctuation$c̄c(t)&R

. . These figures show a remarkable b
havior: x initially climbs up the potential, reaches th
maximum and begins falling down toward the minimum
overshoots, climbing up to the maximum on the negat
side, and finally begins a plunge down the potential hill
the negative side. As the amplitude of the mean field reac
the Landau pole at a timetLP the ~fully renormalized! fer-
mion condensateF~t! exactly compensates the contributio
of the effective potential, thus canceling the singularity of t
running coupling at the position of the Landau pole.

When the amplitude becomes larger thanEL the mean
field begins an oscillatory motion about the origin wi
greater and greater amplitude. The key to understanding
behavior lies in Fig. 13, which depictsx9 vs x parametri-
cally. Note that the two different cases we are examining
almost indistinguishable.

A numerical fit to excellent accuracy reveals that fort
@tLP

x9~t!;bx3~t! ~5.1!

with b slowly varying in time and saturating at long times
a valueb&22.0.

Thus fort@tLP the fermion condensate provides a sm
renormalization of the coefficient ofx3 ln uxu. Therefore
when the amplitude of the mean field is much larger th
EL , F~t! can be neglected, the logarithms cancel, and
equation of motion takes the form

x9~t!1
2

2/g2 lnuex~t!u @2x3~t!lnux~t!u1F~t!#50

or

x9~t!.bx3~t! with b&22.0. ~5.2!

This shows that the mean field behaves at late time as
were in a quartic potential; this would also be true in t
massive case since the mass term would eventually bec
FIG. 14. n(k) vs k. Left figure is fort51.89,g51.0, EL52.7, the right figure fort50.35,g50.5, EL520.1.
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subdominant. The ‘‘potential’’ appears to ‘‘open up’’ wit
time, i.e., the coefficient of the quartic term becomes sma
and smaller as the logarithm in the denominator domina
until it saturates.

Suppose that the initial value of the mean field is near
maximum and that the coupling is such thatEL@1. In this
case from the self-consistent solution~4.42! we see thatF
;O(1) ~for L@EL!. However, we have argued and se
explicitly numerically that, as the mean field approaches
crosses the Landau pole, the fermion condensateF~t! can-
cels the termx3(t)lnux(t)u. This implies that the fermion
condensate becomes ofO(EL

3). Since the renormalized fer
mionic condensate is obtained by subtracting the terms f
the effective potential and the wave function renormali
tion, the only manner in which this can actually happe
roughly speaking, is that the mode functionsf 1,2 evolve in
time almost to saturation, i.e., thatu f 1,2u2;1 for wave vec-
tors up to the Landau pole scale;e2/g21 ~or beyond!. This
will lead to a fermion condensate of orderEL

3. This argument
is shown to be correct by Fig. 14, which displays the oc
pation numbers of the fermions produced as a function
momentum for larget when the mean field oscillates.

Comparing the width of the band of occupied wave ve
tors with the amplitude of the mean field in the oscillato
phase~see Figs. 11 and 12! reveals that the width of the ban
is proportional to the amplitude of the mean field, which
turn is larger than the position of the Landau pole. Th
states with wave vectors up toEL ~or somewhat larger a
shown by Fig. 14! are almost saturated with occupation
~per spin!. We interpret this as the formation of a very den
fermionic plasma with a ‘‘chemical potential’’ of the order o
the Landau pole, since all states up to this scale are filled
produced particles.

E. Summary of the numerical analysis

We want to highlight several noteworthy features th
emerge from the numerical analysis.~a! As presaged by the
discussion above, the mean field evolution is complet
nonsingular, even as it crosses the Landau pole. The av
ance of singular behavior is entirely due to the dynami
growth of the fermionic fluctuations: they ensure that t
quantity 2x3(t)lnux(t)u1F(t) vanishes when 2/g
2 lnuex(t)u does.~b! The back reaction of the fermions pro
vides a small renormalization to the effective potential af
the mean field crosses the Landau pole, and as a resu
true effective potential at large values ofx is upright and
quartic. The equation of motion is then of the approxim
form x9;22x3 where the factor22 receives small correc
tions from the fermion back reaction.~c! The nonequilibrium
evolution results in profuse particle production. The fermi
occupation number saturates generally up to momenta la
than the Landau pole, which in turn results in a very de
medium akin to a Fermi gas with chemical potential of t
order of the Landau pole.

VI. PAULI BLOCKING VERSUS PARAMETRIC
AMPLIFICATION

An important question that we address in this section
the role of parametric amplification in a fermionic theory.
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a bosonic theory, when the expectation value of the sc
field oscillates around a minimum the fluctuation mode fun
tions obey an equation of motion with an effective oscil
tory mass squared term. The resulting Schro¨dinger-like equa-
tion for the mode functions results in a spectrum w
forbidden bands with positions that depend on the wave v
tor k of the mode function and the specific details of t
oscillatory potential. For generic initial conditions, the wa
vectors k in the forbidden bands lead to an exponent
growth of the mode functions with an exponent, given by t
imaginary part of the Floquet index, that depends on
details of the potential. This is the phenomenon of parame
amplification. The exponential growth of the mode functio
is associated with the buildup of a nonequilibrium, time d
pendent distribution function for the bosons, i.e., parti
production.

In the fermionic case, the Pauli exclusion principle r
stricts the maximum occupation number of fermion states
a given wave vector to be 1. This is Pauli blocking, i.e., t
quantum states must have a finite occupation number. O
ously, even if the fermionic fluctuation mode equations co
tain an oscillatory time dependent mass, Pauli block
should prevent any parametric amplification and forbidd
bands from occurring. This is somewhat problematic, ho
ever. As our detailed numerical work shows, there are ca
in which the mean field is oscillatory, i.e.,x(t)
;x0 cos(Vt), and the fermion mode equations~3.18! take
the form

F d2

dt2
1p21x0

2 cos2~Vt !7 iVx0 sin~Vt !G f 1,2pW~ t !50.

~6.1!

At first glance it would appear that the oscillatory term
would drive parametric amplification of the mode function
which would lead to an unbounded distribution functio
contrary to Pauli blocking. This is not the case, though.
now provide a rigorous proof that fermionic mode functio
do not have forbidden band structure and hence there is
parametric amplification, and a perturbative argument t
not only confirms the exact proof but also illuminates t
buildup of the occupation number in the absence of param
ric amplification.

A. No forbidden bands: Formal proof

The first order equations for the fermions~3.17! can be
written in the following matrix form:

F i
d

dt
2ps12M ~ t !s3G f ~ t !50 ~6.2!

with s1,3 the Pauli matrices and

f ~ t !5S f 1

f 2
D . ~6.3!

It is straightforward to check that

f †~ t !g~ t !5 f 1* ~ t !g1~ t !1 f 2* ~ t !g2~ t !5const ~6.4!
7-20
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for an arbitrary pair of solutionsf (t) andg(t) of Eq. ~6.2!.
This is a result of the conservation of probability in the Dir
equation, or equivalently the normalization condition on t
Dirac spinors. Equation~6.2! has two linearly independen
spinor solutionsh1(t),h2(t) with initial conditions

h1~0!5S 1
0D , h2~0!5S 0

1D . ~6.5!

Both solutions therefore obey

h1
†~ t !h1~ t !51, h2

†~ t !h2~ t !51. ~6.6!

Furthermore, it follows from the above identities that

h1
†~ t !h2~ t !50, ~6.7!

i.e., the linearly independent solutions are orthogonal at
times.

Since M (t) is periodic with periodT, i.e., M (t1T)
5M (t), thenh1(t1T) andh2(t1T) will also be solutions
of Eq. ~6.2!, but then they must be linear combinations of t
linearly independent solutionsh1(t),h2(t):

h1~ t1T!5ah1~ t !1bh2~ t !,

h2~ t1T!5gh1~ t !1dh2~ t !,

where a, b, g, d are complex coefficients. The matrix o
coefficients

M5S a b

g d D ~6.8!

is called the monodromy matrix and is the important conc
in Floquet theory. It represents an operator that evolves
solution in time by one period.

The conditions

h1
†~ t1T!h1~ t1T!51, h2

†~ t1T!h2~ t1T!51,

h1
†~ t1T!h2~ t1T!50 ~6.9!

obtained above lead to the following conditions on the co
ficients:

uau21ubu251, ugu21udu251, a* g1b* d50,
~6.10!

which in turn implies that the monodromy matrix is unitar

M†M51. ~6.11!

This unitarity property of the monodromy matrix can b
traced back to the conservation of probability of the solutio
of the Dirac equation~since it is first order in time! as ex-
plicitly determined by the condition~6.4!.

Floquet solutions are the eigenvectors of the monodro
matrix and the~logarithms of the! eigenvalues are the Flo
quet exponents. Floquet solutions therefore satisfy

F6~ t1T!5eiÃ6F6~ t !, ~6.12!
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where, in general, the exponentsÃ6 are complex. Their
imaginary parts determine the growth~or decay! rate of the
solutions and are responsible for parametric amplificati
However, the unitarity of the monodromy matrix implies th
the Floquet indicesÃ6 are real; hence Floquet solution
develop a phase upon time evolution during a period
their magnitude is constant. This then precludes forbidd
bands and hence there is no parametric amplification of
mionic modes. Pauli blocking is a direct result of the Dir
fields obeying a first order evolution equation in time. This
also at the heart of the conservation of probability~or nor-
malization of the Dirac spinors!, which in turn determines
that the monodromy matrix is unitary; hence the Floqu
indices are real.

B. Perturbative argument

While the formal proof above unambiguously clarifie
that there is no parametric amplification of fermionic mod
with an oscillatory time dependent mass, we offer also
perturbative argument. We do this both to highlight the m
result of the exact proof above, and also to illuminate w
even when the Floquet indices are real and there are no
bidden bands, time evolution with phases leads to a buil
of the occupation number for some~resonant! values of the
wave vectors.

Consider the second order evolution equation forf 1,pW (t)
~after rescaling by the scaleM̄ !:

F d2

dt2
1p21M2~ t !1 iṀ ~ t !G f 1,pW~ t !50,

M ~ t !5x0 cos~Vt !. ~6.13!

A perturbative solution is obtained by consideringx05e
,1 and writing the formal expansionf 1,pW (t)5 f 1,pW

(0)(t)
1e f 1,pW

(1)(t)1e2f 1,pW
(2)(t)1¯ , which leads to the following hi-

erarchy of equations:

f̈ 1,pW
~0!~ t !1p2f 1,pW

~0!~ t !50,

f̈ 1,pW
~1!~ t !1p2f 1,pW

~1!~ t !52 iṀ f 1,pW
~0!~ t !,

f̈ 1,pW
~2!~ t !1p2f 1,pW

~2!~ t !52 iṀ f 1,pW
~1!~ t !2M2~ t ! f ~0!~ t !,

] ]. ~6.14!

The zeroth order solution is of the form

f 1,pW
~0!~ t !5A~pW !eipt1B~pW !e2 ipt ~6.15!

with the coefficientsA(pW ),B(pW ) determined by the initial
conditions. The higher order inhomogeneous equations
solved in terms of the retarded Green’s function

G~pW ,t2t8!5
1

p
sin@p~ t2t8!#Q~ t2t8!. ~6.16!

The general solution is given by
7-21
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f 1,pW
~ i ! ~ t !5E

0

`

dt8G~pW ,t2t8!I~ i !~ t8! ~6.17!

with I( i ) the inhomogeneity in the equation for thei th order
contribution. We note thatf 1,pW

( i ) (0)50, ḟ 1,pW
( i ) (0)50, therefore

the initial conditions determine the constantsA(pW )B(pW ) to
all orders.

The first order solutionf 1,pW
(1)(t) exhibits a secular term

which grows linearly in time, whenV52p. This obviously
corresponds to the production of a fermion pair. Howe
this secular term is purely imaginary:f 1,pW

(1)(t)} i tx0 /p. It cor-
responds to a renormalization of the phase of the order s
tion. The calculation to second order is lengthy but straig
forward, with the following remarkable result: pure
imaginary secular terms appear once again, which grow
time, leading to a further contribution to the phases. The
part of the secular terms cancels out between theM2 contri-
bution ~which involves the zeroth order solution! and the
contribution from iṀ , which appears squared and thus
ways~in both cases, forf 1,2! with opposite sign to theM2(t)
contribution. Therefore, at least to second order, we find
the secular terms generated from resonances whenV;2p
are purely imaginary, while the real parts of the secular te
cancel exactly. Thus there is no exponential growth of
solution which would emerge from real secular terms in
perturbative expansion. We have not attempted a higher
der calculation, but in view of the exact proof offered abo
it is clear that the result holds to all orders. The lowest or
perturbative solution also shows thatf 1 and f 2 develop op-
posite phases so that the occupation number given by
~4.44! becomes of the form

nq~t!}sin~Ãt! ~6.18!

with Ã the real Floquet index. This explains the behavior
the occupation number displayed in the figures above,
oscillations and the saturation. Hence, unlike the boso
case in which parametric amplification results in an expon
tial growth of bosonic fluctuations, here Pauli blocking at t
level of the mode functions is a consequence of real Floq
indices that result in a bounded growth of the occupat
number.

VII. CONCLUSIONS, CONJECTURES, IMPLICATIONS,
AND FURTHER QUESTIONS

We have used an expansion in 1/N, whereN is the num-
ber of fermion fields coupled to a scalar, to understand
nonperturbative dynamics of this system. In this limit, t
scalar fluctuations are suppressed relative to the fermi
ones and we can consider mean field dynamics in a con
tent approximation that, at least in principle, can be i
proved on.

In the largeN limit, the theory exhibits dimensional trans
mutation and symmetry breaking via the Coleman-Weinb
mechanism with an effective potential that is unbounded
low and features a metastable minimum at the origin and
symmetric maxima. The bulk of our work consisted in o
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taining the equation of motion for the expectation value
the scalar field, or mean field, and comparing the dynam
due to the full equations of motion, including the back rea
tion of the fermionic fluctuations, to that obtained from
renormalization group improved effective potential.

The equation of motion obtained from the RG effecti
potential alone contains a Landau pole at a nonperturba
scaleEL}e2/g21 whereg5y2/2p2 andy is the Yukawa cou-
pling. We should note that, since we are working within t
largeN expansion, this Landau pole cannot be considere
be an artifact of the perturbative expansion. The dynam
obtained from the effective potential alone would yield s
gular behavior when the amplitude of the mean field reac
the Landau pole.

The renormalization of the full equations of motion lea
to a running coupling constant that depends on time thro
the dependence on the amplitude of the mean field. T
phenomenon is akin to the dynamical renormalization fou
in Ref. @23#. Furthermore, we show that potential initial sin
gularities are self-consistently removed and that the dyn
ics is smooth and free of Landau pole singularities, or d
continuities.

The fully renormalized equations of motion including th
back reaction of the fermionic fluctuations have two differe
regimes depending on whether the ultraviolet cutoffL!EL
or L@EL . In the former case, if the initial value of the mea
field is between the origin and the maxima, the mean fi
undergoes damped oscillations, transferring energy to
fermionic fluctuations. This energy transfer results in f
mion pair production within a band of wave vectors det
mined by the mass of the scalar and the initial amplitude
the mean field. It is found that the back reaction from t
fermionic fluctuations, encoded in the renormalized ferm
chiral condensate, introduces a slowly varying renormali
tion of the parameters of the effective potential.

When the absolute value of the initial value of the me
field is larger than the maximum of the effective potenti
both the mean field and the fermion chiral condensate
away to the cutoff scale, at which point the evolution must
stopped.

While it is commonly acknowledged that a theory th
features a Landau pole makes physical sense only when
cutoff is below the scale of the Landau pole, we decided
study the dynamics even in the case in whichL@EL to find
out if and how there are any singularities in the nonequil
rium dynamics associated with the Landau pole. Typi
statements about the limit of validity of a theory with a La
dau pole are mostly based on perturbative unitarity
S-matrix elements.

Our study is definitely nonperturbative as we study t
evolution for large amplitude mean field configuration
Whether perturbative statements onS-matrix elements pro-
vide a limitation to the nonperturbative approach is, to o
knowledge, an open question. We therefore proceed to s
the theory in this regime and to analyze the consequen
without bias.

In this case we find novel, remarkable behavior. When
amplitude of the mean field reaches the Landau pole ther
a cancellation between the contribution from the effect
7-22
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potential and that from the renormalized chiral condens
that prevents a singularity in the dynamics at the Land
pole from developing. The ensuing evolution is continuo
As the amplitude of the mean field becomes larger than
Landau pole, it begins to oscillate with an amplitude th
grows. We find that the time evolution of the mean field
well described by an effective potential that is quartic a
upright.

We have seen that the fermion occupation number alm
saturates up to a wave vector of the order of the amplitud
the mean field. The resulting state is a very dense medium
plasma, which can be described as a cold, degenerate F
gas with a chemical potential of the order of the energy sc
of the mean field.

We have also provided an exact proof of the fact that
Floquet indices for the fermionic mode functions are re
therefore preventing unbounded parametric amplificati
This is the manifestation of Pauli blocking at the level of t
mode functions. A perturbative proof of this result served
illuminate the workings of the exact proof.

Conjectures

We conjecture, at this stage, that the phenomenon
smooth dynamics beyond the Landau pole is somewha
lated to a recent observation that in a medium the ac
position of the Landau pole is actually shifted to much larg
scales@24#.

While we have studied the theory in a regime in whi
perturbative unitarity ofS-matrix elements would sugges
that the theory breaks down, we have done so nonpertu
tively at the mean field level. It is conceivable that, while t
dynamics is smooth and there are no signals of patholog
incompatibilities may lurk in some~nonperturbative! matrix
elements or physical quantities that would cast doubt on
validity of the theory. To assess this possibility requires
deeper study of correlation functions beyond mean field
perhaps to next to leading order in largeN. This is beyond
the goal of this article and an issue that deserves fur
scrutiny in its own right.

There has previously been a related conjecture that L
dau poles in some theories appear only in perturbative
culations or in calculations of unobservables@29#.

Implications

There are many important cosmological implications
our results. While previous studies of reheating and preh
ing of fermionic theories have argued that fermions are
very efficient for reheating because of Pauli blocking, in t
work we have seen that in the regime when the cutof
much larger than the Landau pole there is the possibility
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abundant particle production. After the mean field crosses
Landau pole, the fermionic occupation numbers basica
saturate up to a momentum scale of the order of the Lan
pole. This in turn describes a dense medium with a la
chemical potential of the order of the Landau pole.

This could potentially be relevant in an extension of t
standard model with toplike quark sector with a Yukawa co
pling of order 1. Since this theory will be part of an eve
larger theory@perhaps a grand unified theory~GUT!# the
cutoff should be taken to be of the order the GUT scale.
the other hand with a vacuum expectation value of few h
dred GeV and a Yukawa coupling of order 1, the position
the Landau pole is at a scale of a few TeV. Thus the situa
L@EL would naturally arise in this type of scenario.

Another potentially interesting implication in cosmolog
would be the following: consider that after a phase transit
the system is trapped in the metastable vacuum. A bub
type configuration, characterized by a collective coordin
@25–27# will tunnel underneath the barrier of the effectiv
potential @26# and exit on the other side of the maximum
The collective coordinate will then begin to roll down th
potential hill until it reaches the Landau pole, at which po
the novel dynamics studied in this article will lead to fermio
pair production and the production of a dense medium wit
large chemical potential. We believe that these potential
plications deserve further study and we expect to add
these in future work.

Further questions

An important aspect that we have not investigated is t
of the new time scales that emerge from the dynamics.
example, when the mean field oscillates with small amp
tude in the first cases analyzed, there is a damping assoc
with the energy exchange with the fermion fluctuations. T
time scale for damping is much larger than the typical os
lation frequency, despite the fact that the coupling is fai
strong. Another time scale is that associated with the gro
of the amplitude of oscillations after the mean field cros
the Landau pole, until the amplitude saturates.

We expect to apply the methods developed in@23,28# to
study these questions and relegate this investigation to fu
work.
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