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Thick shell Casimir effect

I. Klich,* A. Mann,† and M. Revzen‡

Department of Physics, Technion–Israel Institute of Technology, Haifa 32000, Israel
~Received 7 September 2001; published 18 January 2002!

We consider the Casimir energy of a thick dielectric-diamagnetic shell under a uniform velocity of light
condition as a function of the radii and the permeabilities. We show that there is a range of parameters in which
the stress on the outer shell is inward, and a range where the stress on the outer shell is outward. We examine
the possibility of obtaining an energetically stable configuration of a thick shell made of a material with a fixed
volume.
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I. INTRODUCTION

It is well known that the fluctuations of electromagne
fields in vacuum or in material media depend on the bou
ary conditions imposed on the fields. This dependence g
rise to forces which are known as Casimir forces, acting
the boundaries. The best known example of such force
the attractive force experienced by parallel conducting pla
in vacuum@1#. Casimir forces between similar, disjoint ob
jects such as two conducting or dielectric bodies are kno
in most cases to be attractive@2# and are sometimes viewe
as the macroscopic consequence of van der Waals
Casimir-Polder attraction between molecules.

However, Boyer@3# showed that the zero point electro
magnetic pressure on a conducting shell is directed outwa1

In this paper we address the question: can there exist a c
pact ball for which the Casimir forces would not expand t
ball to infinity? We look for such behavior in a simple mode

In view of the dominance of the Casimir forces at t
nanometer scale, where the attractive force could lead to
strictive limits on nanodevices@4#, the study of repelling
Casimir forces is of increasing interest. Indeed, Boyer, f
lowing Casimir’s suggestion, studied an interplane Casi
force with one plate a perfect conductor while the other
infinitely permeable. He showed that, in this case the pla
repel @5#. This problem was since reconsidered in@6,7#.

In addition to the Casimir effect for a conducting sphe
cal shell, various cases of material balls have been con
ered in the literature. The case of a ball made of a dielec
material was considered by many authors and exhibit
strong dependence on cutoff parameters@8–13#. The case of
a dielectric-diamagnetic ball has also been extensively s
ied, especially under the condition ofem51, which will be
referred to as the uniform velocity of light~UVL ! condition,

*Email address: klich@tx.techion.ac.il
†Email address: ady@physics.technion.ac.il
‡Email address: revzen@physics.technion.ac.il
1Assuming that zero point forces are in general attractive, Cas

considered a semiclassical toy model for the electron in which
Coulomb self-repulsion is balanced by a Casimir type attract
One of the consequences of Boyer’s calculation is that since
pressure on a conducting sphere is outward it cannot balance
Coulomb repulsion in Casimir’s model.
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since its introduction by Brevik and Kolbenstvedt@14–17#.
A medium with the UVL property has in many cases cuto
independent values for the Casimir energy~see also@18–20#
for the Casimir energy of a cylinder with a UVL!.2 In cases
where this condition is not satisfied there are problems of
divergent terms which are proportional to the volume
which the velocity of light is different from the velocity o
light in the background.

We will use the UVL condition for our thick shell.
In all of the above mentioned cases, namely, the cond

ing sphere, dielectric ball, and dielectric-diamagnetic b
with UVL, the resultant pressure was found to be repulsi

In order to obtain diverse behaviors we mix the case
disjoint bodies~where there is usually attraction! and the
dielectric ball scenario as follows: We consider the case o
thick shell~Fig. 1!, with three regimes of constant permeab
ity ~inner, middle, and outer! m I , m II , andm III , under a UVL
condition. In this case there are two competing effects, i
interaction between the inner and outer boundaries, and
repulsive pressure experienced by each boundary.

Using a formula derived in@21# we show in Secs. II and
III that for a dilute medium~i.e., assumingum I2m IIu!1 and
um II2m III u!1! the energy of the thick shell is

EC~r ,R!5
5

128pR
kR

21k rkR

r 3~r 225R2!

4~r 2R!3~r 1R!3p

1k r
2 5

128pr
,

wherer andR are the inner and outer radii, respectively, a
the parametersk r andkR are defined in Sec. III. From this
expression one can easily obtain the energy of a single
by taking the limit ofR to infinity, and also the energy of two

ir
e
.
e

the

2A heuristic argument for this statement goes as follows: the z
point energy of the electromagnetic field is a sum over the eig
frequencies of the system,S Iv I . For a UVL medium one can write
E;S IckI , since the factorc is common to all the media; thus th
geometric information on the system enters via the allowedk’s. In
the limit of high k this expression behaves exactly like the fr
vacuum energy withem5c22 and the sum becomes regularizab
by subtraction of the free vacuum energy.
©2002 The American Physical Society05-1
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parallel infinite dielectrics by taking both of the radii to in
finity while keeping a finite distanced5R2r .

Next, in Secs. IV and V we investigate this expression
the energy and show that there is a range of parameters
that the force on the outer shell is attractive.

II. ENERGY OF THE ELECTROMAGNETIC
FLUCTUATIONS

In this section we briefly review the Green’s functio
method for calculation of Casimir energies~see@22# and@21#
for details!. To calculate the Casimir energy of a mediu
under the UVL condition, we use the perturbative techniq
suggested in@21#. There, the Born series for the correlatio
function Dik(v;r ,r 8) of the electromagnetic fields in a ma
terial medium is presented. The correlation functionDik is
defined by

Dik~v;r ,r 8!5E
0

`

eivtDik
R ~ t;r ,r 8!dt ~1!

where

Dik
R ~ t22t1 ;r ,r 8!

5H i ^Ai(r ,t1)Ak(r 8,t2)2Ak(r 8,t2)Ai(r ,t1)&, t1,t2 ,

0 otherwise

is the retarded Green’s function. Throughout we use
gaugeA050, so that the indicesi,k range over 1, 2, 3 andD
is a 333 matrix.

The correlation functionD is known @22# to be the
Green’s function for the equation~in units where\5c51!

~@¹#m21@¹#2v2e!D52I, ~2!

where @a# stands for a matrix whose elements are@a# ik
5e i jkaj and I is the identity operator, which, in coordina
space is just the 333 identity matrix times a delta function
In Eq. ~2!, e is the permittivity andm the permeability of the
medium. In the following we assume thatm(r ) ande(r ) are
scalar functions~of course, in the general case bothm ande
are tensors!. This equation can also be written in the form

FIG. 1. A thick dielectric-diamagnetic shell.
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e

~@¹#22@¹ logm#@¹#2v2em!D52mI. ~3!

The correlation function of electromagnetic fields
vacuum, wheree5m[1, will be denotedD0 . It is the in-
verse of the operator (@“#22v2) and is well known. It is
given by the formula@22,23#

D0~v;r ,r 8!52S I1
1

v2 ¹ ^ ¹ D 1

4pur2r 8u
exp~ ivur2r8u!,

~4!

We now wish to use the knownD0 to expressD via a Born
series. Define

P5v2I~12me! ~5!

and

Q52@¹ log~m!#@¹#. ~6!

It follows from Eq. ~3! that as an operatorD satisfies

D5$@ I 2~P1Q!D0#D0
21%21m5D0@ I 2~P1Q!D0#21m.

~7!

ThusD is given by the following formal series:

D5D0m1D0~P1Q!D0m1D0~P1Q!D0~P1Q!D0m

1¯ . ~8!

We now impose the uniform velocity of light condition i
the medium by settingem[I . This eliminates theP terms
and we are left with the expansion

D5D0m1D0QD0m1D0QD0QD0m1¯ . ~9!

In the dilute limit only the first terms are used for actu
calculations.

The correlation functionD can be used to calculate var
ous properties of the electromagnetic field. We use it to c
culate the energy density of the field by using the relatio

~EiEk!v5v2~AiAk!v

and

~BiBk!v5¹W 3~AiAk!v3¹Q ,
5-2
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THICK SHELL CASIMIR EFFECT PHYSICAL REVIEW D65 045005
where the parentheses stand for the Fourier transform
respect to time of the correlation functio
1
2 ^Ai(r ,t)Ak(r 8,0)1Ak(r 8,0)Ai(r ,t)&.

At a temperatureT51/b this correlation function of the
fields Ai is related to the retarded Green’s functionD by the
fluctuation dissipation theorem@22#:

„Ai~r !Aj~r 8!…v52 i4p cothS bv

2 D @Di j ~r ,r 8!2D ji ~r 8,r !#.

~10!

Thus, at zero temperature, the energy density of the elec
magnetic field is

r~r ,v!5
1

4p S e~r !„E~r !2
…v1

1

m~r !
(B(r )2

…vD dv

2p

5
1

4p
lim

r8→r

Im TrS v2e~r !D~r ,r 8!

1
1

m~r !
¹W 3D3¹Q Ddv, ~11!

where we have chosen to neglect the dependence of the
meability m and permittivitye on the frequencyv. Inserting
the expansion~9! in Eq. ~11!, one can obtain a series for th
energy density of fluctuations of the electromagnetic field
was shown in@21# that the first contribution to the Casim
energy density~i.e., the energy of the electromagnetic field
the presence of external conditions minus the energy den
of the electromagnetic field without them! comes from the
term D0QD0QD0m in Eq. ~9!.3 For a dilute medium this
term gives the dominant contribution to the Casimir ener

III. CASIMIR ENERGY OF A THICK SHELL

The Casimir energy perdv is obtained via Eq.~11! by the
integration of r(r ,v)2(contribution of D0) over space.
This yields the following general formula for the density
the Casimir energy of a medium with a radially symmet
permeabilitym @21# assuming the UVL property, and dilute
ness:

rT
~2!~v!524pv2 cothS bv

2 D ImE
0

`

ds I~s!@ logm~s!#8,

~12!

where

I ~s!5E
T
du dv

@u42~v22s2!2#

2u
g2~u!@ logm~v !#8

~13!

3To see this, note that theD0 term is just the contribution of a
homogeneous vacuum, which we subtract. The terms of the f
D0QD0Qm can be shown to cancel between the electric and m
netic correlation functions.
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and the integration domainT is such thatu, v, and s can
form a triangle. The functiong2 is given by

g2~s!5
e2ivs

32p2s S 1

s
2 iv D . ~14!

We consider a shell of thicknessR2r with inner radiusr
and outer radiusR. The permeability of the shell ism II ~Fig.
1!, it is imbedded in a medium with permeabilitym III , and
its core has permeabilitym I . We definek r5 log(mI /m II) and
kR5 log(mII /m III ).

We now calculate the Casimir energy of the thick sh
using Eq.~12!. In our casem is a sum of two radial step
functions, andm8(s) is just a pair of delta functions ats
5r andR. Thus the integration overs in Eq. ~12! becomes
immediate and yields the energy density

rT
~2!~v!524pv2 cothS bc

2 D Im@k r I ~r !1kRI ~R!#.

~15!

The I’s in Eq. ~15! can be explicitly calculated:

I ~r !5k rE
0

2r u3

2
g2~u!1kRE

R2r

R1r @u42~R22r 2!2#

2u
g2~u!

~16!

and

I ~R!5kRE
0

2R u3

2
g2~u!1k rE

R2r

R1r @u42~R22r 2!2#

2u
g2~u!,

~17!

so that

rT
~2!~v!524pv2 cothS bv

2 D ImS k r
2E

0

2r u3

2
g2~u!

1kR
2E

0

2R u3

2
g2~u!

12k rkRE
R2r

R1r @u42~R22r 2!2#

2u
g2~u! D .

~18!

We can identify the first two terms as the densities of C
simir energy perdv for balls of radii r and R. The total
Casimir energy can now be obtained by integration of
density~18! over the frequenciesv using Eqs.~26! and~27!.
The result is

EC~r ,R!5
5

128pR
kR

21k rkR

r 3~r 225R2!

4~r 2R!3~r 1R!3p

1k r
2 5

128pr
. ~19!

This is our final expression for the energy of a thick she
where the assumption of diluteness impliesuk r u,ukRu!1.

m
g-
5-3
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Let us check that this result coincides with the know
result for a single sphere whenR goes to infinity. To do so
we expandk r in terms of the diluteness parameterj5(m I
2m II)/(m I1m II) which is commonly used in the literature

k r5 log
m I

m II
5 log

12j

11j
522j22

j3

3
1¯ . ~20!

Substituting this expansion in Eq.~19! and taking the limit
R→`, we immediately regain the usual result for the ene
of a dielectric-diamagnetic ball@17,24#, namely, EC(r ,`)
55j2/32rp1O(j4). This energy yields an outward pre
sure on the ball.

Note also that the Casimir energy of two parallel diele
trics per unit area can be obtained from Eq.~19! by taking
the limit of large radii. To see this we keepd5R2r finite
while taking the limit r ,R→`, and divide by the surface
area, thus obtaining

EC~d!5
k rkR

32p2d3 . ~21!

To illustrate the broad range of behaviors that are poss
from an expression for the energy such as Eq.~19!, we study
in more detail two cases.

~1! k r52kR . This happens when the inner and ou
material are the same, e.g., one can imagine a thick mat
shell in vacuum.

~2! k r5kR . In this case the ratio of magnetic constan
between the inner and middle materials is the same as
ratio between the middle and outer materials.

IV. STRESS

Now we use the expression for the energy~19! in order to
evaluate the Casimir stress on the shells. The pressure o
outer shell is given by

FR52
1

4pR2

]

]R
EC5

1

4p2R2 S r 3R~r 215R2!k rkR

~r 2R!4~r 1R!4

1
5kR

2

128R2D , ~22!

while the pressure on the inner shell is given by

Fr52
1

4p2r 2

]

]r

EC5
1

4p2r 2 S r 2~r 4210r 2R2215R4!k rkR

4~r 2R!4~r 1R!4 1
5k r

2

128r 2D . ~23!

One may recognize the self Casimir force acting on the in
and outer shells in the terms independent ofr or R, respec-
tively. We now turn to examine two cases.
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A. k rÄÀkR

The pressure on the outer shell is

FR5
kR

2

4p2R2 S 5

128R22
r 3R~r 215R2!

~r 2R!4~r 1R!4D . ~24!

The sign of this expression depends only on the ratioc
5r /R. The pressure can be written in the form

FR5
kR

2

4p2R2 S 5

128
2

c3~c215!

~c21!4~c11!4D , 0,c,1.

~25!

For a constant outer radiusR, the behavior of the pressure a
a function of the ratioc is indicated in Fig. 2. One can se
that at a radius ratio of approximately 0.19 the Casimir pr
sure suddenly changes sign and becomes an inward pres
However, the pressure on the inner shell is always direc
outward so that the inner and outer regions attract. This
traction may be balanced by adding the compression re
tance of the middle medium, or by adding the volume dep
dence ofm. In the case thatr ,0.19R, the pressure on the
inner shell is larger than the pressure on the outer shell
that one can imagine the two shells growing until they rea
the 0.19 ratio and then the outer shell will start contractin

This result is not too surprising. If one considers two co
ducting shells that are very close, there will be attract
between the shells of the order of magnitude of the attrac
between conducting plates. This attraction will lose its dom
nance once the radii become far apart in magnitude and
each shell will experience its own outward Casimir pressu
However, in order to know if the outer radius stays finite
goes to infinity, it is necessary to introduce the law by whi
the smaller radius changes as we change the outer radius
example of such a situation is given in the next section.4

B. k rÄkR

In this case the pressure on the outer shell is outward
all R. The inner shell will be subject to an outward pressu

4In this section we consideredk r52kR but the qualitative results
will hold wheneverk r andkR have different signs, as long as the
are both small and of the same order of magnitude, so as to sa
the validity of Eq.~12!.

FIG. 2. Pressure on outer shell as function of the radius ra
The Casimir force changes direction atr /R;0.19.
5-4



in

u
r-
e

n

b
s,
ll
e

ro
i

t
e
in

th

th
ies

se

is
av-
ce
ten-
ies,
ent
are
e

ther
e

n of
In

it
the
allel
on
ir
we
the

hen
bil-
ter

eth
for
ion

y a
ic-

a

THICK SHELL CASIMIR EFFECT PHYSICAL REVIEW D65 045005
as long asR.3.46r . For R,3.46r the pressure will be an
inward one on the inner shell. We return to this situation
the next section.

V. THICK SHELL WITH A FIXED VOLUME

In the previous section we calculated the pressure ass
ing that the volume of the inner ball is fixed. Another inte
esting model is to consider the volume of the thick sh
itself as constant. Thus we can assume thatv5(4p/3)(R3

2r 3) remains constant, and look for a minimum of the e
ergy under this condition.

In this case, as the outer shell expands, the distance
tween the inner and outer boundaries decreases. Thu
there is attraction between the shells, it will be energetica
favorable for the shell to expand to infinity, gaining from th
energy of interaction between the boundaries as well as f
the tendency of each separate boundary to grow. This is
deed what happens in the case wherek r52kR .

However, for the second possibility, namely,k r5kR ,
there is repulsion between the boundaries. This protects
shell from growing to infinity and a stable minimum of th
potential can be found. A typical example is illustrated
Fig. 3, where the minimum of the potential is forR.1.01,
r .0.31, assuming that the volume of the substance in
middle region is kept constant at 4p/3.

Another possibility is to keep the distance between
shells constant~imagine that the inner and outer boundar
are attached by means of stiff rods of constant length!. Quali-
tatively, the results are then similar to the results discus
above for the casesk r52kR andk r5kR .

FIG. 3. The potential of a thick shell with a fixed volume as
function of R, for k r5kR . There is a clear minimum atR51.01.
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VI. DISCUSSION

One of the most intriguing aspects of the Casimir force
its sign: this force has been shown to exhibit different beh
ior in different problems. It seems that the sign of the for
depends on the balancing of several effects, such as a
dency to minimize the average curvature of the boundar
and on the other hand the interaction between differ
patches of the boundary. In the calculations here, which
confined to the case of uniform velocity of light, we hav
shown how these effects can work with or against each o
in an explicit way, resulting in a new range of behaviors. W
obtained a general expression for the energy as a functio
the radii and permeabilities in the limit of dilute media.
particular, for fixed distance between the shells, in the lim
of the radii approaching infinity, we regain, in essence,
standard expression for the Casimir energy between par
dielectric media. However, now the sign of the interacti
energy in Eq.~19! is determined by the relative size of the
permeabilities: for a shell enclosed between two vacuua
get attraction between the boundaries, as it should be for
standard Casimir two-plate case. Repulsion is obtained w
the permeability of the shell itself is between the permea
ity of the inner substance and the permeability of the ou
substance~i.e., m I,m II,m III or m I.m II.m III ).5
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APPENDIX

Two integration formulas are needed to calculate theI’s:

R215E 1

u
g2~u!du52

e22ivu

64p2u2 , ~A1!

R35E u3g2~u!du52
e22ivu

32p2 S u2

2
2

1

2v22 i
u

v D . ~A2!

5The repulsion of plates in such a case can be confirmed b
direct calculation in the usual geometry of two infinite dielectr
diamagnetic media seperated by vacuum. See@25# for a discussion
of repulsive Casimir and van der Waals forces.
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