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Thick shell Casimir effect
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We consider the Casimir energy of a thick dielectric-diamagnetic shell under a uniform velocity of light
condition as a function of the radii and the permeabilities. We show that there is a range of parameters in which
the stress on the outer shell is inward, and a range where the stress on the outer shell is outward. We examine
the possibility of obtaining an energetically stable configuration of a thick shell made of a material with a fixed
volume.
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I. INTRODUCTION since its introduction by Brevik and Kolbenstvddi4—17.
A medium with the UVL property has in many cases cutoff-

It is well known that the fluctuations of electromagnetic independent values for the Casimir enefgge als§18-2Q
fields in vacuum or in material media depend on the boundfor the Casimir energy of a cylinder with a UVE In cases
ary conditions imposed on the fields. This dependence giveghere this condition is not satisfied there are problems of UV
rise to forces which are known as Casimir forces, acting orflivergent terms which are proportional to the volume in
the boundaries. The best known example of such forces pé/hwh the velocity of light is different from the velocity of
the attractive force experienced by parallel conducting platefight in the background. . _
in vacuum[1]. Casimir forces between similar, disjoint ob- Ve Will use the UVL condition for our thick shell.
jects such as two conducting or dielectric bodies are known N all of the above mentioned cases, namely, the conduct-
in most cases to be attractij2] and are sometimes viewed N9 sphere, dielectric ball, and dielectric-diamagnetic t_)aII
as the macroscopic consequence of van der Waals arfiith UVL, the resu!tant. pressure was found to be repulsive.
Casimir-Polder attraction between molecules. In order to obtain diverse behaviors we mix the case of

However, Boyer[3] showed that the zero point electro- d?sjoint_bodies(wher_e there is usually attr_actibrand the
magnetic pressure on a conducting shell is directed outivarddi€lectric ball scenario as follows: We consider the case of a
In this paper we address the question: can there exist a corfftick shell(Fig. 1), with three regimes of constant permeabil-
pact ball for which the Casimir forces would not expand the'ty (inner, middle, and out@y,, w;, and, , under a UVL.
ball to infinity? We look for such behavior in a simple model. ¢ondition. In this case there are two competing effects, i.e.,

In view of the dominance of the Casimir forces at the Nteraction between the inner and outer boundaries, and the
nanometer scale, where the attractive force could lead to ré€PUISIve pressure experienced by each boundary.
strictive limits on nanodevicef4], the study of repelling Using a formula derived ih21] we show in Secs. Il and
Casimir forces is of increasing interest. Indeed, Boyer, folll that for a dilute mediunti.e., assumingu,— u,|<1 and
lowing Casimir's suggestion, studied an interplane Casimit#1—#u|<1) the energy of the thick shell is
force with one plate a perfect conductor while the other is

infinitely permeable. He showed that, in this case the plates . r3(r2—5R2)
repel[5]. This problem was since reconsidered &7]. Ec(r,R) = g5 KR T K kKR53 3

In addition to the Casimir effect for a conducting spheri- 1287R Ar=RAr+R)*m
cal shell, various cases of material balls have been consid- 5

ered in the literature. The case of a ball made of a dielectric

material was considered by many authors and exhibits a

strong dependence on cutoff parame{&s13. The case of

a dielectric-diamagnetic ball has also been extensively studyherer andR are the inner and outer radii, respectively, and

ied, especially under the condition ef.=1, which will be  the parameters, and g are defined in Sec. Ill. From this

referred to as the uniform velocity of ligluVL) condition,  expression one can easily obtain the energy of a single ball
by taking the limit ofR to infinity, and also the energy of two

2—
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TEmail address: ady@physics.technion.ac.il 2A heuristic argument for this statement goes as follows: the zero
*Email address: revzen@physics.technion.ac.il point energy of the electromagnetic field is a sum over the eigen-
IAssuming that zero point forces are in general attractive, Casimifrequencies of the systel, w, . For a UVL medium one can write
considered a semiclassical toy model for the electron in which th&e~3,ck;, since the factor is common to all the media; thus the
Coulomb self-repulsion is balanced by a Casimir type attractiongeometric information on the system enters via the alloWsdin
One of the consequences of Boyer’s calculation is that since théhe limit of high k this expression behaves exactly like the free
pressure on a conducting sphere is outward it cannot balance theicuum energy wittex=c 2 and the sum becomes regularizable
Coulomb repulsion in Casimir’s model. by subtraction of the free vacuum energy.
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- ([VI?=[Vlog u][V] - w?eu)D = — ul. 3
/ \ My

- \ The correlation function of electromagnetic fields in
/ R \UH \ vacuum, wheree=u=1, will be denotedD,. It is the in-
verse of the operatof ¥ ]?°— w?) and is well known. It is
given by the formuld22,23

/

Yy ‘\\\L\
1 1 . /
. / Do(w;r,r')y=—|1+ ?V@)V mexﬁlwh—r |)’
\ o (4)
//
.
V We now wish to use the knowd, to expresD via a Born

series. Define
FIG. 1. Athick dielectric-diamagnetic shell.

parallel infinite dielectrics by taking both of the radii to in- P=0?1(1— pe) (5
finity while keeping a finite distancé=R—r.
Next, in Secs. IV and V we investigate this expression for
the energy and show that there is a range of parameters sughd
that the force on the outer shell is attractive.
Il. ENERGY OF THE ELECTROMAGNETIC Q [Viog(u)IV]: ©)
FLUCTUATIONS

. . . ) . It follows from Eqg. (3) that as an operatdd satisfies
In this section we briefly review the Green’s function a3 P

method for calculation of Casimir energiesse[22] and[21]

for detaily. To calculate the Casimir energy of a medium D={[I—(P+Q)Dg]Dy "} *u=D[l - (P+Q)Do] *p.
under the UVL condition, we use the perturbative technique (7)
suggested if21]. There, the Born series for the correlation

function D, (w;r,r’) of the electromagnetic fields in a ma- o . .

terial medium is presented. The correlation functbp is ~ 1husD is given by the following formal series:

defined by

D=Dou+Do(P+ Q)Dou+Do(P+ Q)Do(P+ Q)Dou

. 1 — ” iwtyR (t. ’
Di(w;r,r )—fo e'“'Dy(t;r,r')dt ) . ®)

where
We now impose the uniform velocity of light condition in

DR(t,—ty;r,r') the medium by settingu=1. This eliminates theP terms

. , , and we are left with the expansion
ANt A ) = A ) Ai(r ), ta<<ty,
0 otherwise

D=Dou+DoQDou+DoQDeQDou+"-. 9)

is the retarded Green’s function. Throughout we use the
gaugeA,=0, so that the indicesk range over 1, 2, 3 and
is a 3X 3 matrix.

The correlation functionD is known [22] to be the
Green’s function for the equatiain units wherei=c=1)

In the dilute limit only the first terms are used for actual
calculations.

The correlation functioD can be used to calculate vari-
ous properties of the electromagnetic field. We use it to cal-
([V]e Y{V]-w2e)D=—I, 2 culate the energy density of the field by using the relations

where [a] stands for a matrix whose elements di];, ) —  2p

= €xa; and] is the identity operator, which, in coordinate (BB = 0" (AR,
space is just the 8 3 identity matrix times a delta function.

In EqQ. (2), €is the permittivity andu the permeability of the and

medium. In the following we assume thafr) ande(r) are

scalar functiongof course, in the general case battand e R _
are tensors This equation can also be written in the form (BiBy) =V X(AA) XV,
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where the parentheses stand for the Fourier transform withnd the integration domaiff is such thatu, v, ands can
respect to time of the correlation function form a triangle. The functiom, is given by
A DA ,0)+A(r 0)A(r,1)). piws

At a temperaturel = 1/8 this correlation function of the e 1
fields A, is related to the retarded Green’s functiorby the 92(8)= 327725<§_|w)
fluctuation dissipation theoref22]:

(14)

We consider a shell of thicknegs—r with inner radiusr

_ Bw _ and outer radiu®k. The permeability of the shell ig,, (Fig.

(A(NA;(r')),= —|4wcot*<7)[Dij(r,r’)—Dji(r’,r)]- 1), it is imbedded in a medium with permeability;; , and
(10) its core has permeability, . We definex, =log(u,/u,) and

xr=l0g(uy / per) -
Thus, at zero temperature, the energy density of the electro- We now calculate the Casimir energy of the thick shell
magnetic field is using Eq.(12). In our caseu is a sum of two radial step

functions, andu’(s) is just a pair of delta functions a

1 1 dow =r andR. Thus the integration ovesin Eq. (12) becomes
p(r,w)= E(e(r)(E(r)z)Lﬁ- W(B(r)z)w)ﬁ immediate and yields the energy density
By
= 4i lim Im Tr( w?e(r)D(r,r") pr'P(w)=—470? C0t|‘<7) Im[ &, 1(r) + kgl (R)].
T (15)
+ %ﬁx DXV |do, (12) Thel's in Eq. (15) can be explicitly calculated:
ur
2r u3 R+r[u4_(R2_r2)2]
where we have chosen to neglect the dependence of the perJ (r)= s fo 792(U)+ KRJR_r ng(u)

meability x and permittivity e on the frequencyo. Inserting (16)
the expansiort9) in Eq. (11), one can obtain a series for the

energy density of fluctuations of the electromagnetic field. Itand

was shown in21] that the first contribution to the Casimir

energy densityi.e., the energy of the electromagnetic field in 2rRU3 Rt [u*—(R?—r?)?]
the presence of external conditions minus the energy densit)J(R): KR o 792(“)4r Ky LH ng(u),
of the electromagnetic field without therasomes from the (17)
term DyQDyQDou in Eq. (9).2 For a dilute medium this
term gives the dominant contribution to the Casimir energyso that
Bw arud
Il. CASIMIR ENERGY OF A THICK SHELL p12(0)= — 472 Cot,{ 7) |m( Kff 5 9w
The Casimir energy petw is obtained via Eq(11) by the °
integration of p(r,w)— (contribution of Dy) over space. , [2R u®
This yields the following general formula for the density of + KRL 792(‘1)
the Casimir energy of a medium with a radially symmetric
permeabilityu [21] assuming the UVL property, and dilute- R+r[ut—(R?—r?)?]
ness: +2KrKRf ng(u)).
R—r
(18)

2 w)=— 2 B_w - ’
pi(w)=—4mw”cot 5 Im | dsli(s)[logu(s)]’,
0 We can identify the first two terms as the densities of Ca-

(12 simir energy perdw for balls of radiir and R. The total
h Casimir energy can now be obtained by integration of the
where density(18) over the frequencies using Eqs(26) and(27).
4 s 22 The result is
)= [ dudp @ ST o :
(s)= du 20 g2(W)[log u(v)] I 5 " r3(r2—5R?)
(13 (" R)= ogrR R X Ry TR TR %
+ K? > (19
3To see this, note that thB, term is just the contribution of a Kr128mr

homogeneous vacuum, which we subtract. The terms of the form o . ) )
Dy9OD,Qu can be shown to cancel between the electric and magThis is our final expression for the energy of a thick shell,
netic correlation functions. where the assumption of diluteness implies|, | kg|<1.
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Let us check that this result coincides with the known 0.04
result for a single sphere whddgoes to infinity. To do so
we expandk, in terms of the diluteness parameter (u, 0.02
— i) (g + ) which is commonly used in the literature:
0.05 0.1 0.15 2 0.25 0.3
M 1-¢ & -0.02
k=log—=log——=—-2&{—-2—+---. (20
00, 0T T %2
-0.04
Substituting this expansion in E¢L9) and taking the limit ~0.06
R— o, we immediately regain the usual result for the energy . ) .
of a dielectric-diamagnetic ball17,24, namely, Ec(r,») FIG. 2. Pressure on outer shell as function of the radius ratio.

=5§2/327r+(’)(§4). This energy yields an outward pres- The Casimir force changes directionrdR~0.19.
sure on the ball.

Note also that the Casimir energy of two parallel dielec- A ki =—1r
trics per unit area can be obtained from E#9) by taking The pressure on the outer shell is
the limit of large radii. To see this we keep=R—r finite ) 3 2 5
while taking the limitr,R—o, and divide by the surface £ R ( 5  r'R(r°+5R% (24)
area, thus obtaining RT47°R?| 128R? (r—R)*(r+R)*/)"

K, Kr The sign of this expression depends only on the ratio
Ec(d)= 327208 (21) =r/R. The pressure can be written in the form
k& [ 5 c3(c2+5)

To illustrate the broad range of behaviors that are possible 7R=Ezﬁz(l—28— (c—D%c+1)?) 0<c<1.
from an expression for the energy such as @§), we study (25)
in more detail two cases.

(1) k,=—xgr. This happens when the inner and outerfFor a constant outer radili the behavior of the pressure as
material are the same, e.g., one can imagine a thick material function of the raticc is indicated in Fig. 2. One can see
shell in vacuum. that at a radius ratio of approximately 0.19 the Casimir pres-

(2) kr=xg. In this case the ratio of magnetic constantssure suddenly changes sign and becomes an inward pressure.
between the inner and middle materials is the same as thgowever, the pressure on the inner shell is always directed

ratio between the middle and outer materials. outward so that the inner and outer regions attract. This at-
traction may be balanced by adding the compression resis-
IV STRESS tance of the middle medium, or by adding the volume depen-

dence ofu. In the case that<0.19R, the pressure on the
Now we use the expression for the enefdj9) in order to  inner shell is larger than the pressure on the outer shell, so
evaluate the Casimir stress on the shells. The pressure on ttieat one can imagine the two shells growing until they reach

outer shell is given by the 0.19 ratio and then the outer shell will start contracting.
This result is not too surprising. If one considers two con-

1 9 1 r3R(r2+5R?) i, kr ducting shells that are very close, there will be attraction
Fr=— 752 5Ec= 7252 ( 7 7 between the shells of the order of magnitude of the attraction
47R” oR 47°R (r=R)*(r+R) between conducting plates. This attraction will lose its domi-

5K% nance once the radii become far apart in magnitude and then
+ —2> , (220  each shell will experience its own outward Casimir pressure.
128R However, in order to know if the outer radius stays finite or
goes to infinity, it is necessary to introduce the law by which
while the pressure on the inner shell is given by the smaller radius changes as we change the outer radius. An
example of such a situation is given in the next section.

_ 1 4
F="am ot
In this case the pressure on the outer shell is outward for
1 r2(r4— 10r2R%— 15R% k, K 52 all R. The inner shell will be subject to an outward pressure
r r
Ec=g722 A-RAIRA 1282 @3

“In this section we considered = — x but the qualitative results
One may recognize the self Casimir force acting on the inneill hold wheneverx, and ks have different signs, as long as they
and outer shells in the terms independent @ff R, respec- are both small and of the same order of magnitude, so as to satisfy
tively. We now turn to examine two cases. the validity of Eq.(12).
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0.2 VI. DISCUSSION
0.18 One of the most intriguing aspects of the Casimir force is
0.16 its sign: this force has been shown to exhibit different behav-
0.14 ior in different problems. It seems that the sign of the force
) depends on the balancing of several effects, such as a ten-
0.12 dency to minimize the average curvature of the boundaries,
and on the other hand the interaction between different
1.011.02 .03 1.04 1.05 patches of the boundary. In the calculations here, which are
0.08 confined to the case of uniform velocity of light, we have

shown how these effects can work with or against each other
FIG. 3. The potential of a thick shell with a fixed volume as a in @n explicit way, resulting in a new range of behaviors. We
function of R, for x,= kg . There is a clear minimum &=1.01.  Obtained a general expression for the energy as a function of
the radii and permeabilities in the limit of dilute media. In
particular, for fixed distance between the shells, in the limit
of the radii approaching infinity, we regain, in essence, the
standard expression for the Casimir energy between parallel
dielectric media. However, now the sign of the interaction
energy in Eq(19) is determined by the relative size of their
V. THICK SHELL WITH A FIXED VOLUME permeabilities: for a shell enclosed between two vacuua we
pJet attraction between the boundaries, as it should be for the
standard Casimir two-plate case. Repulsion is obtained when
the permeability of the shell itself is between the permeabil-
ity of the inner substance and the permeability of the outer
substancei.e., w < < g OF w> >y ).>

as long asR>3.46. For R<3.4G the pressure will be an
inward one on the inner shell. We return to this situation in
the next section.

In the previous section we calculated the pressure assu
ing that the volume of the inner ball is fixed. Another inter-
esting model is to consider the volume of the thick shell
itself as constant. Thus we can assume that(4/3)(R3
—r®) remains constant, and look for a minimum of the en-
ergy under this condition. ACKNOWLEDGMENTS
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the tendency of each separate boundary to grow. This is in- APPENDIX
deed what happens in the case where — kg .
However, for the second possibility, namely, = «g, Two integration formulas are needed to calculateltbie
there is repulsion between the boundaries. This protects the 1 —2iwu
shell from growing to infinity and a stable minimum of the R, = f ng(u)du= =l (A1)
ar

potential can be found. A typical example is illustrated in
Fig. 3, where the minimum of the potential is fR=1.01,
r=0.31, assuming that the volume of the substance in the Rng udg,(u)du=—
middle region is kept constant atr/B.
Another possibility is to keep the distance between the———
shells ConStantimagine that the inner and outer boundaries 5The repu|sion of p|ates in such a case can be confirmed by a

e—Ziwu (UZ 1

W i E) . (AZ)

2 20 o

are attached by means of stiff rods of constant lengduali-  direct calculation in the usual geometry of two infinite dielectric-
tatively, the results are then similar to the results discusse@iamagnetic media seperated by vacuum. @& for a discussion
above for the cases, = — kg and k, = k. of repulsive Casimir and van der Waals forces.
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