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When the Casimir energy is not a sum of zero-point energies
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We compute the leading radiative correction to the Casimir force between two parallel plates in thelF4

theory. Dirichlet and periodic boundary conditions are considered. A heuristic approach, in which the Casimir
energy is computed as the sum of one-loop corrected zero-point energies, is shown to yield incorrect results,
but we show how to amend it. The technique is then used in the case of periodic boundary conditions to
construct a perturbative expansion which is free of infrared singularities in the massless limit. In this case we
also compute the next-to-leading order radiative correction, which turns out to be proportional tol3/2.
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I. INTRODUCTION

An important question in quantum field theory is the r
sponse of the vacuum fluctuations to perturbations of
space-time manifold: in the absence of a consistent quan
theory of gravitation in four space-time dimensions one
led to study vacuum fluctuations of matter or gauge fields
the presence of an external~i.e., classical! gravitational field
@1#. One may also ask how the properties of a field theory
affected by the topology of space-time or by the presenc
boundaries, which impose constraints on the fields. For
stance, periodic boundary conditions on a spatial sector a
key ingredient in compactification schemes of Kaluza-Kle
theories@2#. Boundary conditions~BC! are also used to de
scribe complicated physical systems in a simplified ma
ematical framework. In the electromagnetic Casimir eff
@3# one considers classical conductor plates~perfect mirrors!,
with the field satisfying Dirichlet BC on them. The anal
gous condition in the MIT bag model is the perfect confin
ment of quarks and gluons to the interior of hadrons@4#. In
thermal field theory, periodic or antiperiodic BC in th
imaginary-time are the starting point of the Matsubara f
malism @5#. Finally, the study of surface effects on the cri
cal properties of a~magnetic, binary liquid, etc.! system
leads in many cases to the analysis of scalar field theo
subject to certain boundary conditions@6#.

Although BC have been extensively studied in quant
field theory models, there remains a lot of questions to
answered. In this paper we will investigate some unus
features of periodic and Dirichlet BC on one spatial coor
nate. In the remainder of the Introduction we will give som
motivations to the study of these particular types of bound
conditions.

Quantum field theories in compactified spaces~i.e., with
periodic boundary conditions in some spatial directio!
have been the subject of considerable interest in the litera
@7–9#. The calculation of the effective potential in spontan
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ously broken symmetry theories shows that the compac
cation process may introduce a mechanism for dynam
symmetry restoration. Generation of a dynamical mass
connected with the inclusion of a new scale, the compac
cation radiusR.

There is a complete mathematical analogy between c
pactified field theory and thermal field theory~TFT! in the
Matsubara formalism. In the latter, the inverse temperat
b51/T is the compactification radius in the imaginary-tim
direction. The well-known fact that thermal effects do n
lead to new ultraviolet divergences in TFT~besides the usua
ones found atT50) @5# applies as well to compactified fiel
theories. On the other hand, the infrared properties of
TFT are very different from the ones at zero temperatu
The free energy of masslesslF4 theory in three spatial di-
mensions develops new infrared divergences at orderl2 in
perturbation theory@5#. The dominant infrared divergence
come from then50 mode of the loop momenta. A prope
treatment of the collective effects leads to a correction
orderl3/2 to the free energy.

The infrared behavior of the compactified field theo
mimics the one at finite temperature, at least in the cas
one spatial compactified coordinate. In a perturbative tre
ment, then50 mode generates new infrared divergences
the compactified version of thelF4 theory. This seems to be
not so well-appreciated in the literature. To fill this gap, w
apply the resummation method developed by Braaten, P
ski and others~in the context of TFT! @10–12# to the com-
pactifiedlF4 theory.

Symmetries in quantum field theory put very stringe
conditions on the perturbative renormalization of a mo
and in its physical predictions. Lorentz invariance~rotational
invariance in the Euclidean case! is of paramount importance
in this respect. However, external conditions or dynami
effects may lead to its breakdown. There is a growing int
est on effective field theories in which this occurs~e.g., non-
commutative field theories@13#, anisotropic systems@14#,
and Chern-Simons theories@15#!. Theories defined in finite
volumes or in the presence of macroscopic bodies~as in the
Casimir effect! may provide useful insights on the cons
©2002 The American Physical Society04-1
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quences of lack of Lorentz symmetry to the renormalizat
program.

Recently, there has been much effort in the computa
of radiative corrections to the Casimir energy, specially
QED @16#. One of the purposes of this paper is to discuss
alternative method to compute such corrections. For simp
ity we work with thelF4 theory subject to Dirichlet bound
ary conditions on a pair of parallel plates. The method
based on a resummation of the perturbative series for
two-point Green function, and leads to a Klein-Gordon eq
tion in which the one-loop self-energy acts as an effect
scalar potential. In four space-time dimensions this equa
can be solved exactly in the massless case. The new s
~resummed! eigenvalues contain radiative corrections of
orders inl, and reduce to the free ones forl50. The com-
putation of the sum of effective zero-point energies, inclu
ing non-perturbative corrections and renormalization issu
is discussed in detail.

The plan of the paper is as follows. In Sec. II we fix t
conventions and discuss the resummation technique in
lF4 theory with Dirichlet boundary conditions. We solve th
effective Klein-Gordon equation, and obtain the ‘‘improve
eigenvalues. The solution is used to obtain the resumm
Casimir energy, including radiative corrections. In Sec.
we discuss the resummation of the vacuum energy in
case of periodic boundary conditions; this sheds some l
on the results of Sec. II. In the Conclusion we discuss
drawbacks of this method as well as other minor points.
nally, three Appendixes collect some mathematical res
used in the paper.

II. DIRICHLET BOUNDARY CONDITIONS

Boundary conditions breaking the full Lorentz invarian
in general pose new problems to the renormalization p
gram. For some geometries and boundary conditions~de-
pending also on the spin of the field! it may be necessary to
introduce surface counterterms besides the bulk ones.
instance, in the MIT bag model the free energy is ill defin
at one-loop due to an extra singularity which shows up as
surface is approached@17#. The standard recipe associates
free parameter to each distinct singular term, included a
new counterterm in the starting Lagrangian. If this proced
continues to all orders, with the consequent loss of predic
power, we say that the theory is non-renormalizable due
the boundary conditions.

In a remarkable paper, Symanzik gave strong argum
showing the renormalizability of theF4 theory in the pres-
ence of flat boundaries@18#. In particular, he showed that th
renormalized Casimir pressure for disjoint boundaries
Dirichlet BC is finite to all orders in perturbation theory. H
also verified explicitly that no surface counterterms a
needed in the computation of the two-loop vacuum ene
F4-type theories are still renormalizable for more gene
boundary conditions and surfaces, but at the price of in
ducing surface counterterms@6,18#. We wish to point out
here that many proposals have been made in order to a
the surface-like singularities. These include, among oth
the ‘‘softening’’ of the Dirichlet BC@19,20# or treating the
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boundaries as quantum mechanical objects with a non
position uncertainty@21#. However, this question is outsid
the scope of our present discussion.

A key ingredient in our computation of the Casimir e
ergy is the self-energy of the field, as it determines the s
in the single-particle energy levels. Since there is some
agreement among existent results in the literat
@7,8,18,25#, we present its computation in some detail.

A. Self-energy

We work in D5(d11)11 dimensional Minkowski
space-time, and definexm[(t,x,z), with x5(x1, . . . ,xd).
The renormalized Lagrangian reads@\5c51, hmn5diag
(1,2, . . . ,2)#

L5L01LI5H 1

2
~]F!22

1

2
m2F2J 1H 2

l

4!
F41LctJ ,

~1!

with Lct the counterterm Lagrangian.
We impose Dirichlet BC on a pair of plates atz50 and

z5 l : F(z50)5F(z5 l )50. The bare Feynman propaga
tor with Dirichlet BC may be written as an expansion
multiple reflections@22#:

DF~x,x8!5 (
n52`

`

@DF
(0)~xn2x18 !2DF

(0)~xn2x28 !#, ~2!

wherexn5(t,x,z12nl), x68 5(t8,x8,6z8), andDF
(0) is the

bulk free propagator, which forD.2 is given by@23#

DF
(0)~x!

5
1

~2p!D/2 S m

A2x21 i e
D (D22)/2

K (D22)/2~mA2x21 i e!,

~3!

with A2x21 i e5 iAx2 if x2.0 (e→01). Actually, what
we are interested in isDF(x,x). It follows from Eq. ~2! that

DF~x,x!5 (
n52`

`

@DF
(0)~2nl !2DF

(0)~2z12nl !#. ~4!

The termDF
(0)(0) contains the usual UV singularity. It can b

removed, as usual, by a mass renormalization.
In the massless case the bulk free propagator gets sim

fied, and it is possible to find a closed expression forD(x)
[DF(x,x)2DF

(0)(0). Using

DF
(0)~x;m50!5

GS D

2
21D

4pD/2
uxu22D, ~5!

one finds, forD54,
4-2
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D~x;m50!5
1

16p2l 2 F2 c8~1!2c8S z

l D2c8S 12
z

l D G ,
~6!

wherec(x) is the digamma function@24#. Equation~6! can
be simplified to

D~x;m50!52
1

16l 2 Fcsc2S pz

l D2
1

3G ~D54!. ~7!

Let us take a closer look at theD53 case, keepingm
Þ0. We obtain from Eqs.~3! and ~4!, after changing the
summation variables and using the explicit form ofK1/2(x),

D~x!5
1

8p l F2e22mlS~2ml,1!2e22mzSS 2ml,
z

l D
2e22m( l 2z)SS 2ml,12

z

l D G , ~8!

where

S~a,b![ (
n50

`
e2an

n1b
. ~9!

The massless limit must be taken with care, as each of
series in Eq.~8! is logarithmically divergent. As we sha
show, the divergent terms cancel in the complete formula~8!.
Indeed, the asymptotic limit ofS(2ml,b) asm→0 is given
by

S~2ml,b!5 (
n50

`

e22mlnS 1

n1b
2

1

n11D1 (
n50

`
e22mln

n11

;
m→0

2g2c~b!2 ln~2ml!1O~ml!, ~10!

whereg50.577 . . . is theEuler constant. The logarithmi
terms cancel in Eq.~8!, so that we can now take the lim
m→0 safely, obtaining

D~x;m50!5
1

8p l F2g1cS z

l D1cS 12
z

l D G ~D53!.

~11!

The renormalized one-loop self-energy is given
S (1)(x)5(l/2)DF(x,x)1dm2. The mass counterterm i
fixed by the condition liml→`S (1)50. This amounts to re-
move the contribution of the bulk free propagator from E
~4!. With this choice of mass renormalization we ha
S (1)(x)5(l/2)D(x). Therefore, the self-energy is infrare
finite in the massless case also atD53, in disagreement with
Ref. @25#. @However, it is infrared divergent in the case
Neumann boundary conditions. The propagator is then gi
by Eq. ~2! with the minus sign on its right-hand side~RHS!
replaced by a plus sign. As a consequence, the logarith
terms in the massless limit ofD(x) do not cancel.#
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From now on, we shall focus our attention on the ma
less case atD54.

B. Radiative corrections to the Casimir energy: A heuristic
approach

Computations of the Casimir energy in the literature a
restricted to perturbation theory. A non-perturbative calcu
tion would be a very interesting result. Our goal here is m
modest. We will discuss the computation of the Casimir e
ergy in the approximation where the two-point Green fun
tion is dressed with an arbitrary number of insertions of
one-loop self-energy~‘‘daisy’’ resummation!. This approxi-
mation contains the leading correction in a 1/N expansion.
~In our case, however,N51. With this caveat in mind, let us
proceed.! The Casimir energy will be given formally by

E5
1

2 (
a

va , ~12!

where va are the positive poles of the dressed two-po
function G̃(2) in the frequency domain.

To computeG̃(2) we note that it satisfies

@]x
21S (1)~x!#G̃(2)~x,x8!52 i d (4)~x,x8!. ~13!

As usual, the solution to Eq.~13! can be written as

G̃(2)~x,x8!52 i(
a

fa~x!fa* ~x8!

La
, ~14!

whereLa and fa(x) are the eigenvalues and~normalized!
eigenfunctions, respectively, of the Klein-Gordon opera
]21S (1):

@]21S (1)~x!#fa~x!5Lafa~x!. ~15!

Since S (1)(x) is a function ofz alone, we can reduce th
above equation to an ordinary differential equation by w
ing f(x)5e2 ivt1 ip•xw(z):

H 2
d2

dz2
2s22

p2g

l 2 Fcsc2S pz

l D2
1

3G J w~z!50, ~16!

wheres2[L1v22p2 and g[l/32p2. Now we make the
change of variablez5 ly /p and get

S d2

dy2
1k21

g

sin2 y
D w~y!50 S k2[

l 2s2

p2
2

g

3D . ~17!

Equation ~17! may be viewed as the time-independe
Schrödinger equation for a particle of massm̃51/2 moving
in the potentialV(y)52g csc2 y ~inverted Poschl-Teller!,
with energyE5k2. Its solution is discussed in Appendix A
In particular, it is shown thatk25(n1s)2 (n51,2, . . . ),
with s[ 1

2 (211A124g). From the definition ofk2 ands2

it follows that the eigenvalues of the Klein-Gordon opera
have the form
4-3
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L52v21p21
p2

l 2 F ~n1s!21
g

3G ~n51,2, . . .!.

~18!

From Eqs.~14! and~18! it follows that the~positive! poles of
G̃(2) are given by

vn~p!5Ap21
p2

l 2 F ~n1s!21
g

3G ~n51,2, . . .!.

~19!

Before we proceed with the calculation of the Casim
energy, a remark is in order here. As we have seen,
~renormalized! one-loop self-energy is a function ofx. It may
be tempting to interpretS (1)(x) ~more generally, m2

1S (1)(x)) as a position-dependent~squared! mass of the
field. A problem would then occur in regions whe
S (1)(x),0, for this could imply the presence of tachyons
the theory. For that reason, Ford and Yoshimura@7# argued
that models which exhibits this behavior~such as the one we
are considering! are unphysical. However, the analysis of E
~16!, summarized in Appendix A, shows that its solutions
not have imaginary frequencies as long asl,lcrit58p2

~which is anyway well outside the range of validity of pe
turbation theory!. The one-loop effective theory is consiste
in this case. On the other hand, forl.8p2 the Schro¨dinger
equation ~16! leads to an energy spectrum which is u
bounded from below, rendering the associated effective fi
theory ill-defined. This solves a long-standing problem
interpretation.

Substituting the eigenfrequencies~19! into Eq. ~12! we
obtain the following expression for the Casimir energy p
unit area:

E5
1

2
m122n (

n51

` E d2p

~2p!2 H p21
p2

l 2 F ~n1s!21
g

3G J nU
n51/2

.

~20!

The formal sum over zero-point energies has been ana
cally regularized; we shall setn51/2 at the end of the cal
culation. The factorm122n, wherem is a mass paramete
keeps the RHS of Eq.~20! with the dimension of energy pe
unit area.

Integrating Eq.~20! over p, we get

E5
m122n

8p

G~2n21!

G~2n! S p

l D 2(n11)

HS 2n21;s,
g

3D ,

~21!

where the functionH(z;s,a2) is defined as

H~z;s,a2![ (
n51

`

@~n1s!21a2#2z. ~22!

The series converges forRz.1/2. The analytical continua
tion of H(z;s,a2) to the whole complexz plane is performed
in Appendix B. Substituting the result into Eq.~21! we ob-
tain @26#
04500
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E5
m122n

8p

G~2n21!

G~2n! S p

l D 2(n11)H 1

2 F ~11s!21
g

3Gn11

1 i E
0

`

dt
f n~11 i t !2 f n~12 i t !

e2pt21
2

~11s!2n13

2n13

3FS 2n21,2n2
3

2
;2n2

1

2
;2

g

3~11s!2D J , ~23!

wheref n(x)[@(x1s)21g/3#n11 andF(a,b;g;z) is the hy-
pergeometric function. From the definition of the latter
follows that E has a simple pole atn51/2 ~in fact, it has
poles atn523/2,21/2,1/2,3/2, . . . ).This requires thatE be
renormalized before we setn51/2. In general, this is done
by subtracting fromE its value atl→`. Unfortunately, such
a prescription does not work in the present case, since,
cording to Eq.~23!, the Casimir energy per unit area has t
form E5C(n)/ l 2(n11).

One can obtain a hint on what is going wrong by noti
that the residue ofE at n51/2 is of second order ing ~or l).
This is consistent with the fact that we have worked with t
one-loop two-point Green function, which is~formally! cor-
rect only to first order in the coupling constant. Since t
lF4 theory is perturbatively renormalizable inD54, one
may suspect that in order to obtain a finite~or at least renor-
malizable! E to orderln one must work within an approxi
mation in which the two-point Green function is dressed w
the n-loop self-energy. As we show below, this is not suf
cient or necessary. In spite of that, the argument suggests
Eq. ~23! cannot be trusted beyond orderl.

Expanding the RHS of Eq.~23! in a power series inl and
makingn→1/2, we obtain

E5
1

l 3 F2
p2

1440
1

l

9216
1•••G . ~24!

The first term is the usual free Casimir energy~per unit area!.
The second term is the leading radiative correction to it
overestimates the correct result@18# by a factor of 2. This
discrepancy occurs because the method we have use
compute the Casimir energy only works in the absence
interactions. To show this, we start by noting that one c
define the Casimir energy as

E5E dD21x^0uT00~x!u0&, ~25!

whereTmn is the energy-momentum tensor. In the case
are considering~the masslesslF4 theory inD54), we have

T005
1

2
~]0F!21

1

2
~¹W F!21

l

4!
F4. ~26!

Moving the differential operators outside the brackets,
can rewrite the vacuum expectation value ofT00 in terms of
n-point Green functionsG(n):
4-4
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^0uT00~x!u0&5 lim
x8→x

1

2
~]0]081¹W •¹W 8!G(2)~x,x8!

1
l

4!
G(4)~x, . . . ,x!. ~27!

On the other hand, using Eq.~13! and the spectral represen
tation of G̃(2), Eq. ~14!, one can easily show that

1

2 (
a

va5E dD21x lim
x8→x

1

2
@]0]081¹W •¹W 8

1S (1)~x!#G̃(2)~x,x8!. ~28!

It follows that the sum of~one-loop! zero-point energies
differs from the true vacuum energy by

DE5E dD21xF lim
x8→x

1

2
~]0]081¹W •¹W 8!DG(2)~x,x8!

2
1

2
S (1)~x!G̃(2)~x,x!1

l

4!
G(4)~x, . . . ,x!G , ~29!

whereDG(2)[G(2)2G̃(2). While the first line of Eq.~29! is
formally O(l2), the second one isO(l). This explains why
the second term in Eq.~24! is incorrect.

It is important to note that Eqs.~12! and~26! would lead
to distinct results even if we had worked with the comple
two-point Green function. The difference between the
would then be given by
m
s
d

-

it

04500
DE5E dD21xH 2
1

2E dDyS~x,y!G(2)~y,x!

1
l

4!
G(4)~x, . . . ,x!J . ~30!

A perturbative evaluation of the above expression shows
DE would still be of orderl. Physically, this discrepancy i
due to the fact that, in contrast with the free theory, t
interacting theory is not equivalent to a collection of ind
pendent harmonic oscillators. The sum of zero-point en
gies, Eq.~12!, takes into account only the Lamb shift on th
single-particle energy levels caused by the interaction;
differenceDE accounts for the residual interaction amo
the ~anharmonic! oscillators.

The above discussion also shows that the Casimir ene
is not determined solely by the two-point Green function, b
also ~in the lF4 theory! by the four-point function. In par-
ticular, in order to consistently remove theO(l2) UV singu-
larity in Eq. ~23! one must not only obtainG(2) to that order,
but alsoG(4) to O(l). These ideas will be illustrated in th
next section in the simpler case of periodic boundary con
tions.

III. PERIODIC BOUNDARY CONDITIONS

A. Conventional perturbation theory

The free Feynman propagator for the fieldF obeying
periodic boundary conditions in thez-direction, F(t,x,z
1R)5F(t,x,z), is given by
DF~x,x8!5
i

RE dv

2p (
n52`

` E ddp

~2p!d

e2 ipm(xm2xm8 )

v22p22qn
22m21 i e

5
1

2R (
n52`

` E ddp

~2p!d

e2 ivn(p)ut2t8u1 ip•(x2x8)1 iqn(z2z8)

vn~p!
,

~31!
op
where pm5(v,p,qn), qn52pn/R, and vn(p)
[Ap21qn

21m2. SinceDF(x,x8)5DF(x2x8), such bound-
ary conditions do not break translational invariance.

The renormalized vacuum energy density may be co
puted from Eqs.~25!–~27!, but its perturbative expansion i
more easily derived from the vacuum persistence amplitu

«5 lim
T→`

i

VT
lnF E DF expS i E dDxLD G1L. ~32!

The last term in Eq.~32! is fixed by the renormalization
condition limR→`«(x)50. Due to the translational invari
ance the vacuum energy density does not depend onx. ~A
remark on notation:« denotes the Casimir energy per un
volume, while E denotes the Casimir energy per unitarea.
They are related, in the case of periodic BC, by«5E/R.!
-

e:

To first order inl, we obtain from Eq.~32! the well-
known results@«5« (0)1« (1)1•••, « (n)5O(ln)#

« (0)5
1

2R (
n52`

` E ddp

~2p!d
vn~p!1L (0), ~33!

« (1)5
l

8
@DF~0!#21

1

2
dm2DF~0!1L (1),

~34!

wheredm2 is the one-loop mass counterterm. The one-lo
self-energy is given by

S (1)5
l

2
DF~0!1dm2. ~35!
4-5
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In order to compute the quantities above, it is conveni
to define the function

Ce~a![
me

2R (
n52`

` E dd2ep

~2p!d2e
~p21qn

21m2!a, ~36!

where m is an arbitrary mass scale. We then haveDF(0)
5 lime→0 Ce(21/2) and« (0)5 lime→0@Ce(1/2)1L (0)#.

The computation ofCe is discussed in Appendix C. Ther
we show thatCe may be written~in the limit e→0) as the
sum of two terms, namely

lim
e→0

Ce~a!5A~a!1B~a!, ~37!

where A(a) and B(a) are given by Eqs.~C8! and ~C9!,
respectively. OnlyA(a) depends onR, and vanishes when
R→`.

Before computing« (0) and« (1) we give our renormaliza-
tion conditions. To first order inl two conditions are re-
quired. We fixL and dm2 by the conditions limR→` «(R)
50 and limR→` S (1)(R)50, respectively. This givesL (0)

52B(1/2), L (1)5(l/8)@B(21/2)#2, and dm25
2(l/2)B(21/2). It follows that (e→0)

« (0)~R!5A~1/2!52
2

~2p!D/2 S m

RD D/2

FS D

2
;mRD , ~38!

« (1)~R!5
l

8
@A~21/2!#2

5
l

2~2p!D S m

RD D22FFS D

2
21;mRD G2

, ~39!

whereF(s;a) is defined in Eq.~C5!. Taking D54 and ex-
panding in powers ofmR @Eqs.~C6! and ~C7!# we thus ob-
tain

«5
1

R4 H F2
p2

90
1

~mR!2

24
2

~mR!3

12p
1•••G

1lF 1

1152
2

mR

192p
1•••G J 1••• . ~40!

Analogously, we obtain for the one-loop self-energy

S (1)5
l

~2p!D/2 S m

RD (D22)/2

FS D

2
21;mRD

5
l

R2 F 1

24
2

mR

8p
1

~mR!2

16p2
ln~mR!1•••G ~D54!.

~41!

The first term does not depend onm, and is sometimes calle
‘‘topological mass’’~squared!. For reasons discussed in@1#,
we prefer the name ‘‘compactification mass’’ forM
[(l/24R2)1/2.
04500
t B. Resummed perturbation theory

From now on, let us focus the discussion on the mass
theory (m50) in D54. In this case, the second and high
order terms in the perturbative expansion of« are plagued
with IR divergences. A qualitative analysis shows that t
most IR divergent diagrams are the ‘‘ring’’~or ‘‘daisy’’ !
ones.~These are just the diagrams with the greatest num
of insertions of the one-loop self-energy in each order
perturbation theory.! As in the case of TFT@5#, it is possible
to sum these diagrams to all orders. The result is finite in
IR and is nonanalytic inl, as we show below.

To avoid overcounting of diagrams in higher order calc
lations, it is convenient to redefine the free and the intera
ing parts of the Lagrangian by adding and subtracting to
the compactification mass term12 M2F2 @10–12#:

L5L̃01L̃I5H 1

2
~]F!22

1

2
M2F2J

1H 2
l

4!
F41

1

2
M2F21LctJ . ~42!

The free propagator~in momentum space! is now given by

D̃F~p!5
i

p22M21 i e
. ~43!

It coincides with the propagator of the original theory in t
daisy approximation.

We remark that in a loop expansion of the vacuum ene
~or of any other quantity! each insertion of the mass term
L̃I is to be formally counted as one loop, like the ma
counterterm—otherwise takingL̃0 as the new free Lagrang
ian would not cure the IR divergence problem@27#.

The one-loop approximation to the vacuum energy
given by

«̃ (1)5
1

2R (
n52`

` E d2p

~2p!2
~p21qn

21M2!1/2. ~44!

Using the results of Sec. III A and of Appendix C we obta

«̃ (1)~R!52
M2

2p2R2
F~2;MR!

1 lim
e→0

meM42e

242ep (32e)/2

GS 221
e

2D
GS 2

1

2D
5

1

R4 F2
p2

90
1

l

576
2

l3/2

288A6p
1OS l2

e D G .

~45!

As in the Dirichlet BC case, theO(l) term in the one-
loop approximation is twice the value obtained in conve
4-6
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tional perturbation theory@Eq. ~40! with m50#. In order to
reproduce the latter one has to take into account the two-
contribution to«, given by

«̃ (2)5
l

8
@D̃F~0!#22

1

2
M2D̃F~0!, ~46!

where D̃F(x)5DF(x;m5M ). Using again results of Sec
III A and of Appendix C we obtain

D̃F~0!5
M

2p2R
F~1;MR!1 lim

e→0

meM22e

242ep (32e)/2

GS 211
e

2D
GS 1

2D
5

1

R2 F 1

12
2

l1/2

8pA6
1OS l

e D G . ~47!

Substituting this into Eq.~46! yields

«̃ (2)~R!5
1

R4 F2
l

1152
1OS l2

e D G . ~48!

Thus, to orderl2 we finally obtain

«~R!5
1

R4 F2
p2

90
1

l

1152
2

l3/2

288A6p
1OS l2

e D G . ~49!

This agrees to orderl with the result found in Sec. III A~in
the limit m→0). Besides, we have obtained a correction
orderl3/2. This nonanalyticity inl is a consequence of th
fact that the loop expansion in the rearranged Lagrangia
equivalent to a resummation of an infinite number of grap
in the conventional perturbation expansion.

Finally, we note that the UV singularities in the resumm
theory depend onR, via their dependence onM. For instance,
in the computation of«̃ (1) a singular term of the form
M4/e;l2/eR4 appears in the limite→0. In the analogous
case of TFT it can be shown that the UV singularity pres
in the one-loop free energy cancels against two- and th
loop contributions in the resummed theory, including a co
pling constant renormalization counterterm@12,28#. These
contributions on their turn introduce new singularities
O(l3), which are cancelled by including higher order grap
in the resummed theory, and so on. The situation is exa
the same in our case, so we can safely neglect theO(l2)
term in Eq.~49!.

IV. CONCLUSION

In this paper we have discussed the computation of ra
tive corrections to the Casimir energy of the masslesslF4

theory confined between two parallel plates. The case of
richlet boundary conditions at the plates was discusse
Sec. II. We obtained an analytical expression for the o
loop self-energyS (1)(x) both in D53 and D54. The
former was shown to be free of IR singularities, in contr
with the claim made in@25#.
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In the ‘‘daisy’’ resummation of the two-point Green func
tion one is led to solve a Klein-Gordon equation wi
S (1)(x) acting as an effective scalar potential. We were a
to solve this equation in four dimensions. In spite ofS (1)

being negative everywhere, there are no tachyonic mode
the coupling constantl is smaller thanlcrit58p2. We then
computed the sum of the eigenenergies of the Klein-Gor
operator. Expanding the result in a power series inl one
discovers that theO(l) correction does not agree with th
result of conventional perturbation theory, and the correct
of orderl2 contains a UV singularity which apparently ca
not be renormalized away. The first problem was shown
occur because the sum of zero-point energies does not
into account all the contributions to the vacuum energy i
theory with interaction. As for the second problem, it w
argued that the consistent renormalization of the Casimir
ergy at a given order requires that one takes into accoun
diagrams to that order. This conjecture is supported by
fact that the Dirichlet BC~in the case of flat boundaries! do
not spoil the perturbative renormalizability of thelF4

4

theory @18#.
In the case of periodic boundary conditions in one spa

direction we have argued that the infrared properties of
model are analogous to the one in thermal field theory.
order to define a consistent~i.e., IR finite! perturbative ex-
pansion one has to include the screening effects due to
lective excitations. A solution to this problem was propos
by Braaten, Pisarski and others in thermal field theory@10–
12#. It consists in the resummation of an infinite class
diagrams, which gives the field an effective mass. This
be done in a systematic way using the Braaten-Pisarsk
summation method. This was illustrated with the calculat
of the leading and next-to-leading order radiative correctio
to the Casimir energy. Besides, our calculation shows
the resummed weak coupling expansion of the Casimir
ergy in the case of periodic BC contains fractional powers
l, in contrast to the case of Dirichlet boundary condition

We note that calculations of radiative corrections to t
Casimir energy via the resummation of zero-point energ
have appeared recently in the literature@29#, without paying
due attention to the subtleties of the resummed perturba
theory. As we have shown, this may lead to inconsistenc
in the results@30#.

Finally, we hope that the techniques discussed here m
be useful in investigations of Kaluza-Klein compactificatio
scenarios, as well as in the study of surface critical pheno
ena.
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Matemática, Universidade de Sa˜o Paulo, where this work
was initiated.
4-7



lu

-

r

gi

e

a

-

t

n

-

-

LUIZ C. DE ALBUQUERQUE AND R. M. CAVALCANTI PHYSICAL REVIEW D 65 045004
APPENDIX A

We discuss the solution to the equation

S d2

dy2
1k21

g

sin2 y
D w~y!50, ~A1!

with Dirichlet boundary conditions aty50 andy5p.
Let us first consider the asymptotic behavior of its so

tions near one of the boundaries~say, aty50). To this end,
we can replace Eq.~A1! by

S d2

dy2
1

g

y2D w~y!50. ~A2!

The most general solution to Eq.~A2! is

w~y!5A ys11B ys2, ~A3!

wheres6[ 1
2 (16A124g). If g,1/4, the boundary condi

tion w(0)50 is not enough to fix the relation betweenA and
B, as bothys1 andys2 vanish aty50. To resolve this inde-
terminacy, we follow@31# and regularize the potential nea
the origin:VR(y)52g/y2 for y.a, andVR(y)52g/a2 for
y,a. At the end, we shall take the limita→0.

For y.a, the solution is given by Eq.~A3!. For y,a, the
solution which satisfies the boundary condition at the ori
is w(y)5C sin(Agy/a). Continuity of w(y) and its deriva-
tive at y5a implies the relationB/A;as12s2 asa→0, i.e.,
only the solution with the faster decay at the origin surviv
when the regularization is removed. Ifg.1/4, s12s2 is
purely imaginary and lima→0B/A does not exist. This sets
critical value to g, namely gcrit51/4, above which the
‘‘Hamiltonian’’ H52d2/dy22g/y2 is unbounded from be
low @31#.

Let us return to the complete equation~A1!. It is conve-
nient to make some changes of variables. First, we sey
5 ix1p/2 and defines[ 1

2 (211A124g) @so that s(s
11)52g#. This transforms Eq.~A1! into

F2
d2

dx2
1k22

s~s11!

cosh2 x
Gw~x!50. ~A4!

Then, we makej5tanhx and obtain

d

dj F ~12j2!
dc

dj G1Fs~s11!2
k2

12j2Gw~j!50. ~A5!

Finally, we put w(j)5(12j2)k/2w(j), followed by the
change of variablej52u21, to get

u~12u!
d2w

du2
1@11k22~11k!u#

dw

du
2~k2s!~k1s11!w

50. ~A6!

Equation~A6! is the hypergeometric differential equatio
@24# with parametersa5k2s, b5k1s11, andg511k.
Its general solution may be written as
04500
-

n

s

w~u!5A~12u!2kF~2s,s11;11k;u!

1B u2kF~2s,s11;12k;u!, ~A7!

whereF(a,b;g;z) is the hypergeometric function. Return
ing to the variabley and the functionw(y), we have

w~y!5A8e2 ikyFS 2s,s11;11k;
i e2 iy

2 sinyD
1B8eikyFS 2s,s11;12k;

i e2 iy

2 sinyD . ~A8!

The asymptotic behavior ofw(y) asy→0 may be extracted
from limz→0 F(a,b;g;z)51, after using the relation
@valid for uarg(2z)u,p, uarg(12z)u,p, a2bÞ0,61,
62, . . .#

F~a,b;g;z!

5~2z!2a
G~g!G~b2a!

G~g2a!G~b!
FS a,11a2g;11a2b;

1

zD
1~2z!2b

G~g!G~a2b!

G~g2b!G~a!
FS b,11b2g;11b2a;

1

zD .

~A9!

In this way,

w~y! ;
y→0

A8FS 2s,s11;11k;
i

2yD
1B8FS 2s,s11;12k;

i

2yD
;FA8

G~11k!

G~11k1s!
1B8

G~12k!

G~12k1s!GG~2s11!

G~s11!

3S 2
i

2yD s

1FA8
G~11k!

G~k2s!
1B8

G~12k!

G~2k2s!G
3

G~22s21!

G~2s! S 2
i

2yD 2s21

. ~A10!

Recalling the analysis of Eq.~A2!, we impose thatw(y)
;ys11 as y→0. This can be accomplished by takingB8
50 andk52(n1s)(n51,2, . . . ),that is

w~y!5A8ei (n1s)yFS 2s,s11;2s2n11;
i e2 iy

2 sinyD .

~A11!

The boundary condition aty5p is also satisfied by this so
lution, sincew(y);(p2y)s11 as y→p. Hence, Eq.~A11!
is an acceptable solution to Eq.~A1!. @Remark: we could
also have takenA850 and k5n1s (n51,2, . . . ) in Eq.
~A10!, but this leads to the same values ofk2 and to the same
solutions given by Eq.~A11!.#
4-8
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APPENDIX B

The goal here is to obtain the analytical continuation of the functionH(z;s,a2), defined in Eq.~22!, to the whole complex
z plane. To this end, we shall use the Plana summation formula@32#

(
k5M

N

f ~k!5
1

2
@ f ~M !1 f ~N!#1E

M

N

f ~x!dx2 i E
0

`

dy
f ~N1 iy !2 f ~M1 iy !2 f ~N2 iy !1 f ~M2 iy !

e2py21
. ~B1!
a

-

f

d.
In the present case, we chooseM51, N5`, and f (x)
5@(x1s)21a2#2z. In order to apply the Plana formul
some conditions have to be satisfied@32#. First, we assume
that Rz. 1

2 , so that the series in Eq.~22! converges abso
lutely. Then, it can be shown that the functionf (t1 i t ) is
holomorphic for t>1 for any t, and that
limt→6`e22putu f (t1 i t )50 uniformly in the interval 1<t
,`. In addition, limt→`*2`

` dt e22putuu f (t1 i t )u50. Under
these conditions, we have

H~z;s,a2!5
1

2
@~s11!21a2#2z1E

1

` dx

@~x1s!21a2#z

1 i E
0

`

dt
f ~11 i t !2 f ~12 i t !

e2pt21
. ~B2!

The first integral can be computed in closed form:

E
1

` dx

@~x1s!21a2#z

5
~11s!122z

2z21
FS z,z2

1

2
;z1

1

2
;2S a

11sD
2D . ~B3!

Equations~B2! and ~B3! give the analytic continuation o
H(z;s,a2) to the whole complexz-plane. From the definition
of the hypergeometric function it follows thatH(z;s,a2) has
simple poles atz51/2,21/2,23/2, . . . .

APPENDIX C

Consider the function

Ce~a![
me

2R (
n52`

` E dd2ep

~2p!d2e Fp21S 2pn

R D 2

1m2Ga

.

~C1!

Integration overp leads to

Ce~a!5
me

2d112eR

pa

G~2a!
SS m,

R

2
;22a2d1e D ,

~C2!

where
04500
S~m,a;s![p2s/2GS s

2D (
n52`

` F S m

p D 2

1S n

aD 2G2s/2

.

~C3!

The series converges absolutely forRs.1. The analytical
continuation to a meromorphic function in the complexs
plane is given by@33#

S~m,a;s!

5
am12s

p (12s)/2 FGS s21

2 D14~ma!(s21)/2FS 12s

2
;2maD G ,

~C4!

where

F~s;a![ (
n51

`

n2sKs~na!, ~C5!

with Ks(x) the modified Bessel function of the second kin
The following expansions, valid fora!1, will be useful
@34#:

F~1;a!5
p2

6a
2

p

2
1O~a ln a!, ~C6!

F~2;a!5
p4

45a2
2

p2

12
1

pa

6
1O~a2!.

~C7!

Using the analytical continuation given in Eq.~C4!, one
may write Ce(a) ~in the limit e→0) as the sum of two
terms, namely, lime→0 Ce(a)5A(a)1B(a), where

A~a!5
2(112a2d)/2

p (11d)/2G~2a!
S m

RD (112a1d)/2

FS 112a1d

2
;mRD ,

~C8!

and

B~a!5 lim
e→0

mem112a1d2e

2d122ep (11d2e)/2

GS 2122a2d1e

2 D
G~2a!

.

~C9!

Note that onlyA(a) depends onR.
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