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When the Casimir energy is not a sum of zero-point energies

Luiz C. de Albuquerque
Faculdade de Tecnologia dé 8®aulo-CEETEPSUNESP, Praa Fernando Prestes, 30, 01124-0600F2aulo, SP, Brazil

R. M. Cavalcanti
Instituto de Fsica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ, Brazil
(Received 3 September 2001; published 15 January)2002

We compute the leading radiative correction to the Casimir force between two parallel plates\id the
theory. Dirichlet and periodic boundary conditions are considered. A heuristic approach, in which the Casimir
energy is computed as the sum of one-loop corrected zero-point energies, is shown to yield incorrect results,
but we show how to amend it. The technique is then used in the case of periodic boundary conditions to
construct a perturbative expansion which is free of infrared singularities in the massless limit. In this case we
also compute the next-to-leading order radiative correction, which turns out to be proportiarf&l to
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[. INTRODUCTION ously broken symmetry theories shows that the compactifi-
cation process may introduce a mechanism for dynamical
An important question in quantum field theory is the re-symmetry restoration. Generation of a dynamical mass is
sponse of the vacuum fluctuations to perturbations of theonnected with the inclusion of a new scale, the compactifi-
space-time manifold: in the absence of a consistent quantucation radiusk.
theory of gravitation in four space-time dimensions one is There is a complete mathematical analogy between com-
led to study vacuum fluctuations of matter or gauge fields irpactified field theory and thermal field theofyFT) in the
the presence of an extern@k., classicalgravitational field  Matsubara formalism. In the latter, the inverse temperature
[1]. One may also ask how the properties of a field theory argg=1/T is the compactification radius in the imaginary-time
affected by the topology of space-time or by the presence dfirection. The well-known fact that thermal effects do not
boundaries, which impose constraints on the fields. For intead to new ultraviolet divergences in TRGesides the usual

stance, periodk_: boundary_c_onditions on a spatial sector are ghes found af = 0) [5] applies as well to compactified field
key ingredient in compactification schemes of Kaluza-Kleiny,qories. On the other hand, the infrared properties of the

theories[2]. Boundary condition$BC) are also used 0 de- ET 4 very different from the ones at zero temperature.

scnbg complicated physical systems in a'5|mpln.‘|e.d math"I'he free energy of massleasb* theory in three spatial di-
ematical framework. In the electromagnetic Casimir effect

: . . mensions develops new infrared divergences at oxden
[3] one considers classical conductor plajesrfect mirrors, : ; . .
with the field satisfying Dirichlet BC on them. The analo- perturbation theory5]. The dominant infrared divergences
gous condition in the MIT bag model is the perfect confine-c0M€ from then=0 moqle of the loop momenta. A proper
ment of quarks and gluons to the interior of hadrf4 In treatmeggt of the collective effects leads to a correction of
thermal field theory, periodic or antiperiodic BC in the OrderA”<to the free energy. o
imaginary-time are the starting point of the Matsubara for- The infrared behavior of the compactified field theory
malism[5]. Finally, the study of surface effects on the criti- Mimics the one at finite temperature, at least in the case of
cal properties of amagnetic, binary liquid, etg.system ©One spatial compactified coordinate. In a perturbative treat-
leads in many cases to the analysis of scalar field theorig®ent, then=0 mode generates new infrared divergences in
subject to certain boundary conditiof&. the compactified version of theb* theory. This seems to be
Although BC have been extensively studied in quanturmot so well-appreciated in the literature. To fill this gap, we
field theory models, there remains a lot of questions to bepply the resummation method developed by Braaten, Pisar-
answered. In this paper we will investigate some unusuaski and othergin the context of TFT[10-17 to the com-
features of periodic and Dirichlet BC on one spatial coordi-pactified\ ®* theory.
nate. In the remainder of the Introduction we will give some  Symmetries in quantum field theory put very stringent
motivations to the study of these particular types of boundargonditions on the perturbative renormalization of a model
conditions. and in its physical predictions. Lorentz invariar{cetational
Quantum field theories in compactified spaes., with  invariance in the Euclidean cagde of paramount importance
periodic boundary conditions in some spatial directionsin this respect. However, external conditions or dynamical
have been the subject of considerable interest in the literatureffects may lead to its breakdown. There is a growing inter-
[7-9]. The calculation of the effective potential in spontane-est on effective field theories in which this occiesg., non-
commutative field theorie§l3], anisotropic systemg§l4],
and Chern-Simons theori¢45]). Theories defined in finite
*Email address: Iclaudio@fatecsp.br volumes or in the presence of macroscopic bod#ssin the
"Email address: rmoritz@if.ufrj.br Casimir effect may provide useful insights on the conse-
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guences of lack of Lorentz symmetry to the renormalizationboundaries as quantum mechanical objects with a nonzero
program. position uncertaintyf21]. However, this question is outside
Recently, there has been much effort in the computatiorthe scope of our present discussion.

of radiative corrections to the Casimir energy, specially in A key ingredient in our computation of the Casimir en-
QED[16]. One of the purposes of this paper is to discuss arergy is the self-energy of the field, as it determines the shift
alternative method to compute such corrections. For simplicin the single-particle energy levels. Since there is some dis-
ity we work with thexd* theory subject to Dirichlet bound- agreement among existent results in the literature
ary conditions on a pair of parallel plates. The method ig7,8,18,25, we present its computation in some detail.

based on a resummation of the perturbative series for the
two-point Green function, and leads to a Klein-Gordon equa-
tion in which the one-loop self-energy acts as an effective
scalar potential. In four space-time dimensions this equation We work in D=(d+1)+1 dimensional Minkowski

A. Self-energy

can be solved exactly in the massless case. The new set gpace-time, and define“=(t,x,z), with x=(x*, ... x9).
(resummel eigenvalues contain radiative corrections of all The renormalized Lagrangian reafig=c=1, 7,,=diag
orders inx, and reduce to the free ones for-0. The com-  (+,—.....,7)]

putation of the sum of effective zero-point energies, includ- 1 1
ing non-perturbative corrections and renormalization issues, ,—, 47 ={Z(3d)2— = m2d?
is discussed in detail. 2 2

The plan of the paper is as follows. In Sec. Il we fix the (1)
conventions and discuss the resummation technique in the
A d* theory with Dirichlet boundary conditions. We solve the With £ the counterterm Lagrangian.
effective Klein-Gordon equation, and obtain the “improved”  We impose Dirichlet BC on a pair of plates z+0 and
eigenvalues. The solution is used to obtain the resummed=I: ®(z=0)=®(z=1)=0. The bare Feynman propaga-
Casimir energy, including radiative corrections. In Sec. llltor with Dirichlet BC may be written as an expansion in
we discuss the resummation of the vacuum energy in th&wltiple reflectiond22]:
case of periodic boundary conditions; this sheds some light
on the results of Sec. Il. In the Conclusion we discuss the *
drawbacks of this method as well as other minor points. Fi- ~ Ap(x,x" )= >, [AP(x,—x.) - AP (x,—x")], (2)
nally, three Appendixes collect some mathematical results =
used in the paper.

+

A 4
_mq) +£Ct y

wherex,= (t,x,z+2nl), x.=(t',x’,+2'), andA® is the
bulk free propagator, which fdd>2 is given by[23]
II. DIRICHLET BOUNDARY CONDITIONS

y . o 0
Boundary conditions breaking the full Lorentz invariance (%)

in general pose new problems to the renormalization pro- (D-2)I2

gram. For some geometries and boundary conditi@®es _ 1 m K (mm)

pending also on the spin of the figld may be necessary to (2m)PR2\ J-x*+ie (D-2)/2 ’
introduce surface counterterms besides the bulk ones. For 3
instance, in the MIT bag model the free energy is ill defined 3

at one-loop due to an extra singularity which shows up as the _ )
surface is approachdd7]. The standard recipe associates aWith V—Xx +'€:'\_/7‘_v if x*>0 (e—0"). Actually, what
free parameter to each distinct singular term, included as We are interested in i&g(x,x). It follows from Eg.(2) that
new counterterm in the starting Lagrangian. If this procedure
continues to all orders, with the consequent loss of predictive
power, we say that the theory is non-renormalizable due to Ae(x, )= 2 [AP@n)-AP(2z+2nD)]. (@)
the boundary conditions. o

In a remarkable paper, Symanzik gave strong arguments (0) ) ) )
showing the renormalizability of thé@* theory in the pres- The termA”(0) contains the usual UV S|.ngullar|ty. It can be
ence of flat boundarig4.8]. In particular, he showed that the rémoved, as usual, by a mass renormalization. o
renormalized Casimir pressure for disjoint boundaries and In the massless case the bulk free propagator gets simpli-
Dirichlet BC is finite to all orders in perturbation theory. He fied, and it is possible to find a closed expression£¢x)
also verified explicitly that no surface counterterms are=Ar(x,x)—A{(0). Using
needed in the computation of the two-loop vacuum energy.

o0

®*-type theories are still renormalizable for more general D

boundary conditions and surfaces, but at the price of intro- r 5_1

ducing surface counterterni$,18. We wish to point out AO(x;m=0)= PR |x|27P, (5)
o

here that many proposals have been made in order to avoid
the surface-like singularities. These include, among others,
the “softening” of the Dirichlet BC[19,2( or treating the one finds, forD =4,
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1 2 2 From now on, we shall focus our attention on the mass-
A(x;m=0)= m{z lﬂ,(l)—l//,(l—) - ¢’( 1- I_” less case dD=4.
6) B. Radiative corrections to the Casimir energy: A heuristic
where ¢(x) is the digamma functiofi24]. Equation(6) can approach
be simplified to Computations of the Casimir energy in the literature are

restricted to perturbation theory. A non-perturbative calcula-

7wz 1 tion would be a very interesting result. Our goal here is more
7/ 3 (D=4). () modest. We will discuss the computation of the Casimir en-
ergy in the approximation where the two-point Green func-

Let us take a closer look at tie=3 case, keepingn tion is dressed with an arbitrary number of insertions of the

#0. We obtain from Eqs(3) and (4), after changing the one-loop self-energy“daisy” resummation. This approxi-

summation variables and using the explicit formkofi,(x), mation contains the leading porre_ction in a_\lléx.pansion.
(In our case, howeveN = 1. With this caveat in mind, let us

) proceed. The Casimir energy will be given formally by

A( 0) ! é
X;m=0)=———|cs
1612

1
A=ga

Z
2e2Ms(2ml,1)— e‘szS( 2ml, 7

] E= % > w,, (12)
_e—2m(I—Z)S(2m|'1_ I_”’ (8) “«
where w, are the positive poles of the dressed two-point
where function G® in the frequency domain.

To computeG® we note that it satisfies
*© —an

S(&b)fgo "o © [2+3D(x)1E@(x,x )= —i 6D(x,x). (13

The massless limit must be taken with care, as each of th®S usual, the solution to Eq13) can be written as
series in EQq.(8) is logarithmically divergent. As we shall

show, the divergent terms cancel in the complete forrt@ila EDxx)=—iS ba(X) ¢4 (X") (14
Indeed, the asymptotic limit od&(2ml,b) asm—0 is given ' @ A, '
by
where A, and ¢,(x) are the eigenvalues aridormalized
- 1 1 2 e~2min eigenfunctions, respectively, of the Klein-Gordon operator
— —2min _ .
S(2ml,b) nzoe (n+b ] +nZO 7 P+
[°+ 3 D) ]a(X) = A oul(X). (15
m:O_y_ #(b)—In(2ml)+O0(ml), (10) SinceE(l)(x). is a function ofz alone, we can reduce the
above equation to an ordinary differential equation by writ-
where y=0.577 . . . is theEuler constant. The logarithmic ing ¢(x)=e'*'"P¢(2):
terms cancel in Eq(8), so that we can now take the limit ) )
— ini d w Tz 1
m— 0 safely, obtaining ___Uz__g esel 7= 2|V =0, 19
dZ 12 /3
A'—O—12+Z+ 12” D=3
C6m=0)=g77 | 2yt +¥ I (D=3). where o?= A + w?—p? and g=\/327%. Now we make the

(1)  change of variable=Ily/ and get

The renormalized one-loop self-energy is given by
SM(x)=(N2)As(x,x)+ m?. The mass counterterm is
fixed by the condition lim...2®=0. This amounts to re-
move the contribution of the bulk free propagator from Eg. . . o
(4). With this choice of mass renormalization we have Equation(17) may be viewed as the h:ume-lndependent
S M(x)=(N/2)A(X). Therefore, the self-energy is infrared Schralinger equation for a particle of mass= 1/2 moving
finite in the massless case alsdat 3, in disagreement with in the potentialV(y)=—gcséy (inverted Poschl-Tellgy
Ref. [25]. [However, it is infrared divergent in the case of with energyE=Kk?. Its solution is discussed in Appendix A.
Neumann boundary conditions. The propagator is then givein particular, it is shown thak®=(n+s)? (n=1,2,...),
by Eq.(2) with the minus sign on its right-hand sid@HS)  with s=3(— 1+ \1—4g). From the definition ok? and o
replaced by a plus sign. As a consequence, the logarithmiit follows that the eigenvalues of the Klein-Gordon operator
terms in the massless limit @(x) do not cancel. have the form

d? g 1262 g)
— k2 —0 |kK=—-2].
dy2+ +Sin2y)<p()/) ( 17
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2 1-2v o 2(v+1) v+1
22y 2, 9 _ K F(—v-1) (7 1 ,. 9
A=—w+p°+ 2 (n+s) +3 (n=1,2,...). & 8r  T(=») |1 5 (1+5s) +3
(18
(= f(A+it)—f (1—it) (1+s)?*3
From Eqs(14) and(18) it follows that the(positive) poles of +1 fo dt e - 5,13
G@ are given by
2 XF( 1 3 ! _9 } (23
—v=1l-—v—5,—v—5;,— ,
wn(p) = \/p2+7|7—2 (n+s)2+g (n=1,2,...). 2 2" 3(1+s)?

(19 wheref,(x)=[(x+5)2+9g/3]""! andF(a, 8; 7;2) is the hy-
pergeometric function. From the definition of the latter it
g)llows that £ has a simple pole at=1/2 (in fact, it has
poles atv=—3/2,—1/2,1/2,3/2. . .).This requires thaf be
renormalized before we set=1/2. In general, this is done

by subtracting fron€ its value atl — . Unfortunately, such

a prescription does not work in the present case, since, ac-
cording to Eq.(23), the Casimir energy per unit area has the
form £=C(v)/12+1),

One can obtain a hint on what is going wrong by noting
that the residue of at v=1/2 is of second order ig (or \).
This is consistent with the fact that we have worked with the
one-loop two-point Green function, which (frmally) cor-
rect only to first order in the coupling constant. Since the
A®* theory is perturbatively renormalizable B=4, one
may suspect that in order to obtain a finjog at least renor-
malizable £ to order\" one must work within an approxi-

ation in which the two-point Green function is dressed with
the n-loop self-energy. As we show below, this is not suffi-
cient or necessary. In spite of that, the argument suggests that
Eq. (23) cannot be trusted beyond order

Expanding the RHS of Ed23) in a power series in and
making v— 1/2, we obtain

Before we proceed with the calculation of the Casimir
energy, a remark is in order here. As we have seen, th
(renormalizeglone-loop self-energy is a function gfIt may
be tempting to interprets()(x) (more generally, m?
+3M)(x)) as a position-dependerisquaredl mass of the
field. A problem would then occur in regions where
> M)(x) <0, for this could imply the presence of tachyons in
the theory. For that reason, Ford and Yoshimufhargued
that models which exhibits this behavi@uch as the one we
are consideringare unphysical. However, the analysis of Eq.
(16), summarized in Appendix A, shows that its solutions do
not have imaginary frequencies as long Yas \ oy= 872
(which is anyway well outside the range of validity of per-
turbation theory. The one-loop effective theory is consistent
in this case. On the other hand, for-872 the Schrdinger
equation (16) leads to an energy spectrum which is un-
bounded from below, rendering the associated effective fiel
theory ill-defined. This solves a long-standing problem of
interpretation.

Substituting the eigenfrequencié$9) into Eq. (12) we
obtain the following expression for the Casimir energy per

unit area:
2 g 4
3

1 - d%p w2 1[ =2 A
E=— 1-2v f 2+_
2k n§=:l (277)2{p 12

13| " 1440 92167

(n+s)%+ = (24

The first term is the usual free Casimir enefggr unit area
The formal sum over zero-point energies has been analytithe second term is the leading radiative correction to it. It
cally regularized; we shall set=1/2 at the end of the cal- overestimates the correct res[ii8] by a factor of 2. This
culation. The factoru' 2", where u is a mass parameter, discrepancy occurs because the method we have used to
keeps the RHS of Eq20) with the dimension of energy per compute the Casimir energy only works in the absence of

unit area. interactions. To show this, we start by noting that one can
Integrating Eq.(20) over p, we get define the Casimir energy as
. Ml—Zv F(—V—l) T 2(v+1) L g
T 87 T(—-w» T H —v=Ls.3), E:de_1X<0|Too(X)|0>a (25)
(21)

where the functiort(z;s,a?) is defined as whereTM_,, is_ the energy-momantum te_nsor. In the case we

are consideringthe massless®“ theory inD=4), we have
H(z;s,@%)= 2 [(n+s)*+a’] (22 1 1 A
n=1 Toozz(ao¢)z+§(vq>)2+ ECD“. (26)

The series converges fOfz>1/2. The analytical continua-

tion of H(z;s,a?) to the whole complex plane is performed Moving the differential operators outside the brackets, we
in Appendix B. Substituting the result into E(R1) we ob-  can rewrite the vacuum expectation valu€eTgj in terms of
tain [26] n-point Green function&(™:
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1
(0] Too(Xx)|0)= lim = (ﬁor?o+V VHGA(x,x") AE=J dD—1x|—§f dPy3 (x,y)G@(y,x)
x' ~>X
A (4)(x
G(4)(X X). (27 + EG (X, ... X) . (30

4|

On the other hand, using E(L.3) and the spectral represen- A perturbative evaluation of the above expression shows that

tation of G®, Eq. (14), one can easily show that AE would still be of orderx. Physically, this discrepancy is

due to the fact that, in contrast with the free theory, the

l Z wa:J' d®1x lim = [(90(90+V v interacting theory is no_t equivalent to a collection (_)f inde-

pendent harmonic oscillators. The sum of zero-point ener-

X—>X

gies, Eq.(12), takes into account only the Lamb shift on the
+3M(x)]1G@(x,x"). (28)  single-particle energy levels caused by the interaction; the
difference AE accounts for the residual interaction among
It follows that the sum of(one-loop zero-point energies the (anharmonit oscillators.

differs from the true vacuum energy by The above discussion also shows that the Casimir energy
is not determined solely by the two-point Green function, but
AE= f d® x| |im = ((90(90+V v/ YAG(x,x") also (in the A®* theory) by the four-point function. In par-
o« _)X ticular, in order to consistently remove t@g\?) UV singu-

larity in Eq. (23) one must not only obtaif(?) to that order,
but alsoG™* to O(\). These ideas will be illustrated in the
next section in the simpler case of periodic boundary condi-
tions.

1 . A
— 520006000+ 77600, 0 |, (29

whereAG@=G® —G®@. While the first line of Eq(29) is
formally O(\?), the second one i©()\). This explains why Ill. PERIODIC BOUNDARY CONDITIONS
the second term in Eq24) is incorrect.

It is important to note that Eq$12) and(26) would lead
to distinct results even if we had worked with the complete The free Feynman propagator for the field obeying
two-point Green function. The difference between themperiodic boundary conditions in the-direction, ®(t,x,z

A. Conventional perturbation theory

would then be given by +R)=®(t,x,2), is given by
|
i dw « ddp efip”(xﬂfx;‘) 1 © ddp efiwn(p)\tft'\+ip-(xfx’)+iqn(zfz’)
AF(X,X'):ﬁ > f i 2 2 2 2. . 9R f 3 ,
T e J (21 wi-p?—gi-m?+ie n==w J (2) wy(P)
(3D
|
where p*=(w,p,q,), dn=27Nn/R, and wn(p) To first order in\, we obtain from Eq.(32) the well-
=p?+ @2+ m% SinceAr(x,x")=Ar(x—x'), such bound- known result e=e@+e®+..., M=0(\"]
ary conditions do not break translational invariance.
The renormalized vacuum energy density may be com- 1 g
puted from Eqs(25)—(27), but its perturbative expansion is PR () — f P wn(p)+A©), (33
more easily derived from the vacuum persistence amplitude: 2R ) (2
D 1) A 2 L 2 (1)
e= I|m—In DD ex d”xL||+A. (32 € =§[AF(O)] +§5m Ap(0)+AY,
Tﬂoo
(34)

The last term in Eq(32) is fixed by the renormalization
condition limg_,.e(x)=0. Due to the translational invari-
ance the vacuum energy density does not depens. ¢A
remark on notations denotes the Casimir energy per unit
volume while £ denotes the Casimir energy per uaiea 2(1):§
They are related, in the case of periodic BC,dy &/R.)

where ém? is the one-loop mass counterterm. The one-loop
self-energy is given by

Ap(0)+ 6m?. (35
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In order to compute the quantities above, it is convenient

to define the function

MG

=]

where u is an arbitrary mass scale. We then havg(0)
=lim__o ¥ (—1/2) ande@=lim__ o[ ¥ (1/2)+ A©].

The computation of, is discussed in Appendix C. There
we show that¥', may be written(in the limit e—0) as the
sum of two terms, namely

) — dd_fp 2 2 2\a
(a)= P (39

(2

IimY (a)=A(a)+B(a),

e—0

(37

where A(«) and B(a) are given by Egs(C8) and (C9),
respectively. OnlyA(«) depends orR, and vanishes when
R— 0,

Before computing:(®) and*) we give our renormaliza-
tion conditions. To first order i\ two conditions are re-
quired. We fixA and 8m? by the conditions lim_.. £(R)
=0 and limy_..SM(R)=0, respectively. This gived (¥
—B(1/2), A®=(\/8)[B(—1/2)]?, and om?=
—(N2)B(—1/2). It follows that —0)

m D/2
—) F(E;mR), (38

eO(R)=A(1/2)= - =

(27T)D/2(

eW(R)= %[A(—UZ)]Z

D 2
F(E—l;mRﬂ (39

A m D-2
:2(27)0(5)

whereF(s;a) is defined in Eq(C5). TakingD=4 and ex-
panding in powers omR [Egs.(C6) and (C7)] we thus ob-

tain
1 m? (mR? (mR)?3
TRl 90 T2 a2 T
A ! mR 40
N1 ezt 40

Analogously, we obtain for the one-loop self-energy

a_ N m (D-2)/2 D ‘
p) —(27T)D/2 ﬁ F 5—1,mR
A1 mR (mR?
=¥ Z—E-FFM(WIR)'F-“ (D=4).
(41)

The first term does not depend on and is sometimes called
“topological mass”(squaredl For reasons discussed [if],
we prefer the name “compactification mass” fol
=(N\/24R?)Y2,

PHYSICAL REVIEW D 65 045004

B. Resummed perturbation theory

From now on, let us focus the discussion on the massless
theory (m=0) in D=4. In this case, the second and higher
order terms in the perturbative expansioneofire plagued
with IR divergences. A qualitative analysis shows that the
most IR divergent diagrams are the “ring’br “daisy”)
ones.(These are just the diagrams with the greatest number
of insertions of the one-loop self-energy in each order of
perturbation theoryAs in the case of TFT5], it is possible
to sum these diagrams to all orders. The result is finite in the
IR and is nonanalytic i\, as we show below.

To avoid overcounting of diagrams in higher order calcu-
lations, it is convenient to redefine the free and the interact-
ing parts of the Lagrangian by adding and subtracting to it
the compactification mass terdM?®d? [10-17:

~ o~ 1 1
£:£0+ L:| = (E(&(D)Z— §M2¢)2]

A 1
AL 22
=@ 5 MAD2 4 Lo

(42)

The free propagatdiin momentum spagds now given by
(43)

It coincides with the propagator of the original theory in the
daisy approximation.

We remark that in a loop expansion of the vacuum energy
(or of any other quantifyeach insertion of the mass term in

L, is to be formally counted as one loop, like the mass

counterterm—otherwise taking, as the new free Lagrang-
ian would not cure the IR divergence probl¢&7].

The one-loop approximation to the vacuum energy is
given by

* 2
;oL s f d’p
2R 2= (217-)2

(PP+qi+ M2 (44

Using the results of Sec. Il A and of Appendix C we obtain

~ 2
eM(R)=—

271_ZRZF(Z;M R)

€
M6M4fe -2+ 5
+1'LT:)24—577(3—5)/2 ( 1)
H-3

r

1

R4 €

7T2 )N )\3/2 )\2
790576 2ssfon <_)

(45

As in the Dirichlet BC case, th®(\) term in the one-
loop approximation is twice the value obtained in conven-
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tional perturbation theorjEq. (40) with m=0]. In order to In the “daisy” resummation of the two-point Green func-
reproduce the latter one has to take into account the two-loofion one is led to solve a Klein-Gordon equation with
contribution toe, given by > W(x) acting as an effective scalar potential. We were able
to solve this equation in four dimensions. In spite X"
EQE%[ZF(O)]Z— %MZZF(O), (46) being negative everywhere, there are no tachzyonic modes if
the coupling constant is smaller than .;;=8m°. We then

computed the sum of the eigenenergies of the Klein-Gordon
operator. Expanding the result in a power series\imne
discovers that th&®(\) correction does not agree with the

where Ar(x)=Ar(x;m=M). Using again results of Sec.
Il A and of Appendix C we obtain

€ result of conventional perturbation theory, and the correction
M eM2e ry -1+ 5) of order\? contains a UV singularity which apparently can-
Ap(0)= ——F(1;MR)+ lim K not be renormalized away. The first problem was shown to
2m°R 0247 (37902 (E occur because the sum of zero-point energies does not take
2 into account all the contributions to the vacuum energy in a
1o theory with interaction. As for the second problem, it was
_ i i_ A + (ﬁ) (47) argued that the consistent renormalization of the Casimir en-
R2|12 8x\6 € ergy at a given order requires that one takes into account all
diagrams to that order. This conjecture is supported by the
Substituting this into Eq(46) yields fact that the Dirichlet BQin the case of flat boundariedo
1 N \2 not spoil the perturbative renormalizability of th)e(Dﬁ
s@A(R)= —[— —+o(—”. (48)  theory[18].
R4 1152 € In the case of periodic boundary conditions in one spatial

direction we have argued that the infrared properties of the

5 . .
Thus, to ordei? we finally obtain model are analogous to the one in thermal field theory. In

1 2 N \372 2 order to define a consistefite., IR finite) perturbative ex-
e(R)= et e o=t (_> . (49 pansion one has to include the screening effects due to col-
R 90 1152 288/6m € lective excitations. A solution to this problem was proposed

by Braaten, Pisarski and others in thermal field thdd@~

This agrees to ordex with the result found in Sec. 1l Ain 12]. It consists in the resummation of an infinite class of

the limit m—0). Besides, we have obtained a correction Ofdia rams, which gives the field an effective mass. This can
order\®2. This nonanalyticity in\ is a consequence of the ) X 9 :

fact that the loop expansion in the rearranged Lagrangian iBe done in a systematic way using the Braaten-Pisarski re-

equivalent to a resummation of an infinite number of graphssummation method. This was illustrated with the calculation
in the conventional perturbation expansion. of the leading and next-to-leading order radiative corrections

Finally, we note that the UV singularities in the resummed!© the Casimir energy. Besides, our calculation shows that
theory depend oR, via their dependence . For instance, the rgsummed weak c_ouplmg expansion of 'the Casimir en-
in the computation ofs® a singular term of the form ergy in the case of periodic BC_ <_:onta|ns fractional powers of
M4/ e~\?/eR* appears in the limit—0. In the analogous \, in contrast to the case of Dirichlet boundary conditions.

case of TFT it can be shown that the UV singularity present Ve note that calculations of radiative corrections to the
in the one-loop free energy cancels against two- and thred=asimir energy via the resummation of zero-point energies
loop contributions in the resummed theory, including a couave appeared recently in the literatip®], without paying
pling constant renormalization countertefit2,28. These due attention to the subtleties of the resummed perturbation
contributions on their turn introduce new singularities attheory. As we have shown, this may lead to inconsistencies
O(\3), which are cancelled by including higher order graphsin the result{30].
in the resummed theory, and so on. The situation is exactly Finally, we hope that the techniques discussed here may
the same in our case, so we can safely neglectQte?) be useful in investigations of Kaluza-Klein compactification
term in Eq.(49). scenarios, as well as in the study of surface critical phenom-
ena.

IV. CONCLUSION

In this paper we have discussed the computation of radia- ACKNOWLEDGMENTS
tive corrections to the Casimir energy of the masshe®s
theory confined between two parallel plates. The case of Di- The authors acknowledge the financial support from
richlet boundary conditions at the plates was discussed iRFAPESP under grants 00/03277d3C.A.) and 98/11646-7
Sec. Il. We obtained an analytical expression for the onetR.M.C), and from FAPERJR.M.C). They also acknowl-
loop self-energy>()(x) both in D=3 and D=4. The edge the kind hospitality of the Departamento dsida
former was shown to be free of IR singularities, in contrastMatemdica, Universidade de ®aPaulo, where this work
with the claim made ii25]. was initiated.
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APPENDIX A w(u)=A(1—u) *F(—s,s+1;1+k;u)
We discuss the solution to the equation +BUKF(—s,5+1:1—k:u), (A7)
2
d_+k2+ 9 @(y)=0 (A1) whereF(a,B;v;2) is the hypergeometric function. Return-
dy? sirty ' ing to the variabley and the functionp(y), we have

with Dirichlet boundary conditions at=0 andy= . L ik ie v
Let us first consider the asymptotic behavior of its solu- e(y)=A"e"OF| —s;s+1;1+k 5 siny
tions near one of the boundariesay, aty=0). To this end,

we can replace EqA1) b . -y
P dAL) by +B’e'kyF<—s,s+1;1—k; . ) (A8)
£ g 2 siny
(dyZ yz) ¢(y)=0 (A2) The asymptotic behavior af(y) asy—0 may be extracted
from lim,_oF(a,B;v;2)=1, after using the relation
The most general solution to EGA2) is [valid for |arg(—2z)|<m, |arg(1-2)|<wm, a—pB+#0,£1,
+2,...]
e(y)=Ay*+By*, (A3)

wheres. =3(1+1—4q). If g<1/4, the boundary condi- Fla.Bv:2)
tion ¢(0)=0 is not enough to fix the relation betweArand
B, as bothys+ andy®- vanish aty=0. To resolve this inde-  _ _Z)_al“(y)l“(,B— a) =
terminacy, we follow[31] and regularize the potential near I'(y=a)l'(B)
the origin:Vg(y) = —g/y? for y>a, andVg(y) = — g/a® for LN 1
y<a. At the end, we shall take the limé—0. +(—z)‘BMF B,1+ 8- y;1+,3—a;—).
Fory>a, the solution is given by EqA3). Fory<a, the I'(y=B)T(a) z
solution which satisfies the boundary condition at the origin (A9)
is ¢(y)=C sin(ygy/a). Continuity of ¢(y) and its deriva-
tive aty=a implies the relatiorB/A~a®+~*- asa—0, i.e., In this way,
only the solution with the faster decay at the origin survives
when the regularization is removed. d¢f>1/4, s, —s_ is y—0 i
purely imaginary and lig,oB/A does not exist. This sets a o(y) ~ A’F( —-s,5+1;1+k; —)
critical value to g, namely g.i=1/4, above which the 2y
“Hamiltonian” H= —d?/dy?>—g/y? is unbounded from be- i
low [31]. +B’F< —-s,s+1;1-k; 2—)
Let us return to the complete equatioil). It is conve- y

1
alta—vy;l+a—p; E)

nient to make some changes of variables. First, weyset r'(1+k) I'(1-k) |T(2s+1)
=ix+ /2 and defines=%(—1+1—4g) [so thats(s ’F(1+k+s)+ ’F(l—k+s) F(s+1)

+1)= —g]. This transforms Eq(Al) into

y [ 5+ A’F(1+k)+ , T(1-k)
d? s(s+1 “5v _ T h_
- & e ( ) N ox=0. (Ad) 2y T(k—s) = T(—k—s)
dx coslt x F(—ZS—l)( i )sl a0
Then, we make&=tanhx and obtain I'(—s) 2y
d dy 2 Recalling the analysis of EqA2), we impose thatp(y)
d—g{(l—gz)d—g t|s(st1)— -2 ¢(§)=0. (A5)  _ys+1 a5y 0. This can be accomplished by takif

=0 andk=—(n+s)(n=1,2,...),thatis
Finally, we put ¢(&)=(1- &) ?w(¢), followed by the

. Ay
change of variablg=2u-1, to get ¢(y)=A’e‘(“*S)yF( _s,s+1;—s—n+1;;iiny '
d’w dw (A11)
u(l—u) — +[1+k—2(1+Kku]=— — (k—s)(k+s+1)w
du2 du

The boundary condition at= 7 is also satisfied by this so-
=0. (A6) lution, sincep(y)~(7m—y)S"! asy— . Hence, Eq(A11)
is an acceptable solution to E¢A1l). [Remark: we could
Equation(A6) is the hypergeometric differential equation also have takerA’=0 andk=n+s (n=1,2,...) in Eq.
[24] with parametersy=k—s, B=k+s+1, andy=1+Kk. (A10), but this leads to the same valuesdfand to the same
Its general solution may be written as solutions given by Eq(A11).]
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APPENDIX B

The goal here is to obtain the analytical continuation of the functi¢m; s,a?), defined in Eq(22), to the whole complex
z plane. To this end, we shall use the Plana summation forfi32p

N . . . .
1 N ©  f(N+iy)—f(M+iy)—f(N—iy)+f(M—i
> f(k)=—[f(M)+f(N)]+f f(x)dx—if dy (N+1y) = f(M+iy) — F(N—1y) + T y). (B1)
K=M 2 M 0 e2™—1
|
In the present case, we chooske=1, N=o, and f(x) s\ = m\2 [n\2]-s2

=[(x+s)?+a?] 2 In order to apply the Plana formula S(m,a;s)=a" 5T E) > H—) +| =
some conditions have to be satisfig®]. First, we assume n=—e [\ a ©3)

that 98z> 3, so that the series in E422) converges abso-
lutely. Then, it can be shown that the functib(r—+it) is
holomorphic for 7=1 for any t, and that
lim, .. ..e 27f(7+it)=0 uniformly in the interval ¥
<oo. In addition, lim._...f”.dt e 27U|f(7+it)|=0. Under

The series converges absolutely f8s>1. The analytical
continuation to a meromorphic function in the complex
plane is given by 33]

these conditions, we have S(m,a;s)
1 > dx amt~S[ [s—1 1-s
H(z;s,@%) = =[(s+1)°+a? *Z+f _ SRR ) N p— (s—D2p| ==
( )=5l(s+1) ] L [t 92 al]? T | ——|+4(ma) Fl——:2mal|,
(CH
+.J'°°dtf(1+it)—f(1—it) (B2)
i .
0 Q2mt_q where
The first integral can be computed in closed form: F(s;a)= 2 n~SK«(na), (C5)
n=1
me with K4(x) the modified Bessel function of the second kind.
1 [(x+s)%+a?]? The following expansions, valid foa<1, will be useful
[34]:
- (1+s)1’22F 1 .\ 1 )2 - IR
=1 |2 pttyilies) | B9 F(l;a)= -~ 5 +O(aha), (Co)
Equations(B2) and (B3) give the analytic continuation of 4 )
H(z;s,a?) to the whole complexz-plane. From the definition F(2:a)= T_T W_a+o(a2)
of the hypergeometric function it follows thai(z;s,a?) has ' 452 12 6 '
simple poles ar=1/2,-1/2-3/2, ... . (C?
Using the analytical continuation given in E@4), one
APPENDIX C may write ¥ (a) (in the limit e—0) as the sum of two
Consider the function terms, namely, lim_ oV (a)=A(a)+ B(a), where
. o . N o(1+2a—d)2 [\ (1+2a+d)2 (149244
_Fr d"p [, (2mn|\® A(a)z—(—) —'mR)
Vi@=5g 2 f(zﬂ.)d—e[p +< R, "M 2P (—g) | R 2
(C1) (C8)
. and
Integration overp leads to
r —1-2a—d+e
ne T R Meml+2a+d—e - 2
= — — _ — + — H
V)= TR T s( m, 5 —2a—d e), B(a) mzdﬂ,fwmd,w (—a)
(€2 (C9
where Note that only.4A(«) depends orR.

045004-9



LUIZ C. DE ALBUQUERQUE AND R. M. CAVALCANTI

[1] S. A. Fulling, Aspects of Quantum Field Theory in Curved
Space-Time(Cambridge University Press, Cambridge, En-
gland, 1989.

[2] Modern Kaluza-Klein Theorigsedited by T. Appelquist, A.
Chodos, and P. G. O. Freuridddison-Wesley, Menlo Park,
CA, 1987.

[3] G. Plunien, B. Muller, and W. Greiner, Phys. Rei84, 87
(1986; V. M. Mostepanenko and N. N. Trunov, Sov. Phys.
Usp. 31, 965 (1988; M. Bordag, U. Mohideen, and V. M.
Mostepanenko, Phys. Reg53 1 (2002).

[4] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F.

Weisskopf, Phys. Rev. B, 3471(1974).

[5] J. I. Kapusta,Finite Temperature Field TheoryCambridge
University Press, Cambridge, England, 1989l. Le Bellac,
Thermal Field Theory(Cambridge University Press, Cam-
bridge, England, 1996

[6] H. W. Diehl, in Phase Transitions and Critical Phenomena
edited by C. Domb and J. L. LebowitAcademic Press, Lon-
don, 1986, \ol. 10.

[7] L. H. Ford, Proc. R. Soc. LondoA368, 305 (1979; L. H.
Ford and T. Yoshimura, Phys. Le%0A, 89 (1979.

[8] D. J. Toms, Phys. Rev. @1, 928 (1980; 21, 2805 (1980);
Ann. Phys.(N.Y.) 129 334(1980.

[9] G. Denardo and E. Spallucci, Nucl. Phy&169, 514 (1980);
A. Actor, Class. Quantum Gra¥, 663(1990; 7, 1463(1990;
L. H. Ford and N. F. Svaiter, Phys. Rev.31, 6981(1995.

[10] E. Braaten and R. D. Pisarski, Nucl. Ph{337, 569 (1990.

[11] R. R. Parwani, Phys. Rev. B5, 4695 (1992; 48 5965E)
(1993.

[12] J. Frenkel, A. V. Saa, and J. C. Taylor, Phys. Rev&) 3670
(1992.

[13] M. R. Douglas and N. A. Nekrasov, hep-th/0106048.

[14] W. Selke, inPhase Transitions and Critical Phenomeiealited
by C. Domb and J. L. Lebowit{Academic Press, London,
1992, Vol. 15.

[15] Y. Hosotani, Phys. Lett. B19 332(1993; Phys. Rev. D51,
2022(1995.

[16] M. Bordag and D. Robaschik, Ann. Phyg§\.Y.) 165 192

PHYSICAL REVIEW D 65 045004

(1989; E. Wieczorek, D. Robaschik, and K. Scharnhorst, Sov.
J. Nucl. Phys44, 665 (1986; D. Robaschik, K. Scharnhorst,
and E. Wieczorek, Ann. Phy@\.Y.) 174, 401(1987; M. Bor-
dag and K. Scharnhorst, Phys. Rev. L&tt, 3815(1998; M.
Bordag and J. Lindig, Phys. Rev. B8, 045003(1998; F.
Ravndal and J. B. Thomasseibjd. 63, 113007 (2001); K.
Melnikov, ibid. 64, 045002(2001).

[17] C. M. Bender and P. Hays, Phys. Rev.1d, 2622 (1976);
K. A. Milton, ibid. 22, 1441(1980; 25, 3441E) (1982.

[18] K. Symanzik, Nucl. PhysB190, 1 (1981.

[19] A. A. Actor and |. Bender, Phys. Rev. B2, 3581(1995.

[20] L. C. de Alburquerque, Phys. Rev. 55, 7754(1997).

[21] L. H. Ford and N. F. Svaiter, Phys. Rev.d98, 065007(1998.

[22] R. Balian and B. Duplantier, Ann. PhygN.Y.) 112 165
(1978.

[23] N. N. Bogoliubov and D. V. Shirkov/ntroduction to the
Theory of Quantized Fielddnterscience, New York, 1959
[24] I. S. Gradshteyn and I. M. RyzhiKables of Integrals, Series,

and ProductgAcademic Press, New York, 1994

[25] C. D. Fosco and N. F. Svaiter, hep-th/9910068.

[26] An alternative form of the analytical continuation of
H(z;s,az) can be found in the book by E. Elizalde, S. D.
Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbidieta
Regularization Techniques with ApplicatiofWorld Scientific,
Singapore, 1994

[27] S. Coleman and E. Weinberg, Phys. Rev7,D1888(1973.

[28] R. Parwani and H. Singh, Phys. Rev.5}, 4518(1995.

[29] S. Nam, J. High Energy Phy40, 044 (2000; W. H. Huang,
Phys. Lett. B497, 317 (2001); A. A. Bytsenko, A. E. Gon-
calves, and S. Zerbini, Mod. Phys. Lett.1%, 1479(2001).

[30] L. C. de Albuquerque and R. M. Cavalcanti, J. High Energy
Phys.07, 025(2002).

[31] L. D. Landau and E. M. LifshitzQuantum Mechanicéerga-
mon, Oxford, 198h

[32] E. T. Whittaker and G. N. Watsoi Course of Modern Analy-
sis (Cambridge University Press, Cambridge, England, 1996

[33] J. Ambjan and S. Wolfram, Ann. PhygN.Y.) 147, 1 (1983.

[34] H. W. Braden, Phys. Rev. R5, 1028(1982.

045004-10



