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Harmonic coordinate method for simulating generic singularities

David Garfinkle
Department of Physics, Oakland University, Rochester, Michigan 48309

~Received 1 October 2001; published 28 January 2002!

This paper presents both a numerical method for general relativity and an application of that method. The
method involves the use of harmonic coordinates in a 311 code to evolve the Einstein equations with scalar
field matter. In such coordinates, the terms in Einstein’s equations with the highest number of derivatives take
a form similar to that of the wave equation. The application is an exploration of the generic approach to the
singularity for this type of matter. The preliminary results indicate that the dynamics as one approaches the
singularity is locally the dynamics of the Kasner spacetimes.
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I. INTRODUCTION

It has long been known that harmonic coordinates
useful for mathematical relativity. In particular, these coor
nates were used@1# to prove the local existence of solution
of the vacuum Einstein equation. This usefulness of h
monic coordinates stems from their putting Einstein’s eq
tion into a form that is similar to the curved spacetime wa
equation. Since many numerical techniques work well on
wave equation, one might expect that harmonic coordina
would be used extensively in numerical relativity, and it
somewhat surprising that they are not.~However see@2# for
some recent mathematical and numerical work on the lin
ized case. In addition, harmonic time slices have been ad
cated and used in numerical relativity@3–7#.! This is perhaps
due to the following drawback of harmonic coordinate
these coordinates are solutions of the wave equation,
such solutions need not have a timelike gradient at all po
of spacetime, even if they start out with a timelike gradie
on an initial data surface. What this means is that in h
monic coordinates, the time coordinate will in general n
remain timelike and this is likely to cause numerical pro
lems @8,9#. As we will see later, there is a way around th
difficulty.

One area of numerical relativity where harmonic coor
nates have been used~though somewhat unintentionally! is
in the study of the approach to the singularity, in particular
the Gowdy spacetimes@10#. Numerical simulation of ap-
proach to a spacetime singularity presents problems o
own. Since it is expected that various quantities become
finite at the singularity, the numerical simulation will gene
ally stop after a finite coordinate time, the time when a s
face of constant time first encounters the singularity. Si
this first encounter generally occurs at one spatial point,
information about the behavior of the singularity at oth
spatial points will be unavailable from the numerical sim
lation. The solution to this difficulty is to choose a tim
coordinate that tends to infinity as the singularity is a
proached. In this way, the simulation is not forced to end
finite coordinate time, the whole spacetime up to the sin
larity is covered and the behavior of the metric as the sin
larity is approached simply becomes asymptotic behavio
the limit of large time coordinate. For Gowdy spacetim
there is a natural choice of such a time coordinate: th
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spacetimes are foliated byT2s invariant under the symmetr
group. The area of the symmetryT2s goes to zero as th
singularity is approached. Therefore minus the logarithm
this area is a natural time coordinate that goes to infinity
the singularity is approached. While this method works w
for the Gowdy spacetimes, since it depends crucially on
symmetry of the Gowdy spacetimes, the method does
seem to generalize to the case of the generic singularity w
no symmetries. A natural generalization comes when one
tices that this time coordinate~minus the logarithm of the
area of the symmetryT2s) is also harmonic. Since in som
sense one expects the wave equation to become singul
the spacetime singularity is approached, one might also
pect a solution of the wave equation to blow up as the s
gularity is approached and thus one might want to use su
solution as the coordinate time.

What is expected to be the generic behavior of a spa
time as the singularity is approached? Based on studie
spacetimes withT2 symmetry@10–12# and spacetimes with
U(1) symmetry@13#, the expected answer@14# is the follow-
ing: the singularity is expected to be spacelike and as i
approached each spatial point is expected to ‘‘decoup
from the others and undergo a dynamics corresponding
that of a homogeneous spacetime~though a different homo-
geneous spacetime at each spatial point!. Which types of
homogeneous spacetime is this dynamics expected to c
spond to? For vacuum spacetimes, it is thought that the
namics will be oscillatory, possibly corresponding to t
Mixmaster spacetime as conjectured in@15#. For many other
types of matter it is expected that as the singularity is
proached the matter terms in the Einstein equations bec
negligible and the dynamics approaches that of a vacu
spacetime.

However for so called ’’stiff matter’’~i.e. a scalar field or
a perfect fluid with equation of stateP5r) it is expected that
the dynamics will not be oscillatory and will correspond
that of a Kasner spacetime. This expectation is greatly b
stered by a theorem due to Andersson and Rendall@16#
which shows local existence in a neighborhood of the sin
larity of solutions to the Einstein-scalar equations, with t
expected asymptotic behavior and with enough degree
freedom to be the generic solutions.

Since the approach to the singularity is expected to
simpler for stiff matter than for vacuum, the stiff matter ca
©2002 The American Physical Society29-1
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DAVID GARFINKLE PHYSICAL REVIEW D 65 044029
should be easiser to treat numerically. Therefore, in this
per we confine ourselves to a numerical study of the
proach to the generic singularity in the Einstein-scalar s
tem. Section II presents the equations and numerical meth
used. The results are given in Sec. III. Section IV contain
discussion of the results and of other possible application
the harmonic coordinate method.

II. EQUATIONS AND NUMERICAL METHODS

The equations that we wish to evolve numerically are
Einstein-scalar equations

Rab58p¹af¹bf. ~1!

Here, we use the conventions of@17# including units where
c5G51. As a consequence of Eq.~1! and the Bianchi iden-
tities, the scalar field must satisfy the wave equation

¹a¹af50. ~2!

The Ricci tensor is given in terms of the Christoffel symbo
by

Rab5]gGab
g 2]aGgb

g 1Gab
g Gng

n 2Gan
g Gbg

n ~3!

while the Christoffel symbols are given in terms of the m
ric by

Gab
g 5 1

2 ggd~]agbd1]bgad2]dgab!. ~4!

Harmonic coordinates are solutions of the wave equat
As a generalization of harmonic coordinates, consider co
dinates that satisfy the wave equation with source

¹a¹axm5Hm ~5!

whereHm are specified from the beginning. Then using E
~3–5! we find that the Ricci tensor is given by

Rab52 1
2 ggs]g]sgab1 1

2 Cb
mnCmna1 1

2 Ca
mnCmnb

2Gna
g Ggb

n 2] (aHb)1Gab
g Hg ~6!

whereCamn[]agmn . Note that the second derivative term
appear only in the wave operator. Therefore, one might
pect that Einstein’s equations in this form behave similarly
the wave equation and that numerical methods that w
well on the wave equation might work well on Einstein
equations in this form. The reason for considering nonz
source termsHm in Eq. ~5! is that these terms allow us t
change the behavior of the time coordinate and thus m
allow us to eliminate~or at least postpone! the behavior
where the time coordinate ceases to be timelike. In the si
lations done in this paper, no source terms were neede
know of no systematic way to find appropriate source ter
and expect that in the cases where they are needed, one
have to resort to a trial and error method to find appropr
Hm. Note that the use of spatial harmonic coordinates co
also lead to coordinate problems. This would occur if t
gradients of the four coordinates fail to be linearly indepe
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dent. If this sort of problem occurs, one might expect to
able to postpone or eliminate it by using appropriate sou
terms.

The numerical method used requires equations that
first order in time. To put the equations in such a form,
define quantitiesPab andPf given by

Pab5] tgab ~7!

Pf5] tf. ~8!

Then the Einstein-scalar equation becomes

2g00] tPab52g0k]kPab1gik] i]kgab116p]af]bf

12] (aHb)22Gab
g Hg2Ca

mnCmnb

2Cb
mnCmna12Gna

g Ggb
n . ~9!

The wave equation forf becomes

2g00] tPf52g0k]kPf1gik] i]kf2gabGab
g ]gf. ~10!

The full set of equations that are evolved in the compu
code are Eqs.~7!–~10!.

We now turn to the numerical methods used to evo
these equations. Spatial derivatives are approximated by
tered differences. The variables are evolved in time usin
three step iterated Crank-Nicholson~ICN! method@18–20#.
This works as follows: evolution equations of the form] tS
5W(S) for some set of variablesS are approximated as

Sn115Sn1
Dt

2
@W~Sn!1W~Sn11!# ~11!

whereSn is the value ofS at time stepn andDt is the time
step. Then, usingSn as an initial guess forSn11, Eq. ~11! is
iterated three times.

The spacetimes we consider have topologyT33R. Each
spatial slice has topologyT3. In terms of the spatial coordi
nates, this means that 0<x<2p with 0 and 2p identified
~and correspondingly fory and z). This topology is imple-
mented numerically as follows: a spatial coordinatex hasN
grid points. The variables on points from 2 toN21 are
evolved using the evolution equations. The variables
point 1 are set to the values at pointN21 while at pointN
they are set to the values at point 2.

III. RESULTS

All runs were done in double precision on Comp
XP 1000 workstations and on the NCSA Origin 2000. T
time step wasDt5Dx/2. While the source termsHm should
be helpful in keeping the coordinates well behaved, we
not need them for the cases studied here and all runs h
Hm50.

Before exploring the generic singularity, we would like
test the code. One way of doing this is to run the code
cases with symmetry where results are already known. S
a case is the Gowdy spacetimes. These have the form@10#
9-2
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HARMONIC COORDINATE METHOD FOR SIMULATING . . . PHYSICAL REVIEW D65 044029
ds25e(t2l)/2@2e22tdt21dz2#1e2t@ePdx212ePQdxdy

1~ePQ21e2P!dy2#. ~12!

Here, P,Q and l are functions oft and z. It follows from
Eq. ~12! that the coordinates (t,x,y,z) are all solutions of
the wave equation. Therefore, they are harmonic coordina
The vacuum Einstein equations for the Gowdy spacetim
are @11#

]t]tP2e22t]z]zP2e2P@~]tQ!22e22t~]zQ!2#50
~13!

]t]tQ2e22t]z]zQ12~]tP]tQ2e22t]zP]zQ!50
~14!

plus constraint equations that determinel onceP andQ are
known.

To test the 311 code, we evolve Eqs.~13! and~14! using
a 111 code. Then we evolve the same initial data with t
311 harmonic code and compare the results. To do the c
parison, note thatP5t1 ln gxx so that it is straightforward to
compare the values ofP produced by the two codes. Fo
these simulations 500 gridpoints were used in the 111 code.
In the 311 code, 3 gridpoints were used in thex direction, 3
gridpoints in they direction and 500 gridpoints in thez di-
rection. For the comparison the initial data used isP
50,]tP55 cosz,Q5cosz,]tQ50. These data are evolve
until t5p and the results for the comparison are given
Fig. 1. Here, the solid line represents the 111 evolution of
the Gowdy equations, while the dots represent the full 311
evolution using the harmonic code. There is clearly agr
ment between the two.

Before presenting the results of another code test, we
to the question of finding initial data without symmetries. O
an initial data surface, the intrinsic metrichi j and the extrin-
sic curvatureKi j must satisfy the constraint equations

DiK
i
j2D jK58pḟD jf ~15!

(3)R1K22Ki j Ki j 58p@ḟ21DifDif#. ~16!

~Note that we use the convention of@17# for the sign ofKi j
which is opposite to the convention usually used in num
cal relativity.! Here, an overdot denotes derivative along t
normal to the surface, andDi and (3)R are respectively the

FIG. 1. Comparison of the quantityP as found using a Gowdy
code and the 311 harmonic code.
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covariant derivative and scalar curvature ofhi j . Given a so-
lution of Eqs.~15! and~16!, we produce initial data for evo
lution in harmonic coordinates as follows: For spatial dire
tions i and j we have gi j 5hi j ,gi05g0i50,g00521,Pi j
52Ki j . The remaining components ofPab are solved for
using Eq.~5!.

We want to find a solution of Eqs.~15! and ~16! that is
simple but has no symmetries and has some free parame
We choosef50 andhi j equal to the flat Euclidean metric i
the usual coordinates. For the extrinsic curvature we cho

Kxx5~b11a2cosy1a3cosz!/2

Kyy5~b21a1cosx2a3cosz!/2

Kzz5~b32a1cosx2a2cosy!/2

Kxy5Kyx5~c1cosz!/2

Kxz5Kzx5~c2cosy!/2

Kyz5Kzy5~c3cosx!/2. ~17!

Here, the quantitiesai , bi andci are constants that are fre
parameters. It is straightforward to show that the extrin
curvature of Eq.~17! with our choice of initialhi j and f
satisfies Eq.~15!. Equation~16! then becomes an agebra
equation forPf which can be solved provided that the le
hand side of the equation is positive. Note that if all theai
andci are zero and all thebi are equal, then the initial dat
evolve to the spatially flat Robertson-Walker spacetime w
scalar field matter. Thus, this family of data can be thou
of as Robertson-Walker with large gravitational and sca
waves.

We now consider a convergence test involving a co
straint that comes from the use of harmonic coordinates.
fine the quantitiesCm by

Cm5gabGab
m . ~18!

~This is the appropriate form of the constraint for the ca
where the source termHm vanishes. For the general case, t
constraint would be given byCm5gabGab

m 1Hm.! Then from
Eq. ~5! it follows that Cm50. Since we are solving the evo
lution equations by approximating them by finite differen
equations, the quantitiesCm as evaluated by the compute
code will not be zero because of errors due to the finite g
spacingDx. Define the quantityC by

C5U E AggabCaCbdxdydz

E Agdxdydz
U 1/2

. ~19!

This quantity is a type of measure of the average size of
constraint. Figure 2 shows a plot ofC vs. time. The param-
eters used areai5(0.1,0.1,0.2),bi5(0,20.5,20.5) andci
5(0,0,0). Here the curve corresponds to a run done with
gridpoints in each spatial direction, while the dots cor
9-3
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DAVID GARFINKLE PHYSICAL REVIEW D 65 044029
spond to a run with 38 gridpoints in each spatial direct
~which gives half the grid spacing! and withC multiplied by
4. The results show second order convergence.

We now consider the approach to the singularity. To
what is expected, it is helpful to consider the Kasner spa
time in harmonic coordinates. This is given by

ds252e(q11q21q3)tdt21eq1tdx21eq2tdy21eq3tdz2

~20!

where theqi are constants This metric is generally a soluti
of the Einstein-scalar equations; but for the case wh
((qi)

25(qi
2 it is a vacuum spacetime.@In the usual treat-

ment of vacuum Kasner spacetimes, one defines the qu
ties pi5qi /((qm) and then obtains the condition(pi

5(pi
251.# Note that in the vacuum case one cannot have

three directions contracting but that this is possible for
Einstein-scalar case. Note also that the metric compon
are exponential functions of time. It also turns out that
scalar field is a linear function of time. Thus, if the behav
of a generic solution near the singularity is local Kasner, th
we should expect metric components that are expone
functions of time, with the exponent depending on space.
should also expect a scalar field that is a linear function
time with the slope depending on space.

FIG. 2. Convergence test involving the constraint.

FIG. 3. Behavior of metric components and scalar field as
singularity is approached at the spatial point (0,0,0).
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Results on the approach to the singularity are shown
Figs. 3 and 4. The run was done with 34 grid points in ea
spatial direction. The parametersai , bi andci are the same
as for the convergence test. Here the scalar field and
logarithms of the diagonal metric components are plotted
functions of time. Figure 3 corresponds to the spatial po
(x,y,z)5(0,0,0) while for Fig. 4 the point is (0,p/4,p/2).
Note that as the singularity is approached these quantitie
become linear functions of time. The differences betwe
Figs. 3 and 4 show that there is a spatial dependence o
approach to the singularity. Note from Fig. 3 that though
x direction is initially expanding, eventually all three dire
tions contract. This is what one would expect if the metr
of @16# represent the generic behavior near the singula
since these metrics have all three directions contracting
neighborhood of the singularity.

IV. DISCUSSION

While this study is somewhat preliminary, it indicates th
harmonic coordinates can be a useful tool in numerical re
tivity. Though, in principle coordinate problems could occu
this did not happen in the cases studied here, even tho
they involved very strong fields. Furthermore, the use of
source termsHm may cure such problems if they arise.

As for the behavior of generic singularities, the numeric
results indicate that solutions of the form proved in Ref.@16#
to exist in a neighborhood of the singularity also exist g
bally. Thus such solutions are likely to describe the gene
singularity in the stiff matter case.

There are several projects for which the methods of t
paper could be used. One is to do a more extensive stud
the singularity in the Einstein-scalar case, with a more th
ough exploration of the evolution corresponding to vario
values of the parameters in the initial data of the previo
section. It would also be helpful to evolve for a longer tim

Another project is to remove the scalar field and study
approach to the singularity of the generic vacuum spaceti
Here, the behavior is expected to be more complicated a
treatment will probably require more spatial resolution

e

FIG. 4. Behavior of metric components and scalar field as
singularity is approached at the spatial point (0,p/4,p/2).
9-4
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HARMONIC COORDINATE METHOD FOR SIMULATING . . . PHYSICAL REVIEW D65 044029
resolve the expected sharp features, as well as longer ev
tion in time to see the expected oscillatory behavior.

Yet another project is to study the behavior of asympto
cally flat spacetimes rather than closed cosmologies. H
the closed cosmologies were studied partly for simplic
The periodic boundary conditions are simple to implem
and completely consistent with Einstein’s equations. In c
trast, for an outer boundary at a finite distance in an asy
totically flat spacetime, one needs to put some sort of ou
ing wave boundary condition. Such conditions are usua
not consistent with Einstein’s equation~it is known how to
have a consistent boundary condition@21# but this condition
is quite complicated!. These inconsistent conditions may le
to numerical instability. Since harmonic coordinates ma
Einstein’s equation look like the wave equation, simple o
going wave boundary conditions that work numerically w
the wave equation might be expected to ‘‘work’’~at least in
the sense of not causing numerical instability! for Einstein’s
equation.

Since much work has been done on numerical simulati
of asymptotically flat spacetimes using the stand
Arnowitt-Deser-Misner~ADM ! @22# approach, it is helpful to
make comparisons with this approach. In the ADM a
proach, the spacetime metric is written as

ds252a2dt21hi j ~dxi1b idt!~dxj1b jdt!. ~21!

Einstein’s equations are written as an evolution equation
the spatial metrichi j ~and the extrinsic curvatureKi j ) while
the gauge choice results in equations for the lapsea and the
shift b i . This framework is sufficiently general to accom
date the use of harmonic coordinates, which correspon
the following equations for lapse and shift:

] ta2b i] ia5Ka2 ~22!

] tb
i2bm]mb i5hmnḠmn

i a2. ~23!

@Note that the sign ofK in Eq. ~22! comes from the conven
tion of @17#.# Here Ḡmn

i is the Christoffel symbol associate
rk

d
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with hi j . @Equations~22! and ~23! hold for the case of van-
ishing source termHm. Similar equations hold in the case o
nonzeroHm.# The use of Eqs.~22! and~23! in an ADM code
is not precisely equivalent to the approach of this paper. T
reason for this is that Eqs.~22! and ~23! directly solve the
constraintgabGab

m 50, while in our approach, this constrain
is used to change the form of the evolution equations. No
theless, it would be interesting to use Eqs.~22! and~23! in an
ADM code to see how that compares with other choices
lapse and shift. In particular, one might expect better stab
properties and compatibility with a simple outgoing wa
boundary condition.~Though note that such improvemen
can also be obtained using the BSSN approach@23–25#.!

Another desired feature of a numerical code is the abi
to treat black holes, and this sometimes requires black h
excision. While harmonic coordinates are singularity avo
ing @3# they are just barely so and come arbitrarily close to
singularity. Thus the need for excision in an approach t
uses harmonic coordinates should be at least as great
the standard approach. Nonetheless, one might hope tha
cision itself would be easier to implement using the appro
of this paper. This is because no elliptic equations are
volved and the light cone of the wave operator is the sam
that of the physical metric.

All these projects are work in progress and prelimina
results from them are promising. Thus, I expect that h
monic coordinates will become a useful tool in numeric
relativity.
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