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Harmonic coordinate method for simulating generic singularities
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This paper presents both a numerical method for general relativity and an application of that method. The
method involves the use of harmonic coordinates intd ode to evolve the Einstein equations with scalar
field matter. In such coordinates, the terms in Einstein’s equations with the highest number of derivatives take
a form similar to that of the wave equation. The application is an exploration of the generic approach to the
singularity for this type of matter. The preliminary results indicate that the dynamics as one approaches the
singularity is locally the dynamics of the Kasner spacetimes.

DOI: 10.1103/PhysRevD.65.044029 PACS nunffer04.25.Dm, 04.20.Dw

. INTRODUCTION spacetimes are foliated Biys invariant under the symmetry
group. The area of the symmetfy’s goes to zero as the
It has long been known that harmonic coordinates argingularity is approached. Therefore minus the logarithm of
useful for mathematical relativity. In particular, these coordi-this area is a natural time coordinate that goes to infinity as
nates were usefd] to prove the local existence of solutions the singularity is approached. While this method works well
of the vacuum Einstein equation. This usefulness of harfor the Gowdy spacetimes, since it depends crucially on the
monic coordinates stems from their putting Einstein's equasymmetry of the Gowdy spacetimes, the method does not
tion into a form that is similar to the curved spacetime waveseem to generalize to the case of the generic singularity with
equation. Since many numerical techniques work well on theno symmetries. A natural generalization comes when one no-
wave equation, one might expect that harmonic coordinatetices that this time coordinaténinus the logarithm of the
would be used extensively in numerical relativity, and it isarea of the symmetr¥?s) is also harmonic. Since in some
somewhat surprising that they are ngiowever seg¢2] for  sense one expects the wave equation to become singular as
some recent mathematical and numerical work on the lineathe spacetime singularity is approached, one might also ex-
ized case. In addition, harmonic time slices have been advgect a solution of the wave equation to blow up as the sin-
cated and used in numerical relativi§—7].) This is perhaps gularity is approached and thus one might want to use such a
due to the following drawback of harmonic coordinates:solution as the coordinate time.
these coordinates are solutions of the wave equation, and What is expected to be the generic behavior of a space-
such solutions need not have a timelike gradient at all pointime as the singularity is approached? Based on studies of
of spacetime, even if they start out with a timelike gradientspacetimes witlT?> symmetry[10—12 and spacetimes with
on an initial data surface. What this means is that in harU(1) symmetry{13], the expected answgt4] is the follow-
monic coordinates, the time coordinate will in general noting: the singularity is expected to be spacelike and as it is
remain timelike and this is likely to cause numerical prob-approached each spatial point is expected to “decouple”
lems[8,9]. As we will see later, there is a way around this from the others and undergo a dynamics corresponding to
difficulty. that of a homogeneous spacetifieough a different homo-
One area of numerical relativity where harmonic coordi-geneous spacetime at each spatial poithich types of
nates have been uséthough somewhat unintentionalljs ~ homogeneous spacetime is this dynamics expected to corre-
in the study of the approach to the singularity, in particular inspond to? For vacuum spacetimes, it is thought that the dy-
the Gowdy spacetimefl0]. Numerical simulation of ap- namics will be oscillatory, possibly corresponding to the
proach to a spacetime singularity presents problems of itMixmaster spacetime as conjectured 1%]. For many other
own. Since it is expected that various quantities become intypes of matter it is expected that as the singularity is ap-
finite at the singularity, the numerical simulation will gener- proached the matter terms in the Einstein equations become
ally stop after a finite coordinate time, the time when a surnegligible and the dynamics approaches that of a vacuum
face of constant time first encounters the singularity. Sincespacetime.
this first encounter generally occurs at one spatial point, the However for so called "stiff matterTi.e. a scalar field or
information about the behavior of the singularity at othera perfect fluid with equation of stafe=p) it is expected that
spatial points will be unavailable from the numerical simu-the dynamics will not be oscillatory and will correspond to
lation. The solution to this difficulty is to choose a time that of a Kasner spacetime. This expectation is greatly bol-
coordinate that tends to infinity as the singularity is ap-stered by a theorem due to Andersson and Rerd4]
proached. In this way, the simulation is not forced to end atvhich shows local existence in a neighborhood of the singu-
finite coordinate time, the whole spacetime up to the singufarity of solutions to the Einstein-scalar equations, with the
larity is covered and the behavior of the metric as the singuexpected asymptotic behavior and with enough degrees of
larity is approached simply becomes asymptotic behavior ifireedom to be the generic solutions.
the limit of large time coordinate. For Gowdy spacetimes Since the approach to the singularity is expected to be
there is a natural choice of such a time coordinate: thessimpler for stiff matter than for vacuum, the stiff matter case
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should be easiser to treat numerically. Therefore, in this padent. If this sort of problem occurs, one might expect to be
per we confine ourselves to a numerical study of the apable to postpone or eliminate it by using appropriate source
proach to the generic singularity in the Einstein-scalar systerms.

tem. Section Il presents the equations and numerical methods The numerical method used requires equations that are
used. The results are given in Sec. Ill. Section IV contains dirst order in time. To put the equations in such a form, we
discussion of the results and of other possible applications adefine quantities,; andP , given by

the harmonic coordinate method.

Pus=di9ap (7)
Il. EQUATIONS AND NUMERICAL METHODS
The equations that we wish to evolve numerically are the
Einstein-scalar equations Then the Einstein-scalar equation becomes
R.s=87V,$Vs. (1) —g%0P 5= 29% P s+ G G upt+ 16T 4 b
Here, we use the conventions [df7] including units where +29Hp—2I'}gH,—C *"C,p
c=G=1. As a consequence of E{) and the Bianchi iden- v Y v
tities, the scalar field must satisfy the wave equation —CpChiat 2l g ©
V,V¥$=0. (2)  The wave equation fos) becomes
The Ricci tensor is given in terms of the Christoffel symbols —g%0,P 4=29%0P 4+ g% 00 p— 9T} 30,6. (10

by
The full set of equations that are evolved in the computer
Rapg=0, L 0=+ T 250 —T2 T p, (3) code are Eqs.7)—(10).

We now turn to the numerical methods used to evolve
while the Christoffel symbols are given in terms of the met-these equations. Spatial derivatives are approximated by cen-
ric by tered differences. The variables are evolved in time using a

three step iterated Crank-Nichols@CN) method[18-20.
I 5=29"(0.9p5% 0p9as— 59up)- (4)  This works as follows: evolution equations of the for®

) ) . ~ =W(S) for some set of variableS are approximated as
Harmonic coordinates are solutions of the wave equation.

As a generalization of harmonic coordinates, consider coor- 1 At 1
dinates that satisfy the wave equation with source STE=S" S [W(S)+W(STH)] (12

VEVxE=H" 5) whereS" is the value ofS at time stepn and At is the time

step. Then, using" as an initial guess fo8"**, Eq. (11) is
iterated three times.
The spacetimes we consider have topoldgy R. Each

whereH# are specified from the beginning. Then using Egs.
(3-5 we find that the Ricci tensor is given by

R,z=—%99.9,9,5+1Cz*'C .+ 3C*C spatial slice has topology>. In terms of the spatial coordi-
“r yroSap poTnva « Twp nates, this means thatkx<27 with 0 and 27 identified
-7 = dHg+T2sH, (6)  (and correspondingly foy and z). This topology is imple-

mented numerically as follows: a spatial coordinateasN
whereC,,,=4d,9,,. Note that the second derivative terms grid points. The variables on points from 2 -1 are
appear only in the wave operator. Therefore, one might exevolved using the evolution equations. The variables on
pect that Einstein’s equations in this form behave similarly topoint 1 are set to the values at poMt 1 while at pointN
the wave equation and that numerical methods that workhey are set to the values at point 2.
well on the wave equation might work well on Einstein’s
equations in this form. The reason for considering nonzero
source termdH# in Eq. (5) is that these terms allow us to
change the behavior of the time coordinate and thus may All runs were done in double precision on Compagq
allow us to eliminate(or at least postponethe behavior XP 1000 workstations and on the NCSA Origin 2000. The
where the time coordinate ceases to be timelike. In the simuime step was\t=Ax/2. While the source termd* should
lations done in this paper, no source terms were needed.be helpful in keeping the coordinates well behaved, we did
know of no systematic way to find appropriate source termsiot need them for the cases studied here and all runs have
and expect that in the cases where they are needed, one wil*=0.
have to resort to a trial and error method to find appropriate Before exploring the generic singularity, we would like to
H*. Note that the use of spatial harmonic coordinates couldest the code. One way of doing this is to run the code on
also lead to coordinate problems. This would occur if thecases with symmetry where results are already known. Such
gradients of the four coordinates fail to be linearly indepen-a case is the Gowdy spacetimes. These have the [fboin

IIl. RESULTS
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P covariant derivative and scalar curvaturehgf. Given a so-
lution of Eqgs.(15) and(16), we produce initial data for evo-
lution in harmonic coordinates as follows: For spatial direc-
tions i and j we have gj;=hjj,gio=00i=0.g0o= — 1,P;;
=2Kjj . The remaining components &, are solved for
using Eq.(5).

We want to find a solution of Eq$15) and (16) that is
simple but has no symmetries and has some free parameters.

z We choosep=0 andh;; equal to the flat Euclidean metric in
the usual coordinates. For the extrinsic curvature we choose

[e)]

>

N

-2

K x= (b, +a,cosy+ascosz)/2
FIG. 1. Comparison of the quantify as found using a Gowdy = (D11 8,08y + 2 )

code and the 31 harmonic code. Kyy= (by+ 8,08 — a5c082)/2

ds?=el" N —e 272+ dZ2]+e TePdx?+2ePQdxdy

+(eQ?+e P)dy?]. (12)

K,,=(bz—aj;cosx—a,cosy)/2

Kxy=Kyx=(c1€082)/2
Here, P,Q and\ are functions ofr and z It follows from

Eqg. (12) that the coordinatesr(x,y,z) are all solutions of K, ;=K = (Ccyc0osy)/2

the wave equation. Therefore, they are harmonic coordinates.

The vacuum Einstein equations for the Gowdy spacetimes Ky,=K,y=(C3c08X)/2. 17
are[11]

Here, the quantitieg;, b; andc; are constants that are free
d,0,P—e"?79,0,P—e’"[(9,Q)*~ e ?7(9,Q)?]=0 parameters. It is straightforward to show that the extrinsic
(13 curvature of Eq.(17) with our choice of initialh;; and ¢
o o satisfies Eq(15). Equation(16) then becomes an agebraic
9:0.Q—€ 7,0,Q+2(9.Pd,Q—e "9,P3,Q)=0 equation forP, which can be solved provided that the left

(14) hand side of the equation is positive. Note that if all the

plus constraint equations that determin@enceP andQ are ~ @ndc; are zero and all the; are equal, then the initial data
known. evolve to the spatially flat Robertson-Walker spacetime with

To test the 3-1 code, we evolve Eq$13) and (14) using scalar field matter. Thus, this family of data can be thought
a 1+1 code. Then we évolve the same initial data with the®f @s Robertson-Walker with large gravitational and scalar

3+1 harmonic code and compare the results. To do the comfYaVves. _ _ _

parison, note thaP = 7+ In g, so that it is straightforward to VW& now consider a convergence test involving a con-
compare the values d? produced by the two codes. For §tra|nt that comes from the use of harmonic coordinates. De-
these simulations 500 gridpoints were used in thd tode.  fin€ the quantitie” by

In the 3+1 code, 3 gridpoints were used in tkelirection, 3 i aBTn

gridpoints in they direction and 500 gridpoints in thedi- Cr=g"Tap- (18)
rection. For the comparison the initial data used Hs
=0,0,P=5 cosz,Q=c0sz,d,Q=0. These data are evolved
until 7= and the results for the comparison are given in
Fig. 1. Here, the solid line represents th¢ 1L evolution of
the Gowdy equations, while the dots represent the fulll3

evolution using the harmonic code. There is clearly agree ) ]
ment between the two. equations, the quantitie6* as evaluated by the computer

Before presenting the results of another code test, we turfode Will not be zero because of errors due to the finite grid
to the question of finding initial data without symmetries. OnSPaCingAXx. Define the quantitC by

(This is the appropriate form of the constraint for the case
where the source terid* vanishes. For the general case, the
constraint would be given bg#= g“ﬁFgBJr H#.) Then from

Eq. (5) it follows that C*=0. Since we are solving the evo-
lution equations by approximating them by finite difference

an initial data surface, the intrinsic methg and the extrin- 12
sic curvatureK;; must satisfy the constraint equations f \/ggaBC“Cﬁdxdyd
_ . C= (19
C)R+K2—KIK;;=87[ $?+ D' $D;¢]. (16)

This quantity is a type of measure of the average size of the
(Note that we use the convention [df7] for the sign ofK;; constraint. Figure 2 shows a plot 6fvs. time. The param-
which is opposite to the convention usually used in numeri-eters used are;=(0.1,0.1,0.2)h;=(0,—0.5,-0.5) andc;
cal relativity) Here, an overdot denotes derivative along the=(0,0,0). Here the curve corresponds to a run done with 20
normal to the surface, anid; and ®)R are respectively the gridpoints in each spatial direction, while the dots corre-
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FIG. 2. Convergence test involving the constraint. sk s ]
[ *~d In¢gt)
spond to a run with 38 gridpoints in each spatial direction ol \ , , ,
(which gives half the grid spacingnd withC multiplied by o 2 4 6 8
4. The results show second order convergence. t

We now consider the approach to the singularity. To see

what is expected, it is helpful to consider the Kasner spaces—inFlIErii; ili(—;havrl(()J;C(?]fe?2tr|§]gzmggglen;?n:;1; fﬁ;;ar field as the
time in harmonic coordinates. This is given by 9 PP P P T

Results on the approach to the singularity are shown in
ds?= —e(@1t 2t a)7q 2+ ed17d X2+ e27dy? + e937d 7 Figs. 3 and 4. The run was done with 34 grid points in each
(20 spatial direction. The parameteais, b; andc; are the same
as for the convergence test. Here the scalar field and the
where theg; are constants This metric is generally a solutionlogarithms of the diagonal metric components are plotted as
of the Einstein-scalar equations; but for the case wheréunctions of time. Figure 3 corresponds to the spatial point
(2q))?==¢? it is a vacuum spacetiméln the usual treat- (X,¥,2)=(0,0,0) while for Fig. 4 the point is (&/4,7/2).
ment of vacuum Kasner spacetimes, one defines the quanfilote that as the singularity is approached these quantities all
ties p;=q;/(2q,,) and then obtains the conditiomp; Pecome linear functions of time. The differences between
=Epi2= 1.] Note that in the vacuum case one cannot have alfFigs. 3 and 4 show that there is a spatial dependence of the

three directions contracting but that this is possible for the2PProach to the singularity. Note from Fig. 3 that though the

Einstein-scalar case. Note also that the metric componentsdirection is initially expanding, eventually all three direc-
are exponential functions of time. It also turns out that thellOnS contract. This is what one would expect if the metrics

scalar field is a linear function of time. Thus, if the behavior©f [16] represent the generic behavior near the singularity

of a generic solution near the singularity is local Kasner, thersince these metrics have all three directions contracting in a

we should expect metric components that are exponentidl€ighborhood of the singularity.
functions of time, with the exponent depending on space. We
should also expect a scalar field that is a linear function of IV. DISCUSSION

time with the slope depending on space. While this study is somewhat preliminary, it indicates that

harmonic coordinates can be a useful tool in numerical rela-
S T L L AL tivity. Though, in principle coordinate problems could occur,

[ 10 this did not happen in the cases studied here, even though
they involved very strong fields. Furthermore, the use of the
source term$i# may cure such problems if they arise.

As for the behavior of generic singularities, the numerical
results indicate that solutions of the form proved in R&6]
1n ayy to exist in a neighborhood of the singularity also exist glo-
N Ny bally. Thus such solutions are likely to describe the generic
A Ing_zz . Lo .

e 1 singularity in the stiff matter case.
sF e ] There are several projects for which the methods of this
~ ] paper could be used. One is to do a more extensive study of
N 1 the singularity in the Einstein-scalar case, with a more thor-
] In(g ) ough exploration of the evolution corresponding to various
[ ] values of the parameters in the initial data of the previous
qo bt b e L section. It would also be helpful to evolve for a longer time.

Another project is to remove the scalar field and study the
approach to the singularity of the generic vacuum spacetime.

FIG. 3. Behavior of metric components and scalar field as theHere, the behavior is expected to be more complicated and a
singularity is approached at the spatial point (0,0,0). treatment will probably require more spatial resolution to

In g_xx
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resolve the expected sharp features, as well as longer evolwith h;; . [Equations(22) and(23) hold for the case of van-
tion in time to see the expected oscillatory behavior. ishing source terni*. Similar equations hold in the case of
Yet another project is to study the behavior of asymptoti-nonzeroH*.] The use of Eqs(22) and(23) in an ADM code
cally flat spacetimes rather than closed cosmologies. Hergs not precisely equivalent to the approach of this paper. The
the closed cosmologies were studied partly for simplicity.reason for this is that Eq€22) and (23) directly solve the
The periodic boundary conditions are simple to impleme”%onstraintgaﬁl“” —0, while in our approach, this constraint
and completely consistent with Einstein’s equations. In CONis used to chanagBe the form of the evolution equations. None-

trast, for an outer boundary at a finite distance in an asyMPpeless. it would be interesting to use E@2) and(23) in an

totically flat spacetime, one needs to put some sort of OUtgOR g code to see how that compares with other choices of

ing wave boundary condition. Such conditions are usuallyla se and shift. In particular, one might expect better stabilit
not consistent with Einstein’s equatigit is known how to P . - I particuiar, one might exp ) y
properties and compatibility with a simple outgoing wave

have a consistent boundary conditic@i] but this condition bound dition(Thouah h hi
is quite complicatexd These inconsistent conditions may lead Poundary condition(Though note that such improvements

to numerical instability. Since harmonic coordinates make"an @IS0 be obtained using the BSSN apprd@h-23.)
Einstein’s equation look like the wave equation, simple out- Another desired feature of a numerical code is the ability

going wave boundary conditions that work numerically with t0 treat black holes, and this sometimes requires black hole
the wave equation might be expected to “wortdt least in ~ €xcision. While harmonic coordinates are singularity avoid-
the sense of not causing numerical instabjlfyr Einstein’s ~ ing [3] they are just barely so and come arbitrarily close to a
equation. singularity. Thus the need for excision in an approach that
Since much work has been done on numerical simulationgses harmonic coordinates should be at least as great as in
of asymptotically flat spacetimes using the standardhe standard approach. Nonetheless, one might hope that ex-
Arnowitt-Deser-MisnefADM ) [22] approach, it is helpful to  cision itself would be easier to implement using the approach
make comparisons with this approach. In the ADM ap-of this paper. This is because no elliptic equations are in-

proach, the spacetime metric is written as volved and the light cone of the wave operator is the same as
. o o that of the physical metric.
ds’=—a?dt*+ hj(dx'+ gdt)(d¥+ gldt). (21 All these projects are work in progress and preliminary

results from them are promising. Thus, | expect that har-
Monic coordinates will become a useful tool in numerical
relativity.

Einstein’s equations are written as an evolution equation fo
the spatial metrity;; (and the extrinsic curvatur;;) while
the gauge choice results in equations for the lapsand the
shift B'. This framework is sufficiently general to accomo-
date the use of harmonic coordinates, which correspond to
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da— B da=Ka? (22
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