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Back reaction of quantum fields in an Einstein universe

M. B. Altaie*
Department of Physics, Yarmouk University, Irbid, Jordan

~Received 31 May 2001; published 28 January 2002!

I study the back-reaction effect of the finite-temperature massless scalar field and the photon field in the
background of the static Einstein universe. In each case I find a relation between the temperature of the
universe and its radius. This relation exhibits a minimum radius below which no self-consistent solution for
the Einstein field equation can be found. A maximum temperature marks the transition from the vacuum
dominated era to the radiation dominated era. An interpretation of this behavior in terms of Bose-Einstein
condensation in the case of the scalar field is given.
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I. INTRODUCTION

Many authors have investigated the behavior of quan
fields in curved spacetimes~for a thorough in-depth review
see Ref.@1#!. These investigations came in an endeavor
understand the origin of the universe and the creation
matter, presumably, out of an arbitrary state of nothing~the
vacuum!. The subject was initiated by the discovery of Pe
zias and Wilson@2# of the microwave background radiation
where it was observed that the galaxies swim in a global c
bath at about 2.73 K. The source of this radiation was fou
to be cosmic; therefore, it was called the cosmic microwa
background~CMB! radiation. This radiation was found to b
isotropic over a large angular scale of observation, and it
a Planck spectrum for a radiating blackbody at about 2.73

The discovery of the CMB revived the theory of the h
origin of the universe~the big-bang model! which was
worked out in the late 1940s by Gamow and his collabo
tors. The most refined analysis along this line predicte
cosmic background radiation at a temperature of about
~for a concise recent review of the subject see Ref.@3#!.
Therefore the Penzias-Wilson discovery was considere
good verification of what was called the big bang mod
However, since the Gamow model started with the unive
at the times when the temperature was about 1012 K, the new
interest in the origin of the universe sought much ear
times at much higher temperatures. The new interest aros
studying the state of the universe in the period from near
Planck time (;10244 s) to the grand unification time
(;10234 s). This is the era when quantum effects playe
decisive role in the subsequent developments of the unive
and it is also the era when particle processes could have
permanent imprints on the content of the universe.

The works dealing with this question started by the m
1970s when matter fields were brought into connection w
spacetime curvature through the calculation of the vacu
expectation value of the energy-momentum tensor^0uTmnu0&
@4–8#. The motivations for studying this quantity stems fro
the fact thatTmn is a local quantity that can be defined at
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specific spacetime point, contrary to the particle conc
which is global. The energy-momentum tensor also acts
source of gravity in the Einstein field equations, therefo
^0uTmnu0& plays an important role in any attempt to mode
self-consistent dynamics involving the classical gravitatio
field coupled to the quantized matter fields. So, on
^0uTmnu0& is calculated in a specified background geome
we can substitute it on the right-hand side~RHS! of the Ein-
stein field equation and demand self-consistency, i.e.,

Rmn2 1
2 gmnR528p^0uTmnu0&, ~1!

whereRmn is the Ricci tensor,gmn is the metric tensor, andR
is the scalar curvature.

The solution of Eq.~1! will determine the development o
the spacetime in presence of the given matter field, for wh
u0& can be unambiguously defined. This is known as
‘‘back-reaction problem.’’ It is interesting to perform the ca
culation of ^0uTmnu0& in Friedmann-Robertson-Walke
~FRW! models because the real universe is, more or les
sophisticated form of the Friedmann models. However,
time dependence of the spacetime metric generally cre
unsolvable fundamental problems. One such problem
the definition of vacuum in a time-dependent backgrou
@9#; a time-dependent background is eligible for produci
particles continuously, therefore, pure vacuum states in
Minkowskian sense do not exist. Also an investigation in
the thermodynamics of a time-dependent system lacks
proper definition of thermal equilibrium, which is a bas
necessity for studying finite-temperature field theory
curved backgrounds@10#.

Of all the available solutions of the Einstein field equ
tions, the static Einstein universe stands above the two
damental challenges. First, being static, the Einstein unive
leaves no ambiguity in defining the vacuum both locally a
globally @1#. The same feature also allows for thermal eq
librium to be defined unambiguously. Furthermore, the E
stein static metric is conformal to all Robertson-Walker m
rics, and it was shown by Kennedy@10# that thermal Green’s
functions for the static Einstein universe and the tim
dependent Robertson-Walker universe are conformally
lated, hence deducing a~one-to-one! correspondence be
tween the vacuum and the many particle states of b
©2002 The American Physical Society28-1
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M. B. ALTAIE PHYSICAL REVIEW D 65 044028
universes. Therefore, under the equilibrium condition,
thermodynamics of quantum fields in an Einstein universe
radius a is equivalent to that of an instantaneously sta
Friedmann-Roberson-Walker~FRW! universe of equal radius
@4,7,11#. This means that the results obtained in the FR
universe would be qualitatively the same as those obtaine
an Einstein universe.

Dowker and Critchley@12# considered the finite tempera
ture corrections for the massless scalar field in an Eins
universe using the technique of finite-temperature Gree
functions. Later Altaie and Dowker@13# calculated the finite
temperature corrections to the massless scalar field, the
trino field, and the photon field in the background of
Einstein universe. The results of the calculation for the p
ton field were used to deduce a self-consistent solution
the Einstein field equation, i.e., a back-reaction proble
from which a relation between the temperature and the ra
of the Einstein universe was deduced. However, this rela
was not fully exploited at that time and therefore some of
thermodynamical aspects were kept unexposed. Hu@11# con-
sidered the effects of finite-temperature conformally coup
massless scalar field in a closed Robertson-Walker univ
using the results of Altaie and Dowker@13# and assuming
that the thermal equilibrium is established for the scalar p
ticles throughout the history of the universe. In the hig
temperature limit Hu found that the universe expands
early in cosmic time near the singularity. In the low
temperature limit, it reduces to the Starobinsky–de Si
type solution where the singularity is avoided in an expon
tial expansion, concluding that the finite-temperature form
ism provides a unifying framework for the description of t
interplay of vacuum and radiation energy and their combin
effect on the state of the early universe.

Recently Plunienet al. @14# considered the dynamical Ca
simir effect at finite temperature. They reported that fin
temperatures can enhance the pure vacuum effect by se
orders of magnitude. Although the relevance of this res
was addressed in the context of an effort aiming at the
perimental verification of the Casimir effect, it does have
useful implication in respect to the theoretical understand
of the finite temperature corrections to the vacuum ene
density in closed spacetimes.

In this paper we will reconsider the calculation of th
back-reaction effect of the conformally coupled massl
scalar field and the photon field in the background of
Einstein static universe. The aim is to expose the ther
behavior of the system, analyze and interpret details that
have been overlooked in previous studies, and investigate
possibility of assigning any practical applicability of the r
sults.

II. THE VACUUM ENERGY DENSITY
AND BACK REACTION

The metric of the Einstein static universe is given by

ds25dt22a2@dx21sin2 x~du21sin2 udf2!#, ~2!

wherea is the radius of the spatial part of the universeS3

and 0<x<p, 0<u<p, and 0<f<2p.
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We consider an Einstein static universe being filled with
massless boson gas in thermal equilibrium at temperaturT.
The total energy density of the system can be written as

^T00& tot5^T00&T1^T00&0 , ~3!

where^T00&0 is the zero-temperature vacuum energy dens
and ^T00&T is the corrections for finite temperatures, i.e.,

^T00&T5
1

V (
n

dnen

expben21
, ~4!

whereen and dn are the eigenenergies and degeneracies
the nth state, andV52p2a3 is the volume of the spatia
section of the Einstein universe.

To investigate the back-reaction effect of finit
temperature quantum fields on the behavior of the space
we should substitute for̂T00& tot on the RHS of the Einstein
field, but this time with the cosmological constantl, i.e.,

Rmn2 1
2 gmnR1gmnl528p^Tmn& tot . ~5!

Indeed all the Einstein field equations for the system
satisfied due to the symmetry of the Einstein universe wh
is topologically described byT^ S3 and due to the structure
of ^Tmn& in this geometry which comes to be diagonal and
given by ~see@1#, p. 186!

^Tm
n &5

p~s!

2p2a4 diag~1,21/3,21/3,21/3!, ~6!

wherep(s) is a spin-dependent coefficient which takes t
valuesp(0)51/240,p(1/2)517/960, andp(1)511/120.

Since we are interested in the energy density, we w
consider theT00 only. In order to eliminatel from Eq.~5! we
multiply both sides withgmn and sum overm and n, then
using the fact thatTm

m50 for massless fields, and for th
Einstein universeR0050, g0051, andR56/a2, we get

6

a2 532p^T00& tot . ~7!

Note that in the general case conformal anomalies do
pear in the expression for̂Tm

m&, but because of the high
symmetry enjoyed by the Einstein universe these anoma
do not appear and̂Tm

m& is found to be traceless for massle
particles.

A. Scalar field

For a conformally coupled massless scalar field the ze
temperature vacuum energy density in an Einstein univers
@4,6#

^T00&05
1

480p2a4 . ~8!

The eigenenergies and degeneracies areen5n/a and dn
5n2, respectively, so that Eq.~3! gives
8-2
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FIG. 1. The temperature-radius relationship for the massless scalar field in an Einstein universe.
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^T00& tot5
1

2p2a4 (
n51

`
n3

exp~n/Ta!21
1

1

480p2a4 . ~9!

Using this mode-sum expression, Altaie and Dowker@13#
calculated the finite temperature corrections for the vacu
energy density of the conformally coupled massless sc
field in the Einstein universe. The results which are functio
of a single parameterj(5Ta), were then subjected to th
high and low-temperature limits. It was found that in th
low-temperature~or small radius! limit the zero-temperature
vacuum energy density is recovered, i.e.,

lim
j→0

^T00& tot5
1

480p2a4 , ~10!

and in the high temperature~or large radius! limit the behav-
ior of the system is totally Planckian,

lim
j→`

^T00&5
p2

30
T4. ~11!

In order to investigate the back-reaction effect of the fie
we substitute for̂ T00& tot from Eq. ~9! in Eq. ~7! and request
a self-consistent solution, we get
04402
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a25
8

3p (
n51

`
n3

exp~n/Ta!21
1

1

90p
. ~12!

This equation determines a relation between the temp
ture T and the radiusa of the Einstein universe in the pres
ence of the conformally coupled massless scalar field.
solutions of this equation are shown in Fig. 1. Two regim
are recognized: one corresponding to small values ofj where
the temperature rises sharply reaching a maximum atTmax
'2.218Tp53.1531032 K at a radius at'0.072l p51.16
310234 cm. Since this regime is controlled by the vacuu
energy~the Casimir energy!, we therefore prefer to call it the
‘‘Casimir regime.’’ The second regime is what we call th
‘‘Planck regime,’’ which corresponds to large values ofj,
and in which the temperature asymptotically approaches
for very large values ofa. This behavior was overlooked b
Hu @11#.

From Eq. ~12! it is clear that atT50 the radius of an
Einstein universe has a minimum valuea0 , below which no
consistent solution of the Einstein field equation exist. Thi
given by

a05S 1

90p D 1/2

l p . ~13!
8-3
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M. B. ALTAIE PHYSICAL REVIEW D 65 044028
Note thata0 here is less than one Planckian lengthl p , this
goes beyond the range of validity of the quasi-classical
proximation adopted in the present work. But fortunately,
region of validity of the approach can be extended if o
takes the number of fields large enough~see, for instance
Ref. @15#!.

From Eqs.~7! and ~11! we can calculate the backgroun
~Tolman! temperature of the universe in the limit of larg
radius. This is given by

Tb5S 45

8p3a2D 1/4

, ~14!

for example, ata51.3831028 cm we obtainT531.556 K.
Conversely if we demand that the background tempe

ture have the same value as the present equivalent tem
ture of the CMB radiation, i.e., 2.73 K, then the radius of t
Einstein universe should be 1.29431030 cm. This is about
two orders of magnitude larger than the estimated Hub
length of 1.3831028 cm.

B. Photon field

The vacuum energy density of this field at zero tempe
ture is given by@6#

^T00&05
11

240p2a4 . ~15!

The total energy density of the system in terms of the mo
sum can be written as

^T00& tot5
1

p2a4 (
n52

`
n~n221!

exp~n/Ta!21
1

11

240p2a4 . ~16!

In the low-temperature limit the result reduces to@13#

lim
j→0

^T00& tot5
11

240p2a4 . ~17!

Substituting this into Eq.~7! we get

a0g5S 11

45p D 1/2

l p . ~18!

This is the minimum radius for an Einstein static univer
filled with photons at finite temperatures.

In the high-temperature~or large radius! limit the result is

lim
j→`

^T00& tot5
p2

15
T42

1

6

T2

a2 . ~19!

The back reaction of the field can be studied if we sub
tute Eq.~16! into Eq. ~7! where this time we obtain

a25
16

3p (
n52

`
n~n221!

exp~n/Ta!21
1

11

45p
. ~20!

The solutions to this equation are depicted in Fig.
where we see that the behavior is qualitatively the same
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that encountered in the conformally coupled scalar field ca
The minimum radius permissible for a self-consistent so
tion to exist in the presence of the photon field isa0
50.279l p , and the maximum temperatureTmax51.015Tp
51.4431032 K at at50.34l p55.5310234 cm.

The background~Tolman! temperature of the photon fiel
is

Tbg5S 45

16p3a2D 1/4

. ~21!

At the radius of 1.3831028 cm we obtain a background
temperature of 30.267 K, and if we require that the ba
ground temperature have the same value as the average
sured value of 2.73 K, the radius of the Einstein universe
to be 1.8331030 cm. Again more than two orders of magn
tude larger than the estimated value of Hubble length.

III. BOSE-EINSTEIN CONDENSATION

In an earlier work@16#, we studied the Bose-Einstein con
densation~BEC! of nonrelativistic spin 0 and spin 1 particle
in an Einstein universe. We found that the finiteness of
system resulted in smoothing-out the singularities of the th
modynamic functions which are normally found in infini
systems, so that the phase transitions in curved space be
noncritical. We also remarked about the enhancement of
condensate fraction and the displacement of the specific-
maximum toward higher temperatures. Singh and Pat
@17# considered the BEC of a relativistic conformal
coupled massive scalar field. Their results confirmed our
lier findings of the nonrelativistic case. Recently we cons
ered the BEC of the relativistic massive spin-1 field in
Einstein universe@18#. Again the results confirmed our ea
lier findings concerning the general features of the BEC
closed spacetimes. So the above-mentioned features be
established general features of the BEC of quantum field
curved spaces.

Parker and Zhang@19# considered the ultrarelativistic
BEC of the minimally coupled massive scalar field in
Einstein universe in the limit of high temperatures. Th
showed, among other things, that an ultrarelativistic B
can occur at very high temperatures and densities in the
stein universe, and by implication in the early stages o
dynamically changing universe. Parker and Zhang@20#, also
showed that the Bose-Einstein condensate can act as a s
for inflation leading to a de Sitter type universe. Howev
Parker and Zhang gave no specific value for the conde
tion temperature of the system.

Here we are going to use the ready result obtained for
condensation temperatureTc of the conformally coupled
massless scalar field in order to explain the change in be
ior of the system from the Casimir regime to the Plan
regime. This change is taking place at a well defined ma
mum temperature which we called the transition tempera
Tt .

The condensation temperature of the conformally coup
massive scalar field is given by@21#
8-4
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FIG. 2. The temperature-radius relationship for the photon field in an Einstein universe.
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i.e.,

a-
Tc5S 3q

m D 1/2S 11
1

m2a2D 21/4

. ~22!

In the massless limit this gives

Tc5A3qa, ~23!

whereq is the number density of the particles.
For the Einstein universe specifically we have shown t

@see Eq.~7!#

^T00& tot5
3

16pa2 . ~24!

This means that, if the back reaction of the field is to
taken into consideration, the number density of the partic
in the systemq will be inversely proportional toa2, this
enables us to write

qa25const, ~25!

for any values ofq anda. This means that

qb5q0S a0

ap
D 2

. ~26!
04402
t

e
s

Substituting this into Eq.~23! we get the expression fo
the condensation temperature of the conformally coup
massless scalar field in the Einstein universe as

Tc5A3qpap
2

a0
. ~27!

The estimated upper bound on the net average par
number density of the universe at present isqp
,10224 cm23 ~see Dolgov and Zeldovich@22#!. If this upper
bound is adopted, then using Eq.~27! we can calculate the
condensation temperature of the conformally coupled field
any specified radius. If we substitute for the radius of t
Einstein universe the estimated value of Hubble length,
ap51.831028 cm, then we can write

Tc5
1.268

Aa0

. ~28!

We have already found that the transition from the C
simir regime to the Planck regime takes place ata0
50.072l p . Substituting this into Eq.~28! we get

Tc54.725Tp . ~29!
8-5
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M. B. ALTAIE PHYSICAL REVIEW D 65 044028
Clearly we obtain a condensation temperature which
the same order of magnitude as the transition tempera
obtained earlier for the conformally coupled massless sc
particles.

This strongly suggests that the transition from the Casi
regime into the Planck regime is taking place as a resul
Bose-Einstein condensation of the vacuum energy so tha
the condensate is formed, a free absorption and emissio
massless quanta by the condensate is expected to take
and the system will start behaving according to Planck’s l

IV. CONCLUSIONS

There are numerous publications which present quan
field theoretic calculations performed in the Einstein u
verse; these studies have contributed to achieving a b
understanding of the interplay of spacetime curvature an
quantum field theoretic effects. Furthermore the fact that
Einstein universe is being conformally related to the tim
dependent Robertson-Walker universe encourages us t
calculations in the Einstein universe.

In conclusion I can say that the present study exhibi
some features of the thermodynamical behavior of the E
stein static universe. In presenting the results of this inve
gation I stress the fact that due to the static nature of
Einstein universe, the following results are specific to
case considered and should not be taken to imply an ev
ing cosmological state.

The main findings are as follows.
~1! The thermal development of the universe is a dir

consequence of the state of its global curvature.
~2! The universe avoids the singularity atT50 through

quantum effects~the Casimir effect! because of the nonzer
value of^T00&0 . A nonzero expectation value of the vacuu
energy density always implies a symmetry breaking even

~3! During the Casimir regime the universe is totally co
trolled by vacuum. The energy content of the universe i
function of its radius. Using the conformal relation betwe
the static Einstein universe and the closed FRW unive
@10#, this result indicates that in a FRW model there wou
be a continuous creation of energy out of vacuum as long
the universe is expanding, a result which was confirmed
Parker long ago@23#. The steep, nearly vertical line in Figs
d

r.,
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1 and 2 suggests that the real universe started violently
had to relax later.

~4! At high temperatures new quantum-thermal effects
interfere causing a phase transition at aboutTmax52.218Tp
53.1531032 K for the massless scalar field and atTmax
51.015Tp51.4431032 K for the photon field. The calcula
tions show that a Bose-Einstein condensation of mass
quanta~at least in the scalar field case! may be responsible
for the transition. The values of these peaks agrees with
expectations of particle physics in respect to the era of t
unification of forces.

It should be emphasized too that the Einstein static u
verse is unstable; being dependent on the value of the
mological constant, the solutions will surely reflect this i
stability. However, although not a realistic cosmologic
model, the Einstein universe provides a useful theoret
model to achieve better understanding of the interplay
spacetime curvature and of quantum field theoretic effects
this respect we note that the recent findings of Plunienet al.
@14# that finite temperatures can enhance the pure vacu
effect by several orders of magnitude can be used to exp
the behavior of our system during the Casimir~vacuum! re-
gime, since this means that the finite temperature correct
will surely enhance the positive vacuum energy density
our closed system causing the system to behave, therm
namically, as being controlled by the vacuum energy. So,
can confidently assume that the original massless parti
that existed during the Casimir regime are basically th
which were born out of vacuum through the mechanism
the Casimir effect plus the finite temperature enhancem
deduced by Plunienet al. Indeed, a similar behavior to th
case of dynamical Casimir effect inside a resonantly vibr
ing cavity presented by Plunienet al. is observed here wher
the number of particles increases all the time. This interp
tation, i.e., the finite-temperature enhancement of the
simir energy, explains, physically, the behavior of quantu
fields at finite temperature during the Casimir regime.
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