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Nonperturbative continuity in graviton mass versus perturbative discontinuity
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We address the question of whether a graviton could have a small nonzero mass. The issue is subtle for two
reasons: there is a discontinuity in the mass in the lowest tree-level approximation, and, moreover, the non-
linear four-dimensional theory of a massive graviton is not defined unambiguously. First, we reiterate the old
argument that for vanishing graviton mass the lowest tree-level approximation breaks down since the higher
order corrections are singular in the graviton mass. However, there can exist nonperturbative solutions which
correspond to the summation of the singular terms, and these solutions are continuous in the graviton mass.
Furthermore, we study a completely nonlinear and generally covariant five-dimensional model which mimics
the properties of the four-dimensional theory of massive gravity. We show that the exact solutions of the model
are continuous in the mass, yet the perturbative expansion exhibits a discontinuity in the leading order and
singularities in higher orders as in the four-dimensional case. Based on exact cosmological solutions of the
model we argue that the helicity-zero graviton state responsible for the perturbative discontinuity decouples
from the matter in the limit of vanishing graviton mass in the full classical theory.

DOI: 10.1103/PhysRevD.65.044026 PACS number~s!: 04.50.1h, 04.20.Jb
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I. INTRODUCTION

Could a graviton be massive? The naive answer to
question seems to be positive. Indeed, if the graviton Co
ton wavelengthlg5mg

21 is large enough, let us say of th
present Hubble size, we should not be able to tell the m
sive graviton from a massless one. In fact, astrophys
bounds are even milder,lg.1024cm @1# ~see also Refs.@2#!.
However, in general relativity~GR! the issue turns out to b
more subtle. A dramatic observation was made in Refs.@3–5#
according to which the predictions of massless GR, such
light bending by the Sun and the precession of the Merc
perihelion, differ by numerical factors from the predictio
of the theory with a massive graviton, no matter how sm
the graviton mass is. This discontinuity, if true, would una
biguously prove that the graviton is strictly massless in N
ture.

The arguments of Refs.@3–5# were based on the lowes
tree-level approximation to interactions between sources
this approximation the discontinuity has a clear physical
terpretation. Indeed, a massive graviton in four dimensi
hasfive physical degrees of freedom~helicities 62, 61, 0!
while the massless graviton has only two~helicities62!. The
exchange by the three extra degrees of freedom can be i
preted in the limitmg→0 as an additional contribution du
to one massless vector particle with two degrees of freed
~‘‘graviphoton’’ with helicities 61! plus one real scala
~‘‘graviscalar’’ with the helicity 0!. The graviphotons do no
contribute to the one-particle exchange—their derivat
coupling to the conserved energy-momentum tensor v
ishes. The graviscalar, on the other hand, is coupled to
trace of the energy-momentum tensor and its contributio
generically nonzero. It is what causes the discontinuity
tween the predictions of massless and massive theories i
lowest tree-level approximation.

However, as was argued in Ref.@6#, this discontinuity
does not persist in the full classical theory. It was shown t
0556-2821/2002/65~4!/044026~10!/$20.00 65 0440
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the lowest tree-level approximation to the calculation of
teractions between two sources breaks down when the g
ton mass is small. The next-to-leading terms in the cor
sponding expansion are huge since they are inver
proportional to powers ofmg . Thus, the truncation of the
perturbative series does not make much sense and all hi
order terms in the solution of the classical equations for
graviton field should be summed up. The summation lead
a nonperturbative solution that is continuous whenmg→0.
The perturbative discontinuity shows up only at large d
tances where higher order terms are small; these dista
are growing whenmg→0. In other words, the continuity is
not perturbative and not uniform as a function of distanc

A simple reason why one could expect the violation of t
lowest tree-level approximation is that it does not take in
account the characteristic physical scale of the proble
while the nonperturbative calculation of the Schwarzsch
solution does account for this effect. In the nonperturbat
solution the coupling of the extra scalar mode to the matte
suppressed by the ratio of the graviton mass to the phys
scale of the problem. Hence, the predictions of the mas
theory could be made infinitely close to the predictions of
massless theory by taking smallmg .

The argument can be conveniently presented by consi
ing the gravitational amplitude of scattering of a probe p
ticle in the background gravitational field produced by
heavy static source. This amplitude has the following gene
structure @note that we use the flat metrichmn5diag
(21,1,1,1)#:

h̃mn~q!tmn8 }
a~q2!tmntmn8 2b~q2!tm

mtn8
n

q21mg
22 i e

, ~1!

wheretmn5pmpn and tmn8 5pm8 pn8 refer to the heavy particle

with four-momentumpm5(M ,0W ) and to the light particle
©2002 The American Physical Society26-1
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with momentumpm8 , respectively~see Fig. 1!.1 The form
factors a(q2) and b(q2) are functions of the momentum
transferq2 and are defined by two parameters: the gravi
massmg and the Schwarzschild radiusr M52GNM of the
heavy particle with massM.

In the lowest tree-level approximation of the mass
theory the form factorsa and b are just constants and th
unitarity ~sum over five helicities! fixes their ratio,a53b,
while the same unitarity with two graviton states~helicities
62! in the massless theory givesa52b. Therefore, a dis-
continuity @3–5# appears. However, this is only valid fo
small momentaq!mg(mgr M)21/5, for which the higher or-
der corrections are small@6#. In coordinate space this mean
that the linear approximation becomes valid only at the d
tance

r @r m , r m[
~mgr M !1/5

mg
5

~2GNMmg!1/5

mg
, ~2!

which for the Sun is bigger than the solar system size~see
the discussion in the next section!.

On the other hand, atq@mg(mgr M)21/5, i.e., at shorter
distancesr !r m , we expect that the summation of high
orders@6# returns the relationa52b of the massless theory
In other words, nonperturbative summation should lead
the decoupling of the graviscalar from the heavy source
distancesr !r m .

What was not verified in Ref.@6# is a matching of the
nonperturbative solution atr !r m with the exponentially de-
creasing linear solution atr @r m . It might happen indeed
that the solution matches an exponentially increasing fu
tion instead.2 Boulware and Deser in@7# expressed their
doubts about the existence of large distance matching. M
over, they argued that there is no consistent interac
theory of the massive spin-2 field in 311 dimensions. One
of the arguments in Ref.@7# was that at quantum level th
theory contained a sixth polarization in addition to the st

1To avoid confusion, note that we usetmn only as a kinematical
structure of the vertices, not implying that it is the energ
momentum tensor.

2Such a solution can still be acceptable as long as the expone
growth of the solution takes over at distances much larger than
observable size of the Universe. This will take place if the gravi
Compton wavelengthlg@1028 cm.

FIG. 1. Scattering of the probe particle at the gravitational fi
of the heavy source. The bold circle accounts for summation of
higher order iterations over the nonlinearities in the classical eq
tions.
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dard five polarizations. Furthermore, the mass term in
action is not uniquely defined beyond quadratic order in
fields.

These legitimate concerns can be addressed by em
ding the 4D theory of a massless graviton into a fiv
dimensional theory—a route we take in the present pa
Indeed, gravity in five dimensions is well defined as a cl
sical gauge theory; a massless graviton has exactly
states. For the matter fields which are confined to the fo
dimensional brane the theory mimics a massive spin-2 p
ticle with the fifth component of the momentum playing th
role of the mass.3

The model which we discuss is that of Ref.@8#. In this
model matter is localized on a brane. The brane wor
volume theory contains the induced 4D Einstein-Hilbert te
due to which a five-dimensional graviton mimics the mass
four-dimensional spin-2 state on the brane. In contrast w
the four-dimensional massive theory, in this case the
nonlinear action can be written. The two-body problem
sources on the brane is now well defined. The amplitude
the same generic form~1! with substitution ofq21mg

2 by
q21mcq, wheremc is the counterpart ofmg in the model.
We present the arguments in favor of the aforementio
behavior of the form factorsa(q2) andb(q2). However, we
did not manage to obtain an exact solution of the Schwa
child problem in this case either.

Instead, we derive a number of pieces of evidence s
porting the conjectured behavior from the exact cosmolo
cal solutions@9,10# of the model. We show that the lowes
tree-level perturbative result is off by a factor of 4/3 as co
pared with the exact result and explain why the correspo
ing perturbation theory breaks down. Based on this, we
pect that the perturbative discontinuity is indeed absent
the nonperturbative level in the full classical theory.

Recently, the problem of the vanishing graviton mass w
studied in a different setup. It was shown in Refs.@11# and
@12# that there is no mass discontinuity even in the low
tree-level exchange on de Sitter~dS! @11,13# or anti–de Sitter
~AdS! @11,12# backgrounds.4 This fits well with the discus-
sion presented above. Indeed, in the case of the~A!dS back-
ground, even the lowest tree-level approximation does t
into account the presence of a mass scale of the prob
which in that case is given by the cosmological constantL. It
was shown in@12# that the coupling of the graviscalar i
proportional tomg

2/L whenmg→0, and deviations from the
massless model vanish in this limit. Since the cosmolog
constant in our world is restricted toL<10284GeV2, the
allowed graviton mass is in the rangemg!10242GeV—i.e.,
the graviton Compton wavelength is bigger than our horiz
size. The existence of such a tiny graviton mass is immate

tial
he
n

3Note the analogy with the supersymmetric states whose ma
given by a central charge. This charge also can be viewed a
extra component of the momentum in the dimensionally enlar
space.

4The consideration for dS space is somewhat subtle since formg
2

,2L/3 ~L being the cosmological constant! unitarity is violated in
the theory@13#.
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NONPERTURBATIVE CONTINUITY IN GRAVITON MASS . . . PHYSICAL REVIEW D 65 044026
for all astrophysical and cosmological observations@11# ~see
also an interesting discussion of the continuity issue in
recent work@14#!. Note that the nonperturbative continui
allows for a much wider range for the graviton mass,mg
!(r M /r 5)1/4. Here r is the maximal distance from the Su
where the data are obtained; see Sec. II for the numeric

In Ref. @15# it was argued that in the~A!dS background
the perturbative discontinuity reappears at the one-l
quantum level—a phenomenon very similar to the one-lo
discontinuity for massive non-Abelian vector fields d
cussed in@4#. This is certainly true since the loops are se
sitive to the number of particles running in the loop d
grams. From the practical point of view, however, t
comparison of the theory with the experimental data on li
bending by the Sun and the precession of the Mercury p
helion is not affected by the small quantum loop correctio
Indeed, while the graviscalar decouples from the class
source it is still coupled to the graviton and does contrib
to the quantum loops. However, such effects of quant
gravity are suppressed and most likely cannot be dis
tangled in solar system measurements. For these reaso
what follows we focus on the~dis!continuity in the classica
theory only.

The paper is organized as follows. In Sec. II we recall
essence of the graviton mass discontinuity found in R
@3–5# and discuss the results of Ref.@6# where it was shown
that there is in fact a continuity in the graviton mass in t
full classical theory. In Sec. III we introduce a five
dimensional nonlinear model that mimics the properties o
four-dimensional massive gravitational theory. We show t
the perturbative discontinuity that is present in the low
tree-level approximation disappears in the exact solution
the model. In Sec. IV we discuss another exact solution
the nonlinear model, which interpolates between the fo
and five-dimensional regimes. We conclude in Sec. V.

II. PRELIMINARIES: MASSIVE GRAVITON IN 4D

We will consider the following action for a massive grav
ton on a flat 4D background:

Sm5MPl
2 E d4xAuguS R1

mg
2

4
@hmn

2 2~hm
m!2# D , ~3!

wheregmn5hmn1hmn and the Planck massMPl is related to
the Newton constantGN as MPl

2 51/(16pGN). The mass
term has the Pauli-Fierz form@16#; it is the only form that
does not introduce ghosts@17#. We imply that indices in the
mass term are raised and lowered by the tensorhmn . If it
weregmn instead the difference would appear only in term
cubic and higher inhmn , which are not fixed anyway; highe
powers ofhmn could be arbitrarily added to the mass term

In order to see the presence of the discontinuity in
lowest tree-level approximation let us compare free gravi
propagators in the massless and massive theories. Fo
massless graviton we find
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Dmn;ab
0 ~q!5S 1

2
hmahnb1

1

2
hmbhna2

1

2
hmnhabD 1

q22 i e
,

~4!

where only the momentum independent parts of the ten
structure are kept. By a gauge choice the momentum de
dent structures can be taken to be zero. On the other h
there is no gauge freedom for the massive gravity given
the action~3!, and the propagator takes the following form

Dmn;ab
m ~q!5S 1

2
h̃mah̃nb1

1

2
h̃mbh̃na

2
1

3
h̃mnh̃abD 1

q21mg
22 i e

, ~5!

where

h̃mn5hmn1
qmqn

mg
2 . ~6!

Note the 1/mg
4 and 1/mg

2 singularities of the propagator.
The difference in the numerical coefficients for th

hmnhab structure in the massless and massive propaga
~1/2 versus 1/3! is what leads to the perturbative discontin
ity @3–5#. No matter how small the graviton mass is, t
predictions are substantially different in the two cases. T
structure~5! gives rise to contradictions with observations

To see how this comes about let us calculate the am
tude of the lowest tree-level exchange by a graviton betw
two sources with energy-momentum tensorsTmn and Tab8
~the tilde denotes the quantities that are Fourier transform
to momentum space!:

A0[28pGNT̃mn D0
mn;ab T̃ab8

52
8pGN

q2 S T̃mn2
1

2
hmnT̃b

bD T̃8mn. ~7!

In the massive case this amplitude takes the form

Am[28pGNT̃mn Dm
mn;ab T̃ab8

52
8pGN

q21mg
2 S T̃mn2

1

3
hmnT̃b

bD T̃8mn. ~8!

In the relativistic normalization we are usingT̃mn

5^puTmnup&52pmpn at zero momentum transfer,q50.
Suppose we take two probe massive static sources
massesM1 andM2 . Then onlyT̃00 and T̃008 are nonvanish-
ing and the lowest tree-level graviton exchange determi
the Newtonian interaction,

V0~r !5E d3q

~2p!3 eiqW rW
A0

4M1M2
52

GNM1M2

r
,

6-3
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Vm~r !5E d3q

~2p!3 e iqW rW
Am

4M1M2

52
4

3

GNM1M2

r
e2mgr . ~9!

Expressions~7! and ~8! give different results for the New
tonian attraction even in the ranger !lg where one can ne
glect the exponential decrease. This difference can be el
nated by redefining the Newton coupling for the mass
theory as follows:

G̃N5 4
3 GN , ~10!

whereGN is the Newton constant of the massless theory.
nonrelativistic problems the predictions of the mass
theory with the coupling rescaled by a factor 3/4 atmg→0
are identical to those of the massless theory with the c
pling GN .

However, this is not enough to warrant the viability of th
massive model. The relativistic predictions in the two ca
are different @4,5#. For instance, the predictions for ligh
bending by the Sun are in conflict. At the classical level
trace of the energy-momentum tensor for light is zero. The
fore, the second term on the right-hand side of Eqs.~7! and
~8! is not operative for light. Hence, the amplitudesA0 and
Am are identical in this case. However, we have establis
above that calculations in the massive theory should be
formed with the rescaled Newton constant. Taking this f
into account, the prediction for light bending in the mass
theory is off by 25%@3–5#.

We could certainly take an opposite point of vie
namely, do not rescale the Newton constant of the mas
theory. In this case the predictions for light bending in t
massive and massless models would be identical. Howe
the Newton force between static sources would differ b
factor of 4/3.

The above considerations are based on the lowest pe
bative approximation. The question is whether these res
hold in the full classical theory. Normally, one would expe
that for solar system distances the lowest approximatio
well justified. However, it was argued in Ref.@6# that the
approximation breaks down in the massive theory for re
tively short distances. Since this breaking manifests itsel
a rather interesting way we will briefly summarize the resu
of Ref. @6# below.

To see the inconsistency of the perturbative expansio
GN let us look~following @6#! at the Schwarzschild solutio
of Eq. ~3!. We parametrize the interval for a massive sphe
cally symmetric body as follows:

ds252en~r!dt21es~r!dr21em~r!r2~du21sin2u df2!.
~11!

In the massless theory the functionm is redundant due to the
reparametrization invariance of the theory; it can be
equal to zero. However, in the massive case this gauge s
04402
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metry is broken andm is nonzero. Therefore, in order t
compare the results in the massive and massless case
has to do the substitution

r[r expS m

2 D , exp~l![S 11
r

2

dm

dr D 22

exp~s2m!.

~12!

The standard Schwarzschild solution of the massl
theory takes the following form:

nSchw~r !52lSchw~r !5 lnS 12
r M

r D52
r M

r
2

1

2 S r M

r D 2

1¯ ,

mSchw~r !50. ~13!

Herer M[2GNM is the gravitational radius of the source
massM.

Let us compare this with the perturbative inGN solution
of the massive theory obtained in Ref.@6#. In the leading plus
next-to-leading approximation inGN the solution reads

n.2
r M

r F11
7

32

r M

mg
4r 5G ,

l.
1

2

r M

r F12
21

8

r M

mg
4r 5G ,

m.
1

2

r M

mg
2r 3 F11

21

4

r M

mg
4r 5G . ~14!

We note the following peculiarities of the results~14!.
~1! In the leading order there is a finite discontinuity

the expression forl: the result of the massless theory in E
~13! differs from the result of the massive model by a fac
1/2. This is precisely the discontinuity that is seen in t
lowest approximation.

~2! The next-to-leading corrections in Eq.~14! are gov-
erned by the ratior M /mg

4r 5 and are singular inmg .
~3! For any given distancer there is a value ofmg below

which the perturbative expansion inGN breaks down.
These results are in correspondence with the perturba

series for the scattering amplitude described by the Feyn
graphs in Fig. 1. The leading terms in the expansions~14! are
given by the diagram of first order in the source, i.e., t
diagram with one cross. The terms singular inmg in the
propagator~5! do not contribute in this order. In the nex
order ~the diagram with two crosses in Fig. 1! we have two
extra propagators which could provide a singularity inmg up
to 1/mg

8. The two leading terms 1/mg
8 and 1/mg

6 do not con-
tribute again so the result contains only the 1/mg

4 singularity
as in Eq.~14!.

To demonstrate how badly the expansion in powers ofGN
breaks down let us take the largest allowed value for
graviton mass,mg5(1025cm!21 @1,2# and calculate the cor
rection to the leading result in the gravitational field of t
Sun. We will find that at distances of the order of the so
system size, i.e., atr;1015cm, the next-to-leading correc
6-4
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tions in Eq.~14! are about 1032 times bigger than the leadin
terms. Therefore, this expansion is unacceptable.

For a light enough graviton, however, a consistent per
bative expansion could be organized in powers ofmg . In this
case one finds@6#

n~r !52
r M

r
1O~mg

2Ar Mr 3! ,

l~r !5
r M

r
1O~mg

2Ar Mr 3!,

m~r !5A8r M

13r
1O~mg

2r 2!, ~15!

where only the leading terms inr M /r are retained. These
expressions are valid in the following interval:

r M!r !r m , r M52GNM , r m5
~mgr M !1/5

mg
.

~16!

For the gravitational field of the Sun this would correspo
to the interval

33105 cm!r !1021cm, ~17!

where the lower bound is less than the radius of the Sun
the upper bound is of the order of a galaxy scale. Thus,
practical calculations within the solar system this expans
is well suited.

As we see, the expressions forn and l in the leading
approximation coincide with those of the massless the
~13!. Thus, there isno mass discontinuity. Moreover, the ex-
pressions~15! explicitly show nonanalyticity inGN , that is
m}AGN, while in n and l nonanalytic terms are propor
tional to mg

2.
We discussed in the Introduction subtle issues concern

the validity of the results discussed above arising even on
classical level: the nonlinear theory of massive gravity is
uniquely defined and it is complicated to make sure that
solutions which have no discontinuity do indeed satisfy
boundary conditions at infinity, i.e., that forr @1/mg the so-
lution matches the exponentially decreasing function.

As we already noted even the exponentially growing
lution can be acceptable when the graviton Compton wa
length becomes larger than the observable size of
Universe. The Yukawa factors due to the graviton ma
exp(6mgr), can be made to be arbitrarily close to unity b
decreasing the graviton mass. However, as we discu
above, this does not warrant the continuity of themg→0
limit since the coefficients in front of the perturbative pote
tials in the massive and massless theories~9! are different
andmg independent. Therefore, the question of whether
graviton could have a nonzero mass effectively reduce
the question of whether the graviton could have five po
izations. Indeed, these extra polarizations are responsible
the mg independent discontinuity in the coefficients in t
potentials~9!. Therefore, in what follows below we will ad
04402
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dress the question:Can the graviton which describes th
data in our observable Universe have five degrees of fr
dom?

In the next section we present a model based on five
mensions where the massless graviton naturally has five
grees of freedom. The model is free of all the problems
the 4D massive gravity discussed above. We perform
analysis within this completely nonlinear theory in whic
exact solutions can be found. These solutions are comp
with the perturbative results. We find that the picture outlin
in the work @6# ~and discussed above! holds.

III. BRANE MODEL OF MASSIVE GRAVITONS

The 5D model we will discuss was introduced in@8#. The
gravitational part of the action takes the form

S5M
*
3 E d4x dyAuGuR1MPl

2 E d4xAuguR~x!, ~18!

where M* is a parameter of the theory andMPl51.7
31018GeV@M* . Furthermore,GAB is a 5D metric tensor,
A5$m,5%5$0,1,2,3,5%, R is the five-dimensional Ricci sca
lar, andgmn denotes the induced metric on the brane, wh
we take as

gmn~x![Gmn~x,y50!, m,n50,1,2,3, ~19!

neglecting the brane fluctuations.
We assume that our observable 4D world~4D matter! is

confined to a tensionless brane~a tensionless hyperplane i
this case! which is fixed at the pointy50 in the extra fifth
dimension.5 In other words, we assume that the energ
momentum tensor of 4D matter has the factorized fo
Tmn(x)d(y). We also imply the presence of the Gibbon
Hawking boundary term on the brane; this provides the c
rect Einstein equations in the bulk. These simplificatio
help to keep the presentation clear and do not affect our m
results. The brane world aspects of the model~18! were stud-
ied in detail in Refs.@8,18–20#.

Let us study the gravitational potential between two sta
bodies located on the brane. This can be calculated from
action ~18!. The corresponding Green function is conv
niently represented by working in momentum space in
four world-volume directions and in position space with r
spect to the transverse coordinatey. For the time being we
can neglect the tensorial structure of the propagator~to be
discussed below! and calculate the scalar part of the Gre
function. This can be done by calculating the correspond
propagator in a theory with scalars only, which have bu
and brane kinetic terms similar to Eq.~18!. The result of the
calculation reads as follows@8#:

G̃~q,y50!5
1

MPl
2

1

q21mcAq2
, ~20!

where we introduce the parameter

5A simplest possibility is to consider a brane at a fixed point of
R/Z2 orbifold.
6-5
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mc[
1

r c
[

2M
*
3

MPl
2 . ~21!

The Green function~20! has unusual features. It has a tach
onic pole atq252q0

21q225mc
2 which corresponds to de

cay into the continuous tower of Kaluza-Klein states~which
arise from the reduction of the 5D graviton!. Although the
five-dimensional graviton is well defined, from the 4D pe
spective it looks like an unstable particle with widthmc .
Nevertheless, the rules of integration for the propagator~20!
in the complex energy plane can be defined consistently

In particular, using Eq.~20! we can find the static poten
tial f(r ). The result can be written in terms of special fun
tions and has different asymptotic behavior for small a
large distances~see Ref.@18#!. The ‘‘crossover scale’’ be-
tween these two regimes is defined byr c given in Eq.~21!.
At short distances, i.e., whenr !r c ,

f~r !52
1

8p2MPl
2

1

r H p

2
1F211g2 lnS r c

r D G S r

r c
D1O~r 2!J .

~22!

Hereg.0.577 is the Euler constant. The leading term in t
expression has the familiar 1/r scaling of the four-
dimensional Newton law with the correct numerical coe
cient. The leading correction is given by the logarithmicre-
pulsion term in Eq.~22!.

Let us turn now to the large distance behavior. For
@r c one finds

f~r !52
1

16p2M
*
3

1

r 2 1OS 1

r 3D . ~23!

The long distance potential scales as 1/r 2 in accordance with
the 5D Newton law. Thus, the crossover scale~21! should be
sufficiently large to avoid conflict with astronomical obse
vations. In @8# it was estimated that forM* ;1 TeV the
crossover scaler c is around 1015cm, which is roughly the
size of the solar system. This is too low to be consistent w
data. Therefore, the scaleM* should be taken to be at least
couple of orders smaller than 1 TeV. This is in no confl
with any gravitational or Standard Model measurements~see
the discussions in Refs.@19,20#!. We take r c>1025cm,
which corresponds toM* <1 GeV.

The parametermc plays a role in this model which in
many respects is similar to that of the graviton massmg in
Eq. ~3!. Indeed, asmc→0, gravity on a brane becomes 4
Newtonian at larger and larger distances. Moreover, the fo
dimensional interaction in the model with the action~18! can
be interpreted as an exchange of a four-dimensional s
with width equal tomc @8#. In the next section we will find
even closer similarities betweenmc andmg .

A. Perturbative discontinuity

To see that the model~18! exhibits a discontinuity in the
one-graviton tree-level approximation let us calculate, f
lowing @8#, the tensorial structure of the one-graviton e
04402
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change. To this end we will solve the Einstein equations
the linear approximation inhAB which is the deviation from
the flat 5D metric,

GAB5hAB1hAB . ~24!

We choose theharmonic gaugein the bulk:

]AhAB5 1
2 ]BhC

C . ~25!

In this gauge from the$m5% and $55% components of the
sourceless equations of motion it follows that

hm550, h5
55hm

m . ~26!

Let us turn to the$mn% components of the Einstein equa
tions. After some simplifications they take the form

@M
*
3 ]A]A1MPl

2 d~y!]a]a#hmn

52$Tmn2 1
3 hmnTa

a%d~y!1MPl
2 d~y!]m]nha

a .

~27!

There are two terms on the right-hand side of this equat
The first one has a structure which is identical to that o
massive 4D graviton~or, equivalently, of a massless 5
graviton!. The second term on the right-hand side, whi
contains derivatives]m]n , is not important at the momen
since it vanishes when it is contracted with the conser
energy-momentum tensor. As a result, the amplitude of in
action of two test sources takes the form

h̃mn~q,y50!T̃8mn~q!}
T̃mnT̃mn8 2 1

3 T̃m
mT̃n8

n

q21mcq
, ~28!

whereq[Aq2. We see that the tensor structure is the sa
as in the case of the massive 4D theory@see Eq.~8!#.

In analogy with the discussions in the previous section
might expect that the lowest tree-level approximation w
break down in the next iterations in the classical source
further indication of this is the existence of the terms sing
lar in mc in the expression for the gravitational fieldhmn

produced by a static source. We write the energy-momen
tensor for the source as follows:

Tmn~x!52Mdm0dn0d~3!~xW !, ~29!

whereM is its rest mass. As before, let us make a Four
transform with respect to four world-volume coordinate
Then the solution is as follows:

h̃00~q,y!5c
1

2
G̃NM

1

q21mcq
exp~2quyu!, ~30!

h̃i j ~q,y!5c
1

4
G̃NM

d i j

q21mcq
exp~2quyu!1cG̃NM

3
qiqj

mcq

1

q21mcq
exp~2quyu!, ~31!
6-6
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wherec5216p. These expressions, taken aty50, should
be contrasted with the lowest order expressions for
Schwarzschild solution in 4D theory with a massless gra
ton:

h̃00
Schw~q!5c

1

2
GNM

1

q2 , ~32!

h̃i j
Schw~q!5c

1

2
GNM

d i j

q2 . ~33!

Comparing the expressions~30!, ~31! to those in~32!,
~33! we draw the following three conclusions.

~i! Upon the substitutionG̃N→GN the $00% components
coincide for large momenta, or, equivalently, forr !r c .

~ii ! The $ij % component of the 5D theory consists of tw
terms. The first term, after the substitutionG̃N→GN , is
twice as small as the corresponding term on the right h
side of the Schwarzschild solution~33!. This is what gives
rise to the discontinuity.

~iii ! There is an additional term in the expression
h̃i j (q,y50) which is proportional to

qiqj

mcq
.

This term does not contribute to the one-graviton excha
in leading order because of conservation of the ener
momentum tensors~the diagram with a single cross in Fig
1!. However, it does contribute to higher order diagrams~the
ones with two and more cross in Fig. 1!. This term is singular
in mc and the perturbation theory inGN breaks down when
mc→0.

Given these arguments, we conclude that for a consis
calculation of the interaction between two sources on a br
we should find the Schwarzschild solution that sums up
the orders of the Born expansion for the classical equatio
Unfortunately, we could not manage to find the analytic
lution. However, implying the existence of a smooth lim
mc→0, one could perform the expansion inmc in analogy
with the 4D massive case@6#.

The $mn% component of the Einstein equation for the a
tion ~18! can be integrated with respect toy in the interval
2e<y<e with e→0. The resulting equation takes the for

Ḡmn~x!1mcE
2e

1e

Gmn~x,y!dy52
M

2MPI
2 dm0dn0d~3!~x!,

~34!

where Ḡmn and Gmn(x,y) denote the Einstein tensor of th
world-volume and bulk theories, respectively. Since the
trinsic curvature has a finite jump across the brane, the
ond term on the left-hand side of Eq.~34! is nonzero even in
the limit e→0. This term is proportional to the parametermc
with respect to which the expansion is performed~we imply
that the metric is nonsingular inmc ; this seems to be a
reasonable requirement for a physically meaningful so
tion!.
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Then it is clear from Eq.~34! that in the lowest approxi-
mation inmc one recovers the usual 4D Schwarzschild so
tion of the massless theory~13!. For the calculation of the
subdominant corrections inmc and for matching conditions
at infinity, however, numerical simulations are needed. N
that in this case the solution should be matched at infinity
a well known 5D Schwarzschild solution which decreases
(r M /r )2 at infinity. This is an easier task compared to the 4
massive case where the power-law solution at short dista
should be matched with the Yukawa potential at infinity.6

Does this mean that we cannot analytically compare
perturbative and nonperturbative results in the model~18!?
Not at all. Instead of finding the exact Schwarzschild so
tion we perform a similar analysis for other solutions whi
can be obtained explicitly. In the next section we discuss
exact nonperturbative cosmological solution of the mo
~18! found in Refs.@9,10# which differs from the perturbative
result by 4/3.

B. Nonperturbative continuity

In this section we study the cosmological solution in t
model ~18! found in Refs.@9# and @10#. It was already no-
ticed in @9# that the cosmological evolution in Eq.~18! is
governed by a Newton constant that differs from the ‘‘Ne
ton’’ constant of perturbation theory by 4/3. We will discu
this discrepancy in detail.

Our goal is as follows. We consider the solution of t
model ~18! that describes the expansion of the matter do
nated Universe. We will perform two distinct calculations f
this. First we find the solution based on the Newtonian
proximation. This calculation makes use of the lowest or
potential between objects on the brane. As a second ste
find the corresponding exact nonperturbative cosmolog
solution of the Einstein equations. In the domain where
Newtonian approximation is legitimate, the perturbative
sult for the cosmological solution would coincide under t
normal circumstances with the nonperturbative one, as h
pens in a 4D world with a massless graviton. However,
find a discrepancy of a factor of 4/3 in these two method

Let us start with the perturbative approach. As we est
lished in the previous subsection the one-graviton excha
in the lowest approximation gives rise to the following e
pression for the potential of a massive source at short
tancesr !r c :

f~r !52G̃N

M

r
. ~35!

The appearance of the constantG̃N instead ofGN in this
expression is related to the fact that we used the lowest t
level approximation.

6In Ref. @21# the asymptotic form of the Schwarzschild solutio
for mc→0 was also discussed and, moreover, certain genera
tions of cosmological solutions of the model~18! were obtained.
6-7
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Let us now use the standard consideration of Newton
cosmology.7 Consider a spherical ball with some unifor
matter density in it. We assume that the radius of the ballR is
much smaller thenr c and that we are in a regime where th
Newtonian approximation is valid. In this case the poten
of the ball on its surface takes the form

fball~r 5R!52G̃N

M

R
. ~36!

Let us consider a pointlike probe particle of massm0 which
is located right on the surface of the ball. We neglect
back reaction of this probe particle on the ball. The ene
conservation condition for the system of the ball and pro
takes the form

m0Ṙ2

2
2G̃N

Mm0

R
5

km0

2
, ~37!

where the overdot denotes the time derivative andk is some
constant. We would like to calculate the time evolution of t
radiusR. In the regime under consideration this is equivale
to the time evolution of the scale factor in Friedman
Lemaitre-Robertson-Walker cosmology. In what follows w
consider the solution that corresponds to the expansion
flat, i.e.,k50, matter dominated Universe. Fork50 we re-
write Eq. ~37! as follows:

S Ṙ

R
D 2

5
8p

3
G̃Nr, ~38!

where the densityr for the matter dominated Universe
related to the scale factorR as follows:

r5
u

R3 , ~39!

whereu is some constant.
This is nothing but the Friedmann equation for the sc

factor R for a flat matter dominated Universe. We find th
solution for the scale factor:

R3~ t !56puG̃Nt2. ~40!

This solution is consistent with the fact that we choose
time period whenR!r c so that the brane world evolves i
accordance with the laws of 4D theory. What is important
our solution is the numerical coefficient in the relation~40!,
which different from that in the 4D massless gravity case—
containsG̃N5(4/3)GN instead ofGN . Below we will show
that the exact solution matches the one in massless gravi
the limit mc→0.

Before discussing the exact solution let us explain w
the Newtonian approach outlined above does not produ
correct coefficient. It is due to the effects of nonlinear term

7For a careful treatment and interpretation of Newtonian cosm
ogy see, e.g.,@22#.
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similar to the Schwarzschild problem in 4D massive grav
discussed in Sec. II these corrections are defined by pow
of the parameter

Gu

mc
2R3 ;

1

mc
2t2 . ~41!

It is clear that these corrections blow up atmc→0 and we
need to sum them up. The corrections seem to be small a
later timet@1/mc , but as we will see the 4D approach sto
working at this epoch.

Let us now solve the same problem using the exact E
stein equations. We parametrize the 5D interval in the f
lowing form:

ds252N2~ t,y!dt21A2~ t,y!dxidxi1B2~ t,y!dy2.
~42!

The 4D scale factor is defined as follows:

R~ t ![A~ t,y50!. ~43!

The solution was found in@9# and @10#:

N512uyu
R̈

Ṙ
, A5R2uyuṘ, B51, ~44!

and the 4D scale factor obeys the following modified Frie
mann equation:

S Ṙ

R
D 2

5
8p

3
GNr2mc

Ṙ

R
. ~45!

The mc→0 limit of this equation is clearly incompatible
with Eq. ~38!, which is based on the leading order appro
mation in the massive theory, but coincides with the resul
massless gravity. This certainly implies that the Hubble
rameterṘ/R is continuous in this limit—an assertion w
verify below by presenting the exact solution of Eq.~45!.

We can absorb the parametersmc andGN in Eq. ~45! by
rescaling:

t5
t

mc
, r5

3mc
2

32pGN
r̃,

S r̃8

r̃ D 2

5
9

4
r̃13

r̃8

r̃
, r̃85

dr̃

dt
. ~46!

After introducing the variable

x[11 r̃511
32pGN

3mc
2 r, ~47!

the exact solution can be written in terms of element
functions fort(x):

3

2
mct5

1

Ax21
1

1

2
log

Ax11

Ax21
. ~48!l-
6-8
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Whent5mct@1 we get for the scale factor

R35
8pGNu

mc
tF12

log~3mct !11

3mct
1¯G . ~49!

This unusual behavior@compare with the 4D Newtonian cos
mology in Eq. ~40!# is typical of a pure brane cosmolog
regime @23# where one hasH2}r2—indeed, GN /mc

51/(32pM
*
3 ) plays the role ofGN in the 5D world. It is

only relevant to the late time cosmology,t@1/mc—the ep-
och where the Hubble parameter is small,H;1/t!mc , and
the expansion enters the 5D regime, as analyzed in@9#.
Therefore, 4D Newtonian cosmology is not applicable at t
epoch.

For t5mct!1,

R356pGNut2F12
3

4
mct1¯G . ~50!

In correspondence with the difference of Eqs.~45! and~38!,
discussed above we see thatR3 at mc50 is different from
the expression in Eq.~40! that was obtained using the lowe
tree-level approximation by the same factor 3/4—it conta
GN instead ofG̃N . Note that the exact expression forR3 is
linear in GN—no higher orders are present.

The exact solution considered above gives an exp
demonstration of the nonperturbative continuity in the lim
mc→0. This continuity is not uniform—for the given valu
of t the parametermc should be much smaller than 1/t. This
is the strongest constraint on the graviton mass coming f
cosmology,mc<H0 , whereH0;10242GeV is the presen
day Hubble parameter.

IV. INTERPOLATING SOLUTION

In this section we discuss a cosmological solution fou
in @10# and show that it interpolates between the regim
with 4D and 5D tensor structures.

Let us start with the brane action~18! and in addition
introduce in the theory a negative cosmological constan
the braneLb and the matter densityr>uLbu ~we put the
pressure equal to zero for simplicity!. The time evolution of
such a 4D brane universe is interesting; it evolves asymp
cally to a static Minkowski space on the brane without a
fine-tuning @10#. The asymptotic form of the metric is a
follows:

ds252~11buyu!2dt21dxidxi1dy2, ~51!

where the constantb is

b[uLbu/4M
*
3 . ~52!

In fact, this is a solution to the equation

RAB2
1

2
GABR5

1

2M
*
3 TAB~x!d~y!, ~53!

where the energy-momentum tensor on the brane is
04402
s

s

it
t

m

d
s

n

ti-
y

Tmn5diag~0,2Lb ,2Lb ,2Lb!, T5m5T5550, ~54!

i.e., r1Lb→0 in this limit. To warrant the 4D behavior, th
induced 4D Ricci scalar on the brane was added in@10#.

The important thing is that the early cosmology of th
model is standard, with no discontinuity in the Newton co
stant. Indeed, the Friedmann equation is given in Eq.~45!
wherer should be substituted byr1Lb . The Newton con-
stant on the right-hand side of this equation is the conv
tional 4D gravitational constant which reflectsno discontinu-
ity. This is true as far as the early cosmology is concerne

Let us now look at the late cosmology, or more precis
at the form of the metric~51! to which the solution asymp
totes. The metric on the brane is Minkowskian and sta
everywhere with only dependence ony. For small values of
y, which satisfybuyu!1, this metric can be obtained as
perturbation on the flat Minkowski space. Indeed, for sm
perturbations~24! in the harmonic gauge~25! we find Eq.
~27! with the energy-momentum tensor defined in Eq.~54!.
This equation has the 5D tensor structure on the right h
side. Let us now note that the energy-momentum tensor~54!
satisfies the relation

Ti j 2
1
3 Th i j 50, i , j 51,2,3. ~55!

Therefore, the equation forhi j is simplified. This is com-
pletely due to the 5D tensor structure; in fact if we had a
tensor structure this would not be so. Furthermore, the s
tion of Eq. ~27! in the gauge~25! can be written in the
following form:

h0052h5552
uLbu
2M

*
3 uyu, hi j 50, hm550. ~56!

One can indeed verify that this solution coincides to fi
order with the exact solution~51!. For this we perform the
following gauge transformation of the exact solution~the
two different signs correspond to the two sides of the bran!:

y5sgn~z!
1

b
@~112buzu12b2z2!1/221#. ~57!

After this the metric takes the form

ds252~112buzu12b2z2!dt21dxidxi

1
~112buzu!2

112buzu12b2z2 dz2, ~58!

which in leading order coincides with the perturbative so
tion.

Therefore, we conclude that the cosmological solution
Ref. @10# does indeed provide an explicit example with bo
asymptotic regimes: at small distances~small Hubble radius!
the behavior is four dimensional with the 4D tensor stru
ture, whereas at large distances~large Hubble radius! the
behavior has the 5D tensor structure. In this sense the s
tion discussed above captures the important features
6-9



u

co
f

ui
e

as
un
ic
e

si
e

at
-
a

,
le

p
e
th

-0
n
vel

f a
ples
ese
r, in
mit
he
the
and
re-

I.
s-
nd
74.
nd
a-
re

DEFFAYET, DVALI, GABADADZE, AND VAINSHTEIN PHYSICAL REVIEW D 65 044026
Schwarzschild solution of 4D massive theory; this is not s
prising since it is asymptotically~in time! Minkowski on the
brane.

V. DISCUSSION AND CONCLUSIONS

We discussed a nonlinear five-dimensional generally
variant model which resembles many crucial properties o
massive graviton in four dimensions. The mass discontin
is present in the lowest tree-level approximation; howev
this approximation breaks down for vanishing graviton m
and all the tree-level graphs should be taken into acco
The resulting expression for the nonperturbative class
calculation is continuous in the graviton mass. Thus, ther
no mass discontinuity in the full classical theory.

There are three extra degrees of freedom in the mas
~or five-dimensional! theory compared to the massless on
Among these degrees of freedom only the helicity-0 st
~the graviscalar! has a nonzero coupling to 4D matter. How
ever, this coupling tends to zero in the full classical theory
the graviton mass~or mc in the 5D example! vanishes. Thus
all the extra degrees of freedom decouple in the mass
limit.

The interesting issue that we did not discuss in the pa
is the emission of a helicity-0 graviton. Based on our obs
vations and using the unitarity arguments we expect that
ev

et
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nonperturbative amplitudes of the radiation of the helicity
state by 4D matter fields will also vanish with the gravito
mass, while they are nonvanishing in the lowest tree-le
approximation as was shown in Ref.@24#.

In the small mass limit the extra degrees of freedom o
massive theory form an independent sector which decou
from our matter as the graviton mass goes to zero. Th
degrees of freedom do interact with each other; moreove
perturbation theory these interactions are singular in the li
mg→0. Certainly, on top of the classical effects there is t
issue of quantum loops, which we did not discuss in
present work. However, the loop effects are suppressed
most likely they cannot be disentangled in existing measu
ments.
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