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Nonperturbative continuity in graviton mass versus perturbative discontinuity
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We address the question of whether a graviton could have a small nonzero mass. The issue is subtle for two
reasons: there is a discontinuity in the mass in the lowest tree-level approximation, and, moreover, the non-
linear four-dimensional theory of a massive graviton is not defined unambiguously. First, we reiterate the old
argument that for vanishing graviton mass the lowest tree-level approximation breaks down since the higher
order corrections are singular in the graviton mass. However, there can exist nonperturbative solutions which
correspond to the summation of the singular terms, and these solutions are continuous in the graviton mass.
Furthermore, we study a completely nonlinear and generally covariant five-dimensional model which mimics
the properties of the four-dimensional theory of massive gravity. We show that the exact solutions of the model
are continuous in the mass, yet the perturbative expansion exhibits a discontinuity in the leading order and
singularities in higher orders as in the four-dimensional case. Based on exact cosmological solutions of the
model we argue that the helicity-zero graviton state responsible for the perturbative discontinuity decouples
from the matter in the limit of vanishing graviton mass in the full classical theory.
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[. INTRODUCTION the lowest tree-level approximation to the calculation of in-
teractions between two sources breaks down when the gravi-
Could a graviton be massive? The naive answer to thi§on mass is small. The next-to-leading terms in the corre-
question seems to be positive. Indeed, if the graviton Compsponding expansion are huge since they are inversely
ton wavelengthkgzmgl is large enough, let us say of the proportional to powers ofny. Thus, the truncation of tht_a\
present Hubble size, we should not be able to tell the magPerturbative series does not make much sense and all higher
sive graviton from a massless one. In fact, astrophysicaPrder terms in the solution of the classical equations for the
bounds are even mildex,> 10%*cm[1] (see also Refg2]). graviton field should be summed up. The summation leads to
However, in general relativityGR) the issue turns out to be @& nonperturbative solution that is continuous wimg— 0.
more subtle. A dramatic observation was made in H&fs5]  The perturbative discontinuity shows up only at large dis-
according to which the predictions of massless GR, such a&@nces where higher order terms are small; these distances
light bending by the Sun and the precession of the Mercur@re growing whemmg— 0. In other words, the continuity is
perihelion, differ by numerical factors from the predictions not perturbative and not uniform as a function of distance.
of the theory with a massive graviton, no matter how small A simple reason why one could expect the violation of the
the graviton mass is. This discontinuity, if true, would unam-lowest tree-level approximation is that it does not take into
biguously prove that the graviton is strictly massless in Na-account the characteristic physical scale of the problem;
ture. while the nonperturbative calculation of the Schwarzschild
The arguments of Ref$§3—5] were based on the lowest solution does account for this effect. In the nonperturbative
tree-level approximation to interactions between sources. |golution the coupling of the extra scalar mode to the matter is
this approximation the discontinuity has a clear physical in-suppressed by the ratio of the graviton mass to the physical
terpretation. Indeed, a massive graviton in four dimensionscale of the problem. Hence, the predictions of the massive
hasfive physical degrees of freedothelicities =2, =1, 0)  theory could be made infinitely close to the predictions of the
while the massless graviton has only tielicities+2). The ~ massless theory by taking smatl, .
exchange by the three extra degrees of freedom can be inter- The argument can be conveniently presented by consider-
preted in the limitmy—0 as an additional contribution due ing the gravitational amplitude of scattering of a probe par-
to one massless vector particle with two degrees of freedorficle in the background gravitational field produced by a
(“graviphoton” with helicities =1) plus one real scalar heavy static source. This amplitude has the following generic
(“graviscalar” with the helicity 0. The graviphotons do not Structure [note that we use the flat metrig),,=diag
contribute to the one-particle exchange—their derivative(—1,1,1,1):
coupling to the conserved energy-momentum tensor van-
ishes. The graviscalar, on the other hand, is coupled to the
trace of the energy-momentum tensor and its contribution is Fl’”(q)t’ o
generically nonzero. It is what causes the discontinuity be- mr
tween the predictions of massless and massive theories in the
lowest tree-level approximation. )
However, as was argued in RdB], this discontinuity ~Wwheret,,=p,p, andt, = p,,,,Piy refer to the heavy particle
does not persist in the full classical theory. It was shown thatvith four-momentump,,=(M,0) and to the light particle

a(gi)t#'t;,,—b(g*)tht,”
q°+ mé— ie
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4 dard five polarizations. Furthermore, the mass term in the
\/ action is not uniquely defined beyond quadratic order in the
! . ; fields.
! ; : These legitimate concerns can be addressed by embed-
: = S e ding the 4D theory of a massless graviton into a five-

Tox KA ! \ .
/\ /‘\ X X dimensional theory—a route we take in the present paper.
Indeed, gravity in five dimensions is well defined as a clas-

sical gauge theory; a massless graviton has exactly five
states. For the matter fields which are confined to the four-
Yimensional brane the theory mimics a massive spin-2 par-
Ficle with the fifth component of the momentum playing the
role of the mass.
. , ) ) 1 The model which we discuss is that of RE8]. In this
with momezntumpu, rgspectwely(gee Fig. 1= The form  1qdel matter is localized on a brane. The brane world-
factors a(zq ) and b(q“) are functions of the momentum ,4jyme theory contains the induced 4D Einstein-Hilbert term
transferq® and are defined by two parameters: the gravitonyye to which a five-dimensional graviton mimics the massive
massmg and the Schwarzschild radiug,=2GyM of the  oyr-dimensional spin-2 state on the brane. In contrast with
heavy particle with mash. o _ the four-dimensional massive theory, in this case the full

In the lowest tree-level approximation of the massivengpjinear action can be written. The two-body problem for
theory the form factors and b are just constants and the gqyrces on the brane is now well defined. The amplitude has
unitarity (sum over five helicitiesfixes their ratio,a=3b, the same generic forril) with substitution ofq2+m2 by
while the same unitarity with two graviton statéeelicities q%+m.q, wherem, is the counterpart ofn, in the mgodel
+2) in the massless theory gives=2b. Therefore, a dis- \ye pres ° : ) -

o o ) present the arguments in favor of the aforementioned

continuity [3-5] appears. However, this is only valid for popavior of the form factora(q?) andb(q?). However, we

< —-1/5 i i - . . .
small momentay<mg(mgry) =, for which the higher or- i4 hot manage to obtain an exact solution of the Schwarzs-
der corrections are smdlb]. In coordinate space this means child problem in this case either.

that the linear approximation becomes valid only at the dis- | stead we derive a number of pieces of evidence sup-

tance porting the conjectured behavior from the exact cosmologi-
cal solutions[9,10] of the model. We show that the lowest
2 tree-level perturbative result is off by a factor of 4/3 as com-
9 ' pared with the exact result and explain why the correspond-
ing perturbation theory breaks down. Based on this, we ex-
which for the Sun is bigger than the solar system g&e  pect that the perturbative discontinuity is indeed absent on
the discussion in the next sectjon the nonperturbative level in the full classical theory.

On the other hand, ai> mg(mgr,\,,)*l’fs, i.e., at shorter Recently, the problem of the vanishing graviton mass was
distancesr <r,,, we expect that the summation of higher studied in a different setup. It was shown in Rédfkl] and
orders[6] returns the relatiom=2b of the massless theory. [12] that there is no mass discontinuity even in the lowest
In other words, nonperturbative summation should lead tdree-level exchange on de Sitt@S) [11,13 or anti—de Sitter
the decoupling of the graviscalar from the heavy source fofAdS) [11,12 background$. This fits well with the discus-
distances <r,. sion presented above. Indeed, in the case ofAHdS back-

What was not verified in Refl6] is a matching of the ground, even the lowest tree-level approximation does take
nonperturbative solution at<r ;, with the exponentially de- into account the presence of a mass scale of the problem,
creasing linear solution at>r,. It might happen indeed Which in that case is given by the cosmological constarit
that the solution matches an exponentially increasing funcwas shown in[12] that the coupling of the graviscalar is
tion instead® Boulware and Deser ifi7] expressed their proportional tomé/A whenmy—0, and deviations from the
doubts about the existence of large distance matching. Morgnassless model vanish in this limit. Since the cosmological
over, they argued that there is no consistent interactingonstant in our world is restricted th<10 8Ge\?, the
theory of the massive spin-2 field int3lL dimensions. One allowed graviton mass is in the rangg < 10 *?GeV—i.e.,
of the arguments in Ref.7] was that at quantum level the the graviton Compton wavelength is bigger than our horizon
theory contained a sixth polarization in addition to the stan-size. The existence of such a tiny graviton mass is immaterial

FIG. 1. Scattering of the probe particle at the gravitational field
of the heavy source. The bold circle accounts for summation of th
higher order iterations over the nonlinearities in the classical equ
tions.

(mng)1/5 (2GNM mg)l/5
r>rgn, m= m = m

g

To avoid confusion, note that we usg, only as a kinematical 3Note the analogy with the supersymmetric states whose mass is
structure of the vertices, not implying that it is the energy-given by a central charge. This charge also can be viewed as an
momentum tensor. extra component of the momentum in the dimensionally enlarged

2Such a solution can still be acceptable as long as the exponentiapace.
growth of the solution takes over at distances much larger than the“The consideration for dS space is somewhat subtle sincmgor
observable size of the Universe. This will take place if the graviton<2A/3 (A being the cosmological constaninitarity is violated in
Compton wavelength ;>10%cm. the theory[13].
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for all astrophysical and cosmological observatiphl (see o 1 1 1 1
also an interesting discussion of the continuity issue in theD ,,.,5(d)= 5 DuaMupt 5 MupMva™ 5 Muvlap Ez—_m
recent work[14]). Note that the nonperturbative continuity @)

allows for a much wider range for the graviton masg,
<(ry/r®Y4 Herer is the maximal distance from the Sun
where the data are obtained; see Sec. Il for the numerics.

In Ref.[15] it was argued that in théA)dS background
the perturbative discontinuity reappears at the one-loo
guantum level—a phenomenon very similar to the one—looqh
discontinuity for massive non-Abelian vector fields dis-
cussed in4]. This is certainly true since the loops are sen-
sitive to the number of particles running in the loop dia-
grams. From the practical point of view, however, the
comparison of the theory with the experimental data on light
bending by the Sun and the precession of the Mercury peri- _ EN?] % )
helion is not affected by the small quantum loop corrections. C
Indeed, while the graviscalar decouples from the classical
source it is still coupled to the graviton and does contributeyhere
to the quantum loops. However, such effects of quantum
gravity are suppressed and most likely cannot be disen- 9,9
tangled in solar system measurements. For these reasons, in D= Nt L
what follows we focus on thé&is)continuity in the classical My
theory only.

The paper is organized as follows. In Sec. Il we recall theNote the Irhg and 1 singularities of the propagator.
essence of the graviton mass discontinuity found in Refs. The difference in the numerical coefficients for the
[3-5] and discuss the results of Rg8] where it was shown  7,,7,4 Structure in the massless and massive propagators
that there is in fact a continuity in the graviton mass in the(1/2 versus 1/8is what leads to the perturbative discontinu-
full classical theory. In Sec. lll we introduce a five- ity [3—5]. No matter how small the graviton mass is, the
dimensional nonlinear model that mimics the properties of gredictions are substantially different in the two cases. The
four-dimensional massive gravitational theory. We show thastructure(5) gives rise to contradictions with observations.
the perturbative discontinuity that is present in the lowest To see how this comes about let us calculate the ampli-
tree-level approximation disappears in the exact solution ofude of the lowest tree-level exchange by a graviton between
the model. In Sec. IV we discuss another exact solution ofwo sources with energy-momentum tensdrs, and Tgﬁ
the nonlinear model, which interpolates between the four{the tilde denotes the quantities that are Fourier transformed
and five-dimensional regimes. We conclude in Sec. V. to momentum spage

where only the momentum independent parts of the tensor
structure are kept. By a gauge choice the momentum depen-
dent structures can be taken to be zero. On the other hand,
ere is no gauge freedom for the massive gravity given by

e action(3), and the propagator takes the following form:

1 1
D,Tviaﬁ(q) = (E nﬂanvﬂ+ E np,ﬁnva

1
q2+m§—i6'

©)

(6)

= _ T uv,aB T
Il. PRELIMINARIES: MASSIVE GRAVITON IN 4D Ao 87TGNT”V Do T“B

8GN (= 1 opla..
We will consider the following action for a massive gravi- i R Nun | T )

ton on a flat 4D background:

In the massive case this amplitude takes the form

2
m
—_ 2 4 9rh2 2 ~ .
Sm_MPIf d*xlg| R+ [hu,—(h)1), () Ay=—87G\T,, DLVPT!
87Gy [~ 1 .\
. == | T g 7w Tp| T ®
whereg,,,= 7,,+h,, and the Planck masd p, is related to Q-+ my 3

the Newton constanGy as M§|= 1/(167Gy). The mass

term has the Pauli-Fierz forffl6]; it is the only form that |, the relativistic normalization we are using ,,
does not introduce ghosf47]. We imply that indices in the =(p|T,..Ip)=2p,p, at zero momentum transfeq=%
nv uv .

mass term are raised and lowered by the tenggr. If it gyppose we take two probe massive static sources with
wereg,,, instead the difference would appear only in termsmasseS\/ll andM,. Then onlyTo, and T}, are nonvanish-

cubic and higher it ,,,, which are not fixed anyway; higher . : .
u oo ing and the lowest tree-level graviton exchange determines
powers ofh,,, could be arbitrarily added to the mass term. L )
the Newtonian interaction,

In order to see the presence of the discontinuity in the
lowest tree-level approximation let us compare free graviton 3
propagators in the massless and massive theories. For the _ dq igi Ao GyMM,
. ; Vo(r)= 5 € =— ,
massless graviton we find (2m) AM M, r
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d®q .. Ay metry is broken andu is nonzero. Therefore, in order to
Vm(r):f ze ' compare the results in the massive and massless cases one
(277) 4M le . .
has to do the substitution
4 GyM M
3o © b p |2
r=pex 5] expN)= 1+§$ explo—pu).
. . . 12

Expressiong7) and (8) give different results for the New- (12
tonian attraction even in the ranges\y where one can ne-  The standard Schwarzschild solution of the massless

glect the exponential decrease. This difference can be elimiheory takes the following form:
nated by redefining the Newton coupling for the massive

theory as follows: r
S )= —ASChV‘(r)=In( 1- TM) =———=

Gn=3 G, 10 om0 .
% ry=0.

whereGy is the Newton constant of the massless theory. FoﬁererMEZGNM is the gravitational radius of the source of
nonrelativistic problems the predictions of the Massive, - oM
theory with the coupling rescaled by a factor 3/4ng{—0 '

identical h f th | h it th Let us compare this with the perturbative @), solution
are identical to those of the massless theory with the CoUt ihe massive theory obtained in RE3]. In the leading plus

pling Gy . next-to-leading approximation i&y the solution reads
However, this is not enough to warrant the viability of the gapp N

massive model. The relativistic predictions in the two cases

are different[4,5]. For instance, the predictions for light v:—r—M 1+1rTM5 ,

bending by the Sun are in conflict. At the classical level the r 32 mgr

trace of the energy-momentum tensor for light is zero. There-

fore, the second term on the right-hand side of Eg@sand 1w 21 1y

(8) is not operative for light. Hence, the amplituddg and 2 8 m;J‘r5 '

A, are identical in this case. However, we have established

above that calculations in the massive theory should be per- 1 ry 21 ry

formed with the rescaled Newton constant. Taking this fact n=5-=3|1+ 7 a3l (14
into account, the prediction for light bending in the massive 9 9

theory is off by 25%3-5]. We note the following peculiarities of the resu(ts4).

We could certainly take an opposite point of view, (1) |n the leading order there is a finite discontinuity in
namely, do not rescale the Newton constant of the massivge expression fok: the result of the massless theory in Eq.

theory. In this case the predictions for light bending in the(13) giffers from the result of the massive model by a factor
massive and massless models would be identical. Howevefys Thjs is precisely the discontinuity that is seen in the

the Newton force between static sources would differ by gqest approximation.

factor of 4/3. _ _ (2) The next-to-leading corrections in E(l4) are gov-
The above considerations are based on the lowest pertug;,oq by the ratia /mgr5 and are singular im.

bative approximation. The question is whether these results (3) For any given distancethere is a value ofn, below
9

hold in the full classical theory. Normally, one would expect, vich the perturbative expansion @y, breaks down.

that for solar system distances the lowest approximation is These results are in correspondence with the perturbative

well justlﬁe_d. However, it was argued in Re#] that the series for the scattering amplitude described by the Feynman
approximation breaks down in the massive theory for rela-

tively short distances. Since this breaking manifests itself irgraphs In Fig. 1. The leading terms in the expansiadsare

) : P . iven by the diagram of first order in the source, i.e., the
a rather interesting way we will briefly summarize the reSUItSdiagram with one cross. The terms singularni in the
of Ref. [6] below. ' g

. . . . .propagator(5) do not contribute in this order. In the next
To see the inconsistency of the perturbative expansion ng pagator(5)

Gy let us look(following [6]) at the Schwarzschild solution rder (the diagram with wo crosses in Fig) e have wo

) . . . extra propagators which could provide a singularityripup
of Eq. (3). We parametrize the |n.terval for a massive spherl—to 1mE. The two leading terms & and 1m¢ do not con-
cally symmetric body as follows: 9 9 g

tribute again so the result contains only thengl/singularity
. as in Eq.(14).
ds’=—e"Pdt’+e’ P dp®+e P pA(d 6 +si o d¢?). To demonstrate how badly the expansion in powerG gf
(1D breaks down let us take the largest allowed value for the
graviton massmy=(10?°cm)~* [1,2] and calculate the cor-
In the massless theory the functipris redundant due to the rection to the leading result in the gravitational field of the
reparametrization invariance of the theory; it can be putSun. We will find that at distances of the order of the solar
equal to zero. However, in the massive case this gauge symnsystem size, i.e., at~10°cm, the next-to-leading correc-
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tions in Eq.(14) are about 1% times bigger than the leading dress the questionCan the graviton which describes the

terms. Therefore, this expansion is unacceptable. data in our observable Universe have five degrees of free-
For a light enough graviton, however, a consistent perturdon?
bative expansion could be organized in powersgf In this In the next section we present a model based on five di-
case one find§6] mensions where the massless graviton naturally has five de-
grees of freedom. The model is free of all the problems of
"'m 2 3 the 4D massive gravity discussed above. We perform our
v(r)=- T+O( MgV wr ) analysis within this completely nonlinear theory in which

exact solutions can be found. These solutions are compared

gy ) 3 with the perturbative results. We find that the picture outlined
Mr)=-—=+0(mgyrur), in the work[6] (and discussed aboy&olds.
ar 11l. BRANE MODEL OF MASSIVE GRAVITONS
—4/2M 2.2
m(r)= 13r +O(mgr), (15 The 5D model we will discuss was introduced[8]. The

gravitational part of the action takes the form
where only the leading terms in, /r are retained. These

expressions are valid in the following interval: S= Mi f d%x dy\/@RJFMgIJ' d4x\/HR(X), (18)
_(mng)lIS

ru<<r<<rp, rm=2G\M, M'm m

where M, is a parameter of the theory anélp=1.7

X 108 GeV>M, . FurthermoreG,g is a 5D metric tensor,

(16) - - : AB 'S . e
A={u,5,={0,1,2,3,5, R is the five-dimensional Ricci sca-

For the gravitational field of the Sun this would correspond!@’, @ndg,,, denotes the induced metric on the brane, which

to the interval we take as

3X10° cm<r<10?cm, (17) 9u(X) =G, (x,y=0), mv=0123, (19

, , neglecting the brane fluctuations.
where the lower bound is less than the radius of the Sun and \ye assume that our observable 4D wofdd mattey is

the upper bound is of the order of a galaxy scale. Thus, foggnfined to a tensionless brafee tensionless hyperplane in
practical calculations within the solar system this expansiony;g casg which is fixed at the poiny=0 in the extra fifth

is well suited. _ , , dimensior® In other words, we assume that the energy-
As we see, the expressions forand A in the leading  momentum tensor of 4D matter has the factorized form

approximation cqmude Wlth' thosg of the massless theory L(X)8(y). We also imply the presence of the Gibbons-

(13). Thus, there is10 mass discontinuityMoreover, the ex- Hléwking boundary term on the brane; this provides the cor-

pressiong(15) explicitly show nonanalyticity iGy, thatis  yect Einstein equations in the bulk. These simplifications

M Gy, v;/hne in » and A nonanalytic terms are propor- ey to keep the presentation clear and do not affect our main

tional to mg. results. The brane world aspects of the mddé) were stud-
We discussed in the Introduction subtle issues concerningd in detail in Refs[8,18—2(.

the validity of the results discussed above arising even on the | et us study the gravitational potential between two static

classical level: the nonlinear theory of massive gravity is noodies located on the brane. This can be calculated from the

uniquely defined and it is complicated to make sure that th%ction (18) The Corresponding Green function is conve-

solutions which have no discontinuity do indeed Satisfy tth]ienﬂy represented by Working in momentum space in the

boundary conditions at infinity, i.e., that foe-1/mgy the so-  four world-volume directions and in position space with re-

lution matches the exponentially decreasing function. spect to the transverse coordingteFor the time being we
As we already noted even the exponentially growing socan neglect the tensorial structure of the propagémibe

lution can be acceptable when the graviton Compton wavediscussed belowand calculate the scalar part of the Green

length becomes larger than the observable size of thginction. This can be done by calculating the corresponding

Universe. The Yukawa factors due to the graviton masspropagator in a theory with scalars only, which have bulk

exp(xmyr), can be made to be arbitrarily close to unity by and brane kinetic terms similar to E4.8). The result of the

decreasing the graviton mass. However, as we discusse@lculation reads as follows]:

above, this does not warrant the continuity of tmg—0

limit since the coefficients in front of the perturbative poten- ~ 1 1

tials in the massive and massless theot@®sare different G(a,y=0)= WT\/— (20)

andmy independent. Therefore, the question of whether the P eva

graviton could have a nonzero mass effectively reduces twhere we introduce the parameter

the question of whether the graviton could have five polar-

izations. Indeed, these extra polarizations are responsible for———

the my independent discontinuity in the coefficients in the °A simplest possibility is to consider a brane at a fixed point of the

potentials(9). Therefore, in what follows below we will ad- R/Zz, orbifold.
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1 2m3 change. To this end we will solve the Einstein equations in
Me=—=—+—. (21)  the linear approximation ihg Which is the deviation from
re Mg :
the flat 5D metric,

The Green fu23t|0|ﬁ220) hiig_unl;suall features. It has a tachy- Gas=7as+hag. (24)
onic pole atg°=—qg+q~ “=mg which corresponds to de-
cay into the continuous tower of Kaluza-Klein statedich  \We choose théarmonic gaugen the bulk:
arise from the reduction of the 5D gravitorAlthough the
five-dimensional graviton is well defined, from the 4D per- *hag=13 dgh<. (25)
spective it looks like an unstable particle with width, .
Nevertheless, the rules of integration for the propagé&06r  In this gauge from thgu5} and {55} components of the
in the complex energy plane can be defined consistently. sourceless equations of motion it follows that

In particular, using Eq(20) we can find the static poten-

tial ¢(r). The result can be written in terms of special func- h,5=0, h§=hﬁ. (26)
tions and has different asymptotic behavior for small and
large distancegsee Ref[18]). The “crossover scale” be- Let us turn to thgur} components of the Einstein equa-

tween these two regimes is defined iygiven in Eq.(21).  tions. After some simplifications they take the form
At short distances, i.e., whan<r,

[M3 9ad*+M33(y)d,5°1h,,,
i
—1+y- In(TC) }

+O<r2>]. = —{ T 37, Te} )+ MES(Y)3,9,05
(27)

There are two terms on the right-hand side of this equation.
Herey=0.577 is the Euler constant. The leading term in thisThe first one has a structure which is identical to that of a
expression has the familiar rl/scaling of the four- massive 4D graviton(or, equivalently, of a massless 5D
dimensional Newton law with the correct numerical coeffi- graviton. The second term on the right-hand side, which
cient. The leading correction is given by the logarithmée  contains derivatives,d,, is not important at the moment

1 1
$(1)=— g7 =

8mM3,

i
2

r
e

(22

pulsionterm in Eq.(22). since it vanishes when it is contracted with the conserved
Let us turn now to the large distance behavior. For energy-momentum tensor. As a result, the amplitude of inter-
>r . one finds action of two test sources takes the form
1 1 1 TI-/.LV:'I-/ _;:l'—,u.:'l—rv
¢(r):_ AVE _2+O(_3 . (23) Ind —O\F v prv 3luly
16723 12 O\ Ru(@y=0T " (@ — 7= (29

The long distance potential scales as’ih accordance with
the 5D Newton law. Thus, the crossover saq@# should be
sufficiently large to avoid conflict with astronomical obser-

vations. In[8] it was estimated that foM, ~1TeV the  iont eynect that the lowest tree-level approximation wil
crossover scale is around 18°cm, which is roughly the oo down in the next iterations in the classical source. A
size of the solar system. This is too low to be consistent W'“Turther indication of this is the existence of the terms singu-
data. Therefore, the scalé, should be takento be atleasta |, iy m_ in the expression for the gravitational fiefd,
couple of orders smaller than 1 TeV. This is in no conﬂictproducefj by a static source. We write the energy-mom;ntum
with any gravitational or Standard Model measureme¢see tensor for the source as follows:
the discussions in Refd.19,20). We take r.=10?°cm,
which corresponds t¥, <1 GeV. T,,(X)=—M&,08,062(X), (29)
The parametem, plays a role in this model which in r re

many respects is similar to that of the graviton magsin  whereM is its rest mass. As before, let us make a Fourier

Eq. (3). Indeed, asn.—0, gravity on a brane becomes 4D transform with respect to four world-volume coordinates.
Newtonian at larger and larger distances. Moreover, the fourfhen the solution is as follows:

dimensional interaction in the model with the actid®) can

whereq=/q?. We see that the tensor structure is the same
as in the case of the massive 4D thefsge Eq.8)].
In analogy with the discussions in the previous section we

be interpreted as an exchange of a four-dimensional state _ 1.
with width equal tom, [8]. In the next section we will find hoo9.y) =C5 G\M meXK—QM), (30
even closer similarities between, andmj . ¢
~ 1. i ~
A. Perturbative discontinuity hij(a.y)=c 7 GyM mexp(—qMHcGNM
C
To see that the modél8) exhibits a discontinuity in the

one-graviton tree-level approximation let us calculate, fol- xﬂ _
lowing [8], the tensorial structure of the one-graviton ex- m.q g%+ meq exp(—aly)), (3Y)
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wherec=—16x. These expressions, takenyat 0, should Then it is clear from Eq(34) that in the lowest approxi-
be contrasted with the lowest order expressions for thenation inm. one recovers the usual 4D Schwarzschild solu-
Schwarzschild solution in 4D theory with a massless gravition of the massless theoi§l3). For the calculation of the
ton: subdominant corrections im; and for matching conditions
at infinity, however, numerical simulations are needed. Note
Fgghw(q)zchNM iz (32) that in this case the solution ghould pe matc_hed at infinity to
2 a well known 5D Schwarzschild solution which decreases as
(rm/r)? atinfinity. This is an easier task compared to the 4D
massive case where the power-law solution at short distances
should be matched with the Yukawa potential at infifiity.
Does this mean that we cannot analytically compare the
Comparing the expression80), (31) to those in(32),  perturbative and nonperturbative results in the made)?

~ 1 S
hﬁChW(q)zciGNM a‘}. (33)

(33) we draw the following three conclusions. Not at all. Instead of finding the exact Schwarzschild solu-
(i) Upon the substitutiorGy— Gy the {00} components tion we perform a similar analysis for other solutions which
coincide for large momenta, or, equivalently, fogr .. can be obtained explicitly. In the next section we discuss an

(i) The{ij} component of the 5D theory consists of two exact nonperturbative cosmological solution of the model
terms. The first term, after the substitutigdy— Gy, is (18 found in Refs[9,10] which differs from the perturbative
twice as small as the corresponding term on the right hangesult by 4/3.
side of the Schwarzschild solutid83). This is what gives
rise to the discontinuity.

(iii) There is an additional term in the expression for B. Nonperturbative continuity
Fij(q,y=0) which is proportional to In this section we study the cosmological solution in the
model (18) found in Refs.[9] and[10]. It was already no-
qiq; ticed in [9] that the cosmological evolution in E@L8) is
m.q’ governed by a Newton constant that differs from the “New-

ton” constant of perturbation theory by 4/3. We will discuss

This term does not contribute to the one-graviton exchangthis discrepancy in detail.
in leading order because of conservation of the energy- Our goal is as follows. We consider the solution of the
momentum tensor&he diagram with a single cross in Fig. model(18) that describes the expansion of the matter domi-
1). However, it does contribute to higher order diagrdthe  nated Universe. We will perform two distinct calculations for
ones with two and more cross in Fig. This term is singular  this. First we find the solution based on the Newtonian ap-
in m, and the perturbation theory i@y breaks down when proximation. This calculation makes use of the lowest order
m.—0. potential between objects on the brane. As a second step we

Given these arguments, we conclude that for a consisteffind the corresponding exact nonperturbative cosmological
calculation of the interaction between two sources on a brangolution of the Einstein equations. In the domain where the
we should find the Schwarzschild solution that sums up alNewtonian approximation is legitimate, the perturbative re-
the orders of the Born expansion for the classical equationsult for the cosmological solution would coincide under the
Unfortunately, we could not manage to find the analytic so-hormal circumstances with the nonperturbative one, as hap-
lution. However, implying the existence of a smooth limit pens in a 4D world with a massless graviton. However, we
m.— 0, one could perform the expansionim, in analogy find a discrepancy of a factor of 4/3 in these two methods.
with the 4D massive cadé]. Let us start with the perturbative approach. As we estab-

The {uv} component of the Einstein equation for the ac-lished in the previous subsection the one-graviton exchange
tion (18) can be integrated with respect yoin the interval  in the lowest approximation gives rise to the following ex-
—e<y=e with e—0. The resulting equation takes the form pression for the potential of a massive source at short dis-

tancesr <r.:

_ +e M 3
g;LV(X)+ij g;w(XvY)dy:_W‘a,uO&zoé( )(X),
- PI
(34)

(35

~ M
¢(r)=_GNT

whereg,, and G,,(x,y) denote the Einstein tensor of the ~

world-volume and bulk theories, respectively. Since the exThe appearance of the constday, instead of Gy in this
trinsic curvature has a finite jump across the brane, the se@expression is related to the fact that we used the lowest tree-
ond term on the left-hand side of E@@4) is nonzero even in level approximation.

the limit e— 0. This term is proportional to the parametey

with respect to which the expansion is perfornfag imply

that the metric is nonsingular im.; this seems to be a  %n Ref. [21] the asymptotic form of the Schwarzschild solution
reasonable requirement for a physically meaningful solufor m,.—0 was also discussed and, moreover, certain generaliza-
tion). tions of cosmological solutions of the mod@élB) were obtained.
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Let us now use the standard consideration of Newtoniasimilar to the Schwarzschild problem in 4D massive gravity
cosmology. Consider a spherical ball with some uniform discussed in Sec. Il these corrections are defined by powers
matter density in it. We assume that the radius of theR&@l of the parameter
much smaller them. and that we are in a regime where the

Newtonian approximation is valid. In this case the potential Gu _ 1 (41)
of the ball on its surface takes the form m§R3 mth'
b =R) = — G M (36) It is clear that these corrections blow uprat—0 and we
ball NR ™ need to sum them up. The corrections seem to be small at the

later timet>1/m., but as we will see the 4D approach stops
Let us consider a pointlike probe particle of masgwhich  working at this epoch.
is located right on the surface of the ball. We neglect the |et us now solve the same problem using the exact Ein-
back reaction of this probe particle on the ball. The energytein equations. We parametrize the 5D interval in the fol-
conservation condition for the system of the ball and prob&owing form:
takes the form ,
ds?=—N2(t,y)dt?>+ A2(t,y)dxdx + B(t,y)dy?.
meR? -~ Mm, k (42)
o _ GN—O = _mO, (37)
2 R 2

The 4D scale factor is defined as follows:

where the overdot denotes the time derivative kiislsome R()=A(t,y=0). (43)
constant. We would like to calculate the time evolution of the ’
radiusR. In the regime under consideration this is equivalentthe solution was found if9] and[10]:
to the time evolution of the scale factor in Friedmann-
Lemaitre-Robertson-Walker cosmology. In what follows we R
consider the solution that corresponds to the expansion of a N=1-|y|—, A= R_|y|R, B=1, (44)
flat, i.e.,k=0, matter dominated Universe. Fh=0 we re- R
write Eq. (37) as follows:
and the 4D scale factor obeys the following modified Fried-

R\? 8. mann equation:
=) :_GNP! (38)
R ~ 3 , .
R _877 R
where the density for the matter dominated Universe is R) 3 G Mg 49

related to the scale factét as follows:
The m;—0 limit of this equation is clearly incompatible

u with Eqg. (38), which is based on the leading order approxi-
P=R3 (39 mation in the massive theory, but coincides with the result of
massless gravity. This certainly implies that the Hubble pa-
whereu is some constant. rameterR/R is continuous in this limit—an assertion we

This is nothing but the Friedmann equation for the scalq,erify below by presenting the exact solution of E45).
factor R for a flat matter dominated Universe. We find the e can absorb the parametens and Gy, in Eq. (45) by

solution for the scale factor: rescaling:
R3(t)=67uGyt2. (40) T 3m2

This solution is consistent with the fact that we choose the

time period wherR<r . so that the brane world evolves in =2 g ~ a5
accordance with the laws of 4D theory. What is important in (pT) =743 pT, D= _p_ (46)
our solution is the numerical coefficient in the relati@i®), p 4 p dr

which different from that in the 4D massless gravity case—i

containsGy = (4/3)Gy, instead ofGy . Below we will show
that the exact solution matches the one in massless gravity in 327Gy

P 2 P, (47)

t
After introducing the variable

the limit m.—O0. x=1+p=1+
Before discussing the exact solution let us explain why

the Newtonian approach outlined above does not produce fle exact solution can be written in terms of elementary

correct coefficient. It is due to the effects of nonlinear terms:functions for 7(x):

3m

3 1 1 Jx+1
= —1+ Elog— (48)

Yx—1'

For a careful treatment and interpretation of Newtonian cosmol-
ogy see, e.gl22]. 2
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When r=m.t>1 we get for the scale factor T,,=diag0,—Ap,—Ap,—Ap), Ts,=Tss=0, (59
R3:87TGNUt 1 log(3mct) +1 e (49  -€.p+Ap—0 in this limit. To warrant the 4D behavior, the
me 3mgt ' induced 4D Ricci scalar on the brane was addefL.

The important thing is that the early cosmology of this
This unusual behavidcompare with the 4D Newtonian cos- model is standard, with no discontinuity in the Newton con-
mology in Eq.(40)] is typical of a pure brane cosmology stant. Indeed, the Friedmann equation is given in @)
regime [23] where one hasH?xp’—indeed, Gy/m;  wherep should be substituted by+ A, . The Newton con-
=1/(32rM?2) plays the role ofGy in the 5D world. It is  stant on the right-hand side of this equation is the conven-
only relevant to the late time cosmology> 1/m.—the ep-  tional 4D gravitational constant which reflects discontinu-
och where the Hubble parameter is smblk-1/t<m., and ity. This is true as far as the early cosmology is concerned.

the expansion enters the 5D regime, as analyzed9]n Let us now look at the late cosmology, or more precisely

Therefore, 4D Newtonian cosmology is not applicable at thisat the form of the metri¢51) to which the solution asymp-

epoch. totes. The metric on the brane is Minkowskian and static
For r=m <1, everywhere with only dependence gnFor small values of

y, which satisfyb|y|<1, this metric can be obtained as a
perturbation on the flat Minkowski space. Indeed, for small
perturbations(24) in the harmonic gaugé25) we find Eq.
(27) with the energy-momentum tensor defined in Esf)).

In correspondence with the difference of E¢#6) and(38),  This equation has the 5D tensor structure on the right hand
discussed above we see thRit at m.=0 is different from  side. Let us now note that the energy-momentum te(sr

the expression in Eq40) that was obtained using the lowest satisfies the relation

tree-level approximation by the same factor 3/4—it contains

Gy instead ofGy . Note that the exact expression faf is Tij—3T7;=0, i,j=123. (55)
linear in Gy—no higher orders are present.

The exact solution considered above gives an expliciftherefore, the equation fdm; is simplified. This is com-
demonstration of the nonperturbative continuity in the limitpletely due to the 5D tensor structure; in fact if we had a 4D
m.— 0. This continuity is not uniform—for the given value tensor structure this would not be so. Furthermore, the solu-
of t the parametem, should be much smaller thant1/This  tion of Eq. (27) in the gauge(25 can be written in the
is the strongest constraint on the graviton mass coming frorfPllowing form:
cosmology,m.<H,, whereH,~10"%’GeV is the present

day Hubble parameter. | Ayl
hoo= —hss= — PIVED lyl, hi;j=0, h,s=0. (56)
*

R3=67G\ut? 1—§mt+~-- (50)
N 4 c .

IV. INTERPOLATING SOLUTION

OIOne can indeed verify that this solution coincides to first
order with the exact solutiofbl). For this we perform the
§ollowing gauge transformation of the exact solutitthe
two different signs correspond to the two sides of the brane

In this section we discuss a cosmological solution foun
in [10] and show that it interpolates between the regime
with 4D and 5D tensor structures.

Let us start with the brane actiofi8) and in addition
introduce in the theory a negative cosmological constant on 1
the braneA, and the matter de.n§|ty>|/§b| (we put the y=sgnz) —[(1+2b|z|+2b%z?)2—1]. (57)
pressure equal to zero for simplicityThe time evolution of b
such a 4D brane universe is interesting; it evolves asymptoti-
cally to a static Minkowski space on the brane without anyAfter this the metric takes the form
fine-tuning [10]. The asymptotic form of the metric is as _
follows: ds?=—(1+2b|z|+2b%z?)dt?>+ dx'dx;

ds?= — (1+b|y|)2dt2+dxidx +dy?, (51) (1+2bj2)°

1+ 2b|z|+2b%Z? 58)

where the constarti is
which in leading order coincides with the perturbative solu-

b=|Ay|/4M3. (52 tion.
o _ . Therefore, we conclude that the cosmological solution of
In fact, this is a solution to the equation Ref.[10] does indeed provide an explicit example with both
1 1 asymptotic regimes: at small distandemall Hubble radius
the behavior is four dimensional with the 4D tensor struc-
Rag— 5GagR==—73T ay), 53 . )
AB 2 AR oM3 aB(X) oY) 63 ture, whereas at large distancélarge Hubble radiusthe

behavior has the 5D tensor structure. In this sense the solu-
where the energy-momentum tensor on the brane is tion discussed above captures the important features of a
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Schwarzschild solution of 4D massive theory; this is not surnonperturbative amplitudes of the radiation of the helicity-0
prising since it is asymptoticallgin time) Minkowski on the  state by 4D matter fields will also vanish with the graviton
brane. mass, while they are nonvanishing in the lowest tree-level
approximation as was shown in RE24].
V. DISCUSSION AND CONCLUSIONS In the small mass limit the extra degrees of freedom of a
. ] ] . ] massive theory form an independent sector which decouples
We discussed a nonlinear five-dimensional generally cOfrom our matter as the graviton mass goes to zero. These
variant model which resembles many crucial properties of &egrees of freedom do interact with each other; moreover, in
massive graviton in four dimensions. The mass discontinuityertyrpation theory these interactions are singular in the limit
is present in the lowest tree-level approximation; howevermgﬁo_ Certainly, on top of the classical effects there is the
this approximation breaks down for vanishing graviton massgsge of quantum loops, which we did not discuss in the
and all the tree-level graphs should be taken into aCCOU”bresent work. However, the loop effects are suppressed and

The resulting expression for the nonperturbative classicgh st Jikely they cannot be disentangled in existing measure-
calculation is continuous in the graviton mass. Thus, there ig,ents.

no mass discontinuity in the full classical theory.

There are three extra degrees of freedom in the massive
(or five-dimensional theory compared to the massless one.
Among these degrees of freedom only the helicity-O state
(the graviscalarhas a nonzero coupling to 4D matter. How- We would like to thank L. Blanchet, P. A. Grassi, |.
ever, this coupling tends to zero in the full classical theory asKogan, M. Porrati, and M. Shaposhnikov for useful discus-
the graviton masgor m,. in the 5D examplgvanishes. Thus, sions. The work of C.D. was supported by the David and
all the extra degrees of freedom decouple in the massledsucile Packard Foundation and by NSF grant PHY-9803174.
limit. The work of G.D. was supported in part by the David and

The interesting issue that we did not discuss in the papetucile Packard Foundation by the Alfred P. Sloan Founda-
is the emission of a helicity-0 graviton. Based on our obsertion, and by NSF grant PHY-0070787. G.G. and A.V. were
vations and using the unitarity arguments we expect that theupported by DOE grant DE-FG02-94ER408.
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