PHYSICAL REVIEW D, VOLUME 65, 044024

Free evolution of self-gravitating, spherically symmetric waves
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We perform a numerical free evolution of a self-gravitating, spherically symmetric scalar field satisfying the
wave equation. The evolution equations can be written in a very simple form and are symmetric hyperbolic in
the Eddington-Finkelstein coordinates. The simplicity of the system allows us to display and deal with the
typical gauge instability present in these coordinates. The numerical evolution is performed with a standard
method of lines, fourth order in space and time. The evolution is performed using the standard Runge-Kutta
method while the space discrete derivative is symmétondissipative The constraints are preserved, within
numerical errors, by the evolution and we are able to reproduce several known results.
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[. INTRODUCTION properties of the final mass of the black hole were discovered
and then explained. For a review and referenceq 4ge
The aim of this work is to studynstabilities which are There are few cases in which free evolution has been

recurrent in many numerical simulations of black hole col-successful. Some of these approackes8] use light cone
lapse when those evolutions are completely free, that is;oordinates and in fact some of the equations being solved in
when only evolution equations are solved for, instead of ahese cases could be considered as constfaidthers use
mixture of evolution and constraint equations. These instaconformal space-time method$1,12 where no instability
bilities are relevant for they preclude the computation of theseems to be present. Finally, j8,10] a symmetric hyper-
final phases of the collapse of orbiting black hole systems. bolic formulation is used, and certain freedom, still available

The nature of these instabilities is not well understood;in that setting, is used to suppress the main instability found
they do not seem to be of a numerical nature; they also lacthere, reaching in that way a stable propagation. Unfortu-
the well posedness of the initial-boundary value problem fomately the discretization scheme has first-order numerical
the system of evolution equations. Rather they are suspectetissipation and the boundary-value problem for the system is
to be a consequence of the exponential growth of certaimot known to be well posed. Our work can be considered as
gauge quantities whose propagation is poorly understoodi continuation to this approach where boundary conditions
Since no system of equations with a manifestly well posedire now well posed and the equation system is much simpler.
initial-boundary value formulation has been used so far, and We use Eddington-Finkelstein coordinates in order to
in many casesd hocdiscretization schemes had been usedhave smooth field components at the horizon. These coordi-
the understanding of the nature of the instabilities has nofates, or suitable generalizations of them, are widely used for
been possiblé. studying numerical collapse. In these coordinates we are able

Thus, to make a reliable study of these instabilities it isto choose equations and variables so that the final system of
necessary to find a version of Einstein’s equations whictequations is remarkably simple and manifestly symmetric
admits a well posed initial-boundary value formulation andhyperbolic, in fact diagonal. Such simplicity is useful to
to use a standard, well understood discretization scheme. Tudy the nature of the instability and ways to avoid it.
achieve this we decided to study the simple problem of the To study instabilities in a reasonable way it is necessary to
collapse of a spherically symmetric self-gravitating scalawork with a well posed evolution system, that is, a system
field. Of course this is an oversimplified problem and there-which is hyperbolic and for which one can impose correct,
fore many of the findings and remedies for it might not admiti.€., stable in the analytic sense, boundary conditions. As it is
generalizations to the full 3D case. Nevertheless, there argell known, there is a considerable freedom in choosing the
instabilities present in this simple problem and, furthermoreset of evolution Einstein’s equations, for it is always possible
there are strong indicatior]4,2,3) that the instabilities are to add to any given set of equations new terms proportional
predominantly due to a longitudinal or Newtonian mode,to the constraints. In Sec. Il we introduce the equations and
namely the only one present in the spherically symmetrigliscuss which evolution systems, among all possible equiva-
case. lent ones, are suitable for free evolution. It turns out that, by

In the past decade, due to the results of several numericaldding terms proportional to the constraints, two out of the
experiments, there has been a considerable understandingfofe characteristics of the system can be specified at will.
the phenomena of the collapse of a spherically symmetriclhese characteristics can even become complex, signaling
self-gravitating scalar field. In particular, universal scalingthe failure of the evolution equations to be hyperbolic, and so

to have a well posed initial value formulation.
In the free evolution proposed one has to make sure that
INote that the conformal systems are well pogedl boundary is

present and the systems are symmetric hyperpalic there no
instability seems to be present. Note that in[8] the gauge breaks at about 50 M.
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the remaining Einstein’s equations, namely the constrainthird type of data is pure incoming scalar field boundary
equations, continue to hold along evolution if they hold ini- data.

tially. To ensure this one has to study the evolution system We perform the standard convergence tests for all types of
that the constraints satisfy whenever the free evolution equalata. They confirm the order of the discretization: as long as
tions are satisfied. It is well known that in evolutions which the bulk of the field amplitudes are away from the bound-
cover only the domain of dependence of an initial Cauchyafies the method is fourth order. When amplitudes are impor-
surface it suffices to impose the constraint equations on thd@nt at the boundaries the order is lower since the space de-

initial surface. Uniqueness of the constraints evolution equalVatives is not fourth order there, but just third order.
tions then guarantees the constraints remain satisfied. In We check constraint preservation under evolution for sev-

cases where the integration domain exceeds that domain Sf_al types of initial-boundary Qgta Sets. The constraint quan-
ies are very small at the initial time, but then grow a bit

dependence, and boundary conditions are therefore imposet&

constraints preservation is a much more delicate business, f pd stay bounded along.the who_lg evcl)lu.tu.)n. As expected,
) . o ! the growth of the constraint quantities diminishes as the step
its preservation depends on the boundary conditions im-

sizes diminish.

posed. - . Finally, in Sec. IV we comment on several results ob-

The change on the.charac.terlst}cs of the evolution SyStefhined by the simulations; they do not pretend to be novel nor
alluded to above implies an identical change on the charagneresting, but are done just to confirm the good properties
teristics of the evolution equations satisfied by the conys the evolution system chosen and to confirm our expecta-
straints equations. Thus, it is possible to understand that thg§yns mentioned above about the success of a standard nu-
change in boundary conditions induced by the change on thgerical method. These results include ringing and tail studies
direction of the characteristics is jUSt the one needed to €Ifor the scalar f|e|d, the relation mass vs flux for boundary
sure the correct preservation of the constraints equations u@ata, and the relation total mass vs the black hole mass for
der evolution. Among all possible evolution systems we takedifferent types of collapse.
a specific one which is both the simplest for dealing with

constraint; preservgtion an_d for discretization purposes. We IIl. THE EQUATIONS
also consider other interesting systems where the point above _ _ o
is well illustrated. The most general spherically symmetric metric is

In Sec. Il A we look at the residual gauge freedom of the
Eddington-Finkelstein coordinates. That freedom is the only

dynamics which is prese_nt n the vacuum case, and is th\(/avith a, b, @, and B being functions of andt, anddQ? the
mode that can generate instabilities.

After that, in Sec. IIB we discuss the initial-boundary getrlc of the unit sphere. We partially fix the gauge freedom

ds?=(—a?+a?B?)dt?>+2apdtdr+a?dr2+r?b%dQ?,

value problem for the specific evolution system chosen ang>. requiring these coordinates to be of the type Eddington-
determine which fields must be given in order to have a inkelstein[13]. Namely, we requirda the areal locking

unique evolution; in particular, we discuss a case in whickEondition ©=0), and(b) the condition that the vectos,
the characteristics change at the inner boundary according 7 be null. BOth conditions are achieved by choosing the
whether that boundary is inside or outside the horizon.  '@Pse and the shift as

We then discuss the instabilities of the system. Due to the
simplicity of the evolution system chosen this task is trivial -9 4=
and we can display explicitly the main instability. We can 1+raK’’ 1+raK’’
decide in which cases there will be problems and of what
sort. In particular near the stationary regime, that is, whervhereK’; is the corresponding coordinate component of the
most of the scalar field has dissipated away or fallen into th@Xxtrinsic curvature of the constant time hypersurfaces. More-
black hole, the system can be made stable using simpl@ver, rescaling the coordinateat some initial surface we can

rak?, a

initial-boundary values for the gauge fields. setb=1. Thus, the metric becomes
Having completed the analytic study of the equations in 5 5 2
Sec. IIl we discuss the numerical methods employed. We use ds’=a’[(28—1)dt+dr](dt+dr)+r?dQ?

standard discretization methods since their numerical stabil- ) ) ) . .

ity and convergence are well understood, and because we !N this spherically symmetric space-time we consider a
believe that to simulate a well posed, and stable systenjlassless scalar field, satisfying the wave equation. In the
which is well understood analytically, no fancier numerical 5+ 1 decomposition this equation becomes the first-ofier

methods are needed. We use a method of lines with a fourtt{ime) system
order symmetric discretization for space derivatives and a
fourth-order Runge-Kutta for time integration.

Three types of initial-boundary data are considered. The 1
first type is normal initial data with homogeneous boundary o qr2 _
data, the type of data normally used for collapse studies. The W= 0PI (1= AP, @
second type of data is pure gauge boundary data, the space-
time is just Schwarzschild in nonstandard gauge. Finally thevherell = (a/«)(d;¢— Bd, @) andd =, ¢.

9P =0, [P+ (1-p)I],
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The full set of evolutions and constraint equations for the godf f—-2dg g(g—2+f)
geometric variablesa(K%,,K',) aré® hg9=— Tor + 5 o 2gh— —f

(4)
dia=d,(ap) _az(l_ﬁ)Krr )

_dh 1 of g-209g9 (g—f)h

J gh=—— - — -
ﬁtKGOZB(?rKo@_I—ar_rﬁ+a(1_:3)K06’(Krr+2K00) t ar 2fraor  2fhr or fr
(g—2+f) _[x++x-\?
+1_'B 1 T onz T2 +fr ’
iz |2 al’
and
2 2 2
B pB—-1l|da [d,a 24,a
atKrr:BarKrr"' r Y |5 |\ 5|~ of f+g—2 2
ata 14 ra Ci= o —2(f-2)h+ 04X,
ar r fr
drBdra r r 0
2 +a(l-p)K" (K" +2K%)

. g 2g(rfh—x3+x%) _
+ 59X 1), 2 T fr

0, ®)

while the wave equation for the massless scalar field

and (x+ ,x-) becomes
1, asr
C.,=da+ —(a%—a)+ —K(2K", +K?,) ax+ (F=2)x-
2r 2 X = ——,
ar fr
—2ra(®>+11%)
=0, f—2dx_ 2x_
ﬂtX_—Ta—r"FTzr—[zr(f—Z)h'f'Z—g—f]
Kp—K'. 4 2
_ 6 L, ~0 *r 7 — 8(x_
Crs, = 0Kyt ——— —@TI=0, 3) . (st)X*—X—*, ®
r r
respectively.

In order to obtain first-order evolution equations, we in-Where we have already used one of the constraint equations
to substitute a spatial derivative bby terms without deriva-
tives.

Clearly the evolution equations for the scalar field are
> 1 symmetric hyperbolic as a subsystem and their characteris-
f=K’ar+1, g= a h= — Ea f+g.a—aK' tics are fixed, they are physical and do not change when the

’ f’ af\27" " )’ evolution equations are changed, and they correspond to the
two null directions. On the other hand, the set of evolution
(®—TD)r equations for the metric coefficients is not unique, since we
= can add to them terms proportional to the constraint equa-
tions and change some of their characteristics at will. To
With this chanae the shift becom f—1)/f and study these possibilities we add to the evolution equations
g = ) for f, g, and h, respectively, the following termsK(
—1)Ci+Ks4Cqy, (Kgi+a/f)Ci+{Kyq—[(f—2)/T]}Cy,
— _ 2402 f fg™g gf f g9 g
ds*=g[(f—2)dt+fdr](dr+dt)+r?dQ®. and{Ky—[(g—2)/2frh]}C{+[Kng+ (1/2r)]C,. We get

Then the full set of evolution and constraint equations fora System with the following principal part matrix:
the metric variablesf,g,h) are

troduce new variablesf(g,h,x. ,x_), which are related to
the former ones as follows:

(@+IDr
X+="% 0 X-T=5

Kit Kig O
Py of g—2+f Kgit Kgg O
=—++
t ar r ' th th 1
3Notice some corrections with respect to the equationsl8j; “Recall that the principal part matrix is that one formed by the

also notice the difference in the choice of gravitational constant. coefficients of the derivative terms appearing in the equations.
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The characteristics of this system are given by the onapace derivatives df and g, but there is no rigorous proof

forms (1, 1, (1\.), and (1\_), where (not even a sound argumerihat space derivatives can be
given as boundary data and still retain well posedidss.
N =[Kg+Kgg* \/(Kff—Kgg)2+4ngKgf]/2. most cases, the resulting conditions are complicated to

implement numericall§.Thus, it seems that the best one can
The first one corresponds to the propagatio ahd it does do retaining simplicity is to choose coefficients so that the
so along the null incoming direction. It is the only fixed characteristics for the paiif,g) are incoming or tangent in
characteristic. The other two can take any values. For inboth boundaries. In this way no boundary condition is
stance, if we take&K;;=Ky=0 then the characteristics are needed for the paiif,g) and therefore no boundary condition
(1K), and (1K4g). Thus, choosing these two values we must be satisfied by the constraint, since the characteristics
can prescribe any propagation direction we please. They cdor the constraints evolution equations would also be outgo-
be incoming, outgoing, timelike, null or even spacelike.ing. Thus, there is no danger that the constraints would cease
Even more, choosinlf¢;=Kgyy=0, K;q=—K,;#0 the char-  to be satisfied during evolution. The simplest case of all is
acteristics become imaginary and so the system is not evemhen both characteristics are tangent to the boundary and
hyperbolic. So we see that the different ways of writing Ein-this is the case, for instance, if we make & vanish. With
stein’s equations are only equivalent in the sense that soluhis choice the evolution system reduces to
tions of one are solutions of the others, but some of the
resulting evolution equations do not even have a well posed 4)(2+
initial value problem. Just for amusement we have tried to af=2(f=2)h+—,
evolve numerically a system as the last dnamely, with
Kig=—Kgi=1) and as expected it is completely unstable,

2 2
giving an explosive enlargement of higher wave number 9,g=2gh— 29x% | 20(f=2)x= 7
modes. To avoid the fact that no good boundary conditions ' fr rf ’
are known for nonsymmetric hyperbolic systems this system
was tested using periodic boundary conditions. The initial oh (9—2)x% 4dy.x- 9x>
data imposed did not satisfy the constraint equations. In any dh= ar 22 T Tz T

case thexplosive typénstability found for ill-posed systems
does not seems to be sensitive to the failure of the constraint
equations to be fulfilled nor to the particular boundary value
chosen, both global properties, since this instability appea
locally, at every point of the evolution hypersurface. 2
We must, therefore, choose coefficients such that the sys- 0,Ci= —5 (rf?h— in)Cf, (8)
tem is hyperbolic. Since the coefficients,;, K,, do not rf
alter the characteristics we shall take them to vanish. This
simplifies a bit the numerical computations. The sign of the
characteristics at the boundary points determines whether or
not values for the different fields must be given or not as
boundary conditions. However, not all these values are free, +(f=2)x21C,. 9
since they must be consistent with constraint propagation. In
order for the constraints to remain enforced along evolution Since the constraints are homogeneous ordinary differen-
we must make sure that the resulting boundary conditions fatial equations, they will remain satisfied along evolution if
the evolution equations obeyed by the constraints havéhey are initially satisfied. No extra condition is needrair
unique solutions, for given initial and boundary data, and itcan be imposed 9grthe boundaries. This is the system we
is the trivial one when the appropriate initial-boundary datashall study in detail from now on. Note that this system not
vanishes. It easily follows from the form of the constraintsonly is a symmetric hyperbolic, but it is also diagonal. In
that the characteristic matrix for the constraints evolutionfact, we reach such a simple system when looking for vari-

Similarly the evolution equations for the constraints are
jsust ordinary differential equations,

29 2
3Cqy= ”—3[fxi—(f—4)xz_]cf+ rf—z[rfzh—f)(?+

equations is ables which would give diagonal systems. In Fig. 1 we show
all characteristics of the chosen system.
( K¢ ng) We have also considered the following equivalent system:
Ket Kgal
g 99 42

So the propagation directions for them coincide with the af=2(f-2)h+

propagation directions of the paff,g). This fact seems to

imply that the freedom in choosing part of the pdjg) at the

boundaries is just the one needed for getting maximally dis- % simple cases one can trade, using the evolution equations,
sipative boundary conditiond4] for the constraint system, those space derivatives by time derivatives. Still, even in those

and so ensuring the correct constraint propagation. Unfortucases, difficulties arise when thés depend on the metric compo-
nately, even for this simple case it seems one needs to iments.

pose boundary conditions involving some combination of ®See, nevertheless the second case considered below.

rf ’
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gauge. To display the remaining freedom we introduce the

null coordinateu=(t+r).” In (ur) coordinates the metric
/ becomes

ds?=g[(f—2)du+2dr]du+r2dQ?2.

For Schwarzschild the choicg=1, f—2=—(1—-2M/r)
gives the standard form of the metric. If we choose some
other coordinat&i=T(u) the functional form remains the
same ifg=g/(dt/du) and {f—2)/g=(f—2)/g.

The invariant ratio {—2)/g is related to the mass func-
tion, indeed,

(f.9)

\ ‘."'horizon (f=2)
X—

f-2
1+ —
g

r
£, 9 m(r,t)= >

Rin Rowt is the usual form of the local mass for spherical symmetric

space-times. Another invariant is the surface whetakes

the value 2, this can be seen to be an apparent horizon.
From the first constraint equati@8), it follows that under

FIG. 1. Integration region with characteristics lines.

2
9= (;_g_ 432)(* , (100  this gauge transformation, in the vacuum case,
r r
Feha 1 du/du
_dh (@-2x% Axax- 90X ~ 2 dfudv
T or f2r2 fore o fr?e

Thus to fix completely the gauge we must uniquely define
In this case the characteristic diagram is similar to the ond"€ coordinateu. This can be done by choosing their values

in Fig. 1 except that now the characteristic fprcoincides ~at the initial time slice and at the outer boundary of the
with the ones oh, andy_ . integration region. We shall do this by choosing the values

The constraint evolution equations are now for h at those points.

1 B. Initial-boundary value problem
Ci+ T Cy,

4 5
HCi= ( 2h- rf2X+ We are interested in performing a time evolution between
two fixed (area) radiae,Ry,, Ry, starting at a given initial

iCqy 29 5 ) 4 surface,t=ty. Thus we have to see what initial-boundary
hCq=— =+ 3l X — (1= 4x"]Cr— 2 X~ Cy. values can be prescribed.
With the standard choice of Eg®) and(7) it is clear that

So the characteristic faZ; is still alongr = const but now we need to give |n|t|_al values for th_e f|eld£,g,h_,)_(_+ X-)-
the one forC, is alongt+r=const. The latter is an incom- Since they must satisfy the constraints not_al_l _|n|t|al data can

9 é)e freely specified. We have taken a set of initial data sets for

ing characteristic at the right boundary and so in order for the™ . . ; X .
constraint to remain enforced we must find boundary condi¥’ hich the constraints are easily solved. We give an arbitrary

tions which seC,=0 at theR,,; boundary. Substituting the initial value for x.. and solve

normal derivative appearing i€4,dg/dr, from the evolu- am

t?on eqyation fqrg we find that the correct boundary condi- W:)”Z’ m|r=Rin:m0'
tion to impose is

2g Then, the following choice is a solution of both constraint
hg=2hg— ez [f x2—(f—2)x?] at Ry,=0. (11) €quations:

X-=0,
Numerical simulations show that with this boundary con- g=1 (12
dition the constraints propagate correctly and so they vanish ’
(within numerical errorsalong the whole evolution. Notice fim142m/r
that sinceg cannot be prescribed arbitrarily the boundary ' (19
value freedom for both systems is the same. ¥ 2
hi=—/r—o.
rf

A. The gauge freedom

The chosen lapse and shift functions depend on the dy-
namical variables and therefore do not fix completely the “We thank M. Tiglio for pointing out to us this way to proceed.
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In our numerical simulations we have takgn to be a  perbolicity of the system—Dby causing some of the propaga-
Gaussian or a power oftimes an exponential decay, so that tion speeds to diverge—and so its well posedness. But much
the mass integration could be done exactly. The integratiobefore that happens one of the characteristic speeds grows so
constant fom, the mass aR;,,, can take any value. In gen- much that the system becomes numerically unstable due to

eral we have taken eitl‘ﬁamlRm:l orm|g_=0. violations of the Courant-Friedrichs-Lewy stability condi-
We now discuss the boundary conditiofsee Fig. L If ~ ton. _ N
the inner boundary is inside the apparent horigahich is For simplicity we analyze. the instability for the vacuum
located aff =2) there is no incoming characteristic at it and ¢ase. In that case the equations are
so0 no boundary condition is needétbr can be prescribed af=2(f—2)h
th— ’

there. Note that in this case this boundary is actually space-
like. In fact, inside the horizon the evolution equations ffor

andg can be considered as constraint equations on the space- %g=2gh, (14
like hypersurfaces of constamt If the inner boundary is

outside the horizon there is one characteristic incoming into oh=—.

the integration region, namely the one fpr , so we have to ar

prescribe some value for it. To allow for an apparent horizon . L
marching across the inner boundary, the numerical code CGiven the initial data for{,g,h) and the boundary data at

checks for the value dfat that boundary and, whenever its the outer boundary foh, we can first solve foih, h(t,r)
value is smaller than 2, a boundary condition far is en- = hb(t+1—Royy) and then for(f,g). We have
forced. We have normally used a null incoming radiation

oo -
condition, (y|r _=0) butitis clear that in that case there is f(t,r)—2=[fo(r)—2]e* oMt~ Rouddt,

no natural boundary condition which can mimic the physical (o~ -

collapse one is trying to simulate. So in general we have g(t,r)=go(r)eX oMt +r=Rouddt,

concentrated in simulations where the inner boundary is in- . -

side the apparent horizon and so it is spacelike. Thus, we see thaj remains always positive, and the ho-

At the outer boundary, and provided the apparent horizoriizon, the radius at whiclf(t,r) =2, remains fixed. But the
is inside the integration region f |(Q0ut<2), there are two €qual time surfaces tilt, and sohftakes big positive values,

incoming characteristics, one correspondingyto the other fgndg g(ow'exponen'tlally gnd we have an analytpal Insta-
to h. We can prescribe arbitrary values for them there, an&nhty, which in numerical simulations would result in a nu-

we have performed several runs prescribing either incomin erical one if no appropriate methods are used. If a scalar

: e _ leld is present, no matter how small, the tilt of the equal
icgl)ar field radiation, {=0), or pure gauge modesy( time surfaces would increase the propagation speed of the
With these initial-boundary value conditions the problem©Utg0ing modesy = (f—2)/f. At points inside the horizon

f‘P_ 2>0 and therefore at those poiritgrows exponentially,

is well posed and so, given smooth data, we obtain a smoot ) . .
solution valid for a finite time interval. and the propagation speedgoes to 1. At points outside the

For the alternative system, E¢LO), the only difference horizqn f0_2.<0 and therefor_e‘ will eventually. become
on the initial-boundary value problem is that one can now€dative. Notice that whefivanishes the equal time hyper-

prescribe the value af at the outer boundary. But that value SUrface becomes nuli and so the time evolution of all outgo-

cannot be given arbitrarily, otherwise the constraints would"9 modes(in this case only the one from the scalar fieisl

Il posed in this gauge.
not propagate correctly. At that boundary one has td ) )
prescribd g as given in Eq(11). On the other hand, ih becomes large but negativé,

—2 and now the hypersurface of constargpproaches null
surfaces. In that case the evolution still can be done, but the
loss of accuracy is very important, even for moderate values
The evolution system is well posed, so there are no instaef h.
bilities of the explosive type, that is, those whose growth rate We need therefore to kedpmoderately small during evo-
increases unboundly with the frequency. Rather, the expectddtion and propagating inwards without any important re-
instabilities must grow at most exponentially in time with an sidual part left over due to the inaccuracies of the numerical
exponent whose positive real part does not grow with themethod. This can be achieved in many cases by just prescrib-
frequency. These instabilities essentially affect the ffeg) ing the initial-boundary conditions foh so that it starts
which controls the characteristics of the system. If they aresmall, in that case, and for the choice of variables we made,
strong, or act for a long enough time they can ruin the hythe residual part stays smafiThere are, nevertheless, situ-
ations for whichh becomes big and the simulation runs into

C. Analytic instabilities

8Because of the scaling properties of the system there is no loss of
generality in choosing only these two values. 10This is not automatic, and indeed for some other choices of
Note that we give the time derivative gfas a boundary condi- variables it happens that the residual part starts to grow in time,
tion; this is very convenient, and all that is needed, at the level ounleashing the instability. Since typically the residual part is of high
the numerical code. frequency, numerical dissipation can also be used to keep it small.
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the instabilities. This is so, for instance, if one takes bound- T : ' ' '
ary data for the incoming component of the scalar field with

a very big amplituddfinal masses of order 10In this case

the h generated along the evolution of the scalar field is

important and the systems become unstable. On the other ¢
hand, for situations describing the final stages of collapse sk
(after most of the scalar field has fallen into the black hole <
and the geometry has settled in a near stationary regimee
instabilities do not show up. We have tested that with evolu-
tions lasting for several thousand masses.

60

FIG. 3. Q factor forL” norms of type-I data.
I1l. NUMERICAL METHODS

To perform the simulations we use a standard fourth-order We have done th_ree types of simulations: T_h_e first type of
method of lines, see for instanf®4]. The space derivatives Simulation has no-incoming boundary conditiofg, =h
discretization is done with standard fourth-ordere have =0 a the outer boundanand an initial data satisfying Eq.
also used second-order discretizations with similar results(12)- One starts with a solution representing an inner black
discretized derivatives which are one sided at the boundarie§0!€ (usually of unit massand a certain amount of in-falling
We have used symmetric, and also nonsymmetric, discretizecalar field. The evolution should resu]t in a _b|gger black
tions. The symmetric onefl4,15 are guaranteed to be hole and_ some amount of the scalar f|eld going outwards.
stable, but are only second- or third-order accurate at the ladf1US: @ ringing and later a power law tail should be observed
points of the grid near the boundary. This accounts, for in/N the outgoing component of the scalar field, .
stance, for spikes at the error on the constraints propagation 1he sécond type of data are vacuum solutions represent-

check, some of these errors sometimes propagate inward39 Puré gauge dynamics. They have Schwarzschild or
but stay bounded and diminish as the grid spacing is delyl’mkowsk| initial data and the dynamics is created by allow-

creased. The nonsymmetric discretizations used were fulld the incoming gaugéhlg = h°(t)] to enter the outer
fourth order(but not uniformly, with bigger error coefficients boundary. The evolution should have some dynamics and
near the boundajyand they give smaller errors on con- later on, if the incoming gauge has a finite duration, should
straints evolution near the boundaries. But there is no guarelax into a static black hole in a different gauge. Throughout
antee that the scheme is stable. Most of the calculationghe simulation the mass should stay constant, as should the
including all the results and tests given in this paper, werdlorizon position.

done with the symmetric ones. Their symmetry implies they The third type of data starts with initial data correspond-
are norm preserving and so they do not have any dissipatioflg to a Schwarzschild black hole of unit mass and later on
Fourth-order centered differences approximations introducée evolution an incoming scalar field mode is injected into
high frequency modes with backwards propagations speedbe system from the outer boundary during a finite amount of
(group velocitieswhich are 5/3 bigger than the exact speedstime [ x +|Rou= Xﬁ(t)]. The evolution should create a big-
These modes, although very small in amplitude, are imporger black hole and some outgoing radiation should be seen.
tant when analyzing the tail behavior of the scalar field, sincéAlso for this case a ringing and later a power law tail should

it also become very small. The higher than light propagatiorbe observed in the outgoing component of the scalar field,
velocity of them implies that boundary effects take placey- .

before they should. These high frequency modes become We shall discuss the results for these three types of simu-
smaller as the grid size is decreased, thus tail decay studidations in the next section.

are still possible if enough grid points are included, but this
should be very costly in higher dimensions. For these studies

) . A. Convergence test
it seems better to use centered difference schemes of second 9

order, since they have a maximum group velocity of one. ~ We have performed convergence tests for the three types
Time discretization is done using the standard fourth-of simulations described above. In general it is difficult to
order Runge-Kutta method. analyze the convergence order in detail due to the fact that

the discrete space derivative we use is not of the same order
near the boundargthird or second order rather than fourth
This gives rise taQ values! different than the corresponding

to fourth order Q=16). Typically after boundary effects

_ become importantthat is, when the fields reach the bound-

T T

HRecall that Q is defined as Q(¢)=[|¢(h)

] — ¢(h12)| 11|l (h/2)— p(hi4)||], wherep(h) is a solution to the
discretized system using a step sizénofVe have used for the norm
both theL? and theL” ones. Error propagation theory indicates that
FIG. 2. Q factor for L? norms of type-I data. Q=2", wheren is the order of the approximation scheme.

044024-7



MIRTA S. IRIONDO AND OSCAR A. REULA

~42p m

fog LAinf Cf

Y S e

-6 . B

0 40 60 80 10

FIG. 4. Logarithm of thd.* norm of C; of type-| data.

ary) we get values over 12, but sometimes they drop to about
4 when the bulk of the solution is near the boundary. In Figs.
2 and 3 we give values for th@ factors obtained using the
L? andL” norms, respectively, for a run with homogeneous
boundary conditions and a Gaussian peak of the in-going
component of the scalar field midway in the integration re-
gion. This run has an initial black hole makk,i;is =1, a
total mass,Mt412=8.90 and a final black hole mass of
MEinai=8.67 so it is well into the nonlinear regime. The
peak observed at the end of the integration period is due to
boundary effects, after that the values of the diffei@istgo

to values above 12, but never return to 16. The peak is prob-
ably due to a larger coefficient in the expansion over the grid
size of the numerical solution. To resolve this we should go
to smaller grid spacings, but then our method of collecting
data(in single precision produces mostly truncation errors
on these test¥ The subsequent drop d@ to values of the
order of 12 is due to the fact that our discrete derivative
operators are not fourth order near the boundary, but just
third order. Thes&) values were obtained using step sizes
corresponding to 800, 1600, and 3200 grid points. For
smaller step sizes fourth-order methods give solution differ-
ences which are mostly rounding errors and soGhdoes

not make sense.

IV. RESULTS
A. Constraints evolution

The constraint equations are not solved for in any step of
our simulations, and although they are satisfied along evolu-
tion for the exact equations here we have to check this hap-
pens at the discrete level. Figures 4—9 showltfieand L?
norm of the constraint expressions along evolution of the
different types of data set used. For type-l data we had
M nitial = 1 M1ota= 1.15,M gina = 1.12. For type-Il data we
introduced at the outer boundary 10 cycles of gauge mode of
frequency 2r, starting att=10. The black hole mass was of
course constant and had the value 1. For the type-Ill data we
introduced at the outer boundary 10 cycles of the mode
with frequency 2r, starting att=10. We hadM ,itia =1,
M+otai= 2.6, MEina1=2.4.

2Calculations are done with double precision, but output data are
stored in single precisioften significant figures so some of the
convergence tests must be done with limited grid point numbers in
order that the subtractions involved remain significant.
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It is clear that the constraint quantities remain bounded FIG. 11. Power law decay of - atr=25.5.
along evolution and that they go to zero as the grid siz&ause we use Runge-Kutta for time evolutidrin Fig. 10
diminishes. Most of the contribution to tHe” norm comes  the logarithm of the absolute value gf atr=25.5 is plot-
from the boundary, where the derivative operator used ised with respect to time. It is a run where the outer boundary
only second or third order. These peaks near the boundaig at R,,=6000, the space grid wasx/M =0.0234. The
can be reduced to the same level as the rest if one usesiritial scalar field is given by a Gaussian. pulse centered
discrete derivative operators which are fourth order at allbt r =10, giving the Initial black hole mashl ;o= 1, the

grid points. total massM 5= 2.56, final black hole masel ;o= 2.45.

If one looks at the ratiosC;/(df/dr), C4/(dg/dr),  Atthe beginning the characteristic ringing is seen and then a
which in some sense measures better the failure of the cofpower law decay of the typ (this can be seen best plotting
straint to be satisfied, one sees that these ratios do not chantj¢ local decay powef d In(x-)/dt] as defined ih7,18], Fig.
very much along evolution. FoE; the change is of only 11). The power law decay computed tis*°* (at t=7200,
about 7%, and is of the order of 18, For C,, sinceg is which agrees quite well with the one expected for linear
chosen initially to be zero, the change at the beginning iPerturbation theory, namely *, see[16,17. In the plot we

rather big, but after a transient it gets to a plateau of the orded!SO Show a lower resolution\x/M =0.0468) computation
of 102, where it is clear that an instability starts to appear and be-

come important at about half the time. This instability dimin-
ishes when the grid resolution is incremented, but still seems
0 be present at longer times. At the resolution used, a feature
departing from the power law decay is seen aftef7200.

We have performed long-time simulations of the order of
1000 crossing times for type-I initial data and the constraint
remain constantafter the initial rise seen on the above pjots

for the whole evolution. In these long runs, with grid spacir}g.l.his corresponds to a higher frequency mode propagating
of th_e_ order of ong-tenth 2“ the mass scale,_?'fhe constrainis, ckwards at 1.66 the speed of light. These high frequency
stabilize to a valugin theL™ norm) of 6.0x10 ~. modes are common on all centered fourth-order methods.
Their amplitude decreases with increased precision. The time
of arrival of that feature implies it originates near the inner
boundary probably due to imperfect in-going boundary con-
ditions. After that feature, we again séeot shown in the
figure) a even bigger feature. This one propagates at the cor-
runsAt/Ax~2, so we just quote the value afx, or rather rect speed_ of the problem, but its presence at.that tim_e im-
Ax/M. whereM is the initial mass. This value okt/Ax plies that it was generated by the one traveling at higher
! . S - speed when it enters the region near the outer boundary.
does not violate the Courant-Friedrichs-Lewy condition be- The possibility of giving boundary conditions which
would automatically satisfy the constraint equations allow us
. to perform several interesting runs. In particular we made a
T couple of runs of type Il with

B. Decay of the scalar field, ringing, and power law decay

We reproduce standard results on ringing and(fzolwer
law decay for the first type of simulation. In most of the

X+|R0ut=A+[l—COS((1)+t)] te[10,20

with A, =1/27, and in one cas@& =2, in the otherw
=2/10. For these two boundary data we have

log [Chi-|

20
J x> dt=15A2.
10

PRI SRR URIE ERSTUU NUI SN ENAN R SRR R
) 1000 2000 3000 4000 5000 6000 7000 8000
Time

For Runge-Kutta the Courant-Friedrichs-Lewy stability condi-
FIG. 10. Decay ofy_ atr=25.5. tion is At/Ax<2.06[14].
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C. Relation between the initial mass and the black hole mass

We have tested the relation between the mass gap given

200 250 * by the total initial mass minus the final black hole mass as a
function of the total initial mass for type-l and type-Il|
initial-boundary data sets. In Figs. 14 and 15 we display the

FIG. 12. Mass of type-lil run and mass difference between rungesy|ts. In both cases we start with a black hole of mass unit,
augmented five times. and put our inner boundary inside its horizon.

For type-lll data, namely data given at the outer boundary,
we cannot construct very big black holes, the problem being
that the scalar field injected the produtéeld and it leads to
dm 1/ , (f-2)% , instabilities.
dt - g (X+ f2 X—) .

] 100

Since the energy flux is given by

V. CONCLUSIONS

and dg/dt=~(2g/fr)x%, df/dt=(4/fr)x2, dy_/dt It is difficult to see whether some of the ideas presented in
~(—=1/r)x. . We see that to a 1% accuracy the flux of boththis work can be extended to the full three-dimensional case,
solutions should coincide and so the black hole massewhere many more variables are present and where there is no
should be similar. Even more, the ringing of both solutionspreferred center in which to anchor a gauge as the one used
should be very similar, for it mostly depends on the geom-here. But the model is so simple that perhaps the observa-
etry. In Fig. 12 we see the mass of one of the simulations antions made in solving it can shed some light into the more
the mass difference between both simulations multiplied bydifficult problem. Among the observations we have the fol-
5. We see that most of the difference is bounded to the regiolowing: (a) If the gauge prescription does not fix the gauge
where the wave of scalar field is moving, leaving behind thecompletely it is expected there would be gauge modes propa-
same geometry. In Fig. 13 we see one of the ringifigs  gating. In this case there was just one gauge freedontieft
value of y_ atr=50) and the difference between the ringing value ofh at the initial surface and at the outer boundary

of both solutions augmented by a factor 10. Again we sed\evertheless there were three equations which acquired a
that most of the difference is at the moment where the twaontrivial propagation. (b) Gauge modes, being nonphysi-
different wave fronts pass the point and then on the preciseal, can have singular behavior, although the four-
location of the maxima of the ringing. dimensional geometry of the solution can be regular. It is
clear in the model studied that the different components of

0.06

004

T

~= Ringing G X10
— Ringing at 7=50

FIG. 13. Values ofy_ atr=50 for a type-Ill run, bellow the
difference between runs augmented 10 times.
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the metric grow exponentially while the solution is still conditions, consisting of obtaining equations which are in-
Schwarzschild. Thus, it seems to be necessary to isolate aridnsic to the boundary for some of the variables, is similar to
keep under control the potentially unstable gauge modes. Ithe one used if19], the only case where well posedness of
our case this was done by choosing variables for which ithe initial-boundary value problem in full general relativity
was clear where the instability was, and so, choosing convehas been asserted(d) Note also that the problem of giving
niently the initial-boundary data we could keep it small for the correct boundary condition for the gauge quantities can-
many cases, although not alwaygc) The choice of gauge not be resolved by just moving the boundary far away. In-
modes can also complicate the boundary value problem. Idadeed, if by doing so we make the unstable gauge of the order
ally some of the fields should acquire values at the boundarg/R, since it is going to propagate a tirfeuntil it disappears

so that the constraints propagate correctly. In the model iinto the inner boundary, the net effect would not depend on
can be seen that if part of the data for the g&dy must be R, but on how far away we fix the boundary.

given at the boundarjaccording to the values chosen for the

coefficients Ky ,K¢q,Kqq,Kg1)] that part must satisfy some ACKNOWLEDGMENTS
evolution equation along the boundary, so actually there is no
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