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Free evolution of self-gravitating, spherically symmetric waves

Mirta S. Iriondo and Oscar A. Reula
FaMAF, Medina Allende y Haya de la Torre, Ciudad Universitaria, 5000 Co´rdoba, Argentina

~Received 30 January 2001; published 28 January 2002!

We perform a numerical free evolution of a self-gravitating, spherically symmetric scalar field satisfying the
wave equation. The evolution equations can be written in a very simple form and are symmetric hyperbolic in
the Eddington-Finkelstein coordinates. The simplicity of the system allows us to display and deal with the
typical gauge instability present in these coordinates. The numerical evolution is performed with a standard
method of lines, fourth order in space and time. The evolution is performed using the standard Runge-Kutta
method while the space discrete derivative is symmetric~nondissipative!. The constraints are preserved, within
numerical errors, by the evolution and we are able to reproduce several known results.
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I. INTRODUCTION

The aim of this work is to studyinstabilities which are
recurrent in many numerical simulations of black hole c
lapse when those evolutions are completely free, that
when only evolution equations are solved for, instead o
mixture of evolution and constraint equations. These ins
bilities are relevant for they preclude the computation of
final phases of the collapse of orbiting black hole system

The nature of these instabilities is not well understo
they do not seem to be of a numerical nature; they also
the well posedness of the initial-boundary value problem
the system of evolution equations. Rather they are suspe
to be a consequence of the exponential growth of cer
gauge quantities whose propagation is poorly understo
Since no system of equations with a manifestly well pos
initial-boundary value formulation has been used so far,
in many casesad hocdiscretization schemes had been us
the understanding of the nature of the instabilities has
been possible.1

Thus, to make a reliable study of these instabilities it
necessary to find a version of Einstein’s equations wh
admits a well posed initial-boundary value formulation a
to use a standard, well understood discretization scheme
achieve this we decided to study the simple problem of
collapse of a spherically symmetric self-gravitating sca
field. Of course this is an oversimplified problem and the
fore many of the findings and remedies for it might not adm
generalizations to the full 3D case. Nevertheless, there
instabilities present in this simple problem and, furthermo
there are strong indications@1,2,3# that the instabilities are
predominantly due to a longitudinal or Newtonian mod
namely the only one present in the spherically symme
case.

In the past decade, due to the results of several nume
experiments, there has been a considerable understandi
the phenomena of the collapse of a spherically symme
self-gravitating scalar field. In particular, universal scali

1Note that the conformal systems are well posed~no boundary is
present and the systems are symmetric hyperbolic! and there no
instability seems to be present.
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properties of the final mass of the black hole were discove
and then explained. For a review and references see@4#.

There are few cases in which free evolution has be
successful. Some of these approaches@5–8# use light cone
coordinates and in fact some of the equations being solve
these cases could be considered as constraints.2 Others use
conformal space-time methods@11,12# where no instability
seems to be present. Finally, in@9,10# a symmetric hyper-
bolic formulation is used, and certain freedom, still availab
in that setting, is used to suppress the main instability fou
there, reaching in that way a stable propagation. Unfo
nately the discretization scheme has first-order numer
dissipation and the boundary-value problem for the system
not known to be well posed. Our work can be considered
a continuation to this approach where boundary conditi
are now well posed and the equation system is much simp

We use Eddington-Finkelstein coordinates in order
have smooth field components at the horizon. These coo
nates, or suitable generalizations of them, are widely used
studying numerical collapse. In these coordinates we are
to choose equations and variables so that the final syste
equations is remarkably simple and manifestly symme
hyperbolic, in fact diagonal. Such simplicity is useful
study the nature of the instability and ways to avoid it.

To study instabilities in a reasonable way it is necessar
work with a well posed evolution system, that is, a syst
which is hyperbolic and for which one can impose corre
i.e., stable in the analytic sense, boundary conditions. As
well known, there is a considerable freedom in choosing
set of evolution Einstein’s equations, for it is always possi
to add to any given set of equations new terms proportio
to the constraints. In Sec. II we introduce the equations
discuss which evolution systems, among all possible equ
lent ones, are suitable for free evolution. It turns out that,
adding terms proportional to the constraints, two out of
five characteristics of the system can be specified at w
These characteristics can even become complex, signa
the failure of the evolution equations to be hyperbolic, and
to have a well posed initial value formulation.

In the free evolution proposed one has to make sure

2Note that in@8# the gauge breaks at about 50 M.
©2002 The American Physical Society24-1
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MIRTA S. IRIONDO AND OSCAR A. REULA PHYSICAL REVIEW D65 044024
the remaining Einstein’s equations, namely the constr
equations, continue to hold along evolution if they hold in
tially. To ensure this one has to study the evolution syst
that the constraints satisfy whenever the free evolution eq
tions are satisfied. It is well known that in evolutions whi
cover only the domain of dependence of an initial Cauc
surface it suffices to impose the constraint equations on
initial surface. Uniqueness of the constraints evolution eq
tions then guarantees the constraints remain satisfied
cases where the integration domain exceeds that doma
dependence, and boundary conditions are therefore impo
constraints preservation is a much more delicate business
its preservation depends on the boundary conditions
posed.

The change on the characteristics of the evolution sys
alluded to above implies an identical change on the cha
teristics of the evolution equations satisfied by the c
straints equations. Thus, it is possible to understand tha
change in boundary conditions induced by the change on
direction of the characteristics is just the one needed to
sure the correct preservation of the constraints equations
der evolution. Among all possible evolution systems we ta
a specific one which is both the simplest for dealing w
constraints preservation and for discretization purposes.
also consider other interesting systems where the point ab
is well illustrated.

In Sec. II A we look at the residual gauge freedom of t
Eddington-Finkelstein coordinates. That freedom is the o
dynamics which is present in the vacuum case, and is
mode that can generate instabilities.

After that, in Sec. II B we discuss the initial-bounda
value problem for the specific evolution system chosen
determine which fields must be given in order to have
unique evolution; in particular, we discuss a case in wh
the characteristics change at the inner boundary accordin
whether that boundary is inside or outside the horizon.

We then discuss the instabilities of the system. Due to
simplicity of the evolution system chosen this task is triv
and we can display explicitly the main instability. We ca
decide in which cases there will be problems and of w
sort. In particular near the stationary regime, that is, wh
most of the scalar field has dissipated away or fallen into
black hole, the system can be made stable using sim
initial-boundary values for the gauge fields.

Having completed the analytic study of the equations
Sec. III we discuss the numerical methods employed. We
standard discretization methods since their numerical sta
ity and convergence are well understood, and because
believe that to simulate a well posed, and stable syst
which is well understood analytically, no fancier numeric
methods are needed. We use a method of lines with a fou
order symmetric discretization for space derivatives an
fourth-order Runge-Kutta for time integration.

Three types of initial-boundary data are considered. T
first type is normal initial data with homogeneous bound
data, the type of data normally used for collapse studies.
second type of data is pure gauge boundary data, the sp
time is just Schwarzschild in nonstandard gauge. Finally
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third type of data is pure incoming scalar field bounda
data.

We perform the standard convergence tests for all type
data. They confirm the order of the discretization: as long
the bulk of the field amplitudes are away from the boun
aries the method is fourth order. When amplitudes are imp
tant at the boundaries the order is lower since the space
rivatives is not fourth order there, but just third order.

We check constraint preservation under evolution for s
eral types of initial-boundary data sets. The constraint qu
tities are very small at the initial time, but then grow a b
and stay bounded along the whole evolution. As expec
the growth of the constraint quantities diminishes as the s
sizes diminish.

Finally, in Sec. IV we comment on several results o
tained by the simulations; they do not pretend to be novel
interesting, but are done just to confirm the good proper
of the evolution system chosen and to confirm our expe
tions mentioned above about the success of a standard
merical method. These results include ringing and tail stud
for the scalar field, the relation mass vs flux for bounda
data, and the relation total mass vs the black hole mass
different types of collapse.

II. THE EQUATIONS

The most general spherically symmetric metric is

ds25~2a21a2b2!dt212a2bdtdr1a2dr21r 2b2dV2,

with a, b, a, andb being functions ofr and t, anddV2 the
metric of the unit sphere. We partially fix the gauge freedo
by requiring these coordinates to be of the type Eddingt
Finkelstein @13#. Namely, we require~a! the areal locking
condition (ḃ50), and ~b! the condition that the vector] t
2] r be null. Both conditions are achieved by choosing t
lapse and the shift as

b5
raKu

u

11raKu
u

, a5
a

11raKu
u

,

whereKu
u is the corresponding coordinate component of

extrinsic curvature of the constant time hypersurfaces. Mo
over, rescaling the coordinater at some initial surface we ca
setb51. Thus, the metric becomes

ds25a2@~2b21!dt1dr#~dt1dr !1r 2dV2.

In this spherically symmetric space-time we conside
massless scalar fieldf, satisfying the wave equation. In th
311 decomposition this equation becomes the first-order~in
time! system

] tF5] r@bF1~12b!P#,

] tP5
1

r 2 ] r$r
2@bP1~12b!F#%, ~1!

whereP5(a/a)(] tf2b] rf) andF5] rf.
4-2
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FREE EVOLUTION OF SELF-GRAVITATING . . . PHYSICAL REVIEW D65 044024
The full set of evolutions and constraint equations for
geometric variables (a,Ku

u ,Kr
r) are3

] ta5] r~ab!2a2~12b!Kr
r ,

] tK
u

u5b] rK
u

u1
] rb

ar
1a~12b!Ku

u~Kr
r12Ku

u!

1
12b

r 2 S a2
1

aD ,

] tK
r
r5b] rK

r
r1

] r
2b

a
1

b21

a F] r
2a

a
2S ] ra

a D 2

2
2] ra

ra G
1

] rb] ra

a2 1a~12b!Kr
r~Kr

r12Ku
u!

1
8

a
F2~b21!, ~2!

and

Ca5] ra1
1

2r
~a32a!1

a3r

2
Ku

u~2Kr
r1Ku

u!

22ra~F21P2!

50,

CKu
u
5] rK

u
u1

Ku
u2Kr

r

r
2

4

a
FP50, ~3!

respectively.
In order to obtain first-order evolution equations, we

troduce new variables (f ,g,h,x1 ,x2), which are related to
the former ones as follows:

f 5Ku
u ar11, g5

a2

f
, h5

1

a f S a

2
] r f 1] ra2a2Kr

r D ,

x15
~F1P!r

2
, x25

~F2P!r

2
.

With this change the shift becomesb5( f 21)/ f and

ds25g@~ f 22!dt1 f dr#~dr1dt!1r 2dV2.

Then the full set of evolution and constraint equations
the metric variables~f,g,h! are

] t f 5
] f

]r
1

g221 f

r
,

3Notice some corrections with respect to the equations in@13#;
also notice the difference in the choice of gravitational constan
04402
e

-

r

] tg52
g

f

] f

]r
1

f 22

f

]g

]r
12gh2

g~g221 f !

r f
,

~4!

] th5
]h

]r
2

1

2 f r

] f

]r
1

g22

2 f hr

]g

]r
2

~g2 f !h

f r

2
~g221 f !

2 f r 2 12S x11x2

f r D 2

,

and

Cf5
] f

]r
22~ f 22!h1

f 1g22

r
24

x1
2

f r
50,

Cg5
]g

]r
2

2g~r f h2x1
2 1x2

2 !

f r
50, ~5!

while the wave equation for the massless scalar fi
(x1 ,x2) becomes

] tx15
]x1

]r
2

~ f 22!x2

f r
,

] tx25
f 22

f

]x2

]r
1

2x2

f 2r
@2r ~ f 22!h122g2 f #

1
8~x2!x1

2

f 3r
2

x1

r
, ~6!

where we have already used one of the constraint equat
to substitute a spatial derivative off by terms without deriva-
tives.

Clearly the evolution equations for the scalar field a
symmetric hyperbolic as a subsystem and their characte
tics are fixed, they are physical and do not change when
evolution equations are changed, and they correspond to
two null directions. On the other hand, the set of evoluti
equations for the metric coefficients is not unique, since
can add to them terms proportional to the constraint eq
tions and change some of their characteristics at will.
study these possibilities we add to the evolution equati
for f, g, and h, respectively, the following terms (K f f
21)Cf1K f gCg , (Kg f1g/ f )Cf1$Kgg2@( f 22)/ f #%Cg ,
and $Kh f2@(g22)/2 f rh#%Cf1@Khg1(1/2 f r )#Cg . We get
a system with the following principal part matrix:4

S K f f K f g 0

Kg f Kgg 0

Kh f Khg 1
D .

4Recall that the principal part matrix is that one formed by t
coefficients of the derivative terms appearing in the equations.
4-3
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MIRTA S. IRIONDO AND OSCAR A. REULA PHYSICAL REVIEW D65 044024
The characteristics of this system are given by the
forms ~1, 1!, (1,l1), and (1,l2), where

l65@K f f1Kgg6A~K f f2Kgg!
214K f gKg f#/2.

The first one corresponds to the propagation ofh and it does
so along the null incoming direction. It is the only fixe
characteristic. The other two can take any values. For
stance, if we takeK f g5K f g50 then the characteristics ar
(1,K f f), and (1,Kgg). Thus, choosing these two values w
can prescribe any propagation direction we please. They
be incoming, outgoing, timelike, null or even spacelik
Even more, choosingK f f5Kgg50, K f g52Kg fÞ0 the char-
acteristics become imaginary and so the system is not e
hyperbolic. So we see that the different ways of writing E
stein’s equations are only equivalent in the sense that s
tions of one are solutions of the others, but some of
resulting evolution equations do not even have a well po
initial value problem. Just for amusement we have tried
evolve numerically a system as the last one~namely, with
K f g52Kg f51! and as expected it is completely unstab
giving an explosive enlargement of higher wave num
modes. To avoid the fact that no good boundary conditi
are known for nonsymmetric hyperbolic systems this sys
was tested using periodic boundary conditions. The ini
data imposed did not satisfy the constraint equations. In
case theexplosive typeinstability found for ill-posed system
does not seems to be sensitive to the failure of the const
equations to be fulfilled nor to the particular boundary valu
chosen, both global properties, since this instability appe
locally, at every point of the evolution hypersurface.

We must, therefore, choose coefficients such that the
tem is hyperbolic. Since the coefficientsKh f , Khg do not
alter the characteristics we shall take them to vanish. T
simplifies a bit the numerical computations. The sign of
characteristics at the boundary points determines whethe
not values for the different fields must be given or not
boundary conditions. However, not all these values are f
since they must be consistent with constraint propagation
order for the constraints to remain enforced along evolut
we must make sure that the resulting boundary conditions
the evolution equations obeyed by the constraints h
unique solutions, for given initial and boundary data, and
is the trivial one when the appropriate initial-boundary d
vanishes. It easily follows from the form of the constrain
that the characteristic matrix for the constraints evolut
equations is

S K f f K f g

Kg f Kgg
D .

So the propagation directions for them coincide with t
propagation directions of the pair~f,g!. This fact seems to
imply that the freedom in choosing part of the pair~f,g! at the
boundaries is just the one needed for getting maximally
sipative boundary conditions@14# for the constraint system
and so ensuring the correct constraint propagation. Unfo
nately, even for this simple case it seems one needs to
pose boundary conditions involving some combination
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space derivatives off and g, but there is no rigorous proo
~not even a sound argument! that space derivatives can b
given as boundary data and still retain well posedness.5 In
most cases, the resulting conditions are complicated
implement numerically.6 Thus, it seems that the best one c
do retaining simplicity is to choose coefficients so that t
characteristics for the pair~f,g! are incoming or tangent in
both boundaries. In this way no boundary condition
needed for the pair~f,g! and therefore no boundary conditio
must be satisfied by the constraint, since the characteris
for the constraints evolution equations would also be out
ing. Thus, there is no danger that the constraints would ce
to be satisfied during evolution. The simplest case of al
when both characteristics are tangent to the boundary
this is the case, for instance, if we make allK’s vanish. With
this choice the evolution system reduces to

] t f 52~ f 22!h1
4x1

2

r f
,

] tg52gh2
2gx1

2

f r
1

2g~ f 22!x2
2

r f 2 , ~7!

] th5
]h

]r
2

~g22!x1
2

f 2r 2 1
4x1x2

f 2r 2 1
gx2

2

f 2r 2 .

Similarly the evolution equations for the constraints a
just ordinary differential equations,

] tCf5
2

r f 2 ~r f 2h22x1
2 !Cf , ~8!

] tCg5
2g

r f 3 @ f x1
2 2~ f 24!x2

2 #Cf1
2

r f 2 @r f 2h2 f x1
2

1~ f 22!x2
2 #Cg . ~9!

Since the constraints are homogeneous ordinary diffe
tial equations, they will remain satisfied along evolution
they are initially satisfied. No extra condition is need at~nor
can be imposed on! the boundaries. This is the system w
shall study in detail from now on. Note that this system n
only is a symmetric hyperbolic, but it is also diagonal.
fact, we reach such a simple system when looking for va
ables which would give diagonal systems. In Fig. 1 we sh
all characteristics of the chosen system.

We have also considered the following equivalent syste

] t f 52~ f 22!h1
4x1

2

r f
,

5In simple cases one can trade, using the evolution equati
those space derivatives by time derivatives. Still, even in th
cases, difficulties arise when theK’s depend on the metric compo
nents.

6See, nevertheless the second case considered below.
4-4
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FREE EVOLUTION OF SELF-GRAVITATING . . . PHYSICAL REVIEW D65 044024
] tg5
]g

]r
2

4gx2
2

f 2r
, ~10!

] th5
]h

]r
2

~g22!x1
2

f 2r 2 1
4x1x2

f 2r 2 1
gx2

2

f 2r 2 .

In this case the characteristic diagram is similar to the
in Fig. 1 except that now the characteristic forg coincides
with the ones ofh, andx2 .

The constraint evolution equations are now

] tCf5S 2h2
4

r f 2 x1
2 DCf1

1

r
Cg ,

] tCg5
]Cg

]r
1

2g

r f 3 @ f x1
2 2~ f 24!x2

2 #Cf2
4

f 2r
x2

2 Cg .

So the characteristic forCf is still alongr 5const but now
the one forCg is alongt1r 5const. The latter is an incom
ing characteristic at the right boundary and so in order for
constraint to remain enforced we must find boundary con
tions which setCg50 at theRout boundary. Substituting the
normal derivative appearing inCg ,]g/]r , from the evolu-
tion equation forg we find that the correct boundary cond
tion to impose is

] tg52hg2
2g

f 2r
@ f x1

2 2~ f 22!x2
2 # at Rout50. ~11!

Numerical simulations show that with this boundary co
dition the constraints propagate correctly and so they va
~within numerical errors! along the whole evolution. Notice
that sinceg cannot be prescribed arbitrarily the bounda
value freedom for both systems is the same.

A. The gauge freedom

The chosen lapse and shift functions depend on the
namical variables and therefore do not fix completely

FIG. 1. Integration region with characteristics lines.
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gauge. To display the remaining freedom we introduce
null coordinateu5(t1r ).7 In ~u,r! coordinates the metric
becomes

ds25g@~ f 22!du12dr#du1r 2dV2.

For Schwarzschild the choiceg51, f 2252(122M /r )
gives the standard form of the metric. If we choose so
other coordinateũ5ũ(u) the functional form remains the
same ifg̃5g/(dũ/du) and (f̃ 22)/g5( f 22)/g.

The invariant ratio (f 22)/g is related to the mass func
tion, indeed,

m~r ,t !5
r

2 S 11
f 22

g D
is the usual form of the local mass for spherical symme
space-times. Another invariant is the surface wheref takes
the value 2, this can be seen to be an apparent horizon.

From the first constraint equation~5!, it follows that under
this gauge transformation, in the vacuum case,

h̃5h1
1

2

dū/du

d2ū/du2 .

Thus to fix completely the gauge we must uniquely defi
the coordinateu. This can be done by choosing their valu
at the initial time slice and at the outer boundary of t
integration region. We shall do this by choosing the valu
for h at those points.

B. Initial-boundary value problem

We are interested in performing a time evolution betwe
two fixed ~areal! radiae,Rin , Rout, starting at a given initial
surface,t5t0 . Thus we have to see what initial-bounda
values can be prescribed.

With the standard choice of Eqs.~6! and~7! it is clear that
we need to give initial values for the fields (f ,g,h,x1 ,x2).
Since they must satisfy the constraints not all initial data c
be freely specified. We have taken a set of initial data sets
which the constraints are easily solved. We give an arbitr
initial value for x1 and solve

]m

]r
5x1

2, mur 5Rin
5m0 .

Then, the following choice is a solution of both constra
equations:

x2ª0,
~12!

gª1,

fª112m/r ,
~13!

hª
x1

2

r f
.

7We thank M. Tiglio for pointing out to us this way to proceed
4-5
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In our numerical simulations we have takenx1 to be a
Gaussian or a power ofr times an exponential decay, so th
the mass integration could be done exactly. The integra
constant form, the mass atRin , can take any value. In gen
eral we have taken either8 muRin

51 or muRin
50.

We now discuss the boundary conditions~see Fig. 1!. If
the inner boundary is inside the apparent horizon~which is
located atf 52! there is no incoming characteristic at it an
so no boundary condition is needed~nor can be prescribed!
there. Note that in this case this boundary is actually spa
like. In fact, inside the horizon the evolution equations fof
andg can be considered as constraint equations on the sp
like hypersurfaces of constantt. If the inner boundary is
outside the horizon there is one characteristic incoming
the integration region, namely the one forx2 , so we have to
prescribe some value for it. To allow for an apparent horiz
marching across the inner boundary, the numerical c
checks for the value off at that boundary and, whenever i
value is smaller than 2, a boundary condition forx2 is en-
forced. We have normally used a null incoming radiati
condition, (x2uRin

50) but it is clear that in that case there
no natural boundary condition which can mimic the physi
collapse one is trying to simulate. So in general we ha
concentrated in simulations where the inner boundary is
side the apparent horizon and so it is spacelike.

At the outer boundary, and provided the apparent hori
is inside the integration region, (f uRout

,2), there are two

incoming characteristics, one corresponding tox1 the other
to h. We can prescribe arbitrary values for them there, a
we have performed several runs prescribing either incom
scalar field radiation, (h50), or pure gauge modes (x1

50).
With these initial-boundary value conditions the proble

is well posed and so, given smooth data, we obtain a sm
solution valid for a finite time interval.

For the alternative system, Eq.~10!, the only difference
on the initial-boundary value problem is that one can n
prescribe the value ofg at the outer boundary. But that valu
cannot be given arbitrarily, otherwise the constraints wo
not propagate correctly. At that boundary one has
prescribe9 g as given in Eq.~11!.

C. Analytic instabilities

The evolution system is well posed, so there are no in
bilities of the explosive type, that is, those whose growth r
increases unboundly with the frequency. Rather, the expe
instabilities must grow at most exponentially in time with
exponent whose positive real part does not grow with
frequency. These instabilities essentially affect the pair~f,g!
which controls the characteristics of the system. If they
strong, or act for a long enough time they can ruin the

8Because of the scaling properties of the system there is no lo
generality in choosing only these two values.

9Note that we give the time derivative ofg as a boundary condi
tion; this is very convenient, and all that is needed, at the leve
the numerical code.
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perbolicity of the system—by causing some of the propa
tion speeds to diverge—and so its well posedness. But m
before that happens one of the characteristic speeds grow
much that the system becomes numerically unstable du
violations of the Courant-Friedrichs-Lewy stability cond
tion.

For simplicity we analyze the instability for the vacuu
case. In that case the equations are

] t f 52~ f 22!h,

] tg52gh, ~14!

] th5
]h

]r
.

Given the initial data for (f ,g,h) and the boundary data a
the outer boundary forh, we can first solve forh, h(t,r )
5hb(t1r 2Rout) and then for~f,g!. We have

f ~ t,r !225@ f 0~r !22#e2*0
t hb~ t̃ 1r 2Rout!d t̃,

g~ t,r !5g0~r !e2*0
t hb~ t̃ 1r 2Rout!d t̃.

Thus, we see thatg remains always positive, and the ho
rizon, the radius at whichf (t,r )52, remains fixed. But the
equal time surfaces tilt, and so ifh takes big positive values
f andg grow exponentially and we have an analytical ins
bility, which in numerical simulations would result in a nu
merical one if no appropriate methods are used. If a sc
field is present, no matter how small, the tilt of the equ
time surfaces would increase the propagation speed of
outgoing modes,v5( f 22)/ f . At points inside the horizon
f 022.0 and therefore at those pointsf grows exponentially,
and the propagation speedv goes to 1. At points outside th
horizon f 022,0 and thereforef will eventually become
negative. Notice that whenf vanishes the equal time hype
surface becomes null and so the time evolution of all out
ing modes~in this case only the one from the scalar field! is
ill posed in this gauge.

On the other hand, ifh becomes large but negative,f
→2 and now the hypersurface of constantr approaches null
surfaces. In that case the evolution still can be done, but
loss of accuracy is very important, even for moderate val
of h.

We need therefore to keeph moderately small during evo
lution and propagating inwards without any important r
sidual part left over due to the inaccuracies of the numer
method. This can be achieved in many cases by just pres
ing the initial-boundary conditions forh so that it starts
small, in that case, and for the choice of variables we ma
the residual part stays small.10 There are, nevertheless, situ
ations for whichh becomes big and the simulation runs in

of

f

10This is not automatic, and indeed for some other choices
variables it happens that the residual part starts to grow in ti
unleashing the instability. Since typically the residual part is of h
frequency, numerical dissipation can also be used to keep it sm
4-6
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the instabilities. This is so, for instance, if one takes bou
ary data for the incoming component of the scalar field w
a very big amplitude~final masses of order 10!. In this case
the h generated along the evolution of the scalar field
important and the systems become unstable. On the o
hand, for situations describing the final stages of colla
~after most of the scalar field has fallen into the black h
and the geometry has settled in a near stationary regime! the
instabilities do not show up. We have tested that with evo
tions lasting for several thousand masses.

III. NUMERICAL METHODS

To perform the simulations we use a standard fourth-or
method of lines, see for instance@14#. The space derivative
discretization is done with standard fourth-order~we have
also used second-order discretizations with similar resu!
discretized derivatives which are one sided at the bounda
We have used symmetric, and also nonsymmetric, discre
tions. The symmetric ones@14,15# are guaranteed to b
stable, but are only second- or third-order accurate at the
points of the grid near the boundary. This accounts, for
stance, for spikes at the error on the constraints propaga
check, some of these errors sometimes propagate inw
but stay bounded and diminish as the grid spacing is
creased. The nonsymmetric discretizations used were
fourth order~but not uniformly, with bigger error coefficient
near the boundary! and they give smaller errors on con
straints evolution near the boundaries. But there is no g
antee that the scheme is stable. Most of the calculati
including all the results and tests given in this paper, w
done with the symmetric ones. Their symmetry implies th
are norm preserving and so they do not have any dissipa
Fourth-order centered differences approximations introd
high frequency modes with backwards propagations spe
~group velocities! which are 5/3 bigger than the exact spee
These modes, although very small in amplitude, are imp
tant when analyzing the tail behavior of the scalar field, sin
it also become very small. The higher than light propagat
velocity of them implies that boundary effects take pla
before they should. These high frequency modes bec
smaller as the grid size is decreased, thus tail decay stu
are still possible if enough grid points are included, but t
should be very costly in higher dimensions. For these stu
it seems better to use centered difference schemes of se
order, since they have a maximum group velocity of one

Time discretization is done using the standard four
order Runge-Kutta method.

FIG. 2. Q factor for L2 norms of type-I data.
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We have done three types of simulations: The first type
simulation has no-incoming boundary conditions~x15h
50 at the outer boundary! and an initial data satisfying Eq
~12!. One starts with a solution representing an inner bla
hole ~usually of unit mass! and a certain amount of in-falling
scalar field. The evolution should result in a bigger bla
hole and some amount of the scalar field going outwar
Thus, a ringing and later a power law tail should be obser
in the outgoing component of the scalar field,x2 .

The second type of data are vacuum solutions repres
ing pure gauge dynamics. They have Schwarzschild
Minkowski initial data and the dynamics is created by allo
ing the incoming gauge@huRout

5hb(t)# to enter the outer
boundary. The evolution should have some dynamics
later on, if the incoming gauge has a finite duration, sho
relax into a static black hole in a different gauge. Through
the simulation the mass should stay constant, as should
horizon position.

The third type of data starts with initial data correspon
ing to a Schwarzschild black hole of unit mass and later
the evolution an incoming scalar field mode is injected in
the system from the outer boundary during a finite amoun
time @x1uRout5x1

b (t)#. The evolution should create a big
ger black hole and some outgoing radiation should be se
Also for this case a ringing and later a power law tail shou
be observed in the outgoing component of the scalar fi
x2 .

We shall discuss the results for these three types of si
lations in the next section.

A. Convergence test

We have performed convergence tests for the three ty
of simulations described above. In general it is difficult
analyze the convergence order in detail due to the fact
the discrete space derivative we use is not of the same o
near the boundary~third or second order rather than fourth!.
This gives rise toQ values11 different than the correspondin
to fourth order (Q516). Typically after boundary effects
become important~that is, when the fields reach the boun

11Recall that Q is defined as Q(f)5@ if(h)
2f(h/2)i #/@ if(h/2)2f(h/4)i #, wheref(h) is a solution to the
discretized system using a step size ofh. We have used for the norm
both theL2 and theL` ones. Error propagation theory indicates th
Q52n, wheren is the order of the approximation scheme.

FIG. 3. Q factor for L` norms of type-I data.
4-7
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ary! we get values over 12, but sometimes they drop to ab
4 when the bulk of the solution is near the boundary. In Fi
2 and 3 we give values for theQ factors obtained using th
L2 andL` norms, respectively, for a run with homogeneo
boundary conditions and a Gaussian peak of the in-go
component of the scalar field midway in the integration
gion. This run has an initial black hole massMInitial 51, a
total mass,MTotal58.90 and a final black hole mass o
MFinal58.67 so it is well into the nonlinear regime. Th
peak observed at the end of the integration period is du
boundary effects, after that the values of the differentQ’s go
to values above 12, but never return to 16. The peak is p
ably due to a larger coefficient in the expansion over the g
size of the numerical solution. To resolve this we should
to smaller grid spacings, but then our method of collect
data ~in single precision! produces mostly truncation error
on these tests.12 The subsequent drop onQ to values of the
order of 12 is due to the fact that our discrete derivat
operators are not fourth order near the boundary, but
third order. TheseQ values were obtained using step siz
corresponding to 800, 1600, and 3200 grid points. F
smaller step sizes fourth-order methods give solution dif
ences which are mostly rounding errors and so theQ does
not make sense.

IV. RESULTS

A. Constraints evolution

The constraint equations are not solved for in any step
our simulations, and although they are satisfied along ev
tion for the exact equations here we have to check this h
pens at the discrete level. Figures 4–9 show theL` andL2

norm of the constraint expressions along evolution of
different types of data set used. For type-I data we h
MInitial 51, MTotal51.15,MFinal51.12. For type-II data we
introduced at the outer boundary 10 cycles of gauge mod
frequency 2p, starting att510. The black hole mass was o
course constant and had the value 1. For the type-III data
introduced at the outer boundary 10 cycles of thex1 mode
with frequency 2p, starting att510. We hadMInitial 51,
MTotal52.6, MFinal52.4.

12Calculations are done with double precision, but output data
stored in single precision~ten significant figures!, so some of the
convergence tests must be done with limited grid point number
order that the subtractions involved remain significant.

FIG. 4. Logarithm of theL` norm of Cf of type-I data.
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FIG. 5. Logarithm of theL` norm of Cg of type-I data.

FIG. 6. Logarithm of theL` norm of Cf of type-II data.

FIG. 7. Logarithm of theL` norm of Cg of type-II data.

FIG. 8. Logarithm of theL` norm of Cf of type-III data.
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It is clear that the constraint quantities remain bound
along evolution and that they go to zero as the grid s
diminishes. Most of the contribution to theL` norm comes
from the boundary, where the derivative operator used
only second or third order. These peaks near the boun
can be reduced to the same level as the rest if one us
discrete derivative operators which are fourth order at
grid points.

If one looks at the ratiosCf /(d f /dr), Cg /(dg/dr),
which in some sense measures better the failure of the
straint to be satisfied, one sees that these ratios do not ch
very much along evolution. ForCf the change is of only
about 7%, and is of the order of 1024. For Cg , sinceg is
chosen initially to be zero, the change at the beginning
rather big, but after a transient it gets to a plateau of the o
of 1024.

We have performed long-time simulations of the order
1000 crossing times for type-I initial data and the constra
remain constant~after the initial rise seen on the above plo!
for the whole evolution. In these long runs, with grid spaci
of the order of one-tenth of the mass scale, the constra
stabilize to a value~in the L` norm! of 6.031023.

B. Decay of the scalar field, ringing, and power law decay

We reproduce standard results on ringing and tail~power
law decay! for the first type of simulation. In most of th
runsDt/Dx'2, so we just quote the value ofDx, or rather
Dx/M , whereM is the initial mass. This value ofDt/Dx
does not violate the Courant-Friedrichs-Lewy condition b

FIG. 9. Logarithm of theL` norm of Cg of type-III data.

FIG. 10. Decay ofx2 at r 525.5.
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cause we use Runge-Kutta for time evolution.13 In Fig. 10
the logarithm of the absolute value ofx2 at r 525.5 is plot-
ted with respect to time. It is a run where the outer bound
is at Router56000, the space grid wasdx/M50.0234. The
initial scalar field is given by a Gaussianx1 pulse centered
at r 510, giving the Initial black hole massM Initial51, the
total massMTotal52.56, final black hole massMFinal52.45.
At the beginning the characteristic ringing is seen and the
power law decay of the typeta ~this can be seen best plottin
the local decay powert@d ln(x2)/dt# as defined in@7,18#, Fig.
11!. The power law decay computed ist24.01 ~at t57200!,
which agrees quite well with the one expected for line
perturbation theory, namelyt24, see@16,17#. In the plot we
also show a lower resolution (Dx/M50.0468) computation
where it is clear that an instability starts to appear and
come important at about half the time. This instability dimi
ishes when the grid resolution is incremented, but still see
to be present at longer times. At the resolution used, a fea
departing from the power law decay is seen aftert57200.
This corresponds to a higher frequency mode propaga
backwards at 1.66 the speed of light. These high freque
modes are common on all centered fourth-order metho
Their amplitude decreases with increased precision. The t
of arrival of that feature implies it originates near the inn
boundary probably due to imperfect in-going boundary co
ditions. After that feature, we again see~not shown in the
figure! a even bigger feature. This one propagates at the
rect speed of the problem, but its presence at that time
plies that it was generated by the one traveling at hig
speed when it enters the region near the outer boundary

The possibility of giving boundary conditions whic
would automatically satisfy the constraint equations allow
to perform several interesting runs. In particular we mad
couple of runs of type III with

x1uRout5A1@12cos~v1t !# tP@10,20#

with A151/2p, and in one casev52p, in the otherv
52p/10. For these two boundary data we have

E
10

20

x1
2 dt515A1

2 .

13For Runge-Kutta the Courant-Friedrichs-Lewy stability con
tion is Dt/Dx,2.06 @14#.

FIG. 11. Power law decay ofx2 at r 525.5.
4-9
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Since the energy flux is given by

dm

dt
5

1

g S x1
2 2

~ f 22!2

f 2 x2
2 D .

and dg/dt'(2g/ f r )x1
2 , d f /dt'(4/f r )x1

2 , dx2 /dt
'(21/r )x1 . We see that to a 1% accuracy the flux of bo
solutions should coincide and so the black hole mas
should be similar. Even more, the ringing of both solutio
should be very similar, for it mostly depends on the geo
etry. In Fig. 12 we see the mass of one of the simulations
the mass difference between both simulations multiplied
5. We see that most of the difference is bounded to the reg
where the wave of scalar field is moving, leaving behind
same geometry. In Fig. 13 we see one of the ringings~the
value ofx2 at r 550! and the difference between the ringin
of both solutions augmented by a factor 10. Again we
that most of the difference is at the moment where the
different wave fronts pass the point and then on the pre
location of the maxima of the ringing.

FIG. 12. Mass of type-III run and mass difference between r
augmented five times.

FIG. 13. Values ofx2 at r 550 for a type-III run, bellow the
difference between runs augmented 10 times.
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C. Relation between the initial mass and the black hole mass

We have tested the relation between the mass gap g
by the total initial mass minus the final black hole mass a
function of the total initial mass for type-I and type-I
initial-boundary data sets. In Figs. 14 and 15 we display
results. In both cases we start with a black hole of mass u
and put our inner boundary inside its horizon.

For type-III data, namely data given at the outer bounda
we cannot construct very big black holes, the problem be
that the scalar field injected the produceh field and it leads to
instabilities.

V. CONCLUSIONS

It is difficult to see whether some of the ideas presented
this work can be extended to the full three-dimensional ca
where many more variables are present and where there
preferred center in which to anchor a gauge as the one u
here. But the model is so simple that perhaps the obse
tions made in solving it can shed some light into the mo
difficult problem. Among the observations we have the f
lowing: ~a! If the gauge prescription does not fix the gau
completely it is expected there would be gauge modes pro
gating. In this case there was just one gauge freedom left~the
value of h at the initial surface and at the outer boundar!.
Nevertheless there were three equations which acquire
nontrivial propagation. ~b! Gauge modes, being nonphys
cal, can have singular behavior, although the fo
dimensional geometry of the solution can be regular. It
clear in the model studied that the different components

s

FIG. 14. DM vs M for type-I data, DM50.21* (M

21)0.86e20.55(M21)1.47
.

FIG. 15. DM vs M for type-III data.
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the metric grow exponentially while the solution is st
Schwarzschild. Thus, it seems to be necessary to isolate
keep under control the potentially unstable gauge modes
our case this was done by choosing variables for whic
was clear where the instability was, and so, choosing con
niently the initial-boundary data we could keep it small f
many cases, although not always.~c! The choice of gauge
modes can also complicate the boundary value problem.
ally some of the fields should acquire values at the bound
so that the constraints propagate correctly. In the mode
can be seen that if part of the data for the pair~fg! must be
given at the boundary@according to the values chosen for th
coefficients (K f f ,K f g ,Kgg ,Kg f)# that part must satisfy som
evolution equation along the boundary, so actually there is
freedom left. But other gauge quantities, likeh, can take any
value. Thus, if the variables are not chosen appropriate
could become very cumbersome to find the correct bound
conditions which would, at the same time, keep the c
straint equations satisfied and the gauge instabilities un
control. Note that the procedure we used to impose bound
:

nd

nd
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conditions, consisting of obtaining equations which are
trinsic to the boundary for some of the variables, is similar
the one used in@19#, the only case where well posedness
the initial-boundary value problem in full general relativi
has been asserted.~d! Note also that the problem of giving
the correct boundary condition for the gauge quantities c
not be resolved by just moving the boundary far away.
deed, if by doing so we make the unstable gauge of the o
1/R, since it is going to propagate a timeR until it disappears
into the inner boundary, the net effect would not depend
R, but on how far away we fix the boundary.
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