
PHYSICAL REVIEW D, VOLUME 65, 044023
Accelerated universe from gravity leaking to extra dimensions
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We discuss the idea that the accelerated universe could be the result of gravitational leakage into extra
dimensions over Hubble distances rather than the consequence of a nonzero cosmological constant.
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I. INTRODUCTION

A number of recent observations suggest that the univ
is accelerating at large scales@1# ~see also@2,3#!. This may
be regarded as evidence for a nonzero but very small cos
logical constant. However, before adopting such a conclus
it is desirable to explore alternative possibilities motivat
by particle physics considerations. In this respect the mo
that predict modification of gravity at large distances are p
ticularly interesting. In the present paper we focus on
five-dimensional brane-world model with an infinite-volum
extra dimension, which can predict such a modification
cosmological distances@4,5#. In this model the ordinary par
ticles are localized on a three-dimensional surface~three-
brane! embedded in infinite-volume extra space to whi
gravity can spread. Despite the presence of an infin
volume flat extra space, the observer on the brane meas
four-dimensional Newtonian gravity at distances shorter t
a certain crossover scaler c , which can be of astronomica
size @4,5#. This phenomenon is due to a four-dimension
Ricci scalar term that is induced on the brane@4,5#. The
whole dynamics of gravity is governed by competition b
tween this term and an ordinary five-dimensional Einste
Hilbert action. At short distances the four-dimensional te
dominates and ensures that gravity looks four dimensio
At larger distances, however, the five-dimensional term ta
over and gravity spreads into extra dimensions. As a res
the force law becomes five dimensional. Thus, gravity g
weaker at cosmic distances. It is natural that such a dram
modification should affect the cosmological expansion of
universe. In the present work we will focus on the expli
cosmological solution found in@6#. This solution describes a
universe that is accelerated beyond the crossover scale
acceleration takes place despite the fact that there is no
mological constant on the brane. Instead, the bulk gra
experiences its own curvature term on the brane as a cos
logical constant and accelerates the universe.

In the present paper we shall review this phenomeno
the light of recent astrophysical observations@1,2,3# and con-
front this model with the conventional cosmological const
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scenario. We shall show that the present scenario canno
mimicked by ordinary 4D gravity with arbitrary high
derivative terms. Therefore, this is intrinsically a hig
dimensional phenomenon. Finally, we argue that such s
narios might avoid the difficulties of reconciliation of strin
theory with the observation of the accelerated universe. T
is possible because the bulk metric in the theory
Minkowskian. Moreover, due to the leakage of gravity in
extra space there is no infinite future horizon for 4D obse
ers.

Before we proceed we would like to note that other int
esting cosmological solutions in this type of model were fi
studied in Ref.@7#; however, those solutions do not descri
an accelerated universe and will not be discussed here.

II. THE FRAMEWORK

The model we will be considering was introduced in R
@4#. We start with aD5(411)-dimensional theory. Let us
suppose that there is a three-brane embedded in
dimensional space-time.1

Four coordinates of our world arexm , m50,1,2,3; the
extra coordinate will be denoted byy. Capital letters and
subscripts will be used for 5D quantities (A,B,C
50,1,2,3,5); the metric convention is mostly positive.

Following Refs.@4,5# let us consider the action

S5
M ~5!

3

2 E d5XAug̃uR̃1
MPl

2

2 E d4xAuguR, ~1!

whereM (5) denotes the 5D Planck mass, andMPl is the 4D
Planck mass; as they stand in Eq.~1! M (5) and MPl are
independent parameters~in general they could be related!.
g̃AB(X)[g̃AB(x,y) denotes a 5D metric for which the 5D
Ricci scalar isR̃. The brane is located aty50. The induced
metric on the brane is denoted by

gmn~x![g̃mn~x,y50!. ~2!

The 4D Ricci scalar forgmn(x) is R5R(x). The standard
model ~SM! fields are confined to the brane. Note that t

1For simplicity we ignore brane fluctuations, in which case t
induced metric on the brane takes the simple form given below
Eq. ~2!.
©2002 The American Physical Society23-1
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SM cutoff should not coincide in general withM (5) and, in
fact, is assumed to be much higher in our case. For simpli
we suppress the Lagrangian of the SM fields. The bra
world origin of the action~1! and parametersM (5) ,MPl were
discussed in details in Refs.@4,5,8#.

Let us first study the nonrelativistic potential between t
sources confined to the brane. For the time being we drop
tensorial structure in the gravitational equations and disc
the distance dependence of the potential. We comment on
tensorial structure at the end of this section.

The static gravitational potential between the sources
the four-dimensional world volume of the brane is det
mined as

V~r !5E GR~ t,xW ,y50;0,0,0!dt, ~3!

where r[Ax1
21x2

21x3
2 and GR(t,xW ,y50;0,0,0) is the re-

tarded Green’s function~see below!. Let us turn to Fourier-
transformed quantities with respect to the world-volum
four-coordinatesxm :

GR~x,y;0,0![E d4p

~2p!4 eipxG̃R~p,y!. ~4!

In Euclidean momentum space the equation for the Gre
function takes the form

@M ~5!
3 ~p22]y

2!1MPl
2 p2d~y!#G̃R~p,y!5d~y!. ~5!

Here p2 denotes the square of a Euclidean four-moment
p2[p4

21p1
21p2

21p3
2. The solution with appropriate bound

ary conditions takes the form

G̃R~p,y!5
1

MPl
2 p212M ~5!

3 p
exp~2puyu!, ~6!

where p[Ap25Ap4
21p1

21p2
21p3

2. Using this expression
and Eq.~3! one finds the following~properly normalized!
formula for the potential:

V~r !52
1

8p2MPl
2

1

r H sinS r

r c
DCiS r

r c
D1

1

2
cosS r

r c
D

3Fp22 SiS r

r c
D G J , ~7!

where

Ci~z![g1 ln~z!1E
0

z

@cos~ t !21#dt/t,

Si(z)[*0
z sin(t)dt/t, g.0.577 is the Euler-Mascheroni con

stant, and the distance scaler c is defined as follows:

r c[
MPl

2

2M ~5!
3 . ~8!

In our model we chooser c to be of the order of the presen
Hubble size, which is equivalent to the choiceM (5)
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;10– 100 MeV. We will discuss the phenomenological co
patibility of such a low quantum gravity scale in Sec. VI. It
useful to study the short distance and long distance beha
of this expression.

At short distances whenr !r c we find

V~r !.2
1

8p2MPl
2

1

r H p

2
1F211g1 lnS r

r c
D G S r

r c
D1O~r 2!J .

~9!

Therefore, at short distances the potential has the correc
Newtonian 1/r scaling. This is subsequently modified by th
logarithmic repulsionterm in Eq.~9!.

Let us turn now to the large distance behavior. Using E
~7! we obtain, forr @r c ,

V~r !.2
1

8p2MPl
2

1

r H r c

r
1OS 1

r 2D J . ~10!

Thus, the long distance potential scales as 1/r 2 in accordance
with the laws of 5D theory.

We would like to emphasize that the behavior~6! is in-
trinsically higher dimensional and is very hard to reprodu
in conventional four-dimensional field theory. Indeed, t
would-be four-dimensional inverse propagator should c
tain the termAp2. In the position space this would corre
spond in the Lagrangian to the following pseudodifferent
operator:

Ô52]m
2 1

A2]m
2

r c
. ~11!

We are not aware of a consistent four-dimensional quan
field theory with a finite number of physical bosons whi
would lead to such an effective action.

Finally, we would like to comment on the tensorial stru
ture of the graviton propagator in the present model. In
space this structure is similar to that of a massive 4D gra
ton @4#. This points to the van Dam–Veltman–Zakharo
~vDVZ! discontinuity @9,10#. However, this problem can in
general be resolved by at least two methods. In the pre
context one has to use the results of@11# where it was argued
that the vDVZ discontinuity that emerges in the lowest p
turbative approximation is in fact absent in the full nonpe
turbative theory. The application of similar arguments to o
model leads to a result that is continuous in 1/r c . This will
be discussed in detail elsewhere@12#. Thus, the vDVZ prob-
lem is an artifact of using the lowest perturbativ
approximation.2

2Note that the continuity in the graviton mass in~A!dS back-
grounds was demonstrated recently in Refs.@13,14#. We should
emphasize that we are discussing the continuity in the classica
gravitational interactions on the brane. There is certainly a disc
tinuity in the full theory in the sense that there are extra degree
freedom in the model. These latter can manifest themselves at q
tum level in loop diagrams@15#.
3-2
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In general, the simplest possibility to deal with the vDV
problem, as was suggested in Ref.@8#, is to compactify the
extra space at scales bigger than the Hubble size withr c
being even bigger, but we do not consider this possibi
here.

III. COSMOLOGICAL SOLUTIONS

Below we will mainly be interested in the geometry of th
4D brane world. For completeness of the presentation le
first recall the full 5D metric of the cosmological solutio
The 5D line element is taken in the following form:

ds252N2~ t,y!dt21A2~ t,y!g i j dxidxj1B2~ t,y!dy2,

~12!

where g i j is the metric of a three-dimensional maximal
symmetric Euclidean space, and the metric coefficients r
@6#

N~ t,y!511euyuä~ ȧ21k!21/2,

A~ t,y!5a1euyu~ ȧ21k!1/2,

B~ t,y!51, ~13!

where a(t) is a 4D scale factor ande561. Knowing the
brane-world intrinsic geometry is all that matters as far as
observers are concerned. This geometry is given in the ab
solution. Taking they50 value of the metric we obtain th
usual 4D Friedmann-Lemaıˆtre-Robertson-Walker~FLRW!
form ~enabling us to interprett as the cosmic time on th
brane world!

ds252dt21a2~ t !dxidxjg i j , ~14!

52dt21a2~ t !@dr21Sk
2~r !dc2# ~15!

where dc2 is an angular line element,k521,0,1 param-
etrizes the brane-world spatial curvature, andSk is given by

Sk~r !5H sinr ~k51!,

sinhr ~k521!,

r ~k50!.

~16!

In the present case, the dynamics is generically differ
from the usual FLRW cosmology, as shown in@6#. The stan-
dard first Friedmann equation is replaced in our model b

H21
k

a2 5SAr/3MPl
2 11/4r c

21e
1

2r c
D 2

, ~17!

wherer is the total cosmic fluid energy density. We have
addition the usual equation of conservation for the ener
momentum tensor of the cosmic fluid given by

ṙ13H~p1r!50. ~18!
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Equations~17! and ~18! are sufficient to derive the cosmo
ogy of our model. In particular, using these relations one
obtain a second Friedmann equation as in standard cos
ogy.

Equation~17! with e51 andr50 has an interesting self
inflationary solution with a Hubble parameter given by t
inverse of the crossover scaler c . This can be easily under
stood by looking back at the action~1!, where it is apparent
that the intrinsic curvature term on the brane appears a
source for the bulk gravity, so that with appropriate initi
conditions this term can cause an expansion of the br
world without the need of matter or a cosmological const
on the brane. This self-inflationary solution is the key ing
dient for our model to produce late time accelerat
expansion.3 Before discussing this issue in detail let us fir
compare our cosmology with the standard one.

We first note that the standard cosmological evolution
recovered from Eq.~17! wheneverr/MPI

2 is large compared
to 1/r c

2, so that the early time cosmology of our model
analogous to standard cosmology. In this early phase
~17! reduces, at leading order, to the standard 4D Friedm
equation given by

H21
k

a2 5
r

3MPI
2 . ~19!

The late time behavior, however, is generically differe
as was shown in@6#: when the energy density decreases a
crosses the thresholdMPI

2 /r c
2, one has a transition either to

pure 5D regime~see, e.g.,@16,17#! where the Hubble param
eter is linear in the energy densityr ~this happens for thee
521 branch of the solutions!, or to the self-inflationary so-
lution mentioned above~when e511!. This latter is the
case we would like to investigate in more detail in the rest
this work, and we sete511 from now on. In terms of the
Hubble radius~and for the flat universe! the crossover be-
tween the two regimes happens when the Hubble radiusH21

is of the order of the crossover length scale between 4D
5D gravity, that is,r c . If we do not want to spoil the suc
cesses of the ordinary cosmology, we thus have to ass
that r c is of the order of the present Hubble scaleH0

21. With
such a value chosen forr c , the expansion of the universe
governed at first order by the standard Friedmann equat
~18! and~19! wheneverH@H0 , and deviates from standar
evolution only recently in cosmic history. In particular, th
means that big-bang nucleosynthesis and recombination
ceed in the usual way in our scenario.

The conservation equation~18! is the same as the stan
dard one, so that a given component of the cosmic fl
~nonrelativistic matter, radiation, cosmological constant, e!
will have the same dependence on the scale factor as in s
dard cosmology. For instance, for a given component,
beled bya, which has the equation of statepa5wara ~with

3Note that the nonzero 4D Ricci scalar on the brane make
seemingly negative contribution to the brane tension@18,6#. In this
case, we consider a nonfluctuating brane which is placed at
R/Z2 orbifold fixed point.
3-3
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wa being a constant!, one gets from Eq. ~18! ra

5ra
0a23(11wa) ~with ra

0 being a constant!. The Friedmann
equation~17! can be rewritten in terms of the redshift 11z
[a0 /a as follows:

H2~z!5H0
2H Vk~11z!21SAV r c

1AV r c
1(

a
Va~11z!3~11wa!D 2J , ~20!

where the sum is over all the components of the cosmic fl
In the above equationVa is defined as follows:

Va[
ra

0

3MPI
2 H0

2a0
3~11wa! , ~21!

while Vk is given by

Vk[
2k

H0
2a0

2 ~22!

andV r c
denotes

V r c
[

1

4r c
2H0

2 . ~23!

In the rest of this paper, as far as the cosmology of our mo
is concerned, we will consider a nonrelativistic matter w
densityVM , in which case Eq.~20! reads4

H2~z!5H0
2$Vk~11z!21@AV r c

1AV r c
1VM~11z!3#2%.

~24!

We can compare this equation with the conventional Fri
mann equation

H2~z!5H0
2$Vk~11z!21VM~11z!31VX~11z!3~11wX!%.

~25!

Here, in addition to the matter and curvature contributio
we have included the density of a dark energy compon
VX with equation of state parameterwX . WhenwX521, the
dark energy acts in the same way as a cosmological cons
and the correspondingVX will be denoted asVL in the
following. Comparing Eqs.~24! and ~25! we see thatV r c

acts similarly~but not identically, as we will see below! to a
cosmological constant.

The z50 value of Eq.~24! leads to the normalization
condition

Vk1~AV r c
1AV r c

1VM !251, ~26!

4Notice that we have set the cosmological constant on the bran
zero, and will do so until the end of this work since we are int
ested here in producing an accelerated universe without cosmo
cal constant.
04402
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which differs from the conventional relation

Vk1VM1VX51. ~27!

For a flat universe (Vk50) we get from Eq.~26!

V r c
5S 12VM

2 D 2

and V r c
,1. ~28!

This shows in particular that for a flat universeV r c
is always

smaller thanVX ; nevertheless, as will be seen below, t
effects ofV r c

andVX can be quite similar. Figure 1 show

the different possibilities for expansion as a function ofVM
andV r c

.

IV. COSMOLOGICAL TESTS

We would like to discuss now, in a qualitative way, a fe
cosmological tests and measurements. We do not expect
the current experimental precision will enable us to discrim
nate between the predictions of our model and those of s
dard cosmology. However, future measurements might
able one to do so.

In order to compare the outcome of our model with va
ous cosmological tests we need first to summarize some
sults. In the FLRW metric~14!, we define, as usual~see, e.g.,
@19#!, the transverse,H0-independent~dimensionless!, co-
moving distancedM :

dM5H sk~AuVkudC!

AuVku
if VkÞ0,

dC , if Vk50,

~29!

wheredC is defined as follows:

dC5E
0

z

H0

dx

H~x!
. ~30!

to
-
gi-

FIG. 1. Different possibilities for expansion as a function ofVM

and V r c
. The solid line denotes a flat universe (k50), with V r c

obtained through Eq.~28!. The universes above the solid line a
closed (k51), the universes below are open (k521). The uni-
verses above the dashed line avoid the big-bang singularity
bouncing in the past.
3-4
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From the expression fordM one gets the~H0-independent
and dimensionless! luminosity distance dL and the
(H0-independent! angular diameter distancedA given by

dL5~11z!dM , ~31!

dA5
dM

11z
. ~32!

These definitions can be used on the same footing bot
standard and in our cosmological scenarios~as they stand
above, they rely only on the geometry of the fou
dimensional universe experienced by the radiation, whic
the same in both cases!. The only difference is due to th
expression forH(z) which enters the definition ofdC ; one
should choose either Eq.~25! or Eq. ~24! depending on the
case considered. Whenever we want to distinguish betw
the two models, we will put a tilde on the quantities corr
sponding to our model~e.g.,d̃L!.

A. Supernova observations

The evidence for an accelerated universe coming fr
supernovae observation relies primarily on the measurem
of the apparent magnitude of type Ia supernovae as a f
tion of redshift. The apparent magnitudem of a given super-
nova is a function of its absolute magnitudeM, the Hubble
constantH0 , and dL(z) ~see, e.g.,@20#!. Considering the
supernovae as standard candles,M is the same for all super
novae and so isH0 ; thus, we need only comparedL(z) in
our model with that in standard cosmology. Figure 2 sho
the luminosity distancedL as a function of redshift in stan
dard cosmology~for zero and nonzero cosmological co
stant! and in our model. This shows the expected behav
our model mimics the cosmological constant in produc
the late time accelerated expansion. However, as is also
parent from this plot, for the same flat spatial geometry a
the same amount of nonrelativistic matter, our model d
not produce exactly the same acceleration as a standard
mological constant, but rather mimics the one obtained fr

FIG. 2. Luminosity distance as a function of redshift for ord
nary cosmology withVL50.7, VM50.3, k50 ~dashed line!, VL

50, VM51, k50 ~solid line!, with dark energy withVX50.7,
wX520.6, VM50.3, k50 ~dot-dashed line!, and in our model
~dotted line! with VM50.3 and a flat universe@for which one gets
from Eq. ~28! V r c

50.12 andr c51.4H0
21#.
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a dark energy component withwX.21 ~or more properly
with a z-dependentwX ; see below!.

B. Comparison with dark energy

We want to compare here the predictions of our mode
those of standard cosmology with a dark energy compon

Let us first do so for a dark energy component of const
wX . For this purpose we choose a reference standard m
given by standard cosmology with the parametersVL50.7,
VM50.3, andk50 ~and denote the associated quantit
with the superscript ‘‘ref,’’ e.g.,dL

ref!. Figures 3 and 4 show
respectively, the luminosity distancedL(z) and dC(z)H(z)
~Alcock-Paczynski test, see, e.g.,@21#! for various cases.

One can also mimic the acceleration produced in
model by allowing az-dependent equation of state parame
wX

eff(z) in the standard Friedmann equations. Indeed, the s
dard Friemann equation~19! with a dark energy componen
of a z-dependent equation of state parameterwX

eff(z) reads as
follows:

FIG. 3. Plot ofdL(z)/dL
ref(z) for various models of dark energ

with constant equation of state parameterswX in standard cosmol-
ogy ~solid lines! as compared with the outcome of the model co
sidered in this paper~dashed and dotted lines!. All plots correspond
to flat universes withVM50.3 ~solid lines and dotted line!, and
VM50.27 ~dashed line!.

FIG. 4. Plot of H(z)dC(z)/H ref(z)dC
ref(z) ~Alcock-Paczynski

test! for various models of dark energy with constant equation
state parameterswX in standard cosmology~solid lines! as com-
pared with the outcome of the model considered in this pa
~dashed and dotted lines!. All plots correspond to flat universes
with VM50.3 ~solid lines and dotted line!, andVM50.27 ~dashed
line!.
3-5
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H2~z!/H0
25Vk~11z!21VM~11z!3

1VX expS 3E
0

z

@11wX
eff~y!#

dy

11yD . ~33!

Requiring thatH(z) in this expression equalsH(z) in Eq.
~24!, one finds the following formula forwX

eff(z):

wX
eff~z!5$@A4V r c

/VM~11z!314#@AV r c
/VM~11z!3

1AV r c
/VM~11z!311#%2121, ~34!

with V r c
, VM , and Vk subject to the constraint~26!. At

large redshiftswX
eff tends toward21/2, reflecting the fact tha

the dominant term in Eq.~24! ~after matter and curvatur
terms! redshifts as (11z)3/2 at largez. At low z, however,
wX

eff decreases toward an (Vk ,VM)-dependent asymptoti
value. For a flat universe the latter is simply given5 by
21/(11VM).

The preceding discussion shows also that with precis
tests one should be able to discriminate between our m
and a 4D scenario with a pure cosmological constant.

C. Cosmic microwave background

It is well known that in standard cosmology the locati
of points of constant luminosity distance at smallz is degen-
erate in the plane (VM ,VL). This degeneracy can be lifte
through cosmic microwave background~CMB! observations.
Figure 5 shows that this is the case in our model as w

5For VM50.3 andk50, wX
eff at low z tends towards20.77 ex-

plaining some features of Figs. 3 and 4.

FIG. 5. Solid lines are lines of equal luminosity distance~in our

model!, d̃L(z51)/dL
ref(z51), at redshiftz51; the contours are

drawn at every 5% level. The dashed line corresponds to a

universe. The dotted lines are the lines of equalAVMd̃A(z) for z
51100; the contours are drawn at every 5% level.
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~which should not be too much of a surprise, considering
similarities between early cosmology in the two models,
well as between the luminosity distance vs redshift re
tions!. The solid lines of Fig. 5 are lines of constantd̃L at
redshiftz51; the dotted lines are lines of constantAVMdA
at redshiftz51100. This latter quantity roughly sets the p
sition of the first acoustic peak in the CMB power spectru
since its inverse measures the angular size on the sky
physical length scale at last scattering proportional to 1/AVM
~as is at first approximation the sound horizon at last scat
ing!. Finally, Fig. 6 shows the angular diameter distancedA ,
at z51100, of standard cosmology, divided byd̃A in our
model, as a function ofwX , for a flat universe andVM
50.3. This shows that, for the same content of matter~and a
flat universe!, the first Doppler peak in our model will be
slightly displaced toward the small multipoles in comparis
with the one obtained in standard cosmology with a p
cosmological constant.

V. CONFRONTING UNCONVENTIONAL
4D THEORIES OF GRAVITY

One might wonder whether it is possible to obtain a sim
lar cosmological scenario in purely four-dimensional theo
by introducing additional generally covariant terms in t
Einstein-Hilbert action. The conventional local terms th
can be added to the 4D theory contain higher derivatives

MPl
2 AgS R1a

R2

MPl
2 1¯ D . ~35!

Whatever the origin of these terms might be, their contrib
tions should be suppressed at distances bigger than a m
meter. That is required by existing precision gravitation
measurements. This implies that at distances of the pre
Hubble size their contributions are even more suppres
For instance, the requirement that the contribution of theR2

term to the Newtonian interaction be subdominant at d
tances around a centimeter implies that the relative contr
tion of theR2 term at the Hubble scale is suppressed by
factor (cm2 H0

2);10256. The contributions of other highe
terms are suppressed even more strongly.

at

FIG. 6. Angular diameter distancedA at z51100 of standard

cosmology divided byd̃A(z51100) in our model, as a function o
wX for a flat universe andVM50.3.
3-6



u
o-
fo
of

t

ck

o
le
y

en

e-
D

th
d

is
ry

gt
m

4D
ro

ro
r
on
y

iv

ic

e
on

tes
in a
-

n,
ce

the
m
is-
nd
w-
n at
s is
the

nt

ea-

the
de
her
cts.
red
er

ted
ha-

mal
ion
ion
is

ng
ate

the
y

ACCELERATED UNIVERSE FROM GRAVITY LEAKING . . . PHYSICAL REVIEW D65 044023
It seems that the only way to accommodate this unus
behavior in a would-be pure 4D theory of gravity is to intr
duce terms with fractional powers of the Ricci scalar,
instance, the termAgR. However, it is hard to make sense
such a theory.

Therefore, we conclude that the scenario discussed in
previous sections is intrinsically a high-dimensional one.

VI. CONSTRAINTS

In our framework such a low five-dimensional Plan
scale is compatible with all the observations@8#. In fact, at
distances smaller than the present horizon size the brane
server effectively sees a single 4D graviton which is coup
with the strength 1/MPl ~instead of a 5D graviton coupled b
the strength 1/M (5)

3/2!.
As shown in@8# the high-energy processes place ess

tially no constraint on the scaleM (5) . This can be under-
stood in two equivalent ways, either directly in a fiv
dimensional picture, or in terms of an expansion in 4
modes.

As was shown above, in five-dimensional language
brane observer at high energies sees a graviton that is in
tinguishable from the four-dimensional one; for short d
tances the propagator of this graviton is that of a 4D theo

G̃R~p,y50!}
1

p2 . ~36!

Moreover, this state couples to matter with the stren
1/MPl

2 . Therefore in all the processes with typical momentu
p!1/r c the graviton production must proceed just as in
theory. For instance, the rate of graviton production in a p
cess with energyE scales as

G;
E3

MPl
2 . ~37!

The alternative language is that of mode expansion. F
the point of view of the four-dimensional brane observe
single five-dimensional massless graviton is in fact a c
tinuum of four-dimensional states, with masses labeled b
parameterm:

Gmn~x,y!5E dmfm~y!hmn
~m!~x!. ~38!

The crucial point is that the wave functions of the mass
modes are suppressed on the brane as follows:

ufm~y50!u2}
1

41m2r c
2 . ~39!

This is due to the intrinsic curvature term on the brane wh
‘‘repels’’ heavy modes off the brane@8,22#. As a result their
production in high-energy processes on the brane is v
difficult. Let us once again consider bulk graviton producti
in a process with energyE ~e.g., star cooling via graviton
emission at temperatureT of orderE!. This rate is given by
@8#
04402
al

r

he

b-
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h

-

m
a
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a

e
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ry

G;
E3

M ~5!
3 E

0

mmax
dmufm~0!u2. ~40!

Here the integration goes over the continuum of bulk sta
up to the maximum possible mass that can be produced
given process,mmax;E. However, since heavier wave func
tions are suppressed on the brane by a factor 1/m2r c

2, the
integral is effectively cut off atm;1/r c , which gives for the
rate

G;
E3

M ~5!
3 r c

;
E3

MPl
2 . ~41!

This is in agreement with Eq.~37! and in fact coincides with
the rate of production of a single four-dimensional gravito
which is totally negligible. Thus high-energy processes pla
no constraint on the scaleM (5) @8#.

For the same reason cosmology places no bound on
scaleM (5) . Indeed, the potential danger would come fro
the fact that the early universe may cool via graviton em
sion in the bulk, which could affect the expansion rate a
cause deviation from an ordinary FLRW cosmology. Ho
ever, due to extraordinarily suppressed graviton emissio
high temperatures, the cooling rate due to this proces
totally negligible. Indeed, in the radiation-dominated era,
cooling rate due to graviton emission is

G;
T3

MPl
2 . ~42!

At any temperature belowMPl this is much smaller than the
expansion rate of the universeH;T2/MPl . Thus essentially
until H;M (5)

3 /MPl
2 ~which takes place only in the prese

epoch! the universe evolves as ‘‘normal.’’
The only constraint in such a case comes from the m

surement of the Newtonian force, which impliesM (5)
.1023 eV ~this will be discussed in more detail elsewhere!.

VII. DETERIORATION DUE TO DISSIPATION

In the previous sections we established that classically
asymptotic form of the 4D metric on the brane is that of
Sitter space. Here we would like to ask the question whet
this asymptotic form can be modified due to quantum effe
This could happen if there is dissipation of the energy sto
in the expectation value of the 4D Ricci scalar into oth
forms which can either radiate into the bulk or be redshif
away on the brane. Below we shall identify such a mec
nism of potential dissipation.

An observer in de Sitter space is submerged in a ther
bath with nonzero temperature due to Hawking radiat
from the de Sitter horizon. The temperature of this radiat
is T;H. The crucial point is that the energy stored in th
radiation can dissipate into the bulk in the form of very lo
wavelength graviton emission from the brane. To estim
the rate of this dissipation we can use Eq.~42! with T;H.
The corresponding change of the brane energy density in
absence of other forms of matter and radiation is given b
3-7
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dreff

dt
52

H3

MPl
2 reff , ~43!

wherereff[MPl
2 ^R& and the Hubble parameter can be writt

as H2}^R&. The corresponding decay time is huge,t
;10137sec. Therefore, the 4D metric eventually asympto
to flat Minkowski space. Note the crucial difference from t
conventional 4D de Sitter space, where the vacuum en
cannot dissipate anywhere due to the Hawking radiation
our case the existence of the infinite-volume bulk is vital

VIII. INFINITE VOLUME AND STRING THEORY

If the recent observations on the cosmological cons
are confirmed it may be extremely nontrivial to describe
accelerated universe within string theory@23,24#. To briefly
summarize the concerns let us consider a generic theory
extra dimensions. Usually one is looking for a ground st
of the theory with compactified or warped extra dimensio
In both of these cases there is a length scale that define
volume of the extra space. This scale cannot be bigger th
millimeter @25#. Therefore, at larger distances a conventio
four-dimensional space is recovered. Astrophysical obse
tions indicate that this latter asymptotes to a state of fo
dimensional accelerated expansion similar to 4D de S
space. In this case the following two problems may eme
@23,24#.

An observer in dS space sees a finite portion of the sp
bounded by an event horizon. In fact, the four-dimensio
dS interval can be transformed into the form

dsdS
2 52~12H2u2!dt21

du2

~12H2u2!
1u2dV2 . ~44!

An observer is always inside a finite size horizon. As w
argued in@23# the physics for any such observer is describ
by a finite number of degrees of freedom.6 On the other
hand, there are an infinite number of degrees of freedom
string theory and it is not obvious how string theory can
reconciled with this observation.

Another related difficulty is encountered when one tries
define the string theoryS matrix on dS space. As we men
tioned above, we could think of dS space as a cavity wit
shell surrounding it. This shell has nonzero temperatu
Thus, particles in the cavity are immersed in a thermal b
and, moreover, there are no asymptotic states of free part
required for the definition of theS matrix. It was shown
recently that these problems generically persist@26,27# in
quintessence models of the accelerating universe.

Both of these difficulties are related to the fact that in
space the comoving volume of the region that can be pro

6Indeed, the number of degrees of freedom inside the reg
bounded by the horizon is finite. Moreover, the physics of the
terior of the horizon can in principle be encoded into the inform
tion on the horizon. This latter, according to the Bekenste
Hawking formula, has finite entropy and, therefore, supports a fi
number of degrees of freedom.
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in the future by an observer is finite~the same discussion
applies to any accelerating universe with21,w,22/3,
where the equation of state isp5wr!.

Theories with infinite-volume extra dimensions mig
evade these difficulties. The reason is that the accelera
universe in this case can be accommodated in a space th
not simply four-dimensional dS. In fact, as we argued
previous sections, although the space on the brane looks
de Sitter space for long times it will asymptote to space w
no dS horizon in the infinite future~to Minkowski space!.

Let us briefly discuss these issues. We start by coun
the number of degrees of freedom that are in contact wit
brane-world observer. It is certainly true that an observer
the brane is bounded in the world-volume dimensions b
dS horizon. However, there is no horizon in the directi
transverse to the brane. Thus, any observer on a brane
gravitational contact with infinite space in the bulk. In th
case, the infinite number of bulk modes of highe
dimensional gravitons participate in 4D interactions on
brane @4,8#. Therefore, the number of degrees of freedo
needed to describe physics on the brane is infinite.

The problem of definition of theS matrix might be more
subtle. Below we present the simplest possibility. The k
observation is that the metric~13! in the bulk is nothing but
the metric of flat Minkowski space. Indeed, performing t
following coordinate transformation@28#:

Y05AS r 2

4
112

1

4ȧ2D2
1

2 E dt
a2

ȧ3 ] tS ȧ

aD ,

Yi5Axi ,

Y55AS r 2

4
212

1

4ȧ2D2
1

2 E dt
a2

ȧ3 ] tS ȧ

aD ,

~45!

wherer 25h i j x
ixj andh i j 5diag(1,1,1), the metric takes th

form

ds252~dY0!21~dY1!21~dY2!21~dY3!21~dY5!2.
~46!

The brane itself in this coordinate system transforms into
following boundary conditions:

2~Y0!21~Y1!21~Y2!21~Y3!21~Y5!25
1

H0
2 ,

Y0~ t,y50!.Y5~ t,y50!. ~47!

Therefore, the space to the right of the brane is transform
to Minkowski space with the boundary conditions~47!.

On this space theS matrix could be defined, as there a
asymptoticin andout states of free particles. The same pr
cedure can be applied to the metric on the left of the bra
However, the brane space-time being de Sitter, one enc

n
-
-
-
e

3-8
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ters the same problems in defining in and out states for s
tering products localized on the brane. This is true as long
one neglects the dissipation discussed in Sec. VII, becaus
which the whole space-time will asymptote to Minkows
space-time, for which the mentioned problems do not per

Summarizing, the models with infinite-volume extra d
mensions might be a useful ground for describing an ac
erating universe with no cosmological constant within str
theory. In addition, we point out that these models allow
to preserve bulk supersymmetry even if supersymmetr
broken on the brane@29,30#.
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