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Accelerated universe from gravity leaking to extra dimensions
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We discuss the idea that the accelerated universe could be the result of gravitational leakage into extra
dimensions over Hubble distances rather than the consequence of a nonzero cosmological constant.

DOI: 10.1103/PhysRevD.65.044023 PACS nuni®er04.50+h

[. INTRODUCTION scenario. We shall show that the present scenario cannot be
mimicked by ordinary 4D gravity with arbitrary high-
A number of recent observations suggest that the universderivative terms. Therefore, this is intrinsically a high-
is accelerating at large scalgh] (see alsd2,3]). This may dimensional phenomenon. Finally, we argue that such sce-
be regarded as evidence for a nonzero but very small cosm#arios might avoid the difficulties of reconciliation of string
logical constant. However, before adopting such a conclusiofeory with the observation of the accelerated universe. This
it is desirable to explore alternative possibilities motivated!S Possible because the bulk metric in the theory is
by particle physics considerations. In this respect the modeMinkowskian. Moreover, due to the leakage of gravity into

that predict modification of gravity at large distances are par-exér"j1 space there is no infinite future horizon for 4D observ-

ticularly interesting. In the present paper we focus on the™" . .
y g P bap Before we proceed we would like to note that other inter-

five-dimensional brane-world model with an infinite-volume __° : . S )
Fstlng cosmological solutions in this type of model were first

extra dimension, which can predict such a modification a = ) . ,
cosmological distancdd,5]. In this model the ordinary par- studied in Ref[7]; _however, th0f5e solutlon_s do not describe
. ) e . . an accelerated universe and will not be discussed here.
ticles are localized on a three-dimensional surféiteee-

brang embedded in infinite-volume extra space to which
gravity can spread. Despite the presence of an infinite-
volume flat extra space, the observer on the brane measures The model we will be considering was introduced in Ref.
four-dimensional Newtonian gravity at distances shorter thafi4]. We start with aD =(4+ 1)-dimensional theory. Let us

a certain crossover scafg, which can be of astronomical suppose that there is a three-brane embedded in five-
size [4,5]. This phenomenon is due to a four-dimensionaldimensional space-tinte.

Ricci scalar term that is induced on the brg@g5]. The Four coordinates of our world are,, ©=0,1,2,3; the
whole dynamics of gravity is governed by competition be-extra coordinate will be denoted by Capital letters and
tween this term and an ordinary five-dimensional Einsteinsubscripts will be used for 5D quantitiesA,B8,C
Hilbert action. At short distances the four-dimensional term=0,1,2,3,5); the metric convention is mostly positive.
dominates and ensures that gravity looks four dimensional. Following Refs.[4,5] let us consider the action

At larger distances, however, the five-dimensional term takes

over and gravity spreads into extra dimensions. As a result, M(35) Sy =TS M2, 4

the force law becomes five dimensional. Thus, gravity gets S= TJ d*X 3[R+ TJ’ d*x\[glR, ()
weaker at cosmic distances. It is natural that such a dramatic

modification should affect the cosmological expansion of th&NhereM(S) denotes the 5D Planck mass, avig, is the 4D
universe. In the present work we will focus on the explicit Planck mass; as they stand in Ed) M) and Mp are
cosmological solution found I[ﬁ] This solution describes a independent paramete('m genera| they could be re|a’[)3d
universe that is accelerated beyond the crossover scale. Tigg,(X)=Gp(X,y) denotes a 5D metric for which the 5D

acceleration takes place despite the fact that there is N0 COgi scalar isR. The brane is located 8t=0. The induced
mological constant on the brane. Instead, the bulk gravity,.iric on the brane is denoted by
experiences its own curvature term on the brane as a cosmo-
logical constant and accelerates the universe. 0,,(X)=T,,(x,y=0). 2

In the present paper we shall review this phenomenon in
the light of recent astrophysical observati¢h2,3 and con-  The 4D Ricci scalar fog,,,(x) is R=R(x). The standard
front this model with the conventional cosmological constantmodel (SM) fields are confined to the brane. Note that the

Il. THE FRAMEWORK

*Email address: cjd2@physics.nyu.edu IFor simplicity we ignore brane fluctuations, in which case the
"Email address: gd23@nyu.edu induced metric on the brane takes the simple form given below in
*Email address: gabadadz@physics.umn.edu Eq. (2).
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SM cutoff should not coincide in general witfl 5y and, in ~ ~10-100 MeV. We will discuss the phenomenological com-
fact, is assumed to be much higher in our case. For simplicitpatibility of such a low quantum gravity scale in Sec. VI. It is
we suppress the Lagrangian of the SM fields. The branedseful to study the short distance and long distance behavior
world origin of the actior(1) and parameter®! sy,Mp were  of this expression.

discussed in details in Ref,5,8|. At short distances when<r . we find

Let us first study the nonrelativistic potential between two
sources confined to the brane. For the time being we drop the 1 1= r r )
tensorial structure in the gravitational equations and discus¥ (") =~ 8m2ME T 5t —1+y+In E) (E +0O(r) .

the distance dependence of the potential. We comment on the
tensorial structure at the end of this section. 9

th T?e rStcitrlr? gr?v:]taltlwarll dpc\)/telntrl;lal beftvtvheenbrthﬁ s?urgets r'_ﬁ'herefore, at short distances the potential has the correct 4D
€ Tour-dimensional world volume ot the bran€ IS deteryq\vionian 1/ scaling. This is subsequently modified by the

mined as logarithmicrepulsionterm in Eq.(9).
Let us turn now to the large distance behavior. Using Eq.
V(r)=f Gg(t,X,y=0;0,0,0dt, (3)  (7) we obtain, forr>r.,
where rE\/x214—x22+x32 and Gg(t,X,y=0;0,0,0) is the re- V(r)=— 1 E e (i (10)
tarded Green'’s functiofsee below Let us turn to Fourier- 8mMa 1 | 1 re) ]
transformed quantities with respect to the world-volume
four-coordinates,, : Thus, the long distance potential scales a3 i accordance
" with the laws of 5D theory.
‘00— P ipxe We would like to emphasize that the behavi6j is in-
GR(X’y’O’O)_f (277)4e Gr(P.Y)- @ trinsically higher dimensional and is very hard to reproduce

) ) in conventional four-dimensional field theory. Indeed, the
In Euclidean momentum space the equation for the Greengoy|d-be four-dimensional inverse propagator should con-
function takes the form tain the termy/p2. In the position space this would corre-

~ spond in the Lagrangian to the following pseudodifferential
(M (p2— )+ MEP?8Y) [Gr(p.Y) = 8(y).  (8)  gooror o 9P

Here p? denotes the square of a Euclidean four-momentum -
p?=p3+p3+ p3+p3. The solution with appropriate bound- D=2+ 0 (11)
ary conditions takes the form ® re =

6) We are not aware of a consistent four-dimensional quantum
field theory with a finite number of physical bosons which
would lead to such an effective action.

where p=/p?= \/p42+ p21+ p22+ p32. Using this expression Finally, we would like to comment on the tensorial struc-

and Eq.(3) one finds the following(properly normalizedd  ture of the graviton propagator in the present model. In flat

Gr(p,y)= exp(—plyl),

1
M2 p2+2M% p

formula for the potential: space this structure is similar to that of a massive 4D gravi-
ton [4]. This points to the van Dam-Veltman—Zakharov
V(r)=— 1 1 sin(L)Ci r n }co r (vDVZ) discontinuity[9,10]. However, this problem can in
8772M§,, r le ¢ 2 c general be resolved by at least two methods. In the present

context one has to use the resultg bf] where it was argued
that the vDVZ discontinuity that emerges in the lowest per-
)” @ turbative a imation is i [ -
pproximation is in fact absent in the full nonper
turbative theory. The application of similar arguments to our
where model leads to a result that is continuous in.1/This will
, be discussed in detail elsewhé¢de]. Thus, the vDVZ prob-
Ci(2)= y+|n(2)+J [cogt)—1]dt/t, lem is an artifact of using the lowest perturbative
0 approximatiorf

Si(z)=[{ sint)dt/t, y=0.577 is the Euler-Mascheroni con-
stant, and the distance scaleis defined as follows:

X

r
T2 Si(—
r

C

2Note that the continuity in the graviton mass (A)dS back-
2 grounds was demonstrated recently in Réfs3,14. We should
Mpi emphasize that di ing th tinuity in the classical 4D
=_ 8) phasize that we are discussing the continuity in the classical
c 3 ( asies : . . _
2|V|(5) gravitational interactions on the brane. There is certainly a discon-
tinuity in the full theory in the sense that there are extra degrees of
In our model we chooseg; to be of the order of the present freedom in the model. These latter can manifest themselves at quan-
Hubble size, which is equivalent to the choidd s, tum level in loop diagram§15).
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In general, the simplest possibility to deal with the vDVZ Equations(17) and(18) are sufficient to derive the cosmol-
problem, as was suggested in R], is to compactify the ogy of our model. In particular, using these relations one can
extra space at scales bigger than the Hubble size with obtain a second Friedmann equation as in standard cosmol-
being even bigger, but we do not consider this possibilityogy.
here. Equation(17) with e=1 andp=0 has an interesting self-

inflationary solution with a Hubble parameter given by the
Ill. COSMOLOGICAL SOLUTIONS inverse of the crossover scalg. This can be easily under-
stood by looking back at the actid), where it is apparent

Below we will mainly be interested in the geometry of the that the intrinsic curvature term on the brane appears as a
4D brane world. For completeness of the presentation let usource for the bulk gravity, so that with appropriate initial
first recall the full 5D metric of the cosmological solution. conditions this term can cause an expansion of the brane

The 5D line element is taken in the following form: world without the need of matter or a cosmological constant
o on the brane. This self-inflationary solution is the key ingre-
ds?= —N?(t,y)dt?+A%(t,y) y;;dx'dx + B2(t,y)dy?, dient for our model to produce late time accelerated

(12) expansiort. Before discussing this issue in detail let us first
compare our cosmology with the standard one.
where v;; is the metric of a three-dimensional maximally ~ We first note that the standard cosmological evolution is
symmetric Euclidean space, and the metric coefficients readkcovered from Eq(17) wheneverp/ M,%l is large compared
(6] to 1k2, so that the early time cosmology of our model is
analogous to standard cosmology. In this early phase Eg.
N(t,y)=1+ely|a(a?+k)~2 (17) reduces, at leading order, to the standard 4D Friedmann
equation given by
A(t,y)=a+ ely|(a®+ k)2
2
B(t,y)=1, (13) T

k
= (19

wherea(t) is a 4D scale factor and==1. Knowing the The late time behavior, however, is generically different,

brane-world intrinsic geometry is all that matters as far as 40+ Was shown ifie]; wr;enzthe energy density decreases and
observers are concerned. This geometry is given in the abo0SSes the threshoMp/r¢, one has a transition either to a
solution. Taking they=0 value of the metric we obtain the Pure 5D regimesee, e.9.(16,17)) where the Hubble param-

usual 4D Friedmann-Lerftae-Robertson-WalkeFLRW)  ©ter is linear in the energy densipy(this happens for the

form (enabling us to interpret as the cosmic time on the = 1 branch of the solutionsor to the self-inflationary so-

brane world lution mentioned abovéwhen e=+1). This latter is the
case we would like to investigate in more detail in the rest of

ds?= —dt?+a?(t)dx'dx y;; , (14)  this work, and we seé=+1 from now on. In terms of the

Hubble radius(and for the flat univergethe crossover be-

tween the two regimes happens when the Hubble radius

is of the order of the crossover length scale between 4D and

5D gravity, that isr.. If we do not want to spoil the suc-

cesses of the ordinary cosmology, we thus have to assume

thatr is of the order of the present Hubble scblgl. With

B such a value chosen fog, the expansion of the universe is
(k=1), governed at first order by the standard Friedmann equations

Si(r)=4 sinhr (k=-1), (16) (18 and(19 wheneveiH>H,, and deviates from standard
(k=0). evolution only recently in cosmic history. In particular, this

means that big-bang nucleosynthesis and recombination pro-

i;eed in the usual way in our scenario.

The conservation equatiof18) is the same as the stan-
dard one, so that a given component of the cosmic fluid
(nonrelativistic matter, radiation, cosmological constant) etc.

=—dt?+a(t)[dr?+ Si(r)dy?] (15

wheredy? is an angular line elemenk=—1,0,1 param-
etrizes the brane-world spatial curvature, &ds given by

sinr

r

In the present case, the dynamics is generically differen
from the usual FLRW cosmology, as shown &]. The stan-
dard first Friedmann equation is replaced in our model by

K 12 will have the same dependence on the scale factor as in stan-
H2+ —=| Vp/BM2+ 1/4 2+ e——| , (17) dard cosmology. For instance,.for a given component, la-
a 2r¢ beled bya, which has the equation of stagpe=w,p, (with

wherep is the total cosmic fluid energy density. We have in
addition the usual equation of conservation for the energy- 3\ote that the nonzero 4D Ricci scalar on the brane makes a

momentum tensor of the cosmic fluid given by seemingly negative contribution to the brane tengith6]. In this
case, we consider a nonfluctuating brane which is placed at the
p+3H(p+p)=0. (18 R/Z, orbifold fixed point.
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w, being a constant one gets from EqQ.(18) p, Q.
=pla~3(*wa) (with p® being a constait The Friedmann 0.7 _
equation(17) can be rewritten in terms of the redshift-k bie bane -7
=a,/a as follows: 0.6 1o big bang -
0.5 _ -7
H2(2)=H§{Qk(1+2)2+ Ve, 0.4 - g
e
2 0.317
+ \/Qrc+§a: Qa(1+z)3<1+wa>) ] (20) -
closed
where the sum is over all the components of the cosmic fluid. 0.1} open
In the above equatiof), is defined as follows: Qs
0 0.2 0.4 0.6 0.8 1
o= %, (21) FIG. 1. Different possibilities for expansion as a functiorfyj;
3MpHga, @ and ), . The solid line denotes a flat universe=<(0), with Q,_
_ o obtained through Eg(28). The universes above the solid line are
while Oy is given by closed k=1), the universes below are opek={—1). The uni-
K verses above the dashed line avoid the big-bang singularity by
- bouncing in the past.
U= o (22 gimiep
GEN)

which differs from the conventional relation
and ch denotes

QK+QM+QX:1' (27)
1 .
= For a flat universeQ,=0) we get from Eq(26)
Qrc m (23) )

1-Qy

In the rest of this paper, as far as the cosmology of our model fo( 2 and Qrc< 1. (28)

is concerned, we will consider a nonrelativistic matter with

densityQ)y, , in which case Eq(20) read$ This shows in particular that for a flat univerﬁec is always

5 5 5 52 smaller thanQ)y; nevertheless, as will be seen below, the
HA(2) =Ha{Qu(1+2)"+ [ QO + QO +Qu(1+2)7]F. effects ofQ,_and(y can be quite similar. Figure 1 shows
(24 the different possibilities for expansion as a function(hj

We can compare this equation with the conventional Friedf’mdﬂfc'

mann equation
IV. COSMOLOGICAL TESTS
205 — 142 2 3 3(1+wy)
HA(2) =Hol (1 +2)"+ Qu(1+2)°+ 0x(1+2) ;- We would like to discuss now, in a qualitative way, a few
(25) cosmological tests and measurements. We do not expect that

Here, in addition to the matter and curvature contributiondn€ current experimental precision will enable us to discrimi-
we have included the density of a dark energy componerﬁ'ate between the predictions of our model and those of stan-
O, with equation of state parametsr, . Whenwy = — 1, the dard cosmology. However, future measurements might en-

dark energy acts in the same way as a cosmological constait?/€ one to do so.

and the correspondin€ly will be denoted as), in the In order to compare the outcome of our model with vari-
following. Comparing Eés(24) and (25) we seeAthatQ ous cosmological tests we need first to summarize some re-
. .

ts similarlv(but not identicall i belowo sults. In the FLRW metri¢14), we define, as usuéee, e.g.,
acts similarly(but not identically, as we will see belowo @ |19} the transverseH -independent(dimensionless co-
cosmological constant.

o moving distanced,, :
The z=0 value of Eq.(24) leads to the normalization 9 M

condition Sk(\/mdc) f ouro
Qe+ (VO _+Q +Qy)?=1, (26) duy= VIQy (29
dc, if Q,=0,

“Notice that we have set the cosmological constant on the brane t\gheredc is defined as follows:
zero, and will do so until the end of this work since we are inter- , dx
ested here in producing an accelerated universe without cosmologi- d~= f Ho—— (30)
C OH .
cal constant. 0 (x)
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FIG. 3. Plot ofd, (2)/d[*(z) for various models of dark energy
FIG. 2. Luminosity distance as a function of redshift for ordi- with constant equation of state parametessin standard cosmol-
nary cosmology with),=0.7, Qy=0.3,k=0 (dashed ling 1,  ogy (solid lineg as compared with the outcome of the model con-
=0, Qy=1, k=0 (solid ling), with dark energy with(2x=0.7,  sidered in this papddashed and dotted linesAll plots correspond
wy=—0.6, {1,=0.3, k=0 (dot-dashed ling and in our model to flat universes with2,,=0.3 (solid lines and dotted lie and
(dotted ling with Qy=0.3 and a flat universior which one gets  (),,=0.27 (dashed ling
from Eq.(28) Q, =0.12 andr.=1.4H*].

a dark energy component withi,>—1 (or more properly

From the expression fod,, one gets thgHg-independent with a z-dependentv, : see below

and dimensionlegs luminosity distance d; and the
(Hp-independentangular diameter distanak, given by
B. Comparison with dark energy
d =(1+2)dy, (31
We want to compare here the predictions of our model to
dy those of standard cosmology with a dark energy component.
dA:m' (32 Let us first do so for a dark energy component of constant
Wy . For this purpose we choose a reference standard model
These definitions can be used on the same footing both igiven by standard cosmology with the paramet@rs=0.7,
standard and in our cosmological scenarias they stand y=0.3, andk=0 (and denote the associated quantities
above, they rely only on the geometry of the four- with the superscript “ref,” e.g.d[*). Figures 3 and 4 show,
dimensional universe experienced by the radiation, which isespectively, the luminosity distanak (z) and d(z2)H(z)
the same in both casesThe only difference is due to the (Alcock-Paczynski test, see, e.f21]) for various cases.
expression foH(z) which enters the definition adc; one One can also mimic the acceleration produced in our
should choose either EqR5) or Eq. (24) depending on the model by allowing a-dependent equation of state parameter
case considered. Whenever we want to distinguish betweent"(z) in the standard Friedmann equations. Indeed, the stan-
the two models, we will put a tilde on the quantities corre-dard Friemann equatiofi9) with a dark energy component
sponding to our modele.qg.,d, ). of a z-dependent equation of state paramwﬁff(z) reads as
follows:

A. Supernova observations

The evidence for an accelerated universe coming from de(2)H(2)/H™ (2)dg7 (2)
supernovae observation relies primarily on the measurement 1.
of the apparent magnitude of type la supernovae as a func-
tion of redshift. The apparent magnitudeof a given super-
nova is a function of its absolute magnitudd, the Hubble
constantH,, and d, (z) (see, e.g.[20]). Considering the 1.
supernovae as standard candles,is the same for all super-
novae and so i$l,; thus, we need only compang (z) in
our model with that in standard cosmology. Figure 2 shows
the luminosity distancel, as a function of redshift in stan- 0.
dard cosmology(for zero and nonzero cosmological con-

stan} and in our model. This shows the expected behavior: FIG. 4. Plot of H(2)dc(2)/H™(2)d®(2) (Alcock-Paczynski

our model mimics the cosmological constant in producingesy for various models of dark energy with constant equation of
the late time accelerated expansion. However, as is also agete parametersy in standard cosmologysolid lineg as com-
parent from this plot, for the same flat spatial geometry anghared with the outcome of the model considered in this paper
the same amount of nonrelativistic matter, our model doegdashed and dotted lingsAll plots correspond to flat universes,
not produce exactly the same acceleration as a standard cagith Q,,=0.3 (solid lines and dotted lineandQ,,=0.27 (dashed
mological constant, but rather mimics the one obtained fromine).
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0.3 / da(z = 1100)
Qr, 1.04
0.25 1.02
0.9 -0.8 -0.7 ~~0.6 -0.5 <-0.a X

0.2
0.98
0.96

0.15
» 0.94

FIG. 6. Angular diameter distana#, at z=1100 of standard

cosmology divided byi,(z=1100) in our model, as a function of
wy for a flat universe and),,=0.3.

(which should not be too much of a surprise, considering the
similarities between early cosmology in the two models, as
well as between the luminosity distance vs redshift rela-
FIG. § Solid lines are lines of equal luminosity distariteour  tiong). The solid lines of Fig. 5 are lines of constait at
mode), d(z=1)/d*(z=1), at redshiftz=1; the contours are redshiftz=1: the dotted lines are lines of constaff,,d,
drawn at every 5% level. The dashed line corresponds to a flat redshiftz= 1100. This latter quantity roughly sets the po-
universe. The dotted lines are the lines of equyda(z) for 2 sition of the first acoustic peak in the CMB power spectrum,

=1100; the contours are drawn at every 5% level. since its inverse measures the angular size on the sky of a
physical length scale at last scattering proportional &2
H2(2)/H3=Qy(1+2)%+ Qu(1+2)° (as is at first approximation the sound horizon at last scatter-

ing). Finally, Fig. 6 shows the angular diameter distadge
(33  atz=1100, of standard cosmology, divided ol in our
model, as a function ofvy, for a flat universe andly,

. o ) ) =0.3. This shows that, for the same content of mated a
Requiring thatH(z) in this expression equald(z) in Eq.  flat universg, the first Doppler peak in our model will be

+ 0y ex 3[2[1+we“( ) dy
X 0 X y 1+y .

(24), one finds the following formula fow§'(2): slightly displaced toward the small multipoles in comparison
with the one obtained in standard cosmology with a pure
WS'(2)={[ 4Q,_ 1Qu(1+2)3+4][ O, IQy(1+2)° cosmological constant.
+Q [Qy(1+2)%+1]} -1, (34) V. CONFRONTING UNCONVENTIONAL

4D THEORIES OF GRAVITY

with Q, , Qy, and Q, subject to the constrain26). At . " . . -
oo =M k ) nes) One might wonder whether it is possible to obtain a simi-

. ef-f .
large redshiftsvy” tends toward-1/2, reflecting the fact that 3¢ cosmological scenario in purely four-dimensional theory
the dominant term in Eg/(224) (after matter and curvature py inroducing additional generally covariant terms in the
terms redshifts as (¥2)” at largez At low z however,  Ejnstein-Hilbert action. The conventional local terms that

ff .
wy' decreases toward ar(),{y)-dependent asymptotic can e added to the 4D theory contain higher derivatives:
value. For a flat universe the latter is simply giveny

—1(1+Qp). R?
The preceding discussion shows also that with precision M2 R+ e 35
tests one should be able to discriminate between our model ] am ' @9

and a 4D scenario with a pure cosmological constant.

Whatever the origin of these terms might be, their contribu-
tions should be suppressed at distances bigger than a milli-
It is well known that in standard cosmology the location meter. That is required by existing precision gravitational
of points of constant luminosity distance at snmi degen- measurements. This implies that at distances of the present
erate in the plane(,,,Q,). This degeneracy can be lifted Hubble size their contributions are even more suppressed.

through cosmic microwave backgrouf@MB) observations. For instance, the requirement that the contribution ofRke
Figure 5 shows that this is the case in our model as welterm to the Newtonian interaction be subdominant at dis-
tances around a centimeter implies that the relative contribu-
tion of theR? term at the Hubble scale is suppressed by the
SFor 0, =0.3 andk=0, we" at low z tends towards-0.77 ex-  factor (cnfHg)~10 ¢ The contributions of other higher
plaining some features of Figs. 3 and 4. terms are suppressed even more strongly.

C. Cosmic microwave background
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It seems that the only way to accommodate this unusual E3 max )
behavior in a would-be pure 4D theory of gravity is to intro- I~ IVER fo dm|¢m(0)[%, (40
(5)

duce terms with fractional powers of the Ricci scalar, for
instance, the terrfgR. However, it is hard to make sense of
such a theory. u

Therefore, we conclude that the scenario discussed in th
previous sections is intrinsically a high-dimensional one.

Here the integration goes over the continuum of bulk states
to the maximum possible mass that can be produced in a
iven processmy,,~E. However, since heavier wave func-
tions are suppressed on the brane by a factmzﬂé’, the
integral is effectively cut off am~ 1/r., which gives for the

VI. CONSTRAINTS rate

In our framework such a low five-dimensional Planck 3 3
scale is compatible with all the observatid@. In fact, at I~ EE E (41)
distances smaller than the present horizon size the brane ob- M(35)rC M3
server effectively sees a single 4D graviton which is coupled
with the strength M p, (instead of a 5D graviton coupled by This is in agreement with E¢37) and in fact coincides with
the strength M?éz)) the rate of production of a single four-dimensional graviton,
As shown in[8] the high-energy processes place essenwhich is totally negligible. Thus high-energy processes place
tially no constraint on the scal#l(s. This can be under- no constraint on the scaM s [8].
stood in two equivalent ways, either directly in a five- For the same reason cosmology places no bound on the
dimensional picture, or in terms of an expansion in 4DscaleMs,. Indeed, the potential danger would come from
modes. the fact that the early universe may cool via graviton emis-
As was shown above, in five-dimensional language thesion in the bulk, which could affect the expansion rate and
brane observer at high energies sees a graviton that is indisause deviation from an ordinary FLRW cosmology. How-
tinguishable from the four-dimensional one; for short dis-ever, due to extraordinarily suppressed graviton emission at
tances the propagator of this graviton is that of a 4D theoryhigh temperatures, the cooling rate due to this process is
totally negligible. Indeed, in the radiation-dominated era, the

= 1 cooling rate due to graviton emission is
Galpy=0)= 5. (36) J 9
T3
Moreover, this state couples to matter with the strength F~W. (42)

1/M3,. Therefore in all the processes with typical momentum Pl

p<<1/r. the graviton production must proceed just as in 4D
theory. For instance, the rate of graviton production in a pro
cess with energ¥ scales as

At any temperature beloW p, this is much smaller than the
‘expansion rate of the universé~T?/Mp,. Thus essentially
until H~M(35)/M,23I (which takes place only in the present

g3 epoch the universe evolves as “normal.”
I~ M2 (37 The only constraint in such a case comes from the mea-
PI

surement of the Newtonian force, which impligd s

73 . - . . .
The alternative language is that of mode expansion. Front 10~ €V (this will be discussed in more detail elsewhere
the point of view of the four-dimensional brane observer a

single five-dimensional massless graviton is in fact a con- VII. DETERIORATION DUE TO DISSIPATION
tinuum of four-dimensional states, with masses labeled by a . . . .
parametemn: In the previous sections we established that classically the

asymptotic form of the 4D metric on the brane is that of de

Sitter space. Here we would like to ask the question whether
GLu(X,y)= f dm ()P (x). (38 this asymptotic form can be modified due to quantum effects.

This could happen if there is dissipation of the energy stored
The crucial point is that the wave functions of the massivein the expectation value of the 4D Ricci scalar into other
modes are suppressed on the brane as follows: forms which can either radiate into the bulk or be redshifted
away on the brane. Below we shall identify such a mecha-
nism of potential dissipation.

An observer in de Sitter space is submerged in a thermal
bath with nonzero temperature due to Hawking radiation
This is due to the intrinsic curvature term on the brane whicHrom the de Sitter horizon. The temperature of this radiation
“repels” heavy modes off the brane,22]. As a result their is T~H. The crucial point is that the energy stored in this
production in high-energy processes on the brane is veryadiation can dissipate into the bulk in the form of very long
difficult. Let us once again consider bulk graviton productionwavelength graviton emission from the brane. To estimate
in a process with energi (e.g., star cooling via graviton the rate of this dissipation we can use E4R) with T~H.
emission at temperature of orderE). This rate is given by The corresponding change of the brane energy density in the
[8] absence of other forms of matter and radiation is given by

|pm(y=0)|? (39

e
A+mer:
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dpes H3 in the future by an observer is finitghe same discussion
a9t = Mz et (43)  applies to any accelerating universe withl<w<—2/3,
Pl

where the equation of state [is=wp).
; Theories with infinite-volume extra dimensions might
whereps=M3(R) and the Hubble parameter can be written e : .
Per=Mp(R) P evade these difficulties. The reason is that the accelerating

as HZOC<R>' The corresponding decay time is huge, universe in this case can be accommodated in a space that is
~10%"sec. Therefore, the 4D metric eventually asymptotes P

to flat Minkowski space. Note the crucial difference from then0t _S|mply fo_ur-dlmen5|onal dS. In fact, as we argued In
. . revious sections, although the space on the brane looks like
conventional 4D de Sitter space, where the vacuum energ§

cannot dissipate anywhere due to the Hawking radiation. | nce) igtiro?igzzei:lotrhlg?rg]fit:]?:ssflﬁuv:ggaﬁ{m(%t\ziitz sgs; e with
our case the existence of the infinite-volume bulk is vital. P

Let us briefly discuss these issues. We start by counting
the number of degrees of freedom that are in contact with a
VIII. INFINITE VOLUME AND STRING THEORY brane-world observer. It is certainly true that an observer on

If the recent observations on the cosmological constant’€ Prane is bounded in the world-volume dimensions by a
are confirmed it may be extremely nontrivial to describe thedS horizon. However, there is no horizon in the direction
accelerated universe within string thed88,24). To briefly ~ transverse to the brane. Thus, any observer on a brane is in
summarize the concerns let us consider a generic theory Wimrawtatlonal_cqn_tact with infinite space in the bulk. In this
extra dimensions. Usually one is looking for a ground stat&@se, the infinite. number of bulk modes of higher-
of the theory with compactified or warped extra dimensionsdimensional gravitons participate in 4D interactions on the
In both of these cases there is a length scale that defines tREane[4.8]. Therefore, the number of degrees of freedom
volume of the extra space. This scale cannot be bigger than€ded to describe physics on the brane is infinite.
millimeter [25]. Therefore, at larger distances a conventional '€ problem of definition of th& matrix might be more
four-dimensional space is recovered. Astrophysical observaiubtle. Below we present the simplest possibility. The key
tions indicate that this latter asymptotes to a state of fourobservation is that the metrid3) in the bulk is nothing but
dimensional accelerated expansion similar to 4D de Sittef® metric of flat Minkowski space. Indeed, performing the
space. In this case the following two problems may emergdollowing coordinate transformatiof28]:

[23,24.

An observer in dS space sees a finite portion of the space 0 r2 1 1 a’ [a
bounded by an event horizon. In fact, the four-dimensional Yo=Al 722 - Ef t53d 3/
dS interval can be transformed into the form

du? Y'=AX,
dsjs= — (1 H22) A7+ Ty +U%d0,. (49
5 r? 1 a? [a

An observer is always inside a finite size horizon. As was Y =Al g7 1- 52|~ 5 | dtgmdl )
argued in[23] the physics for any such observer is described (45)

by a finite number of degrees of freed8n©On the other
hand, there are an infinite number of degrees of freedom iherer?= 77i].Xixi and 7;; =diag(1,1,1), the metric takes the
string theory and it is not obvious how string theory can beform
reconciled with this observation.
Another related difficulty is encountered when one tries to
define the string theor$ matrix on dS space. As we men-  ds?=—(dY%)2+(dY})2+(dY?)2+ (dY3)2+(dY®)2.
tioned above, we could think of dS space as a cavity with a (46)
shell surrounding it. This shell has nonzero temperature. ] o ] ]
Thus, particles in the cavity are immersed in a thermal batyhe brane itself in this cqqrdlnate system transforms into the
and, moreover, there are no asymptotic states of free particldg/lowing boundary conditions:
required for the definition of the& matrix. It was shown
recently that these problems generically perf2§,27 in
quintessence models of the accelerating universe. —(YO)2+(Y1)2+(Y2)2+(Y3)2+(Y5)2=m,
Both of these difficulties are related to the fact that in dS 0
space the comoving volume of the region that can be probed
YO(t,y=0)>Y5(t,y=0). (47)

Sindeed, the number of degrees of freedom inside the regiod Nerefore, the space to the right of the brane is transformed
bounded by the horizon is finite. Moreover, the physics of the ex0 Minkowski space with the boundary conditiof).
terior of the horizon can in principle be encoded into the informa-  On this space th& matrix could be defined, as there are
tion on the horizon. This latter, according to the Bekenstein-aSymptoticin andout states of free particles. The same pro-
Hawking formula, has finite entropy and, therefore, supports a finitecedure can be applied to the metric on the left of the brane.
number of degrees of freedom. However, the brane space-time being de Sitter, one encoun-
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