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Bounding the mass of the graviton using binary pulsar observations
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The close agreement between the predictions of dynamical general relativity for the radiated power of a
compact binary system and the observed orbital decay of the binary pulsars PSR+B8928d PSR
B1534+12 allows us to bound the graviton mass to be less thax Z06%° eV/c? with 90% confidence. This
bound is the first to be obtained from dynamic as opposed to static field relativity. The resulting limit on the
graviton mass is within two orders of magnitude of that from solar system measurements, and can be expected
to improve with further observations.
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[. INTRODUCTION markable agreement by altering the predicted orbital décay.
General relativity assumes that gravitational forces ardhis implies an upper limit on the graviton mass. A crude
propagated by a massless graviton. Current experimentaktimate of this bound is quickly obtained from dimensional
limits on the graviton mass are based on the behavior oénalysis. For a system with characteristic frequencgne
static gravitational fields. In particular, a nonzero gravitonexpects the effects of a graviton mass to appear at second
massm would cause the gravitational potential to tend to theorder in m/w, as in Eq.(1.1). For gravitational waves at
Yukawa formr~le™ ™', effectively cutting off gravitational twice the orbital frequency of PSR B19%36, requiring
interactions at distances greater than the Compton wavém/»)?<0.003 implies an upper limit of order
lengthm™? of the graviton. The absence of these effects in10"?° eV/c2. This is comparable to the best limit from solar
the solar systerfil] and in galaxy and cluster dynamii&3]  system observationsn<0.44x 10°2 eV/c? [1]. The pur-
thus provides an upper limit om. pose of this paper is to refine and make rigorous this esti-
In the dynamical regime, a nonzero graviton mass wouldnate.
produce several interesting effects. These include extra de- In Sec. Il we discuss linearized general relativity with a
grees of freedom for gravitational wavés.g., longitudinal massive graviton. The field equation and the effective stress
modeg, and propagation at the frequency-dependent speedensor for the metric perturbatiorigravitational wavesare
found. In Sec. Il we solve the field equations using Fourier
N e technigues, and derive the gravitational-wave luminosity of a
v=yl-myo®. (1. general slowly moving periodic source when the graviton is
massive. We apply this result to the observed orbital decay of
Recently, Will[4] and Larson and Hiscodls] have proposed the binary pulsars PSR B193+36 and PSR B153412 to
techniques for examining the latter effect with future obtain an upper limit on the mass of the graviton in Sec. IV,
gravitational-wave interferometer observations to place a@nd conclude with some brief comments in Sec. V.
limit on m. Here we present a new method of bounding the
graviton mass, which makes use of existing binary pulsar
observations. Our technique is based on the agreement be-Il. LINEARIZED GENERAL RELATIVITY WITH A
tween the observed orbital decay of the binary pulsars PSR MASSIVE GRAVITON
B1913+16 and PSR B153412 and the predictions of gen-
eral relativity [6—8]. This is the first bound ormm from
dynamic-field relativity to be accessible with existing obser-
vational data, and it provides a limit that is independent of
the Yukawa bounds. _ _ _ 9us=7thns  |h, <1 2.1)
The idea is quite simple. Consider the Hulse-Taylor bi- py ey Ry my
nary pulsar, PSR B191316, of which the observed decay

rate coincides with that expected from relativity to approxi-e adopt the convention that indices fof, are raised and
mat6|y 0.3%. A nonzero graViton mass would Upset this retowered using the Minkowski metric; e.g.,

In linearized general relativity one writes the metric as a
perturbation of the Minkowski metric:
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The linearized theory is defined by substituting Ej1) into  dom in the massive theory, which consist of the five helicity

the Einstein action, expanding in powershgf,, and keep-  states of the spin-2 field, plus an additional spin-0 compo-

ing only terms up to second order fin,, (giving field equa-  nent[10].

tions linear inh,,,). Imposing Eq.(2.7), the field equation may be simplified
We wish to examine an extension of linearized generato

relativity that includes a mass term for the graviton. We

choose the unique mass term for which the wave equation of (00— mz)ﬁwz —167T,,, (2.9

the linearized theory takes the standard form with an

h-independent source, and for which the predictions of massyhich is the familiar form of the wave equation for a mas-

less general relativity are recovered by settng:0 at the  sjye field. This will be very convenient for calculations of

end of the calculationssee[9,10] and the Appendix Fol- 44yitational radiation in the massive-graviton theory. As de-

lowing the procedure described above, we arrive at the actiof.yiped above, our mass term is the unique choice for which

the wave equation takes this standard form with an
h,, 4" A—2h PhEN £ 2R R h-independent source, and for which the prec_jictions of mass-
o K ‘ K less general relativity are recovered by setting-0 at the
1 end of the calculationésee[9,10] and the Appendix
h h*v— _hZ) } To analyze the energy content of gravitational waves we
- 2 need an effective stress tensor for metric perturbations. Ap-
(2.33  Plying Noether’s theoreni11] to the Lagrangian of Eg.
(2.39 we find

I d*x

" 64r

—h#h ,—327h,, TH +m?

where

v GW oL
h=h, . (2.3b) TRl = Sy P Tk

The first five terms are the linearized Einstein action and the 1
stress tensor source for the metric perturbations, while the =——
last term is our(phenomenologicalchoice of mass terrf9]. 32m
Linearized general relativity is regained by settimg=0. At .
linear order the stress tensor is assumed to be independentdgre the angular brackets denote an averaging over at least
h,., and conserved: one period of the gravitational wave. EquatiGh9) is iden-

tical in form to the usual effective stress tensor for gravita-

T v=0. (2.4  tional waves withm=0 [12].

ya%

huph? ,—3h b ). (2.9

aB,u

The field equations arise from requiring the action to be IIl. SOLUTIONS
invariant under variations of the metric perturbation; one
finds In linearized general relativity the field equatid@.8)
with m=0 has the general solutiqi 2]
Dh/ﬂ/_ h,u)\,)\v_ hv)\,)\,u,—i_ h,,uv+ nuvhpa,prr_ ﬂMth

—m?(h,,—$7,,h)=—167T,,. (2.5 gw(tj)zélf dSX'T'uV(t|__)|X_)|( |,x ). 3.
X—X

This rather cumbersome equation simplifies considerably
when expressed in terms of the trace-reversed metric pertugor 4 massive graviton Eq3.1) is no longer applicable,

bationsﬁw, defined by since the speed of propagation of the gravitational waves
is frequency dependent and so the retarded timex
1 is f d d d h ded
HMV: hu— > 70, (2.6) —x’ |/v(w) is different for each frequency component of the

wave. We evade this difficulty by solving E.8) in fre-

) . ) quency space, dealing with each frequency separately. A
The conservation of the stress tensor requires the divergeng

; - L fmilar analysis encompassing the radiation of general scalar
of both sides of Eq(2.9 to vanish. This implies that the 5.4 vector fields can be found fa3].

mass term itself must have vanishing divergence: In the frequency domain, the field equatih8 becomes

h.,=0. @7 (V2+[a)2—m2])T1_W(w|)Z)=—1677'~|'H,,(w|)2), (3.2

This is equivalent to the Lorentz condition of the massless ) ) _
theory. Here, however, it is not a gauge choice; rather, iwhere the tilde denotes the Fourier transform Frfdis the
represents the constraints provided by the equations of mé-space Laplacian. Equatiof8.2) is the inhomogeneous
tion and thus eliminates four of the ten independep} . Helmholtz equation; the retarded Green functi®g for this
The remaining six components represent true degrees of freequation is
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~ o alkx—x| _ L  xixk
Gr(w|Xix')= ———, 3.3 hool [ X) = M+ = (—ik)D; + — (—ik) T,
4ar|x—x'| I r 2r2
ik K
here ~ - ' o= X . L
W hOj(‘U|X): r _(_lw)Dj_E(_lk)(_lw)ljk}y
k=sgn w)w’—m? (3.9 (3.9
- . 4ek1
for |w|>m. (The wave numbek should not be confused  hj(w|x)= E(_iw)szk :

with a spatial indey. The retarded solution of Eq3.2) for

fixed w is then ~ =~ . .
@ whereM, Dj, I, are respectively the Fourier transforms

or Fourier coefficients of the mass, dipole moment, and
e vl 3y 1 & WVIES - > quadrupole moment of the source. Only the quadrupole
h‘“’(w|x) 16”] X' Gr(w|x:X )T‘“’(w|x ). 3.9 terms are relevant to us; the mass and dipole moments are

constant to linear order ih [the energy and momentum car-

In order to evaluate Eq3.5) we make use of the slow- ried away by the radiation field a@®(h?)]; henceM andD;
motion approximationwa< 1, with a the characteristic size contain only zero-frequency components and will not con-
of the source. With this assumption, and taking the observalribute to the radiation.
tion point far from the source regionr €|x|>|x|), the The rate of energy loss by the source can be found by

. ' integrating the outward gravitational-wave flux over a sphere
Green functionGg may be expanded for large One finds centered on the source:

w4l = - XX dE poi X
h;w(w|x): r f dSX/TILV(wlxr) 1+(—Ik)T Lz_a:f dQr TGIW? (3.10
x-x'\? a Let us assume the source is periodic with peffod hen the
+ = (—ik)? — 1+ 0| =, (wa)?]|. : S oy i i i
2 r metric perturbations ,,(t,x) in the time domain are related
(3.6  to their Fourier components, ,(w,X) via
In them=0 case one can W_rite the metric perturbat_ions due FW(UZ)= E ‘F]”W(wn ,)‘(’)e—iwnt, (3.11)
to a slowly moving source in terms of the mags dipole n=—o

momentD;, and quadrupole momert, of the source,

where o . 1p SN
h,(wn,X)= BJO dth,,(t,x)e'n, (3.12
_ 3
M—j d3x Tgo, 373 here
_ 2 31
Djzf d3xToox!, (3.7 @n=N"p (313

and the tilde now represents a Fourdeefficient Substitut-

B 3 ik ing Egs. (3.9 and (3.1)) into the expressiori2.9) for the
L= | d°XToox!x", 3.79 stress tensor of the gravitational waves the luminosity is
found to be
We can obtain an analogous result in the frequency domain, o 5 4

X . . . mw, ~ ~
using the conservation of the stress tensor to write the inte- L=Lagt 21 - n[ljk(wn)lj*k(wn)_ |tr] (wn)|2]

gral over:I"W in Eq. (3.6) in terms of the multipole moments
of the source. In the frequency domain the conservation

4
equation(2.4) for the stress tensor becomes +O(m?, (3143

where
_inOOZ aJTOI y _inOi:&jTij . (38)

©

2. ~ 2 -
Lor= o 2l ik (@) — = [trT(wp)[?
Using these relations and the slow-motion approximation, " nZl “n5 wl@n)ljiden) 15| (@n)l
one can show that (3.14b
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TABLE I. Orbital parameters and corresponding graviton mass bound from the two binary pulsar systems
whose gravitational wave induced orbital decay has been measured. Pulsar parameters are tdke8|;from

see alsd30]. One-sigma uncertainties are quoted far

PSR B1913-16 PSR B1534-12
Period 27907 s 36352 s
Eccentricity 0.61713 0.27368
A 0.32%* 0.35% —12.0%*+7.8%
Graviton mass 90% upper bound 9.50 20 eV/c? 6.4x10 20 eV/c?

is the usual general-relativistic expression for the radiated

power, trl is the trace oﬁjk, and we sum over repeated
indices. The quantity in the summation of E§.144 is the

first correction to the general-relativistic expression for the
radiated power due to a small nonzero graviton mass. Com-
parison of this correction to the observed orbital decay in

lx= ﬂdz CO§( 0),

lxy=lyx=nd? cog )sin(6),
(4.9

lyy= pmd?siré( ).

binary pulsars PSR B19%#3l6 and PSR B153412 will  The Fourier transform of the quadrupole moment of Keple-
provide us with a bound om. rian orbits is knowr{14]. For n>0

IV. BINARY PULSARS

The formula (3.14 for the energy-loss rate of a
gravitational-wave source when the graviton is massive is
easily applied to the orbital decay of binary systems. Con-

~ ,uaz
Ixx(@n)= F[Jn—Z(ne) —2eJ,_1(ne)+2eJ,1(ne)

—Jns2(ne)],

2

sider two bodies of masséd, and M, orbiting in thexy
plane with coordinategd; cos(),d; sin(d)), (—d,cos@),

Tylon) =i b (1-€)12[3,_(ne)~23,(ne)

—d, sin()). Choosing the origin to be at the center of mass,

one has
nd
d,= |V|_1 (4.19
_wnd
d2_ Mz, (41b)

whered is the orbital separation of the binary componejpts,
is the system’s reduced mass, avids its total mass,

dEd1+d2, (41@
MM,
=V (4.109
M=M,;+M,. (4.18

Assuming a Keplerian orbit, the motion is described by

_a(l-e?)
~ 1+ecog6)’ (4.2
_ a2\11/2
d0_[Ma(1 e9)] 43

@@

wherea is the semimajor axis anglis the eccentricity of the

+JIn2(ne)], (4.5
~ ,uaz 4
lyy(wn)z “on Jn-2(ne)—2eJ,_1(ne)+ ﬁ‘]n(ne)

+2eJ,,1(ne)—Jni2(ne)

where theJ, (x) are Bessel functions of the first kind. The
moments fom<0 follow from

Ti(w_n)=Th(wy). (4.6)

Combining these quadrupole moments with Eg.14)
provides us with an easy means to put a limit on the graviton
mass. For example, the orbital decay rate of the binary pulsar
PSR B1913-16 has been measured and found to be slightly
in excess of the predictions of general relatiVji6}. Denote

by P, the measured orbital period of the binary systérp,
the measured orbital period derivative ascribed to gravita-

tional radiation, and® g the instantaneous period derivative
expected owing to general-relativistice., zero graviton rest
mas$ orbital decay. Identify the fractional discrepancy be-
tween the observed and predicted decay rates:

P, P
A=—2_—CF 4.7)
Per

For a slowly decaying Keplerian binary, the instantaneous
period derivative is proportional to the energy-loss rate;

orbit. The nonzero quadrupole moments of this system arehence,

044022-4
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1000 ¢ T T T 3 graviton mass are more pronounced for lower-frequency
R ] gravitational waves, as in Eql.1). As a result, the ideal
I : : ] system for bounding the graviton mass is a binary with a
100 oo ¥ large orbital period and small eccentricity weak emitter of
E ] gravitational waves but which still has a measurable in-
] spiral rate.
. Equation(4.9), relating the squared graviton mass to the
] fractional discrepancy in the period derivativ¢or equiva-
[ 5 : ] lently by Eq.(4.8) the fractional discrepancy in the luminos-
1 i ity], assumes that this discrepancy is known exactly. In fact,
0 02 04 06 08 1 the period-derivative discrepancy is known only up to the
e errors associated with the measured changes in the binary
period and the acceleration of the binary relative to Earth. In
practice, the one-sigma uncertainty An(which is listed in
) ) Table )) is of the same order as the measured discrepancy
Pr,—Por L—Lgr and must be accounted for, as the acthalould reasonably
- ' (4.8 be expected to differ from the value derived from the mea-
surements by one or more standard deviations. Consequently,

whereL is the gravitational-wave luminosity inferred from We must describe the actual upper limit on the mass statisti-

P,, andLgg is the energy-loss rate expected from generaFa"y In the absence of detailed information we assume the
relz,itlwty This quantity has been measured for PSI:\,measured discrepanay to be normally distributed about its

Now suppose tha is due at Ieast' in part to a nonvan- unknownm?], and with standard deviation as given in Table

ishing graviton masgather than simply experimental uncer- . In_our mode| we relate the discrepancy to the squared
taintie3. Combining Eqs.(3.14 and (4.8), this implies an graviton mass, which must be non-negative. Referring to
upper limit to the squared graviton masé of [15], Table X, which lists the 90% unified upper limit/

confidence intervals for the non-negative mean of a univari-

Fle)

FIG. 1. Eccentricity factoF(e) [cf. Eq.(4.11)] versuse.

PGR LGR

o 2t \2p _p ate normal distribution based on a measured sample from the
m2< —F(e )( ) b _TCR (4.9  distribution, we calculate the 90% upper limit on tfreon-
S c?Pp/  Per negative graviton mass, which is given in the final row of
Table I.
whereF(e) is a function of the eccentricity, The best single limit on the graviton mass)<6.4

X 10 2% eV/c?, comes from the observations of PSR B1534
+12. This is despite the larger uncertainty in the measured

oo

Z 3T k(0 Th(@n) = [T (w)]?]

14 luminosity discrepancy, compared to PSR B1918, be-
Fle)=1—= : cause the luminosity discrepancy for PSR B1532 is
> n4[|jk(wn)|rk(wn)_ 1trT (wp)|2] negative. A negative discrepancy, taken as exact, would cor-
n=1 respond to a negative graviton mass, which is unphysical.

(4.10 Correspondingly, a negative measured discrepancy is par-

) . ticularly unlikely to arise from a positiven> compared to a
These sums can be performed using the techniqués4df vanishingm?, which leads to a tighter upper limit.

giving We may combine the two observed discrepancies to find a
73 37 single upper bound on the graviton mass. Each observiation
1+ —e24 —gb results in a discrepancy, and an associated one-sigma un-
F(e)= 24° 96 (4.1 certainty in the estimated discrepanay . These in turn
(1-e?)3 ‘ are related, through Eq4.9), with measurements aiZ,

together with associated one-sigma uncertaintigs The
The functionF(e) is plotted in Fig. 1. Note thaE(e) is  quantity

greater than or equal to unity; a nonzero graviton mass in-
creases the energy emission of Keplerian binaries, as one m2+ Bmz

. 1 2
would expect from adding extra degrees of freedom to the ml= —————= (4.1239
gravitational field. Figure 1 contains another lesson, as well. 1+p
Note that, for binaries of fixed period, stronger bounds arise
from binaries with smaller eccentricity. This dependence igs then a normally distributed random variable whose mean
easily understood. Binaries with large eccentricities havés the squared graviton mass and whose variance is
strong speed variations, as they move from periastron to api-

astron. These speed variations lead high-eccentricity binaries o2t 02
to produce the bulk of their radiation in ever higher harmon- o=t 72 (4.12b
ics of the orbital frequencyl14]. The effects of a nonzero (1+B)?
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Choosing tional discrepancy in the period derivative. For example,
5 when the observations of PSR B15342 improve limits on
_[91 A to the same level as is observed today for PSR B1913
B= (—) (4.120 ; ; .
o, the corresponding single-system bound on the graviton mass
o _ should improve to approximately>210~2° eV/c?.
minimizes the variance ah’: The field of gravitational-wave detection is new. We are
s only just now learning to exploit the opportunities it is cre-
02— 0103 4.12d ating for us. Within the next year, several large ground-based
o+ o2 ' interferometric detectors will begin full operatigd6-18,

and existing cryogenic acoustic detect¢t®—22 will see
Referring to Table | andl [15], Table X], the corresponding Significant improvements in sensitivity. Within the next de-
limit on the graviton mass from the combined observationade we should see further enhancements in the capability of

of PSR B1913-16 and PSR B153412 is thus all these instrument$23—-25, and the deployment of the
space-based interferometric detector LI84aser Interfer-
Mggy,< 7.6X 1072° eV/c?. (4.13  ometer Space Antennf26,27]. As gravitational-wave obser-
vations mature, we can expect more and greater recognition
V. DISCUSSION of their utility as probes of the character of relativistic grav-

ity. The opening of the new frontier of gravitational-wave

~ Table I gives the relevant parameters and the correspongshenomenology promises to be an exciting and revealing one
ing graviton mass bounds for the two binary pulsars whoseor the physics of gravity.

gravitational-wave induced orbital decay has been measured,

PSR B191316 and PSR _81534412 [6,_8]. The graviton ACKNOWLEDGMENTS

mass bounds from the timing observations of each system

are very similar, and about two orders of magnitude weaker The authors are grateful to Valeri Frolov, Matt Visser, Joel
than the Yukawa limit obtained from solar-system observa\Weisberg, Cliff Will, Alex Wolszczan, and Andrei Zelnikov
tions, m<4.4x 10 2?2 eV/c? [1]. Both of these bounds are, for helpful discussions. P.J.S. would like to thank the Natural
in turn, several orders of magnitude weaker than thafSciences and Engineering Research Council of Canada for
provided by observations of galactic clusterm;<2 its financial support. This work has been funded by NSF
X 10 2% eV/c?[2,3], although we regard these galactic clus-grant PHY 00-99559 and its predecessor. The Center for
ter bounds as less robust, owing to their reliance on assum&ravitational Wave Physics is supported by the NSF under
tions about the dark matter content of the clusters, for excooperative agreement PHY 01-14375.

ample. In contrast, the bound obtained here is very

straightforward and involves few assumptions, making it less APPENDIX: CHOICE OF MASS TERM

prone to error: the chief assumption that we have made is the
form of the effective mass term for the graviton, which—
while not unique—is natural. Furthermore, any other mas

term would be expected from dimensional arguments to yield" " . . . .
similar results. unigue choice possessing both of the following properties:

We have assumed that only measurement errors enter infd). e field equations for the metric perturbations can be

the determination of the intrinsic binary period decay rateVfitten in the standard form

Py. In fact, the determination of this rate requires an esti- (O-m?)h,,= — 16T

mate of the acceleration of the binary system, which is prin- r e

cipally toward the galactic cent¢8]. This, in tumn, depends where the sourc@% is a local function of the stress tensor

on an accurate distance measurement to the binary systelh( is independent df,,, ; and(2) taking the limitm—0 in

which can be difficult to make. A systematic error in this the massive theory recovers the predictions of general rela-

distance estimate leads directly to an error in the es_timateglvity_ The first property is practical, while the second is nec-

acceleration of the binary and, in turn, to an error in he  essary for agreement with experiment.

ascribed to gravitational radiation induced decay of the bi- The field equation foh,,, for generalx is

nary system. The large uncertainty in the discrepahcys-

sociated with PSR B153412 may well be due to an under- Oh,,—h, >y, —h> . +h,,+7,,0°7  —n,0h

estimate of the distance to this binary systg8h in which ) B _

case the bound om? would be even tighter. MR = K 7,,0) = = 16T, (A2)
The bound described here arises from the properties ofpe divergence of both sides of EGA2) must be equal,

dynamical relativity, making it conceptually independent Ofimplying

either the solar system or galactic cluster bounds on the

graviton mass, which are based on the Yukawa form of the h#” = kht, (A3)

static field in a massive theory. Furthermore, we expect im- '

provement in the bounds from any given pulsar system a3aking the trace of the field equation and using this diver-

observations improve the accuracy of the measured fragence condition gives the trace condition

The most general mass term possible for the linearized
gction (2.33 is proportional to[h,,, h*"— x(h”,)?], with «
@n arbitrary constant. Here we demonstrate ihat; is the

(A1)

044022-6



BOUNDING THE MASS OF THE GRAVITON USING . .. PHYSICAL REVIEW [B5 044022

2(1- k)Oh+(1-4xk)m?h=167T",. (A4) ) 1
(O—m?)h#r=— 1677( =3 nﬁWTQ) . (AB)
We see thah can be written as a local function of the stress
tensor only ifk=1.
Substituting the trace and divergence conditions into th
field equation gives

which is equivalent to Eq(2.8). For k=1 (the Pauli-Fierz
mass term used by Boulware and DelgHl|) we can use the
Yrace condition/A4) to rewrite the term in square brackets as
a local function of the stress tensor, yielding

T,uv_l AT My LT N pv
37 3m2 A

1
(D—mz)hW=—1ew(TW—EWWTQ) (O-m?)h*=—167

1 (A7)
ho#v+ Eﬂ“”mzh}, (A5)  which is also of the desired forrfAl). It is well known,
however, that the predictions of the=1 theory do not re-
duce to those of general relativity fon—0: this is the van
which is of the desired fornfAl) except for the term in  Dam-Veltman—Zakharov discontinuif28,29. We are thus
square brackets. The latter can be removed only for two spéed to the choicex=3 and the massive graviton theory de-
cial values ofx. For k=3 the coefficient vanishes, leaving scribed by Eq(2.33.

+(2xk—1)
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