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Binary black holes in circular orbits. II. Numerical methods and first results
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We present the first results from a new method for computing spacetimes representing corotating binary
black holes in circular orbits. The method is based on the assumption of exact equilibrium. It uses the standard
3+1 decomposition of Einstein equations and conformal flatness approximation for the 3-metric. Contrary to
previous numerical approaches to this problem, we do not solve only the constraint equations but rather a set
of five equations for the lapse function, the conformal factor and the shift vector. The orbital velocity is
unambiguously determined by imposing that, at infinity, the metric behaves like the Schwarzschild one, a
requirement which is equivalent to the virial theorem. The numerical scheme has been implemented using
multi-domain spectral methods and passed numerous tests. A sequence of corotating black holes of equal mass
is calculated. Defining the sequence by requiring that the ADM mass decrease is equal to the angular momen-
tum decrease multiplied by the orbital angular velocity, it is found that the area of the apparent horizons is
constant along the sequence. We also find a turning point in the ADM mass and angular momentum curves,
which may be interpreted as an innermost stable circular @8@0). The values of the global quantities at the
ISCO, especially the orbital velocity, are in much better agreement with those from third post-Newtonian
calculations than with those resulting from previous numerical approaches.
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[. INTRODUCTION We use the standard+3l decomposition of the Einstein
equationg 3]. We restrict ourselves to a space metric that is
Motivated by the construction of several gravitational conformally flat, i.e., of the form

wave detectordLaser Interferometric Gravitational Wave

Observatory (LIGO), GEO600, TAMA300 and VIRGD y="V%, )

great efforts have been conducted in the past years to com-

pute the waves generated by binary black holes. We preyhereW is a scalar field andl denotes the flat 3-metriet].

sented in Ref[1] (paper ) a new method for getting quasis- | et us mention that the exact spacetime should differ from

tationary spacetimes representing binary black holes igonformal flatness and that this assumption is only intro-

circular orbits. See also paper | for a review on issues andyced for simplification and should be removed from later

previous works in this field. . works. However it is important to note that it is consistent
The basic approximation is to assume the existence of ajth the existence of the helical Killing vector and the as-
helical Killing vector sumption of asymptotic flatness. The ten Einstein equations
then reduce to five equations, one for the lapse fundiipn
| = i i (1) one for the conformal facto¥ and three for the shift vector
o o 5 (see paper | for the derivatian

wheredl gty (dldeg) is a timelike (spacelike vector which ar R A= —

coincides asymptotically with the time coordingézimuthal AN=NW*A;A" —2D; In WD'N ©)
coordinate vector of an asymptotically inertial observer. Ba-

sically, it means that the two black holes are on circular B —

orbits with orbital velocityQ) [2]. This is of course not exact Ap'+ §D'Djr5’J =2A"(DjN=6ND;In¥) (4)
because the emission of gravitational waves will cause the

two holes to spiral toward each other. But this is a valid 5

app_ro_ximqtion as long as the time scale_of the gravitati(_)nal AV = — q;Ai_Aij (5)
radiation is much longer than the orbital period, which 8" "

should be true, at least for large separations. The existence of

| enables us to get rid of any time evolution. whereD; denotes covariant derivative associated viitind
A:=D,DX the ordinary Laplace operatok/ is the reduced

insi i All s\ AKii
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(LB)"I denoting the conformal Killing operator applied to a
the shift vector \P2N~1+r—2 when r—oo. (14)

L= = 2 . . .
(LB)1:=D'BI+ DI — -D, Bl (7) In other words,() is chosen so that the Arnowitt-Deser-
3 Misner (ADM) and the “Komar-like” masses coincides,

Equations(3), (4), and(5) are a set of five strongly elliptic those masses being given by

equations that are coupled. To solve such a system, we must 1 _

impose boundary conditions. To recover the Minkowski MADM=—2—§; D'¥dSs (15
spacetime at spatial infinity, i.e., asymptotical flatness, the T Je

fields must have the following behavior:

1 —
N—1 when r—oo (8) M komar= 47 j;mDINdS' (16
o d As shown in[13] and in paper | this is closely linked to the
ﬁ—’Q(;_‘PO when r—o (9 virial theorem for stationary spacetimes. We will see later
that this uniquely determines the orbital velocity, and that
¥_1 when 1. (10)  this velocity tends to the Keplerian one at large separation.

This paper is organized as follows. Section Il is dedicated

As we wish to obtain solutions representing two blackto the presentation of the numerical scheme, that is based on
holes and not Minkowski Spacetime’ we must impose a nonmulti-domain spectral methods. In Sec. Il we present some
trivial spacetime topology. In paper |, we define the topologytests passed by the code, which encompass comparison with
to be that of the real lin& times the 3-dimensional Misner- the Schwarzschild and Kerr black hole and the Misner-
Lindquist manifold[5,6]; this defines two throats, being two Lindquist solution[5,6]. In Sec. IV we present results about
disjointed Spheresl andSz of radii a, anda27 centered on a sequence of binary black holes in ercular Orb'itS. In par-
points (x;,0,0) and &,,0,0) (such that|x;—X,|>a;+a,). tlcular we Iocate the_: innermost stable cm_:ular o_rblt and com-
Following Misner [5], Lindquist [6], Kulkarny et al. [7], pare its location with other works. Section V is concerned
Cook et al. [8—10] and otherd11,12, we demand that the with extension_ o_f this work, for getting more complicated
two sheets of the Misner-Lindquist manifold are isometric.and more realistic results.
Moreover we choose the lapse functidrto be antisymmet-
ric with respect to this isometry. We solve the Einstein equa- Il. NUMERICAL TREATMENTS
tions only for the “upper” sheet, i.e., only for the space . )
exterior t)cl) the throatsF,)F:Nith boundary conditions given by A. Multi-domain spectral methods

The numerical treatments used to solve the elliptic equa-

N|51=O and N|32=0 (11)  tions presented above is based on the same methods that we
already successfully applied to binary neutron sta/. The
,5'| 5,=0 and .5'|sz=0 (12) sources of the equations being mainly concentrated around

each hole we use two sets of polar coordinates centered
around each throdsee Sec.)l Note however that the ten-
=0 sorial basis of decomposition is a Cartesian one. For ex-

ample, a vector field/ will be given by its components on
(13)  the Cartesian basisV(,V,,V,) but each component is a
function of the polar coordinates @, ¢) with respect to the
wherer,; andr, are the radial coordinates associated withcenter of one hole or the other.
spheress; andS,. Equationg11) reflect the antisymmetry of We use spectral methods to solve the elliptic equations
the lapse functiorN. The boundary conditions for the shift presented in Sec. I; the fields are given by their expansion
vector, given by Eq912), represent two black holes @oro-  onto some basis functions. Mainly, we use expansion on
tation (rotation synchronized with the orbital motiprwhich  spherical harmonics with respect to the anglése) and
is the only case studied in this paper. Those boundary corchebyshev polynomials for the radial coordinate. Let us
ditions should be easily changed to represent other states afention that there exists two equivalent descriptions: a func-
rotation (like irrotation). Equations(13) come from the tion can be given in theoefficient space.e., by the coeffi-

A
ary - 2r

S

isometry solely. cients of its spectral expansion, or in tbenfiguration space
The orbital velocity() only appears in the boundary con- by specifying its value at some collocation poift$)].
dition for the shift[see Eq.9)]. Equations(3), (4), and(5) The sources of the elliptic equations being non-compactly

can be solved for any value d2. So we need an extra supported, we must use a computational domain extending to
condition to fix the right value fof). This is done by im- infinity. This is done by dividing space into several types of
posing that, at spatial infinity, the metric behaves like adomains:

Schwarzschild metric, i.e., by imposing th#?N has no a kernel| a sphere containing the origin of the polar coor-
monopolar term in 1/ dinates centered on one of the throats;
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several sphericahellsextending to finite radius; the regularity at the origin by boundary conditions on the
a compactified domaiextending to infinity by the use of spheresS; and S, and to solve only for the part of space
the computational coordinate= 1/r. exterior to those spheres. In R¢L8] we have shown that,

This technique enables us to choose the basis function dor each couple of indicesl (m) of a particular spherical
that the fields are regular everywhere, especially on the roharmonic, we can calculate one particular solution in each
tation axis and to impose exact boundary conditions at infindomain, two homogeneous solutions in the shells and only
ity. This has been presented with more details elsewherene in the kerne(due to regularity and one in the external
[14,16—18. Note that since the last domain extends to spacedomain(due to boundary condition at infinityThe next step
like infinity, the surface integrals defining global quantities,was to determine the coefficients of the homogeneous solu-
such as Eqgs(15) and (16), can be computed without any tions by imposing that the global solution@s at the bound-
approximation. This contrasts with other numerical methodsries between the different domains.
based on finite domaingcf. e.g., Ref.[19] and Fig. 1 In the case of a single thro& the boundary condition is
therein. As two different sets of coordinates are used, onegiven by a function of the angles solely, i.&(6,¢). One
centered on each hole, we are left with two computationalvishes to impose that the solution or its radial derivative is
domains of this type, each describing all space and so oveequal toB on the sphere which corresponds respectively to a
lapping. Dirichlet or a Neumann problem. We choose the kernel so

The sources of the equations being concentrated arourtélat its spherical boundary coincides with the throat. So we
the two throats, we wish to split the total equatidbg (4) do not solve in the kernel with represents the interior of the
and (3) into two parts, each being centered mainly aroundsphere.B is expanded in spherical harmonics and for each
each hole and solved using the associated polar coordinatesuple (,m), we use one of the homogeneous solution in the

set. So an equation of the tyge= =G will be split into first shell to satisfy the Dirichlet or Neumann boundary con-
dition. After that we are left with one particular solution in
AF1=G, 17 every domain, one homogeneous solution in the innermost

B shell and in the external domain and two in the other shells.
AF,=Gy, (18) The situation is exactly the same as when a solution was

with F=F,+F, andG=G,+G,. G, is constructed to be sought in all space and the coefficients of the remaining ho-
) a

mainly concentrated around haeand so well described by mogeneous solutions are chosen to maintain continuity of the

polar coordinates around this hole. Therefore, the solve olution and of its first derivative. So the generalization of
equations are ’ ' e scheme presented 7,18 is straightforward and en-

ables us to solve either the Dirichlet or Neumann problem,
R with any boundary condition imposed on the throat.
AN,=NW*A;Al - aDhlraDjN (19
2. Vectorial Poisson equation solver with boundary condition
N_ on a single throat
EDj\I’a (20 We presented extensively two different schemes to solve
the vectorial Poisson equatidd) in all space in[18] (the
w5 Oohara-Nakamurg20] and Shibata[21] schemes We
AV ,=— ?AijAg : (2)  present here an extension of the so-called Oohara-Nakamura
scheme to impose boundary condition a throat and to solve
where the values with no index represent the total values an@nly for the exterior part of space. The Shibata scheme has
the values with indesa represent the values “mostly” gen- NOt been chosen because, the solution being constructed from
auxiliary quantities, it is not obvious at all to impose bound-
ary conditions on it. This is not the case with the Oohara-
Nakamura scheme where the final solution is calculated di-

Doing so, the physical equations and sources are given By s the solution of three scalar Poisson equations. More
the sum of Eqgs(21), (20), and(.ls.)) fora=1 anda'—2. .For precisely the solution ofcf. Eq. (20)]
more details about such a splitting of the equations into two

parts we refer tg14].

o1 o[ —
ABL+ §D'DJ-BJa=2A”( D;N,—6

erated by holea(a=1 or 2). For example, we havEN
=D;N;+D;N,, D;N, being concentrated around hade

AB'+\D'D;I=V' (\+-1) (22)

B. Elliptic equations solvers ) ) ) )
is found by solving the set of three scalar Poisson equations
1. Scalar Poisson equation solver with boundary condition

on a single throat i i =
. . . : Ap'=V'=\D'y, (23)
Using spectral methods with spherical harmonics, the
resolution of the scalar Poisson equation reduces to the in-
version of banded matrices. We already presented in detaif¥
in [17,18 the methods to solve such equations in all space,
imposing regularity at the origin and exact boundary condi- Ay= 1 DV 2
. 9 , X=1,DiV. (24)
tion at infinity. In the case of black holes we wish to replace

here y is solution of

A+1
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Let us mention that this scheme should only be used with &y means of the scalar Poisson equation solver described in

sourceV that is continuous. We use the scalar Poisson equa>€C. || B 1. Doing so, the total solutidh=F;+F, does not
tion solvers with boundary condition previously described tofulfill the boundary condition$29),(30). So we calculate the

solve for each Cartesian component of E3) with the
appropriate boundary conditions. But let us re¢sée[18])
that the Oohara-Nakamura scheme is only applicable if

x=Di8 (25)
and that it only ensures that
A(x—D;g")=0. (26)

One can easily show that ER6) implies Eq.(25) if and
only if

X|s:5iﬂi|5a (27)

values of F; on the sphereS, and modify the boundary
condition (34) by B,= BZ—F1|52. The same modification is
done with the boundary conditiai33). Then we solve once
again forF, andF,. The whole procedure is repeated until a
sufficient convergence is achieved. So we are left with a
functionF which is solution of the Poisson equati#8) and
which fulfills a given Dirichlet-type boundary condition on
two sphereg29),(30).

The same thing can be done for the Neumann problem by
modifying the boundary conditions using the radial deriva-
tives of the functiond-,. The same technique is applied for
the vectorial Poisson equation. Let us mention that the itera-

tion on the boundary conditions fq@, resulting from the
presence of the two spheres, is done at the same time than
the one on the quantity resulting from to the Oohara-

which is the boundary condition we must impose during theyakamura schemésee Sec. 11B 2

resolution of Eq(24) to use this scheme. Let us mention that

x being calculated before?, we must use some iterative
procedure. We first solve E4) with an initial guess of the

boundary condition and then determifge by solving Eq.

4. Filling the interior of the throats

As seen in the previous section, we can solve elliptic
equations with various boundary conditions in all the space

(23). Using that value, we can determine a new boundargXterior to two non-intersecting spher& and S,. But a

condition for y, using Eq.(27), and so a nevg. This proce-

dure is repeated until it has sufficiently converged. The ob
tained,é is then solution of the vectorial Poisson equation

problem arises from the iterative nature of the total numeri-
cal procedure. Suppose that after a particular step the lapse

N=N;+N, has been calculated by means of the two Pois-

son equation$19). From the very procedure of the elliptic

with either a Dirichlet or Neumann type boundary conditionsolvers, N; (N,) is known everywhere outside sphere

on the spher&.

3. Elliptic solvers with boundary conditions on two throats

S, (S,). If the next equation to be solved is the one for the
shift vector split like Eq(20), N appears in the source term.
We need to know the source everywhere outside the associ-

In order to illustrate how boundary conditions are put on@t€d spheres;(a=1,2) which includes the interior of the

the two sphere§,; andS,, let us concentrate on the Dirichle
problem for the scalar Poisson equation. One wishes to sol

AF=G, (28)

with the boundary conditions
Fls,=Ba(f1,¢1) (29)
Fls,=Ba(62,¢2), (30)

where B; and B, are arbitrary functions. As explained in

Sec. Il A, the total equation is split into two parts
AF]_:G]_ (31)

AF2:G2, (32)

the equation labeleéd=1 or 2, being solved on the grid

centered around hola so that the spher8, coincides with
the innermost boundary of the first shell.

During the first step we solve Eq&81) and(32) with the
boundary conditions

Fils,=B1 (33

Fals,=B: (34)

t other sphere. So we must construct fields that are known in
Vtge all space. After each resolution, the fields are filled as

smoothly as possible inside the associated sphere. In our ex-
ample, after the resolution of E¢L9), N; andN, are filled
inside the spheres, so that the total functidnis known
everywhere.

The filling is performed, for each spherical harmonic
(I,m), by the following radial function:

(3r*=2r%(a+ pBr?) if 1 is even,

(3r*=2r8(ar+ Brd) if | is odd,

where the coefficienta and 8 are calculated so that the
function isC? across the spher§,. The multiplication by
the polynomial (34— 2r®) ensures that the function is rather
regular at the origin. Of course this choice of filling is not
unigue and the final result should be independent of the fill-
ing procedure, the fields outside the spheres depending only
on the boundary conditions on those spheres. The choice of
filling may only change the convergence of the numerical
scheme. Let us stress that even if the fields are known, regu-
lar andC! everywhere, they have a physical meaning only
outside the throats. The filling is only introduced for numeri-
cal purposes.

C. Treatment of the extrinsic curvature tensor

1. Regularization of the shift

When one imposes corotation for the two black holes, that
is a vanishing shift vector on the throats, isometry conditions

044021-4
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(59), (60), and(61) of paper | are trivially satisfied. Unfor- As seen in paper |, the regularity is a consequence of the

tunately this is not the case for Eq62) and(63) of paper I.  equation

We must find a way to impose that
ap? B

=0 and—
ar ar

D,8'=—-68D;InV. (41)

-0 (35)

s Because this equation is not part of the system we choose to
1

5 solve, we do not expect that the correction function is exactly
in order to get a truly isometric solution. zero at the end of a computation. But we will verify in Sec.

Another problem comes from the computation of the re-V B 1 that it is only a small fraction of the shift vectéless
duced extrinsic curvature tensdi! by means of Eq(6). than 10 %), fraction which represents the (_jeV|at|_0n from Eq.
Because of division b}=0 on'S, and$S,, we must impose (41) (see also Ref[22] for an extended discussiprVore-
that over, we will see in Sec. Il B thgB.,, converges to zero for

B - a single rotating black hole.
(LB)1]s,=0 and (LB)[s,=0, (36)
2. Computation of the extrinsic curvature tensor
so that the extrinei_c curvature tensor is regular everywhere. Using the regularized shift vector presented above, we
Because of the rigidity condition€2) and for a truly is0- 54 compute the tensok )1/, which is zero on both throats.
gg)tr:r: Oslgttilgfri]egei;lggélgoiﬂ/(:;cs)’ the regularity conditions To calculate the tenso&_” one must divide it by the lapse
function which also vanishes on both throats. Near the throat

1, N has the following behavior

ap"2

=0 and o,

=0. (37
S, N|r1ﬂa1:(rl_al)nla (42)

So, to get a truly isometric and Eegular solution, both thewherenl is nonzero on throat Ithis supposes that = a, is
value and the radial derivative g8 must be zero on the only a single pole o, which turns out to be trug)N/Jr,
throats: representing the “surface gravity” of black hole 1). We can
computen,, using an operator that acts in the coefficient

S aB _ space olN and divides it by (;—a;). The same operation is
Bls=0 and ar =0. (38) done with
But when solving Eq(4), one can only impose the value at (Lﬂ)ij|f1ﬁa1:(r1_a1)lllj' (43

infinity and one of those two conditions, i.e., we can only
solve for the Dirichlet or Neumann problem, not for both. The divisions are also done on the second throat. To compute

We choose to solve the equatio#) for the Dirichlet bound- ~ the extrinsic curvature tensor in all space we use
ary conditiong=0 on both spheres. Doing so, the regularity A" =11/(2n,) in the first shell around throat 1,

conditions(37), as well as the remaining isometry conditions Al =14/(2n,) in the first shell around throat 2,
(35), are not necessarily satisfied. After each step we must Aii—(|_g)ii/(2N) in all other regions.

modify the obtained shift vector to enforce Ed87) and  Thjs procedure enables us to compute the extrinsic curva-
(35). The part of the shift generated by the hole 1 is modified;re tensor everywhere, without any problem that could arise
by from a division by zero.
i _ ni i
Blnew= Biloiat Beor,1 (39 3. Splitting of the extrinsic curvature tensor
| (R=r)%(r,—ay) (wi|old‘ In the split equation$19) and (21), the termA appears.
Beor, 1=~ Rea.)? ar ‘ , (400 This term represents the part of the total extrinsic curvature
(R-ay) ! S, tensor generated mostly by hole 1 so that the total tensor is
given by

wherer, is the radial coordinate associated with holeal,
the radius of the thrc_Jat ang an arblt_rary radius, _typlcally All =A2 +Ag . (44)
R=2a;. The correction procedure is only applied fag

<r;=<R. Let us mention that the function of_ in front of £ ihe binary neutron stars treated i], those split quan-

3P/ 971 in Eq. (40) has been chosen so that it maintains, .. N i
the value of the shift vector on the sphere 1 and its continuit)}'t'eS were constructed by settirf = (L 8,)"/(2N). Such a

(C* function). The same operation is done for the other hole.ConStrUCtlon IS not apphcable n the case of iblf‘Ck holes. In-
After regularization, the shift vector satisfiég the rigidity deed, only the total Sh'ft veetf)r 1S Suf:h thai)" =0 on the
condition(12), (ii) the isometry conditiong35), and(iii ) the throats and not the split shﬁ@l andf,. If such a construc-
condition (37) ensuring the regularity of the extrinsic curva- tion were applied the quantit%{ would be divergent due to
ture, but it violates slightly the momentum constrait division by N=0 on the throats. The computation presented
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in the previous section gets rid of such divergences but en-

ables us to calculate only the total .
The construction oAl andAl is then obtained by

Al=AlH, (45)

Al =AlH,, (46)
whereH, andH, are smooth functions such thhit; +H,
=1 everywhere. We also waiit; (H,) to be close to one
near hole 1(2) and close to zero near hole(2), so that

Al (AY) is mostly concentrated around holeg(2). So, we
defineH; by

1ifrisRp:

1/ COSZ(W/Z(Y 1~ Rind/(Rexe— Rind)) + 1]
<Rext

0 if ry<Ry,

1/2 SinZ(W/Z(r 1 Rint)/(Rext_ Rint)) if Rint<r2=Rext

1/2 if r1=Rgy andr,=Rqy,

if Rp=rq

PHYSICAL REVIEW D65 044021
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FIG. 1. Relative difference between the calculated and the ana-
Iytical lapseN with respect to the number of radial spectral coeffi-
cients for the Schwarzschild black hole. The circles denote the error
in the innermost shell, the squares that in the other shell and the

wherer, (r,) is the radial coordinate associated with throatgiamonds that in the external domain.

1 (2). The radiiR;,; and Re,; are computational parameters,

chosen so that the different cases presented above are exclu-The computation has been conducted with a initial guess
sive. Typically, we choos®;,=d/6 andR.,=d/2, whered far from the expectgd result. More precisely, we began the
is the coordinate distance between the centers of the throa@mputation by setting=1 and¥ =1 everywhere. Equa-

H, is obtained by permutation of indices 1 and 2. tions (3) and(5) are then solved by iteration. Let us mention
2 that the boundary condition on the conformal factor, given

by Eq.(13), is obtained by iteration. At each step we impose
A S I R
ar g 2r

D. Numerical implementation

The numerical code implementing the method described
above is written inLORENE (langage objet pour la relativite
numeique), which is aC+ + based language for numerical
relativity developed by our groupA typical run uses 12
domains(6 centered on each black hpland N, X N,xXN,
=33X21X20 (N;XNyxXN,=21X17X16) coefficients in
each domain in high resolutiofiow resolution). For each
value of(), a typical calculation takes 50 steps. To determine Ql—AQM+(1—-MQ7 L,
the right value of the angular velocity, by means of a secant : . .
method, it takes usually 5 different calculations with differ- Vi/l‘(l)ege (K:\ = dl f's the refl?ﬁ(at;prl' d p?ramﬁ;eﬁ typlca}IDy
ent values of(). The associated time to calculate one Con';quat'ian S(\Iagnﬁ\l? rsg:gyofor %éestsjcicoégg)elc we solve an
o e o ekt o e e Tne eaton s lopped wher e rfive iferenc be
Origin200 computetMIPS R10000 processor at 180 MHz tween the lapse obtained at two consecutive steps is smaller

; . : than the thresholdN=10 13 The computation has been
The corresponding memory requirement is 700 NBO  performed with various number of collocation points and
MB) for the high resolutior{low resolution).

with two shells. All the errors are estimated by the infinite
norm of the difference.

Figures 1 and 2 show a extremely good agreement with
the exact analytical solution. The saturation level of approxi-
matively 10 *is due to the finite number of digitd5) used

(47)

S

where W7 is the conformal factor at the current step and
¥I-1 at the previous one.

Before beginning a new step, some relaxation is per-
formed on the fields by

(48)

IIl. TESTS PASSED BY THE NUMERICAL SCHEMES
A. Schwarzschild black hole

In this section we solve Eq$3) and (5), with boundary
conditions(11) and(13) on a single throa&. The behaviors
at infinity are given by Eqs(8) and (10). In this particular
case, the shift vectog is set to zero, so tha!l vanishes.

This represents a single, static black hole, and we expect to
recover the Schwarzschild solution in isotropic coordinates.

thttp:/iwww.lorene.obspm.fr/

in the calculationground-off error$. Before the saturation,
the error is evanescefgxponential decay with the number
of collocation pointy which is typical of spectral methods.

B. Kerr black hole

In this section we consider a single rotating black hole by
setting,éqko. Let us mention that, since the Kerr solution is
known to diverge from conformal flatne&see e.g.[23]), we
will no be able to recover exactly the Kerr metric. In other
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FIG. 2. Same as Fig. 1 for the conformal factbr FIG. 3. Relative norm of the regularization function given by

Eq. (39) with respect to the Kerr paramet&M?, for various num-

words the obtained solution is expected to violate some oPerSNrXNBXN“’ of collocation points.
the 5 Einstein equations we decided to ignore.

So we solve Egs(3), (4), and (5) with boundary condi- J=—
tions(11), (12), and(13) on one single sphere. The values at 87 Jo
infinity are chosen to maintain asymptotical flathess by usin% )

Eq. (8), (9), and (10). The two parameters of our rotating (Wherem:=d/d¢) or an integral on the throat:
black hole are the radius of the thro&tand the rotation

velocity (). The total mas$/ and and angular momentudn J=——

are computed at the end of the iteration. 87 Jr-

Initialy the values ofN and ¥ are set to those of a _

Schwarzschild black hole and the shift is set to zero. RelaxheredS denotes the surface element with respect to the flat
ation is used for all the fields with a parameker 0.5. As for ~ Metricf. S _

the Schwarzschild computation, we use two shells with the '€ two results will coincide if and only if the momentum
same numbeN, XN,X N, of collocation points in the two constraint
shells and in the external compactified domain. The iteration

is stopped when the relative difference between the shifts
obtained at two consecutive steps is smaller thag
=10"1°

Before comparing the obtained solution to the Kerr mEtrICthe relative difference between the two results rapidly tends

we perform some self-consistency checks, .by varying ttho zero, as the number of coefficients increases. The same
number of coefficients of the spectral expansion. First of a"saturation level as in Fig. 3 is observed

we ne_ed to verily that the regularization function applied to The last self-consistency check is to verify the virial theo-
the shift by means of Eq39) has gone to zero at the end of o) considered in Sec. I. In other words we wish to check if

the computation. Figure 3 shows that, for various values of,e ADM and Komar masses are identical, which should be
the Kerr parameted/M?, the relative norm of the regular- the case for a Kerr black hole. We plotted the relative differ-
ization function decreases very fast, as the number of coetnce between these two masses, for various numbers of col-
ficients increases. The saturation value OT:H.JOS due to the location points and rotation velocities in F|g 5. Once more
criterium we choose to stop the computatio=10""".  thjs difference rapidly tends to zero as the number of coeffi-
Had it been conducted for a greater number of steps, thgjent increases. Contrary to the case of two black holes, the
saturation level of the double precision would have beemyngular velocity() is not constrained by the virial theorem,
reached. Figure 3 enables us to say that the shift solution g&flecting the fact that an isolated black hole can rotate at any
Eq. (4) satisfies the regularity conditior{s2) for the extrin-  velocity (smaller than the one of an extreme Kerr black
sic curvature tensor. Let us mention that the fact that theygle).
conformal approximation is not valid, does not prevent the Tg end with a single rotating black hole, we check how
correction functionécor from going to zero. far the numerical solution is from an exact, analytically
As seen in paper |, the total angular momentum can bgiven, Kerr black hole. Given the ADM madd and the
calculated in two different ways, using a surface integral ateduced angular momentua+ J/M, an exact Kerr metric in
infinity: quasi-isotropic coordinates would take the form

Aimids (49

WOeAIf,midS, (50)
a

D;(VeAl=0 (51)

has been accurately solved in all the space. This is a rather
strong test for the obtained value Af . Figure 4 shows that
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FIG. 4. Same as Fig. 3 for the relative difference between the FIG. 6. Relative difference between the pseudo-Kerr quantities

angular momentum calculated by means of E4f) and that by
means of Eq(50).

ds?=— N2, dt?+ B2, r?sirf6(de— Ng,,dt)?
+ AL (dr2+r2d6?), (52

With Ngerrs NEerrs Akerrs @ndBye,r known functions. It ob-

viously differs from asymptotical flatness becausé B for
a+0. So we define a pseudo-Kerr metric by settBg A,
which gives

d?=— N2, dt?+ W, [r2sirfo(de—Ng,,dt)?
+(dr?+r2de?)], (53

whereW i, =A%, After a numerical calculation, we com-
pute the global parametel$ anda, calculate the functions
Nierr» Nierr» @and W e, and compare them to the ones that

have been calculated numerically. Note tintt:=B3¢—()
The coefficients of the pseudo-Kerr metric are given by

1e-04
G— ©

§ 1e-06 +
&
E |-
s o o o
@
S 1008
N GONNE
2 ©-® 13x9x8
3 GO 17x13x12
2 B 25x17x16
5 5~ 33x21x20
& te-10¢t

1e-12 . . - -
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defined by Eqs(54)—(56) and the numerically calculated ones with
respect to the angular velocity. The computation has been per-
formed withN, X Ny xX N,= 25X 17X 16. The circles denote the dif-
ferences orN, the squares o and the diamonds oiN¢:=gB¢

-Q.

N2 o1 2MR+ 4a’M?R? sirt 0 (54
e S S%R%+ad)+2a’SMRsirt

2M  3M?+a’cosd (M?—a’*)M

e =1+ —+ +
Kerr 2r2 2r3
(MZ_a2)2
(59
16r4
N 2aMR -
Ko S (R?+a2)+2a2MRssirfg’
where
MZ_aZ
Ri=r+ —)—+M (57)
3:=R%+a?co<s. (59)

Those analytical functions are then compared with that
obtained numericallysee Fig. 6. As expected the difference
between the fields is not zero and it increases Wlthre-
flecting the fact that a Kerr black hole deviates more and
more from conformal flatness dsincreases.

To summarize the results about a single rotating throat,
we are confident in the fact that the Ed8), (4), and (5)
have been successfully and accurately solved, with the ap-
propriate boundary conditions. On the other hand we do not

FIG. 5. Same as Fig. 3 for the relative error on the virial theo-claim to recover the exact Kerr metric, for this latter differs

rem.

from conformal flatness.
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FIG. 7. Relative difference between the calculated and analyti- FIG. 8. Relative difference between the calculated and analyti-
cal ADM mass for the Misner-Lindquist solution. The computation €@ ADM mass for the Misner-Lindquist solution calculated using

has been performed with various number of coefficiemgx N, ~ ®=In"¥, with respect to the number of coefficients i (N,
XN,. =N,+1 andN,=2N_+1). The separation parameterls= 10.

D. As for the Kerr black hole, when the number of coeffi-
cients increases, we attain the saturation level of a few4.0
Misner [5] and Lindquist[6] have found the conformal s due to the threshold chosen for stopping the calculation.
factor ¥ of two black holes in the static case, i.e., Whén This test makes us confident about the iterative scheme used
=0 (see also Ref[24] and Appendixes A and B of Ref. to impose boundary conditions onto the two throdfsand
[25]). In such a case the equation fbr is only S,

C. The Misner-Lindquist solution

To go a a bit further and check the decomposition of the
AV =0, (59 sources into two parts, presented in Sec. Il A, we wish to

, . . consider a test problem with a source different from zero. To
which was to be solved using boundary conditi¢h®) and 5 5o we consider the Misner-Lindquist problem but decide

(13). In the case of identical black holes, that is for two (g solve for the logarithm of#, ®=InV¥. The equation
throats having the same radias the solution is analytical ¢y ¢ is

and does only depend on the separation parameter

A®=—D,dDXD (62)
d
D’:g’ (€0 and it must be solved with the following boundary condi-
tions:

d being the coordinate distance between the centers of the 0 h . 63
throats. To check if our scheme enables us to recover such a - when r— (63
solution, we solve Eq(59) with the boundary conditions 9D 1 9P 1
(10) and(13). We then compute the ADM mass by means of | =—— and—| =-—-——. (64)
the formula(see paper)l IMilg 28 Ials, 2a,

1 = The source of the equation fdr containing® itself, it is

M=->— ioD vds (61)  split as described in Sec. 1A by

— N .®dNk
and compare the result to the analytical value given by a A®,= D@D Py, (65

series in Lindquist articl¢6]. o _ abeing 1 or 2. At the end of a computation, we compute the
Let us mention that, even if E459) is a linear equation  ApM mass by using

(the source is zeppthe problem has to be solved by iteration

because of our method for setting the boundary condition 1 —

(13). The computation has been conducted with a relaxation M=- o iD dS (66)

parametei = 0.5 and until a convergence 6 =10 1° has

been attained. The comparison between the analytical arehd compare it with the analytical value. The computation

calculated ADM masses is plotted on Fig. 7 for various val-used a relaxation paramet&r=0.5 and has been stopped

ues of the separation paramef@rand various numbers of when the threshold® =10’ has been reached.

coefficients. The agreement is very good for every value of Figure 8 shows the resulting relative error estimated by
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means of the ADM mass fdd =10 and various numbers of 0.08
coefficients. The convergence évanescenti.e. it is expo-

nential as the number of coefficients increases. Unfortu-
nately, this convergence is much slower than when the solu-  0.06 |
tion was computed using and Eq.(59). This comes from
the very nature of the source of E(5). The part of the
equation split on the coordinates centered around throat 1 i€ 004

the sum of two terms. The first oreD,®,D*®, is centered
around hole 1 and well described by spherical coordinatess
associated with this hole. We do not expect any problems$ 002

J— J— =}
with this term. The other term is D, @®;D¥®, and contains &
a part that is centered around hole 2. Describing this part
using spherical coordinates around hole 1 is much more
tricky and a great number of coefficients, especiallyinis
necessary to do it accurately. It is the presence of such ¢
component at the location of the other hole that makes the %%, 20 )
convergence of the calculation much slower in this case. Of Step of the iteration
course, we expect to recover this effect in the calculation of
orbiting black holes.

virial theorem

e

FIG. 9. Value of M apm— M komad! M komar With respect to the
step of the iteration, foD =16 and for various values d. The
solid line denote$),., the short-dashed lin@ =0.95},,, and the

IV. SEQUENCE OF EQUAL MASS COROTATING BLACK long-dashed liné) = 1.08 .
HOLES IN CIRCULAR ORBIT

<10 ° (<10 % for the high resolutionlow resolution,
which gives a precision on{, of the order of

In this section we concentrate on equal mass black holed0™* (1073).
The only parameter is the ratid between the distance of the
centers of the holes and the radius of the thrdaee Eq. B. Tests
(60)]. We solve Egs(3), (4), and(5), with values at infinity
given by Eqgs(8), (9), and(10) and with boundary conditions
on the horizons by Eqg11), (12), and(13). We solve for As discussed in Sec. II C 1, we have to slightly modify the
various values of) and choose for solution the only value shift vector to ensure both the regularity of the extrinsic cur-
that satisfies the conditiof14). It turns out that this process vature on the throats and the invariance of the shift under the
uniquely determines the angular velocity. Let us €jl|.the  inversion isometry. This modification of the shift, via the
only value that equals the ADM and the Komar-like massesa(dition of the correction functio,,,, results in a slight

A. Numerical procedure

1. Check of the momentum constraint

It happens that violation of the momentum constraint E@). A good way to
it Q<Qye thenMyoma <M apm measure the magnitude of this violation is to check whether
if Q>Oe thenMyomar>M apm - the total angular momentuthhas the same value when cal-

The fact that() -, has always the same sign than cylated by surface integrals at infinity or on the throats. In-
M komar— M apm €nables us to implement a very efficient pro- deed, as for the Kerr black hole, it has been shown in paper
cedure to determine the orbital VelOCity. It is found as the| that J can be given either by one of the two fo”owing
zero of the functionV xoma(€2) =M apm(€2) by means of a integrals:
secant method. This is illustrated by Fig. 9, which shows the
value M apym— M komad/M komar fOr various values of(Q), 1 JU—
with respect to the step of the iterative procedure. Those =5 jg Amlds, (67)
calculations have been performed for=16. The solid line -
denotes Oy, the only value of Q) for which (Mapwm
— M omad/M komar CONverges to 0. J:_ié \I,eAijf,kmkdg

The computations have been done eithdpim resolution 8w Js, )
with N X NyXN,=21x17x16 coefficients in each domain
or in high resolutionwith N, XN, X N,= 33X 21X 20 coeffi- _ i % WAl f. mkd§ (68)
cients in each domain. All the computation used a relaxation 8w Js, ik '
parameteh =0.5. We solve first for the static caée=0 and
use that solution as initial guess. For each valué€lofthe  Any difference between those two formulas would reflect the
computation is stopped for a relative change on the shiffact that the momentum constraif8l) is not exactly satis-
vector as small a§3=10"8 (8B8=10"7) for the high reso- fied.
lution (low resolution between two consecutive steps. The We have plotted the relative differenéd/J between the
secant procedure for the determination of the angular velodwo integrals(67) and (68) in Fig. 10 as a function on the
ity has been conducted unti(Mapm—M komad/M koma separation between the two holes. Also shown on the same
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Separation parameter D

the exact solution of Eq(4) (circles and relative difference be- ) )
tweenJ calculated by means of Eq&7) and (68) (squares The FIC_;. 11. Relative error on the_generahzed Smarr forr_r(w_ta_.
filled symbols and the solid line denote the high resolution and thel he circles denote the error obtained usthgalculated at infinity

empty symbols and the dashed line the low resolution. [Eq. (67)] and the squares that obtained when evalualing the
throats[Eq. (68)]. The filled symbols and the solid line denote the
. . . . . high resolution and the empty symbols and the dashed line the low
figure is the relative norm of the correction function .oqoiution.
|Beod/| B]. The correlation between the two curves shows
that the error on the momentum constraint arises from the
introduction of the correction function on the shift. It is also
clear from Fig. 10 that increasing the number of coefficients
in the spectral method does not make the correction function
tend to zero. This means that the error in the momentu
constraint come rather from the meth@iecessity to regu-
larize the shift vectgrthan from some lack of numerical
precision.

As discussed in paper I, we had to regularize the shi
vector because E@41) is not enforced in our scheme. It has
been argued recently k?y CogR?] that '.f one refprmulates infinity is better in fulfilling the Smarr formula than the one
the proplgm by assuming that the hel!cal veditas not an  calculated on the throats by an order of magnitude and that
exact Killing vector, but only an approximate one—as it is iNhe precision is better thanx510~3. So, for all following

reality—then the only freely specifiable part of the extrinsic - -
curvature, as initial data, is E¢6), not Eq.(41). This means purposes, we will use the value dfgiven by Eq.(67).

that the relatior(41) between the extrinsic curvature and the
shift is not as robust as the relatio®). . ) )
However, we see from Fig. 10 that at the innermost stable The next thing one wishes to test is the value(hfob-

circular orbit, which is located @ =17 (cf. Sec. IVQ, the  tained from the virial criterium(14). In Newtonian gravity,
error are very small: two points particles on circular orbits obey the following

relation, which is equivalent to Kepler’s third law:

1
M—2QJ=——

— 1 .
\I'ZDiNdS——jg W2D;NdS.
4 S 4 S,

(71

MEor any computation, one gehd, () and can compute the
RHS of Eq.(71) and use that equation to derive the value of
J that satisfies the Smarr formula. That value is then com-

ared to the ones calculated using E@) and (68). The
omparison is plotted in Fig. 11 for the two different resolu-
tions. It turns out that the angular momentum calculated at

3. Check of Kepler law at large separation

831J=2x10"2 (69) 430
| Beod =8%107%| 8. (700 whereM is the total mass] the total angular momentum and

Q) the orbital velocity. For large separations of the two

] o throats we expect to recover this relation. Therefore, for ev-
The 83/J error estimator maximizes the error on the MOomeN-gry value ofD, we evaluate

tum constraint because it integrates it in all space. Thus we
conclude that momentum constraint is satisfied in our nu-

C : o 4‘]91/3
merical results with a precision of the order 1%. =

:_W (73)

2. Check of the Smarr formula and check ifl tends to 1 wherD —.

The value ofl is plotted in Fig. 12 with respect to the
distance parametdd. As expected, for large values B, it

A good check of the global error in the numerical solution
is the generalized Smarr formula derived in paper I
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L s e B L A tion with the same value dD will be obtained, the global
r 1 quantities being rescaled as

g 20 7
%’ M,=aM; (74)
5
E J,=a?), (75)
g
>
e o 76
< T
g
% whereM 4, J;, andQ, are the values before rescaling and
[a)

M,, J,, andQ, the values after the rescaling.
- 1 Consider a physical configuration corresponding to a
0fg———— 55, valueD(n) of the separation parameter, with global quanti-
Separation parameter D tiesM(n), J(n), andQ(n). This system will evolve due to
the emission of gravitational radiation. A subsequent con-
figurationn+1 will have D(n+1)<D(n). But what scaling
factor & should be applied to the configuration calculated for
D(n+1) to ensure that it represents the same physical sys-
plem as before? In other words, a physical sequence is a one
parameterthe separationfamily of configurations and we
have to impose another condition to determine the scaling
factor associated with each valuedf In the case of binary
neutron stars the condition is obtained by imposing that the
Let us first present some figures about the metric fieldsnumber of baryons is conservégee e.g., Ref[14]). This
Figure 13 shows the total lapse functibinconformal factor cannot be extended to the black holes case since no matter is

¥ and the shift vecto and Fig. 14 the componenis®, present. We chose instead to define a sequence by requiring
A, andAYY of the extrinsic curvature tensor. All those plots that the loss of energYADM masg dM 'an'd angular mo-
are cross section in the orbital plane 0 and the coordinate mentumdJ due to gravitational wave emission are related by

system is a Cartesian one centered at the middle of the cen-

FIG. 12. Value ofl =4J(Q/M®) 3 (low resolution run} with
respect to the separation paramderThe horizontal dashed line
corresponds to the value predicted by Kepler’s third law.

tends to 1, implying that for large separations the syste
behaves like two point particles in Keplerian motion.

C. Evolutionary sequence

ters of the throats. The computation has been done using the am -Q. (77)

high resolution. The separation parameteDis-17. As it dJ sequence

will be seen later, this separation corresponds to the turning

point in the energy and angular momentum curves. This relation is exact at least when one considers only the

In the previous section, the only parameter we consideredquadrupole formuldsee e.g. p. 478 of Ref26)). It turns out
was the dimensionless separation parantdBut there also  that it is also well verified for sequences of binary neutron
exists a scaling factor. Suppose that all the distances in th&ars[27,28. So Eq.(77) should hold rather well for coro-
computation are multiplied by some facter Another solu-  tating black holes.

Lapse function (Z=0) Conformal factor (Z=0) Shift vector (Z=0)
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FIG. 13. Isocontour of the lapse functidhand of the conformal facto¥ and plot of the shift vectoﬁ, for D=17, in the orbital plane
z=0. The computation has been done using the high resolution. The thick solid lines denote the surfaces of the throats. The kilometer scale
of the axis corresponds to an ADM mass of 31 .8.
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FIG. 14. Isocontour of the extrinsic curvature tensor ib+=17 in the orbital planez=0. The solid(dashed lines denote positive
(negative values. The thick solid lines denote the surfaces of the throats. The computation has been done using the high resolution. The
kilometer scale of the axis corresponds to an ADM mass of\81.8

The scaling factora associated with the separation pa- Mo:=M apmlisco. (83
rameterD(n+ 1) can be computed from the global values at o
separatiorD(n) and the unscaled values at separafifm so thatM is 1 at the location of the ISCO.
+1) as the solution the third degree equation The values of the dimensionless quantitiésJ, M, and
| along the sequence are given by Table I, for the high reso-
M(n)—aM,(n+1) :E Q(n)+w (78) Iution.g | ’ g ’
J(n)—a?Jy(n+1) 2 % ' Figures 15, 16, 17 and 18 show the values of the dimen-
o _ . sionless quantities along a sequence. The calculation has
which is a first-order translation of Eq77). To present the been performed with the high and low resolutions and for
results, we define the following dimensionless quantities  values of the parameté ranging from 40 to 11. As previ-

M cysly mentioned, the sequence exhibits a minimurd ahd

M:= M- (79 M as the throats become closer, thereafter interpreted as the
0 signature of an innermost stable circular ofd8CO) [29].
But at this point, we have to be cautious. Indeed, the relative

(8p)  Variation ofM andJ along a sequence is rather small, and
comparable to the precision estimated by means of the Smarr
formula (see Sec. IVB The exact location of the ISCO

Q:=MoQ (81)  being very dependent on those small effects, we do not claim

to have very precisely determined it. The following results

] should be confirmed with more precise calculations.

;= Mo (82 Another important quantity is the area of the black hole
0 horizons which relates to the irreducible m&36] (see also
gox 33.4 of[31]). As discussed in Sec. 11 B 6 of paper I, in
our case the apparent horizons coincide with the two throats.
\We therefore define the dimensionless irreducible mass by

J=

§|<_,
onN

wherel is the proper separation of the holes, defined as th
geometrical distance between the throats along the axis joi
ing their centersM is some arbitrary mass used for normal-
ization purpose. It is often convenient to choddg to be the 1 A A
total mass of the system when the two holes are infinitely Mir==—( \ =t /—2), (84)
separated, i.e., the ADM mass wh@n—«. Unlike other Mo 16m 167

methods, this value is not an input parameter of our calcul
tion. It can only be obtained by constructing a sequence unti
very large values oD, which would impose to calculate a
great number of configurations. However, as will been seen _

further, the system will exhibit turning point in the total en- A= é v4ds, (85

ergy and angular momentum, thereafter assumed to be the Sa _

signature of an innermost stable circular ortithereafter Figure 19 shows the relative changeMf, along the se-
ISCO). We choseM, to be the total ADM mass of the sys- quence. It exhibits a slight increase, but its variation is very
tem at that point, small. It appears that, along the overall sequence, the varia-

whereA,(a=1,2) denotes the area of the thraatalculated
ccording to the formula
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TABLE |. Values of dimensionless quantities along a sequence
of corotating black holes obtained using the high resolution. The
bold line denotes the values at the location of the 1ISCO. 1.005 |
D Q J M 1
40 0.0296159 0.995 862 1.005 97 13.3502 ©
39 0.0307026 0.987 981 1.00573 13.0699 E 1.003
38 0.0318074 0.978 701 1.005 44 12.7892 g
37 0.0330632 0.971834 1.005 22 12,5075 &
36 0.034 4638 0.966 535 1.005 04 12.2247 °
35 0.0358923 0.959 407 1.004 79 11.9414 1.001 |
34 0.0374279 0.952 494 1.004 53 11.6572
33 0.039061 2 0.945 264 1.004 26 11.3721
32 0.0408436 0.938 754 1.004 11.086
31 0.0427491 0.931913 1.00371 10.7988 0.99%.85 09 005 ;
30 0.0448273  0.925596  1.00343 10.5104 Total angular momentum JM_
29 0.0470335 0.918 635 1.00311 10.2211
28 0.0494625 0.911941 1.002 79 9.93012 FIG. 15. M with respect taJ along a sequence. The filled sym-
27 0.0521747 0.907 183 1.002 55 9.6379 bols and solid line denote the high resolution and the empty sym-
26 0.055 099 6 0.901 696 1.002 25 9.34411 bols and the dashed line the low one.
25 0.058 284 2 0.896 173 1.00194  9.04881 B
24 0.061 7501 0.890 47 1.0016 8.75188 We choose an average value of the irreducible nMss
23 0.065 622 2 0.885511 1.001 28 8.45286 =1.0173 and we define then the binding energy of the sys-
22 0.069 9629 0.88151 1.00101 8.15164 tem atthe ISCO by
21 0.0747426 0.877 312 1.00071 7.848 23 _ _
20 0.0801137  0.874079  1.00046  7.54243 Eplisco=1—Mj, (88)
19 0.086 184 0.871511 1.000 24 7.23364

the dimensionless total energy being equal to 1 at the loca-

18 0.0930453 0.869573 1.000 07 6.9218 . . .

17 0100897  0.86885 1 6.60644 UON Of the tuming point. P

16 0.109 958 0.869 769 1.0001 6.287 24 The values of the dimensionless quantitiésJ, E,,, and

15 0.120 329 0.870 729 1.00021 5.96358 | at the ISCO are given in Table Il and compared with the
14 0.132 657 0.874 838 1.00073 563471 results from other approachésee[29] for a review. 3-PN

13 0.147 12 0.880 134 1.001 47 530006 EOBstands for the third order post-Newtonian effective one
12 0.164512 0.888 448 1.002 76 495863 body method for non-spinning black holg33], with two

values of the 3-PN parameter;: ;=0 andws=—9.34.
3-PN j-method stands for third order post-Newtonian

tion is smaller than 10°. The precision of our code being of

— 1.
that order, this result is compatible with the fact théj is e
constant. In other word it shows that imposing the condition |
(77) is equivalent to imposing that the irreducible mass is
constant along a sequence. This constitutes in fact a ven /
good test of our procedure. Indeed Friedman, Uryu and Shi- 1.004 2
bata[32] have recently established the first law of binary «
black hole thermodynamics: % 1.003 &
£
dM=QdJI+ k;d A+ k,dA,, 86)  § "y
. 1.001
where x; and «, are two constants, representing the black
holes surface gravity. For identical black holes € x, and
dA;=dA,), the above relation implies T
0.999 L . L
dM=QdJ < dA,=0 (a=1,2. (87) 0 0.05 0.1 0.15 02

Orbital velocity QM,

Hence the area of each black hole must be conserved during FIG. 16. M with respect toQ along a sequence. The filled
the evolution. In future works, this last criterium could be symbols and solid line denote the high resolution and the empty
used to define a sequence, instead of the reldf@n symbols and the dashed line the low one.
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FIG. 17.J with respect to) along a sequence. The filled sym- FIG. 19. Relative change dﬁir along the sequence, with re-

bols and solid line de!“’te the high resolution and the empty symépect to the orbital velocity_l. The filled symbols and the solid line
bols and the dashed line the low one.

denote the high resolution and the empty symbols and the dashed

. line the low resolution.
j-method of[ 33]. Puncturedenotes the results from the punc-

ture method in the case of non-spinning black h¢&4Y and

Conformal imagthe conformal imaging approach with vari- X ) .

ous values of the individual spins for rotating black holesPrecisely our results with the other works. The main problem
= . comes from the fact that all those methods use individual

[11]. By definitionM =1 at the Iocatlpn of the ISCO for all spins of the black holes as input parameters. In the present

the methods. The results from the different methods are alSBaper we impose corotation, that is that the throats are spin-

plotted in Fig. 20. ning at the orbital velocity. The only value that can be com-

Fﬁut;e ttzo shows expltlcnl_){hthat t?eN p\:\ise_nt resullts la:e '%}uted is the total angular momentuhand, in general rela-
much better agreement with post-Newtonian calCulaliongiv, it cannot be split into orbital and spins parts in a

';\Tan W?th other InumgricalF_wozrgs. Note ”:jat thﬁ poTt'invariant way. However, from the results of Pfeiffet al.
ewtonian point plotted on Fig. 20 corresponds to the val uefll] one can see that increasing the spins of the black holes

0 of the (previously ambiguous3-PN "static” parameter ake the value$), J, and— Ey at the ISCO greater. Taking

. This is indeed th I tly determined by D fnake the ; :
Ztsal [éz]ls indeed the vaiue recently determined by amourotauon into account in the post-Newtonian methd@s]

will probably make the orbital velocity and the binding en-
ergy at the ISCO match even better with our values. Work is
under progress to compare with corotating post-Newtonian
results[37].

So, it appears that our results match pretty well with post-
Newtonian methods. This is the most striking conclusion
from our study. The difference between numerical and post-
Newtonian results have often been imputed mostly to the
conformal flatness approximatiofsee[29]). The fact that
our result,using conformal flatnesss in much better agree-
ment with PN calculations than other numerical works,
. makes us believe that the main worry of both conformal
imaging and puncture methods lies elsewhere, possibly in the
determination of). Indeed, it is very unlikely that the orbits
and so orbital velocity can be properly computed by solving
only for the four constraint equations. Time should be in-
] volved at some level and one should take other Einstein
equations into account, as we have done here.

But let us point out that it is rather difficult to compare

14

13 r

12

1 r

e
[=]
T

Proper separation I/'M,
© ©

0 0.05 0.1 0.15 0.2
Orbital velocity QM ,

_ _ V. CONCLUSIONS
FIG. 18. | with respect t) along a sequence. The filled sym-
bols and solid line denote the high resolution and the empty sym- The present work should be seen as a first step in trying to
bols and the dashed line the low one. give some new insight to the binary black holes problem.
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TABLE Il. Values of dimensionless quantities at the location of the ISCO. Comparison with other works.

Method Q J E, T
3-PN EOBw¢=0,S=0 [33] 0.0868 0.847 —0.0170 not given
3-PN EOBws=—9.34S5=0 [33] 0.0722 0.877 —0.0152 not given
3-PN j-methodw,= —9.34,S=0 [33] 0.0731 0.877 —0.0153 not given
PunctureS=0 [34] 0.176 0.773 —0.0235 4,913
Conformal imag.S=0 [11] 0.162 0.779 —0.0230 5.054
Conformal imag.S=0.08[11] 0.182 0.799 —0.0250 4.705
Conformal imagS=0.17[11] 0.229 0.820 —0.0279 4.040
This work (high res) 0.101 0.869 —-0.0173 6.606
This work (low res) 0.105 0.867 —-0.0173 6.450

The basic idea is to extend the numerical treatment beyontions imposed on two throats and exact boundary conditions
the resolution of the four constraint equations within aat infinity. Those techniques passed numerous tests and re-
3-dimensional spacelike surface. This is achieved by reintroeover the Schwarzschild and Kerr solutions as well as the
ducing time in the problem to deal with a 4-dimensional Misner-Lindquist one for two static black holgs;6]. A tech-
spacetime. The orbits are well defined by imposing the exisnjcal problem lies in the great number of coefficients needed
tence of a helical Killing vector and the orbital velocity is to accurately describe the part of the sources located around
found as the only value that equals the ADM and the Komarihe companion hole. This effect causes some lack of preci-
like masses, a requirement which is equivalent to the viriakijy, But we can estimate the error it generates by varying

theorem. According to us those are the two most importanfye nymper of coefficients, and comparing the results. This is

features of our method. The approximation of conformal ﬂat'what we have done here, using>217x 16 coefficients in

gif)sr’wef?rortrllaete?_trﬂiesm(;oglaesmovr\]/:ﬁ r?ae\?en tgsbidsgﬁceﬂﬂg:f'tyéeach of the 12 domains for the low resolution computations
P 9 % nd 33¢21% 20 coefficients for the high resolution ones.

general spatial metric and outgoing waves boundary cond h ) timated from th neralized Smarr formul
tions at large distances. The use of the inversion isometry tI Se?g\fvula;y’ estimated fro € generalize arr formuia,
0.

derive boundary conditions on the throats is also a weal® ) , , o
assumption. In the future, it would be interesting to change Another issue is the slight violation of the momentum
the boundary conditions on the fields in order to investigaté®Onstraint which arises from the necessity to regularize the
their influence on the resultsee e.g.[22] for an alternative shift vector. We have found that the modification of the shift
choice. Besides, changing the boundary conditions on the/€ctor with respect to the vector which satisfies the momen-
shift vector should enable us to describe other states of rotdUm constraint4) is below 10°%, and that the error it induces
tion of the black holes, as has been recently proposed by the momentum constraint equation is of the order 1%. In
Cook[22]. view of the other approximations performed in this work,
The numerical schemes are basically the same as thosspecially the conformal flatness of the 3-metric, we find this
which have been previously successfully applied to binaryto be very satisfactory.
neutron stars configuratiorigd4]. They have been extended In this article, we have defined a sequence of binary black
to solve elliptic equations with non-trivial boundary condi- holes by requiring that the ADM mass decrease is related to

this work, 332120 this work, 33*21*20

—————— 3 this work, 21*17*16 0.9 PP 8 this work, 21*17*16
-0.015 3-PN EOB $=0, =0 (Damour et al. 2000) L ") 3-PN EOB $=0, =0 (Damour et al. 2000)
A Conformal imaging S=0  (Pfeiffer et al. 2000) L A Conformal imaging S=0  (Pfeiffer et al. 2000)
®© /. Conformal imaging $=0.08 (Pfeifer et al. 2000) Q //\. Conformal imaging S=0.08 (Pfeiffer et al 2000)
.. Conformal imaging S=0.17 (Pfeiffer et al. 2000) Conformal imaging $=0.17 (Pfeiffer et al. 2000)
Puncture s=0 (Baumgarte 2000)

[[] Puncture $=0 (Baumgarte 2000)
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FIG. 20. Values ofb andJ with respect toQ) at the ISCO for different methods, including ours with high and low resolution. The

references to previous studies are as follows: Danebwl. [33], Pfeiffer et al. [11] and Baumgart¢34]. S denotes théfixed) spin of the
black holes used in various methods.
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the angular momentum decrease dil=QdJ. This rela- recent resulfs Initial data files containing the result of the
tion is true for the loss due to gravitational radiation, at leaspresent work are publically available on the CVS repository
when one considers only the quadrupole formula. We havef the European Union Network on Sources of Gravitational
then found that the area of the apparent horizamsducible = Radiation[42]. Extraction of the waveforms from a sequence
mas$ is constant along the sequence, in agreement with thevould also be an interesting applicatipf3,44].

first law of binary black holes thermodynamics recently de-
rived by Friedmaret al. [32].

The location of the ISCO has been obtained and com-
pared with the results from other methd88,34,11. It turns This work has benefited from numerous discussions with
out that our results match the 3-PN methods much bettdcuc Blanchet, Brandon Carter, Thibault Damour, David Ho-
than previous numerical works. The differences between nubill, Jerome Novak and Keisuke Taniguchi. We warmly
merical studies and 3-PN approximations have often beethank all of them. We express our deep gratitude to our late
explained by the use of the conformal flatness approximatiofriend and collaborator Jean-Alain Marck. The code devel-
in the numerical calculations3]. It seems to us that this is opment and the numerical computations have been per-
not the main explanation, for we are using this approximaformed on SGI workstations purchased thanks to a special
tion. It certainly arises instead from the wdy is deter- grant from the C.N.R.S. The public datab§4&] containing
mined. the results is supported by the EU Program “Improving the

Another natural extension of this work is to use the ob-Human Research Potential and the Socio-Economic Knowl-
tained configurations as initial data for binary black holesedge Base”(Research Training Network Contract HPRN-
evolution codegsee[38] for a review and Refd.39—-41 for =~ CT-2000-0013Y.
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