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Binary black holes in circular orbits. II. Numerical methods and first results

Philippe Grandcle´ment,* Eric Gourgoulhon,† and Silvano Bonazzola‡

Département d’Astrophysique Relativiste et de Cosmologie, UMR 8629 du C.N.R.S., Observatoire de Paris,
F-92195 Meudon Cedex, France

~Received 5 June 2001; published 25 January 2002!

We present the first results from a new method for computing spacetimes representing corotating binary
black holes in circular orbits. The method is based on the assumption of exact equilibrium. It uses the standard
311 decomposition of Einstein equations and conformal flatness approximation for the 3-metric. Contrary to
previous numerical approaches to this problem, we do not solve only the constraint equations but rather a set
of five equations for the lapse function, the conformal factor and the shift vector. The orbital velocity is
unambiguously determined by imposing that, at infinity, the metric behaves like the Schwarzschild one, a
requirement which is equivalent to the virial theorem. The numerical scheme has been implemented using
multi-domain spectral methods and passed numerous tests. A sequence of corotating black holes of equal mass
is calculated. Defining the sequence by requiring that the ADM mass decrease is equal to the angular momen-
tum decrease multiplied by the orbital angular velocity, it is found that the area of the apparent horizons is
constant along the sequence. We also find a turning point in the ADM mass and angular momentum curves,
which may be interpreted as an innermost stable circular orbit~ISCO!. The values of the global quantities at the
ISCO, especially the orbital velocity, are in much better agreement with those from third post-Newtonian
calculations than with those resulting from previous numerical approaches.
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I. INTRODUCTION

Motivated by the construction of several gravitation
wave detectors@Laser Interferometric Gravitational Wav
Observatory ~LIGO!, GEO600, TAMA300 and VIRGO#
great efforts have been conducted in the past years to c
pute the waves generated by binary black holes. We
sented in Ref.@1# ~paper I! a new method for getting quasis
tationary spacetimes representing binary black holes
circular orbits. See also paper I for a review on issues
previous works in this field.

The basic approximation is to assume the existence o
helical Killing vector

l5
]

]t0
1V

]

]w0
, ~1!

where]/]t0 (]/]w0) is a timelike~spacelike! vector which
coincides asymptotically with the time coordinate~azimuthal
coordinate! vector of an asymptotically inertial observer. B
sically, it means that the two black holes are on circu
orbits with orbital velocityV @2#. This is of course not exac
because the emission of gravitational waves will cause
two holes to spiral toward each other. But this is a va
approximation as long as the time scale of the gravitatio
radiation is much longer than the orbital period, whi
should be true, at least for large separations. The existenc
l enables us to get rid of any time evolution.
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We use the standard 311 decomposition of the Einstein
equations@3#. We restrict ourselves to a space metric that
conformally flat, i.e., of the form

g5C4f, ~2!

whereC is a scalar field andf denotes the flat 3-metric@4#.
Let us mention that the exact spacetime should differ fr
conformal flatness and that this assumption is only int
duced for simplification and should be removed from la
works. However it is important to note that it is consiste
with the existence of the helical Killing vector and the a
sumption of asymptotic flatness. The ten Einstein equati
then reduce to five equations, one for the lapse functionN,
one for the conformal factorC and three for the shift vecto
bW ~see paper I for the derivation!:

DN5NC4Âi j Â
i j 22D̄ j ln CD̄ jN ~3!

Db i1
1

3
D̄ i D̄ jb

j52Âi j ~D̄ jN26ND̄j ln C! ~4!

DC52
C5

8
Âi j Â

i j ~5!

whereD̄ i denotes covariant derivative associated withf and
DªD̄kD̄

k the ordinary Laplace operator.Âi j is the reduced
extrinsic curvature tensor related toKi j by Âi j

ªC4Ki j and
given by

Âi j 5
1

2N
~Lb! i j , ~6!

h-
:
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(Lb) i j denoting the conformal Killing operator applied
the shift vector

~Lb! i j
ªD̄ ib j1D̄ jb i2

2

3
D̄kb

kf i j . ~7!

Equations~3!, ~4!, and ~5! are a set of five strongly elliptic
equations that are coupled. To solve such a system, we
impose boundary conditions. To recover the Minkows
spacetime at spatial infinity, i.e., asymptotical flatness,
fields must have the following behavior:

N→1 when r→` ~8!

b¢→V
]

]w0
when r→` ~9!

C→1 when r→`. ~10!

As we wish to obtain solutions representing two bla
holes and not Minkowski spacetime, we must impose a n
trivial spacetime topology. In paper I, we define the topolo
to be that of the real lineR times the 3-dimensional Misner
Lindquist manifold@5,6#; this defines two throats, being tw
disjointed spheresS1 andS2 of radii a1 anda2, centered on
points (x1,0,0) and (x2,0,0) ~such thatux12x2u.a11a2).
Following Misner @5#, Lindquist @6#, Kulkarny et al. @7#,
Cook et al. @8–10# and others@11,12#, we demand that the
two sheets of the Misner-Lindquist manifold are isometr
Moreover we choose the lapse functionN to be antisymmet-
ric with respect to this isometry. We solve the Einstein eq
tions only for the ‘‘upper’’ sheet, i.e., only for the spac
exterior to the throats, with boundary conditions given by

NuS1
50 and NuS2

50 ~11!

b¢ uS1
50 and b¢ uS2

50 ~12!

S ]C

]r 1
1

C

2r 1
D U

S1

50 and S ]C

]r 2
1

C

2r 2
D U

S2

50,

~13!

where r 1 and r 2 are the radial coordinates associated w
spheresS1 andS2. Equations~11! reflect the antisymmetry o
the lapse functionN. The boundary conditions for the shi
vector, given by Eqs.~12!, represent two black holes incoro-
tation ~rotation synchronized with the orbital motion!, which
is the only case studied in this paper. Those boundary c
ditions should be easily changed to represent other state
rotation ~like irrotation!. Equations ~13! come from the
isometry solely.

The orbital velocityV only appears in the boundary con
dition for the shift@see Eq.~9!#. Equations~3!, ~4!, and ~5!
can be solved for any value ofV. So we need an extra
condition to fix the right value forV. This is done by im-
posing that, at spatial infinity, the metric behaves like
Schwarzschild metric, i.e., by imposing thatC2N has no
monopolar term in 1/r :
04402
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C2N;11
a

r 2
when r→`. ~14!

In other words,V is chosen so that the Arnowitt-Dese
Misner ~ADM ! and the ‘‘Komar-like’’ masses coincides
those masses being given by

MADM52
1

2p R̀ D̄ iCdSi ~15!

MKomar5
1

4p R̀ D̄ iNdSi . ~16!

As shown in@13# and in paper I this is closely linked to th
virial theorem for stationary spacetimes. We will see la
that this uniquely determines the orbital velocity, and th
this velocity tends to the Keplerian one at large separatio

This paper is organized as follows. Section II is dedica
to the presentation of the numerical scheme, that is base
multi-domain spectral methods. In Sec. III we present so
tests passed by the code, which encompass comparison
the Schwarzschild and Kerr black hole and the Misn
Lindquist solution@5,6#. In Sec. IV we present results abo
a sequence of binary black holes in circular orbits. In p
ticular we locate the innermost stable circular orbit and co
pare its location with other works. Section V is concern
with extension of this work, for getting more complicate
and more realistic results.

II. NUMERICAL TREATMENTS

A. Multi-domain spectral methods

The numerical treatments used to solve the elliptic eq
tions presented above is based on the same methods th
already successfully applied to binary neutron stars@14#. The
sources of the equations being mainly concentrated aro
each hole we use two sets of polar coordinates cente
around each throat~see Sec. I!. Note however that the ten
sorial basis of decomposition is a Cartesian one. For
ample, a vector fieldVW will be given by its components on
the Cartesian basis (Vx ,Vy ,Vz) but each component is
function of the polar coordinates (r ,u,w) with respect to the
center of one hole or the other.

We use spectral methods to solve the elliptic equati
presented in Sec. I; the fields are given by their expans
onto some basis functions. Mainly, we use expansion
spherical harmonics with respect to the angles (u,w) and
Chebyshev polynomials for the radial coordinate. Let
mention that there exists two equivalent descriptions: a fu
tion can be given in thecoefficient space, i.e., by the coeffi-
cients of its spectral expansion, or in theconfiguration space
by specifying its value at some collocation points@15#.

The sources of the elliptic equations being non-compa
supported, we must use a computational domain extendin
infinity. This is done by dividing space into several types
domains:

a kernel, a sphere containing the origin of the polar coo
dinates centered on one of the throats;
1-2
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BINARY BLACK HOLES IN . . . . II. . . . PHYSICAL REVIEW D 65 044021
several sphericalshellsextending to finite radius;
a compactified domainextending to infinity by the use o

the computational coordinateu51/r .
This technique enables us to choose the basis functio

that the fields are regular everywhere, especially on the
tation axis and to impose exact boundary conditions at in
ity. This has been presented with more details elsewh
@14,16–18#. Note that since the last domain extends to spa
like infinity, the surface integrals defining global quantitie
such as Eqs.~15! and ~16!, can be computed without an
approximation. This contrasts with other numerical metho
based on finite domains~cf. e.g., Ref. @19# and Fig. 1
therein!. As two different sets of coordinates are used, o
centered on each hole, we are left with two computatio
domains of this type, each describing all space and so o
lapping.

The sources of the equations being concentrated aro
the two throats, we wish to split the total equations~5!, ~4!
and ~3! into two parts, each being centered mainly arou
each hole and solved using the associated polar coordin
set. So an equation of the typeDF5G will be split into

DF15G1 ~17!

DF25G2 , ~18!

with F5F11F2 and G5G11G2 . Ga is constructed to be
mainly concentrated around holea, and so well described by
polar coordinates around this hole. Therefore, the sol
equations are

DNa5NC4Âi j Âa
i j 2

2

C
D̄ jCaD̄ jN ~19!

Dba
i 1

1

3
D̄ i D̄ jba

j 52Âi j S D̄ jNa26
N

C
D̄ jCaD ~20!

DCa52
C5

8
Âi j Âa

i j , ~21!

where the values with no index represent the total values
the values with indexa represent the values ‘‘mostly’’ gen
erated by holea(a51 or 2). For example, we haveD̄ iN

5D̄ iN11D̄ iN2 , D̄ iNa being concentrated around holea.
Doing so, the physical equations and sources are given
the sum of Eqs.~21!, ~20!, and~19! for a51 anda52. For
more details about such a splitting of the equations into
parts we refer to@14#.

B. Elliptic equations solvers

1. Scalar Poisson equation solver with boundary condition
on a single throat

Using spectral methods with spherical harmonics,
resolution of the scalar Poisson equation reduces to the
version of banded matrices. We already presented in de
in @17,18# the methods to solve such equations in all spa
imposing regularity at the origin and exact boundary con
tion at infinity. In the case of black holes we wish to repla
04402
so
o-
-
re
e-
,

s

e
l
r-

nd

d
tes

d

nd

by

o

e
n-
ils
e,
i-

the regularity at the origin by boundary conditions on t
spheresS1 and S2 and to solve only for the part of spac
exterior to those spheres. In Ref.@18# we have shown that
for each couple of indices (l ,m) of a particular spherica
harmonic, we can calculate one particular solution in ea
domain, two homogeneous solutions in the shells and o
one in the kernel~due to regularity! and one in the externa
domain~due to boundary condition at infinity!. The next step
was to determine the coefficients of the homogeneous s
tions by imposing that the global solution isC 1 at the bound-
aries between the different domains.

In the case of a single throatS, the boundary condition is
given by a function of the angles solely, i.e.,B(u,w). One
wishes to impose that the solution or its radial derivative
equal toB on the sphere which corresponds respectively t
Dirichlet or a Neumann problem. We choose the kernel
that its spherical boundary coincides with the throat. So
do not solve in the kernel with represents the interior of
sphere.B is expanded in spherical harmonics and for ea
couple (l ,m), we use one of the homogeneous solution in
first shell to satisfy the Dirichlet or Neumann boundary co
dition. After that we are left with one particular solution i
every domain, one homogeneous solution in the innerm
shell and in the external domain and two in the other she
The situation is exactly the same as when a solution w
sought in all space and the coefficients of the remaining
mogeneous solutions are chosen to maintain continuity of
solution and of its first derivative. So the generalization
the scheme presented in@17,18# is straightforward and en
ables us to solve either the Dirichlet or Neumann proble
with any boundary condition imposed on the throat.

2. Vectorial Poisson equation solver with boundary condition
on a single throat

We presented extensively two different schemes to so
the vectorial Poisson equation~4! in all space in@18# ~the
Oohara-Nakamura@20# and Shibata@21# schemes!. We
present here an extension of the so-called Oohara-Nakam
scheme to impose boundary condition a throat and to so
only for the exterior part of space. The Shibata scheme
not been chosen because, the solution being constructed
auxiliary quantities, it is not obvious at all to impose boun
ary conditions on it. This is not the case with the Ooha
Nakamura scheme where the final solution is calculated
rectly as the solution of three scalar Poisson equations. M
precisely the solution of@cf. Eq. ~20!#

Db i1lD̄ i D̄ jb
j5Vi ~l5” 21! ~22!

is found by solving the set of three scalar Poisson equat

Db i5Vi2lD̄ ix, ~23!

wherex is solution of

Dx5
1

l11
D̄ iV

i . ~24!
1-3
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GRANDCLÉMENT, GOURGOULHON, AND BONAZZOLA PHYSICAL REVIEW D65 044021
Let us mention that this scheme should only be used wi
sourceVW that is continuous. We use the scalar Poisson eq
tion solvers with boundary condition previously described
solve for each Cartesian component of Eq.~23! with the
appropriate boundary conditions. But let us recall~see@18#!
that the Oohara-Nakamura scheme is only applicable if

x5D̄ ib
i ~25!

and that it only ensures that

D~x2D̄ ib
i !50. ~26!

One can easily show that Eq.~26! implies Eq. ~25! if and
only if

xuS5D̄ ib
i uS , ~27!

which is the boundary condition we must impose during
resolution of Eq.~24! to use this scheme. Let us mention th
x being calculated beforebW , we must use some iterativ
procedure. We first solve Eq.~24! with an initial guess of the
boundary condition and then determinebW by solving Eq.
~23!. Using that value, we can determine a new bound
condition forx, using Eq.~27!, and so a newbW . This proce-
dure is repeated until it has sufficiently converged. The
tainedbW is then solution of the vectorial Poisson equati
with either a Dirichlet or Neumann type boundary conditi
on the sphereS.

3. Elliptic solvers with boundary conditions on two throats

In order to illustrate how boundary conditions are put
the two spheresS1 andS2, let us concentrate on the Dirichle
problem for the scalar Poisson equation. One wishes to s

DF5G, ~28!

with the boundary conditions

FuS1
5B1~u1 ,w1! ~29!

FuS2
5B2~u2 ,w2!, ~30!

where B1 and B2 are arbitrary functions. As explained i
Sec. II A, the total equation is split into two parts

DF15G1 ~31!

DF25G2 , ~32!

the equation labeleda51 or 2, being solved on the grid
centered around holea so that the sphereSa coincides with
the innermost boundary of the first shell.

During the first step we solve Eqs.~31! and~32! with the
boundary conditions

F1uS1
5B1 ~33!

F2uS2
5B2 ~34!
04402
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by means of the scalar Poisson equation solver describe
Sec. II B 1. Doing so, the total solutionF5F11F2 does not
fulfill the boundary conditions~29!,~30!. So we calculate the
values of F1 on the sphereS2 and modify the boundary
condition ~34! by B285B22F1uS2

. The same modification is
done with the boundary condition~33!. Then we solve once
again forF1 andF2. The whole procedure is repeated until
sufficient convergence is achieved. So we are left with
functionF which is solution of the Poisson equation~28! and
which fulfills a given Dirichlet-type boundary condition o
two spheres~29!,~30!.

The same thing can be done for the Neumann problem
modifying the boundary conditions using the radial deriv
tives of the functionsFa . The same technique is applied fo
the vectorial Poisson equation. Let us mention that the ite
tion on the boundary conditions forbW , resulting from the
presence of the two spheres, is done at the same time
the one on the quantityx resulting from to the Oohara
Nakamura scheme~see Sec. II B 2!.

4. Filling the interior of the throats

As seen in the previous section, we can solve ellip
equations with various boundary conditions in all the spa
exterior to two non-intersecting spheresS1 and S2. But a
problem arises from the iterative nature of the total nume
cal procedure. Suppose that after a particular step the la
N5N11N2 has been calculated by means of the two Po
son equations~19!. From the very procedure of the ellipti
solvers, N1 (N2) is known everywhere outside sphe
S1 (S2). If the next equation to be solved is the one for t
shift vector split like Eq.~20!, N appears in the source term
We need to know the source everywhere outside the ass
ated sphereSa(a51,2) which includes the interior of the
other sphere. So we must construct fields that are know
the all space. After each resolution, the fields are filled
smoothly as possible inside the associated sphere. In ou
ample, after the resolution of Eq.~19!, N1 andN2 are filled
inside the spheres, so that the total functionN is known
everywhere.

The filling is performed, for each spherical harmon
( l ,m), by the following radial function:

(3r 422r 6)(a1br 2) if l is even,
(3r 422r 6)(ar 1br 3) if l is odd,
where the coefficientsa andb are calculated so that th

function is C 1 across the sphereSa . The multiplication by
the polynomial (3r 422r 6) ensures that the function is rathe
regular at the origin. Of course this choice of filling is n
unique and the final result should be independent of the
ing procedure, the fields outside the spheres depending
on the boundary conditions on those spheres. The choic
filling may only change the convergence of the numeri
scheme. Let us stress that even if the fields are known, re
lar andC 1 everywhere, they have a physical meaning on
outside the throats. The filling is only introduced for nume
cal purposes.

C. Treatment of the extrinsic curvature tensor

1. Regularization of the shift

When one imposes corotation for the two black holes, t
is a vanishing shift vector on the throats, isometry conditio
1-4
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~59!, ~60!, and ~61! of paper I are trivially satisfied. Unfor
tunately this is not the case for Eqs.~62! and~63! of paper I.
We must find a way to impose that

]bu

]r U
Si

50 and
]bw

]r U
Si

50 ~35!

in order to get a truly isometric solution.
Another problem comes from the computation of the

duced extrinsic curvature tensorÂi j by means of Eq.~6!.
Because of division byN50 onS1 andS2, we must impose
that

~Lb! i j uS1
50 and ~Lb! i j uS2

50, ~36!

so that the extrinsic curvature tensor is regular everywh
Because of the rigidity conditions~12! and for a truly iso-
metric solution verifying Eq.~35!, the regularity conditions
~36! are satisfied if and only if

]b r 1

]r 1
U

S1

50 and
]b r 2

]r 2
U

S2

50. ~37!

So, to get a truly isometric and regular solution, both
value and the radial derivative ofbW must be zero on the
throats:

bW uSi
50 and

]bW

]r
U

Si

50. ~38!

But when solving Eq.~4!, one can only impose the value
infinity and one of those two conditions, i.e., we can on
solve for the Dirichlet or Neumann problem, not for bot
We choose to solve the equation~4! for the Dirichlet bound-
ary conditionbW 50 on both spheres. Doing so, the regular
conditions~37!, as well as the remaining isometry conditio
~35!, are not necessarily satisfied. After each step we m
modify the obtained shift vector to enforce Eqs.~37! and
~35!. The part of the shift generated by the hole 1 is modifi
by

b1
i unew5b1

i uold1bcor,1
i ~39!

bcor,1
i

ª2
~R2r 1!3~r 12a1!

~R2a1!3

]b i uold

]r 1
U

S1

, ~40!

wherer 1 is the radial coordinate associated with hole 1,a1
the radius of the throat andR an arbitrary radius, typically
R52a1. The correction procedure is only applied fora1
<r 1<R. Let us mention that the function ofr 1 in front of
]b i uold /]r 1 in Eq. ~40! has been chosen so that it maintai
the value of the shift vector on the sphere 1 and its contin
(C 1 function!. The same operation is done for the other ho
After regularization, the shift vector satisfies~i! the rigidity
condition~12!, ~ii ! the isometry conditions~35!, and~iii ! the
condition~37! ensuring the regularity of the extrinsic curv
ture, but it violates slightly the momentum constraint~4!.
04402
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As seen in paper I, the regularity is a consequence of
equation

D̄ ib
i526b i D̄ i ln C. ~41!

Because this equation is not part of the system we choos
solve, we do not expect that the correction function is exac
zero at the end of a computation. But we will verify in Se
IV B 1 that it is only a small fraction of the shift vector~less
than 1023), fraction which represents the deviation from E
~41! ~see also Ref.@22# for an extended discussion!. More-
over, we will see in Sec. III B thatbW cor converges to zero for
a single rotating black hole.

2. Computation of the extrinsic curvature tensor

Using the regularized shift vector presented above,
can compute the tensor (Lb) i j , which is zero on both throats
To calculate the tensorÂi j one must divide it by the lapse
function which also vanishes on both throats. Near the thr
1, N has the following behavior

Nur 1→a1
5~r 12a1!n1 , ~42!

wheren1 is nonzero on throat 1~this supposes thatr 15a1 is
only a single pole ofN, which turns out to be true,]N/]r 1
representing the ‘‘surface gravity’’ of black hole 1). We ca
computen1, using an operator that acts in the coefficie
space ofN and divides it by (r 12a1). The same operation is
done with

~Lb! i j ur 1→a1
5~r 12a1!l 1

i j . ~43!

The divisions are also done on the second throat. To com
the extrinsic curvature tensor in all space we use

Âi j 5 l 1
i j /(2n1) in the first shell around throat 1,

Âi j 5 l 2
i j /(2n2) in the first shell around throat 2,

Âi j 5(Lb) i j /(2N) in all other regions.
This procedure enables us to compute the extrinsic cu

ture tensor everywhere, without any problem that could a
from a division by zero.

3. Splitting of the extrinsic curvature tensor

In the split equations~19! and~21!, the termÂ1
i j appears.

This term represents the part of the total extrinsic curvat
tensor generated mostly by hole 1 so that the total tenso
given by

Âi j 5Â1
i j 1Â2

i j . ~44!

For the binary neutron stars treated in@14#, those split quan-
tities were constructed by settingÂ1

i j 5(Lb1) i j /(2N). Such a
construction is not applicable in the case of black holes.
deed, only the total shift vector is such that (Lb) i j 50 on the
throats and not the split shiftsbW 1 andbW 2. If such a construc-
tion were applied the quantityÂ1

i j would be divergent due to
division by N50 on the throats. The computation present
1-5
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GRANDCLÉMENT, GOURGOULHON, AND BONAZZOLA PHYSICAL REVIEW D65 044021
in the previous section gets rid of such divergences but
ables us to calculate only the totalÂi j .

The construction ofÂ1
i j and Â2

i j is then obtained by

Â1
i j 5Âi j H1 ~45!

Â2
i j 5Âi j H2 , ~46!

whereH1 and H2 are smooth functions such thatH11H2
51 everywhere. We also wantH1 (H2) to be close to one
near hole 1~2! and close to zero near hole 2~1!, so that
Â1

i j (Â2
i j ) is mostly concentrated around hole 1~2!. So, we

defineH1 by
1 if r 1<Rint
1/2@cos2„p/2(r 12Rint)/(Rext2Rint)…11# if Rint<r 1

<Rext
0 if r 2<Rint
1/2 sin2

„p/2(r 12Rint)/(Rext2Rint)… if Rint<r 2<Rext
1/2 if r 1>Rext and r 2>Rext,

wherer 1 (r 2) is the radial coordinate associated with thro
1 ~2!. The radiiRint and Rext are computational parameter
chosen so that the different cases presented above are e
sive. Typically, we chooseRint5d/6 andRext5d/2, whered
is the coordinate distance between the centers of the thr
H2 is obtained by permutation of indices 1 and 2.

D. Numerical implementation

The numerical code implementing the method descri
above is written inLORENE ~langage objet pour la relativite´
numérique!, which is aC11 based language for numeric
relativity developed by our group.1 A typical run uses 12
domains~6 centered on each black hole! and Nr3Nu3Nw

533321320 (Nr3Nu3Nw521317316) coefficients in
each domain in high resolution~low resolution!. For each
value ofV, a typical calculation takes 50 steps. To determ
the right value of the angular velocity, by means of a sec
method, it takes usually 5 different calculations with diffe
ent values ofV. The associated time to calculate one co
figuration is approximatively 72 hours~36 hours! for the
high resolution~for the low resolution! on one CPU of a SGI
Origin200 computer~MIPS R10000 processor at 180 MHz!.
The corresponding memory requirement is 700 MB~300
MB! for the high resolution~low resolution!.

III. TESTS PASSED BY THE NUMERICAL SCHEMES

A. Schwarzschild black hole

In this section we solve Eqs.~3! and ~5!, with boundary
conditions~11! and ~13! on a single throatS. The behaviors
at infinity are given by Eqs.~8! and ~10!. In this particular
case, the shift vectorbW is set to zero, so thatÂi j vanishes.
This represents a single, static black hole, and we expe
recover the Schwarzschild solution in isotropic coordinat

1http://www.lorene.obspm.fr/
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The computation has been conducted with a initial gu
far from the expected result. More precisely, we began
computation by settingN51 andC51 everywhere. Equa-
tions ~3! and~5! are then solved by iteration. Let us mentio
that the boundary condition on the conformal factor, giv
by Eq.~13!, is obtained by iteration. At each step we impo

]CJ

]r U
S

5
CJ21

2r U
S

, ~47!

where CJ is the conformal factor at the current step a
CJ21 at the previous one.

Before beginning a new step, some relaxation is p
formed on the fields by

QJ←lQJ1~12l!QJ21, ~48!

where 0,l<1 is the relaxation parameter, typicallyl
50.5. Q stands for any of the fields for which we solve a
equation (N andC solely for the static case!.

The iteration is stopped when the relative difference
tween the lapse obtained at two consecutive steps is sm
than the thresholddN510213. The computation has bee
performed with various number of collocation points a
with two shells. All the errors are estimated by the infin
norm of the difference.

Figures 1 and 2 show a extremely good agreement w
the exact analytical solution. The saturation level of appro
matively 10213 is due to the finite number of digits~15! used
in the calculations~round-off errors!. Before the saturation
the error is evanescent~exponential decay with the numbe
of collocation points!, which is typical of spectral methods

B. Kerr black hole

In this section we consider a single rotating black hole
settingbW 5” 0. Let us mention that, since the Kerr solution
known to diverge from conformal flatness~see e.g.,@23#!, we
will no be able to recover exactly the Kerr metric. In oth

FIG. 1. Relative difference between the calculated and the a
lytical lapseN with respect to the number of radial spectral coef
cients for the Schwarzschild black hole. The circles denote the e
in the innermost shell, the squares that in the other shell and
diamonds that in the external domain.
1-6
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words the obtained solution is expected to violate some
the 5 Einstein equations we decided to ignore.

So we solve Eqs.~3!, ~4!, and ~5! with boundary condi-
tions ~11!, ~12!, and~13! on one single sphere. The values
infinity are chosen to maintain asymptotical flatness by us
Eq. ~8!, ~9!, and ~10!. The two parameters of our rotatin
black hole are the radius of the throatS and the rotation
velocity V. The total massM and and angular momentumJ
are computed at the end of the iteration.

Initialy the values ofN and C are set to those of a
Schwarzschild black hole and the shift is set to zero. Re
ation is used for all the fields with a parameterl50.5. As for
the Schwarzschild computation, we use two shells with
same numberNr3Nu3Nw of collocation points in the two
shells and in the external compactified domain. The itera
is stopped when the relative difference between the sh
obtained at two consecutive steps is smaller thandb
510210.

Before comparing the obtained solution to the Kerr me
we perform some self-consistency checks, by varying
number of coefficients of the spectral expansion. First of
we need to verify that the regularization function applied
the shift by means of Eq.~39! has gone to zero at the end
the computation. Figure 3 shows that, for various values
the Kerr parameterJ/M2, the relative norm of the regular
ization function decreases very fast, as the number of c
ficients increases. The saturation value of 10211 is due to the
criterium we choose to stop the computationdb510210.
Had it been conducted for a greater number of steps,
saturation level of the double precision would have be
reached. Figure 3 enables us to say that the shift solutio
Eq. ~4! satisfies the regularity conditions~12! for the extrin-
sic curvature tensor. Let us mention that the fact that
conformal approximation is not valid, does not prevent
correction functionbW cor from going to zero.

As seen in paper I, the total angular momentum can
calculated in two different ways, using a surface integra
infinity:

FIG. 2. Same as Fig. 1 for the conformal factorC.
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J5
1

8p R̀ Âj
i mjdSi ~49!

~wheremª]/]w) or an integral on the throat:

J52
1

8p R
r 5a

C6Âi j f jkmkdS̄i , ~50!

wheredS̄i denotes the surface element with respect to the
metric f.

The two results will coincide if and only if the momentum
constraint

D̄ i~C6Âi j !50 ~51!

has been accurately solved in all the space. This is a ra
strong test for the obtained value ofÂi j . Figure 4 shows that
the relative difference between the two results rapidly te
to zero, as the number of coefficients increases. The s
saturation level as in Fig. 3 is observed.

The last self-consistency check is to verify the virial the
rem considered in Sec. I. In other words we wish to chec
the ADM and Komar masses are identical, which should
the case for a Kerr black hole. We plotted the relative diff
ence between these two masses, for various numbers of
location points and rotation velocities in Fig. 5. Once mo
this difference rapidly tends to zero as the number of coe
cient increases. Contrary to the case of two black holes,
angular velocityV is not constrained by the virial theorem
reflecting the fact that an isolated black hole can rotate at
velocity ~smaller than the one of an extreme Kerr bla
hole!.

To end with a single rotating black hole, we check ho
far the numerical solution is from an exact, analytica
given, Kerr black hole. Given the ADM massM and the
reduced angular momentuma5J/M , an exact Kerr metric in
quasi-isotropic coordinates would take the form

FIG. 3. Relative norm of the regularization function given b
Eq. ~39! with respect to the Kerr parameterJ/M2, for various num-
bersNr3Nu3Nw of collocation points.
1-7
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ds252NKerr
2 dt21BKerr

2 r 2 sin2u~dw2NKerr
w dt!2

1AKerr
2 ~dr21r 2du2!, ~52!

with NKerr , NKerr
w , AKerr , andBKerr known functions. It ob-

viously differs from asymptotical flatness becauseA5” B for
a5” 0. So we define a pseudo-Kerr metric by settingB5A,
which gives

ds252NKerr
2 dt21CKerr

4 @r 2 sin2u~dw2NKerr
w dt!2

1~dr21r 2du2!#, ~53!

whereCKerr
4 5AKerr

2 . After a numerical calculation, we com
pute the global parametersM anda, calculate the functions
NKerr , NKerr

w , andCKerr and compare them to the ones th
have been calculated numerically. Note thatNw

ªbw2V.
The coefficients of the pseudo-Kerr metric are given by

FIG. 4. Same as Fig. 3 for the relative difference between
angular momentum calculated by means of Eq.~49! and that by
means of Eq.~50!.

FIG. 5. Same as Fig. 3 for the relative error on the virial the
rem.
04402
t

NKerr
2 :512

2MR

S
1

4a2M2R2 sin2u

S2~R21a2!12a2SMR sin2u
~54!

CKerr
4 :511

2M

r
1

3M21a2 cos2u

2r 2
1

~M22a2!M

2r 3

1
~M22a2!2

16r 4
~55!

NKerr
w :5

2aMR

S~R21a2!12a2MR sin2u
, ~56!

where

R:5r 1
M22a2

4r
1M ~57!

S:5R21a2 cos2u. ~58!

Those analytical functions are then compared with t
obtained numerically~see Fig. 6!. As expected the difference
between the fields is not zero and it increases withV, re-
flecting the fact that a Kerr black hole deviates more a
more from conformal flatness asJ increases.

To summarize the results about a single rotating thro
we are confident in the fact that the Eqs.~3!, ~4!, and ~5!
have been successfully and accurately solved, with the
propriate boundary conditions. On the other hand we do
claim to recover the exact Kerr metric, for this latter diffe
from conformal flatness.

e

-

FIG. 6. Relative difference between the pseudo-Kerr quanti
defined by Eqs.~54!–~56! and the numerically calculated ones wi
respect to the angular velocity. The computation has been
formed withNr3Nu3Nw525317316. The circles denote the dif
ferences onN, the squares onC and the diamonds onNw

ªbw

2V.
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C. The Misner-Lindquist solution

Misner @5# and Lindquist@6# have found the conforma
factor C of two black holes in the static case, i.e., whenbW
50 ~see also Ref.@24# and Appendixes A and B of Ref
@25#!. In such a case the equation forC is only

DC50, ~59!

which was to be solved using boundary conditions~10! and
~13!. In the case of identical black holes, that is for tw
throats having the same radiusa, the solution is analytica
and does only depend on the separation parameter

Dª

d

a
, ~60!

d being the coordinate distance between the centers of
throats. To check if our scheme enables us to recover su
solution, we solve Eq.~59! with the boundary conditions
~10! and~13!. We then compute the ADM mass by means
the formula~see paper I!

M52
1

2p R̀ D̄ iCdSi ~61!

and compare the result to the analytical value given b
series in Lindquist article@6#.

Let us mention that, even if Eq.~59! is a linear equation
~the source is zero!, the problem has to be solved by iteratio
because of our method for setting the boundary condi
~13!. The computation has been conducted with a relaxa
parameterl50.5 and until a convergence ofdC510210 has
been attained. The comparison between the analytical
calculated ADM masses is plotted on Fig. 7 for various v
ues of the separation parameterD and various numbers o
coefficients. The agreement is very good for every value

FIG. 7. Relative difference between the calculated and ana
cal ADM mass for the Misner-Lindquist solution. The computati
has been performed with various number of coefficientsNr3Nu

3Nw .
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D. As for the Kerr black hole, when the number of coef
cients increases, we attain the saturation level of a few 10210

is due to the threshold chosen for stopping the calculat
This test makes us confident about the iterative scheme
to impose boundary conditions onto the two throatsS1 and
S2.

To go a a bit further and check the decomposition of
sources into two parts, presented in Sec. II A, we wish
consider a test problem with a source different from zero.
do so we consider the Misner-Lindquist problem but dec
to solve for the logarithm ofC, F5 ln C. The equation
for F is

DF52D̄kFD̄kF ~62!

and it must be solved with the following boundary cond
tions:

F→0 when r→` ~63!

]F

]r 1
U

S1

52
1

2a1
and

]F

]r 2
U

S2

52
1

2a2
. ~64!

The source of the equation forF containingF itself, it is
split as described in Sec. II A by

DFa52D̄kFD̄kFa , ~65!

a being 1 or 2. At the end of a computation, we compute
ADM mass by using

M52
1

2p R̀ D̄ iFdSi ~66!

and compare it with the analytical value. The computat
used a relaxation parameterl50.5 and has been stoppe
when the thresholddF51027 has been reached.

Figure 8 shows the resulting relative error estimated

FIG. 8. Relative difference between the calculated and ana
cal ADM mass for the Misner-Lindquist solution calculated usi
F5 ln C, with respect to the number of coefficients inw (Nu

5Nw11 andNr52Nw11). The separation parameter isD510.

i-
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means of the ADM mass forD510 and various numbers o
coefficients. The convergence isevanescent, i.e. it is expo-
nential as the number of coefficients increases. Unfo
nately, this convergence is much slower than when the s
tion was computed usingC and Eq.~59!. This comes from
the very nature of the source of Eq.~65!. The part of the
equation split on the coordinates centered around throat
the sum of two terms. The first one2D̄kF1D̄kF1 is centered
around hole 1 and well described by spherical coordina
associated with this hole. We do not expect any proble
with this term. The other term is2D̄kF1D̄kF2 and contains
a part that is centered around hole 2. Describing this p
using spherical coordinates around hole 1 is much m
tricky and a great number of coefficients, especially inw, is
necessary to do it accurately. It is the presence of suc
component at the location of the other hole that makes
convergence of the calculation much slower in this case.
course, we expect to recover this effect in the calculation
orbiting black holes.

IV. SEQUENCE OF EQUAL MASS COROTATING BLACK
HOLES IN CIRCULAR ORBIT

A. Numerical procedure

In this section we concentrate on equal mass black ho
The only parameter is the ratioD between the distance of th
centers of the holes and the radius of the throats@see Eq.
~60!#. We solve Eqs.~3!, ~4!, and~5!, with values at infinity
given by Eqs.~8!, ~9!, and~10! and with boundary conditions
on the horizons by Eqs.~11!, ~12!, and ~13!. We solve for
various values ofV and choose for solution the only valu
that satisfies the condition~14!. It turns out that this proces
uniquely determines the angular velocity. Let us callV true the
only value that equals the ADM and the Komar-like mass
It happens that

if V,V true thenMKomar,MADM
if V.V true thenMKomar.MADM .
The fact thatV2V true has always the same sign tha

MKomar2MADM enables us to implement a very efficient pr
cedure to determine the orbital velocity. It is found as t
zero of the functionMKomar(V)2MADM(V) by means of a
secant method. This is illustrated by Fig. 9, which shows
value (MADM2MKomar)/MKomar for various values ofV,
with respect to the step of the iterative procedure. Th
calculations have been performed forD516. The solid line
denotesV true, the only value of V for which (MADM
2MKomar)/MKomar converges to 0.

The computations have been done either inlow resolution
with Nr3Nu3Nw521317316 coefficients in each domai
or in high resolutionwith Nr3Nu3Nw533321320 coeffi-
cients in each domain. All the computation used a relaxa
parameterl50.5. We solve first for the static caseV50 and
use that solution as initial guess. For each value ofV, the
computation is stopped for a relative change on the s
vector as small asdb51028 (db51027) for the high reso-
lution ~low resolution! between two consecutive steps. T
secant procedure for the determination of the angular ve
ity has been conducted untilu(MADM2MKomar)/MKomaru
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,1025 (,1024) for the high resolution~low resolution!,
which gives a precision onV true of the order of
1024 (1023).

B. Tests

1. Check of the momentum constraint

As discussed in Sec. II C 1, we have to slightly modify t
shift vector to ensure both the regularity of the extrinsic c
vature on the throats and the invariance of the shift under
inversion isometry. This modification of the shift, via th
addition of the correction functionbW cor, results in a slight
violation of the momentum constraint Eq.~4!. A good way to
measure the magnitude of this violation is to check whet
the total angular momentumJ has the same value when ca
culated by surface integrals at infinity or on the throats.
deed, as for the Kerr black hole, it has been shown in pa
I that J can be given either by one of the two followin
integrals:

J5
1

8p R̀ Âj
i mjdS̄i , ~67!

J52
1

8p R
S1

C6Âi j f jkmkdS̄i

2
1

8p R
S2

C6Âi j f jkmkdS̄i . ~68!

Any difference between those two formulas would reflect
fact that the momentum constraint~51! is not exactly satis-
fied.

We have plotted the relative differencedJ/J between the
two integrals~67! and ~68! in Fig. 10 as a function on the
separation between the two holes. Also shown on the s

FIG. 9. Value of (MADM2MKomar)/MKomar with respect to the
step of the iteration, forD516 and for various values ofV. The
solid line denotesV true, the short-dashed lineV50.95V true and the
long-dashed lineV51.08V true.
1-10
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figure is the relative norm of the correction functio
ubW coru/ubW u. The correlation between the two curves sho
that the error on the momentum constraint arises from
introduction of the correction function on the shift. It is als
clear from Fig. 10 that increasing the number of coefficie
in the spectral method does not make the correction func
tend to zero. This means that the error in the momen
constraint come rather from the method~necessity to regu-
larize the shift vector! than from some lack of numerica
precision.

As discussed in paper I, we had to regularize the s
vector because Eq.~41! is not enforced in our scheme. It ha
been argued recently by Cook@22# that if one reformulates
the problem by assuming that the helical vectorl is not an
exact Killing vector, but only an approximate one—as it is
reality—then the only freely specifiable part of the extrins
curvature, as initial data, is Eq.~6!, not Eq.~41!. This means
that the relation~41! between the extrinsic curvature and t
shift is not as robust as the relation~6!.

However, we see from Fig. 10 that at the innermost sta
circular orbit, which is located atD517 ~cf. Sec. IV C!, the
error are very small:

dJ/J5231022 ~69!

ubW coru5831024ubW u. ~70!

ThedJ/J error estimator maximizes the error on the mome
tum constraint because it integrates it in all space. Thus
conclude that momentum constraint is satisfied in our
merical results with a precision of the order 1%.

2. Check of the Smarr formula

A good check of the global error in the numerical soluti
is the generalized Smarr formula derived in paper I:

FIG. 10. Relative difference between the regularized shift a
the exact solution of Eq.~4! ~circles! and relative difference be
tweenJ calculated by means of Eqs.~67! and ~68! ~squares!. The
filled symbols and the solid line denote the high resolution and
empty symbols and the dashed line the low resolution.
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M22VJ52
1

4p R
S1

C2D̄ iNdS̄i2
1

4p R
S2

C2D̄ iNdS̄i .

~71!

For any computation, one getsM, V and can compute the
RHS of Eq.~71! and use that equation to derive the value
J that satisfies the Smarr formula. That value is then co
pared to the ones calculated using Eqs.~67! and ~68!. The
comparison is plotted in Fig. 11 for the two different resol
tions. It turns out that the angular momentum calculated
infinity is better in fulfilling the Smarr formula than the on
calculated on the throats by an order of magnitude and
the precision is better than 531023. So, for all following
purposes, we will use the value ofJ given by Eq.~67!.

3. Check of Kepler law at large separation

The next thing one wishes to test is the value ofV, ob-
tained from the virial criterium~14!. In Newtonian gravity,
two points particles on circular orbits obey the followin
relation, which is equivalent to Kepler’s third law:

4JV1/3

M5/3
51, ~72!

whereM is the total mass,J the total angular momentum an
V the orbital velocity. For large separations of the tw
throats we expect to recover this relation. Therefore, for
ery value ofD, we evaluate

Iª
4JV1/3

M5/3
~73!

and check ifI tends to 1 whenD→`.
The value ofI is plotted in Fig. 12 with respect to th

distance parameterD. As expected, for large values ofD, it

d

e

FIG. 11. Relative error on the generalized Smarr formula~71!.
The circles denote the error obtained usingJ calculated at infinity
@Eq. ~67!# and the squares that obtained when evaluatingJ on the
throats@Eq. ~68!#. The filled symbols and the solid line denote th
high resolution and the empty symbols and the dashed line the
resolution.
1-11



e

ld

ts

ce
t

in

re

t

d

a
ti-

on-

for
sys-
one

ling

the

ter is
iring

by

the

on

GRANDCLÉMENT, GOURGOULHON, AND BONAZZOLA PHYSICAL REVIEW D65 044021
tends to 1, implying that for large separations the syst
behaves like two point particles in Keplerian motion.

C. Evolutionary sequence

Let us first present some figures about the metric fie
Figure 13 shows the total lapse functionN, conformal factor
C and the shift vectorbW and Fig. 14 the componentsÂxx,
Âxy, andÂyy of the extrinsic curvature tensor. All those plo
are cross section in the orbital planez50 and the coordinate
system is a Cartesian one centered at the middle of the
ters of the throats. The computation has been done using
high resolution. The separation parameter isD517. As it
will be seen later, this separation corresponds to the turn
point in the energy and angular momentum curves.

In the previous section, the only parameter we conside
was the dimensionless separation parameterD. But there also
exists a scaling factor. Suppose that all the distances in
computation are multiplied by some factora. Another solu-

FIG. 12. Value ofI 54J(V/M5)1/3 ~low resolution runs! with
respect to the separation parameterD. The horizontal dashed line
corresponds to the value predicted by Kepler’s third law.
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tion with the same value ofD will be obtained, the global
quantities being rescaled as

Ma5aM1 ~74!

Ja5a2J1 ~75!

Va5
V1

a
, ~76!

whereM1 , J1, andV1 are the values before rescaling an
Ma , Ja , andVa the values after the rescaling.

Consider a physical configuration corresponding to
valueD(n) of the separation parameter, with global quan
ties M (n), J(n), andV(n). This system will evolve due to
the emission of gravitational radiation. A subsequent c
figurationn11 will haveD(n11),D(n). But what scaling
factora should be applied to the configuration calculated
D(n11) to ensure that it represents the same physical
tem as before? In other words, a physical sequence is a
parameter~the separation! family of configurations and we
have to impose another condition to determine the sca
factor associated with each value ofD. In the case of binary
neutron stars the condition is obtained by imposing that
number of baryons is conserved~see e.g., Ref.@14#!. This
cannot be extended to the black holes case since no mat
present. We chose instead to define a sequence by requ
that the loss of energy~ADM mass! dM and angular mo-
mentumdJ due to gravitational wave emission are related

dM

dJ U
sequence

5V. ~77!

This relation is exact at least when one considers only
quadrupole formula~see e.g. p. 478 of Ref.@26#!. It turns out
that it is also well verified for sequences of binary neutr
stars@27,28#. So Eq.~77! should hold rather well for coro-
tating black holes.
eter scale

FIG. 13. Isocontour of the lapse functionN and of the conformal factorC and plot of the shift vectorbW , for D517, in the orbital plane

z50. The computation has been done using the high resolution. The thick solid lines denote the surfaces of the throats. The kilom
of the axis corresponds to an ADM mass of 31.8M ( .
1-12
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FIG. 14. Isocontour of the extrinsic curvature tensor forD517 in the orbital planez50. The solid~dashed! lines denote positive
~negative! values. The thick solid lines denote the surfaces of the throats. The computation has been done using the high resolu
kilometer scale of the axis corresponds to an ADM mass of 31.8M ( .
a-
a

th
joi
l-

el

ul
n

a
ee
n-

t

-

so-

en-
has

for

the

tive
nd

arr

aim
lts

le

n
ats.
by

ery
ria-
The scaling factora associated with the separation p
rameterD(n11) can be computed from the global values
separationD(n) and the unscaled values at separationD(n
11) as the solution the third degree equation

M ~n!2aM1~n11!

J~n!2a2J1~n11!
5

1

2 S V~n!1
V1~n11!

a D , ~78!

which is a first-order translation of Eq.~77!. To present the
results, we define the following dimensionless quantities

M̄ :5
M

M0
~79!

J̄:5
J

M0
2

~80!

V̄:5M0V ~81!

l̄ :5
l

M0
, ~82!

where l is the proper separation of the holes, defined as
geometrical distance between the throats along the axis
ing their centers.M0 is some arbitrary mass used for norma
ization purpose. It is often convenient to chooseM0 to be the
total mass of the system when the two holes are infinit
separated, i.e., the ADM mass whenD→`. Unlike other
methods, this value is not an input parameter of our calc
tion. It can only be obtained by constructing a sequence u
very large values ofD, which would impose to calculate
great number of configurations. However, as will been s
further, the system will exhibit turning point in the total e
ergy and angular momentum, thereafter assumed to be
signature of an innermost stable circular orbit~thereafter
ISCO!. We choseM0 to be the total ADM mass of the sys
tem at that point,
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M0ªMADMu ISCO, ~83!

so thatM̄ is 1 at the location of the ISCO.
The values of the dimensionless quantitiesV̄, J̄, M̄ , and

l̄ along the sequence are given by Table I, for the high re
lution.

Figures 15, 16, 17 and 18 show the values of the dim
sionless quantities along a sequence. The calculation
been performed with the high and low resolutions and
values of the parameterD ranging from 40 to 11. As previ-
ously mentioned, the sequence exhibits a minimum ofJ̄ and
M̄ as the throats become closer, thereafter interpreted as
signature of an innermost stable circular orbit~ISCO! @29#.
But at this point, we have to be cautious. Indeed, the rela
variation of M̄ and J̄ along a sequence is rather small, a
comparable to the precision estimated by means of the Sm
formula ~see Sec. IV B!. The exact location of the ISCO
being very dependent on those small effects, we do not cl
to have very precisely determined it. The following resu
should be confirmed with more precise calculations.

Another important quantity is the area of the black ho
horizons which relates to the irreducible mass@30# ~see also
Box 33.4 of@31#!. As discussed in Sec. II B 6 of paper I, i
our case the apparent horizons coincide with the two thro
We therefore define the dimensionless irreducible mass

M̄ irª
1

M0
SA A1

16p
1A A2

16p D , ~84!

whereAa(a51,2) denotes the area of the throata, calculated
according to the formula

Aa5 R
Sa

C4dS̄. ~85!

Figure 19 shows the relative change ofM̄ ir along the se-
quence. It exhibits a slight increase, but its variation is v
small. It appears that, along the overall sequence, the va
1-13
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GRANDCLÉMENT, GOURGOULHON, AND BONAZZOLA PHYSICAL REVIEW D65 044021
tion is smaller than 1023. The precision of our code being o
that order, this result is compatible with the fact thatM̄ ir is
constant. In other word it shows that imposing the condit
~77! is equivalent to imposing that the irreducible mass
constant along a sequence. This constitutes in fact a
good test of our procedure. Indeed Friedman, Uryu and S
bata @32# have recently established the first law of bina
black hole thermodynamics:

dM5VdJ1k1dA11k2dA2 , ~86!

wherek1 and k2 are two constants, representing the bla
holes surface gravity. For identical black holes (k15k2 and
dA15dA2), the above relation implies

dM5VdJ ⇔ dAa50 ~a51,2!. ~87!

Hence the area of each black hole must be conserved du
the evolution. In future works, this last criterium could b
used to define a sequence, instead of the relation~77!.

TABLE I. Values of dimensionless quantities along a seque
of corotating black holes obtained using the high resolution. T
bold line denotes the values at the location of the ISCO.

D V̄ J̄ M̄ l̄

40 0.029 615 9 0.995 862 1.005 97 13.3502
39 0.030 702 6 0.987 981 1.005 73 13.0699
38 0.031 807 4 0.978 701 1.005 44 12.7892
37 0.033 063 2 0.971 834 1.005 22 12.5075
36 0.034 463 8 0.966 535 1.005 04 12.2247
35 0.035 892 3 0.959 407 1.004 79 11.9414
34 0.037 427 9 0.952 494 1.004 53 11.6572
33 0.039 061 2 0.945 264 1.004 26 11.3721
32 0.040 843 6 0.938 754 1.004 11.086
31 0.042 749 1 0.931 913 1.003 71 10.7988
30 0.044 827 3 0.925 596 1.003 43 10.5104
29 0.047 033 5 0.918 635 1.003 11 10.2211
28 0.049 462 5 0.911 941 1.002 79 9.930 12
27 0.052 174 7 0.907 183 1.002 55 9.6379
26 0.055 099 6 0.901 696 1.002 25 9.344 11
25 0.058 284 2 0.896 173 1.001 94 9.048 81
24 0.061 750 1 0.890 47 1.0016 8.751 88
23 0.065 622 2 0.885 511 1.001 28 8.452 86
22 0.069 962 9 0.881 51 1.001 01 8.151 64
21 0.074 742 6 0.877 312 1.000 71 7.848 23
20 0.080 113 7 0.874 079 1.000 46 7.542 43
19 0.086 184 0.871 511 1.000 24 7.233 64
18 0.093 045 3 0.869 573 1.000 07 6.9218
17 0.100 897 0.868 85 1 6.606 44
16 0.109 958 0.869 769 1.0001 6.287 24
15 0.120 329 0.870 729 1.000 21 5.963 58
14 0.132 657 0.874 838 1.000 73 5.634 71
13 0.147 12 0.880 134 1.001 47 5.300 06
12 0.164 512 0.888 448 1.002 76 4.958 63
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We choose an average value of the irreducible massM̄ ir
51.0173 and we define then the binding energy of the s
tem at the ISCO by

Ēbu ISCO512M̄ ir , ~88!

the dimensionless total energy being equal to 1 at the lo
tion of the turning point.

The values of the dimensionless quantitiesV̄, J̄, Ēb , and
l̄ at the ISCO are given in Table II and compared with t
results from other approaches~see@29# for a review!. 3-PN
EOB stands for the third order post-Newtonian effective o
body method for non-spinning black holes@33#, with two
values of the 3-PN parametervs : vs50 andvs529.34.
3-PN j-method stands for third order post-Newtonia

e
e

FIG. 15. M̄ with respect toJ̄ along a sequence. The filled sym
bols and solid line denote the high resolution and the empty s
bols and the dashed line the low one.

FIG. 16. M̄ with respect toV̄ along a sequence. The fille
symbols and solid line denote the high resolution and the em
symbols and the dashed line the low one.
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BINARY BLACK HOLES IN . . . . II. . . . PHYSICAL REVIEW D 65 044021
j-method of@33#. Puncturedenotes the results from the pun
ture method in the case of non-spinning black holes@34# and
Conformal imag.the conformal imaging approach with var
ous values of the individual spins for rotating black ho
@11#. By definition M̄51 at the location of the ISCO for al
the methods. The results from the different methods are
plotted in Fig. 20.

Figure 20 shows explicitly that the present results are
much better agreement with post-Newtonian calculati
than with other numerical works. Note that the po
Newtonian point plotted on Fig. 20 corresponds to the va
0 of the ~previously ambiguous! 3-PN ‘‘static’’ parameter
vs . This is indeed the value recently determined by Dam
et al. @35#.

FIG. 17. J̄ with respect toV̄ along a sequence. The filled sym
bols and solid line denote the high resolution and the empty s
bols and the dashed line the low one.

FIG. 18. l̄ with respect toV̄ along a sequence. The filled sym
bols and solid line denote the high resolution and the empty s
bols and the dashed line the low one.
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But let us point out that it is rather difficult to compar
precisely our results with the other works. The main probl
comes from the fact that all those methods use individ
spins of the black holes as input parameters. In the pre
paper we impose corotation, that is that the throats are s
ning at the orbital velocity. The only value that can be co
puted is the total angular momentumJ and, in general rela-
tivity, it cannot be split into orbital and spins parts in
invariant way. However, from the results of Pfeifferet al.
@11# one can see that increasing the spins of the black h
make the valuesV̄, J̄, and2Ēb at the ISCO greater. Taking
rotation into account in the post-Newtonian methods@36#
will probably make the orbital velocity and the binding e
ergy at the ISCO match even better with our values. Work
under progress to compare with corotating post-Newton
results@37#.

So, it appears that our results match pretty well with po
Newtonian methods. This is the most striking conclusi
from our study. The difference between numerical and po
Newtonian results have often been imputed mostly to
conformal flatness approximation~see @29#!. The fact that
our result,using conformal flatness, is in much better agree
ment with PN calculations than other numerical work
makes us believe that the main worry of both conform
imaging and puncture methods lies elsewhere, possibly in
determination ofV. Indeed, it is very unlikely that the orbit
and so orbital velocity can be properly computed by solv
only for the four constraint equations. Time should be
volved at some level and one should take other Eins
equations into account, as we have done here.

V. CONCLUSIONS

The present work should be seen as a first step in tryin
give some new insight to the binary black holes proble

-

-

FIG. 19. Relative change ofM̄ ir along the sequence, with re

spect to the orbital velocityV̄. The filled symbols and the solid line
denote the high resolution and the empty symbols and the da
line the low resolution.
1-15



orks.
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TABLE II. Values of dimensionless quantities at the location of the ISCO. Comparison with other w

Method V̄ J̄ Ēb l̄

3-PN EOBvs50,S50 @33# 0.0868 0.847 20.0170 not given
3-PN EOBvs529.34,S50 @33# 0.0722 0.877 20.0152 not given
3-PN j-methodvs529.34,S50 @33# 0.0731 0.877 20.0153 not given
PunctureS50 @34# 0.176 0.773 20.0235 4.913
Conformal imag.S50 @11# 0.162 0.779 20.0230 5.054
Conformal imag.S50.08 @11# 0.182 0.799 20.0250 4.705
Conformal imag.S50.17 @11# 0.229 0.820 20.0279 4.040
This work ~high res.! 0.101 0.869 20.0173 6.606
This work ~low res.! 0.105 0.867 20.0173 6.450
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The basic idea is to extend the numerical treatment bey
the resolution of the four constraint equations within
3-dimensional spacelike surface. This is achieved by rein
ducing time in the problem to deal with a 4-dimension
spacetime. The orbits are well defined by imposing the e
tence of a helical Killing vector and the orbital velocity
found as the only value that equals the ADM and the Kom
like masses, a requirement which is equivalent to the vi
theorem. According to us those are the two most import
features of our method. The approximation of conformal fl
ness for the 3-metric has only been used for simplic
Sooner or later this problem will have to be solved using
general spatial metric and outgoing waves boundary co
tions at large distances. The use of the inversion isometr
derive boundary conditions on the throats is also a w
assumption. In the future, it would be interesting to chan
the boundary conditions on the fields in order to investig
their influence on the results~see e.g.,@22# for an alternative
choice!. Besides, changing the boundary conditions on
shift vector should enable us to describe other states of r
tion of the black holes, as has been recently proposed
Cook @22#.

The numerical schemes are basically the same as t
which have been previously successfully applied to bin
neutron stars configurations@14#. They have been extende
to solve elliptic equations with non-trivial boundary cond
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tions imposed on two throats and exact boundary conditi
at infinity. Those techniques passed numerous tests and
cover the Schwarzschild and Kerr solutions as well as
Misner-Lindquist one for two static black holes@5,6#. A tech-
nical problem lies in the great number of coefficients need
to accurately describe the part of the sources located aro
the companion hole. This effect causes some lack of pr
sion. But we can estimate the error it generates by vary
the number of coefficients, and comparing the results. Thi
what we have done here, using 21317316 coefficients in
each of the 12 domains for the low resolution computatio
and 33321320 coefficients for the high resolution one
The accuracy, estimated from the generalized Smarr form
is below 1%.

Another issue is the slight violation of the momentu
constraint which arises from the necessity to regularize
shift vector. We have found that the modification of the sh
vector with respect to the vector which satisfies the mom
tum constraint~4! is below 1023, and that the error it induce
in the momentum constraint equation is of the order 1%.
view of the other approximations performed in this wor
especially the conformal flatness of the 3-metric, we find t
to be very satisfactory.

In this article, we have defined a sequence of binary bl
holes by requiring that the ADM mass decrease is relate
The
FIG. 20. Values ofĒb and J̄ with respect toV̄ at the ISCO for different methods, including ours with high and low resolution.
references to previous studies are as follows: Damouret al. @33#, Pfeiffer et al. @11# and Baumgarte@34#. S denotes the~fixed! spin of the
black holes used in various methods.
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the angular momentum decrease viadM5VdJ. This rela-
tion is true for the loss due to gravitational radiation, at le
when one considers only the quadrupole formula. We h
then found that the area of the apparent horizons~irreducible
mass! is constant along the sequence, in agreement with
first law of binary black holes thermodynamics recently d
rived by Friedmanet al. @32#.

The location of the ISCO has been obtained and co
pared with the results from other methods@33,34,11#. It turns
out that our results match the 3-PN methods much be
than previous numerical works. The differences between
merical studies and 3-PN approximations have often b
explained by the use of the conformal flatness approxima
in the numerical calculations@33#. It seems to us that this i
not the main explanation, for we are using this approxim
tion. It certainly arises instead from the wayV is deter-
mined.

Another natural extension of this work is to use the o
tained configurations as initial data for binary black ho
evolution codes~see@38# for a review and Refs.@39–41# for
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recent results!. Initial data files containing the result of th
present work are publically available on the CVS reposito
of the European Union Network on Sources of Gravitatio
Radiation@42#. Extraction of the waveforms from a sequen
would also be an interesting application@43,44#.
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GRANDCLÉMENT, GOURGOULHON, AND BONAZZOLA PHYSICAL REVIEW D65 044021
@38# E. Seidel, inBlack Holes and Gravitational Waves—New Ey
in the 21st Century, Proceedings of the 9th Yukawa Intern
tional Seminar, Kyoto, 1999, edited by T. Nakamura and
Kodama@Prog. Theor. Phys. Suppl.136, 87 ~1999!#.

@39# S. Brandt, R. Correll, R. Go´mez, M. Huq, P. Laguna, L. Leh
ner, P. Marronetti, R. A. Matzner, D. Neilsen, J. Pullin,
Schnetter, D. Shoemaker, and J. Winicour, Phys. Rev. Lett.85,
5496 ~2000!.
04402
.

@40# M. Alcubierre, W. Benger, B. Bru¨gmann, G. Lanfermann, L
Nerger, E. Seidel, and R. Takahashi, gr-qc/0012079.

@41# J. Baker, B. Bru¨gmann, M. Campanelli, C. O. Lousto, and R
Takahashi, Phys. Rev. Lett.87, 121103~2001!.

@42# http://www.eu-network.org/Projects/InitialData.html
@43# M. D. Duez, T. W. Baumgarte, and S. L. Shapiro, Phys. Rev

63, 084030~2001!.
@44# M. Shibata and K. Uryu, Phys. Rev. D64, 104017~2001!.
1-18


