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Binary black holes in circular orbits. I. A global spacetime approach

Eric Gourgoulhon,* Philippe Grandcle´ment,† and Silvano Bonazzola‡
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~Received 5 June 2001; published 25 January 2002!

We present a new approach to the problem of binary black holes in the precoalescence stage, i.e., when the
notion of orbit has still some meaning. Contrary to previous numerical treatments which are based on the initial
value formulation of general relativity on a~3-dimensional! spacelike hypersurface, our approach deals with
the full ~4-dimensional! spacetime. This permits a rigorous definition of the orbital angular velocity. Neglecting
the gravitational radiation reaction, we assume that the black holes move on closed circular orbits, which
amounts to endowing the spacetime with a helical Killing vector. We discuss the choice of the spacetime
manifold, the desired properties of the spacetime metric, as well as the choice of the rotation state for the black
holes. As a simplifying assumption, the space 3-metric is approximated by a conformally flat one. The problem
is then reduced to solving five of the ten Einstein equations, which are derived here, as well as the boundary
conditions on the black hole surfaces and at spatial infinity. We exhibit the remaining five Einstein equations
and propose to use them to evaluate the error induced by the conformal flatness approximation. The orbital
angular velocity of the system is computed through a requirement which reduces to the classical virial theorem
at the Newtonian limit.
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I. BACKGROUND AND MOTIVATION

Binary black holes have been the subject of numer
studies in the past two decades, both from the analytical
numerical point of view. These studies are motivated by
fact that the coalescence of two black holes is expected t
one of the strongest sources of gravitational waves detect
by the interferometric detectors the Laser Interferome
Gravitational Wave Observatory ~LIGO!, GEO600,
TAMA300 and VIRGO, currently coming on-line@1#.

From the analytical point of view, the most recent wor
are based on the post-Newtonian formalism~see e.g., Ref.
@2# for a review! or on the effective one-body approach d
veloped by Buonanno and Damour@3–5#. In these works, the
black holes are treated as point mass particles,1 which is a
very good approximation when the black holes are far ap
For closer configurations, one may turn instead to some
merical approach. The numerical studies can be divided
two classes:~i! the initial value problem for two black hole
~see Ref.@7# for a review! and ~ii ! the time evolution of the
initial data ~see Ref.@8# for a review and Refs.@9–11# for
recent results!. One of the major problems in this respect
to get physically relevant initial data. Indeed, initial data re
resenting two black holes have been obtained long ago
Misner @12# and Lindquist @13#, as well as Brill and
Lindquist@14# ~a modern discussion of these solutions can

*Email address: Eric.Gourgoulhon@obspm.fr
†Present address: Department of Physics and Astronomy, No

western University, Evanston, IL 60208. Email addre
PGrandclement@northwestern.edu

‡Email address: Silvano.Bonazzola@obspm.fr
1Note however the~approximate! analytical solution derived by

Alvi @6# by matching a post-Newtonian metric to two perturb
Schwarzschild metrics.
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found in Ref. @15# or Appendixes A and B of Ref.@16#!.
However these solutions correspond to two momenta
static black holes and are therefore far from represent
some stage in the evolution of an isolated binary black h
in our universe.

Based on the seminal work of Bowen and York@17#,
Kulkarni, Shepley and York@18# have described a procedur
to get initial data representing binary black hole with ar
trary positions, masses, spins and momenta. This proced
known asconformal imaging, has been used by Cook an
other authors @19–23# to numerically construct
3-dimensional spacelike hypersurfaces representing th
initial data. These solutions constitute some generalizatio
the non-static regime of the Misner-Lindquist solutio
@12,13#, the spacelike hypersurface having the same top
ogy: two isometric asymptotically-flat sheets connected
two Einstein-Rosen bridges. Also based on the Bowen
York’s work @17#, another approach, the so-calledpuncture
method, has been undertaken by Brandt and Bru¨gmann@24#
and used recently by Baumgarte@25#. The resulting solutions
also have arbitrary positions, masses, spins and moment
their topology is different from that of the conforma
imaging approach: the spacelike hypersurface has nowthree
asymptotically-flat sheets, which are not isometric. The
three sheets are connected among themselves by
Einstein-Rosen bridges; one of the sheets contains
throats and is supposed to represent our universe. Thes
lutions hence constitute some generalization to the non-s
case of the Brill-Lindquist solution@14#. Both the conformal-
imaging and the puncture approaches assume that the m
of the spacelike hypersurface is conformally flat. A third a
proach to the problem relaxes this assumption; it has b
developed recently by Matzner, Maroronetti and collabo
tors @26–28#. These authors use a linear combination of tw
boosted Kerr-Schild metrics as the conformal 3-metric
York’s treatment of initial conditions@29#.

h-
:
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GOURGOULHON, GRANDCLÉMENT, AND BONAZZOLA PHYSICAL REVIEW D 65 044020
The main drawback of the three approaches descr
above is that they contain freely specifiable parameters
lated to the values of positions, momenta and spins of
black holes, and it is difficult to figure out which paramete
correspond to a physical configuration. In particular, it is n
obvious at all how to select, among all these configuratio
those that correspond to binary black holes on closed circ
orbits. Of course, the circular orbits are approximate rep
sentations of the exact orbital motion, which is inspiralli
due to the loss of energy and angular momentum via gr
tational radiation. However in the regime where the radiat
reaction time scale is much longer than the orbital time sc
i.e. before the last stable orbit, we expect that the bin
system can be approximated by a sequence of tighter
tighter circular orbits. Note that the gravitational radiati
reaction makes initially elliptic orbits become circular@30#.
It is thus legitimate to search for such orbits. This proble
has been addressed by Cook@21# and Pfeiffer et al. @22#
within the conformal-imaging approach and by Baumga
@25# within the puncture approach2 ~see e.g.,@31# for a re-
view of these computations!. Although they differ in the to-
pology of the spacelike hypersurface~two-sheeted for
@21,22# against three-sheeted for@25#!, both sets of studies
rely on the effective-potential methodproposed by Cook
@21#. This method amounts to defining the binding energy
a somewhat ad-hoc formula, and to define the angular ve
ity of a circular orbit by minimizing the binding energy wit
respect to the angular momentum at fixed total energy
separation. This method can be criticized on the follow
ground: the only well defined global quantities on an asym
totically flat spacelike hypersurface are the Arnowitt-Des
Misner ~ADM ! total massM and ADM total linear momen-
tum. The latter can be chosen to be zero without any los
generality. With some restrictions on the asymptotic gau
the total angular momentumJ can also be defined@32#. De-
fining the binding energy would require the notion of ind
vidual mass for each hole, let sayM1 andM2, in order to set
Ebind5M2M12M2. However there does not exist an
unique definition of the individual massesM1 andM2 for a
binary black hole. In Refs.@21,22,25# the authors defineM1
and M2 via the formula which relates the mass of a Ke
black hole to its horizon area and its angular momentu
However such a formula is strictly demonstrated only fo
isolated rotating black hole~Kerr spacetime!. In particular, it
does not take into account any tidal effect.

Our approach for finding circular orbits of binary blac
holes is very different: instead of considering 3-dimensio
spacelike hypersurfaces, we adopt from the very beginnin
4-dimensional point of view, i.e. we consider a full spacetim
containing two moving black holes. Of course, in order
make the problem tractable, we introduce some approxi
tions, the most significant being the assumption of stric
circular orbits, which amounts to endowing our spaceti
with a Killing vector field~helical symmetry!. An interesting

2To our knowledge, the Kerr-Schild approach has not been u
yet to get circular orbits, the article@28# providing results only for
black holes in hyperbolic motions.
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pay-off is that the orbital angular velocityV can be unam-
biguously defined as the rotation rate of the Killing field wi
respect to some asymptotically inertial observers. This d
nition does not suffer from the ambiguity of th
3-dimensional approaches and is made possible only bec
we have re-introducedtime in the problem.

The presentation of this new approach is organized
follows. We set up the problem in Sec. II, starting from t
explicit construction of the spacetime manifold, introduci
a metric, as well as a corresponding isometry on it, and
nally imposing the helical symmetry. The Einstein equatio
are then considered in Sec. III, first in their general form a
then after the assumption of a conformally flat 3-metric. G
bal quantities such as the ADM mass and the total ang
momentum are discussed in this section, as well as the v
prescription for the orbital velocity. Section IV deals with th
asymptotic behavior of the shift vector and the extrinsic c
vature tensor and discusses the connection between he
symmetry and asymptotic flatness. Finally Sec. V conta
the concluding remarks.

II. FORMULATION

A. Spacetime manifold

1. Construction

We consider the spacetime to be a differentiable manif
M with the topology of the real lineR times the Misner-
Lindquist manifold@12,13#. More precisely, for any couple
of positive numbers (a1 ,a2) and any couple of real number
(x1 ,x2) such thatux12x2u.a11a2, let us consider the sub
set ofR3 obtained by removing the interior of balls of radiu
a1 anda2 and centerx5x1 andx5x2:

Eª$~x,y,z!PR3,~x2x1!21y21z2>a1
2 and

~x2x2!21y21z2>a2
2%. ~1!

Let us call S1 and S2 the 2-spheres defining the ‘‘inner
boundaries ofE:

S1 :5$~x,y,z!PR3,~x2x1!21y21z25a1
2%, ~2!

S2 :5$~x,y,z!PR3,~x2x2!21y21z25a2
2%. ~3!

Let us consider two copiesEI and EII of E and defineMI
ªR3EI andMIIªR3EII . The spacetime manifoldM is be
then defined as the unionMIøMII with both S1 andS2 of
each copy identified~see Fig. 1!. The reader is referred to
Sec. IV of Ref. @12# or Sec. II of Ref.@13# for a precise
construction of the manifold structure in the vicinity ofS1
andS2. The partMI of M will be designed hereafter as th
upper spaceand the partMII as thelower space. The bound-
ariesS1ªR3S1 and S2ªR3S2 betweenMI and MII are
called respectivelythroat 1 and throat 2.

Hereafter we label by (t,xI ,yI ,zI) the points ofMI con-
sidered as a part ofR3R3 (EI being a part ofR3), and by
(t,xII ,yII ,zII) the points ofMII considered as a part ofR
3R3. The corresponding two charts will be called theca-
nonical coordinate systems. These two charts coverM mi-

d
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BINARY BLACK HOLES IN CIRCULAR ORBITS. I. . . . PHYSICAL REVIEW D65 044020
nus the two throats. The whole manifoldM can be covered
entirely by a single coordinate system:

C1 :M→R4

P°H ~ t,xI ,yI ,zI! if PPMI

I1~ t,xII ,yII ,zII ! if PPMII ,
~4!

where I1 :R4°R4 denotes the inversion through th
2-sphereS1:

I1~ t,x,y,z!5S t,
a1

2~x2x1!

~x2x1!21y21z2

1x1 ,
a1

2y

~x2x1!21y21z2 ,
a1

2z

~x2x1!21y21z2D .

~5!

In a similar way, one can introduce the coordinate systemC2
associated with throat 2.

In the coordinate systemC1 or C2, the throats are no
located at constant coordinate values. Therefore, it is m
convenient to introduce instead the polar coordinate sys
(t,r 1 ,u1 ,w1) centered on throat 1, as follows:

FIG. 1. Construction of the spacetime manifold.
04402
re
m

for PPMI , H xI5r 1 sinu1 cosw11x1 ,

yI5r 1 sinu1 sinw1 ,

zI5r 1 cosu1 ,

~a1<r 1,1`!

~6!

and

for PPMII , 5
xII5

a1
2

r 1
sinu1 cosw11x1 ,

yII5
a1

2

r 1
sinu1 sinw1 ,

zII5
a1

2

r 1
cosu1 .

~0,r 1<a1!

~7!

The throat 1 corresponds tor 15a1. The polar coordinate
system (t,r 2 ,u2 ,w2) centered on throat 2 is introduced sim
larly. Note that any of the two coordinate system
(t,r 1 ,u1 ,w1) and (t,r 2 ,u2 ,w2) covers the whole spacetim
manifold M. For the (t,r 1 ,u1 ,w1) system,MI corresponds
to a1<r 1,1` and MII to 0,r 1<a1. Similarly, for
(t,r 2 ,u2 ,w2) system,MI corresponds toa2<r 2,1` and
MII to 0,r 2<a2 ~see Fig. 2!.

2. Canonical mapping

From the very construction ofM, we have at our disposa
the canonical mapping~see Fig. 1!

I :MI→MII

~8!
~ t,xI ,yI ,zI!°~ t5t,xII5xI ,yII5yI ,zII5zI!.

Note that in terms of the (t,r 1 ,u1 ,w1) coordinate system
this map can be written as an inversion through the sph
r 15a1 ~see Fig. 2!:

I ~ t,r 1 ,u1 ,w1!5S t,
a1

2

r 1
,u1 ,w1D . ~9!
y

FIG. 2. Coordinate systems
(t,r 1 ,u1 ,w1) and (t,r 2 ,u2 ,w2) on
the spacetime manifold M.
Shown here is at5const section
of M, with the dimension in theu
direction suppressed, leaving onl
(r 1 ,w1) or (r 2 ,w2).
0-3
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GOURGOULHON, GRANDCLÉMENT, AND BONAZZOLA PHYSICAL REVIEW D 65 044020
In terms of the (t,r 2 ,u2 ,w2) coordinate system, it looks like
an inversion as well:

I ~ t,r 2 ,u2 ,w2!5S t,
a2

2

r 2
,u2 ,w2D . ~10!

Let (xa) be a coordinate system onMI @for instance (xa)
5(t,xI ,yI ,zI), (xa)5(t,r 1 ,u1 ,w1) or (xa)5(t,r 2 ,u2 ,w2)#
and (ym) be a coordinate system onMII @for instance (ym)
5(t,xII ,yII ,zII), (ym)5(t,r 1 ,u1 ,w1) or (ym)
5(t,r 2 ,u2 ,w2)#. The mapI is fully characterized by its com
ponentsI m with respect to the coordinates (xa) and (ym): the
image I (P) of a point PPMI with coordinates
(x0,x1,x2,x3) has the coordinates

ym5I m~x0,x1,x2,x3!. ~11!

Let us now examine the action of the mapI on various fields
onM. If f is a scalar field onMII , I induces a scalar field on
MI through

I * fª f sI , ~12!

i.e.,

I * f @P#5 f @ I ~P!#, ~13!

for any pointP of MI .
Also I maps any vector fieldv onMI to a vector fieldI * v

on MII through

I * v~ f !ªv~ I * f !, ~14!

for any scalar fieldf on MII . If vectors are represented b
their components with respect to the coordinate bases]/]xa

and]/]ym, one has

I * v~ f !5~ I * v!m
] f

]ym ~15!

and, according to definitions~14! and ~12!,

I * v~ f !5va
]

]xa f „I m~xb!…5va
] f

]ym

]I m

]xa . ~16!

Hence the matrix of the mappingI * between vectors onMI
and vectors onMII is given by the Jacobian matrix ofI:

~ I * v!m@ I ~P!#5
]I m

]xava@P#, ~17!

whereP denotes any point ofMI .
The action ofI on vectors can be used to define the act

of I on 1-forms as follows:I maps any 1-formv on MII to
a 1-form I * v on MI through

I * v~v!ªv~ I * v!, ~18!

for any vector fieldv on MI . If 1-forms are represented b
their components with respect to the coordinate basesdxa

anddym, one has
04402
n

I * v~v!5~ I * v!adxa~v!5~ I * v!ava ~19!

and, according to definition~18!,

I * v~v!5vmdym~ I * v!5vm~ I * v!m5vm

]I m

]xava, ~20!

where the third equality arises from Eq.~17!. Comparing
Eqs.~19! and ~20! leads to

~ I * v!a@P#5
]I m

]xa vm@ I ~P!# ~21!

at any pointP in MI .
Similarly, the action ofI on bilinear forms can be define

as follows: I associates any bilinear formT on MII to a
bilinear form I * T on MI according to

I * T~v,w!ªT~ I * v,I * w!. ~22!

One can show easily that in terms of the components w
respect to the coordinate basesdxa

^ dxb anddym
^ dyn,

~ I * T!ab@P#5
]I m

]xa

]I n

]xbTmn@ I ~P!# ~23!

at any pointP in MI .

B. Spacetime metric

1. Properties

We endowM with a Lorentzian metricg with the follow-
ing properties:

~1! g is asymptotically flat at the ends ofMI andMII :

lim
xI

2
1yI

2
1zI

2→`

g5h, ~24!

lim
xII

2
1yII

2
1zII

2→`

g5h, ~25!

whereh is a flat metric.
~2! The canonical mappingI is an isometry ofg:

I * g5g. ~26!

~3! The t5const sections ofM are maximal spacelike hy
persurfaces with respect tog.

The assumption~1! is introduced because we consid
only isolated systems. Its connection with the qua
stationarity hypothesis will be discussed in Secs. II C 1 a
IV C.

The assumption~2! is motivated by the fact that the
Schwarzschild and Kerr spacetimes possess such an i
etry. This can be readily seen when using isotropic~quasi-
isotropic for Kerr! coordinates instead of the standa
Schwarzschild~Boyer-Lindquist! ones. By virtue of Eq.~23!,
the isometry condition~26! can be expressed in terms of th
components ofg at any pointP in MI :
0-4
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FIG. 3. Kruskal diagrams showing the slicing of the extended Schwarzschild spacetime by two families of maximal hypersurfaleft:
lapse function symmetric with respect to the isometryI; right: lapse function antisymmetric with respect to the isometryI. R denotes the
standard Schwarzschild radial coordinate andr the isotropic one.
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]I m

]xa

]I n

]xbgmn@ I ~P!#5gab@P#. ~27!

It is also useful to write the isometry condition on the co
travariant components of the metric tensor; by means o
generalization of Eq.~17!, one gets

gmn@ I ~P!#5
]I m

]xa

]I n

]xbgab@P#. ~28!

The assumption~3! is motivated by the well-known good
properties of maximal slicing@29,33#, among which there is
the singularity avoidance.

2. 3¿1 decomposition

In this article we use the standard 311 formalism of gen-
eral relativity @29#, foliating the spacetime by a family o
spacelike hypersurfaces. From the very construction ofM, a
natural foliation is by thet5const hypersurfacesS t , wheret
is the same coordinate as that introduced above. By virtu
assumption~3!, this constitutes a maximal slicing of spac
time.

Let us denote byn the future directed unit normal toS t .
Being normal toS t , n should be collinear to the gradient o
t:

n52N“t, ~29!

whereN is the lapse function, which can be seen as a no
malization factor such to ensure thatn•nªg(n,n)521. Let
us now examine the behavior ofn under the isometryI. By
the definition~8!, I preserves the hypersurfaceS t . Accord-
ing to the definition~22!, the square of the norm ofI * n is

g~ I * n,I * n!5~ I * g!~n,n!. ~30!

But thanks to the isometry conditionI * g5g, the last term in
this equation is simplyn•n521. Hence
04402
-
a

of

I * n•I * n521, ~31!

i.e., I preserves the norm ofn. Similarly, for any vectorv
tangent toS t , I preserves the scalar productn•v50, so that
I * n•I * v50. But sinceS t is globally invariant underI , I * v
represents any vector tangent toS t , so thatI * n is in fact
normal toS t . Having the same norm thann, we conclude
that

I * n56n. ~32!

Sincet, considered as a scalar field onM, is preserved byI,
so is its gradient and the relation~29!, combined with Eq.
~32! results then in the following transformation law for th
lapse function:

I * N56N. ~33!

In order to understand the significance of the6 sign in
Eqs.~32! and~33!, let us consider the case of a single sta
black hole, i.e., the~extended! Schwarzschild spacetime
Two kinds of maximal slicing of this spacetime are depict
in a Kruskal diagram in Fig. 3, starting from the same init
hypersurfacev50, t50. The first one corresponds to a sym
metric lapse@sign 1 in Eqs. ~33! and ~32!#. The throat is
located atu50; the slicing penetrates under the event ho
zon (R52M ), and accumulates on the spacelike hypers
faceR51.5M @34,35#. The second slicing corresponds to a
antisymmetric lapse@sign2 in Eqs.~33! and~32!#. In fact, it
corresponds to the standard Schwarzschild solution in iso
pic coordinates:

ds252N2dt21S 11
M

2r D
4

@dr21r 2~du21sin2udw2!#,

~34!

with
0-5
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N5
12M /2r

11M /2r
. ~35!

This lapse function is clearly antisymmetric under the tra
formation I :r °M2/(4r ) across the throat located atr
5M /2. The negative value of the lapse forr ,M /2 is easily
understandable when looking to Fig. 3: whilet is running
upward on the right part of the diagram~corresponding to
MI), it is running downward on the left part~corresponding
to MII). Since in the Kruskal diagram the future direction
everywhere upward, the lapse should be negative inMII .

Let us now consider a coordinate system (xi) on eachS t .
For instance, it can be chosen in one of the three coordi
atlas introduced so far: $(xI ,yI ,zI), (xII ,yII ,zII)%,
$(r 1 ,u1 ,w1)%, and $(r 2 ,u2 ,w2)%. (t,xi) constitutes then a
coordinate system onM. Theshift vectorb associated with
the coordinates (t,xi) is defined by the following orthogona
split of the coordinate basis vector]/]t:

]

]t
5Nn1b with n•b50. ~36!

Since the transformationI is purely spatial]/]t is preserved
by it. By virtue of Eqs.~32! and~33!, the productNn is also
invariant with respect toI. Consequently

I * b5b. ~37!

The 3-metric induced byg on the hypersurfacesS t is

g5g1n^ n. ~38!

From Eqs.~26! and~32!, we obtain immediately thatI is also
an isometry for the 3-metricg :

I * g5g. ~39!

The components of the metric tensor can be expresse
terms of the lapse function and the components of the s
vector and the 3-metric, according to the classical formu

gmndxmdxn52~N22b ib
i !dt212b idtdxi1g i j dxidxj .

~40!

The extrinsic curvature tensorK of the hypersurfaceS t is
given by the Lie derviative of the 3-metric along the flo
defined by the normal toS t :

K52
1

2
£ng. ~41!

By the symmetry properties~32! and ~39!, we obtain that

I * K56K. ~42!

3. Explicit isometry conditions in polar coordinates

In what follows, we consider only polar coordinate sy
tems centered on one of the two throats, i.e., either the
tem (t,r 1 ,u1 ,w1) introduced in Sec. II A 1 or (t,r 2 ,u2 ,w2).
For the sake of clarity we will drop the indices 1 or 2 onr, u,
and w i. It should be understood that the formulas will b
04402
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valid for either coordinate system. The Jacobian matrix oI
with respect to (t,r ,u,w) is easily deduced from Eq.~9! or
Eq. ~10!:

]I m

]xa 5diagS 1,2
a2

r 2 ,1,1D , ~43!

wherea denotes eithera1 or a2. From the isometry condition
~28! expressed ongtt, we get, sincegtt521/N2:

N@ I ~P!#25N@P#2, ~44!

for any point pointP in MI , i.e., we recover the alread
established relation~33!. From the isometry condition~28!
expressed ongti we get

b r@ I ~P!#52
a2

r 2 b r@P# ~45!

bu@ I ~P!#5bu@P# ~46!

bw@ I ~P!#5bw@P#, ~47!

where we have usedgti5b i /N2 and Eq.~44! to go fromgti

to b i . Again note that we recover the isometry conditio
~37!.

Finally the isometry condition~27! expressed ongi j
5g i j results in

g rr @P#5
a4

r 4 g rr @ I ~P!# ~48!

g ru@P#52
a2

r 2 g ru@ I ~P!# ~49!

g rw@P#52
a2

r 2 g rw@ I ~P!# ~50!

guu@P#5guu@ I ~P!# ~51!

guw@P#5guw@ I ~P!# ~52!

gww@P#5gww@ I ~P!#. ~53!

Comparing Eqs.~26! and ~42!, we see that the isometrie
properties of the componentsKi j of K are the same as thos
above forg i j , except possibly for an opposite sign.

4. Choice of the isometry sign

As discussed above, the behavior of the foliation w
respect to the isometryI involves a 1 or 2 sign in the
transformation rules of the unit normal@Eq. ~32!#, lapse
function @Eq. ~33!# and extrinsic curvature@Eq. ~42!#. In this
article, we choose the sign to be the minus one. This is m
tivated by the fact that the maximal slicing with the1 sign
of the Schwarzschild spacetime~left part of Fig. 3! does not
respect the stationarity of the problem, i.e., the Killing vec
]/]t of Schwarzschild geometry does not carry a slice of t
foliation into another slice@34# ~see also Sec. IV of Ref
0-6



t
f
W

lic

a
s

se

d
d

the
y-

ry

in
so
l-
in
ere
-

he
er-
al
ial

BINARY BLACK HOLES IN CIRCULAR ORBITS. I. . . . PHYSICAL REVIEW D65 044020
@36#!. On the contrary, the slicing with the2 sign ~right part
of Fig. 3! respects the stationarity of the problem. It seems
us more appealing to use a slicing which in the case o
single black hole, makes the problem time-independent.
regard the artificial time dependence resulting from the1
sign as an unnecessary complication. In addition to simp
ity, another advantage of the2 sign choice is to allow us to
test the numerical code by comparison with the stand
form of the Schwarzschild or Kerr metric in the special ca
of a single black hole.

Thus, from now on, we set

I * n52n, ~54!

I * N52N, ~55!

and

I * K52K. ~56!

Equation~55! can be explicited for any pointP in MI :

N@ I ~P!#52N@P#, ~57!

which amounts to choosing the2 sign when taking the
square root of Eq.~44!.

5. Boundary conditions on the throats

An immediate consequence of Eq.~57! is that the lapse
function vanishes on the two throats:

NuS1
50 and NuS2

50. ~58!

Indeed from the very definition ofI @Eq. ~8!# and the con-
struction ofM by identifications of the two copies ofS1 or
S2, every pointP in S1 or S2 is a fixed point forI. Hence Eq.
~57! results inN@P#52N@P# on S1 andS2.

Similarly, Eq. ~45! implies that ther component of the
shift vector vanishes on the throats:

b r 1uS1
50 and b r 2uS2

50. ~59!

Taking the first derivatives of Eqs.~45!–~47!, we get the
additional following relations on the throats, as a con
quence of the isometry of the shift vector:

]b r

]u U
S
50 ~60!

]b r

]w U
S
50 ~61!

]bu

]r U
S
50 ~62!

]bw

]r U
S
50, ~63!
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where we have dropped the indices 1 or 2 onr, u, w, andS.
Note that relations~60! and ~61! could have been obtaine
also as consequences of Eq.~59! since the throats are locate
at a constant value of the coordinater.

Equations~48!–~53! and their first derivatives give the
following values for the 3-metric on the throats:

S ]g rr

]r
12

g rr

r D U
S
50 ~64!

g ruuS50 ~65!

]g ru

]u U
S
50 and

]g ru

]w U
S
50 ~66!

g rwuS50 ~67!

]g rw

]u U
S
50 and

]g rw

]w U
S
50 ~68!

]guu

]r U
S
50 ~69!

]guw

]r U
S
50 ~70!

]gww

]r U
S
50. ~71!

6. Apparent horizons

As a direct consequence of the isometry hypothesis,
throatsS1 and S2 are minimal 2-surfaces of the spatial h
persurfaceS t . Moreover, as shown by Cook and York@37#,
the fact thatK is antisymmetric with respect to the isomet
I @Eq. ~56!# implies thatS1 andS2 are apparent horizons.

C. Quasi-stationarity hypothesis

1. Helical Killing vector

As discussed in Sec. I, we consider binary black holes
the quasi-steady stage, i.e. prior to any orbital instability,
that the notion of closed circular orbits is meaningful. Fo
lowing Detweiler @38#, we translate these assumptions
terms of the spacetime geometry by demanding that th
exists a Killing vector fieldl such that, near spacelike infin
ity,

l→ ]

]t0
1V

]

]w0
, ~72!

wheret0 andw0 are respectively the time coordinate and t
azimuthal coordinate associated with an asymptotically in
tial observer, andV is a constant, representing the orbit
angular velocity with respect to the asymptotically inert
observer. Let us calll thehelical Killing vector. We refer the
reader to@39# for a detailed description of this concept.
0-7
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The helical symmetry amounts to neglecting outgo
gravitational radiation in the dynamics of spacetime. F
non-axisymmetric systems—as binaries are—it is w
known that imposingl as an exact Killing vector leads to
spacetime which is not asymptotically flat@40#. In Sec. IV C,
we will exhibit explicitly how the deviation from asymptoti
cal flatness arises. However, from a physical point of vie
the exact helical symmetry is too strong an assumption
cause it assumes that the binary system is rotating on a fi
orbit since the past time infinity. Doing so, it has filled th
entire space with gravitational waves, such that their to
energy is a diverging quantity, whence the impossibility
asymptotic flatness. A weaker assumption, which is com
ible with asymptotic flatness and sounds physically m
reasonable, is the following one. Due to the reaction to gra
tational radiation the binary system is in fact spiralin
Therefore in the past time infinity, it was infinitely separate
As a consequence, the amount of emitted gravitational wa
was very weak. The integral of their energy density is now
converging quantity, which allows for asymptotic flatne
The quasi-stationarity hypothesis should then be unders
as imposing a helical Killing vector on a part of spacetim
limited in time.

It is natural to demand that the isometry associated w
the Killing vector l preserves, not only (M,g) as a whole,
but also the sub-structure ofM defined byMI , MII and the
two throats. This amounts to demanding that for any of
coordinates system (t,xi) introduced above, wheret is the
coordinate used explicitly in the construction ofM,

l5
]

]t
. ~73!

The above equality means thatt is an ignorable coordinate. I
does not mean that the problem is stationary in the us
sense of this word, forl is not timelike at spatial infinity: by
virtue of relation~72!, l• l;V2(xI

21yI
2).0 whenxI ,yI→`.

2. Rotation states of the black holes

The above geometrical assumptions are intended to co
spond to a physical system of two black holes in a qua
steady state. We have not specified yet the rotation s
~spin! of each black hole. In this article, we considersyn-
chronized~or corotating! black holes. This rotation state ca
be translated geometrically by demanding that the t
throats beKilling horizons @41# associated with the helica
symmetry. This means that each null-geodesic generato
S1 andS2 must be parallel tol. In particular, this implies tha
the Killing vector l is a null vector on the throats:

l• luS1
50 and l• luS2

50. ~74!

As a guideline, note that this condition is verified by t
helical Killing vector ]/]t01VH]/]w0 of the Kerr space-
time, where]/]t0 , ]/]w0 andVH are respectively the Kill-
ing vector associated with stationarity, the Killing vector a
sociated with axisymmetry and the rotation angular veloc
of the black hole. This classical result is known as therigid-
ity theoremin the black hole literature@42#.
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In a recent work, Friedmanet al. @39# note that corotation
~in the above sense! is the only possible rotation state con
sistent with the helical symmetry in the full Einstein theor
However, a weaker definition of quasi-equilibrium~not as-
suming thatl is an exact Killing vector, as we do here! al-
lows for more general rotation states, as shown very rece
by Cook @43#.

Combining Eqs.~73! and ~36! shows thatl is related to
the lapse function, unit normal and shift vector through

l5Nn1b, ~75!

so that the scalar square ofl is

l• l52N21b•b. ~76!

Thanks to the vanishing of the lapse on the throats, the
gidity condition~74! is then equivalent tob•b50 onS1 and
S2. But b being a vector parallel toS t , b•b5g(b,b); the
positive definiteness of the 3-metricg implies then

buS1
50 and buS2

50. ~77!

Hence, not only ther-component ofb is zero@Eq. ~59!#, but
the total vectorb vanishes on the throats.

III. EINSTEIN EQUATIONS

A. General form

The vacuum Einstein equations can be written@29# as the
Hamiltonian constraint equation:

R2Ki j K
i j 50, ~78!

the momentum constraint equation:

D jK
i j 50, ~79!

and the ‘‘dynamical’’ equations:

]Ki j

]t
2£bKi j 52DiD jN1N~Ri j 22KikK j

k!, ~80!

where Ri j denotes the Ricci tensor of the 3-metricg, R
5Ri

i the Ricci curvature scalar, andDi the covariant deriva-
tive associated withg. Note that we have used the vanishin
of the trace ofK, as a consequence of the maximal slici
@assumption~3! in Sec. II B 1#. Besides, the geometrical re
lation ~41! involving the extrinsic curvature results in th
following equation:

]g i j

]t
2£bg i j 522NKi j . ~81!

Following York @44#, Shibata and Nakamura@45#, and
Baumgarte and Shapiro@46#, we introduce the ‘‘conformal
metric’’
0-8
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g̃ i jªg21/3g i j , ~82!

whereg is the determinant of the 3-metric componentsg i j .
g̃ i j is a tensor density of weight22/3. York @44# has shown
that it carries the dynamics of the gravitational field. One c
introduce onS t a covariant derivativeD̃ i such that

~i! D̃ i g̃ i j 50;
~ii ! if g i j is conformally flat (g i j 5C4f i j ), thenD̃ i5D̄ i ,

whereD̄ i is the covariant derivative associated with the fl
metric f i j .

We refer to Refs.@45,46# for details in the case of Carte
sian coordinates and to Ref.@47# for any coordinate system
Note that the property~i! is not sufficient to satisfies charac
terizeD̃ i since the covariant derivativeDi fulfills it as well,
reflecting the fact thatg̃ i j is a metric density and not a metr
tensor: there exists at least two distinct covariant derivati
‘‘associated’’ with it. Let us denote byR̃i j the Ricci tensor
associated with the covariant derivativeD̃ i and by R̃ the
corresponding scalar density:R̃ªg̃klR̃kl , where g̃ i j is the
inverse conformal metric

g̃ i j
ªg1/3g i j . ~83!

Let us also introduce the following tensor densities:

Ãi jªg21/3Ki j and Ãi j
ªg1/3Ki j , ~84!

and denote byD̃ i the operatorg̃ ikD̃k . The Hamiltonian con-
straint equation~78! can then be written as an equation f
the determinantg:

D̃ i D̃
i ln g1

1

12
D̃ i ln gD̃ i ln g5

3

2
~R̃2g1/3Ãi j Ã

i j !. ~85!

The momentum constraint equation~79! becomes

D̃ j Ã
i j 1

1

2
Ãi j D̃ j ln g50. ~86!

The dynamical Einstein equations~80! can be decompose
into their trace part

D̃ i D̃
iN1

1

6
D̃ i ln gD̃ iN5g1/3NÃi j Ã

i j ~87!

and their traceless part

NS g̃ ikg̃ j l R̃kl1
1

18
D̃ i ln gD̃ j ln g D

1
1

3
~D̃ i ln gD̃ jN1D̃ j ln gD̃ iN!2g21/6D̃ i D̃ j~g1/6N!

2
1

3 FNS R̃1
1

18
D̃k ln gD̃k ln g D1

2

3
D̃k ln gD̃kN
04402
n

t

s

2g21/6D̃kD̃
k~g1/6N!G g̃ i j 1g̃1/3S 2Ng̃klÃ

ikÃj l 1bkD̃kÃ
i j

2Ãk jD̃kb
i2ÃikD̃kb

j1
2

3
D̃kb

kÃi j D50. ~88!

Note that in Eqs.~87! and ~88!, we have used the helica
symmetry to set to zero the time derivatives and that we h
explicited the Lie derivatives alongb. Similarly, the evolu-
tion equation~81! for g i j can be split into its trace part

D̃ ib
i52

1

2
b i D̃ i ln g ~89!

and its traceless part

2NÃi j 5D̃ ib j1D̃ jb i2
2

3
D̃kb

kg̃ i j . ~90!

Inserting this relation into the momentum constraint~86! re-
sults in the following equation for the shift vector:

D̃ j D̃
jb i1

1

3
D̃ i D̃ jb

j1g̃ i j R̃jkbk1Ãi j ~ND̃j ln g22D̃ jN!50.

~91!

We recognize here theminimal distortionequation of Smarr
and York@33#, i.e., we recover the fact that the shift vector
coordinates co-moving with respect to a Killing vector fie
is necessarily a minimal distortion shift.

B. Approximation of a conformally flat 3-metric

1. Equations

As a first step in this research project, we introduce
approximation of a conformally flat 3-metric:

g5C4f, ~92!

C being some scalar field, andf the canonical flat 3-metric
associated with the canonical coordinates (xI ,yI ,zI) and
(xII ,yII ,zII) ~see Sec. II A 1!.

Such an approximation has been used in all previous s
ies of binary black hole initial data based on the conform
imaging approach@19–23# or on the puncture approac
@24,25#. It has been relaxed in the recently developed Ke
Schild approach@26–28#. Strictly speaking, the assumptio
~92! is exact only for a single non-rotating~Schwarzschild!
black hole. However, as discussed by Mathewset al. @48#,
such an approximation is quite good even for a maxima
rotating Kerr black hole.

As an immediate consequence of Eq.~92!, we have

g5C12f , ~93!

wheref is the determinant of the metric componentsf i j . The
conformal ‘‘metric’’ takes then the simple form

g̃ i j 5 f 21/3f i j and g̃ i j 5 f 1/3f i j . ~94!
0-9



a

ia

he

on

n

by

r-
e
qs.
ge
n.
e.

as

n
ny

bits

i-

e,
nd
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By property ~ii ! of the covariant derivativeD̃ i ~see Sec.
III A above!, another consequence of Eq.~92! is that

D̃ i5D̄ i , ~95!

whereD̄ i is the covariant derivative associated with the fl
metric f. Note that, from the definition ofD̃ i , one has

D̃ i5 f 1/3D̄ i , ~96!

whereD̄ i
ª f ikD̄k . It follows immediately from Eq.~95! that

the Ricci tensorR̃i j is identically zero.
The relations~84! can be rewritten

Ãi j 5 f 21/3Âi j and Ãi j 5 f 1/3Âi j , ~97!

where we have introduced the tensor fields

Âi jªC24Ki j and Âi j
ªC4Ki j . ~98!

Taking into account the above relations, the Hamilton
constraint equation~85! becomes an elliptic equation forC:

DC52
C5

8
Âi j Â

i j , ~99!

whereDªD̄kD̄
k is the Laplacian operator with respect to t

flat metric f.
The momentum constraint equation, under the form~91!,

becomes

Db i1
1

3
D̄ i D̄ jb

j52Âi j ~D̄ jN26ND̄j ln C!, ~100!

whereas the trace part of the dynamical Einstein equati
Eq. ~87!, becomes

DN5NC4Âi j Â
i j 22D̄ j ln CD̄ jN. ~101!

The traceless dynamical Einstein equations~88! reduces to

2ND̄i ln CD̄ j ln C1D̄ i ln CD̄ jN1D̄ j ln CD̄ iN

2
1

4
C22D̄ i D̄ j~C2N!2

1

3 F2ND̄k ln CD̄k ln C

12D̄k ln CD̄kN2
1

4
C22D~C2N!G f i j

1
C4

4 F2N fklÂ
ikÂj l 1bkD̄k~Âi j !2Âk jD̄kb

i2ÂikD̄kb
j

1
2

3
D̄kb

kÂi j G50. ~102!

The trace part of the evolution equation forg i j , Eq. ~89!,
becomes

D̄ ib
i526b i D̄ i ln C, ~103!
04402
t

n

s,

whereas its traceless part~90! results in a relation betwee
the extrinsic curvature tensor and the shift vector:

Âi j 5
1

2N
~Lb! i j , ~104!

where (Lb) i j denotes the~flat! conformal Killing operator
@49# applied to the vectorb:

~Lb! i j
ªD̄ ib j1D̄ jb i2

2

3
D̄kb

kf i j . ~105!

2. Solution scheme

Our approach is the following one: using Eq.~104! to
evaluateAi j , consider Eqs.~99!, ~100! and ~101! as coupled
elliptic equations to be solved for respectivelyC, b, andN.
The remaining five Einstein equations, Eqs.~102!, are not
used to get the solution. Moreover, they are not satisfied
the solution (C,b,N), except in special circumstances~e.g.,
spherical symmetry!. This reflects the fact that the confo
mally flat form ~92! constitutes only an approximation to th
exact Einstein equations. An interesting application of E
~102! is then to evaluate its left-hand side in order to gau
the error resulting from the conformally flat approximatio
Besides, note that Eq.~103! is not used in the above schem
We will discuss this point in Sec. III B 4.

The system of Eqs.~99!–~101!, resulting from the as-
sumption of conformal flatness and maximal slicing, h
been already proposed by Isenberg and Nester@50#, as well
as Wilson and Mathews@51#, as an interesting approximatio
to the full Einstein equations. It has been used by ma
authors to compute binary neutron stars on circular or
@52–59#.

3. Boundary conditions

The equations~99!, ~100! and ~101! we are facing being
elliptic, it is very important to discuss the boundary cond
tions to set on their solutions. Thanks to the isometryI, the
computational domain is chosen to be half the full spacetim
i.e., onlyMI . Its boundaries are then the spatial infinity a
the two throatsS1 and S2. At spatial infinity, the metric
should be asymptotically flat@hypothesis~1! of Sec. II B 1#.
This implies that

C→1 when r 1→` or r 2→` ~106!

and

N→1 when r 1→` or r 2→`. ~107!

Combining Eqs.~72!, ~75!, and~107!, we get the asymptotic
behavior of the shift vector:

b→V
]

]w0
when r 1→` or r 2→`. ~108!
0-10
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The boundary conditions on the throats have been derive
Sec. II B. In particular, Eqs.~64!, ~69! and ~71! are equiva-
lent to the the following condition on the conformal fact
C:

S ]C

]r 1
1

C

2r 1
D U

S1

50 and S ]C

]r 2
1

C

2r 2
D U

S2

50. ~109!

All the remaining equations listed in Eqs.~64!–~71! are au-
tomatically satisfied by the conformally flat form~92!. The
boundary equation on the lapse have already been given@Eq.
~58!#:

NuS1
50 and NuS2

50, ~110!

as well as that on the shift vector, resulting from the rig
rotation hypothesis@Eq. ~77!#:

buS1
50 and buS2

50. ~111!

4. Regularity on the throats and isometry of the shift

A direct consequence of Eqs.~110! and ~104! is that the
shift vector on the throats should satisfy not only Eq.~111!
but also

~Lb! i j uS1
50 and ~Lb! i j uS2

50, ~112!

in order for the extrinsic curvature to be regular on the thro
Note that in the case of a single rotating black hole, suc
condition is equivalent to]bw/]r 50 and]bw/]u50. The
first condition follows from e.g., Eq.~10.25! of Ref. @42# and
the last one from the rigidity theorem (bw is constant—and
zero—on the horizon!. In the present case, the properti
~59! and ~60!–~63!, which follow from the isometryI, in
conjunction with the property~111!, which follows from the
rigidity assumption,3 imply that

D̄ ib
i uS5

]b r

]r U
S

~113!

and

~Lb!rr uS5
4

3

]b r

]r U
S

~114!

~Lb!uuuS52
2

3r 2

]b r

]r U
S

~115!

~Lb!wwuS52
2

3r 2 sin2u

]b r

]r U
S

~116!

~Lb!ruuS5~Lb!rwuS5~Lb!uwuS50. ~117!

3Note that the constancy ofb on the throat, implied by Eq.~111!,
results in the vanishing of all the partial derivatives of the com
nentsb i with respect tou andw.
04402
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Therefore the condition~112! is equivalent to

]b r 1

]r 1
U
S1

50 and
]b r 2

]r 2
U
S2

50. ~118!

Now the trace of the relation between the extrinsic curvat
and the derivative of the 3-metric, Eq.~103!, gives, when
inserting Eq.~111! in its right-hand side,

D̄kb
kuS1

50 and D̄kb
kuS2

50. ~119!

From Eq.~113!, it follows that Eq.~118! is satisfied as well.
This establishes the regularity property~112!.

The above argument relies on the fact that Eq.~103!, re-
lating the trace of the extrinsic curvature tensor~here zero! to
the divergence of the shift vector, is satisfied. However,
discussed in Sec. III B 2, we solve only Eqs.~99!–~101! to
get the metric fieldsC, N, andb. This means that there isa
priori no guarantee that Eq.~103! is satisfied by the solution
of Eqs.~99!–~101! ~see Sec. IV C of Ref.@39# for a discus-
sion of this point!. It has been argued recently by Cook@43#
that if one reformulates the problem by assuming that
helical vectorl is not an exact Killing vector, but only an
approximate one—as it is in reality—then the only free
specifiable part of the extrinsic curvature, as initial data
Eq. ~104!, not Eq.~103!. This means that the relation~103!
between the extrinsic curvature and the shift is not as rob
as the relation~104!.

Another problem is that, when solving the system~99!–
~101! subject to the boundary conditions~109!–~111!, there
is no guarantee not only that the solution for the shift vec
obeys Eq.~103! but also that it obeys the isometry condition
~62! and ~63! @the other isometry conditions, namely Eq
~59!, ~60! and ~61!, are satisfied by virtue of the boundar
condition~111!#. In the companion article@60#, we present a
method to enforce the regularity condition~118! as well as
the isometry conditions~62! and ~63!. This amounts to add
at each step of the iteration, a corrective termbcor to the
solutionbconstrof the momentum constraint~100!, so that the
shift vector

b5bconstr1bcor ~120!

is well behaved, i.e., satisfies~i! the rigidity boundary con-
ditions ~111!, ~ii ! the condition~118! which ensures the regu
larity of the extrinsic curvature on the throats, and~iii ! the
isometry condition~37!.

If at the end of the iteration,bcor has converged to zero
then we get a regular solution of the Einstein equations in
conformal flatness approximation. On the contrary, ifbcor
stays at some finite value, we get a solution which viola
the momentum constraint equation. The numerical soluti
we have computed@60# belong to this category. Howeve
they have~cf. Sec. IV B of @60#!

ubcoru,1023ubu, ~121!
-

0-11
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which shows that the momentum constraint is only ve
slightly violated. Taking into account the other approxim
tions performed, e.g. conformal flatness, we find this to
very satisfactory.

C. Global quantities

The total mass-energy content in aS t hypersurface is
given by the Arnowitt-Deser-Misner~ADM ! massM, which
is expressed by means of the surface integral at spatial in
ity

M5
1

16p R̀ f ik f j l ~D̄ jgkl2D̄kg j l !dSi ~122!

@see e.g., Eq.~20.9! of Ref. @61##. In the case of the confor
mally flat 3-metricg i j 5C4f i j , this integral can be written

M52
1

2p R̀ D̄ iCdSi . ~123!

By means of the Green-Ostrogradski formula, this expr
sion can be converted into the volume integral ofDC plus
surface integrals on the throats; using the Hamiltonian c
straint~99! to expressDC, as well as the boundary conditio
~109! on the throats, one gets

M5
1

16pE C5Âi j Â
i jAf d3x1

a1

4p R
r 15a1

C sinu1du1dw1

1
a2

4p R
r 25a2

C sinu2du2dw2 . ~124!

The total angular momentum in aS t hypersurface is defined
by the following surface integral at spatial infinity@29,32#

J5
1

8p R̀ ~K j
i 2Kk

kf j
i !mjdSi , ~125!

wheremª]/]w0 @see Eqs.~72! and ~108!# is the rotational
Killing vector of the flat metricf ~to whichg is asymptotic!.
Note that in the present caseKk

k50 ~maximal slicing!. Note
also that J defined by Eq. ~125! coincides with the
z-component of the vectorJi defined by Eq.~12! of Bowen
and York@17#. As discussed by York@29,32#, contrary to the
definition ~122! of the ADM mass, the definition~125! of J
requires some asymptotic gauge-fixing conditions stron
than the mere asymptotic flatness~24!,~25!, because of the
supertranslations ambiguity. Some natural gauge-fixing c
ditions are provided by the asymptotic quasi-isotropic ga
proposed by York@29#. Such conditions are satisfied by th
conformally flat metric~92!. Using the fact thatC51 at
spatial infinity, we can replaceK j

i mj by C6Âi j f jkmk in Eq.
~125! and expressJ by means of the Green-Ostrogradski fo
mula as a volume integral plus surface integrals on
throats. The volume integral vanishes identically, as one
see by considering the following identity:
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D̄ i~C6Âi j f jkmk!5D̄ i~C6Âi j ! f jkmk1
1

2
C6Âi j @D̄ i~ f jkmk!

1D̄ j~ f ikmk!#. ~126!

The first term on the right-hand side~RHS! vanishes by
virtue of the momentum constraint~86!, which can be
written as

D̄ i~C6Âi j !50, ~127!

whereas the second term vanishes form is a Killing vector of
the flat metricf. Thus the formula forJ reduces to integrals
on the throats:

J52
1

8p R
r 15a1

C6Âi j f jkmkdS̄i

2
1

8p R
r 25a2

C6Âi j f jkmkdS̄i , ~128!

wheredS̄i denotes the surface element with respect to the
metric f and oriented toward the ‘‘interior’’ of the throats.

D. Determination of the orbital velocity

The orbital angular velocityV does not appear in the
partial differential equations listed in Sec. III B 1. It shows u
only in the boundary condition~108! for the shift vector.
This contrasts with the binary neutron star case, whereV
enters in the equation governing the equilibrium of the flu
~see e.g.,@57#!.

At this point, it appears that, solving Eqs.~99!–~101!,
with the boundary conditions~106!–~108! and ~109!–~111!,
one can get a solution (N,b,C) for any given value ofV.
For instance, if we setV50 in the boundary condition
~108!, we get b50 as a solution of Eq.~100! and the
Misner-Lindquist solution forC @12,13#. Of course, such a
solution is not admissible on physical grounds, and we n
an extra condition to fixV.

As a boundary condition at spatial infinity, we have d
manded only thatg tends to the Minkowski metric of fla
spacetime@conditions~24!,~25! or ~107!,~108!#. We could go
a little further and demand instead thatg tends to the
Schwarzschild metric corresponding to the ADM massM.
This implies the following behavior for the conformal facto
C and the lapseN @cf. Eqs.~34! and ~35!#:

C;11
M

2r
when r→`, ~129!

N;12
M

r
when r→`, ~130!

wherer denotes either the coordinater 1 or r 2. From the very
definition of M, the behavior~129! is guaranteed by Eq
~123!. However, the solution of Eq.~101! is such thatN
;12M 8/r , with a priori M 85” M . The behavior~130! is
0-12
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thus a extra condition imposed on the system~99!–~101!.
This is the condition which will enable us to fixV.

Let us show that for stationary spacetimes, i.e., in the c
where l is timelike at infinity, the extra condition~130! fol-
lows from the remaining Einstein equations~102!, i.e., the
equations that we have not used in the system~99!–~101!.
Indeed, the quadratic terms of the typeD̄ i ln CD̄jN or
D̄ i ln CD̄j ln C which appear in Eq.~102! all decay at least as
r 24 when r→`. Now, for stationary spacetimes, it can b
seen that the Lie derivative alongb of Âi j which appear in
Eq. ~102!, decays also at least asr 24 @Eq. ~197! below#.
Then Eq.~102! implies thatD̄ i D̄ j (C2N) decays at least a
r 24, which means that the 1/r ~monopolar! part of C2N
vanishes, i.e.,

C2N;11
a

r 2 when r→`. ~131!

This is possible only ifC2 andN have opposite monopola
1/r terms, which implies the property~130!.

Note that, for stationary spacetimes, the monopolar te
of the lapseN is the Komar mass associated with the timeli
Killing vector. The condition~130! is then intimately linked
to the virial theorem: as already shown by two of us@62#, a
relativistic generalization of the classical virial theorem c
be obtained provided that the Komar mass coincides with
ADM mass @property ~130!#. This last property has bee
shown to hold for asymptotically flat stationary spacetim
by Beig @63#. In order to exhibit more clearly the link with
the virial theorem, let us combine Eqs.~99! and ~101! to
derive an equation forC2N @see e.g., Eq.~51! of Ref. @57##:

D~C2N!5NC6F4pSi
i1

3

4
Âi j Â

i j G12D̄ iCD̄ i~CN!,

~132!

where we have re-introduced a non-vanishing stress-en
tensorTmn via Sabªga

mgb
n Tmn for the benefit of the discus

sion when considering the Newtonian limit. The conditi
~131! is equivalent to the vanishing of the monopolar term
C2N, i.e., from Eq.~132! and assuming a spacelike sliceS t
diffeomorphic toR3,

E
S t
H NC6F4pSi

i1
3

4
Âi j Â

i j G12D̄ iCD̄ i~CN!JAf d3x50.

~133!

It is easy to see that this relation is equivalent to the rela
istic virial theorem given by Eq.~29! of Ref. @62#, once the
latter is specialized to a conformally flat 3-metric. The Ne
tonian limit of Eq. ~133! is nothing but the classical viria
theorem:

2T13P1W50, ~134!

whereT is the total kinetic energy of the system,P the vol-
ume integral of the pressure andW the gravitational potentia
energy. Note that the value ofV for two Newtonian particles
of individual massm in circular orbit ~radiusR) can be ob-
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tained from Eq.~134! @T5mR2V2, P50, W52m2/(2R)];
this results of course in the Keplerian valueV2

52m/(2R)3.
Let us remark that Detweiler@38# has proposed to deter

mine the orbital velocityV of binary black holes in circular
orbits by means of a variational principle. Although he do
not state it precisely, his variational principle also use
‘‘virial’’ assumption ~130! @cf. the not so well justified sen
tence ‘‘In the gauge described in Chapter 19 of Misneret al.
~1973! the flux integral at infinity is 4pM28pJ’’ below his
Eq. ~17!#.

E. Generalized Smarr formula

A formula relating the ADM massM, the total angular
momentumJ, the angular velocityV and some integrals on
the throats can be obtained as follows. The key point is
notice that the Einstein equations~78!, ~79!, the trace of Eqs.
~80! and~81! imply, when]/]t is a Killing vector@Eq. ~73!#,
the following remarkable identity@38#:

Di~DiN2Ki j b
j !50. ~135!

Note that this equation is fully general and does not assu
that the 3-metricg is conformally flat. The vanishing of the
divergence~135! enables one to use the Green-Ostrograd
formula to get an identity involving only surface integrals

R̀ ~DiN2Ki j b
j !dSi52 (

a51

2 R
Sa

~DiN2Ki j b
j !dSi ,

~136!

where by conventiondSi is oriented towards the ‘‘interior’’
of the throats.

From Eq.~130!, the flux integral ofDiN on the left hand
side is equal to 4pM . Using Eqs.~125! and ~108!, the flux
integral ofKi j b

j is equal to 8pVJ. The second term on the
right hand side vanishes becauseb50 on the throats@rigid-
ity condition, Eq.~111!#, so that one is left with

M22VJ52
1

4p R
S1

DiNdSi2
1

4p R
S2

DiNdSi .

~137!

This formula generalizes to the binary black hole case
classical formula that Smarr@64# derived for a single rotating
black hole~the surface integral on the right hand side bei
then the black hole surface gravity multiplied by the horiz
area!.

IV. ASYMPTOTIC BEHAVIOR OF THE FIELDS

The asymptotic behavior~near spatial infinity! of the con-
formal factorC and the lapse functionN are given by Eqs.
~129! and ~130!. The aim of this section is to get th
asymptotic behavior of the shift vectorb and the extrinsic
curvature tensorK ~or equivalentlyÂi j ). In doing so, we will
gain some insight about the assumption of asymptotic fl
ness and the leftover Einstein equations~102!.

To simplify the analysis, we restrict it to a system of ide
0-13
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tical black holes. We introduce a Cartesian coordinate sys
(x,y,z) such thatx is the direction along the two hole cente
~i.e., the centers of the spheresS1 and S2), x50 at the
middle between the two, andz is the direction perpendicula
to the orbital plane. Moreover, let us introduce coordin
systems centered on each hole, according to

H x15x1d/2

y15y

z15z

and H x252x1d/2

y252y

z25z

~138!

whered denotes the coordinate distance between the cen
of the two spheresS1 andS2. These two coordinate system
are represented in Fig. 4.

A. Asymptotic behavior of the shift vector

Let us split Eq.~100! for the shift vector in two parts
assuming that its right-hand side can be split in a partS1

i

centered on hole 1 and another part centeredS2
i on hole 2.

We therefore write

b i5Vmi1b1
i 1b2

i , ~139!

where mi is the rotational Killing vector]/]w of the flat
metric f already introduced in Sec. III C, andb1

i andb2
i are

the asymptotically vanishing solutions of

Dba
i 1

1

3
D̄ i D̄ jba

j 5Sa
i , a51, 2. ~140!

Let us solve Eq.~140! for a51 by means of the following
decomposition@65#:

b1
i 5

7

8
W1

i 2
1

8S ]x1

]x1
i 1

]W1
j

]x1
i x1

j D , ~141!

where x1
i denotes the Cartesian coordinate syst

(x1 ,y1 ,z1) centered on hole 1, and components with resp
to that coordinate system are understood in Eq.~141!. W1

i

andx1 are solutions of the Poisson equations

DW1
i 5S1

i ~142!

FIG. 4. Cartesian coordinate systems used for the computa
of the asymptotic behavior of the shift vector.
04402
m

e

rs

ct

Dx152x1iS1
i . ~143!

Provided that the sourceS1
i decays at least asr 1

24 as r 1

→`,4 the leading behavior of the solution to Eq.~142! is
given by the harmonic function

~W1
x1 ,W1

y1 ,W1
z1!5S 0,

a

r 1
,0D1O~r 1

22!, ~144!

wherea is a constant. Note that we have neglected the m
nopolar part ofS1

x1 andS1
z1 with respect to that ofS1

y1. This
amounts to considering thatS1

i corresponds mainly to a mo
tion along they1 direction, in accordance with the orbita
motion. To understand this, let us note that taking the Lap
ian of expression~144! results in the following form forS1

i :

~S1
x1 ,S1

y1 ,S1
z1!5„0,24pad~x1 ,y1 ,z1!,0…, ~145!

whered denotes the Dirac distribution. The Newtonian lim
for S1

i is

S1
i 516prv i , ~146!

wherer and v i denotes the matter density and velocity r
spectively. This Newtonian limit holds because in presen
of matter the right-hand side of the shift equation~100!
should contain the term 16p times the momentum density o
matter~see e.g., Eq.~52! of Ref. @57#!. For two point mass
particles of individual massm in circular orbit with angular
velocity V, this results in

~S1
x1 ,S1

y1 ,S1
z1!5„0,28pmdVd~x1 ,y1 ,z1!,0…. ~147!

Identification with Eq.~145! leads to the Newtonian value o
the coefficienta:

aNewt52mdV. ~148!

Regarding the Poisson equation~143! for x1, we notice that
its source has a vanishing effective mass, at least if its le
ing order is as Eq.~145!; consequently, the solutionx1 has
no monopolar term inr 1

21 and decays asr 1
22. This means

that its gradient—which enters in expression~141! for the
shift vector—decays asr 1

23. Now, in this section, we are
interested in the behavior of the shift vector up to the or
r 22 only. Therefore, we discard the solution forx1, writing

x15O~r 1
22!. ~149!

Inserting Eqs.~144! and ~149! into Eq. ~141! yields

~b1
x1 ,b1

y1 ,b1
z1!5S ax1y1

8r 1
3 ,

a

8r 1
F71

y1
2

r 1
2G ,az1y1

8r 1
3 D 1O~r 1

22!.

~150!

4r 15Ax1
21y1

21z1
2 is the same radial coordinate as that introduc

in Sec. II A 1.

on
0-14
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Let us remark that this solution is nothing but one of t
three ~harmonic! eigenvectors of the operatorD̄•L5D

11/3D̄(D̄•) @cf. Eq.~105!# which decay asr 21. This can be
seen by comparing with the list of these harmonic vect
provided by ÓMurchadha@66#: the solution~150! above is
the item~19.2! of Ó Murchadha’s list. Moreover, this autho
has shown that this harmonic vector is generated from lin
momentum in they1 direction, in full accordance with the
analysis performed above@cf. Eq. ~145!#.

At this stage, our solution~150! describes only the linea
momentum of hole 1. Since we are considering corotat
black holes, they must have individual angular moment
~spin!, in addition to their linear momentum, although ne
ther the notion of individual spin nor individual linear mo
mentum can be defined rigorously for a binary system
general relativity~only the total angular momentum can b
defined, as in Sec. III C!. To take the rotation of the blac
holes into account, let us add a pure spin part tob1

i , of the
type

~b1,spin
x1 ,b1,spin

y1 ,b1,spin
z1 !5S 2s

y1

r 1
3 ,22s

x1

r 1
3 ,0D , ~151!

where the constants is some parameter which measures
amount of spin, the latter being supposed to be aligned a
the z1 axis. Note that Eq.~151! is a harmonic vector of the
operatorD̄•L which decays asr 1

22. It is nothing but the
asymptotic part of the axisymmetric shift vector genera
by a single rotating object@see e.g., Eq.~4.13! of Ref. @67#,
whereNw52bspin

w #. Adding Eq.~150! to Eq. ~151!, we get
the following final expression for the shift vector ‘‘mostl
generated’’ by hole 1:

b1
x15

ax1y1

8r 1
3 12s

y1

r 1
3 1O~r 1

23! ~152!

b1
y15

a

8r 1
S 71

y1
2

r 1
2D 22s

x1

r 1
31O~r 1

23! ~153!

b1
z15

az1y1

8r 1
3 1O~r 1

23!. ~154!

By symmetry, we get exactly the same expression for
components of the shift vectorb2 with respect to the coor
dinates (x2 ,y2 ,z2). Let us now express the components
both b1 andb2 with respect to the coordinates (x,y,z) cen-
tered on the system. Taking into account the orientation
(x1 ,y1 ,z1) and (x2 ,y2 ,z2) with respect to (x,y,z) ~see Fig.
4!, we obtain

b1
x5

a~x1d/2!y

8r 1
3 12s

y

r 1
31O~r 23! ~155!

b1
y5

a

8r 1
S 71

y2

r 1
2D 22s

x1d/2

r 1
3 1O~r 23! ~156!
04402
s

ar

g

n

e
ng

d

e

f

of

b1
z5

azy

8r 1
3 1O~r 23! ~157!

and

b2
x5

a~d/22x!y

8r 2
3 12s

y

r 2
31O~r 23! ~158!

b2
y52

a

8r 2
S 71

y2

r 2
2D 22s

x2d/2

r 2
3 1O~r 23! ~159!

b2
z52

azy

8r 2
3 1O~r 23!. ~160!

By adding together these two expressions@cf. Eq. ~139!# and
performing an expansion to the orderr 22, we get the follow-
ing asymptotic form of the total shift vectorb:

bx52Vy1
ad

8

y

r 5 ~22x21y21z2!14s
y

r 3 1O~r 23!

~161!

by5Vx2
ad

8

x

r 5~7x2110y217z2!24s
x

r 3 1O~r 23!

~162!

bz52
3ad

8

xyz

r 5 1O~r 23!. ~163!

Note that, apart from theV part, the total shift decays a
r 22, contrary tob1 and b2, which decay asr 21. From the
above expression,b can be linearly decomposed into thre
parts:

b5bkin1bangu1bquad, ~164!

with

bkin
x 52Vy ~165!

bkin
y 5Vx ~166!

bkin
z 50, ~167!

bangu
x 5S ad

2
14sD y

r 3 ~168!

bangu
y 52S ad

2
14sD x

r 3 ~169!

bangu
z 50 ~170!

and

bquad
x 52

3ad

8

y

r 3S 11
x2

r 2D ~171!
0-15
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bquad
y 52

3ad

8

x

r 3S 11
y2

r 2D ~172!

bquad
z 52

3ad

8

xyz

r 5 . ~173!

bkin is a pure kinematical term, which reflects that we u
co-rotating coordinates.bangu is, as we will see below, the
part of the shift which carries the total angular-momentum
the system. As forb1,spin introduced above@Eq. 151!#, it has
the familiar shape of a pure spin axisymmetric shift vecto

bquad is one of the nine harmonic vectors of the opera
D̄•L which decay asr 22. It has the number~22.7! in Ó
Murchadha’s list@66#. By the way, bangu has the number
~22.1! in the same list. As shown by O´ Murchadha@66# @cf.
his Eq.~29!#, bquad arises from the fact that theQxy compo-
nent of the quadrupole momentQi j of the system is time
varying with respect to some asymptotic inertial frame.5 This
is the only such component. Indeed, if we consider a Ne
tonian system of two identical point mass particles on a
cular orbit of diameterd in the x2y plane, the time deriva-
tive of its quadrupole moment with respect to the inert
frame is given by

Q̇xx52m
d2

2
V sin~2Vt ! ~174!

Q̇xy5m
d2

2
V cos~2Vt ! ~175!

Q̇yy5m
d2

2
V sin~2Vt ! ~176!

Q̇xz5Q̇yz5Q̇zz50. ~177!

It is clear on this expression that at timet50, when the axes
of the rotating frame coincide with those of the inertial fram
~our assumption in this discussion!, the only non-vanishing
component isQ̇xy5md2V/2. Combining Eqs.~148! and
~175!, we see that the coefficient in front of the three co
ponents~171!–~173! of bquad is 23/2Q̇xy . This justifies the
labelquad~for quadrupole moment! given to that part of the
shift vector.

B. Asymptotic behavior of the extrinsic curvature

The asymptotic behavior of the extrinsic curvature ten
is deduced from that of the shift vector via Eqs.~98! and
~104!, which allows us to write~taking into account that both
C andN are equal to 1 at spatial infinity!

5In post-Newtonian theory, it is also well known that some part
the gravitomagnetic potential—the shift vector in our language
can be generated by the first time derivative of the mass quadru
moment, see e.g., Sec. VI B of Ref.@68# or Eq. ~4.2! of Ref. @69#.
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Ki j ;
1

2
~Lb! i j when r→`. ~178!

Since (Lbkin)
i j 50 for bkin is a Killing vector of the flat

metric f, the decomposition~164! of the shift vector leads to
the following decomposition of the extrinsic curvature te
sor:

K5Kangu1Kquad, ~179!

whereKangu
i j

ª(Lbangu)
i j andKquad

i j
ª(Lbquad)

i j . Inserting the
formulas ~168!–~170! in the explicit form ~105! of the op-
eratorL results in the following components ofKangu:

Kangu
xx 523S ad

2
14sD xy

r 5 ~180!

Kangu
xy 53S ad

4
12sD x22y2

r 5 ~181!

Kangu
xz 523S ad

4
12sD yz

r 5 ~182!

Kangu
yy 53S ad

2
14sD xy

r 5 ~183!

Kangu
yz 53S ad

4
12sD xz

r 5 ~184!

Kangu
zz 50. ~185!

A similar computation forKquad
i j yields

Kquad
xx 53

ad

8

xy

r 5 S 5
x2

r 2 21D ~186!

Kquad
xy 53

ad

8r 5S 5
x2y2

r 2 2z2D ~187!

Kquad
xz 53

ad

8

yz

r 5 S 5
x2

r 2 11D ~188!

Kquad
yy 53

ad

8

xy

r 5 S 5
y2

r 2 21D ~189!

Kquad
yz 53

ad

8

xz

r 5S 5
y2

r 2 11D ~190!

Kquad
zz 53

ad

8

xy

r 5 S 5
z2

r 2 23D . ~191!

Note that bothKangu
i j andKquad

i j decay asr 23.
If we plug the formulas~186!–~191! into the surface in-

tegral ~125! which gives the angular momentum, we ge
after some straightforward calculations

J~Kquad!50. ~192!

f

le
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This means that all the angular momentum of the system
carried byKangu

i j . Indeed, inserting the formulas~180!–~185!
into Eq. ~125! gives

J5J~Kangu!5
ad

4
12s. ~193!

For a non-relativistic point mass system,a is given by Eq.
~148! so that we get

J~Kangu!Newt5m
d2

2
V12s. ~194!

The first term on the right-hand side is nothing but the orb
angular momentum of the system and the second terms i
sum of the spinss of the two particles. HenceJ(Kangu)Newt is
equal to the total angular momentum of the system.

C. Helical symmetry and asymptotic flatness

Let us consider the five Einstein equations that we h
not taken into account for the solution of the problem, i.
Eqs.~102!. Thanks to the asymptotic behavior~129!, ~130!,
and ~131! of N and C, all the terms involving products o
gradients ofN or C, as well as the ones involving secon
derivatives ofC2N, decay at least asr 24. The quadratic
term f klÂ

ikÂj l decays asr 26 for Ki j decays asr 23, as seen
above. The only remaining term in Eq.~102! is the Lie de-
rivative of Âi j alongb. Asymptotically, one has

£bÂi j 5£bKi j 1O~r 24!. ~195!

It can be seen easily that only the Lie derivative alongbkin
matters:

£bKi j 5£bkin
Ki j 1O~r 26!. ~196!

Let us introduce the splitting~179! of Ki j into this expres-
sion. After some computations, we find that

£bKangu
i j 5O~r 24!, ~197!

whereas

£bKquad
xx 5

3adV

8r 7 ~4x425x2y223x2z21y42y2z222z4!

1O~r 24! ~198!

£bKquad
xy 5

15adV

8r 7 xy~x22y2!1O~r 24! ~199!

£bKquad
xz 5

3adV

8r 7 xz~7x223y212z2!1O~r 24!

~200!

£bKquad
yy 5

3adV

8r 7 ~2x415x2y21x2z224y413x2z212z4!

1O~r 24! ~201!
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£bKquad
yz 5

3adV

8r 7 yz~3x227y222z2!1O~r 24!

~202!

£bKquad
zz 52

3adV

8r 7 ~x22y2!~3x213y222z2!1O~r 24!,

~203!

which means that £bKquad
i j decays only asr 23. We face here

the incompatibility of helical symmetry and asymptotic fla
ness for systems that have a time-varying quadrupole
ment ~recall thatbquad and henceKquad is due toQ̇xy5” 0).
Indeed £bKquad

i j is the only term in the Einstein equation
~102! which decays as slower asr 23. It therefore cannot be
compensated by another term. This means that the five
stein equations~102! are violated. Note that this problem
does not arise from the assumption of conformal flatnes
the 3-metricg. Relaxing this condition would have resulte
in asymptotic behaviors ofb andK which would have been
the same as that obtained here. Note also that for a sys
such as an isolated rotating axisymmetric star~or more gen-
erally for any stationary system!, bquad50 andKquad50, so
that the problem of asymptotic flatness in Eq.~102! does not
arise.

V. CONCLUSIONS

We have presented an approach to the problem of bin
black holes in circular orbit which is similar to that prev
ously used in the literature to treat binary neutron stars@52–
59#, namely an approach based on the existence of a he
Killing vector field along with the simplifying assumption o
a conformally flat 3-metric. The differences between the t
approaches lie in the boundary conditions on the throat
the black hole case. We have chosen a spacetime man
with spatial sections of the Misner-Lindquist type, i.e. com
posed of two isometric asymptotically flat sheets. Moreov
we have chosen the black holes to be corotating, which
the simple geometrical interpretation of the throats be
Killing horizons.

By enforcing the isometry conditions on the shift vecto
as well as the equation relating the trace of the extrin
curvature to the divergence of the shift, possibly at the pr
of slightly modifying the momentum constraint, all the qua
tities which enter in the equations remain regular. Nota
the extrinsic curvature tensor remains finite on the thro
although the lapse vanishes there.

We have proposed to compute the orbital angular velo
of the system by requiring that the conformal factorC and
the lapse functionN have the same monopolar 1/r term in
their asymptotic expansions. This requirement reduces to
classical virial theorem at the Newtonian limit.

Contrary to previous numerical approaches—the con
mal imaging one@18–23# and the puncture one@24,25#—our
method amounts to solving five, and not four~the four con-
straints!, of the Einstein equations. This reflects the fact th
we have re-introduced the time dimension in the problem

The formulation presented here has been implemented
means of a numerical code based on a multi-domain spe
0-17
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method and we present the first results in the compan
paper@60#. These results can be used as initial data for co
puting the black hole coalescence within the 311 formalism
@9–11#.

Let us stress that the work presented in this article con
tutes a first attempt to tackle the problem of binary bla
hole in circular orbits. In order to fully specify the proble
and search for a unique solution, we had to make a num
of concrete choices which have some degree of arbitrarin
such as the two-sheeted topology, the isometry across
throats and the resulting boundary conditions, or the ri
rotation of the black holes. These hypotheses could
.
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changed to different ones, as for instance considering irr
tional black holes instead of corotating ones. This shall
investigated in future works.
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