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Binary black holes in circular orbits. I. A global spacetime approach
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We present a new approach to the problem of binary black holes in the precoalescence stage, i.e., when the
notion of orbit has still some meaning. Contrary to previous numerical treatments which are based on the initial
value formulation of general relativity on @-dimensional spacelike hypersurface, our approach deals with
the full (4-dimensionalspacetime. This permits a rigorous definition of the orbital angular velocity. Neglecting
the gravitational radiation reaction, we assume that the black holes move on closed circular orbits, which
amounts to endowing the spacetime with a helical Killing vector. We discuss the choice of the spacetime
manifold, the desired properties of the spacetime metric, as well as the choice of the rotation state for the black
holes. As a simplifying assumption, the space 3-metric is approximated by a conformally flat one. The problem
is then reduced to solving five of the ten Einstein equations, which are derived here, as well as the boundary
conditions on the black hole surfaces and at spatial infinity. We exhibit the remaining five Einstein equations
and propose to use them to evaluate the error induced by the conformal flatness approximation. The orbital
angular velocity of the system is computed through a requirement which reduces to the classical virial theorem
at the Newtonian limit.

DOI: 10.1103/PhysRevD.65.044020 PACS nunider04.25.Dm, 04.70.Bw, 97.60.Lf, 97.86d

I. BACKGROUND AND MOTIVATION found in Ref.[15] or Appendixes A and B of Refl16]).
However these solutions correspond to two momentarily
Binary black holes have been the subject of numeroustatic black holes and are therefore far from representing
studies in the past two decades, both from the analytical ansome stage in the evolution of an isolated binary black hole
numerical point of view. These studies are motivated by theén our universe.
fact that the coalescence of two black holes is expected to be Based on the seminal work of Bowen and Ydrk7],
one of the strongest sources of gravitational waves detectableulkarni, Shepley and York18] have described a procedure
by the interferometric detectors the Laser Interferometrido get initial data representing binary black hole with arbi-
Gravitational Wave Observatory (LIGO), GEO600, trary positions, masses, spins and momenta. This procedure,
TAMA300 and VIRGO, currently coming on-lingl]. known asconformal imaging has been used by Cook and
From the analytical point of view, the most recent worksother  authors [19-23 to numerically construct
are based on the post-Newtonian formaliésee e.g., Ref. 3-dimensional spacelike hypersurfaces representing these
[2] for a review or on the effective one-body approach de- initial data. These solutions constitute some generalization to
veloped by Buonanno and Damd@=5]. In these works, the the non-static regime of the Misner-Lindquist solution
black holes are treated as point mass partitlehjch is a  [12,13, the spacelike hypersurface having the same topol-
very good approximation when the black holes are far apartogy: two isometric asymptotically-flat sheets connected by
For closer configurations, one may turn instead to some nuwo Einstein-Rosen bridges. Also based on the Bowen and
merical approach. The numerical studies can be divided irYork's work [17], another approach, the so-callpdncture
two classes(i) the initial value problem for two black holes method has been undertaken by Brandt and @nann[24]
(see Ref[7] for a review and (ii) the time evolution of the and used recently by Baumgaf&s]. The resulting solutions
initial data (see Ref[8] for a review and Refs9-11] for also have arbitrary positions, masses, spins and momenta but
recent results One of the major problems in this respect is their topology is different from that of the conformal-
to get physically relevant initial data. Indeed, initial data rep-imaging approach: the spacelike hypersurface has thoee
resenting two black holes have been obtained long ago bgsymptotically-flat sheets, which are not isometric. These
Misner [12] and Lindquist[13], as well as Brill and three sheets are connected among themselves by two
Lindquist[14] (a modern discussion of these solutions can beEinstein-Rosen bridges; one of the sheets contains two
throats and is supposed to represent our universe. These so-
lutions hence constitute some generalization to the non-static
*Email address: Eric.Gourgoulhon@obspm.fr case of the Brill-Lindquist solutiofiL4]. Both the conformal-
TPresent address: Department of Physics and Astronomy, Norttimaging and the puncture approaches assume that the metric
western University, Evanston, IL 60208. Email address:Of the spacelike hypersurface is conformally flat. A third ap-
PGrandclement@northwestern.edu proach to the problem relaxes this assumption; it has been
*Email address: Silvano.Bonazzola@obspm.fr developed recently by Matzner, Maroronetti and collabora-
INote however theapproximatg analytical solution derived by tors[26—28. These authors use a linear combination of two
Alvi [6] by matching a post-Newtonian metric to two perturbed boosted Kerr-Schild metrics as the conformal 3-metric in
Schwarzschild metrics. York’s treatment of initial condition§29].
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The main drawback of the three approaches describepay-off is that the orbital angular veloci) can be unam-
above is that they contain freely specifiable parameters, rediguously defined as the rotation rate of the Killing field with
lated to the values of positions, momenta and spins of theespect to some asymptotically inertial observers. This defi-
black holes, and it is difficult to figure out which parametersnition does not suffer from the ambiguity of the
correspond to a physical configuration. In particular, it is not3-dimensional approaches and is made possible only because
obvious at all how to select, among all these configurationsye have re-introducetime in the problem. .
those that correspond to binary black holes on closed circular The presentation of this new approach is organized as
orbits. Of course, the circular orbits are approximate repre‘fO"OW?- We set up the problem in Sec. I, starting from the
sentations of the exact orbital motion, which is inspiralling 8XPlicit construction of the spacetime manifold, introducing
due to the loss of energy and angular momentum via gravi@ Metric, as well as a corresponding isometry on it, and fi-
tational radiation. However in the regime where the radiatio"@!ly imposing the helical symmetry. The Einstein equations
reaction time scale is much longer than the orbital time scaled"® then considered in Sec. I, first in their general form and
i.e. before the last stable orbit, we expect that the binarj€n after the assumption of a conformally flat 3-metric. Glo-
system can be approximated by a sequence of tighter a | quantities sugh as the_ADl\_/I mass and the total angl_,ll_ar
tighter circular orbits. Note that the gravitational radiation Momentum are discussed in this section, as well as the virial
reaction makes initially elliptic orbits become circul@0]. prescnpupn for thg orbital velqcny. Section IV deals_wn_h the
It is thus legitimate to search for such orbits. This problem@Symptotic behavior of the shift vector and the extrinsic cur-
has been addressed by Cofl] and Pfeifferet al. [22] vature tensor and dlscusses the conr_1ectlon between heﬁcal
within the conformal-imaging approach and by Baumgartesymmetry a_nd asymptotic flatness. Finally Sec. V contains
[25] within the puncture approatfisee e.g.[31] for a re-  the concluding remarks.
view of these computationsAlthough they differ in the to-
pology of the spacelike hypersurfacgwo-sheeted for Il. FORMULATION
[21,22 against three-sheeted ffi25]), both sets of studies
rely on the effective-potential methogroposed by Cook
[21]. This method amounts to defining the binding energy by 1. Construction
a somewhat ad-hoc formula, and to define the angular veloc-
ity of a circular orbit by minimizing the binding energy with M
respect_to the .angular momentum .a.t fixed total energy .anEindquist manifold[12,13. More precisely, for any couple
separation. This method_ can be Cr|t|C|zqu_on the followmgOf positive numbersd; ,a,) and any couple of real numbers
ground: the only well defined global quantities on an asymp-

X ) . Xq,X h thatx; —X,|>a;+ I nsider th -
totically flat spacelike hypersurface are the Arnowitt-Deser-U1:X2) Such t ax; —xp| >a, + 2y, let us consider the sub

Misner (ADM) total massM and ADM total linear momen- set of R® obtained by removing the interior of balls of radius
tum. The latter can be chosen to be zero without any loss o1t anda, and centex=x, andx=x;:

A. Spacetime manifold

We consider the spacetime to be a differentiable manifold
with the topology of the real lindk times the Misner-

generality. With some restrictions on the asymptotic gauge, &={(x,y,2) e R® (x—x,)2+y2+72=a> and
the total angular momentudhcan also be definef®2]. De- 7 ' !
fining the binding energy would require the notion of indi- (X—Xp)2+y?+ 22>a§}. (D)

vidual mass for each hole, let s&§; andM,, in order to set

Epnge=M—M;—M,. However there does not exist any Let us callS; and S, the 2-spheres defining the “inner”
unique definition of the individual massé4, andM, fora  boundaries ot:

binary black hole. In Refd21,22,25 the authors defin® ;

and M, via the formula which relates the mass of a Kerr  Si:={(x.y,2) € R®(x—x))*+y*+z°=a}, 2
black hole to its horizon area and its angular momentum.

However such a formula is strictly demonstrated only for a  Sz:={(X,y,2) € R®,(x—x,)?+y?+z°=a}. ()
isolated rotating black hol&err spacetimg In particular, it

does not take into account any tidal effect. Let us consider two copie§ and &, of & and defineM,

Our approach for finding circular orbits of binary black =RX¢& andM,;:=RX¢&, . The spacetime manifold1 is be
holes is very different: instead of considering 3-dimensionathen defined as the uniaf,U M, with both S; andS, of
spacelike hypersurfaces, we adopt from the very beginning 8ach copy identifiedsee Fig. 1 The reader is referred to
4-dimensional point of view, i.e. we consider a full spacetimeSec. IV of Ref.[12] or Sec. Il of Ref.[13] for a precise
containing two moving black holes. Of course, in order toconstruction of the manifold structure in the vicinity 8f
make the problem tractable, we introduce some approximaandsS,. The partM, of M will be designed hereafter as the
tions, the most significant being the assumption of strictlyupper spacend the pari\,, as thelower spaceThe bound-
circular orbits, which amounts to endowing our spacetimeariesS;:==RXS; andS,:=RXS, betweenM, and M, are
with a Killing vector field(helical symmetry. An interesting ~ called respectivelyhroat 1 andthroat 2

Hereafter we label byt(x,,y,,z) the points of M, con-

sidered as a part ddxR® (& being a part ofR®), and by

2To our knowledge, the Kerr-Schild approach has not been usefft,X); .Yy ,2;) the points of M, considered as a part dt
yet to get circular orbits, the artic[®8] providing results only for X R3. The corresponding two charts will be called tba-
black holes in hyperbolic motions. nonical coordinate system$hese two charts covett mi-
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FIG. 1. Construction of the spacetime manifold. 5
a

1
Z,=-——C0Ss0,.
r

nus the two throats. The whole manifaldl can be covered L
entirely by a single coordinate system: (7)

The throat 1 corresponds to=a;. The polar coordinate

. 4
CoM=R system §,r,,0,,¢5) centered on throat 2 is introduced simi-
larly. Note that any of the two coordinate systems
(t,x1,y1,z) if PeM, (t,r1,61,941) and {,r,,0,,¢,) covers the whole spacetime
= Tt Y.z if PeM,, 4 manifold M. For the ¢,rq,61,¢,) system,M, corresponds

to a;<r,;<+o and M, to 0<r;<a;. Similarly, for

4 oa (t,r,,605,¢5) system, M, corresponds t@,=<r,<+o and
where 7,:R%—R" denotes the inversion through the (1o 0<r,<a, (see Fig. 2

2-sphereS;:
2. Canonical mapping
2
T,txy.2)=|t ai(X—xq) From the very construction o1, we have at our disposal
wbXY, (X—Xp)2+y?+ 72 the canonical mappin¢see Fig. 1
2 2
a ajz .
+Xq, 2ly 7520 2l i M= M
(X=X +y“+z°' (X—X)ty“+z (8
(5) (t,%,Y1,Z2)=>(t=tX =X, Ya=Y1,21=2).

Note that in terms of thet(r,,6,,¢;) coordinate system,
this map can be written as an inversion through the sphere
r,=a; (see Fig. 2

In a similar way, one can introduce the coordinate systsm
associated with throat 2.

In the coordinate syster®; or C,, the throats are not
located at constant coordinate values. Therefore, it is more 2
convenient to introduce instead the polar coordinate system |(t,rl,91,¢l):<t'ﬂ 01'%)_ 9
(t,r1,61,941) centered on throat 1, as follows:

7 1;91 :(I)l)

P R FIG. 2. Coordinate systems
(tlrllel!()ol) and (tlr2102!()02) on
the spacetime manifold M.
Shown here is d=const section
of M, with the dimension in th@
direction suppressed, leaving only

(ri,¢1) or (ra,¢).
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In terms of the {,r,, 0,,¢,) coordinate system, it looks like

an inversion as well:

a3

t,—
ra

I(t1r2!021¢2):( 1021472 . (10)
Let (x*) be a coordinate system oM, [for instance k)
:(t1X|!y|12|)1 (Xa)=(t,l’1,01,(,01) or (Xa):(tar2’02!(x02)]
and (y*) be a coordinate system oW, [for instance y*)

=(tXu,Yu.2n), (Y*)=(t,r1,01,01) or (")

=(t,r5,605,95)]. The map is fully characterized by its com-

ponentd # with respect to the coordinatez4) and (y*): the
image I(P) of a point PeM,
(x%,xt,x?,x%) has the coordinates

y#=1#(x%x,x?,x3). (1)

Let us now examine the action of the miapn various fields
on M. If fis a scalar field oo\, , | induces a scalar field on

M, through
I, f:=fOl, (12

L fP]=f[I(P)], (13

for any pointP of M,.
Also | maps any vector field on M, to a vector field , v
on M, through

I, v(f):=v(l, ), (14

for any scalar field on M, . If vectors are represented by

their components with respect to the coordinate basées”
andd/dy*, one has

of
|*V(f):(|*V)“W (15
and, according to definitiond4) and (12),

() =v e =or e N e
#V(F)=v g (I1#(xF))=v ayF X (16)

Hence the matrix of the mappirg between vectors oMM,
and vectors on\M,, is given by the Jacobian matrix of
o

a
(LTI (P)]= ——5v lP], (17)

whereP denotes any point oM, .

with coordinates

PHYSICAL REVIEW D 65 044020

Ly (V)= (1, @), dx* (V) = (I, @) ,0* (19
and, according to definitiofiL8),

M
I*w(v)=a)#dy*‘(l*v)=wﬂ(l*v)“:wﬂmv“, (20
where the third equality arises from E(L7). Comparing
Egs.(19) and(20) leads to

al+
(le@)o[P]1=—Zw,[1(P)] (21)

at any pointP in M,.

Similarly, the action of on bilinear forms can be defined
as follows: | associates any bilinear form on M, to a
bilinear forml, T on M, according to

L Tv,w):=T(l,v,l,w). (22

One can show easily that in terms of the components with
respect to the coordinate basbs'® dx? anddy*®dy”,
~oal

(1T aplP1= 25 2 ATl 1 (P)] (23

at any pointP in M,.

B. Spacetime metric
1. Properties

We endowM with a Lorentzian metrig with the follow-
ing properties:
(1) g is asymptotically flat at the ends d#1, and M, :

lim g=mn, (29

X|2+y|2+2|2~>00
lim  g=n (25)

2. 2,2
X tyytz—e

where 5 is a flat metric.
(2) The canonical mappingis an isometry ofy:

l.9=0. (26)

(3) The t=const sections of\! are maximal spacelike hy-
persurfaces with respect tp

The assumption(l) is introduced because we consider
only isolated systems. Its connection with the quasi-

VvV C.

of | on 1-forms as followsl maps any 1-formw on M, to
a 1-forml, @ on M, through

I, o(V):=w(l, V), (18

for any vector fieldv on M, . If 1-forms are represented by
their components with respect to the coordinate babes

anddy*, one has

The assumption(2) is motivated by the fact that the
Schwarzschild and Kerr spacetimes possess such an isom-
etry. This can be readily seen when using isotrdjgjeasi-
isotropic for Kery coordinates instead of the standard
SchwarzschildBoyer-Lindquisi ones. By virtue of Eq(23),
the isometry conditiori26) can be expressed in terms of the
components ofj at any pointP in M, :
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FIG. 3. Kruskal diagrams showing the slicing of the extended Schwarzschild spacetime by two families of maximal hyperkftfaces;
lapse function symmetric with respect to the isometryight: lapse function antisymmetric with respect to the isométiR denotes the
standard Schwarzschild radial coordinate arite isotropic one.

al* a1 l,n-lyn=-1, (31
WWQ#V[I(P)]:gaﬁ[P] (27)
e., | preserves the norm of. Similarly, for any vectorv
It is also useful to write the isometry condition on the con-tangent ta,, | preserves the scalar productv=0, so that
travariant components of the metric tensor; by means of &, n-1,v=0. But sinceX, is globally invariant undet, |, v

generalization of Eq(17), one gets represents any vector tangentXg, so thatl, n is in fact
e a1 normal to3,. Having the same norm tham we conclude
Y — af that
9" 11(P)]=— = - 59*[P]. (28)
l,n==*n. (32

The assumptiori3d) is motivated by the well-known good
properties of maximal slicin§29,33, among which there is  Sincet, considered as a scalar field g, is preserved by,
the singularity avoidance. so is its gradient and the relatid29), combined with Eq.
- (32) results then in the following transformation law for the
2. 3+1 decomposition lapse function:

In this article we use the standare-3 formalism of gen-

eral relativity [29], foliating the spacetime by a family of [,N=+N. (33
spacelike hypersurfaces. From the very constructiaviyfa o o
natural foliation is by theé=const hypersurfaces,, wheret In order to understand the significance of thesign in

is the same coordinate as that introduced above. By virtue d£gs.(32) and(33), let us consider the case of a single static
assumption(3), this constitutes a maximal slicing of space- black hole, i.e., the(extended Schwarzschild spacetime.

time. Two kinds of maximal slicing of this spacetime are depicted
Let us denote by the future directed unit normal t, . in a Kruskal diagram in Fig. 3, starting from the same initial
Being normal ta%,, n should be collinear to the gradient of hypersurface=0,t=0. The first one corresponds to a sym-
t metric lapse[sign + in Egs. (33) and (32)]. The throat is
located atu=0; the slicing penetrates under the event hori-
n=-NVt, (29 zon (R=2M), and accumulates on the spacelike hypersur-

faceR=1.5M [34,35. The second slicing corresponds to an
antisymmetric lapsgsign — in Egs.(33) and(32)]. In fact, it
corresponds to the standard Schwarzschild solution in isotro-
pic coordinates:

whereN is thelapse functionwhich can be seen as a nor-
malization factor such to ensure thatn:=g(n,n)=—1. Let
us now examine the behavior ofunder the isometry. By
the definition(8), | preserves the hypersurfagg. Accord-

ing to the definition(22), the square of the norm &f n is M\ 4
ds?=—N2dt?+| 1+ —) [dr?+r?(d6+sirfade?)],
g(l,n,l,n)=(l,g)(n,n). (30) 2r
(34)
But thanks to the isometry conditidg g=g, the last term in
this equation is simplyy-n=—1. Hence with
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1—M/2r valid for either coordinate system. The Jacobian matrikx of
N=Tvmr (35  with respect to (,r, 6, ¢) is easily deduced from Ed9) or
Eq. (10):
This lapse function is clearly antisymmetric under the trans- . 2
formation I:r—M?/(4r) across the throat located at izdiail—a— 1 1) (43)
=M/2. The negative value of the lapse foxM/2 is easily XY Cors )

understandable when looking to Fig. 3: whilés running ) ) »

upward on the right part of the diagrafoorresponding to wherea denotes eltttleal ora,. I_:romtEhe |som2etry condition

M,), it is running downward on the left paftorresponding (28 expressed og™, we get, sinceg™ = — 1/N*:

to M,;). Since in the Kruskal diagram the future direction is 2 2

everywhere upward, the lapse should be negativé/ij. NLHP)I"=NLPT, (44
Let us now consider a coordinate systext) on eaci®;.  for any point pointP in M, , i.e., we recover the already

For instance, it can be chosen in one of the three coordinatgsiaplished relatioi33). From the isometry conditiofi28)

atlas introduced so far: {(x;,y;,z), (Xy.Yu.Zy)}, expressed og! we get

{(r1,01,91)}, and{(r,,05,¢5)}. (t,x') constitutes then a

coordinate system oM. The shift vectorB associated with a?

the coordinatest(x') is defined by the following orthogonal B'II(P)]=— r—z,Bf[P] (45

split of the coordinate basis vectéfat:

B1(P)1=pB[P] (46)
BeI(P)]=B4P], (47)

Since the transformatiohis purely spatiab/dt is preserved \where we have usegt' = //N? and Eq.(44) to go fromg"
by it. By virtue of Eqs.(32) and(33), the producNnis also o gi. Again note that we recover the isometry condition

J
E=Nn+ﬁ with n- B=0. (36)

invariant with respect td. Consequently (37).
-~ Finally the isometry condition(27) expressed ong;;
L« B=B- (37 =y;; results in
The 3-metric induced byg on the hypersurfaces; is 2
y=g+n®n. (38) 7rr[P]:r_47rr[|(P)] (48
From Eqs(26) and(32), we obtain immediately thdtis also a2
an isometry for the 3-metrig: Yl P1= =2 vl 1 (P)] (49
l,v=7. (39 2
The components of the metric tensor can be expressed in Vil P1=— r—27r¢>[|(P)] (50)
terms of the lapse function and the components of the shift
vector and the 3-metric, according to the classical formula Yool P1= el 1 (P)] (51)
dx“dx’=—(N?— B;8")dt?+28;dtdX + y; dx dx.
Opr (N AT 2hdtdes yydxde, Y0l P1= 741 (P)] (52
The extrinsic curvature tensét of the hypersurfacg, is Yool P1= 76l 1(P)]. (53
given by the Lie derviative of the 3-metric along the flow ) ) )
defined by the normal t&, : Comparing Egs(26) and (42), we see that the isometries
properties of the componenks; of K are the same as those
1 above fory;: , except possibly for an opposite sign.
KI—EEW- (41) Yij ptp y pp g
4. Choice of the isometry sign
By the symmetry propertie32) and (39), we obtain that As discussed above, the behavior of the foliation with
|, K=+K. (42) respect to the isometry involves a+ or — sign in the

transformation rules of the unit norm@Eq. (32)], lapse
function[Eq. (33)] and extrinsic curvaturfEq. (42)]. In this
article, we choose the sign to be the minus one. This is mo-
In what follows, we consider only polar coordinate sys-tivated by the fact that the maximal slicing with the sign
tems centered on one of the two throats, i.e., either the sysf the Schwarzschild spacetinfleft part of Fig. 3 does not
tem (t,rq,61,¢4) introduced in Sec. A1 ort(r,,65,0,). respect the stationarity of the problem, i.e., the Killing vector
For the sake of clarity we will drop the indices 1 or 2Qr9, g/t of Schwarzschild geometry does not carry a slice of that
and ¢i. It should be understood that the formulas will be foliation into another slicd34] (see also Sec. IV of Ref.

3. Explicit isometry conditions in polar coordinates
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[36]). On the contrary, the slicing with the sign (right part

PHYSICAL REVIEW D65 044020

where we have dropped the indices 1 or 2rpfi, ¢, andS.

of Fig. 3) respects the stationarity of the problem. It seems td\ote that relationg60) and (61) could have been obtained
us more appealing to use a slicing which in the case of @lso as consequences of E§9) since the throats are located
single black hole, makes the problem time-independent. Wat a constant value of the coordinate

regard the artificial time dependence resulting from the

Equations(48)—(53) and their first derivatives give the

sign as an unnecessary complication. In addition to simplicfollowing values for the 3-metric on the throats:

ity, another advantage of the sign choice is to allow us to

test the numerical code by comparison with the standard
form of the Schwarzschild or Kerr metric in the special case

of a single black hole.
Thus, from now on, we set

l,n=—n, (54)
I.N=—N, (55)
and
|, K=—K. (56)
Equation(55) can be explicited for any poir in M, :
N[I(P)]=—N[P], (57)

which amounts to choosing the sign when taking the
square root of Eq(44).

5. Boundary conditions on the throats

An immediate consequence of E@7) is that the lapse

function vanishes on the two throats:
N|51:O and N|52:0. (58

Indeed from the very definition df [Eq. (8)] and the con-
struction of M by identifications of the two copies d; or
S,, every pointP in §; or S, is a fixed point forl. Hence Eq.
(57) results inN[P]=—N[P] on S§; andS,.

Similarly, Eq. (45) implies that ther component of the
shift vector vanishes on the throats:

ﬁr1|51=O and ﬁr2|5220. (59)

Taking the first derivatives of Eqg45)—(47), we get the

p
( 7”+2ﬁ) =0 (64)
or r S
Yrols=0 (65)
J P
31;0 =0 and ;"’ =0 (66)
s Pls
Yrols=0 (67)
J g
e =0 andﬂ =0 (68)
a6 S ¢ |4
J
DYool _g 69)
ar |
J
Doel —o (70
o |
Jd
Dee| _, (71
o |

6. Apparent horizons

As a direct consequence of the isometry hypothesis, the
throatsS; and S, are minimal 2-surfaces of the spatial hy-
persurfaces,. Moreover, as shown by Cook and Yqi&7],
the fact thatK is antisymmetric with respect to the isometry
I [Eq. (56)] implies thatS; andS, are apparent horizons.

C. Quasi-stationarity hypothesis
1. Helical Killing vector

As discussed in Sec. |, we consider binary black holes in

additional following relations on the throats, as a consethe quasi-steady stage, i.e. prior to any orbital instability, so

guence of the isometry of the shift vector:

i—ij - 0 (60)
Z—i - 0 (61)
ﬁa—[ia - 0 (62
%4’ - 0, (63)

that the notion of closed circular orbits is meaningful. Fol-
lowing Detweiler [38], we translate these assumptions in
terms of the spacetime geometry by demanding that there
exists a Killing vector field such that, near spacelike infin-

ity,
J J

| —+Q—,
g deo

(72)

wherety and ¢ are respectively the time coordinate and the
azimuthal coordinate associated with an asymptotically iner-
tial observer, and) is a constant, representing the orbital
angular velocity with respect to the asymptotically inertial
observer. Let us callthe helical Killing vector. We refer the
reader tg 39] for a detailed description of this concept.
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The helical symmetry amounts to neglecting outgoing In a recent work, Friedmaet al.[39] note that corotation
gravitational radiation in the dynamics of spacetime. For(in the above senges the only possible rotation state con-
non-axisymmetric systems—as binaries are—it is wellsistent with the helical symmetry in the full Einstein theory.
known that imposing as an exact Killing vector leads to a However, a weaker definition of quasi-equilibriumot as-
spacetime which is not asymptotically f[@0]. In Sec. IVC, suming thatl is an exact Killing vector, as we do heral-
we will exhibit explicitly how the deviation from asymptoti- lows for more general rotation states, as shown very recently
cal flatness arises. However, from a physical point of viewby Cook[43].
the exact helical symmetry is too strong an assumption be- Combining Eqgs(73) and (36) shows that is related to
cause it assumes that the binary system is rotating on a fixetie lapse function, unit normal and shift vector through
orbit since the past time infinity. Doing so, it has filled the
entire space with gravitational waves, such that their total I=Nn+ B, (75)
energy is a diverging quantity, whence the impossibility of
asymptotic flatness. A weaker assumption, which is compatso that the scalar square lofs
ible with asymptotic flatness and sounds physically more
reasonable, is the following one. Due to the reaction to gravi- l.I=—N2+ 8- B (76)
tational radiation the binary system is in fact spiraling. '

Therefore in the past time infinity, it was infinite_ly s.,eparated.-rhankS to the vanishing of the lapse on the throats, the ri-
As a consequence, the amount of emltted graV|taF|0r)aI Wavegidity condition(74) is then equivalent t@- B=0 onS, and
was very weak. The integral of their energy density is now as,. But 8 being a vector parallel t&,, 8- B=%B,B); the

converging quantity, which allows for asymptotic ﬂamess'positive definiteness of the 3-metricimplies then
The quasi-stationarity hypothesis should then be understood

as imposing a helical Killing vector on a part of spacetime

limited in time Bls,=0 and fls,=0. (7D
It is natural to demand that the isometry associated with )

the Killing vector| preserves, not only.{1,g) as a whole, Hence, not only the-component of3 is zero[Eq. (59)], but

but also the sub-structure 8#( defined byM,, M, and the the total vectorB vanishes on the throats.

two throats. This amounts to demanding that for any of the

coordinates systemt,x') introduced above, whereis the ll. EINSTEIN EQUATIONS

coordinate used explicitly in the construction.®f, A. General form

The vacuum Einstein equations can be writt28] as the
1= gt (73 Hamiltonian constraint equation:

The above equality means thas an ignorable coordinate. It R—K; Ki=0, (79
does not mean that the problem is stationary in the usual
sense of this word, faris not timelike at spatial infinity: by the momentum constraint equation:
virtue of relation(72), I- 1~ Q2(x?+y?)>0 whenx, ,y,—=.
K=
2. Rotation states of the black holes DJK 0, (79
The above geometrical assumptions are intended to corr@nd the “dynamical” equations:
spond to a physical system of two black holes in a quasi-
steady state. We have not specified yet the rotation state IK;:
(spin of each black hole. In this article, we considgm- TI—EBK”:—DiDjN+N(Rij—2KikK}‘), (80)
chronized(or corotating black holes. This rotation state can
be translated geometrically by demanding that the tWQyhere R; denotes the Ricci tensor of the 3-metric R

throats beKilling horizons [41] associated with the helical =R the Ricci curvature scalar, ari?} the covariant deriva-

symmetry. This means that each null-geodesic generator of : . o
S, andsS, must be parallel t. In particular, this implies that Ve associated withy. Note that we have used the vanishing

the Killing vector! is a null vector on the throats: of the trace ofK, as a consequence of the maximal slicing

9 : [assumption(3) in Sec. 11 B 1]. Besides, the geometrical re-

Il =0 andl-I[s=0. 74 lation _(41) mvo!vmg the extrinsic curvature results in the
1 2 following equation:

As a guideline, note that this condition is verified by the

helical Killing vector d/dty+Qudl dey of the Kerr space- IYij _
time, whered/ oty, dldp, and),, are respectively the Kill- T_Em’ii -
ing vector associated with stationarity, the Killing vector as-

sociated with axisymmetry and the rotation angular velocity Following York [44], Shibata and Nakamurg5], and
of the black hole. This classical result is known as fiigéd- Baumgarte and Shapirel6], we introduce the “conformal
ity theoremin the black hole literaturg42]. metric”

—2NK;; . (81)
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~“:: -1/3,, .
yl] Y 7|J5 (82) _,y—l/GﬁkD ( l/GN) Ij+,yl/3 2N,yk|AlkA]|+B D AI]

wherey is the determinant of the 3-metric components.

o ; ; : . . 2 .

vij is a tensor density of weight 2/3. York [44] has shown _RKID, g — AKD, g+ ST k"u) _

that it carries the dynamics of the gravitational field. One can ATDB —ATDS 3 DiB™A 0. (88)

introduce on3,, a covariant derivativ®; such that ) )
Lo~ Note that in Egs(87) and (88), we have used the helical
(') [_)i Yi 0; A O symmetry to set to zero the time derivatives and that we have
(ii) if yj is conformally flat ¢j;="¥"f;;), thenD;=D;,  explicited the Lie derivatives along. Similarly, the evolu-
whereD; is the covariant derivative associated with the flattion equation(81) for ;; can be split into its trace part
metric f;
We réfer to Refs[45,44 for details in the case of Carte-

sian coordinates and to R¢#7] for any coordinate system. Dip'=- EIBIDi Iny (89
Note that the propertfi) is not sufficient to satisfies charac-

terizeD; since the covariant derivativ; fulfills it as well, ~ and its traceless part

reflecting the faqt tha; jisa metric_ dgnsity anq not a metrjc 5

tensor: there exists at least two distinct covariant derivatives ONAI=Digi+Dig - 55 B (90)

“associated” with it. Let us denote bﬁij the Ricci tensor

associated with the covariant derivatiZg and by R the  hsering this relation into the momentum constraB) re-

corresponding scalar densitiR:=y<'Ry;, where”' is the  suits in the following equation for the shift vector:
inverse conformal metric

(91)

OOII—‘

Y=y Byl 83
Let us also introduce the following tensor densities: ) o ) ) )
We recognize here thainimal distortionequation of Smarr
s T and Yprk[33], ie., we recover the fact that thg shift vector of
=y 7Kg and A=y K, (84  coordinates co-moving with respect to a Killing vector field
is necessarily a minimal distortion shift.

A

and denote b’ the operator/*D, . The Hamiltonian con-
straint equation(78) can then be written as an equation for

. B. Approximation of a conformally flat 3-metric
the determinanty: PP y

1. Equations
= =i 1. _ Vg R As a first step in this research project, we introduce the
DiD'Iny+ 12D InyD'In y= _(R Y/ R;AT). (85) approximation of a conformally flat 3-metric:

The momentum constraint equatiér9) becomes y="44, (92

1 V¥ being some scalar field, arfidhe canonical flat 3-metric
DA+ ZAID; In y=0. (86)  associated with the canonical coordinates.y;,z) and
2 (X ,Yi,2Zy) (see Sec. 1AL
Such an approximation has been used in all previous stud-
ies of binary black hole initial data based on the conformal
imaging approachi19-23 or on the puncture approach
[24,25. It has been relaxed in the recently developed Kerr-
Schild approach26-28. Strictly speaking, the assumption
(92) is exact only for a single non-rotatin@chwarzschilg
black hole. However, as discussed by Mathestsl. [48],
and their traceless part such an approximation is quite good even for a maximally
rotating Kerr black hole.
As an immediate consequence of Eg2), we have

The dynamical Einstein equatiori80) can be decomposed
into their trace part

BibiN+ biln ’thiN:’yllsN“Aij’Aij (87)

ol -

~ 1., ~
N( Y YR+ ESDI InyD!In 7)
y=¥, (93

1. ~ ~. ~ —
—1/6] 1/6
+ §(DI In yD/N+D’In yD'N) =y~ *D'D/(y™™N) wheref is the determinant of the metric componefi{s The

conformal “metric” takes then the simple form

1 1. 2.
_§{N R+ 18D «InyD In'y)+3D In yD¥N ;ij:f71/3fij and 5 = F15¢1 ©4)
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By property (i) of the covariant derivativ®,; (see Sec.

[l A above), another consequence of H§2) is that

D;=D;, (95)

PHYSICAL REVIEW D 65 044020

whereas its traceless pd@0) results in a relation between
the extrinsic curvature tensor and the shift vector:

A= (LB
(LA,

5 (104

Whereﬁi is the covariant derivative associated with the flat

metricf. Note that, from the definition d', one has
D=1, (96)

whereD':=f¥D, . It follows immediately from Eq(95) that

the Ricci tensorRij is identically zero.
The relationg84) can be rewritten

A =f"1A; andAU=f13Al, (97)
where we have introduced the tensor fields

Aij ==\I’_4Kij and AIJ ==q’4Kij . (98)

where (B)" denotes theflat) conformal Killing operator
[49] applied to the vectop:

(LB)":=D'g+DIg'~ gﬁkﬁkf”- (105

2. Solution scheme

Our approach is the following one: using EG04) to
evaluateA' , consider Egs(99), (100) and(101) as coupled
elliptic equations to be solved for respectivaly, B, andN.

The remaining five Einstein equations, E¢$02), are not
used to get the solution. Moreover, they are not satisfied by
the solution ¥, B,N), except in special circumstancésg.,

Taking into account the above relations, the Hamiltonianspherica| symmetjy This reflects the fact that the confor-

constraint equatiof85) becomes an elliptic equation fdr:

5

L AP
A‘P:_?AijAJ, (99)

whereA :=5k5k is the Laplacian operator with respect to the

flat metricf.
The momentum constraint equation, under the f¢@d),
becomes

ol =
Ap'+3D'D;A'=2AT(D;N=6ND;In¥), (100

mally flat form (92) constitutes only an approximation to the
exact Einstein equations. An interesting application of Egs.
(102 is then to evaluate its left-hand side in order to gauge
the error resulting from the conformally flat approximation.
Besides, note that E¢103) is not used in the above scheme.
We will discuss this point in Sec. Il B 4.

The system of Eqs(99—(101), resulting from the as-
sumption of conformal flatness and maximal slicing, has
been already proposed by Isenberg and Nd&@}; as well
as Wilson and Mathew$1], as an interesting approximation
to the full Einstein equations. It has been used by many
authors to compute binary neutron stars on circular orbits
[652-59.

whereas the trace part of the dynamical Einstein equations,

Eq. (87), becomes
AN=NW*A;A'l-2D; InDIN. (101
The traceless dynamical Einstein equati¢®®) reduces to
2ND' In¥D! In¥+D'InWwD/N+D’ InwD'N
1 — 1 — _
- Z‘lf‘zD'D'(\PZN)— §[2NDkIn ¥DKInY

_ _ 1 ,
+2D In¥D¥N— Z«P*ZA(\FZN) fil

4
+ T[2ka,A‘kAi' + B Dy(All)— ANID, '~ AD, B!

2 kil | =
+ 3DyBA | =0. (102

The trace part of the evolution equation fgf, Eq.(89),
becomes

D;8'=-6B8D;InV, (103

3. Boundary conditions

The equation£99), (100 and(101) we are facing being
elliptic, it is very important to discuss the boundary condi-
tions to set on their solutions. Thanks to the isométrthe
computational domain is chosen to be half the full spacetime,
i.e., only M, . Its boundaries are then the spatial infinity and
the two throatsS; and S,. At spatial infinity, the metric
should be asymptotically fldhypothesis(1) of Sec. 11 B 1.
This implies that

V¥—1 whenr;—o oOr r,—© (106

and

N—1 whenr;—o or r,—o»,

(107)

Combining Eqs(72), (75), and(107), we get the asymptotic
behavior of the shift vector:

17
pB—OQ— whenr;—o or r,—oo,

108
20 (108
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The boundary conditions on the throats have been derived ifherefore the conditio112) is equivalent to
Sec. I B. In particular, Eq964), (69) and(71) are equiva-

lent to the the following condition on the conformal factor 9B 9B
WV =0 and =0. (118
ary | g
1 2
A Al
—+— =0 and|—+-—|| =0. (109 ) o
ary  2ry s ary  2r, s, Now the trace of the relation between the extrinsic curvature

and the derivative of the 3-metric, E¢LO3), gives, when
All the remaining equations listed in Eq&4)—(71) are au-  inserting Eq.(111) in its right-hand side,
tomatically satisfied by the conformally flat for(82). The
?;é;?dary equation on the lapse have already been §ign Ekﬁk|51:0 and Bkﬂk|82:0- (119

N|51=O and N|32=0, (110 From Eq.(113), it follows that Eq.(118) is satisfied as well.
This establishes the regularity propefiyl2).
as well as that on the shift vector, resulting from the rigid The above argument relies on the fact that Bf3), re-

rotation hypothesi$Eq. (77)]: lating the trace of the extrinsic curvature tendugre zerpto
the divergence of the shift vector, is satisfied. However, as
Bls,=0 andgls,=0. (111)  discussed in Sec. Il B 2, we solve only Eq89)—(101) to
get the metric fieldaV, N, andB. This means that there &
4. Regularity on the throats and isometry of the shift priori no guarantee that E¢103) is satisfied by the solution

of Egs.(99)—(101) (see Sec. IV C of Ref.39] for a discus-
sion of this poin}. It has been argued recently by Cqel3]

that if one reformulates the problem by assuming that the
helical vectorl is not an exact Killing vector, but only an
LB)i|le=0 and(LB)i|c =0, 112 approximate one—as it is in reality—then the only freely
(LA) |51 (LA |$2 (112 specifiable part of the extrinsic curvature, as initial data, is

in order for the extrinsic curvature to be regular on the throatEq' (104, not Eq_.(lQB). This means that thg relatlc(nOS)
Note that in the case of a single rotating black hole, such getween the extrinsic curvature and the shift is not as robust

condition is equivalent t@B¢/dr=0 anddB¢/96=0. The as the relation(104).

. - Another problem is that, when solving the syst€98)—
first condition follows from e.g., Eq10.25 of Ref.[42] and . e
the last one from the rigidity theorenB¢ is constant—and (101) subject to the boundary conditiog$09—(111), there

, . __is no guarantee not only that the solution for the shift vector
zero—on the horizon In the present case, the properties . . S
(59) and (60)—(63), which follow from the isometryi, in obeys Eq(103) but also that it obeys the isometry conditions

. ! . . (62 and (63) [the other isometry conditions, namely Egs.
ﬁg%ﬁ;cat\fsnuméggr%eirﬁﬁgﬁﬁﬁ 19, which follows from the (59), (60) and (61), are satisfied by virtue of the boundary

condition(111)]. In the companion articlg60], we present a
o method to enforce the regularity conditiohl8 as well as
Dif'ls=—~

A direct consequence of Eq6L10) and(104) is that the
shift vector on the throats should satisfy not only EHl1)
but also

(113  the isometry condition$62) and(63). This amounts to add,
S at each step of the iteration, a corrective te@y, to the
solution Bons:0f the momentum constrait00), so that the

and shift vector
4B
(LB) |S:§ ar 5 (114 B= Beonstt Beor (120
2 9B is well behaved, i.e., satisfigg the rigidity boundary con-

(115 ditions (112), (ii) the condition(118 which ensures the regu-
S larity of the extrinsic curvature on the throats, afiid) the
isometry condition(37).
LB)*¥| = — 2 19_,3r If at the end of the iteration3.,, has converged to zero,
(LAY s 3rZsirfd or then we get a regular solution of the Einstein equations in the
conformal flatness approximation. On the contraryBif,
re] _ re| — Op| _ stays at some finite value, we get a solution which violates
(LA ls=(LA)¥|s= (LA ™|5=0. (117 the momentum constraint equation. The numerical solutions
we have computedl60] belong to this category. However
they have(cf. Sec. IV B of[60])

go __ < 9P
(LR35 3r2 ar

(116

S

3Note that the constancy @ on the throat, implied by Eq111),
results in the vanishing of all the partial derivatives of the compo-
nentsB' with respect tod and ¢. | Beod <1073/ 8], (121
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which shows that the momentum constraint is only very __ — ea ‘ 1 Al v
slightly violated. Taking into account the other approxima- Di(WeAlf;,m¥)=D;(WOAl)f;m*+ 5 WPAID;(Fjm’)
tions performed, e.g. conformal flatness, we find this to be

very satisfactory. + Dj(fikmk)]_ (126)

C. Global quantities The first term on the right-hand sid&kRHS) vanishes by
virtue of the momentum constrain®86), which can be

The total mass-energy content in33 hypersurface is written as

given by the Arnowitt-Deser-MisngiADM ) massM, which
is expressed by means of the surface integral at spatial infin- — I,
is exp y g P D, (WeAl) =0, (127)
ity
1 g _ whereas the second term vanishesnois a Killing vector of
M= 16, i; f*f(Djyia—Diy;)dS (122 the flat metricf. Thus the formula fod reduces to integrals
- on the throats:

[see e.g., Eq20.9 of Ref.[61]]. In the case of the confor-

1 L _
mally flat 3-metricy;;="W¥*f;;, this integral can be written J=—o- WOAIf, mkdS
T Jri=ay
M=— — ¢ Diwd 123 ! Al S
=~ 5, ¢ DVds. (123 ~ 5 ﬁ | WEAIfm'ds, (128
2 2

By means of the Green-Ostrogradski formula, this expresyhereds denotes the surface element with respect to the flat
sion can be converted into the volume integraldo¥ plus metricf and oriented toward the “interior” of the throats.

surface integrals on the throats; using the Hamiltonian con-
straint(99) to expres\ 'V, as well as the boundary condition o ) )
(109 on the throats, one gets D. Determination of the orbital velocity

The orbital angular velocitf) does not appear in the

1 53 Al s, A ) partial differential equations listed in Sec. 111 B 1. It shows up
M= 16_7rf WA AT Tdx+ P ¥sing;dé,de, only in the boundary conditiori108 for the shift vector.
v This contrasts with the binary neutron star case, where
a, ) enters in the equation governing the equilibrium of the fluid
+ E B V¥ sin 02d azd(,Dz . (124) (see eg[57])
f2ma At this point, it appears that, solving Eqé99)—(101),

with the boundary condition6L06)—(108) and (109—(111),
one can get a solution\,B,¥) for any given value of}.
For instance, if we sef)=0 in the boundary condition
(108, we get B=0 as a solution of Eq(100 and the
J= i é (Ki—KSfymids (125 Misner-Lindquist solution for? [12,13. Of course, such a
Ik ’ solution is not admissible on physical grounds, and we need
an extra condition to fiX2.
wherem:=4d/de, [see Eqs(72) and(109)] is the rotational As a boundary condition at spatial infinity, we have de-
Killing vector of the flat metridf (to which y is asymptotiz. = manded only thag tends to the Minkowski metric of flat
Note that in the present cas&=0 (maximal slicing. Note ~ Spacetimgconditions(24),(25) or (107),(108]. We could go
also that J defined by Eq.(125 coincides with the @ little further and demand instead thgttends to the
z-component of the vectal' defined by Eq(12) of Bowen  Schwarzschild metric corresponding to the ADM mads
and York[17]. As discussed by York29,37], contrary to the ~ This implies the following behavior for the conformal factor
definition (122) of the ADM mass, the definition125) of J ¥ and the lapsé\ [cf. Egs.(34) and(35)]:
requires some asymptotic gauge-fixing conditions stronger M
than the mere asymptotic flatne€s),(25), because of the P~1+— when r—o, (129
supertranslations ambiguity. Some natural gauge-fixing con- 2r
ditions are provided by the asymptotic quasi-isotropic gauge
proposed by YorK29]. Such conditions are satisfied by the
conformally flat metric(92). Using the fact thatV =1 at
spatial infinity, we can replack;m' by WA f, m* in Eq.
(125 and express by means of the Green-Ostrogradski for- wherer denotes either the coordinatgor r,. From the very
mula as a volume integral plus surface integrals on thalefinition of M, the behavior(129 is guaranteed by Eqg.
throats. The volume integral vanishes identically, as one cafil23). However, the solution of Eq(101) is such thatN
see by considering the following identity: ~1—M'/r, with a priori M'# M. The behavior(130) is

The total angular momentum inX%, hypersurface is defined
by the following surface integral at spatial infinit29,32]

M
N~1—T when r—oo, (130
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thus a extra condition imposed on the systé38)—(101).  tained from Eq(134) [T=mRQ?, P=0, W=—m?/(2R)];

This is the condition which will enable us to fd. this results of course in the Keplerian valu€?
Let us show that for stationary spacetimes, i.e., in the case: 2m/(2R)3.
wherel is timelike at infinity, the extra conditiofil30) fol- Let us remark that Detweildi88] has proposed to deter-

lows from the remaining Einstein equatio(is02), i.e., the  mine the orbital velocity) of binary black holes in circular
equations that we have not used in the s_ys(éﬁ):(lOl). orbits by means of a variational principle. Although he does

Indeed, the quadratic terms of the ty@ InWDIN or  not state it precisely, his variational principle also use the

D' InWD! In ¥ which appear in Eq.102) all decay at least as “virial” assumption (130 [.Cf' the not so well justif[ed Sen-
r—4 whenr—. Now, for stationary spacetimes, it can be tence “In the gauge described in Chapter 19 of Miseteal.

seen that the Lie derivative along of Al which appear in ng(??;?e flux integral atinfinity is 4M —8J" below his

Eqg. (102, decays also at IEa_st as* [Eq. (197 below].
Then Eq.(102 implies thatD'D!(¥2N) decays at least as

r 4, which means that the rl/(monopolay part of ¥2N _
vanishes, i.e., A formula relating the ADM mas$/, the total angular

momentumJ, the angular velocityf) and some integrals on
5 a the throats can be obtained as follows. The key point is to
WN~1+ 2 when r— . (13D notice that the Einstein equatio(igg), (79), the trace of Egs.
(80) and(81) imply, whend/ t is a Killing vector[Eq. (73)],
This is possible only if#? andN have opposite monopolar the following remarkable identit}38]:
1/r terms, which implies the property130). ~ .
Note that, for stationary spacetimes, the monopolar term D'(DiN=K;;B')=0. (139
of the lapseN is the Komar mass associated with the timelike

Killing vector. The condition(130) is then intimately linked that the 3-metricy is conformally flat. The vanishing of the

to th_e _V'F'a' theorem: as already shovyn by_t.WO of(6g], a divergence(135 enables one to use the Green-Ostrogradski
relativistic generalization of the classical virial theorem cant rmula to get an identity involving only surface integrals:
be obtained provided that the Komar mass coincides with the ’

ADM mass [property (130]. This last property has been o 2 o
shown to hold for asymptotically flat stationary spacetimes fﬁ (DiN—-K;;8')dS=— > (DiN—-K;;8")dS,

by Beig[63]. In order to exhibit more clearly the link with * a=1l J&,

the virial theorem, let us combine EgQ9) and (101) to (136)
derive an equation foW?N [see e.g., Eq51) of Ref.[57]]:

E. Generalized Smarr formula

Note that this equation is fully general and does not assume

where by conventionlS is oriented towards the “interior”
of the throats.
+2D,WD'(¥N), From Eq.(130), the flux integral ofD;N on the left hand
side is equal to 4M. Using Eqs.(125 and(108), the flux
(132 integral ofK;; 8’ is equal to 87(2J. The second term on the
ht hand side vanishes becay8e 0 on the throat$rigid-
condition, Eq.(111)], so that one is left with

o3
A(P2N)= N\PS[MTs: + ZAi,-A'J

where we have re-introduced a non-vanishing stress—enerdé}?J

tensorT,, via S,g:=y~y4T,,, for the benefit of the discus- 'Y

sion when considering the Newtonian limit. The condition 1 1 ‘

(131) is equivalent to the vanishing of the monopolar term of M—-20J=—-—® D;NdS—— jg D;NdS.
S1 Sz

W2N, i.e., from Eq.(132 and assuming a spacelike sliEg am am
diffeomorphic tolR®, (137
3 This formula generalizes to the binary black hole case the
f { prﬁ[4wai + ZA”A” + Zﬁi\pﬁ(\pN)] Jid3x=0. classical formula that Sma84] derived for a single rotating
3 black hole(the surface integral on the right hand side being

(133 then the black hole surface gravity multiplied by the horizon
rea.

IV. ASYMPTOTIC BEHAVIOR OF THE FIELDS

It is easy to see that this relation is equivalent to the relativ—a
istic virial theorem given by Eq29) of Ref.[62], once the
latter is specialized to a conformally flat 3-metric. The New-
tonian limit of Eq. (133 is nothing but the classical virial

theorem: The asymptotic behavignear spatial infinity of the con-

formal factor¥ and the lapse functioN are given by EQs.
2T+3P+W=0, (134 (129 and (130. The aim of this section is to get the
asymptotic behavior of the shift vectg@@ and the extrinsic
whereT is the total kinetic energy of the systefthe vol-  curvature tensoK (or equivalentIyAij). In doing so, we will
ume integral of the pressure aWdthe gravitational potential gain some insight about the assumption of asymptotic flat-
energy. Note that the value 6 for two Newtonian particles ness and the leftover Einstein equatidh62).
of individual massm in circular orbit(radiusR) can be ob- To simplify the analysis, we restrict it to a system of iden-
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Ax1=—x3;S,. (143

Provided that the sourc8, decays at least as; * asr;
— % the leading behavior of the solution to EG.42) is
given by the harmonic function

we W wa=[0Z o] +o(r? 144)
( 1! 1 1) |r11 (r]_ ] ( )

wherea is a constant. Note that we have neglected the mo-

nopolar part ofS;* and S'* with respect to that o8,*. This

amounts to considering th& corresponds mainly to a mo-
FIG. 4. Cartesian coordinate systems used for the computatioON &long they, direction, in accordance with the orbital

of the asymptotic behavior of the shift vector. motion. To understand this, let us note that taking the Laplac-

ian of expressiori144) results in the following form fosS; :

tical black holes. We introduce a Cartesian coordinate system

(x,y,z) such thai is the direction along the two hole centers (S;H,S1,S)=(0,—4mad(Xy,y1,21),0), (145

(i.e., the centers of the spher& and S,), x=0 at the

middle between the two, armiis the direction perpendicular where s denotes the Dirac distribution. The Newtonian limit

to the orbital plane. Moreover, let us introduce coordinatefor S, is

systems centered on each hole, according to

S,=16mpv’, (146)
X =x+d/2 Xo=—Xx+d/2 _
yi=V and{ Yo=—y (139 whergp and v.' denotes .the matter density and \_/eloc:|ty re-
_ _ spectively. This Newtonian limit holds because in presence
2=z =z of matter the right-hand side of the shift equatittDO)

?hould contain the term k6times the momentum density of
n%atter(see e.g., Eq52) of Ref.[57]). For two point mass
particles of individual mass in circular orbit with angular
velocity (), this results in

whered denotes the coordinate distance between the cente
of the two sphere$§,; andS,. These two coordinate systems
are represented in Fig. 4.

A. Asymptotic behavior of the shift vector (S;(-lisil'sil): (0,—87mdQ 8(Xy,y1,21),0). (147)
Let us split Eq.(100) for the shift vector in two parts,
assuming that its right-hand side can be split in a @rt Identification with Eq(145) leads to the Newtonian value of
centered on hole 1 and another part centeSgadn hole 2.  the coefficienta:

We therefore write
anewt=2Md(). (148

B'=m'+ B+ 4,, (139

Regarding the Poisson equatiti®3 for x;, we notice that
wherem' is the rotational Killing vectord/de of the flat its source has a vanishing effective mass, at least if its lead-
metric f already introduced in Sec. IlIC, ang, and 38, are  ing order is as Eq(145); consequently, the solutiog; has
the asymptotically vanishing solutions of no monopolar term irr; * and decays as; 2. This means
that its gradient—which enters in expressid®1) for the
shift vector—decays as; 3. Now, in this section, we are
interested in the behavior of the shift vector up to the order

r~2 only. Therefore, we discard the solution fpf, writing
Let us solve Eq(140 for a=1 by means of the following

decompositio 65]: x1=0(r;?). (149

o1 )
AIB|a+ §D|Dj,8Ja:SIa’ a=1, 2. (140)

1 - a X1

7 1fax, WL i i -
Bl= oW —Xui 1. , (141) Inserting Eqs(144) and (149 into Eq. (141) yields
8 8\ ax; Xy

2| g3 +0(r;?).
(X1,¥1,2;) centered on hole 1, and components with respect (150
to that coordinate system are understood in 84.1). W

and y; are solutions of the Poisson equations

2
. X1 pY1 21)_ aleli +£ _azlyl
where x; denotes the Cartesian coordinate system( BB 8r3 '8r, 2

4 . . . -
. . r{= x/x12+ y12+ 221 is the same radial coordinate as that introduced
AW, =S, (142 in Sec. 1A L.
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Let us remark that this solution is nothing but one of the , azy L,
three (harmonig eigenvectors of the operatoD-L=A ,81=8—rf+0(r ) (157

+1/3D(D-) [cf. Eq.(105] which decay as 1. This can be

seen by comparing with the list of these harmonic vectorsind

provided by OMurchadha[66]: the solution(150) above is

the item(19.2 of O Murchadha’s list. Moreover, this author «_ a(di2=x)y y

has shown that this harmonic vector is generated from linear 727 grg + ZSG”L O(r ) (158
momentum in they, direction, in full accordance with the
analysis performed abo\ef. Eq. (145)]. o y2 —d/re

At this stage, our solutiofil50) describes only the linear By=— ar. 7+ | —2s—5—+0(r 3 (159
momentum of hole 1. Since we are considering corotating 2 M2 M2
black holes, they must have individual angular momentum
(spin), in addition to their linear momentum, although nei- Bi=— “_yJFO(rfa)_ (160

ther the notion of individual spin nor individual linear mo- 2 8r;
mentum can be defined rigorously for a binary system in
general relativity(only the total angular momentum can be By adding together these two expressipcfs Eq. (139] and
defined, as in Sec. IIIC To take the rotation of the black performing an expansion to the order?, we get the follow-
holes into account, let us add a pure spin parBjo of the  ing asymptotic form of the total shift vectgs:
type
X_ ad y 2.2 52 y -3
B =—Qy+ - F(—2x+y“+z°)+4s5+0(r )
Y1 X1 8 r r

28—3,—25—3,0), (151 (167
ri ri

X1 Y1 2 —
('Bl,spin'ﬁl,spin Bl,spir) -

where the constargtis some parameter which measures the  gv— o x— ad 15(7x2+ 10y2+ 722 _4513 +O(r %)
amount of spin, the latter being supposed to be aligned along 8r r

the z, axis. Note that Eq(151) is a harmonic vector of the (162
operatorD-L which decays assl‘z. It is nothing but the 30d

asymptotic part of the axisymmetric shift vector generated gz_ _ b X_BgZJr o(r3). (163
by a single rotating objedisee e.g., Eq4.13 of Ref.[67], 8 r
whereN*=— &, ]. Adding Eqg.(150 to Eq. (151, we get )
the following final expression for the shift vector “mostly NOte that, apart from th€) part, the total shift decays as

generated” by hole 1: r~2, contrary top; and B,, which decay as L. From the
above expressiond can be linearly decomposed into three
parts:
ax
u= S s as oY (152
r r B= Biin™T Bangu+ Bquadv (164
5 .
o X with
BI= g~ 7+i% —2sr—§,+0(r;3) (153
1 1 1 Biin=—Qy (165
2, Q%Y1 -3 Blin=0x (166
Bi="g3 +O(17). (154
1
Biin=0, (167)

By symmetry, we get exactly the same expression for the

components of the shift vectg®, with respect to the coor- ad y
dinates &,,Y,,2,). Let us now express the components of ,Bgngu= 7+4s —= (168
both B, and B, with respect to the coordinateg,{,z) cen- r
tered on the system. Taking into account the orientations of q «
(X1,Y1,21) and (x»,y,,Z,) with respect to X,y,z) (see Fig. y _(“_+ -
4), we obtain Pangi 2 t4s)3 (169
a(x+d/2 Bana=0 (170
gz(—g,)y+2s13+ o(r 3 (155 oo
8ri ry
and
2
a y x+d/2 3ad 2
y_ I -3 y X
Bl 8r1(7+ r%) 26% 5O (156 B~ Tr_3<1+ r_z) 171
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y 3ad x y? L1 .

,Bquadz—Tr—g 1+r7 (172) KJ’VE(LE)J when r—oo, (178)
Since (Byn)"=0 for By, is a Killing vector of the flat

(173  metricf, the decompositio164) of the shift vector leads to
the following decomposition of the extrinsic curvature ten-

sor:
Bun 1S @ pure kinematical term, which reflects that we use

co-rotating coordinateg,,q, is, as we will see below, the K= Kangit Kquads (179

part of the shift which carries the total angular-momentum of - - . -

the system. As fop; ginintroduced abovéEq. 151], it has ~ whereKg, o i=(L Bangd” andKqyad=(LBquad" - Inserting the

the familiar shape of a pure spin axisymmetric shift vector. formulas (168 —(170) in the explicit form (105 of the op-
Bquaais one of the nine harmonic vectors of the operatoreratorL results in the following components &,

D-L which decay ag 2. It has the number22.7) in O d

Murchadha’s list[66]. By the way, B.ng, has the number XX _3(a_+4s)¥ (180

(22.1) in the same list. As shown by ®lurchadhd66] [cf. anu 2 r

his Eq.(29)], Byuagarises from the fact that th@,, compo-

g 3ad Xyz
quad 8 r5 .

2 2

nent of the quadrupole mome®;; of the system is time KXY —3 “_d+28 X~y (181)
varying with respect to some asymptotic inertial frahihis angu 4 r°
is the only such component. Indeed, if we consider a New-
tonian system of two identical point mass particles on a cir- < ad yz
cular orbit of diameted in thex—y plane, the time deriva- Kangi= =3 T+23 5 (182
tive of its quadrupole moment with respect to the inertial
frame is given by ad Xy
nggu:3 74’48 r—5 (183
. d?
Qyx= —M—=-Q sin(2Qt) (174
2 . Y Xz
, Kangu:‘?’ a +2s 5 (184
. d
Qxy= m?Q cog20t) (175 Kﬁﬁgf 0. (185
_ dzQ 200 176 A similar computation fomguadyields
Q,yv=m—=Q sin(20t 176
o2 . ad xy[ x?
. . . Kquad: 3? r—5 r—2 -1 (186)
Qxz= Qyz: Q..=0. (177
ad[ x%y?
_ 2
It is clear on this expression that at tirtre 0, when the axes Klad™ 3@(5 2 2 ) (187)
of the rotating frame coincide with those of the inertial frame
(our assumption in this discussiprthe only non-vanishing dyz/ x?
. Xz __
component isQ,,=md*Q/2. Combining Egs.(148) and Kauad= 375~ r_5( S+l (188
(175, we see that the coefficient in front of the three com-
ponents(171)—(173 of Byuaqis —3/2Qyy . This justifies the ad xy[ _y?
label quad (for quadrupole momengiven to that part of the Ktad™ Sg 5ozl (189
shift vector.
2
B. A ; ; inai KYZ _Sa—dx—z 5y—+1 (190)
. Asymptotic behavior of the extrinsic curvature quad— °"g” (5| 22
The asymptotic behavior of the extrinsic curvature tensor )
is deduced from that of the shift vector via Eq98) and K22 _3a_dg Z__3 191
(104), which allows us to writdtaking into account that both quad— > g 5|2 : (19

¥ andN are equal to 1 at spatial infinity B -
Note that bothK}),,, andKy,,qdecay ag ~2.
If we plug the formulag186)—(191) into the surface in-
®In post-Newtonian theory, it is also well known that some part oftegral (125 which gives the angular momentum, we get,
the gravitomagnetic potential—the shift vector in our language—after some straightforward calculations
can be generated by the first time derivative of the mass quadrupole

moment, see e.g., Sec. VIB of R¢68] or Eq. (4.2 of Ref.[69]. J(Kguad = 0. (192
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This means that all the angular momentum of the system is ,  3ad ) ) 5 L
carried byK},,. Indeed, inserting the formula$80—(185) EﬁKéuad:TyZ(‘?’X —7y°=2z°)+0(r ")

into Eq. (125 gives (202
ad
_ _ 3adQ)
J_‘](Kangl)_ T"‘ZS. (193) EB éﬁad: _ W(X2_y2)(3x2+ 3y2_ 222)+O(r_4),
R . L (203
For a non-relativistic point mass system.,is given by Eq.
(148 so that we get which means that gK,,qdecays only as 3. We face here
42 the incompatibility of helical symmetry and asymptotic flat-
J(KangJNewt=m79+25- (194) ness for systems that have a time-varying quadrupole mo-

ment (recall that By .q and henceKy,qis due tonyqé 0).

The first term on the right-hand side is nothing but the orbitalmdeed K quaq iS the only term in the Einstein equations

: <3
angular momentum of the system and the second terms is ti&02 Which decays as slower as”. It therefore cannot be
sum of the spins of the two particles. Henca(K ang) newt is compensated by another term. This means that the five Ein-

equal to the total angular momentum of the system. stein equationg102) are violated. Note that this problem
does not arise from the assumption of conformal flatness of

the 3-metricy. Relaxing this condition would have resulted
in asymptotic behaviors g8 andK which would have been

Let us consider the five Einstein equations that we havehe same as that obtained here. Note also that for a system
not taken into account for the solution of the problem, i.e.,such as an isolated rotating axisymmetric $tarmore gen-
Egs.(102. Thanks to the asymptotic behavi@r29), (130,  erally for any stationary systempBga=0 andKga=0, SO
and (131) of N and ¥, all the terms involving products of that the problem of asymptotic flatness in EB02) does not
gradients ofN or ¥, as well as the ones involving second arise.
derivatives of W2N, decay at least as™*. The quadratic

term f,,AXAl' decays as ~© for Kl decays as ~3, as seen V. CONCLUSIONS
above. The only remaining term in EQLO2) is the Lie de-

rivative of Al along 8. Asymptotically, one has

C. Helical symmetry and asymptotic flathess

We have presented an approach to the problem of binary
black holes in circular orbit which is similar to that previ-
ously used in the literature to treat binary neutron stags-

59], namely an approach based on the existence of a helical

Killing vector field along with the simplifying assumption of

a conformally flat 3-metric. The differences between the two

approaches lie in the boundary conditions on the throats in

gﬂKiJ =£5 Kii+0(r®). (196)  the black hole case. We have chosen a spacetime manifold
g with spatial sections of the Misner-Lindquist type, i.e. com-

Let us introduce the splittingl 79 of K'l into this expres- Posed of two isometric asymptotically flat sheets. Moreover,

£AT=E£KIT+O(r ). (195

It can be seen easily that only the Lie derivative alggg,
matters:

sion. After some computations, we find that we have chosen the black holes to be corotating, which has
B the simple geometrical interpretation of the throats being
£gKngi= O(r ™), (197 Killing horizons. N _
By enforcing the isometry conditions on the shift vector,
whereas as well as the equation relating the trace of the extrinsic

curvature to the divergence of the shift, possibly at the price
of slightly modifying the momentum constraint, all the quan-

tities which enter in the equations remain regular. Notably
the extrinsic curvature tensor remains finite on the throats,

adQ)
£ 5K ad™ T(4X4— 5x?y%—3x%z%+y*—y?z2—27%)

+0(r™ (198 although the lapse vanishes there.
1566) We have proposed to compute the orbital angular velocity
o -
£KY — 2_y2y+0o(r 4 199 of the system l?y requiring that the conformal fac!brand
Bquad™ gy 7 Xy =y’ S (199 the lapse functiolN have the same monopolarr lflerm in

their asymptotic expansions. This requirement reduces to the
classical virial theorem at the Newtonian limit.
Contrary to previous numerical approaches—the confor-

(200  mal imaging ong¢18-23 and the puncture or{@4,25—our

method amounts to solving five, and not fdtie four con-

3adQ straintg, of the Einstein equations. This reflects the fact that
£pKgta= g, 7 —x*+5x%y?+x°2°—4y*+3x°2°+22") e have re-introduced the time dimension in the problem.

The formulation presented here has been implemented by
+0(r % (201 means of a numerical code based on a multi-domain spectral

3adQ
EﬂKéﬁad:TXZ(7X2— 3y2+279)+0(r %)
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method and we present the first results in the companioshanged to different ones, as for instance considering irrota-
paper{60]. These results can be used as initial data for comtional black holes instead of corotating ones. This shall be
puting the black hole coalescence within the3formalism  investigated in future works.

[9-11].

Let us stress that the work presented in this article consti-
tutes a first attempt to tackle the problem of binary black
hole in circular orbits. In order to fully specify the problem
and search for a unique solution, we had to make a number This work has benefited from numerous discussions with
of concrete choices which have some degree of arbitrarineskuc Blanchet, Brandon Carter, Thibault Damour, David Ho-
such as the two-sheeted topology, the isometry across thall, Jerome Novak and Keisuke Taniguchi. We warmly
throats and the resulting boundary conditions, or the rigidhank all of them. We express our deep gratitude to our late
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